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Abstract: The Mahler measure of a complex polynomial is the geometric mean of that poly-
nomial over the unit circle. By a result of Kronecker, for nonconstant integer polynomials,
the Mahler measure is equal to 1 if and only if all roots of the polynomial are 0 or roots
of unity. In 1933, Lehmer asked if the Mahler measure for all other nonconstant integer
polynomials had a lower bound greater than 1. In fact, Lehmer noted that the smallest
such measure he had found belonged to a polynomial having degree 10 and to this day, no
polynomial has been found which lowers this bound. We explore a generalization of the
Mahler measure to lemniscates and investigate which properties of the classical Mahler mea-
sure are preserved by this generalization. In particular, we are interested in the analogues
of Lehmer’s question, and we investigate this matter both analytically and computationally.
Our work is largely restricted to the classical Bernoulli lemniscate and its variations, but
many of our results have applicability to a broad range of lemniscates.
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CHAPTER I

INTRODUCTION

1.1 Outline

The Mahler measure of a complex polynomial P (z) ∈ C[z], denoted M(P ), is the geometric
mean of |P | over the unit circle T = {z ∈ C : |z| = 1}. This measure has been extensively
studied in the preceding decades. For example, D. H. Lehmer used the Mahler measure in the
1930s to help in his search of what were then large primes. In the 1960s, Mahler revisited
the measure in investigating polynomial height functions, and the measure now bears his
name.

As part of his search for primes, Lehmer was interested in monic irreducible integer
polynomials P (z) ∈ Z[z] whereM(P ) was small. For such polynomials, it is known that when
M(P ) = 1, P (z) = z or P is a cyclotomic polynomial. For M(P ) > 1, Lehmer noted the
smallest measure which he could find was degree 10 polynomial L(z) with M(L) ≈ 1.1762,
and it is conjectured that this is the smallest such value.

Since the time of Lehmer, much work has gone into proving or disproving the conjecture.
The conjecture has been proven for large subsets of the integer polynomials. For example,
the conjecture is known to be true for nonreciprocal integer polynomials, totally real integer
polynomials, and integer polynomials whose coefficients are all odd. However, the conjecture
still remains unproven nearly nine decades later.

We study a generalization of the Mahler measure over lemniscates L. In this study, we
focus on analogous results to the classical Mahler measure. In particular, we investigate an
analogue of the classical Lehmer conjecture and which classical results pertaining to this
conjecture are preserved or fail in this generalized setting.

1.2 Historical Background

1.2.1 The Mahler Measure

In a 1933 paper entitled ‘Factorization of certain cyclotomic functions’ [12], D. H. Lehmer
outlined a method for finding primes, which were large by contemporary standards. His
method was to take a monic, integer polynomial

P (z) = zn + an−1z
n−1 + · · ·+ a1z + a0 ∈ Z[z].
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By the fundamental theorem of algebra, P (z) factors over C,

P (z) =
n∏

k=1

(z − αk).

For each m ∈ N, define

∆m(P ) :=
n∏

k=1

(αm
k − 1). (1.2.1)

It is always the case that ∆m(P ) is an integer. Moreover, if αk is an N -th root of unity, then
∆m(P ) = 0 for N dividing m. Thus, it is often assumed that no αk is a root of unity. By
computing ∆m(P ) for various polynomials, Lehmer was able to produce primes which were
large by contemporary standards.

In his paper, Lehmer showed that the sequence {∆m(P )}m∈N is more likely to produce
primes if it does not grow too quickly, where the rate of growth was measured as the ratio
of successive terms: ∣∣∣∣∆m+1(P )

∆m(P )

∣∣∣∣ .
The limit of this measure of growth gives rise to an expression which shall be of great
importance:

Proposition 1.2.1 Provided that no root αk of P has |αk| = 1,

lim
m→∞

∣∣∣∣∆m+1(P )

∆m(P )

∣∣∣∣ = n∏
k=1

max {1, |αk|} . (1.2.2)

In 1960 and 1961, Mahler published ‘An application of Jensen’s formula to polynomials’
[13] and ‘On the zeros of the derivative of a polynomial’ [14], respectively. In these papers,
Mahler utilized a generalization of (1.2.2) to any polynomial in C[z]. Contrasting to Lehmer,
Mahler’s interest in (1.2.2) lay in its use as a height function for polynomials. Broadly
speaking, height functions are used to measure the complexity or size of a mathematical
object, and Mahler’s work focused on comparing an assortment of such height functions for
polynomials.

Definition 1.2.1 For any nonzero polynomial

P (z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0 = an

n∏
k=1

(z − αk)

in C[z], define the Mahler measure of P to be

M(P ) := exp

(
1

2π

∫ 2π

0

log
∣∣P (eit)

∣∣ dt) . (1.2.3)

The Mahler measure is the geometric mean of |P (z)| for z on the unit circle T. However,
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M(P ) is often given in the more familiar form:

M(P ) := |an|
n∏

k=1

max {1, |αk|} , (1.2.4)

with an empty product assumed to be 1. The equivalence of (1.2.3) and (1.2.4) follows as an
easy consequence of Jensen’s formula [1]:

1

2π

∫ 2π

0

log
∣∣eit − α

∣∣ dt = max {0, log |α|} .

It is clear that in the case of P being a monic polynomial in Z[z], (1.2.4) reduces to (1.2.2).
Additionally, if α is an algebraic integer whose complete set of conjugates is denoted by

{αk}nk=1, then the minimal polynomial of α is

P (z) =
n∏

k=1

(z − αk) ∈ Z[z],

and we define the Mahler measure of α to be

M(α) := M(P ) =
n∏

k=1

max {1, |αk|} .

We make note of the fact that M is multiplicative. That is, for P (z), Q(z) ∈ C[z], M(PQ) =
M(P )M(Q) and M(0) = 0, where 0 ∈ C[z] is the zero polynomial. Additionally, for P (z) ∈
C[z] with P (0) ̸= 0, let

Q(z) := znP

(
1

z

)
= a0

n∏
k=1

(
z − 1

αk

)
. (1.2.5)

Then,

M(Q) = |a0|
n∏

k=1

max

{
1,

1

|αk|

}
.

Definition 1.2.2 A polynomial P (z) ∈ C[z] of degree n is said to be reciprocal if it satisfies
znP (1/z) = P (z). Furthermore, an algebraic integer α is said to be reciprocal if the minimal
polynomial of α is reciprocal.

It follows by (1.2.5) that if P (z) is reciprocal, we must have

an

n∏
k=1

(z − αk) = a0

n∏
k=1

(
z − 1

αk

)
.

Since the zeros of each product must coincide up to reordering, then a polynomial P (z) ∈ C[z]
is reciprocal if and only if P (αk) = P (1/αk) = 0 for each root αk of P . This implies that the
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product of two reciprocal polynomials is reciprocal and furthermore, an algebraic integer α
is reciprocal if and only if α is conjugate to 1/α.

On the other hand, if we consider P (z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0, then if P (z)
is reciprocal, we must have

P (z) = znP (1/z)

= anz
n + an−1z

n−1 + · · ·+ a1z + a0

= a0z
n + a1z

n−1 + · · ·+ an−1z + an.

Equating coefficients, we must then have ak = an−k for k = 0, . . . , n. Hence, the coefficients
of P (z) are palindromic. Finally, reciprocal polynomials with real coefficients have the
following useful result:

Proposition 1.2.2 If P (z) ∈ R[z] is reciprocal with odd degree, then P (−1) = 0. Moreover,
if the degree of P (z) ∈ Z[z] is odd and greater than 1, then P is reducible over Z.
Proof. Since P (z) has odd degree and is reciprocal, then P (α) = P (1/α) = 0 for some
α ∈ R. If |α| ̸= 1, then α ̸= 1/α, so P (z)

z2−(α+1/α)z+1
is a real polynomial and is reciprocal.

Repeating this process until only one real zero remains, we must have that α = 1/α and we
conclude that α = −1 since (z− 1)Q(z) is not reciprocal for Q(z) reciprocal.1 In particular,
if P (z) ∈ Z[z] is of odd degree, then P (−1) = 0, so (z + 1) | P (z). Thus, if the degree of P
is greater than 1, then P is reducible over Z.

In addition, Mahler showed that for a polynomial P (z) = anz
n + · · ·+ a0 ∈ C[z],

|ak| ≤
(
n

k

)
M(P ) (k = 0, . . . , n) and M(P ′) ≤ nM(P ). (1.2.6)

Letting the height of P , denoted H(P ), and the length of P , denoted L(P ), be defined by

H(P ) := max
0≤k≤n

|ak| and L(P ) :=
n∑

k=0

|ak| ,

it is clear that H(cP ) = |c|H(P ) and L(cP ) = |c|L(P ) for c ∈ C. With (1.2.6), we then
have [11, p. 3-4]

H(P ) ≤
(

n

⌊n/2⌋

)
M(P ) and 2−nL(P ) ≤ M(P ). (1.2.7)

From which, we then have that if M(P ) is bounded, H(P ) is bounded. It then follows
that the Mahler measure satisfies the Northcott property as a height function for integer
polynomials.

Proposition 1.2.3 (Northcott property of the Mahler measure) For n ∈ N and d >
0, there exist only finitely many P (z) ∈ Z[z] with degP ≤ n such that M(P ) < d.

1If Q(z) = anz
n + · · ·+ a0 is reciprocal, then an = a0, so (z − 1)Q(z) = anz

n + · · · − a0 is not reciprocal.
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Another known inequality of the Mahler measure is given by [15, cor. 1.13]:

M(P ) ≤

√
1

2π

∫ 2π

0

|P (eit)|2 dt =

√√√√ n∑
k=0

|ak|2. (1.2.8)

The properties we have listed of the Mahler measure are but a small sampling. In the
decades since Lehmer and Mahler published their celebrated papers, several articles, books
and surveys have been published focused wholly or in part on the properties of the Mahler
measure. Among them are Borwein [2], Boyd [5], Everest and Ward [11], Smyth [26], and
most recently, McKee and Smyth [15].

1.2.2 The Multivariable Mahler Measure

The definition of the Mahler measure can be extended to any nonzero multivariable polyno-
mial P (z1, . . . , zn) ∈ C[z1, . . . , zn] as follows:
Definition 1.2.3 For any nonzero polynomial P (z1, . . . , zn) ∈ C[z1, . . . , zn], define the (mul-
tivariable) Mahler measure of P to be

M(P ) := exp

(∫ 2π

0

· · ·
∫ 2π

0

log
∣∣P (eit1 , . . . , eitn)

∣∣ dt1
2π

. . .
dtn
2π

)
.

It is clear that when P is a single-variable polynomial, the above definition is equivalent
to (1.2.4). By a result of Boyd [6], the single-variable Mahler measure and the multivariable
Mahler measure are related in the following manner:
Theorem 1.2.1 (Boyd, 1981) Let P (z1, . . . , zn) ∈ C[z1, . . . , zn], then

M(P (z1, . . . , zn)) = lim
r2→∞

. . . lim
rn→∞

M(P (z, zr2 , . . . , zrn)).

This result tells us that for any P (z1, . . . , zn) ∈ C[z1, . . . , zn], there exists a sequence
of polynomials {Pn}∞n=1 ⊂ Z[z] such that limn→∞ M(Pn) = M(P ). Perhaps the most well
known of such sequences being

lim
n→∞

M(zn + z + 1) = M(z2 + z1 + 1) = 1.38135 . . . . (1.2.9)

1.2.3 Lehmer’s Problem

As we noted, Lehmer was interested in finding monic P (z) ∈ Z[z] such that M(P ) was small.
In the case where M(P ) = 1, we rely upon the following result of Kronecker [10] :
Theorem 1.2.2 (Kronecker, 1857) Let α be a nonzero algebraic integer and denote its
complete set of conjugates by {αk}nk=1. If |αk| ≤ 1 for all k = 1, . . . , n, then α is a root of
unity.
Note that for α a nonzero algebraic integer whose complete set of conjugates is denoted by
{αk}nk=1, we have that M(α) = 1 if and only if |αk| ≤ 1 for k = 1, 2, . . . , n. Thus, we may
alternatively restate the previous theorem as

5



Theorem 1.2.3 Let P (z) ∈ Z[z] be irreducible and monic. Then M(P ) = 1 if and only if
P is a cyclotomic polynomial or P (z) = z. Similarly, for α an algebraic integer, M(α) = 1
if and only if α is a root of unity or α = 0.

Therefore, for P (z) = anz
n + · · · + a1z + a0 ∈ Z[z], P is completely understood when

M(P ) ≤ 1. We turn our attention to M(P ) > 1. By (1.2.4), M(P ) ≥ |an|, so for |an| ≥ 2,
we have that M(P ) ≥ 2. This, along with the fact that M is multiplicative, mean that for
P (z) ∈ Z[z], polynomials which are monic and irreducible only need to be considered when
trying to minimize M(P ) > 1.

In his paper, Lehmer posed the problem of whether monic polynomials P (z) ∈ Z[z] such
that M(P ) > 1 can be chosen with M(P ) arbitrarily close to 1. Lehmer noted that the
smallest M(P ) > 1 he could find was

M(αL) = αL = 1.1762 . . .

where αL is the only root lying outside the closed unit disc of the polynomial

L(z) = z10 + z9 − z7 − z6 − z5 − z4 − z3 + z + 1. (1.2.10)

While Lehmer only posed the problem as whether such polynomials could be arbitrarily
found, the following conjecture still bears his name:

Conjecture 1.2.1 (The Classical Lehmer Conjecture) For all α such that M(α) > 1,
we have

infM(α) > 1.

To this day, no polynomial P (z) ∈ Z[z] has been found such that 1 < M(P ) < αL. Conse-
quently, a stronger conjecture sometimes stated as the Lehmer conjecture is:

Conjecture 1.2.2 (The (Stronger) Lehmer Conjecture) For all α such that M(α) >
1, we have

infM(α) = αL.

Much work has gone into trying to prove (or disprove) the Lehmer conjecture. While the
conjecture has never been proven in its entirety, it has been proven for many subsets of Z[z].
For nonreciprocal polynomials in Z[z], the Lehmer Conjecture was proven by Breusch [7].

Theorem 1.2.4 (Breusch, 1951) Let P (z) ∈ Z[z] with P (z) nonreciprocal and M(P ) > 1,
then

M(P ) ≥ M

(
z3 − z2 − 1

4

)
= 1.1796 . . . .

While this proved the Lehmer conjecture was true for nonreciprocal polynomials, it was not
an optimal bound because z3 − z2 − 1

4
/∈ Z[z]. Later, Smyth [25] would improve upon the

lower bound given by Breusch.

Theorem 1.2.5 (Smyth, 1971) Let P (z) ∈ Z[z] with P (z) nonreciprocal and M(P ) > 1,
then

M(P ) ≥ M
(
z3 − z − 1

)
= 1.3247 . . . .
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Since z3 − z − 1 is a nonreciprocal integer polynomial, this lower bound for nonreciprocal
integer polynomials cannot be improved. However, for nonreciprocal integer polynomials
whose coefficients are all odd, P. Borwein, Mossinghoff and Hare [4] proved that:

Theorem 1.2.6 (P. Borwein, Mossinghoff and Hare, 2004) Let P (z) ∈ Z[z] be a non-
reciprocal polynomial whose coefficients are all odd, then

M(P ) ≥ M(z2 − z − 1) = ϕ =
1 +

√
5

2
= 1.618 . . . .

As z2 − z − 1 is a nonreciprocal polynomial whose coefficients are all odd, this lower bound
cannot be improved. Further, Borwein, Dobrowolski and Mossinghoff [3] proved a similar
result which did not require the polynomial in question to be nonreciprocal.

Theorem 1.2.7 (Borwein, Dobrowolski and Mossinghoff, 2007) Let P (z) ∈ Z[z] be
a noncyclotomic irreducible polynomial whose coefficients are all odd, then

M(P ) ≥ 51/4 = 1.4953 . . . .

Another notable lower bound proven by Schinzel [23], who showed that for those nonzero
algebraic integers α ̸= ±1 which are totally real, i.e. whose conjugates are all real, a lower
bound depending upon the degree of the minimal polynomial of α exists:

Theorem 1.2.8 (Schinzel) Let α ̸= ±1 be a nonzero totally real algebraic integer having
a minimal polynomial of degree n. Then,

M(α) ≥ ϕn/2 where ϕ =
1 +

√
5

2
.

Finally, when considering all nonzero algebraic integers α which are not roots of unity, there
exist lower bounds which depend upon the degree of n. In particularly, Dobrowolski [9]
proved that:

Theorem 1.2.9 (Dobrowolski, 1979) If α is a nonzero algebraic integer of degree n that
is not a root of unity, then

M(α) > 1 +
1

1200

(
log log n

log n

)3

. (1.2.11)

Additionally, in 1996, Voutier [28] improved the constant 1
1200

seen in (1.2.11) to 1
4
. His

refinement has yet to be further improved.
Related to the Mahler and of interest to our discussion of lower bounds is the house

function, which we define as:

Definition 1.2.4 Let α be an algebraic integer and denote its complete set of conjugates by
{αk}nk=1. The house of α is defined as

α := max
1≤k≤n

|αk| . (1.2.12)

7



It follows immediately by (1.2.2) and (1.2.12) that

M(α)1/n ≤ α ≤ M(α). (1.2.13)

Furthermore, as with the Mahler measure, α > 1 for nonzero algebraic integers which are
not roots of unity. In particular, Schinzel and Zassenhaus [24] showed

Theorem 1.2.10 (Schinzel and Zassenhaus, 1965) If α is a nonzero algebraic integer
of degree n that is not a root of unity and if 2s of its conjugates are nonreal, then

M(α) ≥ α > 1 + 4−s−2.

This result provides a lower bound for M(α) that depends only on how many non-real
conjugates α has. Additionally, Schinzel and Zassenhaus conjectured the following lower
bound for the house function:

Conjecture 1.2.3 (Schinzel and Zassenhaus, 1965) If α is a nonzero algebraic integer
of degree n that is not a root of unity, then

α ≥ 1 + c/n (1.2.14)

for some absolute constant c > 0.

The Lehmer conjecture implies the Schinzel and Zassenhaus conjecture since

α ≥ M(α)1/n > 1 +
logM(α)

n
.

However, the Schinzel and Zassenhaus conjecture does not imply the Lehmer conjecture. In
fact, the Schinzel and Zassenhaus conjecture is no longer a conjecture, as it was recently
proven true by Dimitrov [8].

Theorem 1.2.11 (Dimitrov, 2019) If α is a nonzero algebraic integer of degree n that is
not a root of unity, then

M(α) ≥ α ≥ 2
1
4n > 1 +

log 2

4n
. (1.2.15)

Like the theorem of Dobrowolski, Dimitrov’s result provides a lower bound for the Mahler
measure of nonzero algebraic integer α which is not a root of unity. In both cases, this lower
bound depends upon the degree n of the minimal polynomial of α and both lower bounds
converge to 1 as n grows to infinity. Hence, the Lehmer conjecture remains unresolved.
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CHAPTER II

GENERALIZATIONS OF THE MAHLER MEASURE

2.1 Brief History and Foundational Concepts

In 2011 and 2021, Pritsker published the papers entitled ‘Distribution of algebraic numbers’
[18] and ‘Heights of polynomials over lemniscates’ [19], respectively. In the former paper,
Pritsker outlined a generalization of the Mahler measure to an arbitrary compact set E ⊂ C
having capacity equal to 1. His work improved upon a generalization of the Mahler measure
first published by Rumely in his paper ‘On Bilu’s equidistribution theorem’ [21]. In the
latter paper, building off his earlier work, Pritsker defined a generalization of the Mahler
measure to an arbitrary lemniscate. For lemniscates which have capacity equal to 1, the
two generalizations are equivalent. In any case, both generalizations rely upon results from
potential theory, so we begin with an overview of this subject.

2.1.1 Potential Theory

Definition 2.1.1 Let µ be a Borel measure on C. The support of µ, denoted suppµ, is the
set of x ∈ C such that µ(U) > 0 for each open neighborhood U of x.

Additionally, for a set X ⊂ C, we denote by P(X) the collection of probability measures
µ on C such that suppµ ⊂ X.

Definition 2.1.2 A sequence (µn)n∈N of probability measures on C is weak*-convergent to
µ ∈ P(X), denoted µn

∗→ µ, if

lim
n→∞

∫
ϕ dµn =

∫
ϕ dµ

for each ϕ ∈ Cc(C), where Cc(C) is the space of continuous functions of compact support
equipped with the sup-norm.

Additionally, in the case where X ⊂ C is a compact set and µn ∈ P(X) for each n ∈ N,
then µn

∗→ µ for µ ∈ P(X) if and only if

lim
n→∞

∫
ϕ dµn =

∫
ϕ dµ

for each ϕ ∈ C(X), where C(X) is the collection of continuous functions on X.

Definition 2.1.3 Let µ be a finite Borel measure on C with compact support. The (loga-
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rithmic) potential for µ is the function pµ : C → [−∞,∞) defined by

pµ(z) :=

∫
log |z − w| dµ(w).

Using the logarithmic potential, we can then define the related notion of energy.

Definition 2.1.4 Let µ be a finite Borel measure on C with compact support. Its (logarith-
mic) energy I(µ) is defined as

I(µ) :=

∫∫
log |z − w| dµ(z)dµ(w) =

∫
pµ(z)dµ(z).

In measure theory, sets having measure zero are notable because integration over such
sets are always zero, and an analogous concept arises from energy in potential theory.

Definition 2.1.5 (a) A subset E ⊂ C is called polar if I(µ) = −∞ for every nonzero
finite Borel measure µ having suppµ ⊂ E.

(b) A property is said to hold quasi everywhere (q.e.) on S ⊂ C if it holds everywhere on
S \ E, for a Borel polar set E.

The logarithmic energy is essential to many of the results of potential theory. The
following lemma makes use of the logarithmic energy to provide a necessary and sufficient
condition for equality of measures [22, lem. 1.8].

Lemma 2.1.1 Let µ1 and µ2 be positive Borel measures such that I(µ1) and I(µ2) are both
finite, and let µ = µ1−µ2 be a signed Borel measure with compact support such that µ(C) = 0.
Then

I(µ) =

∫
pµ(z)dµ =

∫∫
log |z − w| dµ(z)dµ(w) ≤ 0. (2.1.1)

Further, I(µ) = 0 if and only if µ1 ≡ µ2.

Definition 2.1.6 Let E ⊂ C be compact. If there exists µE ∈ P(E) such that

I(µE) = sup
µ∈P(E)

I(µ),

then µE is called an equilibrium measure for E.

The existence of an equilibrium measure can be guaranteed for suitable E ⊂ C. Further,
by Lemma 1, this equilibrium measure is unique under certain conditions [20, thm. 3.3.2,
3.7.6] [22, thm. 1.3].

Theorem 2.1.1 Every compact E ⊂ C has an equilibrium measure µE. Further, if E is
non-polar, then µE is unique with suppµE ⊂ ∂D, where D is the unbounded connected
component of C \ E.

The following theorem, which is sometimes called the Fundamental Theorem of Potential
Theory, provides many useful inequalities about potential and energy with respect to an
equilibrium measure [20, thm. 3.3.4]:
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Theorem 2.1.2 (Frostman’s Theorem) Let E be a non-polar compact subset of C, and
let µE be the equilibrium measure of E. Then

1. pµE
≥ I(µE) on C;

2. pµE
= I(µE) on E \ P , where P is a polar subset of ∂E.

We now turn our focus to Green’s functions, which we will show have useful relationships
with potential and energy [20, def. 4.4.1].

Definition 2.1.7 Let D be a proper subdomain of C (the Riemann sphere). A Green’s
function for D is a map gD : D ×D → (−∞,∞], such that for each w ∈ D:

(a) gD(·, w) is harmonic on D \ {w}, and bounded outside each neighborhood of w;

(b) gD(w,w) = ∞, and as z → w,

gD(z, w) =

{
log |z|+O(1), w = ∞,

− log |z − w|+O(1), w ̸= ∞;

(c) gD(z, w) → 0 as z → ζ quasi everywhere for ζ ∈ ∂D.

As with the equilibrium measure, in some cases, we are able to guarantee the existence
and uniqueness of the Green’s function for D [20, thm. 4.4.2].

Theorem 2.1.3 If D is a domain C such that ∂D is non-polar, then there exists a unique
Green’s function gD.

We now define the logarithmic capacity, which will allow us to relate the equilibrium
measure to Green’s functions, as we shall later demonstrate.

Definition 2.1.8 The (logarithmic) capacity of E ⊂ C is defined as

cap(E) := sup
F⊂E

eI(µF )

where F is compact and µF is the equilibrium measure of F . In particular, if E is compact
with the equilibrium measure µE, then

cap(E) = eI(µE).

WhenD is a proper subdomain of C, with ∂D non-polar and∞ ∈ D, then E = C\D ⊂ C
is compact and non-polar. Letting µE be the equilibrium measure of E, we have [20, p. 107]

gD(z,∞) =

{
pµE

(z)− I(µE), z ∈ D \ {∞} ,
∞, z = ∞.

Thus, for z ∈ C \ E,

gD(z,∞) =

∫
log |z − w| dµE(w)− log cap(E). (2.1.2)
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Moreover, if cap(E) = 1, then log cap(E) = 0 and the previous expression reduces to

gD(z,∞) =

∫
log |z − w| dµE(w) = pµE

(z). (2.1.3)

Hence, for cap(E) = 1, (2.1.3) extends gD(z,∞) to all of C.
We define the notion of a regular boundary point of a domain and the regularity of a

domain.

Definition 2.1.9 Let D be a proper subdomain of C, and let z0 ∈ ∂D. A barrier at z0 is a
subharmonic function b defined on D∩N , where N is an open neighborhood of z0, satisfying

b < 0 on D ∩N and lim
z→z0

b(z) = 0.

A boundary point at which a barrier exists is called regular, and is otherwise irregular. If
every z ∈ ∂D is regular, then D is called a regular domain.

The following proposition shall prove useful when later relating the two generalizations of
the Mahler measure which we shall introduce shortly.

Proposition 2.1.1 Let E ⊂ C be compact with cap(E) = 1, and let D be the unbounded
connected component of C \ E. If D is regular, then

gD(z,∞) = 0 (z ∈ C \D) (2.1.4)

where gD(z,∞) has been extended to C by (2.1.3).
Proof. By (2.1.3), gD(z,∞) = pµ(z) for z ̸= ∞ where µ is the equilibrium measure of E and
suppµ ⊂ ∂D. Since D is regular, then pµ(z) = log cap(E) = 0 for all z ∈ ∂D (see [20, thm.
4.2.4]). Moreover, by Frostman’s theorem, pµ = log cap(E) = 0 on C \D. Hence, pµ = 0 on
C \D.

2.1.2 Lemniscates of a Polynomial

Definition 2.1.10 For a polynomial V (z) = am
∏m

k=1(z − ζk) ∈ C[z] with am ̸= 0, and for
any r > 0, define its lemniscate as

L := {z ∈ C : |V (z)| = r} (2.1.5)

and define the filled-in lemniscate E as the union of the lemniscate L and its interior in C

E := {z ∈ C : |V (z)| ≤ r} . (2.1.6)

Were it allowed that r = 0, then both L and E would be the set of zeros of V . If r > 0,
but r is sufficiently small, then L consists of closed curves each enclosing a zero of V , and if
V has only simple zeros, then there are m such closed curves. As r increases, these closed
curves eventually meet at critical points of V and for sufficiently large r, L is a single closed
curve which encloses all the zeros of V .
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Figure 1: Examples of lemniscates and the polynomials used to generate them.

In addition, many properties of lemniscates with respect to potential theory are well
known and can be explicitly stated. In particular, for E as described in (2.1.6), the equilib-
rium measure of E [27, p. 350], capacity of E [20, p. 134-135], and Green’s function of C\E
[20, p. 133-134] are known explicitly. Further, as stated previously, lemniscates consist of
at most finitely many connected components, so regularity is also well understood [20, thm.
3.8.3, 4.2.4].

Proposition 2.1.2 Let V (z) = amz
m + · · · + a0 ∈ C[z] with am ̸= 0 and r > 0, and define

L and E as in (2.1.5) and (2.1.6). Then the equilibrium measure µE of E (and L) is given
by

dµE(z) =
|V ′(z)|
2πmr

|dz| (2.1.7)

restricted to L. In addition, the capacity of E is given by

cap(E) =

(
r

|am|

)1/m

. (2.1.8)

Finally, letting D be the unbounded connected component of C\E, we have that D is regular
with the Green’s function for D given by

gD(z,∞) =
1

m
log

|V (z)|
r

(z ∈ C \ E). (2.1.9)

2.2 Generalizations of the Mahler Measure

The following generalization of the Mahler measure appeared in 2021 in a paper published
by Pritsker [19], and it allows for the generalization of the Mahler measure to an arbitrary
lemniscate. This generalization produces many results which are analogous to the classical
Mahler measure.

Definition 2.2.1 Let V (z) = am
∏m

k=1(z − ζk) ∈ C[z] with am ̸= 0, r > 0, and L =
{z ∈ C : |V (z)| = r} be a lemniscate as defined in (2.1.5). If P (z) = cn

∏n
k=1(z − zk) ∈ C[z]

is any polynomial with cn ̸= 0, then the generalized Mahler measure ML(P ) of L is defined
as

ML(P ) := exp

(∫
L

log |P (z)| |V
′(z)|

2πmr
|dz|
)
. (2.2.1)
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Analogous to the classical Mahler measure M(P ) being the geometric mean of |P (z)| for
z on the unit circle, ML(P ) serves as the geometric mean of |P (z)| for z on L. In addition,
as was the case with the classical Mahler measure, this generalization may be restated as a
closed form expression.

Proposition 2.2.1 (Pritsker, 2021) Let L be a lemniscate {z ∈ C : |V (z)| = r} defined
as in (2.1.5). If P (z) = cn

∏n
k=1(z − zk) ∈ C[z] is any polynomial with cn ̸= 0, then

ML(P ) = |cn| |am|−n/m

(
n∏

k=1

max {r, |V (zk)|}

)1/m

. (2.2.2)

Furthermore, we have
ML(P ) ≥ |am|−n/m |Res(P, V )|1/m , (2.2.3)

where Res(P, V ) is the resultant of P and V .

Proof. Letting µ be the equilibrium measure of L, we have by (2.1.7) that dµ =
|V ′(z)|
2πmr

|dz|
and suppµ = L. Hence, by (2.2.1), ML(P ) = exp

(∫
log |P | dµ

)
, so

logML(P ) =

∫
log |P (z)| dµ(z) = log |cn|+

n∑
k=1

∫
log |z − zk| dµ(z). (2.2.4)

For each zk, zk ∈ E or zk ∈ C \ E. In the former case, by Frostman’s theorem and (2.1.8)∫
log |z − zk| dµ(z)− log cap(E) =

1

m
log

r

|am|
(zk ∈ E).

In the latter case, by (2.1.2) and (2.1.9), we have∫
log |z − zk| dµ(z) =

1

m
log

|V (zk)|
|am|

(zk ∈ C \ E).

Thus, in either case ∫
log |z − zk| dµ(z) =

1

m
log

max {r, |V (zk)|}
|am|

.

We then have that (2.2.2) follows by the above and (2.2.4). The definition of the resultant
and (2.2.2) immediately imply (2.2.3).

Letting V (z) = z, r = 1, and L defined as in (2.1.5), we see that that (2.2.1) and (2.2.2)
reduce to (1.2.3) and (1.2.4), respectively. Hence, the classical Mahler measure is a special
case of the generalization. In the classical case, Kronecker’s theorem proved very useful
when classifying polynomials, and an analogous statement exists for the generalization of
the Mahler measure in some cases.
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Theorem 2.2.1 (Pritsker, 2021) Let V (z) = zm + · · · + a1z + a0 ∈ Z[z] be monic, let
r = 1, and let L be as defined by (2.1.5). The generalized Mahler measure (2.2.2) satisfies

ML(P ) ≥ 1, P ∈ Z[z], P ̸≡ 0. (2.2.5)

Equality is attained above if and only if P has leading coefficient ±1, and all roots of P are
located in E as defined by (2.1.6).

More precisely, ML(P ) = 1 for a monic irreducible P (z) ∈ Z[z] if and only if either P | V
or P | Φ ◦ V for some cyclotomic polynomial Φ. Thus, if α is an algebraic integer contained
in E with all its conjugates, then

(i) α is a root of V , when α ∈ E \ L,

(ii) α is a root of Φ ◦ V , for a cyclotomic polynomial Φ, when α ∈ L.

This generalization of the Mahler measure leads to an analogous statement for a generaliza-
tion of the Lehmer conjecture. Consider the greatest lower bound for the generalized Mahler
measure of all polynomials P (z) ∈ Z[z] satisfying ML(P ) > 1:

BL := inf {ML(P ) : P ∈ Z[z],ML(P ) > 1} . (2.2.6)

Conjecture 2.2.1 (The Lehmer Conjecture on Lemniscates) Let V (z) = zm + · · · +
a1z + a0 ∈ Z[z] be monic, let r = 1, and define L as in (2.1.5). Then BL > 1.

Letting L be as described above, for P (z) = cn
∏n

k=1(z − zk) ∈ Z[z] a nonzero polynomial,
we have

P (V (z)) =
n∏

k=1

(V (z)− zk) = cn
∏

1≤k≤n
1≤j≤m

(z − βk,j),

where βk,1, . . . , βk,m are the m roots of V (z) = zk. It then follows that

ML(P ◦ V ) = cn
∏

1≤k≤n
1≤j≤m

max {1, |V (βk,j)|}1/m = cn

n∏
k=1

max {1, |zk|} = M(P ).

Thus, BL ≤ BT where T = {z ∈ C : |z| = 1}, which in part gives rise to the following result:

Theorem 2.2.2 (Pritsker, 2021) Let L be defined by (2.1.5), with V (z) = zm + · · · +
a1z + a0 ∈ Z[z] and r = 1. Then

(BT)
1/m ≤ BL ≤ BT. (2.2.7)

An immediate result follows from (2.2.7), that is

Corollary 2.2.1 The classical Lehmer conjecture is true if and only if the generalized
Lehmer conjecture is true.

As stated at the start of this chapter, there have been multiple other generalizations
of the Mahler measure. In addition to the generalizations outlined in (2.2.1) and (2.2.2),
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another generalization of the Mahler measure was published by Rumely [21] in 1999, and
further explored by Pritsker [18] in 2011. Rather than generalizing the Mahler measure to
lemniscates, this alternative measure generalizes the Mahler measure to arbitrary compact
sets E ⊂ C with cap(E) = 1. We shall later show that for lemniscates L having cap(L) = 1,
the two generalizations are identical.
Definition 2.2.2 Let E ⊂ C be compact with cap(E) = 1 and let D be the unbounded
connected component of C \ E. For any polynomial P (z) = cn

∏n
k=1(z − zk) ∈ C[z] with

cn ̸= 0, define the Mahler measure of P on E as

ME(P ) := |cn| exp

(∑
zk∈D

gD(zk,∞)

)
, (2.2.8)

where gD(z,∞) is the Green’s function on D extended to C by (2.1.3).
To avoid confusion, when working with a lemniscate with L and E as defined in (2.1.5)
and (2.1.6), respectively, we shall use ML(P ) to mean (2.2.2) and ME(P ) to mean (2.2.8).
However, any confusion is purely notational, because when a lemniscate has capacity equal
to one, the following proposition gives that the two measures are identically equal.
Proposition 2.2.2 Let V (z) = amz

m + · · · + a0 ∈ C[z] and r > 0 with |am| = r, define L
and E as in (2.1.5) and (2.1.6), respectively. For any polynomial P (z) = cn

∏n
k=1(z − zk)

with cn ̸= 0, we have
ME(P ) = ML(P ).

Proof. Let D be the unbounded connected component of C \ E, then D is regular. Since
|r/am| = 1, then cap(E) = 1 by (2.1.8). Hence, gD(z,∞) = 0 for all z /∈ D by (2.1.4). It
follows that

logML(P ) = log |cn|+
n∑

k=1

gD(zk,∞) = log |cn|+
∑
zk∈D

gD(zk,∞) = logME(P ).

The usefulness of the generalization in (2.2.8) is made apparent by the following theorem.
Theorem 2.2.3 (Pritsker, 2011) Let Pn(z) = cn

∏mn

k=1(z−αk,n) with mn → ∞ as n → ∞
be a sequence of polynomials with integer coefficients and simple zeros. Suppose that E ⊂ C
is a compact set having cap(E) = 1 with µE the equilibrium measure of E. Then

lim
n→∞

(ME(Pn))
1/mn = 1 (2.2.9)

if and only if 

(i) lim
n→∞

|cn|1/mn = 1,

(ii) lim
R→∞

lim
n→∞

(∏
|αk,n|≥R |αk,n|

)1/mn

= 1, and

(iii) τn =
1

mn

mn∑
k=1

δαk,n

∗→ µE as n → ∞.

(2.2.10)
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The following theorem, which features in the proof for Theorem 2.2.3, provides a lower
bound for the energy of a measure arising as the limit of a sequence of measures for the roots
of integer polynomials.

Theorem 2.2.4 Let Pn(z) = an
∏n

k=1(z − zk) ∈ Z[z] with Pn(z) having simple zeroes and
limn→∞ |an|1/n = 1. Assume further that there exists a bounded closed disc D such that the
roots of Pn lie in D for all n ∈ N. If τn = 1

n

∑n
k=1 δn,k

∗→ τ with τ having compact support,
then I(τ) ≥ 0.
Proof. We may assume that supp τ ⊂ D by making D sufficiently large. Let {fM}∞M=1

be defined by fM(z, w) = min {M,− log |z − w|} for z, w ∈ D, so that fM : D ×D → R is
continuous for each M ∈ N and fM increases to − log |z − w|. By the Monotone Convergence
Theorem since τn × τn

∗→ τ × τ , we then have

I(τ) =

∫∫
log |z − w| τ(z)τ(w)

= − lim
M→∞

∫∫
D×D

min {M,− log |z − w|} τ(z)τ(w)

= − lim
M→∞

(
lim
n→∞

∫∫
min {M,− log |z − w|} τn(z)τn(w)

)
= − lim

M→∞
lim
n→∞

(
−M

n
+

2

n2

∑
1≤k<j≤n

log |zk − zj|

)
.

As M is fixed in the inner limit, we then have that

I(τ) = lim
n→∞

(
2

n2

∑
1≤k<j≤n

log |zk − zj|

)

= lim
n→∞

(
2

n
log |an|1/n − 2 log |an|1/n +

1

n2
log |Disc(Pn)|

)
.

Where Disc(Pn) is the discriminant of Pn. Since each Pn ∈ Z[n] has simple zeros, then
|Disc(Pn)| ∈ N. By assumption, limn→∞ |an|1/n = 1, so limn→∞ log |an|1/n = 0. It follows
that I(τ) ≥ 0.

We now introduce the notion of mutual energy between two measures. The provides a
name for an expression often arising when comparing the energies of two measures.

Definition 2.2.3 For µ and τ finite Borel measures on C with compact support, let the
mutual energy of µ and τ , denoted I(µ, τ), be defined as

I(µ, τ) :=

∫∫
log |z − w| dµ(z)dτ(w).

The following theorem provides a lower bound for the mutual energy of measures which arise
as the limit measures for roots of integer polynomials.
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Theorem 2.2.5 Let {Pn}∞n=1 and {Qm}∞m=1 be sequences of monic irreducible integer poly-
nomials such that degPn = n, degQm = m and whose roots all lie in some bounded disc.
Further, assume that roots of Pn and Qm are disjoint for all m,n ∈ N. Define

µn :=
1

n

∑
Pn(z)=0

δz, and τm :=
1

m

∑
Qm(z)=0

δz.

If µn
∗→ µ and τm

∗→ τ , then I(µ, τ) ≥ 0.

Proof. Since the roots of Pn and Qm are bounded, and µ, τ have compact supports, then
for some closed disc D with sufficiently large radius, the roots of Pn and Qm are contained
in D for each m,n ∈ N and suppµ, supp τ ⊂ D. Let {fM}∞M=1 be defined by fM(z, w) =
min {M,− log |z − w|} for z, w ∈ D, so that fM : D×D → R is continuous for each M ∈ N
and fM increases to− log |z − w|. By the Monotone Convergence Theorem, and since µn

∗→ µ

and τn
∗→ τ , then µn × τn

∗→ µ× τ , we then have by the compactness of D that

I(µ, τ) =

∫∫
log |z − w| dµ(z)dτ(w)

=

∫∫
D×D

log |z − w| dµ(z)dτ(w)

= − lim
M→∞

∫∫
D×D

min {M,− log |z − w|} dµ(z)dτ(w)

= − lim
M→∞

(
lim
n→∞

∫∫
min {M,− log |z − w|} dµn(z)dτn(w)

)

= − lim
n→∞

 1

n2

∑
Pn(z)=0

∑
Qn(w)=0

− log |z − w|


= lim

n→∞

1

n2
log |Res(Pn, Qn)| .

The resultant of two integer polynomials is always an integer, and since the roots of Pn and
Qm are disjoint for all m,n ∈ N, then |Res(Pn, Qm)| ≥ 1 for all m,n ∈ N. It follows that
I(µ, τ) ≥ 0.
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CHAPTER III

LEMNISCATES WITH CAPACITY ONE

In the previous sections, we defined the Mahler measure and generalized it to arbitrary lem-
niscates. Many of the important results for this generalization depended upon the capacity
of the lemniscate being one. Thus, we shall focus largely on such lemniscates going forward.

3.1 The Mahler Measure over Lemniscates with Capacity One

We begin our focus on lemniscates having capacity one by stating and proving several useful
results which apply to such lemniscates. Recall that the classical Mahler measure acts as a
height function for integer polynomials with respect to degree and measure. It is also the
case that for any lemniscate having capacity one, the generalized Mahler measure for this
lemniscate acts as a height function for integer polynomials.

Proposition 3.1.1 (Northcott property for the Mahler measure over lemniscates)
Let V (z) = amz

m + · · ·+ a0 ∈ C[z], r > 0, and |am| = r. Define L and E as in (2.1.5) and
(2.1.6), respectively. For N ∈ N and d > 0, there exist only finitely many P (z) ∈ Z[z] with
degP ≤ N such that ML(P ) < d.
Proof. Since |am| = r, then by (2.2.2), for P (z) = cnz

n + · · · + c0 = cn
∏n

k=1(z − zk) ∈ Z[z]
with cn ̸= 0 and n ≤ N , we have

ML(P ) = |cn|

(
n∏

k=1

max {1, |V (zk)/r|}

)1/m

.

It follows that if ML(P ) < d, then |cn| < d and zk ∈ K = {z ∈ C : |V (z)| ≤ dmr} for
k = 1, . . . , n. Since K is compact, then there exists R ≥ 1 such that |z| < R for all z ∈ K.
Hence, symmetric polynomials in z1, . . . , zn are bounded. As the coefficients of P are the
products of cn and these symmetric polynomials, then the coefficients of P are bounded.
Thus, H(P ) = max0≤k≤n |ck| is bounded, and so only finitely many P with degP ≤ n and
ML(P ) < d exist.

The following result provides a necessary condition for a sequence {µn}n∈N of probability
measures to converge weak* to a probability measure µ.

Lemma 3.1.1 Let µ ∈ P(C) with compact support and let (µn)n∈N ⊂ P(C) with µn
∗→ µ.

Then for any N ∈ N,
suppµ ⊂

⋃∞
n=N suppµn. (3.1.1)
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Proof. Suppose, for contradiction, that there existsN ∈ N such that suppµ ̸⊂
⋃∞

n=N suppµn,
then there exists z0 ∈ suppµ and r > 0 such that B(z0, r) ∩ (

⋃∞
n=N suppµn) = ∅. Consider

the function f : C → [0, 1] defined by

f(z) :=


1 if |z − z0| ≤ r/2,
2r−2|z−z0|

r
if r/2 < |z − z0| < r,

0 if |z − z0| ≥ r.

It is clear that f ∈ Cc(C) and
∫
fdµn = 0 for all n ∈ N. By weak*-convergence, we then

have ∫
fdµ = lim

n→∞

∫
fdµn = 0.

However, by definition of suppµ,
∫
fdµ ≥ µ(B(z0, r/2)) > 0. Hence, no such z0 ∈ suppµ

exists, so no such N ∈ N exists, and suppµ ⊂
⋃∞

n=N suppµn for all N ∈ N.

Theorem 3.1.1 Let E ⊂ C be compact having cap(E) = 1 and the equilibrium measure
µE. For F ⊂ C such that suppµE ̸⊂ F , denote by Zn(F ) the collection of polynomials with
integer coefficients of exact degree n whose roots lie entirely in F . Then there exists C > 1
such that

inf {ME(P ) : P ∈ Zn(F ),ME(P ) > 1} ≥ Cn. (3.1.2)
Proof. Suppose, for contradiction, that no such d exists. Then for each ε > 0, there exists
n ∈ N such that

inf {ME(P ) : P ∈ Zn(F ),ME(P ) > 1} < (1 + ε)n.

It follows that there exists a sequence Pn = cn
∏mn

k=1(z − zk,n) such that ME(Pn)
1/mn → 1 as

n → ∞, and we may assume that each such Pn has simple zeros since ME is multiplicative.
Moreover, as the generalized Mahler measure is a height function, then for each ε > 0 and
n ∈ N there exist only finitely many P (z) ∈ Z[z] with degP ≤ n and ME(P ) < (1 + ε)n, so
mn → ∞ as n → ∞. Let τn = 1

mn

∑n
k=1 δk,n, then by (2.2.10), τn

∗→ µE and by (3.1.1),

suppµE ⊂
⋃∞

n=1 P
−1
n (0) ⊂ F,

which contradicts the assumption that suppµE ̸⊂ F . By contradiction, there must exist
ε > 0 such that for all n ∈ N,

inf {ME(P ) ∈ Zn(F ) | ME(P ) > 1} ≥ (1 + ε)n.

Letting C = 1 + ε, we complete our proof.

Corollary 3.1.1 Let V (z) = amz
m + · · ·+ a0 ∈ C[z], r > 0 with |am| = r. Define L and E

be as in (2.1.5) and (2.1.6), respectively. Then there exists C > 1 such that for all totally
real P (z) ∈ Z[z] of degree n having simple zeros with ML(P ) > 1, ML(P ) > Cn.
Proof. By Proposition 2.1.2, the equilibrium measure µE of E and L has suppµE = L. Since
r > 0, then E has a non-empty interior, so L contains non-real numbers and L ̸⊂ R. By
Theorem 3.1.1, the result follows.
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3.2 The Bernoulli Lemniscate

We now turn out attention to particular lemniscates which have capacity one. The unit
circle is such a lemniscate, but the classical Mahler measure has been extensively studied
for decades, so we shall focus on other lemniscates. With the exception of the unit circle,
perhaps the best known lemniscate having capacity one is the Bernoulli lemniscate.
Definition 3.2.1 Let V (z) = z2 − 1 ∈ Z[z] and let L and E be as described by (2.1.5) and
(2.1.6), respectively. That is,

L :=
{
z ∈ C :

∣∣z2 − 1
∣∣ = 1

}
and E :=

{
z ∈ C :

∣∣z2 − 1
∣∣ ≤ 1

}
. (3.2.1)

L =
{
z ∈ C :

∣∣z2 − 1
∣∣ = 1

}
E =

{
z ∈ C :

∣∣z2 − 1
∣∣ ≤ 1

}
Figure 2: The unfilled and filled Bernoulli lemniscate, respectively, depicted in the complex
plane.

For the remainder of this section, we assume L and E are as described above unless
otherwise stated. In particular, for P (z) = cn

∏n
k=1(z − zk) ∈ Z[z], we define ML(P ) as in

(2.2.1) and (2.2.2). That is,

ML(P ) := exp

(
1

2π

∫
L

log |P (z)| |z| |dz|
)

= |cn|

√√√√ n∏
k=1

max {1, |z2k − 1|}. (3.2.2)

As in (2.2.3), we then have
ML(P ) ≥ |Res(P, V )|1/2 . (3.2.3)

Additionally, we define L−, L+, G−, G+ respectively as

L− := {z ∈ L : Re z ≤ 0} and L+ := {z ∈ L : Re z ≥ 0} ,
G− :=

{
z ∈ C : Re z < 0,

∣∣z2 − 1
∣∣ < 1

}
and G+ :=

{
z ∈ L : Re z > 0,

∣∣z2 − 1
∣∣ < 1

}
.

and we define V −1
− and V −1

+ respectively as

z = V −1
− (w) := −

√
w + 1 and z = V −1

+ (w) :=
√
w + 1,

where the branch of the square root function is the principal branch. Then V −1
− and V −1

+

are single valued branches of V −1. When restricted to D, we have that V −1
− and V −1

+ form
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bijections from D to L− ∪G− and L+ ∪G+, respectively. To verify, note that if
√
w1 + 1 =√

w2 + 1, then w1 + 1 = w2 + 1 because V −1
+ is a single valued branch of V −1. On the other

hand, if z ∈ L+ ∪ G+, then |z2 − 1| ≤ 1, so there exists |w| ≤ 1 such that z2 − 1 = w, so
V −1
+ (w) = z. We verify V −1

− is a bijection in a similar manner. Moreover, V −1
− and V −1

+ are
both analytic for w ̸= −1, so they are conformal maps for all points w ̸= −1. In particular,
they are conformal maps from D onto G− and G+, respectively.

Theorem 3.2.1 (Looney, 2022) Let P (z) =
∏n

k=1(z − zk) ∈ Z[z] be totally real. If
ML(P ) > 1, then

ML(P ) ≥ ϕn/4 where ϕ =
1 +

√
5

2
.

Further, for P (z) = (z2 − z − 1)m with m ∈ N, equality is attained.
Proof. LetQ(z) :=

∏n
k=1(z−z2k), so thatQ(z) ∈ Z[z] is totally real. Letting T (z) := Q(z+1),

we have that T (z) =
∏n

k=1(z + 1− z2k) =
∏n

k=1(z − (z2k − 1)) ∈ Z[z]. It follows that

M(T ) =
n∏

k=1

max
{
1,
∣∣z2k − 1

∣∣} = M2
L(P ) > 1.

As T (z) ∈ Z[z] is totally real with deg T = n and M(T ) > 1, then by Theorem 1.2.8, we
have that M2

L(P ) = M(T ) ≥ ϕn/2. It follows that ML(P ) ≥ ϕn/4.
Letting P (z) = (z2 − z − 1)m, we have that

ML(P ) = Mm
L (z2 − z − 1) = ϕm/2.

Thus equality is attained and this bound cannot be further improved.

An immediate and useful inequality follows from our choosing the Bernoulli lemniscate.

Theorem 3.2.2 (Looney, 2022) Let P (z) = zn + · · ·+ c1z + c0 =
∏n

k=1(z − zk) ∈ Z[z] be
irreducible with degP ≥ 2. If ML(P ) <

√
2, then

|P (1)| = |P (−1)| = 1.

Proof. Let Q(z) :=
∏n

k=1(z − z2k), so that Q(z) ∈ Z[z]. Writing P as the sum of its odd and
even parts, we have

P (z) = P0(z
2) + zP1(z

2)

where P0(z) = c0+c2z+c4z
2+. . . and P1(z) = c1+c3z+c5z

2+. . . . By Graeffe’s root-squaring
method [16, Ch. 8], we then have

Q(z) = (−1)n(P 2
0 (z)− zP 2

1 (z)).

Now, let T (z) := Q(z + 1) ∈ Z[z], then

T (z) =
n∏

k=1

(z − (z2k − 1)) = (−1)n(P 2
0 (z + 1)− (z + 1)P 2

1 (z + 1)).
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It follows that M(T ) = M2
L(P ), and so 1 ≤ M(T ) < 2. Thus, |T (0)| = 1, and we then have

1 = |T (0)| =
∣∣P 2

0 (1)− P 2
1 (1)

∣∣ = |P0(1) + P1(1)| |P0(1)− P1(1)| = |P (1)| |P (−1)| .

Since P (z) ∈ Z[z], P (1), P (−1) ∈ Z, we must then have that |P (z)| = |P (−1)| = 1.
We may also prove this result using the submean value property for subharmonic functions.
Alternate proof. Since V −1

− and V −1
+ are conformal maps for w ̸= −1, then P ◦ V −1

− and
P ◦ V −1

+ are analytic for w ̸= −1. Hence, log
∣∣P (V −1

− )
∣∣ and log

∣∣P (V −1
+ )
∣∣ are subharmonic

functions for w ̸= −1 and in particular for w ∈ D. We then have,

logML(P ) =

∫
L

log |P (z)| |V
′(z)|
4π

|dz|

=
1

4π

∫
L−

log |P (z)| |d(V (z))|+ 1

4π

∫
L+

log |P (z)| |d(V (z))|

=
1

4π

∫
|w|=1

log
∣∣P (V −1

− (w))
∣∣ |dw|+ 1

4π

∫
|w|=1

log
∣∣P (V −1

+ (w))
∣∣ |dw|

≥ 1

2
log
∣∣P (V −1

− (0))
∣∣+ 1

2
log
∣∣P (V −1

+ (0))
∣∣ (By submean value property.)

= log
√

|P (−1)| |P (1)|.

Thus, ML(P ) ≥
√

|P (−1)| |P (1)|. It follows that if |P (−1)| ≥ 2 or |P (1)| ≥ 2, then
ML(P ) ≥

√
2. By contraposition, if ML(P ) <

√
2, then |P (−1)| = |P (1)| = 1.

As an immediate consequence of Theorem 3.2.2, for most polynomials, we are able to
quickly determine if most polynomials have relatively large measures.

Corollary 3.2.1 For any polynomial P (z) = cnz
n + · · · + c0 ∈ Z[z] with degP ≥ 2, if

ML(P ) <
√
2, then ∣∣∣∣∣

n∑
k=0

ck

∣∣∣∣∣ =
∣∣∣∣∣

n∑
k=0

(−1)kck

∣∣∣∣∣ = 1. (3.2.4)

An important question when it comes to trying to prove or disprove Conjecture 2.2.1 is
whether there exist infinitely many polynomials all having measures below some fixed bound.
The following proposition provides a sequence of polynomials whose sequence of measures
converges.

Proposition 3.2.1 Let Pn(z) = z(z2 − 1)n − 1, then ML(Pn) ≤ 31/4 for all n ∈ N. Further,

lim
n→∞

ML(Pn) =
√
M(z2 + z1 + 1) = 1.17530 . . .

Proof. To begin, for all n ∈ N, we may write Pn(z) =
∏2n+1

k=1 (z − zk,n) as the sum of its odd
and even parts as

Pn(z) = P0,n(z
2) + zP1,n(z

2)
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where P0,n(z) = −1 and P1,n(z) = (z − 1)n. Letting Qn(z) :=
∏2n+1

k=1 (z − z2k,n), by Graeffe’s
root-squaring method, we have

Qn(z) = (−1)2n+1(P 2
0,n(z)− zP 2

1,n(z)) = z(z − 1)2n − 1.

Then letting Tn(z) := Qn(z + 1), we then have that

Tn(z) =
2n+1∏
k=1

(z − (z2k,n − 1)) = z2n+1 + z2n − 1.

By (1.2.8), it then follows that

M2
L(Pn) = M(Tn) = M(z2n+1 + z2n − 1) ≤

√
3.

Thus, ML(Pn) ≤ 31/4 for all n ∈ N. Now, letting P (z1, z2) = z2z1 + z2 − 1 ∈ Z[z1, z2], we
have by Theorem 1.2.1, that

lim
n→∞

M(Tn) = lim
n→∞

M(P (z2n, z)) = M(P ) = 1.38135 . . . .

Hence, limn→∞ ML(Pn) = M(P )1/2 = 1.17530 . . . .

3.2.1 Notable Measures on the Bernoulli Lemniscate

Using equation (3.2.4), we are able to search for polynomials P (z) ∈ Z[z] for which ML(P )
by the following algorithm:

1. Generate a polynomial P (z) = zn + · · · + a1z + a0 ∈ Z[z] =
∏n

k=1(z − zk) satisfying
|P (1)| = |P (−1)| = 1.

2. Using Graeffe’s root-squaring method, compute T (z) =
∏n

k=1(z − (z2k − 1)) and verify
that 2−nL(T ) < M(T ). This step can be repeated by applying Graeffe’s method to T .

3. Compute ML(P ) and verify that ML(P ) <
√
2. As M2

L(P ) = M(T ), ML(P ) may
be computable by looking up the value of M(T ) in an existing database, such as
Mossinghoff’s [17].

4. If P (z) is irreducible, then note its value.

Using the algorithm described above, we are able to generate a large amount of polynomials
Pn with measure 1 < ML(Pn) <

√
2.
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n degPn a0, a1, . . . ML(a0 + a1z + . . . )

1 3 −1,−1, 0, 1 1.15096 . . .
2 5 1, 3,−1,−3, 0, 1 1.16177 . . .
3 6 −1,−1, 3, 0,−3, 0, 1 1.17087 . . .
4 7 −1,−1, 0, 3, 0,−3, 0, 1 1.17446 . . .
5 4 1,−1,−2, 0, 1 1.17485 . . .
6 5 −1, 1, 0,−2, 0, 1 1.18738 . . .
7 5 −1, 2, 0,−3, 0, 1 1.20136 . . .
8 4 2, 1,−2,−1, 1 1.24740 . . .
9 2 −1,−1, 1 1.27201 . . .
10 5 1, 2,−1,−2, 0, 1 1.28375 . . .
11 6 −1, 2, 3,−1,−3, 0, 1 1.29042 . . .
12 4 1, 1,−1,−1, 1 1.31228 . . .
13 6 −1, 0, 2, 0,−3, 0, 1 1.32471 . . .
14 6 −1,−1, 1, 2,−2,−1, 1 1.33284 . . .
15 4 1, 2,−2,−1, 1 1.33538 . . .
16 7 −1,−1, 1, 3,−1,−3, 0, 1 1.34541 . . .
17 7 1,−1,−1, 3, 2,−3,−1, 1 1.34614 . . .
18 7 −1, 0, 2, 3,−1,−3, 0, 1 1.35727 . . .
19 8 1, 2,−2,−3, 3, 3,−3,−1, 1 1.35760 . . .
20 6 −1,−3, 3, 3,−3,−1, 1 1.36212 . . .
21 8 −1, 0,−1, 0, 3, 0,−3, 0, 1 1.38027 . . .
22 5 −1, 3, 2,−3,−1, 1 1.38158 . . .
23 8 1, 0,−1, 0, 3, 0,−3, 0, 1 1.40126 . . .
24 6 −1,−2, 2, 2,−2,−1, 1 1.40133 . . .
25 8 1, 1,−1,−3, 3, 3,−3,−1, 1 1.40183 . . .

Table 1: Polynomials Pn such that 1 < ML(Pn) <
√
2 where L is the Bernoulli lemniscate.
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3.3 The Rotated Bernoulli Lemniscate

We define the rotated Bernoulli lemniscate in the same vein as we defined the classical
Bernoulli lemniscate.

Definition 3.3.1 Let V (z) = z2 + 1 ∈ Z[z] and let L and E be defined as in (2.1.5) and
(2.1.6), respectively. That is,

L :=
{
z ∈ C :

∣∣z2 + 1
∣∣ = 1

}
and E :=

{
z ∈ C :

∣∣z2 + 1
∣∣ ≤ 1

}
.

L =
{
z ∈ C :

∣∣z2 + 1
∣∣ = 1

}
E =

{
z ∈ C :

∣∣z2 − 1
∣∣ ≤ 1

}
Figure 3: The unfilled and filled rotated Bernoulli lemniscate, respectively, depicted in the
complex plane.

Proceeding as before, for P (z) = cn
∏n

k=1(z − zk) ∈ Z[z], we define ML(P ) as in (2.2.1)
and (2.2.2) by

ML(P ) := exp

(
1

2π

∫
L

log |P (z)| |z| |dz|
)

= |cn|

√√√√ n∏
k=1

max {1, |z2k + 1|}.

By Corollary 3.1.1, there exists a constant C > 1 such that for all totally real monic P (z) ∈
Z[z] with degree n and ML(P ) > 1, ML(P ) > Cn. One such value of C is known for the
rotated Bernoulli lemniscate.

Proposition 3.3.1 Let P (z) ∈ Z[z] be monic and totally real with degree n having simple
zeros. If ML(P ) > 1 then

ML(P ) ≥ ϕn/2 where ϕ =
1 +

√
5

2
.

Proof. We may assume that P (z) =
∏n

k=1(z−zk) is irreducible since ML(P ) is multiplicative
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and ML(P ) > 1. By Theorem 1.2.8, if P (±1) ̸= 0, then

M(P ) ≥ ϕn/2.

By our choice of L and the fact that zk ∈ R for k = 1, . . . , n, we have√
z2k + 1 ≥ max {1, |zk|}

for k = 1, . . . , n. It follows that

ML(P ) =

√√√√ n∏
k=1

max {1, |z2k + 1|} =

√√√√ n∏
k=1

|z2k + 1| ≥
n∏

k=1

max {1, |zk|} = M(P ) ≥ ϕn/2.

On the other hand, if P (±1) = 0, then P = z ± 1, and ML(P ) =
√
2 ≥ ϕ1/2. Thus, in any

case, ML(P ) ≥ ϕn/2.

Proposition 3.3.2 Let P (z) ∈ Z[z] be an irreducible monic polynomial with degree ≥ 1. If
1 < ML(P ) <

√
2, then

|P (i)| = |P (−i)| = 1. (3.3.1)
Proof. Suppose that ML(P ) <

√
2, then√
|P (i)P (−i)| < ML(P ) <

√
2.

Hence,
2 > |P (i)P (−i)| =

∣∣∣P (i)P (i)
∣∣∣ = ∣∣∣P (−i)P (−i)

∣∣∣ = |P (i)|2 = |P (−i)|2 .

Since ML(P ) > 1 and P is monic and irreducible, then P ∤ (z2+1) by Theorem 2.2.1. Thus,

0 < |P (i)|2 = |P (−i)|2 < 2.

Moreover, since P (i), P (−i) ∈ Z[i], then |P (i)|2 , |P (−i)|2 ∈ Z, so |P (i)|2 = |P (−i)|2 = 1.

3.3.1 Notable Measures on the Rotated Bernoulli Lemniscate

Similarly to the classical Bernoulli lemniscate, we are able to make use of (3.3.1) to search
for polynomials P (z) ∈ Z[z] for which 1 < ML(P ) <

√
2.

1. Generate a polynomial P (z) = zn + · · · + a1z + a0 ∈ Z[z] =
∏n

k=1(z − zk) satisfying
|P (i)| = |P (−i)| = 1.

2. Using Graeffe’s root-squaring method, compute T (z) =
∏n

k=1(z − (z2k + 1)) and verify
that 2−nL(T ) < M(T ). This step can be repeated by applying Graeffe’s method to T .

3. Compute ML(P ) and verify that ML(P ) <
√
2. As with the Bernoulli lemniscate,

ML(P ) may be computable by looking up the value of M(T ) in an existing database.

4. If P (z) is irreducible, then note its value.
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n degPn a0, a1, . . . ML(a0 + a1z + . . . )

1 3 −1, 2,−1, 1 1.15096 . . .
2 6 1,−2, 5,−3, 4,−1, 1 1.16615 . . .
3 7 −1, 1, 0, 3, 0, 3, 0, 1 1.17844 . . .
4 6 1,−1, 3, 0, 3, 0, 1 1.18224 . . .
5 4 1,−1, 2, 0, 1 1.18375 . . .
6 3 −1, 1, 0, 1 1.21060 . . .
7 6 2,−1, 3,−1, 3, 0, 1 1.24515 . . .
8 6 1,−2, 3,−1, 3, 0, 1 1.29257 . . .
9 7 −1, 2,−2, 3,−1, 3, 0, 1 1.29406 . . .
10 6 1,−2, 3,−2, 3,−1, 1 1.29620 . . .
11 7 −1, 2,−3, 3,−3, 3,−1, 1 1.29748 . . .
12 4 1,−2, 2,−1, 1 1.31228 . . .
13 8 1, 2, 2, 3, 5, 1, 4, 0, 1 1.32256 . . .
14 6 1, 0, 1, 0, 2, 0, 1 1.32471 . . .
15 8 1, 0, 2,−2, 5,−3, 4,−1, 1 1.33265 . . .
16 8 1,−1, 3,−1, 5,−2, 4,−1, 1 1.33871 . . .
17 7 −1, 0,−1, 2,−2, 3,−1, 1 1.34027 . . .
18 5 −1, 3,−2, 3,−1, 1 1.34858 . . .
19 5 −2, 3,−3, 3,−1, 1 1.35015 . . .
20 6 1, 0, 4,−2, 4,−1, 1 1.35568 . . .
21 8 1,−2, 3,−3, 5,−3, 4,−1, 1 1.35620 . . .
22 6 2,−3, 5,−3, 4,−1, 1 1.35863 . . .
23 7 −1, 2, 0, 5, 0, 4, 0, 1 1.35962 . . .
24 5 −1, 0,−1, 2, 0, 1 1.36479 . . .
25 6 1,−1, 2, 0, 2, 0, 1 1.37646 . . .
26 8 −1, 0, 1, 0, 3, 0, 3, 0, 1 1.38027 . . .
27 8 1, 0, 1, 0, 3, 0, 3, 0, 1 1.40126 . . .

Table 2: Polynomials Pn such that 1 < ML(Pn) <
√
2 where L is the rotated Bernoulli

lemniscate.
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3.4 Asymptotic Behavior of Measures Over Sequences of Lemniscates

To this point, our study of Mahler measures on lemniscates have been concerned with mea-
suring many polynomials on fixed lemniscates. Our attention now turns to the study of
measuring a single polynomial over several lemniscates.

Definition 3.4.1 Let Vm(z) := zm − 1 ∈ Z[z] for m = 1, 2, . . . , and define both Lm and Em

as in (2.1.5) and (2.1.6) with r = 1 for m = 1, 2, . . . . That is,

Lm := {z ∈ C : |zm − 1| = 1} and Em := {z ∈ C : |zm − 1| ≤ 1} .

|z − 1| = 1
∣∣z2 − 1

∣∣ = 1
∣∣z3 − 1

∣∣ = 1
∣∣z4 − 1

∣∣ = 1
∣∣z5 − 1

∣∣ = 1

Figure 4: The first five terms of Lm.

Using the terminology of (2.2.1) and (2.2.2), for a polynomial P (z) = cn
∏n

k=1(z − zk) ∈
C[z] we define the sequence of Mahler measures Mm as

Mm(P ) := exp

(
1

2π

∫
Lm

log |P (z)|
∣∣zm−1

∣∣ |dz|) = |cn|

(
n∏

k=1

max {1, |zmk − 1|}

)1/m

.

Theorem 3.4.1 For P (z) = cn
∏n

k=1(z − zk), we have

lim
m→∞

Mm(P ) = M(P ).

Proof. Let P (z) = cn
∏n

k=1(z − zk) ∈ C[z], then for each zk, we have two possible cases:

(i) If |zk| ≤ 1, then 0 ≤ |zmk − 1| ≤ 2 and 1 ≤ max {1, |zmk − 1|} ≤ 2. Thus,

1 ≤ max {1, |zmk − 1|}1/m ≤ 21/m.

It then follows that limm→∞ max {1, |zmk − 1|}1/m = 1.

(ii) If |zk| > 1, then limm→∞ |zmk − 1| = ∞. Hence, there exists N ∈ N such that for all
m ≥ N , we have |zmk − 1| > 1. It then follows that

lim
m→∞

max {1, |zmk − 1|}1/m = lim
m→∞

|zmk − 1|1/m = lim
m→∞

|zk|
∣∣1− z−m

k

∣∣1/m = |zk| .
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Thus, limm→∞ max {1, |zmk − 1|}1/m = max {1, |zk|}, and consequently

lim
m→∞

Mm(P ) = |cn| lim
m→∞

(
n∏

k=1

max {1, |zmk − 1|}

)1/m

= |cn|
n∏

k=1

lim
m→∞

(
max {1, |zmk − 1|}1/m

)
= |cn|

n∏
k=1

max {1, |zk|} = M(P ).

Theorem 3.4.2 Let Pm(z) = zm − z − 1 ∈ Z[z], then Mm(Pm) > 1 for all m ≥ 2 and

lim
m→∞

Mm(Pm) = 1. (3.4.1)

Proof. For m ≥ 2, let α1, . . . , αm be the roots of Pm, then αm
k − 1 = αk for k = 1, . . . ,m. It

follows that

Mm(Pm) =
m∏
k=1

max {1, |αm
k − 1|}1/m =

m∏
k=1

max {1, |αk|}1/m = M(Pm)
1/m.

Restricting Pm to R, we have that Pm(1) = −1 and Pm(x) → ∞ as x → ∞. By the
intermediate value theorem for real functions, Pm has a real root α > 1, so

Mm(Pm) ≥ |α|1/m > 1.

By (1.2.8), we also have that

M(Pm) = exp

(
1

2π

∫ 2π

0

log
∣∣Pm(e

it)
∣∣ dt) ≤

√
1

2π

∫ 2π

0

|Pm(eit)|2 dt =
√
3.

Hence, for each m ≥ 2, we have

1 < Mm(Pm) = M(Pm)
1/m ≤ 2m

√
3.

By the squeeze theorem, it follows that limm→∞ Mm(Pm) = 1.
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