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Abstract

Deep learning (DL) models have become immensely popular in recent years, with

many models creating accurate and high-skill predictions for a wide range of at-

mospheric phenomena. Using DL models for predicting convection and associated

hazards has experienced some of the most substantial gains in skill. The National

Severe Storms Laboratory (NSSL) has created the experimental Warn-On-Forecast

System (WoFS) to increase warning lead times through probabilistic short-term fore-

casts of individual thunderstorms. Currently, the WoFS has a shortcoming of missing

storms due largely to poorly initialized environments. To help mitigate this issue, we

developed a U-Net deep learning model to predict locations of thunderstorms trained

on WoFS model data consisting of environmental data, such as CAPE and CIN, and

intra-storm variables, such as WoFS ensemble average, mean, and max composite

reflectivity and updraft and downdraft velocities. To address the issue of poorly

initialized environments and lagging data assimilation, the model also has access to

Multi-Radar/Multi-Sensor System (MRMS) data valid at the WoFS initialization is

also used as an input. To evaluate the skill of the DL-based guidance, different base-

line methods were tested to ensure a substantial performance increase. Comparing

the performances of the WoFS baseline and DL model on an independent testing

dataset, we were able to increase the maximum critical success index from 0.17 to

0.27, along with increasing the reliability and discrimination of the predictions. Us-

ing MRMS composite reflectivity proved to be vital for the DL model’s performance

when predicting values ≥ 40 dBZ. Through this work, we demonstrate DL models

are an effective and efficient solution to improving the skill of the WoFS forecast of

convection with a 30-minute lead time.
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Chapter 1

Introduction

Accurate and precise prediction of thunderstorm location is vital to the partners and

stakeholders within the weather enterprise. Thunderstorms impact almost every as-

pect of the US economy. In 2011, thunderstorms and associated hazards cost $47

billion in economic losses (Sander et al. 2013). Through accurate predictions of thun-

derstorms, some of these economic impacts can be lessened or avoided. Whether

NWS forecasters creating skillful forecasts and communicating them with local gov-

ernments during potentially severe weather outbreaks, the Weather Prediction Center

creating rainfall forecasts for nationwide communities, or aviation partners creating

safe flight plans to avoid locations of intense turbulent air, predicting the location

of thunderstorms is essential to fulfilling NOAA’s future vision of creating resilient

communities and economies.

Thunderstorm prediction heavily impacts the aviation sector. Aviation forecast

discussions (AFDs) and thunderstorm forecasts from local NWS weather forecasting

offices (WFOs) are used to avoid convection-induced turbulence and to uphold strict

safety standards expected within the industry. Fast-forming convection can quickly

and without notice impact the safety of an airplane. The incident on December 18,

2022, is an example of how quickly convection-induced turbulence can impact the

safety of passengers on board a flight. According to the NTSB’s preliminary report,

Hawaiian Airlines Flight 35, an Airbus A330, was on the final approach reporting

clear conditions visually and through the on-plane weather radar when, ’like a smoke

plume,’ a cloud shot up in front of the plane. Within seconds the plane encountered
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severe turbulence, resulting in 6 major injuries and 19 minor injuries (National Trans-

portation Safety Board). Multiple studies have looked into the impacts of weather

on aviation accidents (Cornman and Carmichael 1993; Kaplan et al. 2005; Lane et al.

2012; Williams 2014) and have found that convection has a major role in turbulence-

related aviation accidents. Up to 60 % of turbulence-related accidents were linked

to convection (Cornman and Carmichael 1993), making it extremely important for

forecasters and models to accurately communicate regions where thunderstorms are

located or expected to form within a short time frame to mitigate the impacts of

convection on operation teams on the ground and in the air.

Forecasting convection in the near future (within 60 minutes) is often referred

to as nowcasting. Traditionally, nowcasting is performed through extrapolation of

current observations to predict locations and intensities of storms. These statistical

forecasting methods often lack the incorporation of numerical weather prediction

(NWP) or physics, leading to rapid performance decay as lead times increase (Sun

et al. 2014). By merging these nowcasting techniques and NWP, performance on

longer times scales has increased (Browning 1997; Bowler et al. 2006). The NSSL has

created the Warn-On-Forecast System (WoFS) to address the limited number of short-

term probabilistic forecasting tools available to operational forecasters. The WoFS is

an experimental, rapidly updating, high-resolution ensemble model system designed

to provide probabilistic forecasts for individual thunderstorms and to increase the

warning time for hazardous weather associated with convection (Stensrud et al. 2009,

2013). The WoFS is focused on filling the ”watch-to-warning” gap and providing

forecasters with probabilistic forecasting data on short temporal and spatial scales.

WoFS forecasts have already been used to inform operational products used by the

NOAA NWS Storm Prediction Center, Weather Prediction Center, and numerous

NWS WFOs (Wilson et al. 2021). Feedback on the WoFS from NOAA’s Hazardous
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Weather Testbed Spring Forecasting Experiment and Aviation Weather Testbed have

also been overwhelmingly positive (Wilson et al. 2021).

Figure 1.1: Comparison of the WoFS ensemble probability for composite reflectivity

≥ 40 dBZ, 30 minutes after initialization (denoted ’Forecasted’) and actual MRMS

composite reflectivity values (denoted ’Observed’) at the forecast valid time. Black

blobs are MRMS composite reflectivity values greater than 40 dBZ. The forecast is

valid for 24 May 2020, at 2030 UTC, and was initialized at 2000 UTC on 24 May

2020.

Figure 1.1 is an example of output from the WoFS ensemble probability of com-

posite reflectivity ≥ 40 dBZ. If a member’s predicted reflectivity is ≥ 40 dBZ, the

member is assigned a 1 and a 0 otherwise. An average across all ensemble members

is computed to create a probability field. While the results from the WoFS have been

promising, known issues have limited the performance of the system (Guerra et al.

2022). Phase errors, positive frequency bias, and poorly initialized environments are

problems currently impacting the WoFS predictions. We believe utilizing a machine

learning model to help calibrate the WoFS prediction is one way of addressing these

problems.

3



Machine learning has been used both within the WoFS (Flora et al. 2021; Clark

and Loken 2022) and outside of the WoFS (Lagerquist et al. 2020, 2021; McGovern

et al. 2017; Cintineo et al. 2020; Gensini et al. 2021; Kotsuki et al. 2019) to increase

prediction skill of convection and the associated hazards. The goal of the current

project is to improve the WoFS ensemble probability of composite reflectivity ≥ 40

dBZ using a DL model. The WoFS outputs probabilities for reflectivity values ≥ 40

dBZ at each grid point, showing a strong overprediction bias. We hypothesized that

using a DL model would lead to an increase in performance. This is due to previous

success with utilizing DL models to increase skill for prediction of convection within

the nowcasting time-scale (Lagerquist et al. 2021; Han et al. 2020; Li et al. 2023).

The objective of this thesis is to display how the use of a deep learning model

can increase the skill of thunderstorm location prediction utilizing the WoFS model

output and MRMS composite reflectivity. Also included in this thesis is an outline of

the current literature pertaining to this project, which includes nowcasting methods,

the WoFS model, and deep learning models for atmospheric prediction. A thorough

overview of the data, which includes the steps of gathering, manipulating, and pre-

processing data into multiple datasets in that a DL model could extract information.

Preprocessing steps include creating a patching scheme, normalization of the data,

and splitting the data into training, validation, and testing datasets. Due to the iter-

ative nature of this project, multiple datasets and patching procedures were used to

create multiple DL models. Each of these iterative steps improved upon the baseline

and fixed issues observed in the previous DL model. Using the best-performing DL

model for each iteration, different case studies will be shown to display the perfor-

mance of the predictions and how they performed against the baseline. Finally, there

will be a discussion on the explainability of the DL model and future work. The

contributions of this thesis will bring together literature pertaining to the use of DL

with convection, compare and contrast different approaches to achieving the goal of

4



this project, and show the best DL model and various case studies. These case studies

will display the strengths and shortcomings of the models along with an analysis of

the model’s performance.
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Chapter 2

Literature Review

2.1 Nowcasting Thunderstorms

Nowcasting techniques for convection have been in use operationally since the 1950s

by extrapolating observations (Ligda 1953). Since then, nowcasting using different

algorithms and methods has been devised to predict the weather in the short term.

According to Wilson et al. (1998), there are two different techniques for extrapolation:

steady-state assumption and following the trend of size and intensity. Early iterations

of the steady-state assumption would examine two radar images at different times and

use cross-correlation to determine the average storm motion (Hilst and Russo 1960;

Noel and Fleisher 1960). This assumed no change in storm intensity or overall storm

motion. The NSSL began to explore individual cell motion in the 1970s (Barclay

and Wilk 1970; Wilk and Gray 1970; Zittel 1976). In this technique, cells were

identified through radar images and computed into centroids. An algorithm was then

applied to each centroid to determine the velocity at each cell. Dixon and Wiener

(1993) developed the TITAN (Thunderstorm Identification, Tracking, Analysis, and

Nowcasting) method in 1993. This system was able to match storm objects at different

radar scans and forecast the future with some skill. This system was also novel because

it could merge and split storm cells. Therefore, creating storm objects is an effective

approach for short-term forecasting. In 1998, the SCIT (Storm Cell Identification

and Tracking) algorithm was devised using WSR-88D radar information (Johnson

et al. 1998). This algorithm identified 68% of storms with reflectivity values greater

than 40 dBZ and 96% of storms with reflectivity values greater than 50 dBZ. The

6



incumbent system was only able to identify 24% and 41%, respectively. The SCIT was

accurate as it tracked 90% of all storm cells. While these algorithms were important

for determining storm location in the near future, they could not forecast intensity.

Tsonis and Austin (1981) attempted to use the TITAN system to extrapolate

storms into the future to determine echo size and intensity for a 30-minute forecast.

While the forecast was able to increase the Probability of Detection (POD), it also

increased the False Alarm Ratio (FAR) (Wilson et al. 1998). Overall, traditional

nowcasting algorithms used current observations to predict locations and intensities

of storms. These statistical forecasting methods often lack the incorporation of nu-

merical weather prediction (NWP) or physics, leading to a fast performance decay

when lead times increase (Sun et al. 2014).

By merging NWP and nowcasting techniques, the strengths and weaknesses of

both approaches should yield an overall improved forecast for all forecasting times

(Browning 1997; Bowler et al. 2006). Historically, NWP has struggled with short-

term forecasting, while nowcasting has been very skillful within 60-90 minutes. Fig-

ure 1 from Sun et al. (2014) displays the increase in skill using a blended method of

both NWP and nowcasting. The Nimrod (Nowcasting and Initialization for Modeling

Using Regional Observation Data System) system was one of the first attempts at

creating a hybrid approach (Golding 1998). The system would use information from

both observation and NWP model output for the different analyses, and the forecast

used extrapolation of the NWP model’s prediction to create a new forecast. Results

from the Nimrod system beat both persistence forecasting and raw NWP predictions.

More recently, convection-allowing models (CAMs) have been developed and utilized.

These models have smaller grid spacing, allowing convective processes to be explicitly

represented. These models have performed with greater accuracy than global models,

which do not have the spacing which allows convection processes to be represented.

While these models are useful in adding skill to thunderstorm forecasting, the models
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often have a period of spin-up which result in the model’s forecast struggling for now-

casting (Sun et al. 2014). This is due to interpolating the coarse resolution analysis

into the finer resolutions seen in the CAM, often called a cold start. While uses of

hybrid algorithms have improved the skill of forecasts, there are still problems with

short-term forecasting and combining the NWP and nowcasting results in an optimal

manner.

To improve on this problem, recent works have used DL models. Lagerquist

et al. (2021); Han et al. (2020); Li et al. (2023) have all used deep learning models

to nowcast convective storms. Lagerquist et al. (2021) used a U-Net trained on

multispectral brightness-temperature images to predict convection out to 120 minutes.

This approach outperformed persistence forecasting for lead times ≥ 60 minutes and

provided a thunderstorm climatology closer to reality for all times. Han et al. (2020)

utilized a Convolutional Neural Network (CNN) to incorporate 3-D Doppler radar

for short-term forecasting of convective storms. In this case, multiple models were

able to improve upon the performance of the baseline. Li et al. (2023) combined

GOES-16 geostationary satellite infrared brightness temperature, lightning flashes

from the geostationary lightning mapper, and vertically integrated liquid into a U-

Net to predict convection and lightning out to 90 minutes. By incorporating the

three variables into a DL model, the performance decay characteristic of nowcasting

forecasts was delayed, and the forecast of lightning was improved. Overall, nowcasting

has progressed from steady-state projections to incorporating observations and NWP

predictions into deep learning models. The deep learning models can increase the skill

within 60 minutes, which is when the nowcasting algorithms are strong, and past 60

minutes, when the NWP models are strong.
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2.2 Warn-on-Forecast System Previous Works

The Warn-on-Forecast System is an experimental model system with the goal of cre-

ating rapidly-updating probabilistic ensemble analysis and forecasts on a convective

scale (Stensrud et al. 2009). The motivation for this system was initially to increase

warning times for tornadoes; then, the goal was expanded to all associated hazards

and longer lead times. Currently, warnings associated with thunderstorms are only

issued on visual representations or proxy signatures. Through the use of a rapid radar

data assimilation system, forecasters could have an operational product to bridge the

gap from ”watch-to-warning” and increase lead times on severe hazards (Stensrud

and Wandishin 2000; Stensrud et al. 2009).

Since the initial paper in 2009, many papers have been published on the WoFS and

its advancements. Stensrud et al. (2013) described the progress and challenges of the

WoFS; some of the progress included assimilating observations from multiple radars

into a single analysis and creating convective-scale forecasts from a model ensemble.

Through evaluations at the HWT, it was found that forecasters had greater confidence

in issuing warnings when using a model system that used 3DVAR system for data

assimilation. Similarly, forecasters felt more confident in warning operations with

access to short-range ensemble forecasts. Stensrud et al. (2013) suggested that lead

times would increase if forecasters had access to the different products the WoFS

would aim to provide.

More recently, Guerra et al. (2022) examined the accuracy of the WoFS by storm

age using object-based verification. The WoFS is a rapidly-updating ensemble model

system designed for the convective scale, so the ability to assimilate storms quickly and

accurately is paramount to the model’s performance relative to other NWP systems.

The results showed a sharp performance separation between established and newly

formed storms. Storms that were an hour old leading into a new initalization of the

model scored a probability of detection (POD) of 0.7-0.9. Storms that formed 2-3

9



hours after initialization of the model scored a POD of 0.3. Therefore, the WoFS

is very good at predicting convection already assimilated into the model, while it

struggles to predict convection not yet present at initalization.

Traditional machine learning (ML) methods have been successfully applied to

the WoFS. Flora et al. (2021) used different traditional machine learning models to

predict the overlap of WoFS 30-minute ensemble tracks with tornado, severe hail, or

severe wind reports. In this paper, random forest, gradient-boosted trees, and logistics

regression algorithms were all trained and tested on different WoFS-based features.

Those features were categorized into WoFS intra-storm variables, environmental vari-

ables, and morphological attributes. The ML methods increased the prediction of all

three hazards against the calibrated, surrogate severe baselines. The biggest increase

was observed in severe wind prediction, where the Brier skill score was almost double

that of the baseline prediction.

Clark and Loken (2022) also used an ML method with the WoFS to increase

the skill of the WoFS forecast. In this paper, a random forest model utilized the

WoFS model output of both intra-storm variables and environmental variables to

predict severe weather probabilities at 0-3 hour lead times. The ML model created

reliable probabilities and significantly outperformed the baseline prediction. Results

from the model also displayed that intra-storm variables were far more important

than the environmental variable in short-term severe weather prediction. They found

that including the smoothed UH fields from each ensemble member improved predic-

tions. Clark and Loken (2022) and Flora et al. (2021) displayed that using traditional

machine learning methods on the WoFS output can lead to significant gains in per-

formance for predicting severe weather and the associated hazards.
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2.3 Deep Learning and the Atmosphere

Traditional machine learning and deep learning models have become increasingly

popular in recent years. According to Figure 1 in Chase et al. (2022a), machine

learning meteorology papers have been quickly increasing since 2015, and papers using

deep learning methods have increased exponentially since 2019. Deep learning has

been very successful in predicting convection and the associated hazards. Other than

the papers described above (Lagerquist et al. 2021; Han et al. 2020; Li et al. 2023),

many other papers have been published showing the performance of deep learning

models predicting convection. In Lagerquist et al. (2020), a DL model was trained

on radar images and proximity soundings from the Rapid Refresh model to predict

tornadoes over the next hour. The performance of the DL model was comparable to

that of an operational ML model (ProbSevere) for predicting severe weather. The

largest increase in performance was reflected in EF2+ tornadoes.

DL models have also been useful in spatial analysis of severe hailstorms (Gagne

et al. 2019). A CNN was trained on patches from the NCAR convection-allowing en-

semble model output. These patches consisted of upper air data and thermodynamic

variables. The model aimed to predict the probability of severe hail in the domain.

This paper found that compared to traditional statistical approaches, the DL model

could make predictions with more skill and sharper probabilistic predictions. The

DL model also gave insight into storm structures, storm environments, and storm

modes that produce severe hail. For severe hail to form, storms usually have strong

lapse rates, directional wind shear, and seeding from graupel and small hail stones

in weaker updrafts. Storms that produced large hail also were twice as likely to be a

supercell thunderstorm as a QLCS thunderstorm.

On a larger spatial and time scale, DL models have also successfully predicted

synoptic-scale fronts (Lagerquist et al. 2019; Justin et al. 2022). Using deep learning

trained on different state variables at a variety of levels, the DL model was able to
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predict where WPC forecasters would draw fronts. This method significantly outper-

formed the baseline of NWP frontal analysis by scoring a CSI score of 0.52 (Lagerquist

et al. 2019). This project aimed to create a method of forming datasets and climatolo-

gies of fronts for research work. In the current iteration of the project, warm, cold,

stationary, and occluded fronts are now plotted. On a 250 km neighborhood, the

warm and cold front binary classification significantly outperformed the baseline and

will serve as a first guess for forecasters to identify frontal boundaries more efficiently

(Justin et al. 2022).

Overall, deep learning models have become very popular and successful in recent

years (Chase et al. 2022b). These models have been able to successfully predict and

outperform the baseline on a wide variety of atmospheric phenomena at many different

spatial and temporal scales (Chase et al. 2022b; Lagerquist et al. 2021; Han et al.

2020; Li et al. 2023; Lagerquist et al. 2020; Justin et al. 2022; Lagerquist et al. 2019).

Given previous successful ML applications and combining methods from similar works

(Flora et al. 2021; Clark and Loken 2022; Lagerquist et al. 2021), we hypothesize that

a DL model trained on the WoFS ensemble output and MRMS composite reflectivity

will outperform the current WoFS forecast for reflectivity values exceeding 40 dBZ

30 minutes after initialization of the WoFS.
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Chapter 3

Methods and Data

3.1 Warn-on-Forecast System Specifications

The WoFS is a regional, 3-km ensemble analysis and forecast system designed to pro-

duce rapidly updating probabilistic guidance for severe weather. The system com-

prises 18 forecast members (36 analysis) using the Weather and Research Forecast

Model (WRF-ARW; Skamarock (2008)) as the dynamic core. Each member has a

different physical parameterization provided in Skinner et al. (2018), Table 1. Ini-

tial and boundary conditions for the WoFS are provided by the experimental 3-km

High-Resolution Rapid Refresh Ensemble (HRRRE; (Dowell et al. 2016)). The WoFS

domain size for 2017-2019 was 750 × 750 km, but from 2019-current, it is 900 × 900

km. The WoFS domain is repositioned over the region where and when the greatest

severe weather threat is anticipated. Forecasts are mostly initiated during the warm

season, including during NOAA’s Hazardous Weather Testbed Spring Forecasting

Experiment (Gallo et al. 2017, 2022; Clark et al. 2022). Since 2021, the WoFS has

been run more regularly and outside of the warm season when severe convection is

expected. The WoFS assimilates radial velocity, radar reflectivity, Geostationary Op-

erational Environmental Satellite (GOES-16) cloud water path, and, when available,

Oklahoma Mesonet observations every 15 minutes with conventional observations as-

similated hourly. Forecasts are initialized every 30 minutes with output every five
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minutes out to three or six hours of lead time. The WoFS is expected to be incor-

porated into operations within the United Forecast System between 2025 and 2030.

For more details about the WoFS, see Miller et al. (2022).1

3.2 U-Nets

U-Nets are a type of convolutional neural network (CNNs), initially created to seg-

ment medical images (Ronneberger et al. 2015). Since then, U-Nets have been widely

used in many different applications with success across a variety of applications

(John Saida and Ari 2022; Pan et al. 2020; Zhang et al. 2021).

Example UNET Architecture
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Figure 3.1: Example architecture of a U-Net that predicts reflectivity values ≥ 40

dBZ. A corresponding arrow indicates the different layers; the legend is displayed in

the lower right corner. Dimensions for each layer are displayed in [latitude, longitude,

channel]. The center images are convolved images. Only three are shown for space

reasons. The exact architecture is displayed in table 3.3. Figure adapted, with

permission, from Chase et al., 2022.

1These are the WoFS parameters valid for the dataset used herein; future specifi-

cations may be changed slightly.
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Figure 3.1 displays an example U-Net architecture for predicting composite reflec-

tivity ≥ 40 dBZ. U-Nets are a form of image-to-image model where they ingest one

type of image and output other images. In this case, we are able to input composite

reflectivity, CAPE and CIN, and vertical velocity. The U-Net outputs a prediction of

reflectivity values ≥ 40 dBZ.

CNNs (and U-Nets) process images and identify different features within the im-

ages by utilizing convolutional layers (LeCun et al. 1989). These layers contain con-

volution kernels (also referred to as convolutional filters). Each convolutional layer is

comprised of many convolutional kernels, with each kernel having the possibility to

identify different features within the image. Each kernel is made up of an array of

different learned weights that are applied to each of the input fields to create a con-

volved image. The different weights will allow for recognizing different features (e.g.,

straight lines, edges). Pooling layers are often interlaced in the convolutional layers.

These layers reduce the resolution of the image and will allow subsequent convolu-

tional layers to extract larger-scale features (colors, shapes, etc.). Therefore, utilizing

a network with multiple convolutional and pooling layers can result in the extraction

of complex features [e.g., fronts (Lagerquist et al. 2019), hail (Gagne et al. 2019)]. At

the bottom of the convolutional network, the output from the previous layer is flat-

tened into a one-dimensional vector and fed into an artificial neural network (ANN)

where a prediction is computed. This prediction can be a regression or classification,

but for this project’s scope, only classification problems will be discussed. For calci-

fication problems, a CNN outputs the probability that the goal feature is present in

the image. An example of a desired feature could be whether there is a hook echo

somewhere in a radar image. This can be a limitation for meteorologists since no

spatial information is communicated through a single output prediction for the entire

domain.

U-nets, unlike CNNs, are a form of autoencoder, where they take input at one

resolution, encode it into a lower resolution, and then output back at the original
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resolution. In a U-net (Figure 3.1), you can see the convolutional filters and pooling

layers used to both downscale and upscale. The final output represents the probability

of the target being present at each point in the original image; in this case, reflectivity

values ≥ 40 dBZ. These probabilities are vital to understanding a model’s confidence

in predictions and provide spatial information to the predictions. Overall, by utilizing

a U-Net model, we can use image-to-image translation to give the model different

meteorological data to receive a map of probabilities in the same dimension as the

input data for thunderstorms 30 minutes after the initialization of the WoFS. For a

more detailed explanation and discussion of deep learning and U-Nets in meteorology,

refer to Chase et al. (2023).

3.3 Dataset

The data primarily used to train, evaluate, and test the DL models was extracted

from the WoFS ensemble model output valid 30 minutes after initialization. Variables

from the WoFS output included both environmental and intra-storm variables shown

in Table 3.1. This short list of variables were selected due to their connections to

thunderstorm environments and to ensure the model would remain explainable by

restricting dimensionality.

Due to the differences in ensemble members’ variance and spread, environmental

and intra-storm variables had different statistics computed. For intra-storm variables,

ensemble average, 90th percentile, and ensemble maximum were computed. The

10th percentile and minimum values were used for downdraft due to the negative

values indicating greater intensity. Since intra-storm variables are nearly zero in

most of the domain they heavily skew spatial distributions. Therefore, we relied

on higher percentile statistics to properly characterize these variables. Using the

three different ensemble statistics for the intra-storm variables provides the model

with more information about ensemble spread and confidence. For environmental

16



Variable Family Variable Name

Intra-storm Ensemble Maximum Composite Reflectivity

Intra-storm Ensemble 90th Percentile Composite Reflectivity

Intra-storm Ensemble Average Composite Reflectivity

Intra-storm Ensemble Maximum Updraft Velocity

Intra-storm Ensemble 90th Percentile Updraft Velocity

Intra-storm Ensemble Average Updraft Velocity

Intra-storm Ensemble Minimum Downdraft Velocity

Intra-storm Ensemble 10th Percentile Downdraft Velocity

Intra-storm Ensemble Average Downdraft Velocity

Environmental Ensemble Average ML CAPE

Environmental Ensemble Average SFC CAPE

Environmental Ensemble Average ML CIN

Environmental Ensemble Average SFC CIN

Other MRMS Composite Reflectivity

Table 3.1: Data input to each of the DL models. Intra-storm and environmental

variables are valid 30 minutes after the initialization of the WoFS model. MRMS

composite reflectivity is valid at the time of the WoFS initialization.

variables, only ensemble averages were computed. Environmental variables are more

Gaussian, and therefore their average values are more meaningful. Accompanying

the WoFS model output, Multi-Radar/Multi-Sensor (MRMS) composite reflectivity

(Smith et al. 2016) values were included at the initialization time of the WoFS model.

Data used in the project were collected from 2017 - 2021, with a majority of the runs

occurring during NOAA’s HWT SFE.

Finally, the input data was scaled using min-max normalization (equation 3.1).

xscaled =
x− xmin

xmax − xmin

(3.1)
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Figure 3.2: Data layout for the deep learning model. The examples are the input data

into the DL model. MRMS composite reflectivity is valid at t=0 min. The WoFS

model output is valid at t = 30 min. The targets are the prediction goal of the DL

model. They are MRMS composite reflectivity at t = 30 min binarized on a 40 dBZ

threshold.

Each variable is scaled by the minimum and maximum value determined from the

entire dataset. Normalization is needed due to the variations in magnitudes between

variables. For example, a DL model could struggle to find the optimal weights to apply

to the variables since CAPE and CIN are on the magnitude of 103 while reflectivity

values within thunderstorms are only on the magnitude of 101.

The target variable was MRMS composite reflectivity ≥ 40 dBZ 30 minutes after

WoFS initialization. We chose a 40 dBZ threshold as it often separates weaker con-

vection from moderately intense convection. The base rate for targets in the dataset

is 0.006%. Figure 3.2 shows how the data is configured for each event and then fed

into the DL model for training, validation, and testing.

3.4 Patching Scheme

Creating data patches out of the domain has multiple benefits compared to utilizing

the WoFS domain for each event. Firstly, creating patches decreases the memory

burden and increases learning efficiency. Secondly, breaking each time step in an
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event into multiple patches allows for more samples to be created. This creates more

training, validation, and testing data. Thirdly, input data when working with U-Nets

should be in powers of two-size grid-point squares (32 x 32, 64 x 64, 128 x 128, etc.).

This is due to the max pooling layers used in this model. Max pooling layers will

halve the data every time the data passes through the layer. Multiple patching sizes

were tested and the best performance was found at a patch size of 64 x 64. An algo-

rithm was devised to aggregate the WoFS output and MRMS data were temporarily

aligned based on initialization date and time. If all data was present for the given

individual date and time, multiple non-overlapping patches were created with all rel-

evant input WoFS data, input and target MRMS data, initialization date and time,

and latitude and longitude. Overlapping patches were tried in the training dataset,

but the performance was sub-optimal due to the reduction in mutual independence

in each patch. Events for the dataset were defined as the total time the WoFS was

running for a convective event. Often this was an eight-hour period (from 19 UTC

to 03 UTC), where the WoFS initializes every 30 minutes.

3.4.1 Initial Patching Scheme

Patches were created from all WoFS cases from 2017-2021. Two patching schemes

were developed since the overall WoFS domain size changed in 2019. From 2017-

2018, the domain size was 250 x 250 grid points with a 3km grid spacing. To create

the maximum number of patches possible, we added a 3-grid point border of zero

padding to the domain to create a 256 x 256 grid point domain. Therefore each event

time step had a 4x4 quilt of patches with the size of 64 x 64 grid points. For the

cases from 2019-2021, the domain size was 300 x 300 grid points with a 3km grid

spacing. In order to get the domain to split easily into a grid of 64 x 64 grid point

patches, a 10 grid point border of zero padding was appended, making the domain

320 x 320 grid points. This allowed for a quilt of 5x5 patches at a size of 64 x 64 grid

19



Figure 3.3: Example of the initial patching scheme. a) Patching method for events

from 2019-2021 with zero padding of 10 grid points on the border. b) Patching method

for events from 2017-2018 with a zero padding of 3 grid points on the border. The

dashed lines represent the border of the patches.

points to be extracted from each event time step. Figure 3.3 displays how the initial

patching scheme was executed. Through this scheme, a total of 41,132 patches were

created from 2017-2021. The training, validation, and testing split was by time with

80%/10%/10% (32,906/4,113/4,113) partitions, respectively.

3.4.2 Current Patching Scheme

During experiments with the previous patching scheme (section 3.4.1), a few problems

became evident, leading to the need for a revised patching scheme. The first problem

was due to the way the patching was split between the training, validation, and testing

datasets. In the initial scheme, all the patches were in one dataset and split based on

the total size. This way could not ensure the independence of the training, validation,

and testing datasets. This most likely resulted in one event being in both the training

and validation datasets and another event being in the validation and testing datasets.

The second problem arose with the zero padding on the domain border. While the

cases from 2017-2018 with a smaller zero padding border likely minimally impacted
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Figure 3.4: Example of the current patching scheme. Multiple patches were created

out of the domain, with the location of the patches selected at random. All patches

were 64 x 64 grid points.

the model, we believe that the larger zero padding border on the patches from 2019-

2021 caused confusion in the model by adding in zero values in areas that could have

been adjacent to strong reflectivity signals. For these two reasons, a new patching

scheme was needed. This scheme would guarantee independence between the datasets

and create a dataset more representative of reality.

In this patching scheme, each time step of each event had multiple patches created

out of the domain. The patch location was randomly selected and did not allow

any overlapping patches. Figure 3.4 displays an example of how the patches may be

selected. Overall, this patching scheme produced 23,061 patches which were extracted

from 2017 - 2021 events. The training dataset consisted of patches from 2017-2019, the
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first half of 2020, and the first half of 2021. Therefore, validation and testing datasets

were composed of the second half of 2020 and 2021, respectively. Patches from the

same event were restricted to one of the datasets to ensure independence. This

resulted in a training/validation/testing split of 73%/15%/12% (16,935/3,473/2,653).

3.5 Deep Learning Model Methods

For this study, we adopted a U-Net deep learning model (Section 3.2). Previous

research has shown that the choice of loss equation can greatly impact the performance

of the DL model (Ebert-Uphoff et al. 2021). This led us to test and evaluate multiple

models with different loss equations. Both pixel- and spatial-based loss functions

were tested. The Weighted Binary Cross-Entropy (WBC) loss function (equation

3.2) applies weights to the different classes in the binary cross-entropy equation.

These weights are designed to penalize poor predictions of events more than poor

predictions of non-events. When dealing with rare events, equally penalizing poor

predictions of events and non-events results in a DL model skewed towards predicting

low probabilities. The idea for the WBC loss function was derived from the weighted

mean squared error function from Ebert-Uphoff et al. (2021):

LossWBC = − 1

N

N∑
i=0

weight[Yi,T ruthlog(Yi,P red) + (1− Yi,T ruth)log(1− Yi,P red)] (3.2)

where

weight =


1 if Yi,T ruth = False

w if Yi,T ruth = True

(3.3)

In equation 3.2, the ’w’ represents the different weights that were tested in the

hyperparameter search. They ranged from 1.0 to 4.0. This loss function was able to

produce the best models at the pixel evaluation level and was static for the remainder

of the model search with regard to pixel-based models.
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A spatial loss function was also tested and evaluated on the dataset described in

section 3.4.1. This loss function was the Fractions Skill Score (FSS) (Roberts and

Lean 2008). FSS evaluates a prediction on a neighborhood spatial size, in this case,

predictions within 5 grid points (i.e., 15 km). The benefit of a spatial loss function

is avoiding the double penalty effect. In a pixel-based loss function, if a prediction

is one grid point from being a hit, the model is punished for two wrong predictions,

one for the false alarm and one for the false negative. The drawback of the FSS loss

function is that predictions are not rewarded for being correct at finer spatial scales.

FSS loss functions can be very useful in problems where small phase errors can be

tolerated. The equation for FSS and the derivation of the loss function is described

in equation 3.4 (Roberts and Lean 2008).

FSS = 1− FBS

FBSworst

(3.4)

FBS is Fraction Brier Score and FBSworst is valid for the worst possible forecast.

FBS and FBSworst are defined in equations 3.5 and 3.6. Fpred refers to the forecasted

fraction, and Ftrue refers to the true fraction.

FBS =
1

Nlat

1

Nlon

Nlat∑
lat

Nlon∑
lon

[Fpred(lat, lon)− Ftrue(lat, lon)]
2 (3.5)

FBSworst =
1

Nlat

1

Nlon

[

Nlat∑
lat

Nlon∑
lon

F 2
pred(lat, lon) +

Nlat∑
lat

Nlon∑
lon

F 2
true(lat, lon)] (3.6)

A loss function can then be made through the formula:

FSSloss = 1− FSS (3.7)

A perfect loss score for the FSS loss function is 0. For more information regarding

the FSS loss function, refer to Ebert-Uphoff et al. (2021) and Justin et al. (2022).

3.5.1 Initial Model Parameters

In the first iteration of this project, two separate models were trained, evaluated,

and tested on the dataset from section 3.4.1. The first model was a pixel-based loss
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function utilizing the WBC loss function, and the second model was a spatial-based

loss function using the FSS loss function with a 15 km neighborhood.

U-Net Hyperparameters

Loss Function Weighted Binary Cross-Entropy Fractional Skill Score

Loss Weights 4.0 to 1.0 n/a

Convolution Layers per Step 1 1

Convolution Kernel Size 7 5

Kernel Size 8 4

Activation Function Leaky ReLU ELU

U-Net Depth 3 2

Optimizer adam adam

Learning Rate 0.001 0.001

Batch Size 64 128

Neighborhood Size n/a 15 km

Output Activation Function Sigmoid Sigmoid

Table 3.2: Best performing models for the pixel- and spatial-based loss functions.

Both models were trained, evaluated, and tested on data from section 3.4.1.

Hundreds of models were trained, evaluated, and tested through a random hy-

perparameter search for both loss functions. Models were evaluated based on the

Maximum Critical Success Index (maxCSI, described in Section 4.1) and loss score

on the validation dataset. Models with the best performance scores and that pro-

duced stable loss diagrams were selected. The WBC model had a validation maxCSI

of 0.1636 and a loss score of 0.2258 after 100 epochs. For the FSS model, the val-

idation maxCSI was only around 0.0084, while the loss score was 0.022 after 100
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epochs. This lower maxCSI score is understandable, given that CSI evaluates predic-

tions on the pixel scale while the FSS model is evaluated on a 15km scale. For the

post-processing results, the FSS model is evaluated using the FSS metric.

3.5.2 Current Model Parameters

U-Net Hyperparameters

Loss Function Weighted Binary Cross-Entropy

Loss Weights 2.0 to 1.0

Convolution Layers per Step 1

Convolution Kernel Size 5

Kernel Size 8

Activation Function Leaky ReLU

U-Net Depth 4

Optimizer rsmprop

Learning Rate 0.01

Batch Size 256

Output Activation Function Sigmoid

Table 3.3: Hyperparameters selected after a gridded hyperparameters search over 100

separate models. After 100 epochs, validation maxCSI reached 0.20.

Once WBC was selected as the best loss function, a hyperparameter search was

conducted wherein 100s of models were created, trained, and evaluated on the dataset

using the new patching scheme (section 3.4.2). The best-performing model was de-

fined as the model which achieved the highest maxCSI and the lowest loss score on

the validation dataset. Table 3.3 displays the hyperparameters of the best-performing

model. All hyperparameters were varied for this run, with the exception of the loss

function and activation function. L2 regularization was also included in the models,
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and a noticeable jump was observed across both validation and testing metrics when

turned on (not shown). L2 regularization had a value of 0.001. The model displayed

in Table 3.3 achieved a maxCSI of 0.20, while the validation loss was 0.16 after 100

epochs. This model outperformed the best-performing baseline significantly, which

we believe justifies using a DL model to improve the WoFS composite reflectivity

product.
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Chapter 4

Results

4.1 Verification Metrics

Several verification metrics were used to evaluate the DL model and baseline predic-

tions. Those metrics include the maxCSI, Probability of Detection (POD), and False

Alarm Ratio (FAR). Each of these metrics can be used to understand a model’s over-

all performance, discrimination, and skill. MaxCSI is the highest CSI score produced

when calculating the score across many probability thresholds from 0-1. The formula

for CSI is TP/(TP +FN +FP ), where TP is the number of true positives, FN is the

number of false negatives, and FP is the number of false positives. A maxCSI score

of 1 indicates a perfect forecast.

POD and FAR are often shown together. POD is defined as TP/(TP +FN). For

POD, a perfect score is 1, meaning all forecasted positives lined up with observed

positives. FAR is defined as FP/(TP + FP ). A perfect score for FAR is 0, meaning

there were no false alarms. The success ratio (SR) can also describe the FAR; it is

defined as 1 - FAR. Using POD and FAR in tandem will show the models’s discrim-

ination. Finding the right balance between maximizing POD and limiting FAR is

important to creating a discriminative model. For example, POD can be inflated by

lowering the probability threshold so that every hit case is correct, but this will result

in a high FAR. Determining the correct balance between these two metrics varies on

a case-to-case basis. In the case of tornadoes, a higher FAR may be tolerated due to

the high impact of a missed tornado. In this project, finding the maxCSI determined
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the best model, and POD and FAR were used to compare the performance of the

WoFS baseline and the DL model.

The best model was determined through a performance diagram and a reliability

diagram. In the performance diagrams herein, the bold ’X’ denotes the maxCSI. The

goal is to maximize this number and keep the ’X’ close to the 1.0 bias line. A reliable

model follows the dotted goal line.

Brier Score was used to evaluate the DL model’s predictions. The formula for the

BS is shown in equation 4.1:

BS =
1

n

n∑
i=0

(Pi,pred − Yi,T ruth)
2 (4.1)

where

Yi, T ruth =


0 if Yi,T ruth = False

1 if Yi,T ruth = True

(4.2)

Pi,pred represents the prediction probability of the pixel being ≥ 40 dBZ. BS ranges

between 0 and 1, where 0 is a perfect score, and 1 is no skill. For the BS calculation,

we excluded all points where the observation and predictions were zero to highlight

correct forecast events better. 1.

4.2 WoFS Baseline

We used WoFS grid-scale ensemble probability of composite reflectivity exceeding 40

dBZ as our comparison baseline. Creating and testing multiple baselines was essential

to ensure the DL model was substantially more skillful than any much simpler (and

easier to develop) model. For a simple baseline, we computed the WoFS grid-scale

ensemble probability of composite reflectivity exceeding a threshold (Schwartz and

1For more information about the verification metrics, see

https://www.cawcr.gov.au/projects/verification/#Methods for probabilistic forecasts

or https://glossary.ametsoc.org/wiki/Skill
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Figure 4.1: Examples of WoFS ensemble probability of composite reflectivity ≥ 40

dBZ with different post-processing applied.(a) grid-scale ensemble probability, (b)

grid-scale ensemble probabilities with a two-grid point radius Gaussian filter, and (c)

grid-scale ensemble probability with a two-grid point radius maximum filter and then

smoothed with a two-point Gaussian filter.

Sobash 2017; Flora et al. 2021). To calibrate the probabilities, we adopted the simple

framework of introducing maximum value and Gaussian filters, similar to other sur-

rogate severe studies (Clark and Loken 2022; Loken et al. 2020; Sobash et al. 2016).

Examples of the different baselines are shown in Fig. 4.1. The initial baseline (Fig-

ure 4.1a) is the grid-scale ensemble probability of composite reflectivity ≥ 40 dBZ.

Ensemble probabilities with different filters (Gaussian and max filters) are shown in

Figures 4.1b and 4.1c. A Gaussian filter with a grid point radius of two was applied

to the probabilities (Figure 4.1b). By applying this filter to the probabilities, noise

is reduced, and probabilities are spread out over a larger area. In the third approach

(Figure 4.1c), before making the dataset binary, a max filter with a radius of 5 pixels

was applied to the reflectivity values. The max filter applies an iterative five-by-five

box wherein every grid point within the box is assigned to the maximum value within

the box. Max filters are applied to reduce noise and spread the largest probability to

the surrounding pixels. The performance of the baselines is shown below.
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Figure 4.2: Performance diagram comparing each of the baselines. (left) The WoFS

prediction (blue solid line), the WoFS prediction with a Gaussian Filter (purple),

and the WoFS prediction with a Gaussian and Max Filter (green solid line). The X

represents the maxCSI values for the corresponding model. The maxCSI was 0.16,

0.10, and 0.08 for the WoFS prediction, WoFS prediction with a Gaussian Filter, and

WoFS prediction with a Gaussian and Max Filter, respectively. (right) Reliability

diagram comparing each of the WoFS baselines. The WoFS prediction (blue solid

line), the WoFS prediction with a Gaussian Filter (purple solid line), and the WoFS

prediction with a Gaussian and Max Filter (green solid line). The black dashed line

is the ideal line for a model’s prediction.

The baselines were evaluated on the validation dataset using a reliability diagram,

performance diagram, and maxCSI from the dataset with the current patching scheme

(section 3.4.2). Figure 4.2 shows the performance and reliability diagrams for the

three baselines. The WoFS predictions and the WoFS predictions with a max filter

and Gaussian filter applied showed over-prediction biases. With just a Gaussian filter

applied, the prediction showed an underprediction bias. The maxCSI scores for WoFS

ensemble probabilities, WoFS prediction with a Gaussian filter, and WoFS prediction

with a Gaussian and max filter applied were 0.16, 0.10, and 0.08, respectively. Based
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on the performance of the three baselines, the WoFS ensemble prediction will be the

baseline going forward for the iteration of models.

4.3 Initial Deep Learning Performance

Figure 4.3: (left) Performance diagram comparing the WBC model (red dashed line),

the FSS model (green dashed), and WoFS prediction (blue solid line). The X repre-

sents the maxCSI values for the corresponding model. The WBC model’s maxCSI

was 0.22; for the FSS model, the maxCSI was 0.15; and for the WoFS prediction,

the maxCSI was 0.16. (right) Reliability diagram comparing the WBC model (red

dashed line), the FSS model (green dashed), and WoFS prediction (blue solid line).

The black dashed line is the ideal line for a model’s prediction.

The DL models were trained and evaluated on the dataset from section 3.4.1.

Due to the differing nature of the pixel- (WBC) and neighborhood-based (FSS) loss

functions, two different verification metrics were performed. The first performance

metric was evaluated at the pixel scale, and the second was evaluated on a 15km

neighborhood. Figure 4.3 displays the pixel-based evaluation. In the performance

diagram, the WBC model’s predictions substantially outperformed the WoFS and
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FSS model’s predictions. The maxCSI scores were 0.22, 0.15, and 0.16 for the WBC

model, FSS model, and WoFS model, respectively. This jump in performance shows

that the WBC model has been able to increase discrimination and skill compared

to the baseline. The bias score also shows the difference in performance. In the

WoFS and FSS predictions, the bias scores are close to 1.5, while the WBC model

has a bias score that is very close to 1.0. This is a notable improvement since the

WoFS predictions have an over-prediction bias (Guerra et al. 2022). Turning to the

reliability diagram, the reliability has also increased at the pixel-based evaluation;

the WBC model prediction lies near the goal line for all predicted probabilities. The

WoFS and FSS predictions continue to show the over-prediction bias observed in the

performance diagram.

The overprediction bias in the FSS model was expected due to the properties of

the FSS loss function. Using this loss function, the model attempts to predict on a

15km scale while the model is evaluated on a 3km scale. This motivated evaluation

of the FSS model on the same scale it was trained on.

Figure 4.4 displays the performance and reliability diagrams with the labels in-

creased to a 15km neighborhood. To create a 15km neighborhood, a max filter with

a radius of 5 grid points was applied, then made binary on a 40 dBZ threshold. At

this scale, a fair assessment of the FSS model can be made. In the performance

diagram, the WBC model appears to be performing better than the WoFS and FSS

prediction. The maxCSI score for the WBC model, FSS model, and WoFS model

was 0.19, 0.15, and 0.15, respectively. The most notable change in the neighborhood

evaluation versus the pixel-based evaluation is the frequency bias of the FSS model

and WoFS model. In the FSS model, the bias score is 1.0 showing that the model

frequency bias is correct when evaluated at the scale it was trained on. The WoFS

bias is now below 1.0, showing an under-prediction bias. This was also expected since

the WoFS is making predictions on the grid scale and is now being evaluated on a 15

km scale.
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Figure 4.4: Performance (left) and reliability (right) diagrams comparing the WBC

model (red dashed line), the FSS model (green dashed), and WoFS prediction (blue

solid line). a) Performance diagram comparing the WBC model (red dashed line), the

FSS model (green dashed), and WoFS prediction (blue solid line). The X represents

the maxCSI values for the corresponding model. b)Reliability diagram comparing the

WBC model (red dashed line), the FSS model (green dashed), and WoFS prediction

(blue solid line). The black dashed line is the ideal line for a model’s prediction.

The reliability diagram is also different when evaluated on the 15 km neighbor-

hood. The most encouraging change in performance is the FSS model. The reliability

of the FSS model is very much improved on this scale compared to the reliability di-

agram in figure 4.3. The FSS model is shown to be close to the goal line, while in

figure 4.4, it showed a strong over-prediction bias. While we expected the WoFS

model to show an under-prediction bias for all predicted probabilities, it showed an

under-prediction bias in the lower probabilities and an over-prediction bias in the high

probabilities. This gives insight into the over-predictive nature of the WoFS. Even

at a larger scale, the WoFS predictions are still over-predicting at high probabilities.

The WBC model’s under-prediction bias is expected as it is trained on a 3km grid

and is now being evaluated at a larger scale.
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Figure 4.5: Case study displaying the best case wherein all three models create good

predictions. a) WBCmodel’s prediction. b) WoFS model’s prediction. c) FSS model’s

prediction. In all three panels, the radar objects are the MRMS at t=30min. The

black contours are the prediction probabilities in intervals of 10%. The bolded black

line represents the 50% probabilities. All models are attempting to predict reflectivity

values ≥ 40 dBZ.

4.3.1 Case Studies - Initial Results

The three case studies explored in this subsection were selected based on CSI and FSS

scores. The first case study will show a case where all three models performed well.

The second case will display a case where the WBC model’s predictions outperform

both the WoFS and FSS models’ predictions. The last case exhibits a case where the

FSS model’s predictions outperform the WBC and WoFS models’ predictions. In all

cases, a 50% probability is the probability threshold for metrics that require a binary

threshold.

4.3.1.1 Best Case

In Figure 4.5, there is an ongoing quasi-linear convective system (QLCS) with a

strong linear area of reflectivity and a core of 55 dBZ near the center of the patch.

The WBC model is able to handle this storm the best, while the FSS model performs
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the worst. The WBC model was able to detect the main core of the storm and outline

the edges in higher probabilities. This resulted in a CSI of 0.75 and an FSS of 0.93.

The WoFS forecast performed well overall but struggled to find the exact center and

edges of the storm. This resulted in slightly lower CSI and FSS scores of 0.72 and

0.85, respectively. Visually and quantitatively, the FSS model did not perform as well

as the other two models. While the CSI and FSS scores were above the average for

the testing dataset, the prediction appears to be lacking discrimination and skill. The

prediction for the FSS model appears to increase both the probabilities and areas of

the WoFS predictions. This trend will continue through the rest of the case studies

and appears to be the main problem with the FSS model.

Overall, this case displays the discrimination and skill of the WBC model in

identifying regions of strong reflectivity and encompassing the correct regions. As

shown through both quantitative metrics and visualization of the prediction contours,

the prediction of the WBC model outperformed that of the WoFS model. This case

also showed the shortcomings of the FSS model. While the model was able to detect

regions of strong reflectivity, it lost the smaller-scale features of the WoFS and WBC

models’ predictions.

4.3.1.2 Example of WBC Outperforming FSS

In Figure 4.6, there is a single discrete cell with a 55 dBZ core in the northwest corner

of the domain. The WBC model was able to center its strongest prediction over the

cell, while the other two models’ predictions struggled to predict the center of the

high reflectivity values. The WBC verification metrics were a CSI score of 0.63 and

an FSS score of 0.68. For the WoFS model’s prediction, it scored a CSI score of 0.58

and an FSS score of 0.70. The FSS model’s prediction scored the worst, having CSI

and FSS scores of 0.51 and 0.41, respectively.
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Figure 4.6: Case study displaying a case where the WBC model outperforms both the

WoFS and FSS models’ predictions. a) WBC model’s prediction. b) WoFS model’s

prediction. c) FSS model’s prediction. In all three panels, the radar objects are the

MRMS at t=30min. The black contours are the prediction probabilities in intervals

of 10%. The bolded black line represents the 50% probabilities. All models are

attempting to predict reflectivity values ≥ 40 dBZ.

Though the FSS score of the WoFS prediction was slightly higher than the WBC

model, visually, the WBC prediction appears to be more skillful. The WBC model

identifies the region of strong reflectivity values and only places probabilities in that

region. In contrast, the WoFS has high probabilities that are more spread out over

the region. This supports the findings of the verification metrics and of Guerra et al.

(2022), which showed the current WoFS predictions are over-predictive in nature.

The reliability and performance diagrams in figure 4.3 showed that the WBC model

was more reliable and had a frequency bias closer to 1.0. The WoFS performance and

reliability diagrams showed the over-prediction bias. The FSS model’s prediction is

not very skillful (Figure 4.6c). The forecast placed a large area of high probabilities

over regions of both high reflectivity values and no reflectivity values. This continues

to show that the FSS model can not discriminate between areas of high reflectiv-

ity and no reflectivity. Overall, this case study showed that substantial prediction
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improvements can be achieved through a DL model. In this case, the WBC model

adjusts the forecast to overcome the over-prediction bias observed throughout the

WoFS predictions.

4.3.1.3 Example of FSS Outperforming WBC

Figure 4.7: Case study displaying a case where the FSS model outperforms both

the WoFS and WBC models’ predictions. a) WBC model’s prediction. b) WoFS

model’s prediction. c) FSS model’s prediction. In all three panels, the radar objects

are the MRMS at t=30min. The black contours are the prediction probabilities in

intervals of 10%. The bolded black line represents the 50% probabilities. All models

are attempting to predict reflectivity values ≥ 40 dBZ.

In this case study, there is a large ongoing QLCS with a strong leading edge to

the storm with regions of higher reflectivity behind the line. In this case, the FSS

model performed well, while the WBC model performed poorly. The WoFS baseline

exhibits a leading area of high probabilities with a second, separate area of higher

probability values. The WBC scored 0.48 and 0.18 for CSI and FSS, respectively.

The WoFS model had a CSI score of 0.44 and an FSS score of 0.63. The FSS model

performed best with a CSI score of 0.57 and an FSS score of 0.70.
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This case is notable for two reasons. The first was how poorly the WBC model

performed. While it did place higher probabilities over two regions of higher reflectiv-

ity values, it missed much of the QLCS leading edge and the high-reflectivity region

in the southwest corner of the domain. This is very concerning for this model, being

that it was a very strong signal, and the model should have been able to place high

probabilities across much of the WoFS’s domain. The FSS model’s predictions did

quite well in this case, wherein it captured a majority of the reflectivity values over 40

dBZ with high probabilities. But this case appears to be an outlier case. Being that

FSS is a spatial loss function evaluated at 15km neighborhood, a larger patch domain

is likely needed to create an accurate forecast. This thought is further supported by

Justin et al. (2022). That paper utilized the FSS loss function over synoptic spatial

scale fronts with great success. Therefore using this logic, the FSS performed so well

in this case because there was a large region of strong reflectivity values it could

analyze.

4.3.2 Iterative Goals for Next DL Models

Through the initial two DL models, there were two clear areas of findings that guided

the next iteration of DL models. One finding was that the WBC loss function is the

best loss function for this application due to its pixel-based nature and its increased

weighting of positive cases. A neighborhood-based loss function is not appropriate

due to the de-emphasis on small-scale features. The weighted aspect of the WBC

models was important as well. Due to reflectivity values ≥ 40 dBZ being very rare–

0.006% of the total grid points– more heavily weighing the positive observed cases

allowed the model to learn better what kind of patterns are conducive to reflectivity

values ≥ 40 dBZ.

The initial experiments motivated tests of two changes to the data processing.

The first was exploring how removing zero padding from the domain border would
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impact the WBC model and its performance. Zero padding on the outside of the

WoFS domain could lead to a skewing of performance, and it is important to explore

how it impacts the models. The second was that data was not entirely independent,

and a new patching and splitting scheme was required to ensure the evaluation of

the models was correct. Overall, the first iteration of models led to promising results

for proving that DL models can produce accurate and skillful predictions of intense

reflectivity at a 30-minute lead time.

4.4 Current Deep Learning Performance

Figure 4.8: (left) Performance diagram comparing the new DL model (red dashed

line), the previous DL model (magenta dashed line), and the WoFS baseline (blue

solid line). The X represents the maxCSI values for the corresponding model. For the

new DL model, the maxCSI was 0.27; for the old DL model, the maxCSI was 0.25; for

the WoFS baseline, the maxCSI was 0.19. (right) Reliability diagram comparing the

DL model (red dashed line), the previous DL model (magenta dashed line), and the

WoFS baseline (blue solid line). The black dashed line is the ideal line for a model’s

prediction.
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Results for the current DL model were produced from the testing dataset described

in sections 3.4.2. The DL model achieved the goal of increasing the skill substantially

when compared to the WoFS baseline. Figure 4.8 displays two separate performance

metrics comparing the new DL model, the old DL model, and the WoFS baseline.

Results from the performance diagram show a substantial increase in maxCSI and

overall performance. MaxCSI values rose from 0.19 to 0.27 when comparing the

WoFS baseline and the new DL model. Comparing the old DL model to the new DL

model, the maxCSI increased from 0.25 to 0.27. The new DL model decreased the

model’s bias by lowering the maxCSI marker closer to the 1.0 bias line. Regardless of

the probability threshold, the DL model outperforms the baseline in the performance

diagram, especially when the probability threshold is high. The reliability was also

much different between the old and new DL models. The old model is showing a very

strong underprediction bias and is much less reliable than the new model. Therefore

due to a higher maxCSI and better reliability, the new DL model will now be referred

to as the DL model, and no more comparisons will be made between the old model

and the new model. These results are further confirmed within the reliability diagram.

Isotonic regression (Niculescu-Mizil and Caruana 2005) was applied to the DL

model to attempt to improve the reliability of the prediction. This method has been

used in similar cases to increase the reliability of models with success (Burke et al.

2020; Flora et al. 2019). While the reliability of the DL model increased and closely

matched the goal line in Figure 4.8, the model’s discrimination was greatly impacted.

The increase in reliability did not justify the loss of discrimination, and so the use of

isotonic regression was abandoned.

4.4.1 Case Studies - Current Results

Multiple examples were extracted from the testing dataset to display the skill and

discrimination of the DL model compared to the baseline. The three cases selected
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were the best performance for the DL model, a median case, and a worst case. The

best and worst cases were determined through the greatest difference in CSI between

the DL model and baseline at each sample. The average case was determined through

the median difference in CSI in the testing dataset, which was 0.032. Cases, where

the difference was 0 were ignored. To measure the performance of the DL model

and WoFS baseline in each of the cases, CSI and Brier Score (BS; Brier (1950)) were

used. The probability threshold used to calculate the CSI score was determined by

the probability threshold that resulted in the maxCSI score for each model. The

thresholds were 0.575 and 0.475 for the DL model and WoFS baseline, respectively.

4.4.1.1 Best Performing Case: 0230 UTC 21 May 2021

Figure 4.9 displays a case from 0230 UTC on 21 May 2021 in South Dakota, where the

DL model created a very good prediction. This case presents a quickly strengthening

QLCS with two regions of high reflectivity. From the initialization of the model to

the prediction time, the northern cell increased reflectivity values from 45 dBZ to 55

dBZ. In the southern cells, the reflectivity values increased from 40 dBZ to 50 dBZ.

The DL model handled this rapid intensification of the storm much better than the

WoFS baseline. This is shown in both the performance metrics and the locations of

the prediction contours. The DL model predictions outperformed the WoFS baseline

predictions by large margins in CSI (0.29) and BS (0.36). Rapid intensification of

storms is a known problem for the WoFS (Guerra et al. 2022), and it is encouraging

to see the DL model can improve prediction in an area the WoFS is currently lacking.

In addition to the large difference in performance metrics, the location of the

prediction contours emphasizes the increase in discrimination and skill the DL offers

in this case. Visual inspection of the DL model and WoFS baseline confirm the

superior performance of the DL model in this case. The DL model was able to place

the highest probabilities over the two regions of high MRMS reflectivity values. This
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Figure 4.9: Case study from WoFS forecast initialized at 0230 UTC 21 May 2021

in South Dakota. a) Observed MRMS composite reflectivity at t=0 min, valid at

0230 UTC 21 May 2021. b) Black contour DL model predictions overlaid on ob-

served MRMS composite reflectivity at t=30 min. c) Black contour WoFS baseline

predictions overlaid on observed MRMS composite reflectivity at t =30 min. Any

probability ≤ 10% is masked out. The 50% contour line is in bold. Due to DL model

only having information within a patch, contours do not extend out of the image like

in the WoFS baseline predictions.

also included placing the highest probability (0.75) over the maximum reflectivity

value (55 dBZ). In contrast, the WoFS baseline prediction was not able to handle this

case well, wherein all the regions of higher probabilities are not over the regions with

strong reflectivity values. The highest probabilities were placed behind the storms

and completely missed the highest area of reflectivity values. The WoFS baseline

also predicted 3 regions of ≥ 40 dBZ values which are ahead of the observed line of

storms. These three areas, if interpolated out, line up with the three areas of strong

reflectivity shown at the initialization of the model. This suggests that the WoFS

prediction was expecting faster storm motions and decaying storm intensities.
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Overall, this case is very encouraging for the DL model’s performance. The DL

model was able to accurately predict the location of the storms and where the greatest

areas of intensification would be located. This is in vast contrast to the WoFS baseline

prediction, which missed the location and strengthening of the storm and placed

high probabilities in regions where no reflectivity was observed. This case shows the

potential of the DL model to improve in the areas the WoFS currently is weak and

generally increase the skill of the WoFS.

4.4.1.2 Average Case: 0300 UTC 19 May 2021

Figure 4.10: Case study from WoFS run at 0300 UTC 19 May 2021 from Southeastern

Texas. a) Observed MRMS composite reflectivity at t=0 min, valid at 0300 UTC 19

May 2021. b) Black contour DL model predictions overlaid on observed MRMS

composite reflectivity at t=30 min. c) Black contour WoFS baseline predictions

overlaid on observed MRMS composite reflectivity at t =30 min. Any probability ≤

10% is masked out. The 50% contour line is in bold. Due to DL model only having

information within a patch, contours do not extend out of the image like in the WoFS

baseline predictions.
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Figure 4.10 is a case from 0300 UTC on 19 May 2021 with a strong ongoing QLCS

over Southern Texas. Comparing the performance of the two models shows that both

created good predictions with similar performance metrics. The DL model scored 0.62

and 0.10 on the CSI and BS, respectively. The WoFS baseline scored 0.60 and 0.13

on the CSI and BS, respectively. While the DL and WoFS Baseline models performed

similarly on these metrics, two different aspects of this prediction are encouraging for

the DL model. First, the highest DL probabilities are slightly better aligned with the

highest MRMS reflectivity values than the BL probabilities, which lag the QLCS.

The second encouraging aspect of the DL model’s prediction is at the bottom of

the patch domain in figure 4.10. At this location, the DL model correctly predicts the

cell east of the QLCS in the southern part of the domain, while the WoFS baseline

prediction misses it. These results again suggest the DL model can occasionally

predict rapid intensification when the WoFS fails to. The prediction of the cell also

shows that the DL model is able to differentiate from the main area of high reflectivity

values and is not just replicating the WoFS predictions. Overall, this case shows that

even with similar performance metrics, the DL model will make subtle improvements

leading to an overall more skillful prediction.

4.4.1.3 Worst Case: 0230 UTC 22 May 2021

Figure 4.11 displays a case from 0230 UTC 22 May 2021 over the Nebraska-South

Dakota border. This case exhibits disorganized storm mode with two areas of high

reflectivity. One region, in the northern portion of the domain, has slightly weak-

ened, and one, in the southern portion of the domain, has strengthened. Most of the

higher probability predictions in the DL model are centered over regions where no

reflectivity values were observed. Based on the location of the storm at t=0 minutes

and t= 30 minutes, it appears that the DL model did not handle the storm motion

correctly. The DL model predicted the storm would move eastward, whereas the
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Figure 4.11: Case study fromWoFS run at 0230 UTC 22 May 2021 from the Nebraska-

South Dakota border. a) Observed MRMS composite reflectivity at t=0 min, valid

at 0230 UTC 22 May 2021. b) Black contour DL model predictions overlaid on

observed MRMS composite reflectivity at t=30 min. c) Black contour WoFS baseline

predictions overlaid on observed MRMS composite reflectivity at t=30 min. Any

probability ≤ 10% is masked out. The 50% contour line is in bold.

observed storm moved northeastward. In contrast, the WoFS baseline prediction did

much better predicting the motion of the northern storm, causing a majority of the

high probabilities to overlap with the strong observed reflectivity values. The eval-

uation metrics well reflected the difference in performance between the two models.

The DL model scored a CSI of 0.12 and a BS of 0.35, whereas the WoFS baseline

scored a CSI of 0.23 and a BS of 0.27.

This case shows a limitation of the DL model that should be fixed in future

iterations of the model. Currently, the model only has access to the information in

the patch’s domain, while the WoFS baseline has information pertaining to the entire

domain. This difference in information leads to the WoFS baseline outperforming

the DL model when storms are located on the edges of the patch. In operations, this

problem should go away as the DL model will have access to the full domain. We are
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Figure 4.12: Feature importance plot with the most impactful variable at the top

(MRMS Composite Reflectivity) and the least impactful variable at the bottom (En-

semble average Downdraft Velocity).

confident in this assessment due to how the DL model consistently outperforms the

WoFS baseline when storms are located in the center of a patch’s domain.

4.5 Explainability

Figure 4.12 shows the feature importance diagram for the DL model. To compute

the feature importance we used backward permutation importance (McGovern et al.

2019). In this approach, a new instance of the model was used and evaluated without

one of the input variables. If a variable was important to performance, the model

would perform worse without that variable. Due to the limited number of variables,

we were not concerned with correlations. The MRMS composite reflectivity at t =
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0 min was the most important variable, while most of the environmental variables

were unimportant (consistent with Flora et al. (2021); Clark and Loken (2022)).

MRMS composite reflectivity is the most impactful by a wide margin, confirming our

hypothesis that MRMS composite reflectivity at t= 0 minutes would help to overcome

the phase and intensity errors in the WoFS initial conditions.

This outcome is reasonable given that the prediction lead time was so short (30

minutes). Unsurprising, the WoFS composite reflectivity fields were also quite impact-

ful, specifically ensemble average and ensemble 90th percentile composite reflectivity.

These were more impactful than the ensemble maximum for WoFS composite reflec-

tivity. This was due to the DL model understanding the biases within each of the

composite reflectivity fields. Other intra-storm variables, such as updraft and down-

draft, were unimportant for the performance of the model. While these variables

are vital for storm strength and longevity, they are less deterministic of observed

composite reflectivity than the WoFS-predicted composite reflectivity variables.

Environmental variables had a negligible impact on the performance of the model.

We hypothesize these variables are redundant for short forecasting times but could

lead to greater impact as forecasting time increases. This is because if there is already

an ongoing storm in the patch, it would be a safe assumption to assume that the envi-

ronment is primed for convection in the short term. As the forecast time extends and

storms have yet to form, the environmental variables should become more impactful

for the DL model to predict whether or not convection can form and be sustained.
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Chapter 5

Conclusion and Future Work

The goal of this project was to determine if a DL model would be able to substantially

improve upon the current WoFS product for forecasting reflectivity values ≥ 40 dBZ

30 minutes after WoFS initialization. Through evaluation and comparison of the DL

model and WoFS baseline performances on the entire testing dataset and individual

patches, it is clear that the DL model was able to increase performance compared

to the baseline substantially. The DL model was able to increase the MaxCSI from

0.17 to 0.27 while decreasing the frequency bias. Also, the DL model was able to

improve the reliability of the prediction for predicted probabilities exceeding 0.30.

Comparing individual test cases, the DL model was able to remedy some of the

problems described in Guerra et al. (2022), where the WoFS predictions struggled

with rapidly intensifying storms and phase errors. In multiple cases of both QLCS

and discrete storms, the DL model was able to correctly shift the highest probabilities

directly over the region of the strongest reflectivity when the WoFS prediction did not.

One of the only limitations of the DL model came from the lack of skill when detecting

storms along the edges of the patch domain. This problem should be resolved in future

iterations of the model due to running on information from the entire domain.

Through multiple iterations of the DL models, the main findings were: 1) The

weighted binary cross-entropy loss function was the best loss function for this appli-

cation due to the rare and small-scale nature of reflectivity values exceeding 40 dBZ.

2) Including MRMS composite reflectivity data valid at initialization of the WoFS is

very impactful in creating an improved forecast at a 30-minute lead time. 3) Creating
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a randomly selected patching area creates a dataset more reflective of reality than

adding padding to the outside of the WoFS domain.

Future plans for this project include decreasing the reliance on patches and utiliz-

ing the entire WoFS domain. This should resolve the issue of poor predictions by the

DL model when storms are located on the edge of the patch’s domain because the

WoFS domain is often centered over the regions where strong convection is expected.

It will also be expected that the DL model’s performance should also increase, as seen

in how the DL model performed when storms were located in the center of patches

and limiting the instances of limited data on domain edges. Secondly, feature abla-

tion should allow the model to run more quickly with little loss of skill. Based on the

results from the explainability section, many of the environmental variables could be

removed without substantially impacting the performance of the DL model.

A final and grandiose goal will be to increase the prediction timesteps to every five

minutes out to an hour. This could be done by creating a 3-D, time-resolving U-Net

where the output from the model would be multiple timesteps predictions at each grid

point. This would be more memory intensive but, we hypothesize, would allow the

model to understand the evolution of storms and their environments. Alternatively,

the 2-D model could be retained, and the input fields sequenced in time. In this way,

the output from the model would still predict out through an hour, but the model

would not learn about storm evolution. Overall, both concepts have positives and

negatives, and it is worth exploring both options.

In conclusion, the DL model was able to substantially outperform the baseline in

predicting reflectivity values ≥ 40 dBZ 30 minutes after the initialization of the WoFS

model. This was completed through the use of a U-Net deep learning model architec-

ture with MRMS composite reflectivity at t=0min, WoFS model output intra-storm

variables, and WoFS model output environmental variables as input variables. The

DL model outperformed the WoFS baseline in all performance metrics and showed

that the predictions were skillful in predicting thunderstorm locations. With ongoing
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work to continue to improve this DL model’s performance, there is evidence to be

encouraged about the improvement of the WoFS forecast of thunderstorms through

a post-processing DL model.

The experimental WoFS ensemble forecast data used in this study are not cur-

rently available in a publicly accessible repository. However, the data used to generate

the results herein are available from the authors upon request. GitHub for all the

code used in this project is found at: https://github.com/chadwiley14/wofs 40dbz.
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