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Abstract

Dynamic Mode Decomposition (DMD) describes a family of dynamical systems

analysis approaches that approximate complex, likely non-linear behaviors with a low-

rank linear operator. DMD has traditionally been used in a systems-identification

context and was originally developed as a method of modeling fluid flows using the

Koopman Operator. In contrast to these original applications, this work explores

DMD’s ability to produce high-fidelity forecasts using small training sets in an effort

to flexibly model two complex, real-world systems. In particular, a novel, iterative

implementation of DMD is tested and validated on 18 years of trading price data for

constituent companies of the S&P 500 and on 2 years of per-capita COVID-19 case

counts throughout the continental US. The novel combination of DMD with blocked

time-series cross-validation described in this work was found to consistently produce

forecasts with an average MAPE of approximately 0.1 (in the case of the financial

model) and RMSE of approximately 0.2 cases per 1000 citizens (for the COVID-19

model). In addition to reliably predicting the complex behaviors characteristic of

real-world systems, this approach was leveraged to identify robust, distinct dynamical

trends and construct networks which provided insights into central system elements.

This work has illustrated the utility of applying DMD in an iterative approach facili-

tates forecasting accuracy across a variety of systems without compromising its ability

to uncover fundamental characteristics of these underlying systems.

viii



Chapter 1

Introduction

Dynamical systems are ubiquitous elements of modern life. A wide range of phenom-

ena, ranging from the natural to the human engineered, are well-described by these

systems. Despite their frequent occurrences in life, these systems can be incredibly

complex, making high-fidelity modeling challenging (even with prior knowledge of the

functional forms that drive system behavior). Before further describing dynamical sys-

tems and their existing modeling approaches, I will first define and introduce notation

for dynamical systems (following (1), (2)).

Dynamical systems are characterized by two fundamental objects: a state space and

defining function. A dynamical system’s state spaceM (assumed to be non-observable)

comprises all possible realizations (or states) of the dynamical system. Since one’s

understanding of the system is given by observed measurements, ∃f ∈ F , an arbitrary

function space, such that f : M → C. Here, C is taken to be a complex-valued

observable state space of the dynamical system.

Let the system’s location in the state space M at time t be given by zt. Then the

defining function of the dynamical system, T , is defined as T : M → M according

to the relation T (zt) = zt+1. In the case that the system is deterministic, a single

measurement zt ∈ M and knowledge of the function T fully defines the behavior of

the dynamical systems at all times t ∈ T . If the system is stochastic (that is, subject

to noise) then the future states of the system cannot be fully characterized by the two

objects discussed above given the variable, unpredictable effect of noise in the system.
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Swinging pendulums, evolving population sizes, migration patterns, and fluid flows

may all be described using a dynamical systems framework. While this framework has

demonstrated its relevance in a variety of contexts, these systems can often become

intractably complex using a strictly analytical approach. This complexity has given

rise to alternative perspectives on dynamical systems analysis; in this work, I consider

an operator-theoretic perspective and its potential to aid in understanding the complex

behaviors seen in financial markets and the spread of contagious diseases.

I specifically explore the characteristics of a family of operator approximation tech-

niques known as Dynamic Mode Decomposition (DMD). DMD shares many connec-

tions with Koopman Operator Theory, complex analysis, and advanced techniques in

linear algebra. DMD has been traditionally been primarily leveraged in a systems iden-

tification context, with minimal emphasis being placed on its forecasting fidelity. In

contrast, I explore DMD’s potential to generate high-fidelity forecasts using small train-

ing sets without sacrificing its strengths in the realm of system identification. DMD is

particularly suited to this task as it produces linear, decoupled models of non-linear,

coupled systems using an equation-free, data-driven framework.

The remainder of this work proceeds as follows. Chapter 2 introduces Koopman

Operator Theory, the DMD algorithm and some important variations thereof, as well

as relevant research in time-series, financial, and epidemiological modeling. Chapter 3

describes the analytical methods and the data used to study the systems of interest –

namely the S&P 500 and COVID-19’s US spread. Chapters 4 and 5 include the results

and analysis for financial markets and disease spread, respectively. Finally, Chapter 6

completes the work with a summary of the key conclusions and the opportunities for

future work.
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Chapter 2

Literature Review

2.1 Mathematical Theory

DMD is intimately connected with a variety of deep fields of mathematical research.

Among the most significant of these are Koopman Operator Theory, Fourier Analysis

(which study how to approximate functions with damped or driven sinusoidal func-

tions), and linear algebra. In the following sections, I explore relevant features of these

fields and how they contribute to a fuller knowledge and appreciation for the power of

DMD’s analytical approach.

2.1.1 Koopman Operator Theory

In 1931, Bernard Koopman (3) proved that the dynamics of any Hamiltonian system

(such as an oscillating spring or swinging pendulum) on a Hilbert space (a possibly

infinite-dimensional space equipped with some measure of distance) could be fully

described by an infinite dimensional linear operator. Using the notation of the discrete-

time dynamical system described earlier, one may define this operator (now known as

the discrete-time Koopman operator) as:

Ufzt = f ◦ T (zt) (2.1)
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That is, the infinite-dimensional, linear Koopman operator precisely describes the un-

known and likely non-linear dynamics that arise directly from the unobserved space M

by acting on the function f : M → C. In recent years with increasing data availability

and computational resources, Koopman-adjacent decomposition techniques have arisen

for modeling dynamical systems. DMD itself is one such technique, being originally

proposed in (4) to obtain temporally-consistent spatial structures in the modeling of

fluid flows. Early researchers into DMD (5) noted the strong connections between this

technique and Koopman theory.

The success of data-driven modal decomposition techniques are driven by the fact

that, in practice, it is unnecessary to fully identify the infinite-dimensional operator U .

Rather, U may be well-approximated by a low-rank operator with clearly interpretable

spectral components. In particular, as U is an operator on functions, its effects may

be described in terms of eigenfunctions and corresponding eigenvalues. In particular,

let ϕi : M → C denote an eigenfunction of U . Then,

Uϕi = λiϕi (2.2)

Making the (reasonable) assumption that the function f lies within the span of the

eigenfunctions of U , it follows that:

f(zt) =
∞∑
i=1

ϕi(zt)vj (2.3)

In this case, where zt is a vector of system measurements, vj may be considered as

the vector coefficients of the linear combination of eigenfunctions needed to describe

f . Following this line of reasoning to its logical end, we see that:

Uf(zt) =
∞∑
i=1

U tϕi(z0)vj =
∞∑
i=1

λt
iϕi(z0)vj (2.4)

4



That is, at any point in time t ∈ T , one may describe the observed behavior of the

system as a linear combination of eigenfunctions of U whose effect is modulated by re-

peated applications of their corresponding eigenvalues. Observing too that the operator

U essentially describes a discrete-time derivative within this context, its eigenfunctions

will be complex-valued exponential functions. Then the growth or decay of a mode will

be determined by the Euclidean norm of the eigenvalue while the oscillatory frequency

of the mode is described by the imaginary component of the eigenvalue. Describing

the Koopman operator in terms of its eigendecomposition is especially convenient as it

allows complex, coupled, and non-linear dynamics to be described in terms of simple,

decoupled functions whose characteristics are fully determined by the linear operator.

For a more comprehensive review of Koopman Operator theory, see (2) (6) (7).

2.1.2 DMD Algorithm and Koopman Theory

To further cement the connections between Koopman Theory and DMD, here I discuss

a common implementation of the algorithm and its connections to the Koopman oper-

ator. The algorithm described below closely follows the approach described in chapter

1 of (8).

To begin, Let X be a matrix containing the observed measurements of a dynamical

system. Presume that each row corresponds to a specific system element (e.g., a specific

point in space) and each column represents a point in time. Then,

X =



| | | ... |

x1 x2 x3 ... xm

| | | ... |



5



The matrix X is then split into two overlapping matrices – in essence, an input set

of measurements and a set of measurements to predict, as described below:

Y =



| | | ... |

x1 x2 x3 ... xm−1

| | | ... |



Z =



| | | ... |

x2 x3 x4 ... xm

| | | ... |


Note that this offset need not be a single time step; rather, an approximation may

be generated for an arbitrary number of steps into the future. Regardless of the time-

difference separating these matrices, we seek to identify the optimal operator A that

transforms Y into Z, such that:

Z = AY =⇒ A = ZY† (2.5)

Where Y† denotes the Moore-Penrose pseudoinverse of the matrix. As an aside,

under this characterization, Amay be described as a best-fit linear operator minimizing

∥Z − AY ∥2. While this characterization of DMD as essentially high-dimensional re-

gression provides greater flexibility in the types of systems one may model, in this work

I focus on the operator-theoretic interpretation of A, where A approximates the real

6



dynamics of the system. Returning to the algorithm, a singular value decomposition

(SVD) is performed on Y, yielding:

Y = ΨΣV ∗

Suppose that Y be an n x m-1 matrix. Then Ψ is an n x n unitary matrix whose

columns denote ”directions” in the observed state-space with maximum variation. Σ

is a diagonal n x m matrix with Min{n,m− 1} singular values arranged in descending

order. Finally, V ∗ is an m-1 x m-1 unitary matrix, whose rows describe the relative

contribution of the left singular vectors to each measurement in Y. Since many dynam-

ical systems display low-rank characteristics, a truncated SVD is performed, retaining

only r columns of Ψ, the r largest singular values, and the first r rows of V ∗ (one robust

approach to judiciously selecting r is found in (9)). Then, based on the SVD and the

operator’s definition in (2.5), the reduced-rank DMD operator is precisely:

Ã = V X2Σ
−1U∗ (2.6)

Next, one takes the eigendecomposition of Ã, revealing the set of r eigenvectors W

and corresponding eigenvalues Λ such that ÃW = ΛW. The r eigenvalues approximate

the eigenvalues of the Koopman operator for the discrete-time dynamical system from

which they are derived. The discrete-time eigenvalues Λ may be converted to corre-

sponding continuous-time eigenvalues, Ω, via Ω = ln(Λ)
∆t

to aid in system interpretability

and reduce computational complexity. Note that this transformation assumes a con-

stant ∆t, the difference in time between two subsequent measurements. The eigenvalue

λi fully defines the eigenfunction ϕi = eλi .

7



To obtain the ”dynamic modes” (which approximate the Koopman modes) the

eigenvectors of the reduced-order Ã must be broadcast back to the original state space.

These, following (10), are precisely:

Φ = ZV Σ−1W (2.7)

The original state of the system (taken at time t = 0) is obtained by computing

the vector of modal amplitudes, b, via the relation:

x1 = Φb =⇒ b = x1Φ
† (2.8)

where, since Φ may not be directly invertible, Φ† denotes the pseudoinverse. Having

recovered the modes, amplitude vector, and continuous-time eigenvalues of the system,

the DMD approximation of the system in the observable space at time t is computed

by:

x̂t = ΦeΩtb (2.9)

Then, the projection over all times t ∈ T is:

XDMD =



| | | ... |

x̂1 x̂2 x̂3 ... x̂m

| | | ... |


To cement the connection of DMD to Koopman theory, I follow the work of (5).

In particular, consider a matrix of vector-valued observables from a dynamical system,

8



X, as defined previously. Then following the DMD algorithm defined above, we can

approximate x̂t as:

x̂t =
r∑

i=1

λt
iΦibi + ϵ (2.10)

The above expression is simply a summation expansion of the matrix computation

given in equation (2.9), where Φi denotes the ith column of Φ and ϵ denotes the error

associated with this projection. Observe that the error is necessarily outside the span

of Φ, so ϵ ⊥ Span(Φ). (5) note that in the case that ϵ = 0 the modes and eigenvalues

produced via DMD are exactly a finite number of eigenvalue - eigenfunction pairs from

the Koopman operator. In the case that ϵ ̸= 0, then the eigenvalue - eigenfunction pairs

are the best possible approximations, in the least-squares sense, that can be derived

from the given input data.

Before exploring approaches to augment the efficacy of the DMD algorithm, I briefly

discuss the interpretation (within a systems-oriented context) of the dynamic modes

of a system. By assumption, each row of the data matrix corresponds to a specific

element of (or location in) the system. If X contains m rows, each dynamic mode will

contain m elements corresponding to each row. The full DMD forecast value at time

t ∈ T is a linear combination of modes (which are scaled by eigenvalues, raised to a

time-varying power). Additionally, these modes are independent (or decoupled) from

each other. Thus, one can interpret these modes as describing a set of independent

relationships, or meaningful structures, among system elements which form a low-

rank ”eigenbasis” for the observable state-space. This interpretation key dynamical

relationships to be automatically identified while reducing modeling complexity. In

this way, the dynamic modes of the system share similarities to the ”components”

identified by Principal Components Analysis (PCA), in that the modes allow each

9



system measurement to be described with a reduced-dimension representation. Unlike

PCA, classifying modal importance is a more ambiguous than identifying the most

critical principal components.

2.1.2.1 Identifying Dominant Modes

In the literature, the importance of DMD modes has been traditionally analyzed at

only a single point in time (when t = 0) by calculating the DMD analog of the Fast

Fourier Transform (FFT) power spectrum. This power spectrum is computed as:

DMDpow = |b| ∗ 2√
s

(2.11)

Where s is the number of times the signal is delay-embedded (discussed in greater

detail below). In the case that the raw data is used, s = 1. However, this power

spectrum only describes the relative contribution of modes at time t = 0, and neglects

the role of oscillatory behavior and the evolving interactions between the columns

of Φ through time. In an effort to more faithfully capture the intricate interactions

between DMD triplets (modes, amplitudes, and eigenvalues), (11) propose an alterna-

tive analysis approach that yields more insightful visualizations and facilitates greater

understanding of global system behaviors.

At the core of their approach is an alternative algorithm for analyzing the dominance

structure of the DMD modes. Before discussing their specific approach, recall that the

contribution of each mode at time t ∈ T is given by

λt
iΦibi

That is, the mode’s contribution depends not only on the initial amplitude, bi, but

also on the eigenvalue and the particular time step t. While there may be cases where

10



the impact of the eigenvalue and time-step are minimal, in cases where pronounced

periodicity or growth or decay exist, the dynamic behavior described by the eigenvalue

will substantively effect the mode’s contribution to the overall forecast. To take a

holistic view of each mode’s relative contribution through time, the authors propose

taking a subset of times, T ⊂ T , and then for each mode i and each t ∈ T , evaluating:

∥λt
iΦibi∥

These norms may then be plotted versus the modal frequency to provide insight into

which frequencies are most dominant through time (as well as identify any persistently

dominant modes). The authors also recommend two clustering approaches to identify

”similar” modes, one based on eigenvalue proximity (denoting similar dynamic behav-

ior), and the other on harmonic multiplicities (where the frequency of modal oscillation

is related via integer multiplication).

While (11) provide insights into the analysis of the systemic effects of modal be-

havior, they largely overlook the spatial relationships depicted within the modes them-

selves. As is noted in (12), modes automatically identify latent relationships between

system elements. These come in two forms, one related to the magnitude of the ele-

ment’s measurement and the other related to the ”phase”, or how ”in-sync” the ele-

ments are. These two components of similarity can be readily visualized in a variety

of methods (e.g., choropleth maps for geospatial data) to more quickly assess the fun-

damental structures of the system.

2.1.3 Koopman-Adjacent Techniques

While the operator-theoretic approach that forms the foundation of Koopman analysis

provides a flexible framework through which to analyze dynamical systems, its efficacy

11



and interpretability may be augmented by leveraging insights from complex analysis

and linear algebra. In particular, I describe some of the connections between methods

of approximating functions via complex-valued exponential functions (like the FFT and

variations of Prony’s method) and properties of Hankel, Toeplitz, and Vandermonde

systems to DMD to facilitate modeling techniques for more complex, noisy systems.

2.1.3.1 Function Approximation

Methods to approximate functions with linear combinations of complex-valued expo-

nential functions first arose in mathematical analysis in the late 18th century with the

work of Gasparde Priche de Prony. While Joseph Fourier’s alternative methodology for

decomposing functions into their constituent signals is far more influential (in part be-

cause Prony’s method requires a digital computer to be feasible), insights drawn from

the approaches of both researchers may enhance the capability and interpretability of

DMD-adjacent models.

For example, a primary assumption of the SVD-based DMD algorithm is that the

data is highly sampled along the spatial dimension (that is, the data matrix is ”tall

and skinny”). DMD’s capability to identify robust, coherent spatial structures from

matrices with sparse spatial sampling may be compromised, and many real systems of

interest may be composed of few elements, limiting the spatial dimension of the data.

While I will discuss alternative data processing techniques to mitigate this challenge,

(13) used a vector-valued version of Prony’s method to implement Koopman Mode

Decomposition for data with low spatial dimension. The researchers utilized a varia-

tion of Prony’s method rather than the Arnoldi-like DMD algorithm (the SVD-based

approach, while similar, is more numerically stable than the Arnoldi approach) to find

the best linear combination of damped and driven sinusoids to model the observed

behavior of European power grids. They note that this approach is well-fitted for data

12



with heavy temporal sampling (where n > 2m, resulting in a ”short and fat” matrix),

as it provides a unique decomposition where some DMD approaches may not.

Prony’s original technique for function approximation is prone to significant numer-

ical errors when used to model stochastic systems. Consequently, many algorithmic

variations with greater robustness to noise have been developed. While these tech-

niques are most often related to scalar-valued rather than vector-valued functions,

the principles required for developing high-fidelity, minimal rank approximations re-

main consistent. For example, (14) describe an approach for identifying the minimum

number of terms required to approximate an arbitrary smooth function with complex

exponential functions using the SVD of a Hankel matrix. Additional insights into

Prony- and Fourier-based approximation methods may be found in (15) (16) (17).

2.1.3.2 Hankel and Vandermonde Systems

While one may adopt alternative Prony-derived modeling approaches to address low

levels of spatial sampling, an alternative approach - known as delay embedding within

time-series analysis - can address these issues. Delay embedding draws on characteris-

tics of Hankel matrices. Given vector-valued system states comprising X, where

X =



| | | ... |

x1 x2 x3 ... xn

| | | ... |


The data may be delay-embedded to form an augmented data matrix, Xaug defined

below:
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Xaug =



x1 x2 x3 ... xn−j

x2 x3 x4 ... xn−j+1

...
...

... ...
...

xj xj+1 xj+2 ... xn


(2.12)

This matrix shares the form (albeit in a vectorized fashion) of a Hankel matrix,

where each off-diagonal is a constant value (in this case a constant vector). This

data transformation technique dramatically increases the spatial dimensionality of the

data, enabling an SVD-based DMD algorithm to more faithfully describe the behaviors

observed within a sparsely-observed system. While this technique has been empirically

shown to improve the modeling capability of DMD, the form of Xaug, as a vectorized

Hankel matrix, implies that this technique carries deeper connections than simply

increasing the spatial dimensional of a data set.

Interestingly, Hankel matrices frequently arise in computing sparse approximations

of functions with complex-valued exponentials. Indeed, (14) create a Hankel matrix

from oversampled data points to estimate the number of terms needed to approximate

a scalar-valued function within a desired accuracy. Their use of Hankel matrices aligns

with the fundamental research of Hankel matrices described in AAK Theory (named for

researchers Adamyan, Arov, and Krein’s result for approximating infinite-dimensional,

but finite-rank, Hankel operators). The core insight arising from AAK theory (which

is leveraged in the approximation of functions) is the following:

Theorem 1 Let Γ be an infinite-dimensional Hankel matrix, with singular values ar-

ranged in descending order {σ1, σ2, ..., σn, ...}. Then there exists a rank-n Hankel matrix

K, such that σn = ∥Γ−K∥. (18)
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This result is leveraged to find approximations of fixed size whose worst-case de-

viance from observed behaviors is tightly controlled. Indeed, (1) have proposed an ex-

tension of DMD termed Hankel-DMD with close connections to a Prony-approximation

of Koopman Mode Decomposition. They demonstrated that applying the DMD algo-

rithm to an embedding of (potentially vector-valued) time-series data could produce

higher fidelity results than traditional methods and provided a strong mathematical

framework for creating such models. A core assumption of their mathematical founda-

tion is that the observables lie on a finite-dimensional subspace that is invariant under a

Koopman operator U . They suggest implementing this assumption by assigning a hard

threshold for the SVD truncation in the DMD algorithm to ensure a desired numerical

accuracy. That is, one discards all singular values less than some cutoff value.

While Hankel matrices are leveraged to improve function approximation techniques,

they have also been used in other data-driven modeling techniques like Singular Spec-

trum Analysis (SSA) (19) (20). The authors of (19) in particular found that they were

able to more clearly distinguish distinct signals within their (scalar-valued) data when

the Hankel matrices were near-square. Hankel matrices are also a critical feature in

stochastic modeling approaches like Hidden Markov Models (HMMs) which share clear

similarities with the operator-theoretic background of DMD. For more a more thorough

review of the properties of Hankel matrices can be found in (21) (22).

Before considering common modeling approaches in the fields of financial and epi-

demiological modeling, I briefly discuss Vandermonde systems, which share connections

both with Koopman theory and with function approximation techniques more gener-

ally. In general, one defines a Vandermonde matrix, V, as:
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V =



1 x0 x2
0 ... xn

0

1 x1 x2
1 ... xn

1

...
...

... ...
...

1 xm x2
m ... xn

m


(2.13)

The sharp similarities with the general dynamical system defined earlier are clear

if one considers that a data matrix, X may be defined as:

X =



f1(z0) f1 ◦ T (z0) f1 ◦ T 2(z0) ... f1 ◦ T n(z0)

f2(z0) f2 ◦ T (z0) f2 ◦ T 2(z0) ... f2 ◦ T n(z0)

...
...

... ...
...

fm(z0) fm ◦ T (z0) fm ◦ T 2(z0) ... fm ◦ T n(z0)


Vandermonde matrices are intimately connected with Discrete- and Fast Fourier

Transforms, allowing for their efficient computation. A (possibly overdetermined) Van-

dermonde matrix is also used by (14) as one step of their algorithmic approach to

creating minimal approximations of functions using complex-valued exponential func-

tions. While I do not leverage specific properties of the Vandermonde matrix in this

work, close connections to the Discrete Fourier Transform and function approximation

more generally point to the rigorous connections between DMD and advanced algebraic

tools.
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2.2 Example Application of DMD Algorithm

Finally, before exploring the domain-specific literature in both finance and epidemiol-

ogy, I first follow the basic example (found in Chapter 1 of (8)) of DMD’s capability

of identifying distinct functions and provide concrete examples into the interpretation

of the dynamic modes and eigenvalues.

For this example, consider f(x, t) = g(x, t) + h(x, t) as a linear combination of

two functions with two input variables - x representing a spatial dimension and t

representing the temporal dimension. In particular then, g(x, t) = 1
cosh(x+3)

∗ e2.3i∗t

and f(x, t) = 1
cosh(x)

∗ e2.8i∗t. Ignoring the complex component of this function, the

composite resulting linear combination (that is, f(x, t) is shown in the figure below.

Figure 2.1: Input Function Visualization

Before advancing to the DMD outputs for this particular input, I consider the

fundamental structures of the two input functions, g(x, t) and f(x, t). These are both

visualized below.
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(a) g(x, t) Fundamental Structure (b) h(x, t) Fundamental Structure

Figure 2.2: Decoupled Data Structures

Combining all of this information, it is clear that the input function displays oscil-

latory behavior in the temporal dimension while retaining distinct structures along the

spatial dimension. In particular, it is important to observe that g(x, t) will oscillate

2.3 times for every 2π units of time. Similarly, h(x, t) will oscillate 2.8 times every 2π

units of time. Having identified these core characteristics, consider the results from a

rank 2 DMD analysis of this input data.

First, the ability of the DMD algorithm to create a high-fidelity rendering of the

input data is remarkable. The figure below displaying the DMD rendering of the input

data is indistinguishable from the input data.
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Figure 2.3: DMD Example Forecast

Equally remarkable is DMD’s ability to describe the functions and structures re-

sponsible for the observed behavior. Consider that the continuous-time eigenvalues

returned from this analysis are precisely ω1 = 0 + 2.8i and ω2 = 0 + 2.3i – exactly

corresponding to the two frequencies of the input functions. Further, consider the

structures revealed by the modes.
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(a) Mode 1 Fundamental Structure (b) Mode 2 Fundamental Structure

Figure 2.4: DMD Example Resulting Mode Structures

While these structures do not align perfectly with the initial spatial conditions of

the input data (the first mode is the mirror image of h(x, t)), they clearly depict the

underlying structure of the data. Additionally, the corresponding eigenvalues precisely

align with the underlying frequencies which accompany these structures. The images

above also provide a strong intuition for the interpretation of modes – they depict

how, when aligned along a meaningful spatial axis, robust structures and relationships

between elements may be identified.

2.3 Domain-Specific Research

While my research is primarily focused on applying dynamical systems theory and

analysis to financial modeling and epidemiology, this work would be incomplete without

an overview of existing techniques within these fields. In the subsequent sections I

outline some of the dominant modeling approaches in both these fields, introducing

recent applications of DMD or related methods, and highlight gaps in the research

that my work will begin to address.
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2.3.1 Financial Markets Modeling

While the modeling approaches utilized by financial analysts are diverse, most adhere

to traditional statistical methods (e.g., ARIMA or autoregressive conditionally het-

eroscedastic (ARCH) models) (23),(24) or computational machine-learning algorithms

(like artificial neural networks (ANNs) (25). While ARCH and ARIMA models can

account for market volatility, they make assumptions regarding the functional behavior

of the market. For example, ARIMA models may struggle to account for seasonality

or a lack of stationarity in the data (24). Meanwhile, ANNs make no assumptions

regarding the functional form of the system, but offer little insight into the func-

tional behavior that guides stock price evolution through time. In recent years, few

researchers are pursuing models that strictly adhere to these classic delineations be-

tween models. Many approaches, including wavelet-based decomposition methods (26),

stochastic and agent-based models (27), and physics-informed Brownian motion mod-

els (24), have been tested individually or combined with more traditional techniques

to increase the fidelity of their predictions.

While both statistical models and machine-learning methods have had success in

modeling observed market behavior, no technique has achieved supremacy over another.

In their review of popular financial modeling approaches, (24) observe that researchers

have claimed that both ARIMA and ANNs are, under certain circumstances, superior

to the other. (24) ultimately found that Brownian motion and ARIMA models both

outperformed an ANN in forecasting the price of the S&P 500 Index. While financial

modeling has traditionally adhered to either a physics-informed, computational, and

statistical approach, many modern approaches integrate tools from each of these areas

to produce more accurate forecasts. For example, (28) created a hybrid model using

ARIMA and an ANN that outperformed either model individually. Other research

groups have implemented ensemble models using wavelet decomposition, ARIMA, and
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ANNs to produce models for exchange rates (29) and the DOW-Jones Industrial Av-

erage (30). Additionally, a variety of time-series analysis techniques (besides ARIMA

and finance-specific ARCH models) have been used to model financial markets. The

flexible, time-series approach SSA has been leveraged to forecast, smooth, and decom-

pose financial time-series data (31). Given its non-parametric, data-driven approach,

this approach shares several modeling similarities to DMD which augment its utility.

In contrast to these other approaches, (32) used Dynamic Mode Decomposition

(DMD) to study the long-term cyclic and periodic behaviors within financial markets.

While wavelet-based analyses of financial markets are not a new phenomenon (26),

these are often incorporated as a data-processing step to account for non-stationary

data (29) (30). In contrast, (32) used DMD to identify several robust modes whose

frequencies range from one to three cycles per year. Other researchers have also utilized

DMD in their analysis of stock trends. (33) used DMD to identify stock trading

strategies that could, at certain times and in specific sectors, generate returns greater

than the ”buy and hold” strategy. While the existing applications of DMD to financial

data point to its potential to provide new insights, neither approach explores whether

there exist fundamental relationships between companies or sectors. Further, neither

research group explored DMD’s capability of generating accurate forecasts without

sacrificing system identification.

2.3.2 Epidemiological Modeling

I now briefly review two of the dominant paradigms within epidemiological modeling:

compartmental models - like the Susceptible-Infected-Recovered (SIR) model proposed

in 1927 (34) - and time-series techniques. The compartmental model framework (epit-

omized by SIR) take a population-level view of disease spread. In the SIR model
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for example, each individual in the population is either susceptible to infection, cur-

rently infected, or recovered from infection. Compartmental models may be based on

stochastic or deterministic differential equations, with deterministic models frequently

being sufficient for modeling large-scale disease dynamics (35). Compartmental models

have been extended to include more disease states and account for disease-mitigation

measures. (36) found that model structure (i.e., the number of compartments) can dra-

matically alter the projected effect of interventions; they urge discretion in determining

an appropriate degree of model complexity given the dynamics one is attempting to

describe. (37) provide a control theoretic perspective on compartmental models, as-

certaining whether model parameters can be identified from inputs and whether states

may be observed from inputs or outputs (in short, whether distinct inputs yield unique

outputs). The authors observe that allowing parameters to vary in time can increase

model observability and emphasize the importance of restricting model use cases to

their identifiable parameters and observable states.

In contrast to compartmental models which are constructed on epidemiological ex-

planations for observed behavior, time-series adjacent are generally concerned with

predicting behavior and (occasionally) decomposing signals into components. (38)

compared several time-series analysis techniques for predicting the spread of a variety

of viral diseases with varying success. (39) related compartmental models to time-series

analyses by discretizing the continuous SIR models to produce a high-fidelity repre-

sentation of measles cases from 1944-1964 in Wales. (40) describe a wavelet-based

decomposition method for describing time-varying relationships in non-stationary epi-

demiological data sets. DMD shares the dynamical systems perspective of many clas-

sical epidemiological approaches, but the specific methodology shares more in common

with discrete time-series modeling approaches.
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While extensive applications of DMD to epidemiology remain rare, in (12) the

researchers explored the potential of DMD to explain infectious disease spread using

three case studies: Google Flu trends, Measles in England, and Polio in Nigeria. They

primarily leveraged the tool to identify geographic relationships in the evolution of

the disease rather than focusing on the capability of their model to closely model

recorded disease burdens. That is, while DMD was demonstrated to draw out latent

relationships among distinct regions (a system identification application), it’s ability

to accurately predict future disease states - the standard for compartmental modeling

success - was overlooked. Connecting these distinct modeling capabilities of DMD is

critical in demonstrating its full potential to enhance existing modeling approaches.
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Chapter 3

Data & Methods

Having established the mathematical foundation of the DMD algorithm and overviewed

existing techniques within financial and epidemiological modeling, I now address the

specific data sets and methods used for my analysis in this work.

3.1 Data Description

I used one data set for each of the application areas in this work. The first data set,

for the study of financial markets, is comprised of daily trading prices of S&P 500

constituent companies. The second data set, for studying the spread of COVID-19,

contains daily state-level COVID-19 case-count data.

3.1.1 Financial Data

The data for S&P 500 constituents was obtained from Yahoo Finance’s historical data.

Every company in the S&P 500 as of September, 2022 was originally included in the

analysis. As this data was too sparse, compromising the efficacy of the algorithm,

companies with initial public offerings after August 12, 2004 were excluded. At the

same time, data from prior to August 12, 2004 was excluded. Thus, the data is

composed of the trading prices (measured at close of day) for 405 companies, beginning

August 12, 2004 and ending on September 7, 2022.
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3.1.1.1 Data Overview

As the data were collected from a reliable source and filtered to eliminate missingness,

two common data problems (veracity and missingness) were eliminated. However, the

trading prices of some companies were separated by orders of magnitude, a data artifact

that could compromise the numerical stability of the Singular Value Decomposition,

thereby impacting the DMD forecasts. Consider the price discrepancies between the

average lowest priced stock (Ford Motor Company), with an average price of approxi-

mately $11, with the highest priced stock (on average) NVR, with an average price of

approximately $1,700.

Figure 3.1: Magnitude of Stock Price Differentials

To ameliorate the numerical instability resulting from these significant differentials,

the natural log was applied to the data, dramatically reducing the spread between the

highest and lowest priced stocks. This transformation is commonly applied to modeling
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financial data and has the additional benefit of being easily interpretable and invertible.

Thus, when analyzing this data set, the DMD algorithm is applied to log-transformed

data, but I assess the forecast accuracy based on the true stock price.

Finally, I considered the long-term trends in the data. While there is clearly some

noise and stochasticity within the data, the overall behavior is relatively smooth with

a fairly consistent growth trend, with the most pronounced dips for the 2008 financial

crisis and COVID crash in 2020.

Figure 3.2: Average Daily Stock Price

3.1.2 COVID-19 Data

Unlike the data for the S&P 500 constituent companies, the data describing the spread

of COVID-19 through the US is, even when collected from the best-available sources,

somewhat unreliable and incredibly noisy. The data were obtained from a publicly
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available repository, maintained by Johns Hopkins University, with daily state-level

COVID-19 case and death counts. The data were transformed to record the incidence

rate on a per-1000 citizen basis to facilitate one-to-one comparisons between states.

Data from the continental 48 US states and the District Columbia were included.

Evolving reporting procedures, limited availability of testing (especially early in the

pandemic), and changing definitions of positive cases all contribute to the significant

noise within the data, calling into question its veracity. The raw per-capita case counts

(for the entire continental US) are visualized below.

Figure 3.3: Unprocessed US Daily Cases per 1000 People

3.1.2.1 Data Cleaning and Exploration

As an artifact of local reporting procedures, case counts were occasionally reported as

negative; in these cases, the number was corrected to zero, an incorrect (but better)

estimation of real system behavior. To further ameliorate the effect of noise and smooth

the data, a 7-day moving average was computed and used for analysis. Additionally,
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data collected prior to April 1, 2020 and after May 31, 2022 were excluded as data

quality deteriorated significantly outside of these dates. The effect of these processing

is shown below:

Figure 3.4: 7-Day Average of US Cases per 1000 People

As can be seen in the figure above, there are three main peaks in the data. The first

corresponds to the winter of 2020, the second small peak is the rise of the ’Delta’ variant,

and the largest peak corresponds to the rapid spread of the highly contagious ’Omicron’

variant. Preliminary tests of the DMD’s capability to model the observed behavior were

largely unsuccessful (given the significant swings and volatility of the disease burden),

necessitating augmentations to the SVD-based DMD. Specifically, the data set was

delay embedded (with the number of embeddings being empirically determined). While

this processing step increases both the computational complexity (a minor challenge

in this case) and the amount of data required to identify the underlying dynamics, the

improvements in forecast accuracy far outweigh these costs.
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3.2 Methodological Approach

Despite the differences in the systems from which the data are collected, the core fea-

tures of the data remain unchanged. The data are taken from complex, interconnected

systems over an extended period of time. They contain measurements from distinct

system elements, and compared with the number of temporal measures, the number

of ’spatial’ measures is comparatively small. Given the similarities in the core char-

acteristics of the data, the same analytical approach was applied to each data set.

The analysis has two primary objectives. First, to validate the veracity of the func-

tional approximations of the model, I propose an iterative implementation of DMD

that consistently generates a high-fidelity, cross-validated, forecasts. Second, I iden-

tify and analyze the most significant eigenvalues and dynamic modes of the system to

more fully characterize latent dynamics and network structures of the system. In the

following sections I discuss the process to accomplish each of these objectives.

3.2.1 Model Creation and Validation

Both financial markets and the spread of diseases are highly sensitive to external events

– for example, investor risk tolerance or shelter-in-place orders, respectively. This

sensitivity gives rise to a reasonable hypothesis that the system’s governing dynamics

evolve quickly through time. Thus, rather than training the models once on most or

all of the data, the models were trained on small subsets of data and evaluated with

blocked time-series cross-validation (TSCV).

Blocked TSCV holds the size of the model’s training set constant and, based on the

training set, forecasts future measurements at a future time (or times). Having trained

and evaluated a model on a particular training set, the training set ”slides” forward
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in time (while remaining the same size) and the process repeats until the full data set

has been leveraged.

I used the SVD-based DMD to create the model for each training set, given its

straightforward implementation and numerical stability. Blocked TSCV requires two

parameters to be tuned: the size of the training set and the model complexity (that is,

the rank of the SVD truncation in the DMD algorithm). These parameters are tuned

according to the cross-validated (future) forecasts of the model, rather than its fidelity

of modeling the training set. I considered three future points for model cross-validation

– one in the ’near’-, middle-, and ’far’ future. I used mean absolute percentage error

(MAPE) to evaluate the accuracy of the financial model and root mean square error

(RMSE) for the epidemiological models. The modeling specifics are given in the table

below.

Data Set Training Size Model Sizes Forecast

Points

Sliding Step

S&P 500 50 - 350 Days

(by 10s)

10-40 Modes

(by 5s)

5, 20, and 50

Days

20 Days

COVID-19 21-56 Days

(by 7s)

5-15 Modes

(by 1s)

7, 14, and 28

Days

14 Days

Table 3.1: Modeling Specifics

The process of selecting the best combination of training set size and model size is

described below in pseudo code.
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Tra in ingS i z e = [ . . . ] # l i s t o f the t r a i n i n g s i z e s

ModelSizes = [ . . . ] # l i s t o f model s i z e s

for i in Tra in ingS i z e :

numRuns = setRuns ( i ) # se t the number o f runs

for 1 <= j <= numRuns :

# for each run , c r ea t e t r a i n i n g / t e s t s e t s

tempSet = data ( i , j )

t e s t S e t = data ( i , j )

for k in ModelSizes :

# crea t e a f o r e c a s t

f o r e c a s t = DMD( tempSet , modelSize )

# as s e s s v a l i d i t y o f f o r e c a s t

Val idate ( f o r e c a s t )

return best ( dataSet , Tra in ingS ize , modelSize )

While the process described was followed for both data sets, effectively modeling

the COVID-19 data required tuning one additional parameter: the number of delay-

embeddings. As noted in the overview of the COVID-19 data set, the data was noisy

and preliminary testing indicated that the basic SVD-based DMD would be incapable

of describing the observed behavior. While delay embedding the data resulted in far

superior forecasts, tuning the number of embeddings required empirical testing. Thus,

when evaluating the COVID-19 data set, I also considered the number of delay embed-

dings as an additional parameter. To minimize data loss and additional computational

complexity, a maximum of 10 embeddings was permitted.

Once the best combination of model parameters, I assessed how the forecast errors

related to the level of turbulence in the system. For the financial markets, particular
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attention is given to the model’s ability to adjust for periods of volatility (e.g., the

2008 financial crisis). In contrast, I consider the effect of new variants or policy-based

mitigation measures on both the spread of COVID and speed with which the model is

capable of identifying these trends.

3.2.2 Dynamics and Network Analyses

Producing accurate forecasts only addresses the first goal of this project. To gain a

deeper understanding of the fundamental structures and dynamical behavior of the

system, a detailed analysis of the modes, eigenvalues, and best-fit operators was also

performed. This analysis was complicated by the iterative nature of the cross-validated

DMD algorithm. To select only the most critical dynamic modes, I follow a principled,

holistic evaluation approach. The process has three key steps: first, identify the ’dom-

inant’ dynamic modes (those with the greatest influence on the forecast) following a

process inspired by (11). Second, analyze the eigenvalues corresponding to the domi-

nant modes in search of trends or consistent behaviors. Third, construct networks using

the best-fit operators and assess the network centrality of specific system elements.

3.2.2.1 Selecting Dominant Modes

I closely follow the process described by (11) to create and visualize the dominance

structures of the DMD forecasts at each step the cross-validated forecasts. To begin,

the complex conjugates of complex-valued modes are discarded as these do not provide

additional information to a high-level analysis. Then, for a subset of times T ∈ T

associated with the given validation step, the norms of the modal contributions are

assessed. That is,

∀i ∈ |r| and t ∈ T ,wit = ∥λt
iΦibi∥
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Next, the two modes with the largest average relative contribution to the forecast

were selected as ’dominant’. Expressing this in mathematical terminology,

ArgMax

[
1

|T |
∑
t∈T

wit∑
i∈|r| wit

, ∀i ∈ |r|

]

where in this case the ArgMax command takes the two largest i ∈ |r|. As each dominant

mode is selected, its corresponding (discrete-time) eigenvalue is also recorded.

3.2.2.2 Analyzing Dynamical Behavior

To seek out robust and persistent dynamical characteristics, I plot the dominant eigen-

values on the unit circle in the complex plane. In particular, positive real-valued

eigenvalues describe monotonic behaviors, negative real-valued eigenvalues describe

high-frequency oscillations, and all complex-valued eigenvalues describe oscillatory be-

haviors with a variety of frequencies. Further, eigenvalues outside the unit circle de-

scribe unstable, divergent behavior while those within the unit circle describe stable

or converging dynamics. If a visual analysis of these eigenvalues prompted the conclu-

sion that distinct clusters of dynamical behavior existed, I then create clusters using

agglomerative clustering with a Ward linkage.

3.2.2.3 Network Analysis

Once I assessed the dominant dynamical traits of the system, the interdependencies

between system elements was modeled using the best-fit operators. In particular,

the reduced order operator, described earlier, may be expanded to a full system-size

operator describing the relationships across the full system. In particular, this operator

A is constructed by taking:
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A = X2V Σ−1U∗ (3.1)

where V , Σ−1, and U∗ are of maximum possible rank, given the size of the input

matrix. Each cell of A - that is, each aij - then corresponds to the strength of the

connection running from node i to node j. To construct a realistically sparse network,

I use the most significant 5% of these cells to construct the directed network describing

the strongest connections between system elements. For purposes of this analysis,

I prohibited self-loops within the network. This network was then be explored to

identify central nodes and the topological characteristics of the underlying system. For

one example of using a best-fit operator to identify network-based relationships, see

(41).
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Chapter 4

DMD and Financial Markets

4.1 Cross-Validated Forecasting

Constructing an effective model of financial markets using this iterative implementation

of DMD required tuning two parameters: the training set size and the model rank. To

prepare the data and account for the wide differentials between the prices of different

companies, the natural log of the price was taken to reduce the magnitude of stock

price differentials between companies. Under the methodology described earlier, it

was found that the best training set duration was 190 trading days using a model

built with five dynamic modes. This combination of parameters resulted in an average

cross-validated MAPE of 0.1005. The forecast errors for each training window and the

distribution of overall MAPEs are shown below:

36



(a) MAPEs by Cross-Validation Window
(b) Distribution of Model MAPEs

Figure 4.1: Measures of Financial Model Capability

The best-performing model (with parameter values given above) is capable of gener-

ating high-fidelity forecasts for periods of time one to four weeks into future. However,

it’s ability to project 50 trading days into the future is far more limited, showing an

average MAPE of 0.1683 (more than double that of the one-week forecasts). The sharp

spike in variability arising from these extended forecasts indicates that the functional

drivers identified in the training set begin to evolve between one and three months into

the future.

Having established the parameter values to most effectively model the behavior of

S&P 500 constituent companies, a closer analysis of the patterns of variability was

merited.
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(a) 5- and 20-Day Forecasts (b) 50-Day Forecasts

Figure 4.2: Financial Forecasts vs. Observed Values

While the model’s 5- and 20-day forecasts tend to adhere to observed behaviors,

there is a significant degree of stochasticity around periods of significant market volatil-

ity. The short-term forecasts maintain a high-level of fidelity until the crash of 2020, at

which point volatile behaviors limit one’s ability to make accurate predictions regard-

ing future trading prices. Meanwhile, the 50-day forecasts show substantively higher

variability from observed behavior (as is expected), with the greatest deviations oc-

curring after 2020. The lack of an obvious trend in the residuals lends credence to the

hypothesis that market behavior is stochastic - subject to signal-less noise - and that

accurately predicting daily volatility is particularly challenging.

4.2 Modal Analysis

4.2.1 Modal Dominance Structures

As there are over 200 steps in the cross-validated analysis of the financial market fore-

casts, providing a comprehensive review of the dominance structures of their consistent
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features is untenable. Nonetheless, they do appear to display persistent features, re-

gardless of the periods of the years in which the analysis occurred. First, the most

significant modes across time are, in general, the ”slowest” moving – that is, modes

associated with an eigenvalue with imaginary part at or near zero. Second, while

each forecast contains only 10 modes, there are no ”fast-moving” modes. Indeed, it

appears that the highest frequency modes will oscillate about once every 10 trading

years. Given that these are derived from only 170 trading days of data, the overall

system behavior may essentially be classified as composed of exponentially growing

and decaying signals with minimal seasonality. The figures below highlight two cases

of how modal dominance structures interact with different forecasts.

(a) Modal Contributions (Iteration 55) (b) Iteration 55 Forecast Capability

Figure 4.3: Iteration 175 Modal Analysis
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(a) Modal Contributions (Iteration 100) (b) Iteration 100 Forecast Capability

Figure 4.4: Iteration 100 Analysis

In both these cases, it can be clearly seen that the real modes have greater magni-

tudes than the oscillatory modes. Additionally, these images highlight a key trade-off

in model sizes. Smaller models, such as those used here, are relatively simple to in-

terpret and allow the interactions between modes to be easily assessed. However, they

result in heavily smoothed forecasts that largely ignore real-life variability. These fig-

ures also prompt a hypothesis that, at least over the relatively short time horizons

used in this work, financial markets are driven by relatively stable trends, rather than

highly volatile oscillatory behaviors.

To reinforce this hypothesis, I analyzed the behavior of the eigenvalues correspond-

ing to the dominant modes. In the figure below I plot the discrete-time eigenvalues

with non-negative imaginary component (as only the magnitude of the imaginary part

is significant in describing dynamic characteristics. These points are colored according

to the training set from which they were derived, with darker colors corresponding to

earlier times (i.e., closer to August, 2004).

40



Figure 4.5: Dominant Discrete-Time Eigenvalues

An important initial observation is that all these dominant eigenvalues, regardless

of the training set from which they were derived, are tightly clustered, indicating that

the dominant dynamics of the market are relatively stable through time. As nearly

all the eigenvalues fall on or within the unit circle, they describe stable or convergent

dynamical behaviors. Nonetheless, these modes are still capable of describing growth

behavior over shorter horizons due to constructive interference between their individual

projections. Since the dynamical behavior of the dominant modes was so consistent

through time (as evidenced by the minimal spread between eigenvalues), I did not

cluster these dominant eigenvalues to search for distinct dynamical trends.

4.2.2 Robust Market Structures

I now consider whether there are robust market structures and interdependencies that

emerge from a deeper analysis of the objects returned by the iterative DMD analysis.

In particular, as the modes describe relationships which may be difficult to visualize
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given the arbitrary ordering of companies, I consider whether there are persistent,

network-derived relationships arising from the DMD operators themselves.

To reduce the computational demands while still providing robust results, I an-

alyzed 15 randomly selected networks (from approximately 200 possible) to assess

whether persistent trends were evident. Each network contained 8000 links (just under

5% of the possible 164,025 links) with no self-loops being permitted.

The first clear similarity between all these networks was the relatively scale-free

degree distribution. For simplicity, I did not consider the differences between in-degree

or out-degree of each node (for reasons that will be discussed later). A representative

example of the degree distribution of these networks is shown in the figure below.

Figure 4.6: Representative Degree Distribution of S&P Constituent Networks

The horizontal axis simply orders the nodes (companies) from least connected to

most connected, where the degree of connection is measured by the proportion of

nodes with which a given node shares a link. Clearly, only a small proportion of nodes

(approximately 20) are highly connected, while the remainder possess a relatively small
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number of connections. This same representative network is visualized below, where

the size and color of nodes roughly correspond with their degree centrality to the

network.

Figure 4.7: Representative Financial Network Visualization

Clearly, a tiny minority of nodes act as central ”hubs” for the network – exercising

tremendous influence on the peripheral nodes. The potential drivers of network cen-

trality will be further explored in the discussion section, but it is worth noting here that

while higher trading prices do tend to correlate with increasing centrality, it appears

that factors external to price play a role.

Finally, when the 20 most central nodes (as measured by degree centrality) were

analyzed for the 15 randomly selected networks, the top five most connected nodes

remained consistent. That is, in addition to sharing similar the degree distributions,

the high-ends of those distributions were composed of the same companies.
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Chapter 5

DMD and COVID-19

I now address the potential of DMD to identify robust characteristics that drive the

spread of COVID-19 through time. I begin by discussing the results and overarch-

ing insights resulting from the cross-validated forecasting, then I address the insights

regarding latent system characteristics which emerge from a thorough analysis of the

operators and dynamic modes.

5.1 Cross-Validated Forecasting

As discussed earlier, effectively modeling the spread of COVID-19 in the US required

tuning three parameters: the number of delay-embeddings, the training set size, and

the model size. The best combination of parameters was found to be 10 embeddings, a

training set size of 28 days, and a model containing 15 dynamic modes. The correspond-

ing RMSE was 0.2281 (while it worth noting that many combinations of parameters

generated average RMSEs below 0.3). The model’s RMSEs for each forecasting period

and overall distribution of RMSEs are shown below.
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(a) RMSEs for each Cross-Validation Win-
dow (b) Distribution of Model RMSEs

Figure 5.1: Measures of Epidemiological Model Capability

As can be seen in the figures above, the 7- and 14-day forecasts show low levels of

variation from observed behaviors, only rarely exceeding an RMSE of 0.5 cases per 1000

citizens. Even the 28-day forecast shows low volatility in accuracy measure until the

rise of the Omicron variant. Another factor worth noting is that over 75% of periods

have an error rate below 0.25 cases per 1000 citizens, which in real terms is less than

1000 cases per day in a state the size of Oklahoma (arguably an acceptable error, given

the disease burden in Oklahoma). While these error rates do not compare with well-

designed and tuned compartmental models, this model’s capability is satisfactory given

its simplicity to develop, train, and tune. Further, the consistent model error measures

(excepting the onset of the Omicron variant) lead to the hypothesis that an iterative

implementation of DMD is capable of effectively describing small shifts in dynamics

(e.g., progressive vaccination deployments or evolving public health interventions).

Before continuing the analysis of the best-fit models, a brief comment on the impact

of parameters on the forecast accuracy is warranted. Given the noisiness of the system,

increasing the number of embeddings generally improved the forecast accuracies (al-

though the marginal improvement was much smaller after the number of embeddings
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surpassed 7). Further, while training sets of approximately one month were most ac-

curate, the size of the training set was less significant to model performance than the

number of embeddings used. Additionally, while the most accurate model leveraged

the maximum 15 modes, using more complex models did not always result in more

accurate models, which speaks to the danger of overfitting DMD models.

5.1.0.1 Time-Varying Errors

While consistently high levels of forecasting accuracy are desired, insights may be

derived from analyzing periods of significant volatility. Based on Figure 4.2(a), the

three periods of greatest volatility roughly correspond to October 2020 through January

2021, August 2021 through October 2021, and December 2021 through January 2022.

The figure below show the 7-, 14-, and 28-day forecasts for each day as compared

with the true values to provide more granular insights into the model’s time-varying

accuracy.

(a) 7- and 14-Day Forecasts (b) 28-Day Forecasts

Figure 5.2: COVID Forecasts compared with Observed Values

These images prompt two thoughts which will inform future investigation into the

DMD’s forecast. First, it appears that (especially for the 14- and 28-day forecasts)

46



the model is more likely to produce forecasts orders of magnitude lower than the

observed disease burden. While the causes of this consistent underestimation merit

further investigation, it certainly implies that the dynamics identified by DMD decay

more rapidly than in reality. Second, as the 7-day forecast closely follows the observed

disease burden, it seems reasonable to argue that the forces driving the disease spread

over the prior four weeks persist for at least an additional week. That is, the dynamical

evolution of COVID-19 is a moderately-paced process - one day will not generally show

dramatic change.

5.1.1 Adjusting for Omicron

Before advancing to a detailed analysis of the dynamic modes of the system, as the

largest deviations in forecast accuracy arose during the initial Omicron surge, I in-

vestigated whether the optimal choice of parameters would change with the exclusion

of the Omicron data. That is, I assessed if excluding the largest source of variability

would indicate that the driving dynamics of the disease’s spread were more stable than

found earlier. To assess this hypothesis, I followed the same analysis process outlined

previously while truncating the analysis at December 1, 2021.

While the resulting models had, on average, lower RMSEs (consistently less than 0.2

cases per 1000 citizens) regardless of parameter values, the best-performing parameters

remained unchanged, and the trends in parameter effects remained. Incorporating

more delay-embeddings generally increased the cross-validated accuracy while longer

training sets generally resulted in lower cross-validated accuracies. Consequently, it

does not appear that the Omicron variant caused a shift in the values of the best-fit

parameters.
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5.2 Modal Analysis

5.2.1 Modal Dominance Structures

To begin analyzing the impacts of the individual modes, I first identified the domi-

nant modes as measured by relative contribution to a forecast measurement. In gen-

eral, modes with high-frequencies (small imaginary component) or associated with real

eigenvalues were dominant; however, during certain windows, slower-moving modes

also had substantive impacts. Two examples are shown below. The left figure high-

lights the relative importance through time of each mode. The points show the norm of

each mode at the specified time step. The right figure compares the resulting forecast

with the observed values.

(a) Modal Contributions (Iteration 13) (b) Iteration 13 Observed Data

Figure 5.3: Iteration 13 Modal Analysis
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(a) Modal Contributions (Iteration 27) (b) Iteration 27 Observed Data

Figure 5.4: Iteration 27 Modal Analysis

These figures highlight a persistent trend across all time periods, that modes as-

sociated with real eigenvalues generally have the largest absolute contribution to a

forecast (generally at time 0). It is also clear that as the time-step advances, the ab-

solute contribution of each mode diminishes. While this trend follows the observed

characteristics of financial markets’ models, the slower modes do appear, at least at

certain periods, to play a more significant role.

Both figures demonstrate the capability of the model to generate forecasts which

closely adhere to the observed dynamics of disease transmission. While Figure 5.4(b)

demonstrates the model’s capability of capturing almost monotonic behavior, Figure

5.3(b) highlights the model’s ability to depict oscillatory behavior as well, even when

only trained on a portion of the wave. It is worth observing that while the observed

behavior captured in Figure 5.3(b) looks like a single sinusoidal wave, the decomposition

models it as a linear combination of several functions, each with some growth and

oscillatory components. Combining this figure with 5.3(a) also highlights the insight

that the importance of a mode will vary through time, necessitating an evaluation of

’dominance’ across a broad time horizon.
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Both these figures also highlight a persistent trend of ”slow-moving” modes (those

with imaginary component near 1) having less impact on the forecasts. This likely

occurs because these modes are associated with eigenvalues with small real compo-

nent, indicating that (a) their growth rate will be small and more influenced by their

oscillatory frequency.

Having identified the dominant triplets in the DMD forecasts, I analyzed the dom-

inant eigenvalues alone, independent of their corresponding modal structures. These

discrete-time eigenvalues are shown on the complex plane as compared with a unit

circle below. The points within the unit circle correspond to stable behavior, while

those outside the unit circle will, given adequate time, produce diverging behaviors.

The eigenvalues are colored according to the time-stamp of their training data set, with

darker colors associated with times earlier in the pandemic.

Figure 5.5: Dominant Eigenvalues on the Complex Plane

The eigenvalues corresponding to the dominant modes in the cross-validated time-

steps predominantly fall within the unit circle, supporting the hypothesis that the

50



system persistently displays stable, convergent behavior. Further, as a majority of

these eigenvalues have negative real part, it appears that rapid oscillations characterize

the behavior of many modes. Despite the rapid growth associated with the Omicron

variant, no dominant eigenvalue lies outside the unit circle, implying that even in the

most extreme case, the growth rate of case counts was somewhat limited. Further,

the model uncovers numerous modes that display a range of oscillatory behaviors;

their frequencies range from every 24 days up to slightly more than 2 years. As the

frequencies were obtained from only 28 days of training data, additional analysis is

needed to determine the robustness of these findings.

To assess whether the dominant eigenvalues should be clustered, I assessed an

agglomerative clustering (using a Ward linkage) dendrogram to identify an appropriate

number of groups. The dendrogram resulting from this analysis is shown below.

Figure 5.6: Agglomerative Clustering Dendrogram for Dominant Eigenvalues

Based on the figure above, there appears to be good separation among distinct

groups of eigenvalues using either two or three clusters. I ultimately decided to use
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three clusters as the dominant eigenvalues describe a wide range of behaviors. These

three clusters are plotted on the complex plane below.

Figure 5.7: Eigenvalue Clusters

One cluster of eigenvalues (colored purple) primarily contains the modes governed

by negative, real-valued eigenvalues (which describe rapid oscillations quickly converg-

ing toward zero). One cluster (colored yellow) contains a dense cluster of eigenval-

ues with negative real-component near the boundary of the unit circle, associated

with slightly slower oscillations than those in group 1. Finally, the third cluster (col-

ored sage) contains a more disperse collection of eigenvalues, which generally result in

smoother oscillatory behavior than those observed in the other clusters. A representa-

tive visualization of the dynamics from each cluster is given below.
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Figure 5.8: Characteristic Dynamics of Cluster 1

Figure 5.9: Characteristic Dynamics of Cluster 2
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Figure 5.10: Characteristic Dynamics of Cluster 3

Even a cursory analysis of the above visualizations highlights the remarkable vari-

ability in day-to-day forecasts from these modes. In contrast to the comparatively

smooth dynamics of the S&P 500 constituents, these modes and eigenvalues highlight

the significant stochasticity and noise in the input data set. The high day-to-day

variance of these modes also explains the necessity of more complex models than the

financial markets; more modes must be combined to accurately describe the evolving

burden of COVID-19.

5.2.2 Interstate Network Structures

Next, I considered the network-derived relationships between US States. I constructed

the operator-derived networks following the approach described in Chapter 4, here with

120 connections per network. As these networks are smaller and are generated from a

smaller number of analysis periods, it was feasible to perform preliminary analyses on
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each network. I begin by discussing the overarching trends in the degree distribution

and topology of these networks.

First, the network topology continues to resemble the ’scale-free’ property (although

the effect is less pronounced than in the financial networks). Where the financial net-

works persistently modeled this behavior, these epidemiological networks occasionally

display a polynomial, rather than exponential, degree distribution as is seen in the

figures below.

(a) Iteration 45 Degree Distribution (b) Iteration 27 Degree Distribution

Figure 5.11: Emergent Network Degree Distributions

Clearly, the network generated from the 45th cross-validated analysis step has a

slower rate of decline in the connectivity of nodes than the network from the 27th

analysis step. The images are further clarified if one considers plots the resultant

network, as can be seen in the figure below.
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(a) Iteration 45 Network (b) Iteration 27 Network

Figure 5.12: Emergent Network Visualizations

The above figure highlights two key features of the emergent networks mapping the

strengths of the connections between states. First, there is a relatively large, dense

cluster of states at the center of the network. This cluster is larger in the 45th cross-

validation analysis step, when the slope of the degree distribution was more gradual.

In both cases, the central cluster is far larger (in relative terms) than that identified

in the financial networks, indicating a more disperse distribution of network influence.

Second, especially in the 45th iteration, a large proportion of states are completely

disconnected from the other states.

Having assessed the topology of these generated networks, I assessed whether spe-

cific states were routinely highly central to the network. The first observation that

arises from this analysis is that no state is persistently central to the network. The

state with the highest network centrality (Rhode Island) has an average degree cen-

trality of only 0.29 - meaning that, on average, it shares connections with only 15

other states. A Choropleth map showing the average network centrality of each state

is shown in the figure below.
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Figure 5.13: Average Network Centrality of US States

This figure is striking in that states that one might anticipate to be particularly

significant – e.g., California, Texas, or New York – have comparatively low centrality

while smaller states like Nebraska, Alabama, and Louisiana are identified as exercising

particular importance. To further emphasize the significant variance in state centrality

across time steps, I created a Ridgeline plot of the 10 most central states (on average).
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Figure 5.14: Distribution of Network Centrality Measure

The above figure emphasizes that, even among the most central states, the mode

of their centrality occurs near zero. That is, their higher average centrality ratings

emerge from longer right tails of the distribution, rather than a meaningful shift in the

mode.
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Chapter 6

Discussion and Conclusions

Having outlined the core results from both case studies, I now discuss the most im-

portant implications of the results, some limitations, practical application areas, and

several potential avenues for future analysis and study.

6.1 Key Takeaways

DMD produces models with a rich array of outputs which require significant investi-

gation to obtain actionable conclusions. Here I discuss key implications arising from

the results discussed in the prior two chapters, with particular emphasis on how these

results may be leveraged to improve system understanding and, possibly, system con-

trol.

6.1.1 Financial Markets Discussion

While the accuracy of the financial model varied through time, a fascinating feature of

the model was its low complexity. While a cursory glance at the overall data reveals

significant day-to-day volatility, the best-performing DMD model largely ignored this

volatility, instead rewarding a focus on long-term trends. Indeed, more complex models,

with greater capability of capturing volatility, consistently under-performed simpler

models, indicating that daily price volatility is a function of noise, not a meaningful

signal. The success of low-rank models further indicates that financial markets, at
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least when observed over a long time-horizon, display low-rank characteristics. Such

a conclusion also aligns with the existing literature, in which comparatively simple,

statistical models like ARIMA can consistently compete with state-of-the-art neural

networks.

Another fascinating feature of DMD’s financial models is the consistency of the dom-

inant dynamics. In spite of periodic downturns and intense periods of daily volatility,

the dominant eigenvalues are tightly clustered. This remarkable consistency reinforces

the importance of long-term trends in describing market behavior rather than daily

volatility. Further, the robust consistency of the dominant eigenvalues implies that

the real challenge in financial modeling is in describing daily fluctuations (as ARCH-

derived models attempt to do) rather than depicting long-term trends. All this leads

to the conclusion that, while financial markets are certainly complex systems, their

complexity is a product of noise, not an intractable signal.

Considering now the properties of the emergent networks derived from the DMD

operators, the most persistent characteristic is its scale-free topology. A scale-free

topology is characteristic of many real, complex systems ranging from power grids to

social networks, so its emergence in this context is unsurprising. More importantly,

regardless of the training period from which the network was generated, the dominant

nodes (companies) remained overwhelmingly consistent. In particular, the most signif-

icant companies seemed to be involved in the financial sector – whether as traditional

financial institutions or more tangentially as mortgage companies. Additionally, while

increased trading price does appear to correlate with greater network centrality, price

alone is insufficient to explain whether a particular company exercises an out-sized

influence on other community members. Consider the figure below, relating average

network centrality to average trading price through time.
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Figure 6.1: Network Centrality as a Function of Trading Price

This figure shows a collection of companies which were, during at least one randomly-

selected time step, among the 20 most central companies in the network. In total,

approximately 80 companies are included in the figure. While the highest-valued com-

panies in the figure are consistently central to the network, many lower-priced stocks

(with average prices over the 18-year period of $250 and less) also have high average

levels of centrality. Further exploration into additional explanatory factors driving a

particular companies influence is certainly warranted, as it could provide insights into

fundamental drivers of market behavior.

Finally, as was noted earlier, the relative centrality of each node was relatively sta-

tionary through time. That is, there did not appear to be dramatic swings where a

peripheral node moved to a central position or vice versa. While additional analysis is

warranted to explore the possible drivers of this persistent behavior, it is worth con-

sidering that the companies included in this analysis are all long-standing, successful,

and highly influential institutions. Further, given the relative stability of the S&P
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500 Index, persistent company-to-company relationships make intuitive sense, as these

could facilitate the S&P 500’s low-volatility behavior.

6.1.1.1 Future Applications of DMD to Financial Models

While DMD may not generate forecasts with the accuracy of other state-of-the-art

models, the wide-ranging insights that arise from DMD add substantively to its value

and offer many opportunities for future research. Two areas in particular seem par-

ticularly ripe for future exploration. First, I believe there is significant potential for

exploring DMD extensions to improve the cross-validated accuracy of this modeling

approach. As was noted earlier, my models routinely discarded day-to-day volatility

in favor of adhering to long-tern trends. However, daily volatility is a critical feature

in modeling financial markets, and one that ought not be discounted. Two existing

extensions of DMD – namely multi-resolution DMD (mrDMD) and DMD with Control

(DMDc) have the potential to improve DMD’s ability to handle increased volatility.

mrDMD allows signals from multiple time-horizons to be analyzed, perhaps facilitat-

ing the collection of signals that, using my iterative approach, were discarded as noise.

Alternatively, DMDc allows external factors (for example, interest rates and other gov-

ernmental interventions) to be included in the analysis, thereby enhancing the depth

and sophistication of system understanding.

Second, additional exploration of the networks generated from the best-fit opera-

tors is warranted. In this work, I performed an exploratory analysis of the similarities

in network structures through time. While it was evident that the emergent net-

works showed scale-free tendencies, with certain companies routinely acting as hubs,

I have barely scratched the surface of the potential for network-specific analysis to

elucidate latent characteristics of financial markets. Comparing the emergent DMD

networks with those generated by alternative means (e.g., via the contracts and cash
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flows between companies) could be leveraged to validate the fidelity of these generated

networks. Further, these networks could be tested to evaluate their robustness to un-

expected downturns, the results of which could be readily compared with real economic

turbulence.

6.1.2 COVID-19 Modeling Discussion

As described in chapter 5, the 7- and 14-day cross-validated COVID-19 forecasts con-

sistently held to RMSEs of less than 0.15 cases per 1000 citizens. While the DMD

models lack the clear and specific interpretability of compartmental models, they were

insensitive to poorly tuned parameters and capably described observed system dis-

ease burden through a range of disturbances. Given these robust results, one may

reasonably argue that DMD can effectively handle the real-world variability arising

from a wide range of unconsidered inputs, including vaccines, evolving governmental

regulations, and even (comparatively) mild disease variations. The capability of this

approach is directly attributable to the short training periods which prevent outdated

dynamics from overwhelming more recent behaviors.

Indeed, given the high accuracy of forecasts even two weeks into the future using

only one month of training indicates that shifts in the disease burden develop smoothly.

As only the arrival of the Omicron variant was capable of decimating the accuracy

of the DMD forecast, this iterative implementation readily handled shelter-in-place

orders, vaccine roll-outs, and other sociological factors. While this fact could be driven

by COVID-19’s relatively long incubation period, this feature alone seems unlikely to

explain these slow changes in disease evolution.

This line of inquiry points to a potential extension of this work. Given that DMD’s

approximation of the dynamics of COVID’s spread are entirely described by the best-fit

operators, one could describe the characteristics of these operators and how they evolve
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through time to provide a more granular and quantitative description of COVID-19’s

evolving dynamics. In particular, this approach could be leveraged to tease out the

effect sizes of specific interventions and possibly how these effects vary across states.

Considering now the network topology of the operator-derived networks, two points

deserve further elaboration. First, unlike the networks derived from the S&P 500 data,

no state was consistently identified as consistently central to the network. Indeed, the

mode of each state’s frequency was barely higher than zero – indicating that the most

likely occurrence was a state sharing one or two edges with additional states. Further,

there did not appear to be a temporal trend in the centrality of any state. Consider,

for example, the centrality of Rhode Island plotted in time-sequential order.

While there are three distinct peaks in the centrality of Rhode Island in time,

additional analysis would be required to assess whether this behavior is associated

with meaningful insights into the burden of COVID-19 across the US as a whole. One

possible driver of this behavior is that Rhode Island, given its relatively high population

density and proximity to major cities like New York had spikes in COVID-19 cases

slightly before these same peaks struck the remainder of the US. However, given that

Wyoming (a highly disperse, isolated state) also had a relatively high average centrality,

such an explanation fails to account for all possible factors driving a state to become

particularly central to the network.

The second point worth considering is the relatively large size and density of the

central ”cluster” of states within the networks. Traditional scale-free networks have

a much sparser collection of central hubs, indicating that describing the network of

connections between states as scale-free is likely inaccurate. Since traditional metrics

of ”importance” - like GDP, population, or population-density - do not seem to explain

the number of connections shared by a given state, identifying a descriptive topological
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Figure 6.2: Rhode Island’s Time-Varying Centrality

characterization of these networks and a corresponding interpretation could elucidate

latent factors which promote or impede disease transmission within and across state

lines.

6.1.2.1 Opportunities for Future Work

The first clear opportunity for additional exploration of the COVID-19 data set is ex-

panding the network analysis of the operator-derived graphs. Given that including 5%

of the edges resulted in networks that were not fully connected, identifying the point

at which fully connected graphs emerge could provide insights into the degree to which

one state’s policies or disease burden influence others. Additionally, permitting self-

loops could elucidate whether individual states are the most significant influence on

their disease burden. As well, probing the relationships between the training data and
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the resultant networks would aid in interpreting the networks and assessing their ro-

bustness to noise in the data – a desirable feature in such networks, given the variability

in data quality in emerging epidemics.

Other opportunities for future work include adding additional measures to the data

set (e.g., deaths from COVID-19). These measures would allow relationships between

the different measures to be quantified while also providing insight into the quality of

different data sources. An additional area for exploration is in applying this method-

ology to more granular data (e.g., county-level data) or data from other countries.

Exploring whether this analytical approach is capable of producing meaningful results

across a range of scenarios is an indispensable step in demonstrating its applicability

and value.

6.2 Areas of Practical Application

While this work has been shown to capably model a range of behaviors across a spec-

trum of test cases, I believe that it has potential to inform real-world decisions and

enhance the insight available to decision-makers in a variety of fields. Many practical

applications undoubtedly exist; for purposes of this work, I will focus on one recently

relevant area: evaluating other models.

At the outset of the COVID-19 pandemic, researchers across the world, in an ef-

fort to get ahead of the disease’s unpredictable spread, attacked modeling COVID-19

in numerous ways, with varying degrees of success. Given the dearth of information

available regarding how the disease might spread and the many conflicting opinions

voiced by experts in the field, decision-makers had to guess at which models were best.

This uncertainty featured prominently in the public discourse and furthered the anx-

iety and conflict which characterized the early days of the pandemic. While I do not
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claim that the the iterative approach to DMD proposed in this work would eliminate

uncertainty regarding which models were most accurate, it has illustrated that a short

period of training data, even early in the pandemic, could accurately describe disease

burden one-to-two weeks into the future. This fact leads to a practical use of itera-

tively applied DMD: helping decision-makers identify best-performing models under

uncertain conditions. While this tool cannot eliminate uncertainty, it could certainly

inform a decision-maker’s modeling choices and enhance the utility of their chosen

interventions.

6.3 Conclusion

This work implements the traditional, SVD-based DMD algorithm in a novel, iterative

framework to facilitate accurate forecasting of complex system behaviors without sacri-

ficing DMD’s capability of identifying key explanatory components of system behavior.

In addition to providing a thorough review of the DMD algorithm and related mathe-

matical tools, this work describes a novel alteration on the traditional DMD approach

to emphasize forecasting capability.

This approach was tested on two distinct data sets - a financial data set comprising

18 years of data on S&P 500 constituents and an epidemiological data set containing 2

years of daily US State COVID-19 case counts. Despite the clear distinctions between

these data sets, the DMD algorithm was shown to be capable of consistently generating

forecasts with close adherence to observed behaviors. While alternative modeling ap-

proaches which specialize in future-state prediction may create more accurate models,

this iterative implementation of DMD still permitted a system-identification analysis

to be performed.

67



In particular, using the outputs from the DMD approximations, dominant dynami-

cal trends were identified and robust network structures between system elements were

discussed. Distinct differences in the dynamical behavior between the financial and epi-

demiological data were identified. DMD was able to describe the trends in the financial

data using low-rank models, which tended to emphasize smooth, growth-oriented be-

haviors. In contrast, far more complex models were required to describe the behaviors

observed in US COVID-19 cases, perhaps indicating that stochasticity and poor data

quality were significant features of the data. One particular strength of iteratively

running DMD was evidenced in the network analysis of financial markets, as certainly

companies were persistently identified as critical nodes. These companies were gener-

ally members of the financial sector, but their stock price alone cannot explain their

persistent centrality to the network.

This work has demonstrated the potential of DMD to be utilized in contexts where

limited data is available and where rapid evolution of system behavior is expected.

Future explorations of this approach to implementing DMD may identify methods

of quantifying changes in dynamical behavior and produce standard approaches to

analyze and interpret operator-generated networks. The operator-theoretic approach

to dynamical systems analysis used as the theoretical foundation for this work shows

significant promise for enhancing the tools and approaches used for modeling a wide

range of phenomena.
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