
 POWER-EFFICIENT COLLABORATIVE FALL

DETECTION USING A WEARABLE DEVICE AND A

ROBOT

 By

 RICARDO HERNANDEZ

 Bachelor of Science in Computer Engineering

 Oklahoma State University

 Stillwater, Oklahoma

 2019

 Submitted to the Faculty of the

 Graduate College of the

 Oklahoma State University

 in partial fulfillment of

 the requirements for

 the Degree of

 MASTER OF SCIENCE

 December, 2022

ii

 POWER-EFFICIENT COLLABORATIVE FALL

DETECTION USING A WEARABLE DEVICE AND A

ROBOT

 Thesis Approved:

 Dr. Weihua Sheng

 Thesis Adviser

 Dr. James Stine

 Dr. Bingzhe Li

iii
Acknowledgements reflect the views of the author and are not endorsed by committee
members or Oklahoma State University.

ACKNOWLEDGEMENTS

I want to thank my family and friends who stood by my side during these years.

iv

Name: RICARDO HERNANDEZ

Date of Degree: DECEMBER, 2022

Title of Study: POWER-EFFICIENT COLLABORATIVE FALL DETECTION USING

A WEARABLE DEVICE AND A ROBOT

Major Field: ELECTRICAL ENGINEERING

Abstract: With increasing life expectancy, the technological sub-field of elderly care is

expected to rise in importance. This growing population has put a strain on current

elderly care facilities and personnel. This research work is focused on designing and

implementing a collaborative elderly care system (CECAS) using a companion robot and

a wearable device that will enable the monitoring and companionship needed in assisted

living communities and private homes. This system is meant to improve the automation

in elderly care which will lead to a reduction in costs and an increase in availability. Two

elderly care applications are used to demonstrate the capability of the proposed system,

which includes: fall detection and response, and conversational assistance. In the fall

detection and response application, a two-step method is proposed, which consists of a

motion data based preliminary detection on the wearable device and a video-based final

detection on the companion robot. To further reduce the operating costs and improve the

system, parameters such as the image size and the neural network size are optimized

through extensive experimental study. In the conversational assistance application, the

robot is capable to conversate with the user to determine if external assistance is needed

and acts as an extra measure of fall detection. The results of the experiments showcase

that both the wearable device and the companion robot can be optimized for power-

efficiency, speed, and retain fall detection performance.

v

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ..1

II. REVIEW OF LITERATURE..3

 Section 2.1: Wearable Devices ..3

 Section 2.2: Fall Detection ...4

 Section 2.3: Fall Detection within a Wearable Device Framework.........................5

III. HARDWARE DESIGN OF WEARABLE ...7

 Section 3.1: Placement ...8

 Section 3.2: Peripherals ...9

 Section 3.3: Casing ..11

 Section 3.4: PCB Design..13

 Section 3.5: Companion Robot ..14

IV. SOFTWARE DESIGN OF SYSTEM ...16

 Section 4.1.1: Dual-Core Threading ..16

 Section 4.1.2: Tasks ...17

 Section 4.2: Companion Robot ..19

V. COLLABORATIVE FALL DETECTION ..21

 Section 5.1: Introduction to CNN ..22

 Section 5.2: Introduction to LSTM ..23

 Section 5.3: CNN-LSTM ...25

 Section 5.4: ResNet-152 ..25

 Section 5.5: Researched Architecture ..26

vi

Chapter Page

VI. EXPERIMENTS AND RESULTS ...28

 Section 6.1.1: Image Data Collection ..28

 Section 6.1.2: CNN-LSTM Training ...34

 Section 6.1.3: Energy Consumption ..36

 Section 6.2: Results ..37

 Section 6.2.1: ResNet-LSTM ...37

 Section 6.2.2: Energy Consumption ..42

 Section 6.2.3: Final System ...45

VII. CONCLUSIONS AND FUTURE WORK..47

 Section 7.1: Conclusion ...47

 Section 7.2: Future Work ...47

REFERENCES ..49

vii

LIST OF TABLES

Table Page

 1. Learning Rate Experiment ..37

 2. ResNet Fully Connected Layer Hidden Nodes Experiment38

 3. Final Feature Vector Dimension Experiment w/ 640 & 48039

 4. Final Feature Vector Dimension Experiment w/ 320 & 24040

 5. Accuracy using different sized datasets ..41

 6. Accuracies of Each Classification on Full Dataset ...41

 7. Confusion Matrix for 64x64 Resolution ...42

 8. Confusion Matrix for 128x128 Resolution ...42

 9. Confusion Matrix for 256x256 Resolution ...42

viii

LIST OF FIGURES

Figure Page

 1. All main components of the wearable device ...11

 2. Front, left, back left, top, & back of case, with magnetic component exposed ..12

 3. Inside of Case without and with the Electrical Components13

 4. PCB Simulation and Real-World PCB of the Wearable14

 5. Companion Robot Diagram ..15

 6. Wearable Software Flowchart...19

 7. System Diagram ..20

 8. Convolutional Neural Network Diagram ..23

 9. Long Short-Term Memory Diagram ...25

 10. ASCC Mock Home ...30

 11. Fall points in the Test Environment ..30

 12. Sitting & Standing Viewpoints ...31

 13. Walking Paths taken in the Test Environment ..31

 14. Sitting Image Set ...32

 15. Standing Image Set ...33

 16. Falling to the Left Image Set ..33

 17. Falling to the Right Image Set ..34

 18. Transmission Time of Ten Images for First Set of Resolutions43

 19. Transmission Time of Ten Images for Second Set of Resolutions44

 20. Wi-Fi Power Consumption During Transmission of Images45

1

CHAPTER I

INTRODUCTION

The world is witnessing the rapid growth of an aging population and the number of older

adults over 65 is expected to exceed 1.5 billion by 2050. This is concerning because older adults

usually suffer from various health issues; for example, high blood pressure, decline of memory

and cognition, mobility, etc., which calls for more innovations in the health sector sub-field of

elderly care [3]. As most older adults prefer to live in their homes, there is a huge demand to

support an elderly population who needs constant healthcare services but are not able to rely on

themselves. On the other hand, providing a personal healthcare practitioner for each older adult is

not a realistic scenario due to logistics and, primarily, financial reasons. Although many robotic

technologies have been developed in recent years, how to assist older adults to live safely is still

particularly challenging and a current frontier. First, it is critical if the robotic system can detect

an older adult's falls and ask for help when necessary. Second, it is desirable to provide daily

assistance to older adults through a conversational interface anywhere in their home.

Additionally, how to avoid the privacy issue of the older adults and how to reduce the energy

consumption for activity monitoring are key issues when designing wearable devices.

2

Companion robots are being developed as a potential solution to providing better

independent living for older adults. These robots not only provide basic functions such as news,

music, and daily chatting, but also offer medical services such as medication reminders, and

emergency detection. Some robots could detect falls and alert caregivers for help; however, it

may cause privacy concerns if cameras are used to monitor older adults' activities from a third

person point-of-view. In addition, a robot, even if equipped with high quality sensors, has a

limited sensing range around itself and is not able to provide sufficient monitoring capabilities in

the whole home environment. Therefore, it is highly desirable to develop novel solutions to allow

a robot to monitor and assist older adults everywhere in their home. One way to achieve this is by

incorporating wearable technology that can assist the companion robot with acquiring necessary

data. A wearable camera device could alleviate users' privacy concerns since the images being

captured by it are not of the user but of the environment. In addition, a wearable motion sensor

can be used to trigger the camera, thus allowing the camera to capture images only when

necessary. This makes it possible to combine wearable devices and companion robots to build a

wide-ranging and privacy-aware personal assistance system for older adults.

3

CHAPTER II

REVIEW OF LITERATURE

Several studies have been conducted to showcase that wearable devices have encouraged

users to be more active and live more health-conscious lifestyles [1]. This is the case for younger

individuals who are more health-conscious to begin with and intend for its effects. It is important

to bring this technology to older individuals and tailor the device to their lifestyle. The beginning

portion in designing a wearable device is the actual device and its configuration. Thus, it is

important to understand the progression of wearable technology and other studies that have

similar challenges.

2.1: WEARABLE DEVICES

Schiboni et al. [4] designed and constructed a wearable head-mounted camera setup for

dietary data collection by fixing a camera on a cap’s brim where the images taken were the point-

of-view of the user. This configuration gives an effective point of view but does not give an

ergonomic design that considers the amount of time it is expected of the user to wear it. Similarly,

Sun et al. [5] developed a wearable device for health monitoring and personal assistance that

could be worn on a helmet. The device consists of a powerful CPU, an image sensor, a single

accelerometer, and an audio processor. It is possible to wear it on the chest which is a preferred

alternative than the head-mounted design but due to the overall system size and complexity, the

chest mount could cause issues and annoyance when wearing.

4

It is not realistic for the user to wear daily for prolonged periods. The IMMED project [14]

implemented a wearable device that captures video meant for people with dementia due to age.

The system is composed of a wearable camera device designed to capture audio and video data of

the activities of a patient, which is later processed with multimedia indexing techniques in order

to allow medical specialists to analyze several hour-long observation shots more efficiently. This

study has a similar issue since the device is chest mounted using a large strap mechanism which

could indirectly affect the behavior of the user. Lastly, Zhan et al. [6] proposed an activity

recognition implementation that uses video data obtained from a wearable camera embedded on

glasses. This is a novel and recent frontier in the wearable technology field but does pose

challenges for our application. It is effective if only images are needed but any other peripherals

will enlarge the design and make the overall system less user-friendly. Also, few individuals wear

glasses on a daily basis so adjustment from the user will be needed.

2.1: FALL DETECTION

There are several methods that have been developed for fall detection, each with their

own advantages and disadvantages. Zerrouki et al. [7] compare different machine learning

algorithms for fall detection that use video sequences of different daily and fall activities as input.

They compared Naïve-Bayes, k-nearest neighbors, neural network, and support vector machine

(SVM) algorithms and concluded that the SVM algorithm performed best among these, with

respect to most measures of performance such as accuracy, sensitivity, recall, etc.

[15][16][17][18]. This study focuses on video data of activities of individuals but from a third

person point of view. Similarly, Shojaei et al. [8] demonstrated an image-based detection method

by using a long short-term memory (LSTM) neural network that verifies a fall with 3D joint

skeleton features. These features are only possible due to the third person point of view of the

individual. Both are important and relevant but are at a disadvantage since these methods would

entail a device that is stationary and with a constant view of a patient.

5

2. 3: FALL DETECTION ON WEARABLE DEVICES

There are also several studies that have looked at possible wearable device designs for the

application of fall detection and look for efficient detection methods. Casares et al. [9]

implemented a resource-efficient method for fall detection by using a wearable embedded smart

camera, which is a small, battery-operated unit. The proposed system uses histograms of edge

orientations as well as edge strength values and analyzes their correlation to determine a fall.

Their study uses the CITRIC platform, which was developed by researchers at Berkeley,

originally as a device for cluster frameworks. It is reasonable in size but still larger due to the

number of processing units involved since all computations are done locally. Martinez et al. [10]

use a combinational neural network that consists of a convolutional neural network and LSTM to

extract features from raw data such as senor data and video data for real-time fall detection.

Multimodal architectures are the current frontier of fall detection systems and are common in

research. To highlight this another study done by Ozcan et al. [11] also developed a fall detection

system using video and accelerometer data captured by a wearable smartphone.

In summary, there are many studies throughout the years that have tackled fall detection

either with or without using wearable technology but each with unique features and system

configurations, each trying to determine the most efficient method. The most common methods

are a stationary camera or cameras with powerful local processing units which allow for high

accuracy in detection but are limited in range and do not consider the realistic lifestyle of the

elderly. That is the reason for the adoption of wearable technology and its extension of

functionality. For wearable fall detection, it is common to use large devices that implement

several differing algorithms from simple to modern algorithms like histograms of gradients to

multimodal machine learning which could either be running locally on the wearable or the data

acquired sent to be processed on a central processing unit. Inspiration is drawn from these studies

but due to the uniqueness of the combination of a wearable device with only a single image

6

sensor and a companion robot, there are only a few comparisons. The choice in algorithm,

wearable device and location, processing unit, and dataset are several of the parameters

compared. The system in comparison is a combinational neural network running on a stationary

companion robot that uses first point-of-view images taken from a small ergonomic wearable

device attached to the chest for fall detection which is a unique system that has not been done.

Each has been tested separately for fall detection but not in a single configuration that extends

functionality of an existing companion robot with its own features. In addition, the goal is not

only for the accuracy of the fall detection algorithm but to reduce power consumption which is

rarely experimented on and not seen in the above studies.

7

CHAPTER III

HARDWARE DESIGN OF SYSTEM

The wearable device functions as a multi-sensor device that collects the data regarding

the wearer and the surrounding environment. It also enables two-way communication between the

user and the companion robot. The device can be broken into two main components; the hardware

and the software. The hardware components consist of a microcontroller that controls and

processes data, several peripherals such as an image sensor and speaker that collect or use data,

the device’s circuit board that connects all electronic components, the holding container that

encompasses everything stated before, and the harness which allows for the device to be

wearable. Below each component will be looked at in more detail and explained why it was

implemented.

In addition, another important device that is part of the collaborative system is the

companion robot. Similarly, to the wearable device, there are several main components that make

up the robot. Since this component was developed separately by other researchers in the ASCC

Lab, only a brief explanation of the system will be given to complete an understanding of the

entire system.

8

3.1: PLACEMENT

There were several possible positions that the wearable device would be located on the

user’s body, each with their own pros and cons. The three main configurations were a necklace,

headset, and magnetic clip design. The necklace design would have the wearable at the bottom

portion of the necklace structure, thus located on the chest of the user but ultimately reliant on the

length of the neck piece. This position gave the best point of view for the camera due to being

able to capture the actual point of view of the user, however at a lower location. Surroundings and

objects being interacted with by the user would be in clear view as well as the arms and legs

depending on the stance of the user. This is advantageous due to the fact that key objects like the

floor and ceiling can easily be learned which are paramount when detecting a fall. The main

concern with this configuration is the movability of the wearable device. A string material will

give no concrete position and the optimal comfort for the user while a solid neck frame will give

a better possibility of consistent positioning with a drawback in comfort. The other option that

was briefly looked at was a headphone type configuration. Current headphones have optimal

positioning of the speaker, directly on the user’s ear, and the microphone, near the user’s mouth.

No surrounding noises would cause issues in the acquisition and output of sound in this scenario.

It also gives a near perfect position of the camera, closely acquiring the user’s point of view.

Above it explains why this is advantageous and still applies here. Again, the disadvantage of this

configuration is the ergonomics but also the realistic expectations of the user. This wearable

device is to be worn for all waking hours with no interruptions except when charging.

Realistically a headset would cause the user discomfort only a few hours into the day, falling

short of 16 hours, the average waking period

Finally, to improve upon the original necklace configuration, a magnetic attachment was

established. It will allow the user to easily take on and off the wearable device and give the

position of the device some variety. It will directly be attached to the user’s clothing,

9

recommended on the chest of the user. No strain is on the user’s body, only indirectly due to the

weight increase of the clothing but is minimal and spread throughout the clothing and shoulders

of the user. It has the same advantages of the necklace configuration but a similar con of

instability. The difference being that the stability is reliant on the user’s clothing and looseness.

Clothing above average in size relative to the user’s frame will allow the device to more freely

move while clothing tight and close to the user’s frame would allow no movement of the device

and will be parallel with the user’s chest. To further mitigate this phenomenon, the magnetic

attachments surface area was increased in size to give a more solid base along with increasing the

overall amount of magnetic power between the attachment and the casing. Figure 2 shows the

structure of the case with the primary part encasing the electronic components while the magnetic

attachment is separate.

3.2: PERIPHERALS

The diagram, as can be seen in Fig. 1, shows the wearable consists of the main processor

along with all the sensing peripherals; the processor, an ESP32-DOWD6Q chip which specializes

in Wi-Fi IoT applications, a three-axis accelerometer, a digital MEMS microphone, a class D

amplifier, a 2W magnet speaker, and a 4-bit GPIO expander with several other passive

components not shown. The microprocessor chip is found integrated within a development board

given the name ESP-CAM, which is a small, embedded computing module that provides an

additional 4 MB of PSRAM on top of the chips 520 kB of SRAM but most importantly an

OV2640 CMOS image sensor. This development board was also chosen for its compactness, the

amount of available GPIO pins for programming, and its embedded Wi-Fi antenna. Since the

older adult is expected to wear the device for a sustained period of time, a lightweight module

was paramount. As for the general-purpose IO pins, there are eight available for use which each

can be configured to use the I2S, I2C, and UART communication protocols, all necessary for the

embedding of the above listed peripherals. Also, the antenna fitted on the development board has

10

the capability of using the Wi-Fi standards of 802.11b, g, and n. This allows for a high data rate

that takes only a few seconds at the higher end to transfer images and audio from the wearable to

the companion robot. These images and audio data are large in size, up to 1MB, thus the external

PSRAM that extended the chip’s storage is important.

The ADXL345 digital accelerometer is adopted as the motion sensor, which is a small,

ultra-low power, 3-axis accelerometer with a high resolution of 13-bits that measures up to 16g-

force. The sensitivity and resolution are more than sufficient for detecting a varying degree of

activities of an older individual. I2C communication protocol is used for the ADXL345 to talk to

the ESP32-CAM, with a max rate of 400 kHz which allows for a sampling of 800 Hz, sufficient

for the application. The audio devices are an INMP441 omnidirectional MEMS microphone and a

Uxcell 2W magnet speaker driven by the MAX98357A class D amplifier. These peripherals are

fitted with the necessary features to provide a high-performance, low-power, digital-input and

output that uses the industry-standard I2S protocol. Finally, the embedded GPIO expander is the

PCA9536DR. This component was necessary due to the ESP32 pins being fully occupied by the

other peripherals and a single pin of the class D amplifier being left to be driven. It is addressed

and commanded using I2C which was already in use and allowed for an easy implementation

without the need of additional pins. To take advantage of the extension of the GPIOs, a button is

implemented so it can be taken as an input for the user to interact with the wearable device, in this

case, to instigate the recording mechanism. In addition, a blue LED is used to indicate to the user

when the microphone is recording.

As shown in Fig. 1, the battery fitted to the circuit board is a lithium-ion polymer battery

which provides a thin, lightweight design with a capacity of 820 mAh. The component that has a

considerable amount of power draw is the ESP32-CAM, which has a maximum of 270 mA

current consumption when transmitting data. The other components have a relatively small

amount of power consumption, therefore only the ESP32-CAM is considered when calculating

11

the battery life. Assuming a worst-case scenario of sixty false positives of fall detection occurring

every hour, the average amount of current draw would be around 152 mA which results in a

battery life of roughly 6 hours. This is sufficient for supporting daily use. Along with the physical

size of the battery being 30.5mm by 43mm by 6.8mm, the battery capacity of 820mAh was

chosen. The output of the battery is 3.7V at full charge. This voltage output is not compatible

with the ESP32-CAM that requires a supply voltage of around 5V, therefore a voltage booster is

used to increase the voltage to 5V. Along with the booster, the board is also equipped with a

charging circuit that takes a USB-C connection and charges the battery at a max rate of 1000 mA.

The chips to accomplish the voltage boost and charging capabilities are the TPS61090RSAR and

the MCP73871, respectively. Due to the simplicity of the Adafruit Powerboost 1000c power

system circuit, it was adopted and implemented in the hardware design.

Figure 1. The design of the wearable device.

3.3: CASING

Four versions of the wearable device were prototyped and tested. This first consisted of

designing a solid frame neck brace embedded with the wearable, a headphone mounted with the

12

wearable, and various corded necklace designs. The design more suitable for older adults is a

wearable device that incorporates a durable magnetic clip able to be pinned anywhere on the

users' clothes, preferably on the chest where the view of the wearable is optimal. The final design

integrates all the components of the wearable into one solid case shown in Fig. 4. The case

utilizes two segments, the electrical component case, and the magnetic backing component,

which allows for the user to pin the case on any article of clothing. The front segment of the case

has three openings, one for the camera lens, the other for the microphone, and lastly for the

button. There are also three other openings; one for the speaker, the charging port, and ventilation

for the dissipation of heat, found on the left, bottom, and top side of the casing, respectively. As

for the back segment, that is where the magnetic strips are located. These strips in combination

with a separate component with four embedded magnetic discs, creates the necessary pinning

mechanism. The magnetic attachment places the discs in a rectangular shape and spaces them as

far as possible to give the strongest foundation with no weak points. Fig. 2 showcases the final

wearable case along with the external magnetic pin component. Also, the final iteration’s inside

has holding positions for the printed circuit board, the lithium battery, and the speaker, and can be

seen in Fig. 3.

Figure 2. Front, Left, Back Left, Top, and Back of Case, with Magnetic Component exposed

13

Figure 3. Inside of Case without and with the Electrical Components

3.4: PCB DESIGN

Two generations of the circuit design were constructed. The first being a design using a

protoboard and several development boards. The final design is a standard two-layer printed

circuit board with surface mountable devices soldered onto it. The first allowed for quick

prototyping and adjustability. It guaranteed working components, and the main challenge was

connecting the components correctly with each other and planning the placement of each

component. Figure 4 shows the final design.

The first iteration used a single 7cmx5cm protoboard that incorporated an ADXL345

accelerometer, INMP441 microphone, PowerBoost 1000c, and ESP-CAM development board. It

was larger and needed to be reduced for better ergonomics and needed to implement other

components such as a speaker system, button, and LED indicators for power, and audio

recording. The final design is a two-layer printable circuit board designed in Fusion360 and

manufactured by JLC boards seen in Fig. 4. The design process first looked at all the

development boards incorporated in the first design and some others like an Adafruit amplifier,

light sensor, and GPIO expander. Any redundant components were removed and simplified to

minimize the amount of components thus size. Fig. 4 shows the final schematic of the PCB. The

only component kept in its original form is the ESP-CAM due to its complexity but for future

14

work it could be an area of interest. This design allowed for a drastic decrease in size from an

area of 3500 mm^2 to 1200 mm^2, a 67% decrease. Due to the limitation of two layers, some

external wiring needed to be done. For future work, a four-layer board should be looked at so it

can be improved, and the size can be further reduced. The bottom layer incorporates the power

system and the microphone since the opening is on the bottom side of the chip and the

microphone needs to be facing outward for the optimal audio acquisition. The power system,

using the recommended layout found in the datasheet for the TPS61090 booster chip, has large

power and ground planes to reduce impedance and current loops. On the top layer, all the other

peripherals are incorporated and routed. The accelerometer has the two serial data pins being

externally wired. Figure 4 below showcases the PCB design on Fusion360 along with the real-

world manufactured PCB with all components soldered along with debugging wires.

Figure 4. PCB Simulation and Real-world PCB of the Wearable

3.5: COMPANION ROBOT

As can be seen in Fig. 5, the Companion Robot [12] developed in the ASCC lab consists

of three main parts; the head for the main sensor system, the body for structural support and

housing, and the base where the main power unit resides. The robot head incorporates the Intel

15

Realsense RGB-D camera, four microphones for speech recognition and sound localization, and a

touch panel powered by an ARM-based board running an Android OS for the user to interface

with the overall system. The body houses an Intel NUC with an i5 processor which is the main

computational unit that runs the speech recognition, video-based fall recognition, and several

other features that provide a hospitable companion for the older adult.

Figure 5. Companion Robot Diagram

16

CHAPTER IV

SOFTWARE DESIGN

The software design of the wearable can be divided into two parts: the wearable device

part and the companion robot part. For the wearable device, the main task is to trigger the camera

for data transfer to the companion robot and to communicate audio between the two devices if

needed. There are several peripherals working in tandem to accomplish this flow, which requires

software designs for optimization and speed. As for the companion robot, data communication

and processing are essential to the working of the entire system, which includes the fall detection

algorithm.

4.1: DUAL-CORE THREADING

To fully take advantage of the ESP-CAM capabilities, the flow of the program was

broken into several tasks that could be pinned to specific cores for full utilization, reduction in

latency, and parallelization. The four main tasks are the Wi-Fi, accelerometer, camera, and

speaker and microphone. Having the Wi-Fi on a separate task allows for the parallelization of

communication between the wearable device and companion robot and data acquisition. This

ensures that detection of events such as a fall, will not be interrupted by data transfers of other

tasks or even the accelerometer task. Similarly, the accelerometer and the other peripherals are

separated so that an event like a fall is captured and not ignored due to another task running.

17

Figure 6 displays the tasks and their respective cores. The accelerometer and the camera are

paired together on a single core since most times that a camera event is triggered is when the

accelerometer passes the set threshold for a fall. There will be a slight decrease in sampling speed

for the accelerometer but only affected for less than a second when the camera finishes capturing

the images. The other tasks on the other cores will be running in parallel and should not affect the

other two.

Communication between the tasks is done using queues when large bytes of data are

being transferred and notifications when only a trigger needs to be communicated. For example,

only a notification is used to communicate from the accelerometer task to the camera task that a

fall has occurred, and ten images need to be captured. This method, stated in the documentation

of FreeRTOS, uses less clock cycles than queues thus reducing the latency of the program [22].

Figure 6 highlights the full communication network between the tasks. Along with the queues and

notifications, there are specific commands set to better distinguish the intentions of the data being

transferred. Notifications to the microphone and speaker task have specific bits to indicate which

of the two functions is to be called. Similarly, the camera task uses a notification system to

indicate to take images due to a fall.

4.1.2: TASKS

As stated before there are four main tasks involved in the wearable device. The program

was separated into tasks to take advantage of parallel processing and reduce latency in fall

detection. Having several tasks that have clear functionality reduces the overall complexity and

increases the readability. It also allows for parallelization and constant monitoring of the

acceleration of the user and for quicker data transmission to the companion robot. The

accelerometer task has a function to initialize the I2C driver to communicate with the ADXL345

board, constantly monitor the magnitude of acceleration and determine if it has passed a preset

threshold, and if so, as its final function, trigger a notification that is sent to the camera task. As

18

for the camera task, the first function is to initialize the camera driver which is using a serial

camera communication bus (SCCB) driver. At initialization of the task, it waits for the camera

configuration data that is expected from the Wi-Fi task. From this data the image resolution is

determined, and an input was created for the driver to configure the camera capture resolution.

Once this is done, the task waits for any notifications that will determine if the set IMAGE_NUM

(by default set to 10) number of images are to be captured.

The next task is the combined task of the microphone and speaker. The main reason for

this combination is because only one channel is available for I2S communication, the other being

used by the SCCB driver of the camera. This means that the microphone and the speaker cannot

both be used simultaneously. This is not an issue since only one of these should be functioning at

a time realistically. In the worst-case scenario, they should work back-to-back for the companion

robot conversation functionality. Thus, the driver needs to be reinitialized each time the

microphone or speaker function is triggered and de-initialized after the function reaches its end.

The only initialization that is seen in the beginning of the task is for the GPIO expander. The

expander allows for the monitoring of the pressing of a button which will trigger the microphone

to record for the set time of RECORD_SIZE (by default 7 seconds). The task also waits for a

notification from the Wi-Fi task that is used to determine if a response is needed, thus a recording

of the user, or that speaker data is being transferred, thus triggering the speaker functionality.

Lastly but most importantly is the Wi-Fi task. It uses a basic TCP socket connection to

transmit and receive data. To begin, the socket is waiting for the camera configuration data to be

transferred from the server. This is sent by queue to the camera task for initialization. It then

enters its main loop where it has three main blocking functions. The first is the socket receive

function that waits on a command from the server. This command determines whether there is

speaker data received and sent by queue to its respective task, to trigger the recording of audio, or

19

to retake an image through notifications. The other two blocking functions are two queues that

wait on data from the camera or microphone task.

Figure 6. Wearable Software Flowchart

4.2: COMPANION ROBOT

The main task of the companion robot is to act as a server and interpret the data from the

wearable device. Currently it waits for any “tags” from the wearable to tell the robot what type of

data is about to be sent. This is important because it determines the type of file to save the data as

and what flow in the algorithm it should take next. Clearly if images are sent then the course of

the algorithm is to save the images as JPEGs and to run the model using the newly saved images.

The output is a byte that either states it was a fall or not. If so, the robot tries to confirm with the

user if any assistance is needed or if it was not a serious fall that necessitates any emergency

20

services. It also acts to mitigate false positives. This confirmation is done by sending the wearable

a command that tells the device to record and send the data to the robot, where speech-to-text

along with text recognition is used. The conversational flow uses the same techniques when

transferring data to and from the wearable but in the case of sending audio data for the speaker, a

specific command is sent to the wearable that the device understands that it will be receiving

audio data for output. Figure 7 illustrates the overall system flow of data and the systems

capabilities.

Figure 7. System Diagram

21

CHAPTER V

COLLABORATIVE FALL DETECTION

Fall detection relies on both the wearable device and the companion robot. However,

most of the processing is done on the latter with the former communicating the necessary

information. This is because the processing algorithm uses a neural network with several

thousand parameters, requiring an exceptional amount of memory space. There are several other

methods of detecting a fall such as edge detection, histograms of gradients (HOGs), hidden

Markov model, and support vector machines etc., but these systems require tenuous tuning and

designing to differentiate a fall. It would require even further development and experience to

differentiate other activities. Due to the extensive research and feasibility of neural networks, it

was chosen as the method that would be used for this particular application.

For image data, a convolutional neural network (CNN) was seen as the optimal

architecture for feature extraction. To further improve the system, several images would be used,

which requires the integration of a recurrent neural network (RNN), a sequence classification

architecture. The combination of the two has the strengths of both systems and gives a robust

architecture for the recognition of a handful of activities.

22

5.1: INTRODUCTION TO CNN

A CNN or convolutional neural network is a deep learning algorithm that takes in an

array of data, most commonly an image, and assigns value, through learnable weights and biases,

to certain regions or shapes and is able to differentiate between them [21]. The design of the CNN

is influenced by the visual cortex of the human brain or neurons that activate due to stimuli in

specific regions of the vision field-of-view. The purpose of a CNN is the ability to capture spatial

and temporal relationships of data or an image and the main building block to accomplish this is

the kernel or filter that is used to convolve over the image.

The function of the convolution of the image is to extract features such as edges, color,

gradient orientation, etc. from the image. In the beginning, low-level features such as the ones

stated above are extracted and as layers of convolution are added and learned, high-level features

are extracted such as shapes, region importance, etc. which in the end gives a whole and complete

understanding of the dataset which is similar to our human brains. Another fundamental building

block of a CNN is the pooling layer. It has a similar function of reducing the spatial size of the

convolved feature or output of a convolution layer. The most commonly used is a max pooling

layer which extracts the most dominant features while not affecting its position. It takes the max

value within the same portion covered by the kernel.

Finally, the output of the convolutional neural network is flattened and fed into a feed

forward neural network or commonly known as a fully connected layer. This allows for the

learning of non-linear combinations of the high- and low-level features learned from the CNN.

Ultimately it learns which features are dominant and distinguish them throughout the dataset and

classify the input after being fed through a SoftMax function. The overall operation of a

convolutional neural network is demonstrated by Fig. 8.

23

Figure 8. Convolutional Neural Network Diagram

5.2: INTRODUCTION TO LSTM

To explain the functionality and necessity of a long short-term memory neural network,

first a recurrent neural network (RNN) needs to be introduced. An RNN is used for sequential

learning; classification, labeling, and generation. For brevity only sequential classification will be

discussed. In this scenario, only a single output is needed and dependent on every input.

Similarly, to a feed forward neural network, the input is fed through a function made up of

weights and biases, but uniquely also along with the current input, the previous functions output

is fed in as well. This is built up until the end of the sequence and finally fed into a SoftMax

function for classification.

The issue with this model is in the learning process. The loss function used to correct the

error of the model is used in every input sequence. In a long enough sequence or small enough

error, a phenomenon known as the vanishing gradient problem occurs. This issue influenced the

creation of the long short-term memory model. It is designed to efficiently retain useful

information throughout the full sequence. The LSTM accomplishes this using a series of “gates”

which influence how a sequence of data comes into, is stored, and output throughout the network

[20]. There are three main types of gates found in a LSTM; a forget gate, input gate, and output

24

gate. These gates can be seen as filters and are their own neural networks. Fig. 9 is a visual

representation of a single LSTM component and displays each type of gate and its functions.

The first stage of the LSTM is the forget gate. Here is where it is decided which bits of

the cell state, or long-term memory of the network, are useful using the previous hidden state and

the current input data. This is done by taking both as inputs into a neural network with a sigmoid

activation function at its output layer; this ensures that the output is a value between 0 and 1. Zero

indicates that the current data is irrelevant and the closer to one, the more cell state data is passed

through. It acts as a sort of filter for long term memory. The next step involves the new filtered

memory and the input data. The importance of this step is to determine what new data should be

added to the long-term memory, or cell state, of the network using the previous hidden state and

the input data. There are two main components to this step; the update and input neural network,

which both take the previous hidden state and current data as input. The update component learns

to generate an update vector, essentially containing data from the current input data in the context

of the previous hidden state. This vector updates each point in the long-term memory. This is not

entirely true because which input data is relevant needs to be determined and this is where the

input component comes into play. Like before in the forget stage, the input gate filters the data to

determine its relevance, giving a value between zero and one. This new data is then multiplied by

the update vector which gives the correct components that need updating. This final output is then

added to the output cell state of the forget stage. The last step is the output gate component,

developing the new hidden state. The cell state cannot be used since it is all the relevant

information of the sequence up to that point while only a general prediction of the next state of

the sequence is needed. Again, similarly to the forget gate, the input and previous hidden state are

fed through a filter to determine relevance, then multiplied with the updated cell state to retain the

useful information.

25

Figure 9. Long Short-Term Memory Diagram

5.3: CNN-LSTM

A limitation of a long short-term memory network is that input needs to be in the format

of a vector. An image could be flattened into a vector, but any spatial or neighboring pixel

dependency is lost or would be challenging for the network to learn. A CNN-LSTM was designed

specifically to overcome this limitation and allows for the sequence classification of spatial

inputs, such as images or videos. The first stage is the convolutional neural network that extracts

the relevant features of the dataset followed by the long short-term memory network that can

intake a sequence of these feature vectors and determine a classification. This architecture is

appropriate for problems that have spatial input structures such as the 2-dimensional structure of

pixels of images and which also have temporal structures such as the order of images in a video.

It is a simple architecture but effective.

5.4: RESNET-152

From above it is apparent that the LSTM is heavily reliant on CNN and its extracted

feature vectors. A CNN that is ineffective in capturing the relevant features of a dataset will

26

always create an ineffective CNN-LSTM model no matter the effectiveness of the LSTM. To

increase the effectiveness of the CNN, intuitively, requires increasing the depth or amount of

convolutional layers but similarly to the LSTM, the problem of the exploding or vanishing

gradients occurs. An ingenious solution was introduced to mitigate this issue with the design of

the skip/shortcut connection. Simply it adds the input of a block of convolutional layers to the end

of the block or output. These convolutional layers are learning a residual mapping. Even if some

vanishing of the gradients occurs within the weights, the identity of the input is there to fall back

on.

There are three methods in using the skip/shortcut connections which is because in some

cases the input is smaller than the output dimensions. The first performs identity mapping with

zero padding to increase the dimension for all shortcuts. The second has a mixture of the above

method and the use of the projection shortcut where the input is bypassed but is first passed

through a convolutional operation. This increases the number of overall parameters to be learned.

The final method is where all shortcuts use projection shortcuts. Another key component of the

ResNet architecture is the implementation of the bottleneck design. One by one convolutional

layers are added to the beginning and end of a block which has been studied to reduce the number

of parameters without damaging the performance of the overall network.

All these components working in tandem allows for the creation of the 152-layer ResNet

architecture. Compared to other state of the art architectures such as VGG-16, GoogLeNet, and

PReLu-net, it outperformed them with a top five error rate of only 5.71% with the next best error

of 7.38% from PReLu-net [19].

5.5: RESEARCHED ARCHITECTURE

Taking all of this into account, the advantages and disadvantages, the system that was

implemented for our collaboration system for fall detection is a combination of a ResNet-152

27

CNN and a LSTM developed by HHTeng [13]. This architecture was originally developed for

action recognition within a video sequence in mind. It achieved a high accuracy of 85.68% using

a pretrained ResNet-152 CNN based on the image dataset ILSVRC-2012-CLS, that contains 1000

plus different objects such as animals, household items, and more. The dataset in total contains

over a million sample images, each with the dimension of 469 by 387 pixels but then usually

preprocessed to the size of 256 by 256 or 224 by 224. In this implementation, the author chose to

resize the images to 128 by 128. This architecture differs from the original ResNet by replacing

the final feed forward fully connected layer with only a simple two layer fully connected layer

that is configurable in number of hidden nodes but by default set to 512 and 256, respectively.

The LSTM is a generic three-layer neural network that is dependent on the output of the ResNet-

152 CNN.

28

CHAPTER VI

EXPERIMENTS AND RESULTS

In this chapter the experiments undertaken to complete this system are described in detail

followed by the results obtained.

6.1.1: IMAGE DATA-COLLECTION

For deep learning to be effective, a strong training set is needed with accurate labeling.

Unfortunately, there are not any recognized datasets that contain point-of-view images or videos

of a person falling or even more common human activities such as walking or eating. This

limitation is one challenge that has an enormous effect on the development of this system but

hopefully this work can start an interest in developing such a dataset.

To begin with, data collection of various falls was conducted. The system was developed

to capture ten images after passing a preset threshold of 1.35 m/s^2. This number is determined

after various experiments and is the best value in triggering the algorithm for almost all falls but

also whenever a person is to sit or stand. These images are then sent over Wi-Fi to the server for

saving and organization into their respective folders; the folders each containing only one sort of

activity such as falling or sitting. Each fall is further separated into four differing falls: falling

forward, falling backward, falling to the right, and falling to the left. This is due to the fact that

each entails a large differing point of view of the user, each with their own unique characteristics.

29

For example, falling backward will most of the time display the ceiling in its entirety, taking up

the majority of the image. For the others, only a fraction of the image will contain a ceiling, with

falling forward much of the time having no indication of the ceiling, in fact, the opposite, the

floor. The other three activities that were captured are sitting, standing, and walking. These

activities encompass practically all other movements that could occur when an elderly individual

is wearing the device. Sitting and standing are intricately linked since the images ideally will be

identical but in reverse order. Sitting is a more interesting activity because a quick and low

enough sit could be similar to a fall, giving a false positive.

Below is a figure of the data collection environment. It was conducted in the mock smart

home of the Laboratory for Advanced Sensing, Computation, and Control (ASCC Lab). It

includes a mock kitchen, a dining room, a living room with an office computer, a bedroom, and a

bathroom. All tests were restricted to the living room, but this does not limit the variety of images

captured. For the fall actions, ten differing positions and angles were used within the living room,

each surrounding a safety mattress located on the floor of the living room. Figure 11 is a top-

down view of the environment and indicates with red dots the ten fall positions. The mattress

allowed for the capture of realistic free falls with minimal risk of injury of the experimenter.

These ten angles each have differing views of the mock home. The goal was to attain scenarios

that would be common in most falls; one where only a wall is seen, only a single object such as a

chair is seen, multiple objects with varying complexity, and an entirely open area.

30

Figure 10. ASCC Mock Home

Figure 11. Fall Points in the Test Environment

 For sitting and standing, there was a different method in the collection of samples. A

single position of a chair was used in the dining room with varying facing positions along with

two other chairs in the living room. The chair in the center of the south wall has three angles for

sitting and standing while the other corner chair only has two. This in total amounts to 13

uniquely different scenarios for sitting and standing. Fig. 12 demonstrates the positions used for

standing and sitting.

31

Figure 12. Sitting and Standing Viewpoints

Finally for the walking activity, there are seven walking lines in total. Each line also can

be traversed in two directions, thus a total of 14 varying scenarios. Fig. 13 demonstrates the seven

lines found in the mock home.

Figure 13. Walking Paths taken in the Test Environment

Due to time and resources limitations, we collected 247 samples. As can be seen above,

the variety in samples was a crucial factor to best replicate reality and the unpredictability of a

32

user's point of view in each activity. Figures 14, 15, 16, & 17 are a few examples of the image

sets taken by the wearable device. The first two demonstrate the similarity between the sitting and

standing samples. The beginning of both samples are quite similar since the action entails the user

to first bend over partially to load the legs and the difference mainly comes from the fact that the

end point of view is higher or lower, depending on if the user is standing or sitting. The latter two

figures are an example of the complexity of the samples due to the volatility of the user’s chest

movements and external objects that could obstruct the majority of the image pixels. The

combinatorial neural network will have to learn features distinctive to its classification such as the

movement of the object within the frames and the ending horizon which gives hint if a fall was to

the right or left. This is expected of the neural network, but the ingeniousness of these

architectures is its ability to extract features that humans look over.

Figure 14. Sitting Image Set

33

Figure 15. Standing Image Set

Figure 16. Falling to the Left Image Set

34

Figure 17. Falling to the Right Image Set

6.1.2: CNN-LSTM TRAINING

Once all the data was collected, formatted, and organized, the training of the model

begins. The main tool used is Google Colab which allows for the use of a high-performance GPU

and for easier compilation of the code without having to worry about Python versions and

libraries. The main dataset of 247 samples, each in the resolution of SVGA, were uploaded to

GitHub and using Google Colab functionality, this repository was able to be downloaded and

used. As stated before, the main components of research are the resolution, ResNet fully

connected layer parameters, and the LSTM parameters, as well as the learning rate which was

optimized for the highest accuracy. The two fully connected layers had their values set to 640 and

480, respectively. This value differs from the original authors' set values but was used in other

experiments in the ASCC Lab, so it is labeled as the default value. As for the ResNet output

dimension, it was set to 512 thus the feature vector of the model is of this size. This in turn makes

the input size of the LSTM equal in dimensions as well as the hidden layers node size. Finally,

the fully connected layer of the LSTM was set to half the size, thus 256 nodes. After several runs

35

and experiments, other parameters were set to default values for all following runs so as to be

consistent and keep the experimentation less complex than it needed to be. It was determined that

the batch size that gave the best results in the beginning runs was 45, the amount of epochs set to

50 since it was apparent the highest accuracy was attained before this time, and finally the

number of hidden layers of the LSTM is kept constant to three which is the original value.

For every run, three main resolutions were tested; the default resolution that the model

was originally optimized for, 128 by 128 pixels, 256 by 256, and finally a resolution halves the

size of the default value, 64 by 64. These values encompass a large enough range to have a drastic

effect on the accuracy and performance of the system from the wearable device camera

acquisition, data transfer, and companion robot classification. The first experiment was to

determine the best value for the learning rate. The two values tested were 1e-3, the default value,

and 1e-4, two common values used by neural networks. Once the learning rate that gave the better

results overall was determined, it was set as the default value for the following experiments. The

next experiment varied the number of hidden nodes of the two fully connected layers of the

ResNet-152 model. As stated before, the default values are 640 and 480 but the original values

were set to 1024 and 768. This set of values was tested to further prove that the former values

give a higher accuracy. To push the model and experiment further, another set of values were

tested and compared; a fully connected architecture of 320 and 240, a direct halving of the default

values. The final experiment of the ResNet-LSTM model looked at the effects of the change in

the final dimension of the ResNet which feeds into the LSTM. This in turn also varies the input

size of the LSTM and the fully connected layers architecture. The default value of 512 was tested

and compared with a lower value of 256. The tested value of 256 changed the first layer of the

fully connected component to the same value and to keep the same ratio of the default

architecture, the second layer was set to 126. To further the experiments and to have a deeper

look at the effects of the change in parameters of the model, this experiment was done twice with

36

the default value of the ResNet fully connected layers, and the newer set of 320 and 240 hidden

nodes.

The value that is being used to determine the original performance of the architectures is

the accuracy of the validation dataset or 25% of the original 247 sample dataset after training the

model. Using these accuracy values, the best performing is chosen for each resolution and further

tested for its performance. From before, the model parameters or pth files that contain all the

weights and biases necessary for the model are saved. These are used to upload the model and

tested for its accuracy for three different sized datasets; the 25% validation dataset, the remaining

samples dataset, and the full original dataset of 247 samples. The overall accuracy, the accuracy

for each class, and a confusion matrix are the goals of this testing. The confusion matrix is

constructed by setting positives to whenever any of the four types of falls is classified and any

other activity, such as sitting, standing, and walking, gives a falsehood.

6.1.3: ENERGY CONSUMPTION

Due to time constraints and a performance degradation of implementing a bilinear image

down sampling algorithm on the ESP-CAM, the resolutions closest to those tested for the

ResNet-LSTM, that are provided by the camera driver, were used. These resolutions are 96x96,

160x120, and 320x240 pixels. Compared to the tested resolutions, the difference for each is 55%,

17%, and 15%, respectively.

To measure the power consumption, a Ruideng USB tester was used in tandem with the

USB to TTL converter that helps communicate and flash the ESP-CAM. The converter dissipates

some amount of energy itself but the difference in energy consumption at runtime and Wi-Fi

transmission is what is important thus eliminating the effect. The Ruideng USB tester is a

development tool that measures the real-time voltage, and current of the device that it is attached

to. The wearable is then configured with its necessary resolution and constantly triggered to

37

capture images. The current during the transfer of images over Wi-Fi is then measured and

captured. Along with this data, the number of milliseconds needed to transfer a single image is

measured on the ESP-CAM, captured, and averaged to determine the average time to transfer the

set IMAGE_NUM or 10 images in this case. With these two values, the amount of energy

consumption needed to transfer a set resolution of images can be interpreted.

To see more of a real-world application, other resolutions were also tested since the

above resolutions would not be able to be resized to the three original image sizes without

stretching or compression, thus loss in image integrity. The latter two were replaced with image

resolutions of 176x144 and 400x296, respectively. These resolutions would be able to be used

without resizing on the ESP-CAM and could be sent to the robot for fall detection with resizing

being done at this point in the system.

6.2: RESULTS

6.2.1: RESNET-LSTM

As stated in the previous chapter, the first step in the experimentation of the ResNet-

LSTM is the learning rate. The below figure has the results for the learning rate of 1e-3 and 1e-4,

with all other parameters set to their default values.

Table 1

Learning Rate Experiment

Resolution 1e-3 1e-4

64x64 74.47% 79.79%

128x128 76.6% 86.17%

256x256 78.72% 85.11%

38

From the table, for all resolutions, the learning rate of 1e-4 consistently resulted in a

higher accuracy. Due to this fact, the default learning rate for all further experiments was set to

this value of 1e-4. As a side note, an interesting observation is that the increase in resolution for

the value of 1e-4 did not see an increase in the accuracy which is not the case for the default

value.

For the next run, the ResNet fully connected layers were experimented on. The following

table highlights the results for 320 and 240, 640 and 480, and 1024 and 768, with the default

learning rate value of 1e-4.

Table 2

ResNet Fully Connected Layer Hidden Nodes Experiment

Resolution 320 & 240 640 & 480 1024 & 768

64x64 80.85% 79.79% 74.74%

128x128 86.17% 86.17% 84.04%

256x256 82.98% 85.11% 82.98%

The first observation that is important to discuss is the ineffectiveness of increasing the

number of fully connected nodes of the hidden layers from either 320 and 240 or 640 and 480 to

the values of 1024 and 768. It would intuitively be expected that the accuracy for the latter values

be higher, but it does worse in every resolution except for the 256x256 pixel resolution, where it

ties in accuracy with the set values of 320 and 240. Another interesting observation of the results

is that the former two values of the fully connected nodes do not have a clear advantage over the

other. Both tie in accuracy for the default resolution of 128, the smaller of the set does better for

the smallest resolution of 64x64 pixels, albeit by only 1.06%, but does worse for the larger

resolution by a larger margin of 2.13%.

39

Taking the above comparison into account, both values are used for the following

experiment to get an in-depth comparison and understanding of the change in parameters. The

first set used was the default values, since it only did worse by only a small margin, thus the

expectation was that it would do better overall. The table for the results is shown below. As

described before, the final dimension of the ResNet-152 architecture was varied with the learning

rate set to 1e-4.

Table 3

Final Feature Vector Dimension Experiment w/ 320 & 240

Resolution 512 256

64x64 79.79% 78.72%

128x128 86.17% 86.17%

256x256 85.11% 89.36%

There is an increase in accuracy for the highest of the resolutions but similar or slightly

worse results for the other two resolutions. With further testing, the gap in the lowest resolution

accuracy could be minimized or result in a higher accuracy for the lower final dimension of 256.

With this in mind, the lower final dimension did improve the accuracy or did a comparable

performance in classifying the seven activities.

Next the other set of values for the fully connected layers was set as the value, with the

final dimension being varied. The table below showcases the results of the experiment. Again, to

clarify, the learning rate is consistent and set to 1e-4.

40

Table 4

Final Feature Vector Dimension Experiment w/ 640 & 480

Resolution 512 256

64x64 80.85% 84.04%

128x128 86.17% 85.11%

256x256 82.98% 92.55%

 This table is comparing an architecture designed with the fully connected layers hidden

nodes set to 320 and 240 respectively and varying the resolution of the input images and the

effects of changing the default final dimension of the ResNet-152 from 512 to 256, which

invariably changes the structure of the LSTM; the amount of hidden and fully connected layer

nodes. As can be seen all the parameters are reduced in this portion of the experimentation thus it

is interesting to see it has the greatest effectiveness to classify each activity for both the

resolutions of 64x64 and 256x256 pixels. The default resolution of 126x126 had a slight decrease

in accuracy, 1.06% to be exact, but again, another few runs of testing could see a diminishing in

this gap.

Looking at specifically the default resolution of 126x126 and all its accuracies throughout

the experiments, the highest it could achieve with a wide range in variation of the architecture is

only 86.17%. It appears there is a limitation that was quickly reached for this resolution and only

further alterations, possibly within the ResNet-152 architecture, would influence this ceiling.

From the above results, the best achieving architecture for each resolution was chosen for

the following experiments: the 84.04% and 92.55% accuracy architectures for the 64x64 and

256x256 resolutions, respectively and for the 128x128 resolution, there are several options, but

the smallest of the models was chosen. As stated previously, the architectures are tested for

accuracy on three different sized datasets. Table 5 shows the results.

41

Table 5

Accuracy using different sized datasets

Resolution Validation Training Full

64x64 93.55% 95.14% 94.74%

128x128 96.77% 93.51% 94.33%

256x256 98.39% 97.30% 97.57%

As expected, the largest dataset does not give the highest score for accuracy but is the

most important since every available sample is tested against. Interestingly, the architecture for

the smaller 64x64 resolution outperformed the larger resolution, 128x128.

Below the accuracy score is broken down into their respective classification. The

disparity for the middle resolution can be easily seen here. It has the most difficulty determining

if a fall to the left or right has occurred but makes up in performance in other classifications to

level its overall score to a similar accuracy as the lowest resolution. Unsurprisingly, the lowest

resolution architecture does not excel in every classification but overall has high scores and the

highest resolution excels in most classifications.

Table 6

Accuracies of Each Classification on Full Dataset

Res FallBack FallFwd FallRight FallLeft Sitting Standing Walking

64x64 94.29% 97.09% 94.12% 93.33% 100% 91.67% 93.02%

128x128 100% 97.06% 85.29% 80% 100% 94.44% 100%

256x256 100% 100% 91.18% 96.67% 97.14% 97.22% 100%

The confusion matrices for the resolutions are given below. It helps to show that the

128x128 resolution architecture does the worst in determining that a fall has occurred and

42

determines a fall the most when it was not but is comparable in performance when determining

the other non-fall activities with the highest resolution architecture. The 64x64 architecture is in

the middle in performance for falls but is the worst in determining non-fall classification. A

positive is classified as a fall and a non-fall as a negative.

Table 7

Confusion Matrix for 64x64 Resolution

 Actual Positive Actual Negative

Predicated Positive 126 108

Predicted Negative 8 5

Table 8

Confusion Matrix for 128x128 Resolution

 Actual Positive Actual Negative

Predicated Positive 121 112

Predicted Negative 12 2

Table 9

Confusion Matrix for 256x256 Resolution

 Actual Positive Actual Negative

Predicated Positive 129 112

Predicted Negative 4 2

6.2.2: ENERGY CONSUMPTION

In the following section, two sets of experiments were conducted, the first testing

resolutions that result in the closest size in bytes to the ResNet-LSTM resolutions to showcase the

43

difference in energy consumption if some pre-processing of the images was done before

transferring the images to the server, and the second, a set of sizes that could be used realistically

with resizing occurring on the robot. For each graph below, for power consumption, and

transmission time, 100 samples were used. The graph below gives the values measured during the

first experiment.

Figure 18. Transmission Time of Ten Images for First Set of Resolutions

The results measured are exactly what was expected since the resolutions are doubling

from 160x120 to 320x240 pixels, thus the latency or amount of transmission time is doubled from

109 milliseconds to 252 milliseconds. Visually it can be seen that the larger resolutions have a

wider range in transmission time and this disparity can be attributed to the fact that the longer the

transmission is occurring, there is a higher possibility of errors or interferences, thus an increase

in transmission time. This can be further deduced by the fact that the maximum for the 320x240

resolution is 504 ms with outliers reaching thousands of milliseconds at a higher rate. As for the

time for the smallest resolution of 96x96 pixels, similarly, as expected, a small decrease in

transmission time is seen since the number of bytes is only minimal. With these results, it can be

44

interpolated that the amount of time to transmit a 64x64 pixel image would take 41 milliseconds,

which is a considerable decrease. This is calculated by using a similar ratio of transmission time

and number of pixels as the 96x96 resolution since it is the closest in size.

As stated earlier, a second experiment was conducted choosing resolutions that would be

captured and transmitted if no pre-processing was done and only the resolutions supported by the

camera driver were an option. This in turn sets the resolutions to 96x96, 176x144, and 400x296

pixels, which gives the necessary dimensions and information to resize the images to the tested

resolutions of 64x64, 126x126, and 256x256. Below are the results of the second experiment.

Figure 19. Transmission Time of Ten Images for Second Set of Resolutions

45

Figure 20. Wi-Fi Power Consumption During Transmission of Images

From the above results it is apparent the correlation of the size of the image and the time

of transmission. The reduction in time from the largest resolution of 400x296 pixels, and the

smallest of 96x96 pixels, is about 81% and assuming the transmission time for a 64x64 image is

roughly 41 milliseconds, there is a reduction of 91%.

Power consumption was also sampled and displayed in a box and whisker plot. There

was considerable variability in values but on average the consumption was around 1.2 watts.

Resolution of the image does not affect this value.

6.2.3: FINAL SYSTEM

Where seconds matter in emergency situations there is also the need for optimal overall

system energy consumption. Monitoring and data collection needs to be constant throughout the

waking hours of the user, and the possibility of interruption occurring due to loss of power needs

to be reduced. Thus, the system parameters chosen for the wearable device and the companion

robots classification system are set to the necessary values that result in an accuracy of 94.74%.

This accuracy is achieved by having a model with a set fully connected layer, following the

46

ResNet-152 convolutional neural network, of size 320 and 240, with the flattening layer

outputting a dimension of 256. Also, the LSTM of three hidden layers is set to the node size of

256 and the final fully connected layer to 126 nodes. Along with this model, the image resolution

captured by the wearable device is set to 96x96 pixels. This system gives the optimal

performance for the application at hand. A 94.74% accuracy is sufficient since the system can

rely on the option of asking the user if they are ok and do not need medical attention. This system

sees a reduction in transmission time or energy consumption up to 31%, a 2% reduction in the

ResNet-152 parameters, and a sizable 24% reduction in the LSTM parameters.

47

CHAPTER VII

CONCLUSIONS AND FUTURE WORK

7.1: CONCLUSION

In conclusion, the collaborative system is able to minimize its power consumption by

reducing the image size from the original VGA resolution of 800x600 to 64x64 and still retain a

considerable amount of accuracy, seeing a 0.41% increase in the overall score. This thesis lays a

foundation for further research into the collaborative system in both areas, the wearable, and the

robot companion. The goal is to optimize for efficiency in speed and power consumption to

prolong the life of the wearable and give the best response time necessary for emergency

situations which was achieved.

7.2: FUTURE WORK

Over the course of the thesis, several suggestions were mentioned that could further

improve the overall collaborative system to classify the user activities better and efficiently, either

for fall detection in case of injury or less emergent situations like dietary monitoring or to analyze

the routine of the elderly adult. The easiest improvement and the most important in validating the

system is by collecting more image data. Most neural networks have datasets in the thousands or

even in the millions, like the ILSVRC dataset, for training purposes.

48

A point-of-view dataset for activity classification is a niche subject but could help eventually for

the purpose of this system and other research opportunities. It is important that different

environments with different lighting and objects are used so the system is more robust and less

susceptible to changes. Currently only an individual location is used and the change in lighting is

only due to sunlight exposure for the different days of data collection.

Another component that could see improvements in the system is the change in

parameters such as the number of images taken and used to train and the number of ResNet

layers. Ten is an arbitrary number of images and could be an ineffective number, either too many

or too few. This could reduce the transmission latency or improve the overall classification

accuracy. Similarly, for the ResNet layers, the 152-layer architecture was not tested against any

other architectures and could be reduced for a higher accuracy or argued that a reduction in

parameters and classification time is more important for the system.

49

REFERENCES

1. David, Uchechukwu Gabriel, "A Cloud Infrastructure for Large Scale Health Monitoring

in Older Adult Care Facilities" (2021). Masters Theses. 1148.

2. Morris A. E-literacy and the grey digital divide: A review with recommendations. J Inf

Literacy. 2007;1(3):13–28. doi: 10.11645/1.3.14.

3. World Health Organization. (2021, October 4). Ageing and health. World Health

Organization. Retrieved July 25, 2022, from https://www.who.int/news-room/fact-

sheets/detail/ageing-and-health

4. G. Schiboni, F. Wasner and O. Amft, "A Privacy-Preserving Wearable Camera Setup for

Dietary Event Spotting in Free-Living," 2018 IEEE International Conference on

Pervasive Computing and Communications Workshops (PerCom Workshops), 2018, pp.

872-877, doi: 10.1109/PERCOMW.2018.8480222.

5. Sun, M., Burke, L. E., Mao, Z. H., Chen, Y., Chen, H. C., Bai, Y., Li, Y., Li, C., & Jia,

W. (2014). eButton: A Wearable Computer for Health Monitoring and Personal

Assistance. Proceedings. Design Automation Conference, 2014, 1–6.

https://doi.org/10.1145/2593069.2596678

6. K. Zhan, F. Ramos and S. Faux, "Activity recognition from a wearable camera," 2012

12th International Conference on Control Automation Robotics & Vision (ICARCV),

2012, pp. 365-370, doi: 10.1109/ICARCV.2012.6485186

7. N. Zerrouki, F. Harrou, A. Houacine, and Y. Sun, “Fall detection using supervised

machine learning algorithms: a comparative study,” in Proceedings of the 8th

International Conference on Modeling, Identification and Control (ICMIC), pp. 665–670,

Algiers, Algeria, November 2016.

8. A. Shojaei-Hashemi, P. Nasiopoulos, J. J. Little, and M. T. Pourazad, “Video-based

Human TelegramFall Detection in Smart Homes Using Deep Learning,” Proceedings -

IEEE International Symposium on Circuits and Systems, vol. 2018-May, pp. 0–4, 2018.

9. M. Casares, K. Ozcan, A. Almagambetov and S. Velipasalar, "Automatic fall detection

by a wearable embedded smart camera," 2012 Sixth International Conference on

Distributed Smart Cameras (ICDSC), 2012, pp. 1-6.

10. L. Martinez-VillasenoTelegramr, H. Ponce, and K. Perez-Daniel, “Deep learning for

multimodal fall detection,” Conference Proceedings - IEEE International Conference on

Systems, Man and Cybernetics, vol. 2019-October, pp. 3422–3429, 2019.

11. K. Ozcan and S. Velipasalar, “Wearable Camera- and Accelerometer-Based Fall

Detection on Portable Devices,” IEEE Embedded Systems Letters, vol. 8, no. 1, pp. 6–9,

2016.

12. F. Erivaldo Fernandes, H. M. Do, K. Muniraju, W. Sheng, and A. J. Bishop, “Cognitive

orientation assessment for older adults using social robots,” in 2017 IEEE International

Conference on Robotics and Biomimetics (ROBIO), 2017, pp. 196–201.

13. HHTseng (2020) video classification (Version 0.0) [Source Code].

https://github.com/HHTseng/video-classification.

https://github.com/HHTseng/video-classification

50

14. Rémi Mégret, Vladislavs Dovgalecs, Hazem Wannous, Svebor Karaman, Jenny Benois-

Pineau, Elie El Khoury, Julien Pinquier, Philippe Joly, Régine André-Obrecht, Yann

Gaëstel, and Jean-François Dartigues. 2010. The IMMED project: wearable video

monitoring of people with age dementia. In Proceedings of the 18th ACM international

conference on Multimedia (MM '10). Association for Computing Machinery, New York,

NY, USA, 1299–1302. https://doi.org/10.1145/1873951.1874206

15. P. Mazurek and R. Z. Morawski, "Application of naïve Bayes classifier in fall detection

systems based on infrared depth sensors," 2015 IEEE 8th International Conference on

Intelligent Data Acquisition and Advanced Computing Systems: Technology and

Applications (IDAACS), 2015, pp. 717-722, doi: 10.1109/IDAACS.2015.7341397.

16. Liu, Chien-Liang, Chia-Hoang Lee and Ping-Min Lin. “A fall detection system using k-

nearest neighbor classifier.” Expert Syst. Appl. 37 (2010): 7174-7181.

17. Charfi, Imen, Johel Mitéran, Julien Dubois, Mohamed Atri and Rached Tourki.

“Definition and Performance Evaluation of a Robust SVM Based Fall Detection

Solution.” 2012 Eighth International Conference on Signal Image Technology and

Internet Based Systems (2012): 218-224.

18. Juang, Chia-Feng and Chia-Ming Chang. “Human Body Posture Classification by a

Neural Fuzzy Network and Home Care System Application.” IEEE Transactions on

Systems, Man, and Cybernetics - Part A: Systems and Humans 37 (2007): 984-994.

19. K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition,"

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp.

770-778, doi: 10.1109/CVPR.2016.90.

20. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation,

9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

21. O'Shea, Keiron & Nash, Ryan. (2015). An Introduction to Convolutional Neural

Networks. ArXiv e-prints.

22. Barry, R. (2020, September 30). Decrease Ram footprint and accelerate execution with

FreeRTOS notifications. FreeRTOS. Retrieved November 14, 2022, from

https://www.freertos.org/2020/09/decrease-ram-footprint-and-accelerate-execution-with-

freertos-notifications.html

https://doi.org/10.1145/1873951.1874206
https://doi.org/10.1162/neco.1997.9.8.1735

VITA

RICARDO HERNANDEZ

Candidate for the Degree of

Master of Science

Thesis: POWER-EFFICIENT COLLABORATIVE FALL DETECTION USING A

WEARABLE DEVICE AND A ROBOT

Major Field: ELECTRICAL ENGINEERING

Biographical:

Education: Bachelor’s of Science in Computer Engineering

Completed the requirements for the Master of Science in your major at

Oklahoma State University, Stillwater, Oklahoma in December, 2022.

Completed the requirements for the Bachelor of Science in your major at

Oklahoma State University, Stillwater, Oklahoma in 2019.

Experience:

Professional Memberships:

