
QUANTITATIVE ANALYSIS OF POSITIVE-DISPLACEMENT

COMPRESSOR MODELS TESTED IN EXTRAPOLATION

SCENARIOS

By

KALEN S. GABEL

Bachelor of Science in Mathematics
Northwestern Oklahoma State University

Alva, OK
2017

Bachelor of Science in Mechanical Engineering
Oklahoma State University

Stillwater, OK
2019

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

December, 2022



QUANTITATIVE ANALYSIS OF POSITIVE-DISPLACEMENT

COMPRESSOR MODELS TESTED IN EXTRAPOLATION

SCENARIOS

Thesis Approved:

Dr. Craig Bradshaw

Thesis Advisor

Dr. Dan Fisher

Dr. Rushikesh Kamalapurkar

ii



ACKNOWLEDGMENTS

I would first like to thank my parents for their continuous love and unwavering

support throughout my masters studies and my life. Mom and Dad, you both have

provided the foundation on which I fall back on in the hard times and grow on in the

good times. Thank you.

I want to thank my sister for her caring love and ever useful advise. Thank you

for always being an open ear and a great sister to me.

In addition to my family support, my professional support has helped carry me to

new heights I had previously not thought possible. Dr. Craig Bradshaw, I want to

thank you for your patience with me as a graduate student and for your guidance

throughout my time at Oklahoma State. You have undoubtedly shaped my future

for the better.

Going through graduate school has put me in front of quite a few people. Some

of these have been lab mates, technicians, other faculty members and staff. While

I cannot adequately express my appreciation for all of these people here, the best I

can do is recall some who have made lasting impacts. I want to thank Seth for his

support and all the fun times we had in the lab. Saad and Andrew, it was always a

good time hanging out in the office and on the town. I want to thank Matin and Amir

for coming into the office and being great office mates. Lastly, I want to thank all of

my lab mates Mazharul, Mohsin, Abraham, Amjid, and Shahzad. It was a pleasure

to share time in graduate school with all of you.

Acknowledgments reflect the views of the author and are not endorsed by committee members
or Oklahoma State University.

iii



Name: KALEN S. GABEL

Date of Degree: DECEMBER, 2022

Title of Study: QUANTITATIVE ANALYSIS OF POSITIVE-DISPLACEMENT

COMPRESSOR MODELS TESTED IN EXTRAPOLATION SCENARIOS

Major Field: MECHANICAL AND AEROSPACE ENGINEERING

Abstract: Testing and evaluation of select semi-empirical compressor models is
carried out to quantify performance in modulation (variable speed), extrapolation,
and additionally, variable superheat scenarios. Three representative literature models
and an artificial neural network (ANN) model are benchmarked against the industry
standard AHRI model. A methodology quantifying model performance, compared
against experimental data, in said scenarios is presented. Data used is of high-fidelity
taken from either a hot-gas bypass load stand or compressor calorimeter. Scroll,
screw, reciprocating, and spool compressor technologies were collected with R410A,
R1234ze(E), R134a, and R32 refrigerants totaling 434 experimental points. Data
is divided into training, extrapolation, variable speed, and variable superheat data
splits to examine model performance. Mean Absolute Percentage Error (MAPE)
is computed for mass flow rate and power after training models with training data
and evaluating them against the other data splits. Two literature models are true
semi-empirical formulations while the other, the ANN, and AHRI model are more
empirical in nature. Neither semi-empirical model predicted all compressors. When
the compressor type is predicted, the semi-empirical models yield MAPE’s less than
8%, 5%, and 4% for mass flow rate and power prediction in extrapolation, modulation,
and variable superheat scenarios, respectively. The exception is the Popovic and
Shapiro model performing at 21% MAPE in variable superheat power prediction for
the spool compressor with R1234ze(E). The ANN showed highest errors of 9.3%, 12%,
and 17% in extrapolation, modulation, and variable superheat scenarios, respectively.
All models outperformed the AHRI model by several orders of magnitude in these
scenarios.

iv



TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Feasibility Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

II. MODEL SELECTION CRITERIA AND DESCRIPTIONS . . . 15

2.1 Selection Criteria and Selected Models . . . . . . . . . . . . . . . . 15

2.2 Selected Model Descriptions . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Baseline Model - AHRI Model . . . . . . . . . . . . . . . . . 16

2.2.2 Artificial Neural Network Model . . . . . . . . . . . . . . . . 17

2.2.3 The Shao Model . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.4 The Popovic and Shapiro Model . . . . . . . . . . . . . . . . 20

2.2.5 The Winandy Model . . . . . . . . . . . . . . . . . . . . . . 21

III. HIGH FIDELITY DATA COLLECTION AND METHODOLOGY 23

3.1 Data Collection Sources and Standards . . . . . . . . . . . . . . . . 24

3.2 Data Subsets (Splits) . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Baseline and Training Data Sets . . . . . . . . . . . . . . . . 25

3.2.2 Extrapolation, and Variable Speed/Superheat Data Sets . . 28

3.3 Model Testing Methodology . . . . . . . . . . . . . . . . . . . . . . 30

IV. RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Constant Speed Training Results . . . . . . . . . . . . . . . . . . . 31

4.1.1 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

v



Chapter Page

4.1.2 Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.3 Extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.4 Variable Superheat . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Variable Speed Training Results . . . . . . . . . . . . . . . . . . . . 38

4.2.1 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.2 Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.3 Extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.4 Variable Superheat . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.1 Model Capabilities . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.2 Model Limitations . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.3 Future Model Development . . . . . . . . . . . . . . . . . . 46

V. SELECTED MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1 Additional Compressor Technology Prediction . . . . . . . . . . . . 47

5.2 Initial Modifications to Selected Model . . . . . . . . . . . . . . . . 50

5.2.1 Pressure Drop . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.2 Reciprocating Compressor Prediction Modifications . . . . . 52

5.3 Overall Modification Results . . . . . . . . . . . . . . . . . . . . . . 57

VI. CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . 59

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

APPENDIX A: Winandy Model Results . . . . . . . . . . . . . . . . . . . 70

vi



Chapter Page

Reciprocating Data utilizing R134a . . . . . . . . . . . . . . . . . . 70

Screw Compressor Data utilizing R134a . . . . . . . . . . . . . . . . 73

Scroll Compressor Data utilizing R134a . . . . . . . . . . . . . . . . 77

Scroll Compressor Data utilizing R410A . . . . . . . . . . . . . . . 80

Spool Compressor Data utilizing R134a . . . . . . . . . . . . . . . . 86

Spool Compressor Data utilizing R1234ze(E) . . . . . . . . . . . . . 91

Reciprocating Compressor Data utilizing R32 . . . . . . . . . . . . 97

Rotary Compressor Data utilizing R410A . . . . . . . . . . . . . . . 100

vii



LIST OF TABLES

Table Page

1.1. Displaying different metrics and variables for positive displacement

and dynamic compressor types . . . . . . . . . . . . . . . . . . . 10

1.2. Displaying different metrics and variables for positive displacement

and dynamic compressor types . . . . . . . . . . . . . . . . . . . 11

1.3. Summary of Inputs from Popovic and Shapiro (1998) dynamic model 12

1.4. Summary of Inputs from Popovic and Shapiro (1998) positive dis-

placement model . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1. Equation used for mass flow rate and power prediction in the AHRI

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2. Important parameters used during ANN model development . . . 18

2.3. Formulations that need tuning in the Shao Model formulation. . . 19

2.4. Popovic and Shapiro model mass flow rate and power formulations. 21

2.5. Winandy model mass flow rate and power formulations. . . . . . 22

3.1. Information on the data sets collected. . . . . . . . . . . . . . . . 24

4.1. Model MAPE results for training data sets . . . . . . . . . . . . . 33

4.2. Model MAPE results for modulation (variable speed) data sets . . 33

4.3. Model MAPE results under extrapolation scenarios . . . . . . . . 36

4.4. Mass flow rate results for variable superheat scenarios. . . . . . . 37

4.5. AHRI model results for mass flow rate and power for each data set

and their associated subsets. . . . . . . . . . . . . . . . . . . . . . 38

viii



Table Page

5.1. Change in MAPE for extrapolation cases with constant pressure

drop at suction and discharge . . . . . . . . . . . . . . . . . . . . 52

5.2. Change in MAPE for variable speed cases with constant pressure

drop at suction and discharge . . . . . . . . . . . . . . . . . . . . 53

5.3. Change in MAPE for variable superheat cases with constant pres-

sure drop at suction and discharge . . . . . . . . . . . . . . . . . 54

ix



LIST OF FIGURES

Figure Page

3.1. Spool R134a data showing points used to train the models and test

points used for extrapolation capability testing . . . . . . . . . . 27

3.2. Flow chart showing data splits with constant speed training . . . 27

3.3. Flow chart showing data splits with variable speed and superheat

training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4. Flowchart showing an overview of semi-empirical model testing and

data splits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1. Training results at each data set for the five models . . . . . . . . 32

4.2. Mass flow rate and power results under modulation (variable speed)

testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3. MAPE results at extrapolation conditions . . . . . . . . . . . . . 35

4.4. Mass flow rate MAPE results at variable superheat conditions . . 37

4.5. Heat map showing modulation (variable speed) MAPE results for

mass flow rate and power for each model. . . . . . . . . . . . . . . 39

4.6. MAPE results in extrapolation scenarios for all models. . . . . . . 41

4.7. MAPE results for models under variable superheat testing. . . . . 43

5.1. Parity plot showing extrapolation results for the Winandy Model

predicting rotary compressor mass flow rate . . . . . . . . . . . . 48

5.2. Parity plot showing extrapolation results for the Winandy Model

predicting rotary compressor power consumption . . . . . . . . . 49

x



Figure Page

5.3. Schematic of the Winandy model with ∆Psuc and ∆Pdis modifica-

tion added . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4. Schematic of the isentropic compression process utilized in initial

modifications to the Winandy model . . . . . . . . . . . . . . . . 55

5.5. Parity plot showing the mass flow rate results using modified model

and 8 training points . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.6. Parity plot showing the power results using modified model and 8

training points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A.1. Winandy model mass flow rate results for training data with re-

ciprocating compressor utilizing R134a . . . . . . . . . . . . . . . 70

A.2. Winandy model power results for training data with reciprocating

compressor utilizing R134a . . . . . . . . . . . . . . . . . . . . . . 71

A.3. Winandy model mass flow rate results for extrapolation data with

reciprocating compressor utilizing R134a . . . . . . . . . . . . . . 71

A.4. Winandy model power results for extrapolation data with recipro-

cating compressor utilizing R134a . . . . . . . . . . . . . . . . . . 72

A.5. Winandy model mass flow rate results for variable speed data with

reciprocating compressor utilizing R134a . . . . . . . . . . . . . . 72

A.6. Winandy model power results for variable speed data with recip-

rocating compressor utilizing R134a . . . . . . . . . . . . . . . . . 73

A.7. Winandy model mass flow rate results for training data with screw

compressor utilizing R134a . . . . . . . . . . . . . . . . . . . . . . 74

A.8. Winandy model power results for training data with screw com-

pressor utilizing R134a . . . . . . . . . . . . . . . . . . . . . . . . 74

xi



Figure Page

A.9. Winandy model mass flow rate results for variable speed data with

screw compressor utilizing R134a . . . . . . . . . . . . . . . . . . 75

A.10. Winandy model power results for variable speed data with screw

compressor utilizing R134a . . . . . . . . . . . . . . . . . . . . . . 75

A.11. Winandy model mass flow rate results for full data with screw

compressor utilizing R134a . . . . . . . . . . . . . . . . . . . . . . 76

A.12. Winandy model power results for full data with screw compressor

utilizing R134a . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.13. Winandy model mass flow rate results for training data with scroll

compressor utilizing R134a . . . . . . . . . . . . . . . . . . . . . . 77

A.14. Winandy model power results for training data with scroll com-

pressor utilizing R134a . . . . . . . . . . . . . . . . . . . . . . . . 78

A.15. Winandy model mass flow rate results for extrapolation data with

scroll compressor utilizing R134a . . . . . . . . . . . . . . . . . . 78

A.16. Winandy model power results for extrapolation data with scroll

compressor utilizing R134a . . . . . . . . . . . . . . . . . . . . . . 79

A.17. Winandy model mass flow rate results for variable speed data with

scroll compressor utilizing R134a . . . . . . . . . . . . . . . . . . 79

A.18. Winandy model power results for variable speed data with scroll

compressor utilizing R134a . . . . . . . . . . . . . . . . . . . . . . 80

A.19. Winandy model mass flow rate results for training data with scroll

compressor utilizing R410A . . . . . . . . . . . . . . . . . . . . . 81

A.20. Winandy model power results for training data with scroll com-

pressor utilizing R410A . . . . . . . . . . . . . . . . . . . . . . . 81

A.21. Winandy model mass flow rate results for extrapolation data with

scroll compressor utilizing R410A . . . . . . . . . . . . . . . . . . 82

xii



Figure Page

A.22. Winandy model power results for extrapolation data with scroll

compressor utilizing R410A . . . . . . . . . . . . . . . . . . . . . 82

A.23. Winandy model mass flow rate results for constant suction tem-

perature data with scroll compressor utilizing R410A . . . . . . . 83

A.24. Winandy model power results for constant suction temperature

data with scroll compressor utilizing R410A . . . . . . . . . . . . 83

A.25. Winandy model mass flow rate results for variable superheat data

with scroll compressor utilizing R410A . . . . . . . . . . . . . . . 84

A.26. Winandy model power results for variable superheat data with

scroll compressor utilizing R410A . . . . . . . . . . . . . . . . . . 84

A.27. Winandy model mass flow rate results for full data with scroll

compressor utilizing R410A . . . . . . . . . . . . . . . . . . . . . 85

A.28. Winandy model power results for full data with scroll compressor

utilizing R410A . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A.29. Winandy model mass flow rate results for training data with spool

compressor utilizing R134a . . . . . . . . . . . . . . . . . . . . . . 86

A.30. Winandy model power results for training data with spool com-

pressor utilizing R134a . . . . . . . . . . . . . . . . . . . . . . . . 87

A.31. Winandy model mass flow rate results for extrapolation data with

spool compressor utilizing R134a . . . . . . . . . . . . . . . . . . 87

A.32. Winandy model power results for extrapolation data with spool

compressor utilizing R134a . . . . . . . . . . . . . . . . . . . . . . 88

A.33. Winandy model mass flow rate results for variable speed data with

spool compressor utilizing R134a . . . . . . . . . . . . . . . . . . 88

A.34. Winandy model power results for variable speed data with spool

compressor utilizing R134a . . . . . . . . . . . . . . . . . . . . . . 89

xiii



Figure Page

A.35. Winandy model mass flow rate results for variable superheat data

with spool compressor utilizing R134a . . . . . . . . . . . . . . . 89

A.36. Winandy model power results for variable superheat data with

spool compressor utilizing R134a . . . . . . . . . . . . . . . . . . 90

A.37. Winandy model mass flow rate results for full data with spool

compressor utilizing R134a . . . . . . . . . . . . . . . . . . . . . . 90

A.38. Winandy model power results for full data with spool compressor

utilizing R134a . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.39. Winandy model mass flow rate results for training data with spool

compressor utilizing R1234ze(E) . . . . . . . . . . . . . . . . . . . 92

A.40. Winandy model power results for training data with spool com-

pressor utilizing R1234ze(E) . . . . . . . . . . . . . . . . . . . . . 92

A.41. Winandy model mass flow rate results for extrapolation data with

spool compressor utilizing R1234ze(E) . . . . . . . . . . . . . . . 93

A.42. Winandy model power results for extrapolation data with spool

compressor utilizing R1234ze(E) . . . . . . . . . . . . . . . . . . . 93

A.43. Winandy model mass flow rate results for variable speed data with

spool compressor utilizing R1234ze(E) . . . . . . . . . . . . . . . 94

A.44. Winandy model power results for variable speed data with spool

compressor utilizing R1234ze(E) . . . . . . . . . . . . . . . . . . . 94

A.45. Winandy model mass flow rate results for variable superheat data

with spool compressor utilizing R1234ze(E) . . . . . . . . . . . . 95

A.46. Winandy model power results for variable superheat data with

spool compressor utilizing R1234ze(E) . . . . . . . . . . . . . . . 95

A.47. Winandy model mass flow rate results for full data with spool

compressor utilizing R1234ze(E) . . . . . . . . . . . . . . . . . . . 96

xiv



Figure Page

A.48. Winandy model power results for full data with spool compressor

utilizing R1234ze(E) . . . . . . . . . . . . . . . . . . . . . . . . . 96

A.49. Winandy model mass flow rate results for training data with re-

ciprocating compressor utilizing R32 . . . . . . . . . . . . . . . . 97

A.50. Winandy model power results for training data with reciprocating

compressor utilizing R32 . . . . . . . . . . . . . . . . . . . . . . . 98

A.51. Winandy model mass flow rate results for extrapolation data with

reciprocating compressor utilizing R32 . . . . . . . . . . . . . . . 98

A.52. Winandy model power results for extrapolation data with recipro-

cating compressor utilizing R32 . . . . . . . . . . . . . . . . . . . 99

A.53. Winandy model mass flow rate results for full data with recipro-

cating compressor utilizing R32 . . . . . . . . . . . . . . . . . . . 99

A.54. Winandy model power results for full data with reciprocating com-

pressor utilizing R32 . . . . . . . . . . . . . . . . . . . . . . . . . 100

A.55. Winandy model mass flow rate results for training data with rotary

compressor utilizing R410A . . . . . . . . . . . . . . . . . . . . . 101

A.56. Winandy model power results for training data with rotary com-

pressor utilizing R410A . . . . . . . . . . . . . . . . . . . . . . . 101

A.57. Winandy model mass flow rate results for extrapolation data with

rotary compressor utilizing R410A . . . . . . . . . . . . . . . . . 102

A.58. Winandy model power results for extrapolation data with rotary

compressor utilizing R410A . . . . . . . . . . . . . . . . . . . . . 102

A.59. Winandy model mass flow rate results for full data with rotary

compressor utilizing R410A . . . . . . . . . . . . . . . . . . . . . 103

A.60. Winandy model power results for full data with rotary compressor

utilizing R410A . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

xv



NOMENCLATURE

VARIABLES UNITS DESCRIPTION

AU W/K Heat Transfer Coefficient

C - Clearance Factor

f Hz Frequency

N RPM Compressor Rotational Speed

n - Polytropic Exponent

ν kg/m3 Specific Volume

RPD m3/rev Piston Displacement Rate

RPM rev/min Rotational Speed

∆Tsup K Superheat Temperature

Q̇ kW Heat Transfer

∆s J/kg-K Change in Entropy

Vs m3 Fictitious Swept Volume
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CHAPTER I

INTRODUCTION

Today compressor manufactures are challenged by a rapidly changing regulatory en-

vironment shifting focus toward mitigating climate change and global warming. Mod-

eling compressor performance plays a vital part in predicting overall system behavior,

ensuring system efficiency requirements are met, and minimizing the energy footprint

of these machines.

When manufactures test their systems through simulation it is desired that a

variety of operating conditions be predicted accurately. Additionally, part-load con-

ditions sometimes require the compressor to be operated at a different operational

speed than full-load conditions. These two situations present unique needs that a

model must fulfil, that is, extrapolation and modulation capability. Semi-empirical

models may have the potential of meeting these two needs.

1.1 Literature Review

All compressor models exist on a spectrum, ranging from black-box (statistical corre-

lations) to white-box (distributed models). Black-box models require little informa-

tion about the machine itself, while white-box models need detailed input information

sometimes only known by the manufacturer. The most well known black-box model

is the industry standard 10-coefficient map standardized by AHRI 540 AHRI (2020).

Grey-box or semi-empirical models aim to hit the middle ground between the two

extremes. These models are more computationally efficient than white-box models

1



enabling them to be implemented into system simulations while retaining additional

fidelity that black-box models typically do not.

This work aims to identify select semi-empirical compressor models from liter-

ature, quantify performance at extrapolation and modulation scenarios, and give

insights into a future model capable of predicting multiple compressor technologies in

said scenarios. Shao et al. (2004) presents a map based modeling approach for pre-

dicting mass flow rate, power, and COP at different supply frequencies for a rolling

piston compressor. The equations of the model are fitted as second order functions of

evaporating and condensing temperatures with one cross term. A mass flow rate and

power ratio are defined which relate variable speed operation to that at a constant

speed. This approach is adopted by Aprea and Renno (2008) to predict variable speed

reciprocating compressor data. A separate black-box style approach by Qiao et al.

(2014) used pressure ratio and normalized speed to predict scroll compressor perfor-

mance in a transient multi-evaporator system simulation. The model utilized curve

fit coefficients in expressions for volumetric efficiency, power, and discharge enthalpy.

The above models differ from semi-empirical methods because they rely on equa-

tions which are functions of high-level variables, such as pressure ratio. On the other

hand semi-empirical approaches are reliant on tuned parameters within equations that

closer resemble the physics of various phenomena occurring within the compressor,

such as suction pressure loss and suction heat transfer. Navarro et al. (2007) presents

a phenomenological model based on an isentropic compression process for analyzing

reciprocating compressors using propane. Compressor efficiency and volumetric ef-

ficiency is presented as a set of implicit equations which need 10 parameters, each

claimed to have physical interpretation, to be curve fitted. It reproduced compressor

and volumetric efficiency with an error lower than 3% under a range of operating

conditions. Corber et al. (2007) then uses the model to predict reciprocating com-

pressor performance with R407C. The work used all parameters fitted with propane
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to estimate performance with R407C except one phase change factor which is al-

tered slightly. Results showed deviations of less than 5% for compressor efficiency

in all tests except one. Tello-Oquendo et al. (2019) presents a semi-empirical model

based on Navarro et al. (2007)’s work to predict scroll compressor performance and

the method is extended to capture vapor injection scroll compressors using R407C.

Results obtained were ± 5% for compressor and volumetric efficiency.

Other work on semi-empirical models utilize different reference processes or cap-

ture different phenomena. Popovic and Shapiro (1995) present a method derived for

reciprocating compressors based on a volumetric efficiency, polytropic compression

process, and three defined control volumes. Two compressors, 8 different working

fluids, and 122 total data points are used for validation. It predicts mass flow rate,

power, and discharge temperature using 8 model inputs. Jahnig et al. (2000) pre-

sented a similar model for small hermetic reciprocating compressors used in house-

hold refrigerators. The model is based on volumetric efficiency, assumes a polytropic

compression process, and utilizes five parameters determined by fitting to experimen-

tal data. Mackensen et al. (2002) derived a model for reciprocating, screw, and scroll

compressors. The model is here again based on a polytropic process and volumetric

efficiency. An efficiency factor was found to be necessary and is a function of the

operating conditions.

A formulation found throughout the semi-empirical compressor modeling litera-

ture is presented in Winandy et al. (2002b). The model captures bulk phenomena

occurring throughout the refrigerant evolution from suction to discharge stub of a

scroll compressor. It incorporates heat transfer acting on the suction and discharge

gas flows, and heat transfer coefficients are fit to data. The model represents the com-

pression process in two steps; isentropic to the built in volume ratio then adiabatic

and isochoric to the discharge pressure. This model has been adapted to capture

reciprocating compressors Winandy et al. (2002a), rolling piston compressors Moli-
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naroli et al. (2017), screw compressors Giuffrida (2016), liquid and vapor injected

scroll compressors Winandy and Lebrun (2002), and oil flooded scroll compressors

James et al. (2016).

In addition to semi-empirical modeling, recently, machine learning based ap-

proaches have been used for compressor performance prediction in HVAC&R systems.

Ziviani et al. (2018) studied ANN performance applied to positive displacement com-

pressor and expanders. Ledesma et al. (2015) predicted reciprocating compressor

performance using an ANN and proposed an iterative algorithm to change the num-

ber of neurons in the hidden layer until a leveling of the mean squared error (MSE)

occurs, which sets the minimum number of neurons needed. Ma et al. (2020) proposed

a compressor mapping methodology to inform training data selection used during the

ANN development. Points were added to the training data based on which points

exhibited the highest absolute percentage error (APE) between ANN prediction and

experimental data. Wan et al. (2021) applied multiple machine learning techniques

including convolution neural networks, deep neural networks, random forest, and sup-

port vector regression to predict mass flow rate and power for transient and steady

state compressor performance. Other studies found in literature applying machine

learning to HVAC&R compressor modeling include Sanaye et al. (2010) who predicted

rotary vane compressor performance, Yang et al. (2009) predicted scroll, screw, and

reciprocating performance, Barroso-Maldonado et al. (2017) predicted reciprocating

compressor performance, and Zendehboudi et al. (2017) modeled variable speed scroll

compressors with vapor injection.

After developing a model that sufficiently predicts a compressors performance,

some researchers have evaluated model accuracy at conditions extending beyond their

training data (extrapolation). Li (2012) presented semi empirical model for hermetic

scroll and reciprocating compressors with a focus on extrapolation. Conditions where

the saturated suction temperature is 10◦C or the saturated discharge temperature
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is 15◦C away from data points used for parameter fitting showed an accuracy of

5%. Jahnig et al. (2000) finds that their model extrapolates within 5% error with

condensing and evaporating temperatures that extend training data by 10◦C. Aute

et al. (2015) examined five compressor models, Jahnig et al. (2000), Qiao et al. (2014),

Navarro et al. (2007), the AHRI formulation AHRI (2020), and a variation of the

AHRI method. The models were tested at different superheat values than that of the

training data used to fit model parameters. It was found AHRI method performed

best at power prediction, while other models were unusable for power prediction.

The corrected AHRI model using Dabiri and Rice (1981) performed best at mass

flow prediction. The main limitation of the study was it used data from compressor

data sheets, which are often generated from the AHRI map and likely to bias the

results.Cheung et al. (2018) estimated compressor map (AHRI (2020)) uncertainty to

explain inaccuracies in mass flow rate and power prediction in extrapolation scenarios.

Further, Cheung and Wang (2018) uses the same method to test five semi-empirical

compressor mass flow rate formulations. The authors find that redundant coefficients

whether empirical or physical reduce model accuracy in extrapolation scenarios.

The present work aims to fill a gap in literature by evaluating select semi-empirical

compressor models at extrapolation and modulation scenarios with multiple different

compressor technologies using high-fidelity, experimental, compressor performance

data to train the models and quantify performance. The present study differs from

the studies in the above paragraph in that Li (2012) and Jahnig et al. (2000) use only

reciprocating compressors and Cheung and Wang (2018) uses only scroll compressors.

Aute et al. (2015) uses some data generated by the AHRI model, where this study

aims to use only experimental data.

5



1.2 Feasibility Study

In an attempt to find compressor models that span the entire range of compressor

types operating in vapor compression cycles, a small survey of centrifugal compressor

modeling literature was done. The systems that models applied centrifugal compres-

sor modeling to focused on automotive, oil and gas, chiller applications Brondum et al.

(1998), air compressors for PEM fuel cells Zhao et al. (2017), and some experimental

research of an Organic Rankine Cycle driven centrifugal compressors operating in

a refrigeration cycle Demierre et al. (2015). The majority of models in this survey

did not apply directly to refrigeration and heat pump applications; which a review

paper by Fang et al. (2014) helps establish. The study looks into empirical models

in the literature for HVAC&R simulation, but found that most models exclusively

apply to the automotive sector. The accuracy of these automotive models applied

to HVAC&R centrifugal compressor modeling is limited and accurate modeling re-

mains a problem unsolved, as stated by the authors and described further below.

The following descriptions are from the most relevant papers covered in the dynamic

compressor model search.

Kurz (2004) presented a paper on the physics of centrifugal compressor operation

with topics including: the thermodynamics of gas compression, the aerodynamics of

centrifugal compressors, and important subsystems such as seals and surge control.

The author presents the first and second laws of thermodynamics together with basic

laws of fluid dynamics to describe the fundamental working principles of centrifugal

compressors. Bernouli’s law and Euler’s law are used to model the fluid flow through

the compressor and a general description of the surge, stall, and choke phenomena is

given. The paper does not present one overall model to describe centrifugal compres-

sor performance, but instead presents major laws of physics to help understand the

working principles. As mentioned above Fang et al. (2014) produced a review study
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on the empirical models for efficiency and mass flow rate of centrifugal compressors.

They found that most empirical models only exist for automotive turbochargers and

no such empirical models exist for refrigeration compressors. Eleven mass flow mod-

els and eight efficiency models are evaluated with each one needing coefficients fitted

from experimental data. A test rig for an air cycle refrigeration system is set up for

model validation. The study ranks the top three models for accuracy based on a

mean average deviation for mass flow rate and efficiency. It is found that accurate

models remain a problem unsolved for refrigeration centrifugal compressors. Zhao

et al. (2017) studied semi physical modeling and control of a high speed centrifugal

compressor for the air feeding of a polymer electrolyte membrane fuel cell. In this

model the dynamics of mass flow, pressure, and efficiency are presented. Parameter

estimation via interior point estimation is used to estimate the seven empirical co-

efficients for the model. The model is validated against measured data and yielded

efficiency root mean squared errors of 5.1%, 6.2%, 7.2%, 7.6% at speeds of 200, 230,

260, and 280 krpm. The mass flow rate error was not quantified. The compressor

model is implemented into an overall fuel cell model exhibiting good performance

according to the authors. Popovic and Shapiro (1998) performed a modeling study

on a centrifugal compressor in a navy ship chiller application. The authors develop

a model that predicts mass flow, exit temperature, and power consumption. It uses

blade angles, Euler’s equation, a slip factor, and two empirical relations in its formu-

lation. The model was not accurate yielding ± 20% and ± 15% accuracy for mass

flow rate and power consumption. The outlet compressor temperature was found to

be ± 3 F of measured data. The model seems to be refrigerant dependent which is a

shortcoming, but the authors state that a variable slip factor, more detailed diffuser

model, and more complete operational data would improve the model. Mass flow

rate was not measured making the validation data less valuable. Braun et al. (1987)

describes a mechanistic compressor model for a variable speed capacity controlled
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centrifugal chiller. The model uses conservation of mass, momentum, and energy

along with some empirical relations to describe power consumption. The approach

utilizes velocity triangles, a dimensionless flow coefficient, a theoretical work coeffi-

cient, a polytropic process, and isentropic efficiency and polytropic work coefficient as

a function of dimensionless flow coefficient. The last two coefficients are empirically fit

to performance data of vaneless centrifugal compressors from studies by Weisner and

Caswell (1959), Weisner (1960). The RMS difference between measured and modelled

performance is 85 kW for power. The model was implemented into an overall chiller

model for system simulation and performance evaluation with different refrigerants.

This section is presented to discuss combining the models that describe the two

technologies, centrifugal and positive displacement, into one. To do that requires

performance variables within the models to overlap with the physical parameters de-

scribing both dynamic and positive displacement compressors. It is worth noting

that a valuable metric, volumetric efficiency, does not apply to describing dynamic

compressor performance because, unlike a positive displacement machine, a dynamic

machine uses the increase in momentum of a fluid control volume to generate pressure

rise. A positive displacement machine isolates a control volume and reduces the vol-

ume of said control volume. Therefore, an important performance metric for positive

displacement machines is not used in the analysis of a centrifugal machine at all.

A major difference in the fluid flow through a dynamic compressors verses positive

displacement is the aerodynamic phenomena known as surge, stall, and choke that

can occur in a centrifugal machine. These instabilities are not generally found or

accounted for in positive displacement compressor modeling. Models that estimate

this are of value for dynamic compressors, which are typically selected to operate in

a region that is most efficient for that compressor and far from the stall or surge

lines. Variable operating conditions can affect the efficiency greatly and push the

compressor toward surge or choke.
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A general thermodynamic description of the processes occurring in a compres-

sor seemed initially promising to describe both dynamic and positive displacement

machines. This is because isentropic efficiency, polytropic efficiency, and adiabatic

efficiency can be found with the same parameter inputs that are found in positive dis-

placement and dynamic compressors. Temperature, pressure, specific heat, entropy,

enthalpy, polytropic exponent, and other variables are used as inputs. These all can be

used to estimate the power requirement of a compressor based on the energy required

to achieve desired outlet state, i.e., discharge pressure and temperature. However, a

main difference in the characterization of a centrifugal compressor verses a positive

displacement compressor is in the formulation of non-dimensional flow coefficients to

describe the fluid flow. The mass flow rate for dynamic compressors usually involves

blade tip speeds, impeller radius, rotational speed, and slip factors. In Popovic and

Shapiro (1998) the isentropic efficiency is empirically related to the guide vane an-

gle and the dimensionless enthalpy is plotted as a function of the flow coefficient for

the compressor. These parameters, guide vane angle and dimensionless enthalpy do

not exist for positive displacement performance description. The closest metric to the

flow coefficient is volumetric efficiency, which as mentioned above cannot be extended

to represent dynamic compressors.

Developing a model that combines both dynamic and positive displacement tech-

nologies requires a single set of model parameters to be similar in nature. That is,

the physics, or more precisely, the inputs to the models need to be similar. Overall

modeling of the two compressor types together necessitates the inputs and outputs to

be the same or very close. To illustrate some of the major differences between perfor-

mance characterizing variables, Table 1.1 and 1.1 show model parameters taken from

Zhao et al. (2017) to represent dynamic compressor performance and some generic

performance characterizing variables from Rasmussen and Jakobsen (2000) to repre-

sent positive displacement compressor performance. Additionally, they indicate if the
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variable is an input or an output to the model.

Table 1.1: Displaying different metrics and variables for positive displacement and

dynamic compressor types

Variable Input / Output Technology Described

Isentropic Eff. Output Both

Adiabatic/Thermal Eff. Output Both

Clearance Volume Eff. Output Positive Displacement

Polytropic Eff. Output Both

Mechanical Eff. Input/Output Both

Volumetric Eff. Output Positive Displacement

Leakage Output Both

Power Consumption Output Both

Mass Flow Rate Output Both

Fluid Temperature Input Both

Fluid Pressure Input Both

Polytropic Exponent Input Both

Pressure Ratio Input Both

Clearance Volume Input Positive Displacement

Displaced Volume Input Positive Displacement

Displacement Rate Input Positive Displacement

Volume Ratio Input Positive Displacement

Table 1.1 illustrates that the modeling approaches overlap in a few basic areas,

such as efficiencies, however as mentioned above the output of mass flow rate is found

using variables that do not overlap with description of the physics of the two technolo-

gies. Displacement rate, volume ratio, and swept volume all play into the description

10



Table 1.2: Displaying different metrics and variables for positive displacement and

dynamic compressor types

Variable Input / Output Technology Described

Valve pressure drops Output Both

Lubricant properties Input Positive Displacement

Volumetric flow rate Output Both

Rotational Speed Input Both

Torque Input Both

Blade angles Input Dynamic

Inlet vane angle Input Dynamic

Mach number Input Dynamic

Impeller Radius Input Dynamic

Slip coefficient Input Dynamic

Plenum Volume Input Both

Stagnation Sonic Velocity Input Dynamic

Inertia of Compressor Input Dynamic

Specific Heat Ratio Input Both

Fluid Friction coefficient Input Dynamic

Area of impeller eye Input Dynamic

Mean Inducer Radius Input Dynamic

of mass flow rate for positive displacement machines and these have no meaning in

describing a dynamic compressor. Similarly, blade angle, slip coefficient, impeller

radius, and inlet vane angle all are used in modeling the mass flow of a dynamic com-

pressor, but have no meaning in describing a positive displacement compressor. The

tables, Table 1.3 and Table 1.4 model is used to further illustrate some key differences
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between modeling the positive displacement and dynamic compressor technologies.

The tables show model inputs to a positive displacement model and a dynamic model.

It is noteworthy that the same authors produced the two studies. One is Popovic and

Shapiro (1995) and the other is Popovic and Shapiro (1998) the first being a positive

displacement model of a reciprocating compressor and the second being a study per-

taining to centrifugal compressor modeling. Table 1.3 shows some of the inputs to

the centrifugal study.

Table 1.3: Summary of Inputs from Popovic and Shapiro (1998) dynamic model

Variable Type Symbol

Compressor Shaft Speed Input ω

Inlet / Outlet impeller radii Input r1,r2

Inlet Guide Vane angle Input α

Inlet / Outlet Vane tips angles Input β

Refrigerant inlet state Input P1,T1

Impeller and Diffuser exit areas Input A2,A3

Blockage Factor Input kB

Impeller Slip Factor Input σ

Exit Pressure Input P2

Exit Enthalpy Input h2

Mass Flow Rate Input ṁ

It is noted that the mass flow rate of the system is an input into this centrifugal

model. That is not at all helpful to the present study, but the inputs still show major

differences between dynamic and positive displacement modeling approaches. Slip

factor, blockage factor, vane tip angles, impeller angles and diameters, and guide vane

positions all have no physical relevance applied to a positive displacement compressor.

Table 1.4 displays the inputs to the positive displacement compressor model.
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Table 1.4: Summary of Inputs from Popovic and Shapiro (1998) positive displacement

model

Variable Type Symbol

Refrigerant inlet state Input P1,T1

Refrigerant outlet pressure Input P2

Clearance volume / factor Input C

Motor speed Input ω

Polytropic exponent Input n

Effective suction pressure drop Input ∆Psuc

Effective discharge pressure drop Input ∆Pdis

Heat Transfer loss coefficient Input HTloss

When looking at the inputs for this modeling approach, the variables do not match

up well. The study using the inputs in Table 1.4 has the clearance factor as a funda-

mental starting point for mass flow rate modeling. This parameter has no physical

meaning describing a dynamic compressor. This makes it very difficult to combine a

model when the first mathematical description of one machine, positive displacement,

does not describe any characteristic of the other, dynamic, whatsoever. The effective

suction and discharge pressure drops can be related to a dynamic machine, such as

the pressure drop as the fluid flows over the inlet guide vanes. The exit pressure

drop could be related to the pressure drop occurring when the fluid exits the diffuser

and enters the discharge lines. These variables can be related to the different phe-

nomena occurring in compressors, but actually modeling them requires a different

characterization of the flow and machine. As mentioned before, the blade angles, slip

coefficients, etc., all describe dynamic modeling and have no meaning in a positive

displacement machine.

Power consumption modeling in the Popovic and Shapiro (1998) centrifugal study
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is a simple function of mass flow and the exit state. The model calculates the mass

flow and exit state, and from there the power consumption is found. Relating the

mass flow rate and exit state to the power is a good idea, provides simple formulation,

and may lessen computational time because of fewer equations. But, as mentioned

previously, the mass flow rate derivations are found in very different ways.

In conclusion of the feasibility analysis the fluid mechanics that describes mass flow

rate is fundamentally different in the two machines. The physics used to capture mass

flow rate behavior in dynamic compressors as compared to positive displacement is

different because at the core, pressure energy is generated in entirely differently ways.

The flow parameters seem like they could be implemented into a computer program

where the user specifies the type of compressor and the program run the appropriate

code. However, it would be difficult to derive an equation that describes the mass

flow rate of a dynamic and positive displacement compressor utilizing the exact same

input terms to describe both. It is easy to think of a formulation where a certain part

goes to zero when a centrifugal compressor is selected and the rest of the equation

describes positive displacement and vice versa. But the goal of this analysis was to

determine if it is possible to come up with a single semi-empirical formulation to

describe both technologies. There is also a balance in the semi empirical terms that

are determined from experimental data. The dynamic compressor cannot constitute

a majority of all the terms that need determined and neither should the positive

displacement description. From here semi-empirical compressor models used for pre-

dicting positive displacement performance are selected exclusively. Model selection

criteria and descriptions follow in the next section.
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CHAPTER II

MODEL SELECTION CRITERIA AND DESCRIPTIONS

It is infeasible to formally evaluate all of the variants of compressor models presented

here, therefore a subset is selected to encapsulate the general model types and solution

modalities. A model that will successfully enable modulation and extrapolation use

cases also needs to meet basic performance criteria.

2.1 Selection Criteria and Selected Models

This criteria includes accuracy of 5% or better compared against experimental results,

computational speed that is insignificant with modern computers, once trained, and

as little proprietary information as possible about the compressor. Lastly, it is desired

that a model be applicable to multiple compressor technologies, or at minimum, show

potential applicability to others through capturing high-level physics present in the

machines. This criteria provided a basis for quantitative and qualitative preliminary

selection of models, which resulted in the selection of five models.

The first model is used to baseline the results as the industry-standard approach

for system modeling and presentation, AHRI (2020). This model has documented

limitations in both extrapolation and modulation modalities but will serve as a basis

of comparison. The second model is an Artifical Neural Network (ANN) which has

recently shown promise as a black-box alternative for compressor mapping Ma et al.

(2020). Another black-box approach by Shao et al. (2004) was selected due to its

inclusion of modulation and high-accuracy. Popovic and Shapiro (1995) is a gray-box
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model selected due to its inclusion of a thermodynamic reference process and good

accuracy. Finally, the Winandy et al. (2002b) model is selected because of is high

accuracy and high-level of physical phenomenon included. Both Popovic and Shapiro

(1995) and Winandy et al. (2002b) have not been evaluated in the extrapolation and

modulation modalities but the increased physics fidelity made them promising for

this study.

2.2 Selected Model Descriptions

This section will provide detailed technical description of each of the five compres-

sor models selected for evaluation. This is split into a baseline model, the AHRI

10-coefficient map AHRI (2020), and four models or approaches from literature, the

Artificial Neural Network (ANN) and Shao et al. (2004), Popovic and Shapiro (1995),

Winandy et al. (2002b). While a compressor model has a large quantity of desired out-

puts they each need to predict compressor mass flow and power, most fundamentally.

Therefore, the descriptions presented will focus on how each model are developed to

predict those parameters. All models were codified into the Python programming

language.

2.2.1 Baseline Model - AHRI Model

The AHRI model, coming from AHRI (2020), is a mathematically simple third order

curve fit with 10 coefficients. While it can be reflected in many forms, most funda-

mentally it can be presented as functions of mass flow and power. The mass flow rate

and power are fit separately as a function of evaporating and condensing tempera-

tures. This results in two equations for performance prediction. The method is very

accurate with respect to the data it is fitted to Aute et al. (2015). The computational

burden is minimal and requires almost no information about the compressor. It’s

used extensively in the HVAC&R industry for system level modeling, therefore it is
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Table 2.1: Equation used for mass flow rate and power prediction in the AHRI model.

AHRI Formulation

X = C1 + C2Ts + C3Td + C4T
2
s + C5TsTd + C6T

2
d + C7T

3
s + C8T

2
s Td + C9TsT

2
d + C10T

3
d

used as a baseline for comparison in the present study. The equation found in Table

2.1 is given by the standard where X is the power input or mass flow rate, Ts and

Td are the suction and discharge dewpoint temperatures, respectively, and C1-C10 are

coefficients determined from least squares regression.

In this formulation both mass flow rate and power are fit resulting in 20 total

coefficients tuned to data. Once these are known, the model takes inputs of suction

and discharge dewpoint temperatures for performance prediction. This model requires

no compressor specific information in order to run.

2.2.2 Artificial Neural Network Model

The ANN modeling approach is black-box in nature and is composed of nodes and

layers which take numerical inputs. The model formulation requires data to inform

an optimization algorithm which adjusts weights and biases within the network based

on backpropagation of error determined by a loss function. The optimization algo-

rithm and loss function used for this work were the Adam optimizer, Kingma and

Ba (2015), and the MAPE or Mean Squared Error (MSE). These yielded sufficient

results during model development. The present study uses evaporating, condensing,

suction temperatures, and compressor speed as inputs to the network while mass flow

rate and power are outputs. Fully connected dense neural networks are implemented.

Each model has one input layer, two hidden, and one output layer. One exception

is the model predicting twin screw performance, it had 3 hidden layers. To keep
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Table 2.2: Important parameters used during ANN model development

Parameter Value

Machine Learning Package Tensorflow 2.5.0

Inputs 4

Outputs 2

Layers 2

Nodes per Layer 10

Activation Function Rectified Linear

Optimizer Adam

order of magnitudes for inputs similar, all inputs were normalized between 0.1 and

0.9, Ma et al. (2020). The rectified linear activation function, which sends negative

input values to zero and retains the value for positive inputs was chosen for this

work. Model formulations are codified in the Python programming language. An

open source machine learning package developed by Google, Tensorflow Abadi et al.

(2016), is used to initialize, compile, fit, and evaluate models. Data used for model

development is split randomly as 80% training data and 20% validation data. To keep

the algorithm from overfitting the data, the validation loss metric is monitored via

callbacks during training and analyzed visually at the conclusion of a training run.

Table 2.2 summarizes the neural network architecture utilized in this study.

2.2.3 The Shao Model

The Shao Model from Shao et al. (2004) is a black-box model that utilizes perfor-

mance data at different operational frequencies to capture modulation. The equations

for mass flow and power are second order functions of evaporation and condensing

temperatures. They need six coefficients tuned to data. The variable speed data is
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used to fit a second order function to mass flow rate and power ratio. These ratios

relate the mass flow and power at the base frequency to performance at different fre-

quencies. The models functional form for mass flow rate, mass flow rate ratio, power,

and power ratio are given in Table 2.3.

Table 2.3: Formulations that need tuning in the Shao Model formulation.

Parameter Equation to be fit

Mass Flow Rate a1T
2
c + a2Tc + a3TcTe + a4T

2
e + a5Te + a6

Mass Flow Rate Ratio c1(f − f ∗) + c2(f − f ∗) + c3

Power b1T
2
c + b2Tc + b3TcTe + b4T

2
e + b5Te + b6

Power Ratio d1(f − f ∗) + d2(f − f ∗) + d3

In total, there are 18 coefficients needed to run the model. The mass flow rate,

power, mass flow rate ratio, and power ratio coefficients are: a1 − a6, b1 − b6, c1 − c3,

and d1 − d3 respectively. The first two coefficient sets (a and b) are fit via least

squares regression to Te and Tc, evaporating and condensing temperature, respectively.

The last two sets (c and d) are fitted as functions of compressor frequency, f , and

nominal frequency f ∗ to the mass flow and power ratios. Each equation is fit via least

squares. The model inputs are evaporating temperature, condensing temperature,

and compressor frequency. There is no compressor specific information needed to run

the model. However, with respect to training data, there must be at least three data

points measured at variable speed operating conditions to fit the mass flow rate and

power ratio equations.
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2.2.4 The Popovic and Shapiro Model

The Popovic and Shapiro model from Popovic and Shapiro (1995) is a semi-empirical

compressor derived to predict reciprocating compressor performance. The model

utilizes an idealized polytropic compression and clearance volume re-expansion with

constant pressure suction and discharge processes. This cycle is modified to include

phenomena typical to a compressor. This includes utilizing volumetric volumetric

efficiency, based on a clearance factor taken as an unknown. The authors then add

suction and discharge pressure drop and, for simplicity, set the magnitudes equal.

The model utilizes the thermodynamic work rate of a polytropic process as a basis

for compressor power requirement. It splits the compressor into three control volumes,

a compressor control volume, and two internal control volumes, the motor and the

cylinder. Table 2.4 shows the equations for mass flow rate and power consumption

used in the model. The mass flow formulation uses the piston displacement rate

(RPD), the rotational speed (RPM), the clearance factor (C), suction and discharge

pressure (Psuc, Pdis), suction specific volume (vsuc), and the polytropic exponent (n)

to predict mass flow. The power formulation uses the mass flow rate (ṁ), suction and

discharge enthalpies (hin, hout), the polytropic work rate (Ẇcal), and the heat transfer

loss coefficient (B1+B2 Q̇cyl), which is fit to cylinder heat loss (Q̇cyl) to predict power

consumption.

The heat transfer loss coefficient expression needs two coefficients tuned to data

while the polytropic exponent expression needs three. The constant pressure drop

term and clearance factor are fitted to data yielding 7 total parameters determined

derived data. Once these are known, four inputs are needed to run the model; refrig-

erant inlet state, outlet pressure, motor speed, and the piston displacement rate. It

must be noted that training data for this model must include discharge temperature

in order to fit the polytropic exponent expression.
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Table 2.4: Popovic and Shapiro model mass flow rate and power formulations.

Parameter Equation

Mass Flow Rate
RPD ∗RPM

vsuc
(1 + C − C(

pdis
psuc

)
1
n )

Power
ṁ(hout − hin)− Ẇcal(B1 +B2Q̇cyl)

1− (B1 +B2Q̇cyl)

2.2.5 The Winandy Model

The Winandy model, presented in Winandy et al. (2002b), is a gray-box semi-

empirical model derived to predict scroll compressor performance. The model defines

an isothermal wall which delivers heat to the suction gas, removes heat from the

discharge gas, absorbs electro-mechanical losses, and exchanges heat with ambient.

The compression process is broken into two steps, 1) isentropic compression up to

the adapted pressure, then 2) adiabatic and isochoric compression to discharge pres-

sure. The adapted pressure represents the pressure during isentropic compression up

to the internal volume ratio of the scroll wraps. The mass flow rate is predicted by

using a swept volume taken as an unknown in the formulation, the rotational speed,

and the suction specific volume evaluated after the suction heat transfer process. All

heat transfers to or from the isothermal wall require heat transfer coefficients which

are tuned to data. The overall power prediction is the sum of a compression power

term, a constant electro-mechanical loss term, and another electro-mechanical loss
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Table 2.5: Winandy model mass flow rate and power formulations.

Parameter Equation Heat Transfers

Mass Flow Rate
NVs

vsuc

Q̇suc = AUsu(Twall − Tsuc)

Q̇ex = AUex(Tex − Twall)

Power Ẇin + Ẇloss + αẆin Q̇amb = AUamb(Twall − Tamb)

term which is proportional to the compression power. Table 2.5 shows the mass flow

rate, power, and heat transfer formulations used within the model.

The model needs seven parameters tuned to data. These include the suction, dis-

charge, and ambient heat transfer coefficients (AUsu), (AUdis), (AUamb) respectively,

the fictitious swept volume (Vs), the volume ratio (ϵ), a work loss term (Ẇloss), and

finally a work loss coefficient (α). There are seven model inputs to calculate mass

flow rate and power once the parameters are tuned which are: suction and discharge

pressure, suction temperature, a reference mass flow rate, ambient temperature, ro-

tational speed, and refrigerant. This model was codified in Python and applied the

Nedler-Mead Nelder and Mead (1965) optimization algorithm to minimize the MAPE

between model predicted mass flow rate and power and the data mass flow rate and

power.
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CHAPTER III

HIGH FIDELITY DATA COLLECTION AND METHODOLOGY

High-fidelity data measured from either a hot-gas-bypass load stand, compressor

calorimeter, or a university lab environment was used to train each of the five mod-

els presented. The data sets were further used to explore model behavior against

three data subsets focused on extrapolation, modulation (variable speed), and vari-

able superheat. Performance data for four different compressor technologies; scroll,

screw, reciprocating, and spool compressors are used with four working fluids, R134a,

R401A, R1234ze(E), and R32 with a total of 434 data points collected. The com-

pressor types, refrigerant, number of data points, collection standard, reference, and

data splits are summarized in Table 3.1. The first three compressor types represent

the most common technologies used in commercial and residential heating and cool-

ing equipment today. The fourth technology, spool compressors, represent a novel

compression technology that is still in the design optimization phase of development.

Table 3.1 highlights the 7 total data sets collected and used for model testing in

this work. Each data set included performance data of the compressor at a variety of

saturated suction and discharge temperatures at fixed superheat with measurements

of compressor power and mass flow provided. Some of the data sets also included

tests which varied the superheat and/or compressor speed/frequency.
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Table 3.1: Information on the data sets collected.

Compressor Type Capacity Refrigerant Data Points Collection Standard Reference Splits

Spool 40 tons R134a 58 ASHRAE 23.1 In House Data 4

Spool 40 tons R1234ze(E) 44 ASHRAE 23.1 In House Data 4

Scroll 2.5 tons R410A 196 ASHRAE 23.1 AREP #11 4

Twin screw 75 tons R134a 13 ASHRAE 23.1 In House Data 2

Reciprocating 2 tons R32 16 Not Mentioned AREP #59 2

Scroll – R134a 48 Not Mentioned Cuevas and Lebrun (2009) 3

Reciprocating – R134a 59 Not Mentioned Li (2012) 3

3.1 Data Collection Sources and Standards

Data sets referenced as ’In House Data’ came from experimental measurements col-

lected at Oklahoma State University’s (OSU) 10-80 ton hot-gas-bypass compressor

load stand Schmidt (2018), Singleton et al. (2020). Sets labelled ’AREP’ came from

a 3 ton compressor calorimeter at the Heat Exchanger Advanced Testing Facility at

Oak Ridge National Laboratory. The data collected at Oak Ridge was motivated

by an initiative at AHRI called the Low-GWP Alternative Refrigerants Evaluation

Program (AREP). Details of the data can be found in Table 3.1. Tests were con-

ducted according to ASHRAE Standard 23.1, ASHRAE (2010) except AREP Report

#59, which didn’t state a collection standard. Scroll and reciprocating performance

data was collected at the Oak Ridge facility while the spool and screw compressor

performance originated from OSU’s facility. This is additionally summarized in Table

3.1. The scroll compressor utilizing R134a was tested using a calorimeter test bench

and the location and testing standard is not mentioned. The swash plate recipro-

cating compressor utilizing R134a data is from an automotive air-conditioning test
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facility at the University of Illinois at Urbana-Champaign and a testing standard is

not mentioned.

3.2 Data Subsets (Splits)

Each data set was collected in bulk and had to be split into subsets (splits) for

model capability testing. The full data set includes all variations, including testing at

various saturated suction temperature, saturated discharge temperature and variable

superheat and/or speed/frequency. Baseline data was split from the full data set to

include fixed superheat and frequency data. From this two subsets were formed. A

training data set to train model parameters with and an extrapolation data set used

for testing models at extrapolation scenarios. From the full data set, variable speed

and variable superheat data subsets were formed to test the modulation and variable

superheat performance of the models. Each full data set collected is somewhat unique

in its operating envelope and parameters varied, therefore the number of splits is

unique. For example, the data set for the reciprocating compressor utilizing R32

did not include variable superheat or variable speed data. Hence, there are only

two splits shown in Table 3.1, these are the training set and extrapolation set. The

next sections will describe further the underlying principles of the decision making

processes to make the splits.

3.2.1 Baseline and Training Data Sets

Baseline data was split from the full data set to include nominal conditions with

respect to the degree of superheat and compressor speed. This data set has in it

various saturated suction/discharge temperatures at fixed superheat and compressor

speed/frequency. Only the saturated suction/discharge temperatures vary within the

baseline data set. Training data points are selected as interior points with respect

to the overall envelope present within a data set. These points can be considered
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to live in a smaller envelope within the entire envelope present within a data set.

Additionally, an extrapolation data set is formed such that all data points are exterior

to the training points. These points are used to evaluate extrapolation capabilities

and include points at the bounds of the operating envelope present within a data

set (i.e. most extreme saturated suction and saturated discharge temperatures). Ten

data points total were selected as the training data set to train the models. Motivation

for this number of training points stems from the AHRI model requirements for ten

data points to tune its ten regression coefficients.

Constant Speed Training

Figure 3.1 shows the spool data set collected with R134a. The entire baseline data

set (constant speed and superheat) is shown with the selected training data points

and the selected extrapolation data points.

Figure 3.2 shows the methodology for selection of constant speed training points.

In this case all of the training points come from the baseline data set. The training

points are at a constant speed and constant superheat where only the saturated

suction and discharge temperatures vary.

Variable Speed and Superheat Training

Figure 3.3 shows the methodology for selection of variable speed and variable su-

perheat training points. In this case, in addition to the data points at the interior

envelope - two variable speed points and two variable superheat points are added into

the training data set. The reason for these additional points is to ensure a model has

seen points at different speeds and superheats before exposing it to the extrapolation,

modulation, and variable superheat testing data sets, which are described in detail

in Section 3.2.2.

These additional points are selected such that one point is above nominal speed
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Figure 3.1: Spool R134a data showing points used to train the models and test points

used for extrapolation capability testing

Figure 3.2: Flow chart showing data splits with constant speed training
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Figure 3.3: Flow chart showing data splits with variable speed and superheat training

and superheat, while the other point is at conditions below nominal speed and super-

heat. For instance, the Spool compressor utilizing R134a operated at nominal speed

of 54 Hz and the two additional training points for speed were at 49 Hz and 59 Hz.

The nominal superheat for the data set was 11 K and one point above nominal, at 25

K, and one point below nominal, at 8 K, were selected and used within the training

data set. It should be noted that variable speed data and variable superheat data is

not present within all data sets collected, therefore when that case arises all training

data points come from the baseline data set which contained data at constant speed

and constant superheat.

3.2.2 Extrapolation, and Variable Speed/Superheat Data Sets

The extrapolation data set is a subset of the baseline data and includes saturated

suction and discharge temperatures that extend beyond the envelope of the training

data set. This varied based on compressor technology but extended the saturated suc-

tion and discharge temperatures by 10◦C and 16◦C, respectively, beyond the training

envelope, at the most extreme.

The variable speed data was available for the spool with R134a and R1234ze(E),

screw, scroll, and reciprocating compressors all using R134a. For the spool and screw

compressors, the variable speed data set has a fixed saturated suction and discharge
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temperature and superheat with variable operating speed/frequency. For the spool

compressor 13 points had speed variation ranging from 1036 - 1790 rpm and for

screw compressor there were 7 points with speed ranging from 4300 - 5700 rpm. The

saturated suction/discharge and superheat for the compressors is 4 and 16 ◦C, and 11

K, 4 and 51 ◦C, and 5 K for the spool, and screw compressor, respectively. The scroll

compressor utilizing R134a included 12 variable speed points with speeds ranging

from 2100 to 4500 rpm at saturated suction temperatures ranging from 18 - 48 ◦C,

saturated discharge temperatures of 64 - 100 ◦C, and superheat values ranging from

3 - 8 K. The reciprocating data using R134a included 37 variable speed points with

speeds ranging from 1000 - 4000 rpm, at saturated suction temperatures ranging

from -14 - 7 ◦C, saturated discharge temperatures ranging from 42 - 80 ◦C, and

superheats ranging from almost saturated at 0.2 K, up to 23 K. It should be noted

for this variable speed data set, the average superheat was 5 K, however it included

two outlier superheat points with values of 16 and 23 K at 1000 rpm and 3000 rpm,

respectively.

The variable superheat data sets were only available for scroll and spool compres-

sors. The two spool compressor data sets combined have 12 points with fixed speed

of 1640 rpm at constant saturated suction and discharge temperatures of 5 and 37

◦C with superheats that vary 8 to 27 K. Additionally, 11 points have; fixed suction

temperature of 11 ◦C, saturated suction temperatures ranging from -11 to 10 ◦C,

constant saturated discharge temperature of 37 ◦C, superheats that vary 8 - 40 K,

and a fixed speed of 1640 rpm. Lastly, there are four miscellaneous points at 25 and

33 K superheat, -1 ◦C and 7 ◦C saturated suction temperature, respectively, a 51 ◦C

saturated discharge temperature, and again a fixed speed at 1640 rpm. The scroll

data set has 64 points at 22 K superheat spanning the entire operating envelope at

a constant speed of 3600 rpm. It also included 66 points spanning the envelope at

constant suction temperature of 18 ◦C, with superheats spanning 5 - 30 K, and a
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Figure 3.4: Flowchart showing an overview of semi-empirical model testing and data

splits

fixed speed of 3600 rpm.

3.3 Model Testing Methodology

Figure 3.4 graphically describes the methodology utilized for this study. For each

compressor technology, each of the five models are first trained using their accom-

panying training data set (which includes 10 points). The trained model is then

compared against experimental data from the other three data subsets. The model

performance is evaluated using the trained models ability to predict the various sub-

sets of experimental data evaluated using the Mean Absolute Percentage Error,

MAPEα =
100

n

n∑
i=1

∣∣∣∣Ytrue,i − Ypredict,i

Ytrue,i

∣∣∣∣ (3.3.1)

where α represents either mass flow rate or power, n is the total number of data

points in the data set, i is an individual data point, and Ytrue,i and Ypredict,i are the

measured data value and model predicted value, respectively, for mass flow rate or

power at a given data point i.

30



CHAPTER IV

RESULTS

4.1 Constant Speed Training Results

The five models were tested at modulation and extrapolation scenarios following

the methodology outlined in above with results presented in this section showing the

models ability to predict mass flow rate and compressor power. The screw compressor

results are not in shown in Table 4.1 because less than ten points in the set were

available to train the models. Six points in the screw data set qualified as training

data and therefore those were used to train the models. The AHRI model, requiring

a minimum of ten points, could not be evaluated with the screw data available.

Therefore, those MAPE values are not shown in Figure 4.1. The models which could

be trained with the data yielded results shown in Table 4.1.

4.1.1 Baseline

Figure 4.1 gives two bar charts showing model performances at the training conditions

for each data set. The Winandy model does not predict reciprocating compressor

performance as shown by MAPEs greater than 15%. The model was derived for

scroll compressors and performed under 5% MAPE for power and mass flow rate

prediction when applied to spool, screw, and scroll compressor data. The Popovic

and Shapiro model did not predict scroll compressor data showing MAPEs above

15%. The model was derived to predict reciprocating compressors, where it performed

under 7% MAPE. The black-box models performed well showing a largest MAPE of
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6.3% for the ANN at mass flow prediction for screw compressor data. These models

showed MAPEs below 1% in 16 out of the 28 cases recorded with the AHRI model

performing best overall at training data prediction. Table 4.1 shows MAPE values

achieved for all models in numerical format. The mass flow rate error followed by the

power error in parenthesis is given for every combination of model and compressor

data. Excluding cases where a model didn’t predict a certain compressor technology,

the largest MAPE was 6.8 and 6.1 % for mass flow rate and power, respectively,

coming from the Popovic and Shapiro model.

Figure 4.1: Training results at each data set for the five models

4.1.2 Modulation

Figure 4.2 represents the MAPEs of model predicted results for each of the models

using the three modulation data sets. In Figure 4.2, the results show the Winandy,

Popovic and Shapiro, and the Shao model capture mass flow rate at MAPEs less

than 5%. This provides good indication that the aforementioned models could be

used to predict mass flow rate at conditions outside that of their training data. The
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Table 4.1: Model MAPE results for training data sets

Model MAPE: Mass Flow Rate, (Power)

Data Set Winandy Popovic & Shapiro Shao AHRI ANN

Recip. R32 26.5% (17.3%) 6.8% (6.1%) 2.7% (1.7%) 1e-3% (2e-3%) 4.3% (2.3%)

Scroll R410A 2.4% (3.4%) 18.8% (159%) 0.2% (0.1%) 6e-2% (3e-2%) 0.4% (0.5%)

Spool R134a 2.0% (1.0%) 1.1% (3.3%) 2.3% (2.6%) 6e-2% (4e-2%) 1.1% (1.3%)

Spool ze(E) 2.4% (3.4%) 0.6% (2.4%) 0.6% (1.4%) 4e-2% (0.6%) 0.5% (1.2%)

Screw R134a 1.2% (0.6%) 0.2% (0.2%) 0.1% (0.4%) n/a (n/a) 6.3% (4.1%)

Table 4.2: Model MAPE results for modulation (variable speed) data sets

Model MAPE: Mass Flow Rate, (Power)

Data Set Winandy Popovic & Shapiro Shao AHRI ANN

Spool R134a 3.1% (2.0%) 2.3% (4.5%) 3.6% (2.5%) 20.7% (20.2%) 19.9% (19.1%)

Spool ze(E) 3.1% (3.0%) 2.2% (2.4%) 2.9% (2.6%) 20.3% (21.4%) 19.6% (20.4%)

Screw R134a 1.7% (0.7%) 1.1% (0.4%) 0.8% (2.6%) n/a (n/a) 25.2% (20.6%)

ANN model produced mass flow rate errors around 20%. The errors achieved for the

AHRI model are not shown on Figure 4.2 because, as mentioned before, the screw

compressor data did have ten data points at constant superheat and speed to train

the model’s coefficients. The errors achieved for spool compressor mass flow rate

using R134a and R1234ze(E) when running the AHRI model were 20.7% and 20.3%,

respectively, as shown in Table 4.2.

For power prediction, Figure 4.2 shows MAPE values were similar to MAPEs

achieved for mass flow rate for all models. The Winandy, Popovic and Shapiro,
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Figure 4.2: Mass flow rate and power results under modulation (variable speed)

testing

and Shao model performed under 5% MAPE. The ANN model performs at MAPE’s

around 20% for power prediction when tested at modulation scenarios. The errors

tabulated in 4.2 show the AHRI and ANN models in their present form are not ad-

equate to predict modulation performance for compressors. During training of the

ANN, points at variable speed conditions could be included to improve prediction,

however the present work studied performance at precise training conditions to exam-

ine capabilities and record performance at conditions different to that of the training

data.

4.1.3 Extrapolation

Figure 4.3 represents the MAPEs of model predicted results for each of the models us-

ing the extrapolation data sets described in Section 3.2.2 with results summarized in

Table 4.3. Shown in Figure 4.3, extrapolation is captured by the semi-empirical mod-
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Figure 4.3: MAPE results at extrapolation conditions

els, given that they do predict the compressor technology. The Winandy model per-

forms below 6% for the scroll and spool compressor technologies. The model extrapo-

lated with two different refrigerant data sets for the spool compressor. The model did

not capture reciprocating compressor performance. The Popovic and Shapiro model

extrapolated below 8% MAPE for the compressor technologies that it predicted. This

model however, did not capture scroll compressor technology but performed better

at extrapolating spool compressor data than reciprocating data, the latter of which

the model was derived initially to predict. The ANN model extrapolated below 3%

except in the case of power prediction for the spool compressor utilizing R134a and

mass flow rate prediction for the reciprocating compressor using R32. The Shao

model performed well when ran with scroll and the spool R1234ze(E) data, however

extrapolation errors rose to 8.2% and 10.7% for the reciprocating and spool R134a

data respectively. The AHRI model did not perform adequately when extrapolating

as can be seen by the errors rising from 45% to 7.0e+6%.
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Table 4.3: Model MAPE results under extrapolation scenarios

Model MAPE: Mass Flow Rate, (Power)

Data Set Winandy Popovic & Shapiro Shao AHRI ANN

Recip. R32 23.3% (16.4%) 7.3% (6.6%) 10.7% (8.6%) 45.1% (27.5%) 2.9% (8.5%)

Scroll R410A 3.6% (3.1%) 19.3% (3e3%) 1.5% (0.4%) 6e5% (9e5%) 1.4% (0.8%)

Spool R134a 5.7% (2.7%) 3.6% (3.9%) 8.2% (6.8%) 6e6% (7e6%) 11.9% (1.9%)

Spool ze(E) 3.0% (2.3%) 1.2% (5.8%) 2.6% (2.6%) 4e6% (6e4%) 1.3% (1.9%)

4.1.4 Variable Superheat

Figure 4.4 shows model performance at variable superheat conditions with results

summarized in Table 4.4. The data sets labeled Scroll 1 and Scroll 2 are the two

variable superheat data sets described in Section 3.2.2. The first being at a super-

heat of 22 K, and second a constant suction temperature data set where superheat

values range 5 - 30 K. The Winandy model performed at or below 5% for all variable

superheat data sets. The Popovic and Shapiro model as mentioned before did not

capture scroll performance which is the case here. The model performed better at

mass flow prediction than power prediction at variable superheat with the highest

error of 18.7% for the spool compressor utilizing R1234ze(E). The opposite is true

for the ANN model which performed better at power prediction than mass flow rate

for all data sets. The model did not predict below 18% for mass flow rate, while all

errors in power prediction were below 6%. The AHRI model performed worst overall

with errors ranging from 3e+5% to 2e+6%.
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Figure 4.4: Mass flow rate MAPE results at variable superheat conditions

Table 4.4: Mass flow rate results for variable superheat scenarios.

Model MAPE: Mass Flow Rate, (Power)

Data Set Winandy Popovic & Shapiro Shao AHRI ANN

Spool R134a 3.6% (2.3%) 2.1% (5.5%) 5.4% (3.1%) 3e5% (6e5%) 25.5% (5.3%)

Spool ze(E) 2.7% (2.5%) 1.0% (18.7%) 42.2% (11.9%) 6e7% (2e6%) 20.9% (2.4%)

Scroll 1 5.0% (2.2%) 20.1% (232%) 5.8% (0.6%) 7e5% (9e5%) 21.2% (3.3%)

Scroll 2 4.9% (2.8%) 19.3% (372%) 4.4% (0.5%) 7e5% (9e5%) 18.6% (2.7%)
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4.2 Variable Speed Training Results

The five models were tested at modulation and extrapolation scenarios following the

methodology outlined in Section 3.2.1 with results presented in this section showing

each models ability to predict both mass flow rate and compressor power.

4.2.1 Baseline

Table 4.5: AHRI model results for mass flow rate and power for each data set and

their associated subsets.

AHRI Model MAPE’s: Mass Flow Rate, (Power)

Data Set Training Extrapolation Variable Speed Variable Superheat

Spool R134a 6.0e-2% (4.0e-2%) 6.0e8% (6.7e8%) 20.7% (20.2%) 2.9e7% (5.8e7%)

Spool ze(E) 0.43% (0.57%) 3.5e6% (6.3e4%) 20.3% (21.4%) 6.0e7% (1.6e6%)

Scroll R410A 5.8e-2% (3.1e-2%) 6.1e5% (9.0e4%) n/a (n/a) 6.6e5% (9.2e4%)

Recip. R32 1.0e-3% (2.0e-3%) 45.1% (27.5%) n/a (n/a) n/a (n/a)

The baseline results shown in Table 4.5 represent the AHRI model performance

at all compressor data sets that it’s coefficients could be trained at (i.e.: data sets

with ten constant speed and superheat points). The screw, scroll, and reciprocat-

ing compressor data, all with R134a, did not have enough constant speed points to

adequately train the AHRI model for testing. Therefore, only the data sets shown

in Table 4.5 were used for evaluating the model. As can be seen the AHRI model

is inadequate in it’s mass flow rate and power prediction at extrapolation, variable

speed, and variable superheat scenarios. Extrapolation errors rose to 6.0e8% and

6.7e8% for mass flow rate and power, respectively. Variable speed errors were found
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Figure 4.5: Heat map showing modulation (variable speed) MAPE results for mass

flow rate and power for each model.

to be 20.7% and 21.4% at the highest for mass flow rate and power, respectively.

Variable superheat errors topped out at 5.8e7% and 6.0e7% for mass flow rate and

power, respectively. Contrary to extrapolation, variable speed, and variable super-

heat scenarios, the model showed excellent performance at training data sets with

the highest error achieved being 0.43% and 0.57% for mass flow rate respectively.

Similar conclusions with respect to training data performance were made by Aute

et al. (2015) in their study of the AHRI model. These results provide a baseline to

evaluate the semi-empirical models performance in the next sections.

4.2.2 Modulation

Figure 4.5 is a heat map representing the MAPE of model predicted results for each

of the models using the five modulation data sets described in above.

The Winandy model failed to predict reciprocating data performance in all sit-

uations as the model was derived for scroll machines. This is shown in Figure 4.5

by errors of 30% and 9.8% for the reciprocating compressor using R134a. For the

compressor technologies the model does predict, the highest error achieved were 5.1%

and 5.9% for mass flow rate and power, respectively.
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The Popovic and Shapiro model performance well in predicting mass flow rate at

variable speed conditions with errors all below 5.2%. For power, the model strug-

gled in predicting reciprocating and scroll compressor data with R134a where errors

reached 28% and 14%, respectively.

The Shao model exhibited highest mass flow rate errors scroll and reciprocating

data sets utilizing R134a where 7.4% and 21% MAPE was achieved. For power, the

same two data sets showed the highest errors. An error of 200% MAPE was found for

power prediction at the reciprocating compressor utilizing R134a. This stems from

the quadratic curve fit it utilizes where values outside it’s fitting data can lead to

unusable results.

The ANN model exhibited a highest error in mass flow rate prediction of 12% for

the scroll data set with R134a. In power prediction, the ANN performed worst at

the reciprocating data utilizing R134a where a MAPE of 9.4% was achieved. This

provides good indication that the aforementioned models could be used to predict

mass flow rate at conditions outside the bounds of their training data.

Overall, for both mass flow rate and power prediction, the Winandy model yielded

consistent results in modulation scenarios when the model did capture the compressor

technology (i.e.: in all cases except the reciprocating data). For mass flow rate

prediction in modulation scenarios the Popovic and Shapiro model and the ANN

performed best overall. In power prediction, the Winandy and the ANN yielded the

best result.

4.2.3 Extrapolation

Figure 4.6 is a heat map representing the MAPE for each of the models using the

extrapolation data sets described above.
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Figure 4.6: MAPE results in extrapolation scenarios for all models.

Results show that extrapolation is captured by the Winandy model given that it

does predict the compressor technology. The Winandy model exhibits errors below

5% MAPE in mass flow rate prediction for the scroll and spool compressor technolo-

gies. The model extrapolated with two different refrigerant data sets for the spool

compressor. For power prediction, the highest MAPE achieved was 2.6% in the spool

data set utilizing R134a indicating the model can extrapolate power. The model did

not capture reciprocating compressor performance, as mentioned previously.

The Popovic and Shapiro gave varying results in extrapolation scenarios. For

reciprocating and spool data sets, the model extrapolated mass flow rate below 8%.

In power prediction for the same data sets the model exhibited larger errors, up to

24%. This model, overall, did not capture scroll compressor performance, but did

extrapolate mass flow rate to 1.2% MAPE, however power prediction was above 20%

for the same data set, the scroll compressor utilizing R134a. The Popovic and Shapiro

model performed better at extrapolating spool compressor data than reciprocating

data, the latter of which the model was derived initially to predict.

The Shao model performed best when ran with spool data sets and worst with

the reciprocating data sets. Mass flow extrapolation errors rose to 11% MAPE for

both the reciprocating and scroll data sets utilizing R134a. For the same data sets,
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the highest errors in power prediction were found to be 52% and 12%, respectively.

The model performed best in the case where scroll data using R410A was predicted.

The ANN model extrapolated mass flow rate below 5% MAPE except in the case

of the spool and reciprocating compressors utilizing R134a. For power extrapolation,

the ANN model performed below 5% MAPE for all data sets except the reciprocating

data with R32. The model extrapolated power better than mass flow rate overall and

with respect to black-box models, outperformed it’s peers the AHRI and the Shao

model in extrapolation scenarios.

The Winandy model out performed the other models in extrapolation scenarios.

With the exception of reciprocating compressor data, when exposed to extrapolation

scenarios the Winandy model predicted both mass flow and power below 5%.

4.2.4 Variable Superheat

Figure 4.7 shows a heat map with MAPE results given by the models when exposed

to variable superheat scenarios. In Figure 4.7 the row second to the bottom labeled

’Scroll R410A 1’ is the first variable superheat scroll data set described in 3.2.2 having

superheat values of 22 K. The data set labeled ’Scroll R410A 2’ in Figure 4.7 is

the second variable superheat data set described above having a constant suction

temperature of 18 ◦C. The Winandy model predicted both mass flow rate and power

below 4% for all variable superheat scenarios presented to it.
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Figure 4.7: MAPE results for models under variable superheat testing.

The Shapiro and Popovic model performs well at mass flow rate prediction in

variable superheat scenarios for the spool compressor utilizing R134a and R1234ze(E).

Errors are larger in power prediction for the model and only one case, spool compressor

utilizing R134a, gave a MAPE below 20%. The Popovic and Shapiro model did not

adequately predict scroll compressor performance in variable superheat scenarios.

The Shao model predicts mass flow under 8% for all cases except the spool com-

pressor data set using R1234ze(E) where the error was unacceptably high, 48%. The

model showed good power prediction, below 4%, in all cases except the spool com-

pressor using R1234ze(E), where again, the error was unacceptably high at 21%.

Mass flow rate prediction yielded higher MAPE’s than power prediction for the

ANN model. The scroll compressor data yielded the worst behavior for the ANN

model in mass flow rate prediction with errors at or above 15%. The spool compressor

with R134a gave 9.2% error while the same compressor with R134a gave 1.2% error in

mass flow prediction. Power prediction in variable superheat scenarios yielded errors

below 6% for all cases.
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4.3 Discussion

The Winandy model failed to predict reciprocating compressor data adequately while

the same is said for the Popovic and Shapiro model regarding scroll compressor data.

The Popovic and Shapiro model and the Winandy model were each initially derived to

predict reciprocating and scroll compressors, respectively. Therefore it is understand-

able that they perform poorly when applied to other technologies. The semi-empirical

models (Winandy model and Popovic and Shapiro model) do capture extrapolation,

modulation, and variable superheat scenarios provided the model first predicts that

compressor technology. An exception to this is the Popovic and Shapiro model, which

in some cases for reciprocating data yielded errors in power prediction at approxi-

mately 20%. The AHRI model does not extrapolate, capture modulation or variable

superheat data adequately at any point. The Shao model captures modulation to a

reasonable level, except for the reciprocating data utilizing R134a. With respect to

extrapolation and variable superheat performance, the Shao model showed limited

ability in capturing both mass flow rate and power. The ANN model extrapolated

to a reasonable level, exhibiting MAPE’s below 10% in all cases, however, variable

speed and superheat data sets showed inconsistent results in performance prediction

where and the highest errors were 12% and 17%, respectively.

4.3.1 Model Capabilities

The Winandy and Popovic and Shaprio models yielded more consistent performance

at extrapolation and modulation scenarios than the Shao, ANN and AHRI mod-

els. For the scroll, screw, and spool compressors the Winandy model predicted all

extrapolation, modulation, and variable superheat scenarios at or below 5.1% and

5.9% MAPE for mass flow rate and power, respectively. The Popovic and Shapiro

model demonstrated good results in some situations when applied to screw and spool
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compressors data. Due to it’s empirical nature the Shao model sometimes exhib-

ited large errors in prediction resulting from inputs beyond that of it’s training data.

The model does not account for a compression process and only takes data to fit

coefficients. Similarly, the ANN and AHRI formulations only require data for tuning

parameters. The Winandy model attempts to account for phenomena occurring in the

suction line, discharge line, and compression chamber via the isentropic compression

assumption and the suction and discharge heat transfer assumptions. The Shapiro

and Popovic model does not account for suction and discharge gas heating, but it

does model the compression process as polytropic and assumes suction and discharge

pressure drops. These two models incorporate more physics into their formulations

and the results suggest, particularly for the Winandy model, they are well suited for

situations where limited data or model flexibility is desired.

4.3.2 Model Limitations

The five models tested in this work have limitations due to either training data or per-

formance prediction. The training data for a model should require minimal operating

conditions and no detailed information derived from comprehensive measurements of

the compressor. To this end, the Shao and the Popovic and Shapiro models training

data is a limiting factor. Shao requires operating conditions at three different op-

erational speeds to adequately fit the power and mass flow ratios for variable speed

prediction. The Shapiro and Popovic model requires discharge temperature measure-

ments to fit the polytropic exponent to pressure ratio. Limitations in performance

prediction are exhibited by each model. The Winandy model did not capture recipro-

cating compressor performance and the Shapiro and Popovic model did not capture

scroll compressor performance. Other models exhibited limitations during specific

testing scenarios. The ANN model did not predict predict compressor behavior dur-

ing variable superheat testing. The AHRI model exhibited large errors throughout
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testing.

4.3.3 Future Model Development

Future work based on the results presented herein will be developing a compressor

model to capture multiple compressor technologies and adequately capture modula-

tion and extrapolation. The model will be tested subject to the same methodology

as used here. The Winandy model offered good results during testing of the compres-

sors that it predicted. With its performance here and the body of literature showing

modifications, it is selected as the basis for future model development.
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CHAPTER V

SELECTED MODEL

From the above results and discussion, the Winandy Model is chosen to move for-

ward with model development. It performed adequately in capturing extrapolation,

variable speed, and variable superheat for scroll, screw, and spool compressor tech-

nologies.

5.1 Additional Compressor Technology Prediction

The Winandy Model is the backbone of a rotary piston compressor model where

additional phenomena occurring throughout the compression process are modeled

Molinaroli et al. (2017). The additional fidelity not found in the original model comes

in the form of leakage and re-expansion modeling. A portion of the discharge mass flow

gets diverted back to suction mass flow through two streams, leakage and re-expansion

mass flows. Isobaric mixing occurs and mass and energy balances are applied. An

additional difference between the study’s model and the original Winandy Model

comes from compression process modeling. The authors use isentropic compression

instead of two-step compression, isentropic to the adapted pressure and then constant

volume compression to discharge pressure.

The detail added yielded sufficient results for the authors in their application to

one compressor technology, rolling piston type. It is a goal of this study to remain

broad in terms of the type of compressor the selected model can predict. In that spirit,

the original Winandy Model, which adequately predicted scroll, screw, and spool
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Figure 5.1: Parity plot showing extrapolation results for the Winandy Model

predicting rotary compressor mass flow rate

technologies, is tested with rotary piston compressor data. The data was acquired

through an industry partner. The reason this data is not included in Chapter IV

is because it was given after extrapolation, variable speed, and variable superheat

testing had been completed and a model selected.

To further test the Winandy Model predictive capabilities the model was applied

to data coming from a commercially available 4 ton dual rotary compressor made by

Highly. The data was collected Purdue University using a compressor calorimeter

Rohleder (2019). The refrigerant utilized is R410A and the compressor operated at

60 Hz during experiments. The data set contained 44 test points that ranged from

-25 - 5 ◦C and 25 - 55 ◦C for evaporating and condensing temperature respectively.

The target superheat was 11 K for the data set. Values varied slightly, 1-2 K, but

no data points were directly taken at variable superheat conditions. Therefore, from
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Figure 5.2: Parity plot showing extrapolation results for the Winandy Model

predicting rotary compressor power consumption

this data set only general model performance and extrapolation performance can be

analyzed.

Training and extrapolation data was selected following the same methodology

outlined in Section 3.2.1. For the training data, the model yielded MAPEs of 1.24 %

and 1.26 % for mass flow rate prediction and power prediction, respectively. Figure 5.1

shows a parity plot for mass flow rate prediction in extrapolation testing. The subplot

within the figure shows points used to train the model and points that modeled. The

main plot shows how predicted results differ from measured values. The MAPE for

mass flow rate prediction is 3.5%. Figure 5.2 shows the power prediction results.

The MAPE yielded by the Winandy Model in power prediction at extrapolation is

3.5%. These results indicate that the Winandy Model in its original form can predict

rotary compressor performance and capture extrapolation within 5% MAPE. This is
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a positive attribute and further demonstrates the models utility. The result brings the

total number of compressor technologies predicted by the model to 4; scroll, screw,

spool, and rotary.

5.2 Initial Modifications to Selected Model

Since the Winandy Model will predict all compressor types it’s been applied to by

this study, except reciprocating, it is necessary to investigate the possibility of mak-

ing a modification to the model that may successfully enable adequate performance.

There are studies that use the Winandy formulation to predict reciprocating machines

Winandy et al. (2002a), Duprez et al. (2006). However, they modify the mass flow

rate and power formulation provided by the original work. The prediction for mass

flow rate in the original work utilizes a fictitious volume ratio that is a parameter to

be found by the optimizer. The reciprocating compressor is not a fixed volume ratio

machine contrary to scroll compressors. The volume ratio in reciprocating compres-

sors is variable because as the piston rises and compresses mass, the gas will flow

once cylinder pressure exceeds discharge pressure. The crank angle, and therefore

piston position and internal volume, at which in-cylinder pressure exceeds discharge

pressure is dependent on operating conditions.

Another difference found in reciprocating compressors is the presence of valves at

the suction and discharge. In scroll, screw and spool compressors there are typically

no suction valves, however discharge valves are usually present. With the no such

a valve in a reciprocating machine there is inherent pressure drop as a fluid flows

through. Subsequently, a model that predicts this drop may have the potential to be

more accurate in prediction. The Winandy Model in its original form has no suction

or discharge pressure losses.
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5.2.1 Pressure Drop

In order to test for model improvements with constant suction and discharge pressure

drop, one term was added to parameters which were solved for by the optimization

algorithm. This term was a constant pressure drop factor that subtracted from the

suction pressure and added to the discharge pressure. Figure 5.3 show an overall

schematic of Winandy model. Included in the figure is the pressure drop at the

suction and discharge to illustrate the modification made.

Figure 5.3: Schematic of the Winandy model with ∆Psuc and ∆Pdis modification

added

The model was then ran with all data sets and MAPE recorded. Table 5.1 shows

the change in MAPE for extrapolation cases. The negative values indicate that the

MAPE went down for a given data set while positive changes indicate the MAPE

increased. Table 5.2 and Table 5.3 show the resulting changes in MAPE for variable

speed and variable superheat, respectively.

The model performance with respect to scroll compressors improved overall show-

ing negative values in all cases. The spool and screw compressor predication showed

improvements in some cases, but other cases, MAPE increased slightly. With re-

spect to reciprocating compressors, the MAPEs again showed improvements in some

cases and in others, slightly larger errors. It must be noted, however, that in order
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to capture reciprocating compressor performance to the standard set forth by this

work, the improvements should be on or close to the order of magnitude of 10. This

is because results shown in Chapter IV includes errors that can range up to 30%

MAPE. Ultimately, the constant pressure drop modification did not allow the model

to adequately capture reciprocating compressor performance.

Table 5.1: Change in MAPE for extrapolation cases with constant pressure drop at

suction and discharge

Extrapolation ∆MAPE

Data Set ṁ Ẇ

Scroll R134a -0.55 -0.49

Spool R134a -1.12 -0.68

Spool R1234ze(E) 0.19 0.15

Scroll R410A -0.27 -0.18

Recip. R134a 0.12 2.240

Recip. R32 -1.93 0.12

5.2.2 Reciprocating Compressor Prediction Modifications

The Winandy Model as tested will not predict reciprocating compressor performance.

Modifying the model slightly improved results with respect scroll, screw, and spool

compressors, but some errors increased. No errors for these compressors increased

beyond reason. The largest single increase was in the spool compressor utilizing
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Table 5.2: Change in MAPE for variable speed cases with constant pressure drop at

suction and discharge

Variable Speed ∆MAPE

Data Set ṁ Ẇ

Scroll R134a -0.03 -0.80

Screw R134a 0.08 -1.05

Spool R134a -1.06 0.17

Spool R1234ze(E) -0.66 -1.32

Recip. R134a 0.25 1.86

R134a in extrapolation. That error was in mass flow rate prediction and increased by

0.2%. It is desired to have a model that can predict reciprocating performance while

retaining accuracy in the other technologies.

Mass Flow Rate Modification

The mass flow rate formulation for the Winandy Model is shown in Equation 5.2.1,

where the swept volume, Vs, is a parameter determined by the optimizer, N is the

rotational speed, and νsuc is the suction specific volume evaluated after suction heat

transfer and pressure drop. It is desired that this formulation be modified such that it

can capture reciprocating compressor performance. In order to do this, a formulation

that includes a clearance factor that represents the percentage of total gas volume

that remains in the cylinder after the discharge valve has closed is pursued. The
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Table 5.3: Change in MAPE for variable superheat cases with constant pressure drop

at suction and discharge

Variable Superheat ∆MAPE

Data Set ṁ Ẇ

Spool R134a -1.07 -0.97

Spool R1234ze(E) -0.74 -0.34

Scroll R410A -0.28 -0.11

Scroll R410A constant Tsuc -0.43 -0.08

formulation is shown in Equation 5.2.2

ṁ = N
Vs

νsuc
(5.2.1)

The aspirations for using this formula come from the prospect that one single rep-

resentation can hold for all compressor types. Since the clearance factor is multiplied

by the fictitious swept volume, it is reasonable to think that factor could go to 0 for

non reciprocating compressors and retain a value for reciprocating compressors. This

could account for the cylinder volume leftover after the discharge valve closes and

therefore more accurately predict mass flow rate.

ṁ = N
Vs − CVs

νsuc
(5.2.2)
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Figure 5.4: Schematic of the isentropic compression process utilized in initial

modifications to the Winandy model

Compression Process Modification

As mentioned at the beginning of this chapter, some studies have used isentropic

compression to eliminate a volume ratio dependence in the Winandy Model. This

assumption has proved fruitful for reciprocating performance prediction. Addition-

ally, polytropic compression has been utilized in a modification to Winandy Model

Byrne et al. (2014). The study, however, applies that compression process model to

scroll compressors, but one may assume that as long as the compression is modeled

without the input of volume ratio, it may predict reciprocating performance more

adequately. For the present study, isentropic compression is introduced to the model

and applied to the reciprocating data utilizing R32 as a test case. Figure 5.4 shows

the compression process of the modified model. The pressure at which isentropic

compression begins is evaluated after the suction pressure drop is applied. The gas is

compressed up to a final pressure equal to the discharge pressure plus the discharge

pressure drop.
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Training Data Investigation

For testing the model modifications in prediction of reciprocating compressor perfor-

mance the modifications in the three previous sections were implemented. The model

was then applied to the reciprocating compressor data utilizing R32. This gives a

baseline as to how the model will perform with respect to this technology. Initially,

when applied to the training data, the model performed poorly with mass flow rate

and power MAPEs at greater than 20%. It was noticed, however, that two points

within the training data set were yielded unreasonably high errors that brought the

overall errors up. In an attempt to see if the model could perform adequately on the

rest of the training data, these two points were removed and the model was retrained.

Figure 5.5 and 5.6 show the parity plots and MAPE for mass flow rate and power,

respectively, achieved when using only the 8 remaining training data points after the

two outliers were removed.

Results show that errors become much closer to those desired by this work. The

modifications bring the errors down to 4.99% and 6.89% for mass flow rate and power,

respectively. This indicates the model has improved with respect to performance

prediction of reciprocating compressors.

However, when the model is evaluated at the two outlier points the results re-

sume to their high error values with magnitude similar to before, approximately 20%

MAPE. Again these two points showed the highest errors of the whole training data

set. This fact points toward the model being incapable of extrapolating to new points

once trained. The outlier points require different parameter values than what has been

achieved by the minimization algorithm. Parameter values that predict the other 8

points semi-adequately do not yield sufficient results when the model is ran at the

other two. This implies that the modifications do not allow for extrapolation to other

operating conditions which is a core requirement of this work.
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Figure 5.5: Parity plot showing the mass flow rate results using modified model and

8 training points

5.3 Overall Modification Results

Modifications made to the original model include adding pressure drops at the suc-

tion and discharge, changing the mass flow rate formulation to account for clearance

volume, and changing the compression process model to an isentropic compression

assumption. The first modification increased model fidelity and improved perfor-

mance in most cases for scroll, screw, and spool compressor performance prediction.

The reciprocating compressor prediction improved in some cases, but did not reduce

to an acceptable level. The next modifications, being mass flow rate and compres-

sion process, were aimed at enabling the model to adequately capture reciprocating

compressors. Results indicated that the proposed changes do enable the model to

better capture the technology, but not it is not a sufficient enough reduction in error
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Figure 5.6: Parity plot showing the power results using modified model and 8

training points

to warrant keeping the change. From here, the model will be kept with pressure

drops at the suction and discharge and the requirement for predicting reciprocating

compressor performance is removed.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

This thesis studies semi-empirical compressor models and their ability to extrapo-

late, modulate, and capture variable superheat conditions. A feasibility analysis on

combining positive displacement and dynamic compressor models into one was per-

formed. It was determined that the physical mechanisms generating pressure energy

present in the machines are far different and require different modeling approaches.

From there five positive displacements compressor models were identified and tested;

the industry standard AHRI model, an artificial neural network (ANN) model, and

lastly, three models from literature, the Shao model Shao et al. (2004), Popovic and

Shapiro model Popovic and Shapiro (1995), and the Winandy model Winandy et al.

(2002b). Data sets selected for model testing were of high fidelity experimental data

to ensure model prediction is accurate. Experimental data for scroll, spool, screw,

and reciprocating compressors is collected totalling 434 data points including four

refrigerants; R134a, R410A, R32, and R1234ze(E). These data sets were split to en-

able training model parameters at constant conditions, then test the model using

data outside the conditions of the training data. Four different data subsets were

identified and used: the training data set, extrapolation data set, variable speed data

set, and variable superheat data set. Models were trained using the training data set

then tested at the others to examine performance. The mean absolute percentage
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error (MAPE) was used to quantify prediction capability of the models in the various

scenarios. From the results some conclusions can be made regarding the performance

of the semi-empirical and empirical models.

• The Winandy model, as tested, will capture extrapolation, modulation, and

variable superheat scenarios in scroll, screw, and spool compressors

• The Winandy model outperforms the Popovic and Shapiro model when com-

pared head to head

• The ANN model performed its worst at predicting mass flow rate during variable

superheat scenarios

• Of the literature models tested, the Shao model yielded the largest single error

value for both mass flow and power prediction

• The AHRI model will not predict compressor performance under extrapolation,

modulation, or variable superheat scenarios

The Winandy model performed the best overall when considering all aspects de-

sired by the authors which included: limited training data, low computational cost,

accurate performance at extrapolation and modulation scenarios, and applicability

to multiple compressor technologies. The model captured performance with four dif-

ferent refrigerants at extrapolation, modulation, and variable superheat performance

yielding a maximum error of 5.1% and 5.9% MAPE for mass flow rate and power pre-

diction, respectively. This model is chosen as a formulation with promising attributes

for future model development. As cited in the literature survey, this formulation has

been modified to capture a range of compressors and will be the basis for a new model

desired to capture multiple compressor technologies and exhibit strong extrapolation

and modulation capabilities. After selection, the model was tested with an additional
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compressor technology, rotary piston. The data had 44 total test points and uti-

lized R410A as the refrigerant. Performance was adequate and the model captured

extrapolation to below 5% MAPE for mass flow rate and power prediction. Initial

modifications were done to the Winandy model in an attempt to improve overall per-

formance. Pressure drop at the suction and discharge was added resulting in slightly

better performance, but the modification did not enable reciprocating compressor pre-

diction. To this end, a mass flow rate and compression process modification was made

to the model. The results improved performance from approximately 20% MAPE for

mass flow rate and power to 5% and 7%, respectively. However, in extrapolation

cases the errors rose above the standards set forth by this work. This leads to the

reciprocating performance prediction requirement to be removed and focus solely on

scroll, screw, spool, and rotary technologies.

6.2 Future Work

Future work from this study should focus on a few main topics: model prediction

capability, parameter conversion methods, training data, optimization methods, and

further extrapolation testing. Regarding the prediction capability, it would be bene-

ficial to modify the model such that it can capture vapor-injected compressor perfor-

mance. This technology currently used in heat pump applications and a model that

can accurately predict injection compressors is of value to manufactures who lack

resources to test systems at a range of conditions. A study of methods to convert

parameters achieved by the optimization with one refrigerant to those with another

should be pursued. Enabling this conversion would allow new refrigerants to be eval-

uated without needing extensive test data. Another study should consider different

optimization algorithms for determining parameters. There are a number of algo-

rithms available and while the Nelder-Meade method yielded satisfactory results for

this study, different algorithms should be sought and tested for better results. Addi-
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tionally, other objective functions which the algorithm minimizes should be studied

in conjunction. Minimizing the MAPE of power and mass flow rate yielded the re-

sults shown in the study, however, other error metrics and algorithm combinations

may give satisfactory results. To that end, a systematic approach to providing initial

guesses to the algorithm should be investigated. Good guesses are those that are

close to final minimized values and may be difficult to estimate accurately. A study

should investigate methods to ensure that good guesses given to the algorithm lead to

global minimum of the objective function. Lastly, to continue extrapolation capability

testing, the model should tested a varying ambient temperatures to ensure accurate

results. This includes pursuing high-fidelity data that contains test points with am-

bient temperature variation. Model prediction capability could then be evaluated to

determine if performance in these situations is adequate.
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APPENDICES

APPENDIX A

Winandy Model Results

The Winandy results are shown in this appendix while the results for the AHRI,

ANN, Shao, and Popovic and Shapiro model can be found at the following link:

https://github.com/KalenGabel/Semi-Emp-Model-Eval.git

0.1 Reciprocating Data utilizing R134a

Figure A.1: Winandy model mass flow rate results for training data with reciprocating

compressor utilizing R134a
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Figure A.2: Winandy model power results for training data with reciprocating com-

pressor utilizing R134a

Figure A.3: Winandy model mass flow rate results for extrapolation data with recip-

rocating compressor utilizing R134a
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Figure A.4: Winandy model power results for extrapolation data with reciprocating

compressor utilizing R134a

Figure A.5: Winandy model mass flow rate results for variable speed data with

reciprocating compressor utilizing R134a
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Figure A.6: Winandy model power results for variable speed data with reciprocating

compressor utilizing R134a

0.2 Screw Compressor Data utilizing R134a
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Figure A.7: Winandy model mass flow rate results for training data with screw

compressor utilizing R134a

Figure A.8: Winandy model power results for training data with screw compressor

utilizing R134a
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Figure A.9: Winandy model mass flow rate results for variable speed data with screw

compressor utilizing R134a

Figure A.10: Winandy model power results for variable speed data with screw com-

pressor utilizing R134a
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Figure A.11: Winandy model mass flow rate results for full data with screw compres-

sor utilizing R134a

Figure A.12: Winandy model power results for full data with screw compressor uti-

lizing R134a
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0.3 Scroll Compressor Data utilizing R134a

Figure A.13: Winandy model mass flow rate results for training data with scroll

compressor utilizing R134a
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Figure A.14: Winandy model power results for training data with scroll compressor

utilizing R134a

Figure A.15: Winandy model mass flow rate results for extrapolation data with scroll

compressor utilizing R134a
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Figure A.16: Winandy model power results for extrapolation data with scroll com-

pressor utilizing R134a

Figure A.17: Winandy model mass flow rate results for variable speed data with scroll

compressor utilizing R134a
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Figure A.18: Winandy model power results for variable speed data with scroll com-

pressor utilizing R134a

0.4 Scroll Compressor Data utilizing R410A
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Figure A.19: Winandy model mass flow rate results for training data with scroll

compressor utilizing R410A

Figure A.20: Winandy model power results for training data with scroll compressor

utilizing R410A
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Figure A.21: Winandy model mass flow rate results for extrapolation data with scroll

compressor utilizing R410A

Figure A.22: Winandy model power results for extrapolation data with scroll com-

pressor utilizing R410A
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Figure A.23: Winandy model mass flow rate results for constant suction temperature

data with scroll compressor utilizing R410A

Figure A.24: Winandy model power results for constant suction temperature data

with scroll compressor utilizing R410A
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Figure A.25: Winandy model mass flow rate results for variable superheat data with

scroll compressor utilizing R410A

Figure A.26: Winandy model power results for variable superheat data with scroll

compressor utilizing R410A
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Figure A.27: Winandy model mass flow rate results for full data with scroll compressor

utilizing R410A

Figure A.28: Winandy model power results for full data with scroll compressor uti-

lizing R410A
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0.5 Spool Compressor Data utilizing R134a

Figure A.29: Winandy model mass flow rate results for training data with spool

compressor utilizing R134a
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Figure A.30: Winandy model power results for training data with spool compressor

utilizing R134a

Figure A.31: Winandy model mass flow rate results for extrapolation data with spool

compressor utilizing R134a
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Figure A.32: Winandy model power results for extrapolation data with spool com-

pressor utilizing R134a

Figure A.33: Winandy model mass flow rate results for variable speed data with spool

compressor utilizing R134a
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Figure A.34: Winandy model power results for variable speed data with spool com-

pressor utilizing R134a

Figure A.35: Winandy model mass flow rate results for variable superheat data with

spool compressor utilizing R134a

89



Figure A.36: Winandy model power results for variable superheat data with spool

compressor utilizing R134a

Figure A.37: Winandy model mass flow rate results for full data with spool compressor

utilizing R134a
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Figure A.38: Winandy model power results for full data with spool compressor uti-

lizing R134a

0.6 Spool Compressor Data utilizing R1234ze(E)
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Figure A.39: Winandy model mass flow rate results for training data with spool

compressor utilizing R1234ze(E)

Figure A.40: Winandy model power results for training data with spool compressor

utilizing R1234ze(E)
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Figure A.41: Winandy model mass flow rate results for extrapolation data with spool

compressor utilizing R1234ze(E)

Figure A.42: Winandy model power results for extrapolation data with spool com-

pressor utilizing R1234ze(E)
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Figure A.43: Winandy model mass flow rate results for variable speed data with spool

compressor utilizing R1234ze(E)

Figure A.44: Winandy model power results for variable speed data with spool com-

pressor utilizing R1234ze(E)
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Figure A.45: Winandy model mass flow rate results for variable superheat data with

spool compressor utilizing R1234ze(E)

Figure A.46: Winandy model power results for variable superheat data with spool

compressor utilizing R1234ze(E)
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Figure A.47: Winandy model mass flow rate results for full data with spool compressor

utilizing R1234ze(E)

Figure A.48: Winandy model power results for full data with spool compressor uti-

lizing R1234ze(E)
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0.7 Reciprocating Compressor Data utilizing R32

Figure A.49: Winandy model mass flow rate results for training data with recipro-

cating compressor utilizing R32
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Figure A.50: Winandy model power results for training data with reciprocating com-

pressor utilizing R32

Figure A.51: Winandy model mass flow rate results for extrapolation data with re-

ciprocating compressor utilizing R32
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Figure A.52: Winandy model power results for extrapolation data with reciprocating

compressor utilizing R32

Figure A.53: Winandy model mass flow rate results for full data with reciprocating

compressor utilizing R32
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Figure A.54: Winandy model power results for full data with reciprocating compressor

utilizing R32

0.8 Rotary Compressor Data utilizing R410A
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Figure A.55: Winandy model mass flow rate results for training data with rotary

compressor utilizing R410A

Figure A.56: Winandy model power results for training data with rotary compressor

utilizing R410A
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Figure A.57: Winandy model mass flow rate results for extrapolation data with rotary

compressor utilizing R410A

Figure A.58: Winandy model power results for extrapolation data with rotary com-

pressor utilizing R410A
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Figure A.59: Winandy model mass flow rate results for full data with rotary com-

pressor utilizing R410A

Figure A.60: Winandy model power results for full data with rotary compressor

utilizing R410A
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