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Abstract

Fluctuations can cause extraordinary effects on atoms and nanoparticles. For ex-

ample, a neutral but polarizable particle sitting close to a planar surface feels an

attraction force towards the surface. This is the well-known Casimir-Polder (CP)

force. Fluctuations could also induce a quantum frictional force on a moving par-

ticle.

This quantum frictional force is different from the classical frictional phenomenon,

where a particle slides above a rough surface, because it originates from the quan-

tum and thermal fluctuations of the electromagnetic fields and it is non-contact.

In fact, we will see that the frictional force may not even require a surface. It can

occur on a particle moving in vacuum, not in contact or close to any other object.

But it is also similar to the classical friction, in that both are nonconservative and

cause energy transfer between the particle and the background. At finite temper-

ature, the energy transfer accompanying the quantum frictional force is called the

radiative heat transfer. This dissertation is devoted to study the quantum frictional

force and radiative heat transfer in some simple backgrounds.

Chapter 1 gives a brief introduction of the historical works which had provided

us a road map to enter the fascinating research area of quantum friction. We

also remark on the difficulties and possibilities of measuring the quantum frictional

effects.

In Chapter 2, we lay out the theoretical foundation for studying quantum fric-

tional effects. The idea is to start with the first principles in classical electrody-

namics, namely the Lorentz law for force and Joule heating law for power. Then,

we quantize them using the fluctuation-dissipation theorem, which will directly

give the quantum frictional force and the rate of radiative heat transfer (quantum

frictional power) induced by fluctuations in terms of two important susceptibility

tensors: the electromagnetic Green’s tensor and the polarizability tensor. Each of
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these are discussed in some detail later in the chapter as well.

Starting from Chapter 3 to Chapter 5, we apply the principles introduced in

Chapter 2, to calculate the frictional force and radiative heat transfer in different

backgrounds. Chapter 3 is devoted to the discussion of the frictional effects in

vacuum, the simplest background. But, it also provides a paradigm for discussing

frictional effects due to fluctuations in other more complicated backgrounds. The

concept of nonequilibrium steady state is introduced in this chapter. The different

treatments required for dissipative and nondissipative particles are also discussed.

In Chapter 4, a detailed analysis of the quantum friction on an atom moving above a

perfectly conducting plate is presented. Here, we emphasize that the contributions

to the frictional force from different polarization states exhibit different dependences

on distance, temperature and velocity. Interestingly, the contribution from one

particular polarization state corresponds to a push instead of a drag on the atom.

In Chapter 5, we discuss the friction induced on a particle moving above a dielectric

plate with a finite and nondissipative index of refraction. This discussion extends

the classic Cherenkov effect in two aspects. First, the particle can be moving outside

of the medium and still experience the induced Cherenkov friction. Second, due to

the fluctuations, a neutral, polarizable particle can still emit Cherenkov radiation,

even though it is not charged.

In the concluding Chapter 6, we summarize the discussions presented in this

short thesis and possible extensions for future investigations. We then point out

that fluctuations can also induce effects other than quantum frictional forces and

radiative heat transfer, especially when nonreciprocity or inhomogeneity is involved.

Based on the experimental considerations on temperature and velocity, we give some

comments on the challenge for a direct measurement of the frictional force. Finally,

we propose that, for a moving nanoparticle, the deviation of its nonequilibrium

steady state temperature from the radiation temperature could serve as a feasible

signature for detecting the quantum frictional effects.
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Chapter 1

Introduction

Fluctuations, once treated being a synonym for noise and merely an unwanted

experimental reality, have now taken a prominent place in our understanding of

physics, ranging from the van der Waals interaction between neutral atoms and

molecules to the expanding universe. More pertinently, fluctuations give rise to all

the frictional effects we will be discussing in the present thesis.

In the beginning of 20th century, Max Planck [1, 2] correctly derived the spec-

trum for the blackbody radiation, which marked the start of quantum mechanics.

Crucial in Planck’s work is the average energy of a harmonic oscillator in thermal

equilibrium with radiation at temperature, T ,

U =
~ω

e~ω/kBT − 1
+

1

2
~ω. (1.1)

The two terms in the above expression reflect precisely the thermal fluctuation and

quantum fluctuation that give rise to the frictional effects which will be discussed

in this thesis. Most physicists at the time, including Planck himself, did not believe

that the second term, which is also referred to as zero-point energy, corresponded

to any physical reality.

There was one famous exception, though. Einstein, at least for a short period of

time after Planck’s discovery, recognized the physical significance of Planck’s zero-

point energy. This had to do with his earlier work together with Hopf [3] on the

drag force for an oscillating dipole in thermal equilibrium with the electromagnetic

fields. Only after introducing a zero-point energy in the internal energy of the
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oscillating dipole, Einstein and Stern [4] was able to rederive the correct spectral

energy density of radiation, which results in their claim that the existence of a

zero-point energy of size 1
2
~ν is probable [5].

Based on the existence of a zero-point energy for electromagnetic fields, 1 Casimir,

in 1948, was able to derive his famous effect of attraction between two perfectly con-

ducting plate in vacuum [6]. Prior to that, Casimir and Polder had used quantum

electrodynamics to calculate the retarded interaction between an atom and a per-

fectly conducting plate, which is now known as Casimir-Polder force [7]. Casimir,

later, was also able to reproduce this Casimir-Polder force using the more radical

approach of calculating the change in the electromagnetic zero-point energy [6].

Both the Casimir effect and Casimir-Polder force have been experimentally con-

firmed [8, 9] and therefore serve as direct physical manifestations of the zero-point

energy [10].

Casimir forces are conservative forces between neutral bodies. When motion

is involved, a nonconservative force should arise due to zero-point energy as well.

Such an idea can be traced back to Ref. [11] or even earlier Refs. [12, 13, 14, 15].

In Ref. [11], Pendry calculated the frictional force between two dissipative surfaces

when they are sheared parallel to their surfaces and he was the first to name the

frictional force quantum friction.

Not only the zero-point energy (quantum fluctuations) but also the thermal

fluctuations can induce frictional forces. In Ref. [16], Mkrtchian and collaborators

claim that a universal drag exists on a single particle in relative motion with black-

body radiation at finite temperature. Even though the authors had not mentioned

it, this frictional force is, in fact, a direct generalization of the Einstein-Hopf drag

from a single-frequencied oscillating dipole to a polarizable and intrinsically dissi-

pative particle. Such a connection is made very clear by other authors later, for

example, in Refs. [17, 18].

This is also our entry point to quantum friction. Prior to our investigation

on quantum friction, we had studied the friction felt by a charged particle [19]

as well as by a moving neutral particle carrying either an electric or a magnetic

1In Milonni’s book, Ref. [5], he recorded a private communication from Casimir, where Casimir

mentioned that a conversation with Niels Bohr, in which Bohr mumbled something about zero point

energy, had put him on a new track.
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dipole moment [20]. What serves as a frictional force in these situations is just

the classical electromagnetic force given by the Lorentz force law. In Ref. [20], we

find, by quantizing our expression for friction on moving classical dipoles, we could

obtain Mkrtchian’s universal drag or Einstein-Hopf drag. We also notice that,

to recover the Einstein-Hopf formula correctly, both dipoles and fields must be

properly quantized and each will give a contribution to the total quantum frictional

force. These observations guide us to investigate the quantum vacuum friction for a

nondissipative atom in Ref. [21] and that for a dissipative nanoparticle in Ref. [22].

For the former case, the dipole fluctuation is induced by the field fluctuation, while,

for the latter case, the dipole fluctuation is independent from the field fluctuations.

Both of these works [21, 22] feature a fully relativistic treatment of the problem

as well as some detailed discussions on the energetics. As a next step, we study

the quantum frictional force on a nondissipative atom when it moves parallel to

a perfectly conducting plate in Ref. [23]. This friction, though being a transverse

component of the famous Casimir-Polder force, seems to not have been explored by

others. Such an omission of exploration may be due to the intuition that quantum

friction arises only because the image particle inside an imperfect surface lags behind

the actual particle [11], which therefore would not arise in the presence of a perfectly

conducting surface. However, we have learned that frictional force can arise even

without a surface, as in the case for quantum vacuum friction, because the free space

filled with blackbody radiation is dissipative and modifies the motion of objects

in it [24]. We conclude in Ref. [23] that, not only quantum friction exists in the

presence of a perfectly conducting plate, but exhibits interesting dependence on the

polarization state of the atom, temperature, velocity and distance (to the plate).

One step further, we replace the perfectly conducting plate by a nondissipative

dielectric plate with a finite index of refraction and ask how friction arises for a

particle moving above such a plate. We find, even at zero temperature, a friction

can be induced on a particle moving at a velocity greater than the speed of light in

the dielectric. Indeed, this very much resembles the classic Cherenkov effect, except

that the particle under investigation moves outside the medium instead of in the

medium. The work on this induced Cherenkov friction has not been published in a

journal but first appears here in this thesis.

3



Of course, apart from us, many other authors have also surveyed the exciting

field of quantum friction. Here, we do not have room to review all of them but

just mention a few that we have learned from. Volokitin and Persson’s discussion

on blackbody friction in their book [25] inspired us to study the nonequilibrium

steady state temperature of a nanoparticle moving in vacuum [22]. Intravaia et

al., in Ref. [26], have studied quantum friction on a nondissipative particle moving

above a surface. This is similar to our work in Ref. [21], where the quantum friction

is second order in the particle’s intrinsic polarizability. There have also been several

recent review articles on the subject [27, 28, 29] from the same group. Pieplow and

Henkel’s work on Cherenkov friction in Ref. [30] gives us hints on how to calculate

the friction on an isotropic particle in the rest frame of radiation.

Despite the enthusiasm in quantum frictional effects among the theoretical com-

munity, these effects have so far eluded a definitive experimental confirmation. The

frictional forces seem too small to be within the current experimental reach [31]. In

very recent years, renewed optimism has been sparked, though, especially through

a proposal that the quantum frictional effects could be probed by measuring the

geometric phase induced while a neutral particle travels above an imperfect con-

ductor in vacuum [32, 33]. A concrete experiment was designed, which measures

the geometric phase associated with a diamond NV center2 placed above a rotating

Au-coated or n-doped Si coated disk of a radius of 6 cm, which could be rotated

up to a frequency of 7000 /s 3. In particular, for the n-doped Si coated disk, the

correction of the geometric phase due to the friction becomes detectable at a ve-

locity within the experimental reach. We, therefore, could remain hopeful for the

detection of the quantum frictional effects, perhaps even in the near future [34].

2The NV center consists of a vacancy, or missing carbon atom in the diamond lattice, lying next

to a nitrogen atom which has substituted one of the nearest neighbors of the vacancy [34].
3The maximum linear velocity obtained on the edge of the disk is, therefore, 2640 m/s.
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Chapter 2

Theoretical Minimum

In this thesis, we study quantum frictional effects, the frictional (parallel to the

direction of motion) force or radiative heat transfer for a moving polarizable particle

which possesses neither any charge nor any intrinsic dipole moment. Of course,

a polarizable particle can still be polarized under the influence of some external

field. More extraordinarily, when fluctuations are taken into account, a polarizable

particle can be polarized even in the absence of any external fields. It is precisely

these fluctuations that account for the quantum frictional effects we discuss here.

In this chapter, we provide the approach we take for calculating the quantum

frictional force and radiative heat transfer. In Sec. 2.1, we start by reviewing first

principles, namely the Lorentz force law and the Joule heating law, encountered

in classical electrodynamics. Applying these principles to calculate the electromag-

netic force and power on a uniformly moving dipole, we find they can both be

recast into the form of the principle of virtual work. That is, both the force and the

power can be obtained by differentiating a free energy. In Sec. 2.2, we introduce

a most powerful tool to quantize the first-principle forces and powers—the fluc-

tuation dissipation theorem (FDT). Some important historical works on FDT are

briefly summarized here, though the list is incomplete. We first derive the simplest

form of FDT for the case where the response of the system is described simply by

a scalar function. Later, we generalize the obtained relation to the case of a vector

field. In Sec. 2.3, we quantize the particle-radiation system by applying the proper

form of FDT. In particular, FDT relation, which links field fluctuations with the

electromagnetic Green’s tensor, and the FDT, which links dipole fluctuations with
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the polarizability tensor, are derived. Sec. 2.4 is devoted to a detailed account of

the electromagnetic tensor, which includes its symmetry, equation of motion, along

with useful forms of the tensor in vacuum and for planar geometry. In Sec. 2.5, we

discuss the polarizability tensor both for a nanoparticle and an atom.

In all formulas throughout this chapter, we will set the speed of light, c to be

1, but keep the reduced Planck constant, ~, whenever it appears, to emphasize the

quantum nature of the relations.

2.1 First Principles

We are already familiar with how to calculate the electromagnetic force and power

in the classical realm.

The electromagnetic force on a system could be obtained by integrating the

Lorentz force density over space. This is the famous Lorentz force law (LFL):

F (t) =

∫
dr [ρ(t, r)E(t, r) + j(t, r)×B(t, r)] . (2.1)

On the other hand, the electromagnetic power or the rate of radiative heat transfer

into a system could be calculated using the Joule heating law (JHL),

P (t) =

∫
dr j(t, r) ·E(t, r). (2.2)

To apply these first principles, the charge and current densities of the configuration,

ρ and j, need to be specified.

In this thesis, we are interested in frictional effects. So, naturally, we are con-

cerned with a particle moving in some background. We will also assume uniform

motion so as to avoid the complicated issue of acceleration radiation [35]. Classi-

cally, the simplest source is a uniformly moving charged particle, say, an electron.

Intuitively, the source (charge and current) densities can be written down as

ρe(t, r) = eδ(r − vt), je(t, r) = evδ(r − vt). (2.3)

When these are inserted into Eq. (2.1) and Eq. (2.2), we find, for the moving
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electron, the Lorentz force on it,

Fe(t) = e [E(t,vt) + v×B(t,vt)] , (2.4)

and the rate of electromagnetic work done on it,

Pe(t) = ev ·E(t,vt). (2.5)

More relevant to most of the considerations in the thesis, however, is a uniformly

moving particle which possesses intrinsic dipole moments. For generality, let us

assume the particle to carry an electric dipole moment, d, and a magnetic dipole

moment, µ, both being time-dependent. Now, the source densities, ρ and j should

be inferred from the electric polarization field, P , and the magnetic polarization

field, M , due to the moving dipoles,

P (t, r) = [d(t)− µ(t)× v] δ(r − vt),

M (t, r) = [µ(t) + d(t)× v] δ(r − vt). (2.6)

In general, the source densities are related to the more fundamental field quantities

via

ρ(t, r) = −∇ · P (t, r), j(t, r) =∇×M(t, r) +
∂

∂t
P (t, r), (2.7)

which can be easily derived by isolating the source terms in the Maxwell equations.

It can be easily check that the source densities so constructed will automatically

satisfy the continuity equation, ∂tρ+∇ · j = 0.1

We find, for a moving dipolar particle, the charge density to be

ρd(t, r) = [−d(t) ·∇+ µ(t)× v ·∇] δ(r − vt), (2.8)

1Note, however, for a given charge density, the current density is only defined through the

continuity equation up to a total curl, because it is only its divergence that enters the continuity

equation. On the contrary, deriving the source densities from the more fundamental polarization

fields leaves no such ambiguity.

7



and the current density to be

jd(t, r) =
[
ḋ(t)− v d(t) ·∇+∇× µ(t)− µ̇(t)× v + µ(t)× v(v ·∇)

]
δ(r − vt).

(2.9)

In reality, it is usually a good approximation to neglect the magnetic properties.2

We will therefore most often use the source densities in Eq. (2.8) and Eq. (2.9)

without the terms involving µ and drop the subscript on them,

ρ(t, r) = −d(t) ·∇δ(r − vt), j(t, r) =
[
ḋ(t)− v d(t) ·∇

]
δ(r − vt). (2.10)

Let us now insert the source densities in Eq. (2.10) into Eq. (2.1) to find out the

force on a moving electric dipole,

F (t) = d(t) ·∇E(t,vt) + d(t) ·∇ [v×B(t,vt)] + ḋ(t)×B(t,vt). (2.11)

The second term in Eq. (2.11) can be written as

d(t) ·∇ [v×B(t,vt)] = −d(t)× [∇× (v×B(t,vt))] +∇ [d(t) · (v×B(t,vt))]

= d(t)× [v ·∇B(t,vt)] +∇ [d(t) · (v×B(t,vt))] , (2.12)

where we have used ∇ ·B = 0 in the second equality. The third term in Eq. (2.11)

can be written as

ḋ(t)×B(t,vt) =
d

dt
[d(t)×B(t,vt)]−d(t)× ∂

∂t
B(t,vt)−d(t)×[v ·∇B(t,vt)] , (2.13)

where the middle term can be broken into two pieces with the use of Faraday’s law,

− d(t)× ∂

∂t
B(t,vt) = d(t)× [∇×E(t,vt)] =∇ [d(t) ·E(t,vt)]− d(t) ·∇E(t,vt).

(2.14)

When we put Eqs. (2.12)–(2.14) back into Eq. (2.11), several terms cancel and only

2For the study of the fluctuation-induced effects, we will be considering polarizable particles

which do not carry intrinsic dipole moments. For these particles, we can ignore the magnetic

terms in the polarization sources because the magnetic polarizability is typically several orders of

magnitude smaller than the electric polarizability. As a specific comparison, see Ref. [36] for the

example of a neon atom.
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three terms remain in the expression for the Lorentz force:

F (t) =∇ [d(t) ·E(t,vt)] +∇ [(d(t)× v) ·B(t,vt)] +
d

dt
[d(t)×B(t,vt)] . (2.15)

Now, the total Lorentz force on a moving dipole can be written as a sum of a total

spatial derivative and a total time derivative

F (t) = −∇F +
d

dt
I, (2.16)

where F is the interaction free energy of the dipole-field system,

F = −d(t) ·E(t,vt)− d(t)× v ·B(t,vt), (2.17)

and I is the Röntgen momentum of the dipole-field system [37],

I = d(t)×B(t,vt). (2.18)

Note in the expression Eq. (2.17) for the free energy, the second term is like the

interaction energy of a magnetic dipole in magnetic field if we deem µv(t) = d(t)×v

as the magnetic dipole moment induced by the motion of the electric dipole moment

carried by the particle, even though we have not considered any intrinsic magnetic

dipole moment of the particle. In addition, the total time derivative term in the

classical electromagnetic force Eq. (2.16) always drops in the calculation of quantum

frictional force, because it is always time independent upon quantization using

the fluctuation-dissipation theorem (FDT). We are then left with only the term

containing the spatial derivative of the free energy,

F (t) = −∇F , (2.19)

which is simply the statement of the principle of virtual work (PVW).

Now we turn to calculate the electromagnetic power or the rate of radiative heat

transfer. When the current in Eq. (2.10) is inserted into the JHL Eq. (2.2), we
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obtain the power

P (t) = ḋ(t) ·E(t,vt) + [d(t) ·∇] [v ·E(t,vt)] , (2.20)

where the first term can be rewritten as

ḋ(t) ·E(t,vt) =
d

dt
[d(t) ·E(t,vt)]− d(t) · ∂

∂t
E(t,vt)− [v ·∇] [d(t) ·E(t,vt)] . (2.21)

Note the second term of Eq. (2.20) and the last term of Eq. (2.21) combine and

give

[d(t) ·∇] [v ·E(t,vt)]− [v ·∇] [d(t) ·E(t,vt)] = [d(t)× v] · [∇×E(t,vt)]

=− [d(t)× v] · ∂
∂t
B(t,vt), (2.22)

where we have used the Faraday’s law in the last equality. As a result, the power

is written as

P (t) =
d

dt
[d(t) ·E(t,vt)]− d(t) · ∂

∂t
E(t,vt)− [d(t)× v] · ∂

∂t
B(t,vt). (2.23)

The total time derivative term in Eq. (2.23) still will not contribute to the quantum

frictional power upon quantization using FDT. The next two terms in Eq. (2.23)

each contains a partial time derivative of a term in the interaction free energy in

Eq. (2.17). We can then write the power, P , as a time derivative of the free energy,

F , with a special prescription that only the time coordinates in the fields are to be

differentiated,

P (t) =
∂

∂t
F = − ∂

∂t1
[d(t0) ·E(t1,vt) + µv(t0) ·B(t1,vt)] |t0=t1→t, (2.24)

where, again, we have identified d(t)× v = µv(t) as the magnetic dipole moment

induced by the movement of the electric dipole moment. This, perhaps, can be

deemed as a PVW, concerning a virtual time displacement rather than a spatial

displacement.

We therefore have shown that the quantum frictional force and power can be

generated from an interaction free energy in Eq. (2.17) and that the LFL and JHL
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can be cast in a form of a PVW for a moving dipolar particle.

2.2 Fluctuation-Dissipation Theorem

We devote this section to an introduction of the fluctuation-dissipation theorem

(FDT). The symmetrized correlation function gives a measure to fluctuations. The

generalized susceptibility encodes dissipation of a system. The FDT establishes

a profound relation between dissipation and fluctuation by connecting the sym-

metrized correlation function with the generalized susceptibility. Here, we prove

the relation by expressing both in terms of the (nonsymmetrized, that is, ordered)

correlation function.

The FDT enjoys a happy history of side-by-side efforts between experiment and

theory. It starts with Johnson’s observation that the fluctuation of the potential

over a conductor is proportional to the resistance and the temperature of the con-

ductor [38]. Nyquist [39] almost simultaneously gave a theoretical explanation of

the observation and realized the the direct proportionality to temperature reflects

the high temperature limit of the Bose-Einstein distribution factor. Callen and

Welton [40] generalized the then “Nyquist relation” to a general dissipative system

and provided a more rigorous derivation of the generalized relation based on the

perturbation theory of quantum mechanics. They also gave a number of interest-

ing applications, including dipole radiation, which is directly related to the context

of this thesis. These generalized Nyquist relations connect the response of a sys-

tem under a disturbance to the fluctuation within the system in the absence of

the disturbanc. Kubo realized that they actually provide an approach to calculate

certain quantities, e.g., admittance or kinetic coefficients, in nonequilibrium states,

in terms of fluctuations in equilibrium [41]. Therefore, all these relations can be

summed up under the name of the fluctuation-dissipation theorem [42].

The FDT is based on the linear response assumption that the system is subject to

a perturbation linear to the response operator, x, coupled to an influence function,

f ,

H = H0 +HI(t), HI(t) = −x(t)f(t), (2.25)
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where H0 is the unperturbed Hamiltonian.3 At the initial time, the system is

without perturbation, f(−∞) = 0, and is in thermal equilibrium,

ρ0 = ρ(−∞) =
e−βH0

Z
, Z = tr e−βH0 , (2.26)

where β is the inverse temperature. The presence of the perturbation, however, can

drive the system out of equilibrium. It follows from first order perturbation theory

that,

ρ(t) = ρ0 +
i

~

∫ t

−∞
dt′f(t′)[x(t′), ρ0]. (2.27)

Multiplying the above equation by x(t) and then taking the trace, we find the

deviation of the expectation value of the response operator from its equilibrium

value to be

〈x(t)〉ρ(t) − 〈x(t)〉ρ0 =

∫ ∞
−∞

dt′ χ(t− t′)f(t′). (2.28)

Here, χ is the generalized susceptibility function, which is directly related to the

commutator of the response operator at different times:

χ(t− t′) =
i

~
θ(t− t′)〈[x(t), x(t′)]〉ρ0 , (2.29)

where θ(t − t′) is the Heaviside function. This relation manifestly reflects the fact

that the response occurs later than the influence. Note the generalized susceptibil-

ity in (space)time coordinates is purely real, which follows from the fact that the

commutator of two Hermitian operators is anti-Hermitian.

Now, under the linear response assumption, the response, which describes how

the system responds to the perturbation, can be determined by the properties in

equilibrium [42]. Let us make one more simplification here by setting 〈x(t)〉ρ0 =

0. We are allowed to do this because the expectation value of any operator at

equilibrium is a known constant, which can always be absorbed in the definition

of the operator.4 As a result, Eq. (2.29) can be written in a cleaner form in the

3Here, equations of motion are all written in the interaction picture, where the time dependence

of the operator is governed by H0, x(t) = eiH0t/~xe−iH0t/~, while the state evolve under HI only,

i~dρ/dt = [HI(t), ρ(t)]. We choose the (Shrödinger, Heisenberg, interaction) pictures to all coincide

at t = 0. Any conclusion regarding the expectation values, of course, is independent of the picture.
4Also, in the context of this thesis, the expectation value of the response operator is in fact

always zero, so that the effects are solely given rise from the fluctuations.
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frequency domain,

〈x(ω)〉ρ0 = χ(ω)f(ω), (2.30)

where χ(ω) is the Fourier transform of χ(t− t′) in Eq. (2.29). Suppose we know the

spectrum of the unperturbed system, i.e.,

H0 |n〉 = En |n〉 , (2.31)

then, we can derive an explicit expression for the susceptibility in frequency space:

χ(ω) = −1

~
lim
η→0+

∑
n,m

(e−βEn − e−βEm)

Z

| 〈n|x|m〉 |2
ω + ωnm + iη

, (2.32)

where ωnm = (En−Em)/~ is the resonance frequency corresponding to the transition

between two internal energy levels of the system. And only at these resonance

frequencies, 5 will the susceptibility develop an imaginary part,

Imχ(ω) =
π

~
∑
n,m

(e−βEn − e−βEm)

Z
| 〈n|x|m〉 |2δ(ω + ωnm). (2.33)

At other frequencies, the susceptibility is real, and in particular, its static value is

χ(0) = −
∑
n,m

(e−βEn − e−βEm)

Z

| 〈n|x|m〉 |2
En − Em

. (2.34)

Now, we turn to quantify the fluctuation. Consider first the (nonsymmetrized,

that is, ordered) correlation function of the response operator x at different times

C(t, t′) = 〈x(t)x(t′)〉ρ0 . (2.35)

The correlation function defined in Eq. (2.35) possesses time-translational invari-

ance,

C(t, t′) = C(t− t′, 0) = C(t− t′), (2.36)

which can be easily checked employing the cyclic property of the trace operation.

Another important property of the correlation function concerns the complex con-

5Of course, actual resonances have finite width, in which case, the susceptibility develops imagi-

nary part at off-resonant frequencies.
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jugate of it,

C(τ)∗ = C(−τ), (2.37)

to prove which we have assumed that the response operator x is Hermitian. The

most crucial ingredient to the proof of FDT is the Kubo-Martin-Schwinger (KMS)

relation [43],

C(−τ) =
1

Z
trx(0)x(τ)e−βH0 =

1

Z
trx(0)eiH0τ/~x(0)e−iH0τ/~e−βH0

=
1

Z
trx(0)e−βH0x(τ − i~β) =

1

Z
trx(τ − i~β)x(0)e−βH0

= C(τ − i~β). (2.38)

The best measure for fluctuation is, however, the symmetrized correlation func-

tion defined as follows,

S(t− t′) =
1

2
[C(t− t′) + C(t′ − t)]. (2.39)

Using the KMS relation, the Fourier transform of S(t−t′) is connected to the Fourier

transform of C(t− t′) via

S(ω) =
1

2
C(ω)(1 + e−β~ω). (2.40)

On the other hand, the generalized susceptibility in Eq. (2.29) can also be expressed

in terms of the correlation function,

χ(t− t′) =
i

~
θ(t− t′)[C(t− t′)− C(t′ − t)] (2.41)

With the help of properties Eq. (2.37) and Eq. (2.39), we find the imaginary part

of the Fourier transform of χ(t− t′) is

Imχ(ω) =
χ(ω)− χ(ω)∗

2i
=

1

2~
C(ω)(1− e−β~ω). (2.42)

Comparing Eq. (2.40) and Eq. (2.42), we arrive at the FDT in its simplest form:

S(ω) = ~ Imχ(ω) coth

(
β~ω

2

)
. (2.43)
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The zero temperature (quantum) and high temperature (thermal, classical) limits

of Eq. (2.43) are

S(ω) =


~ sgn(ω) Imχ(ω), T → 0

2
βω

Imχ(ω), T →∞.
(2.44)

Notice S(ω) is directly proportional to ~ at zero temperature, while ~ drops out in

the high temperature limit.

In deriving the FDT shown in Eq. (2.43), we have been making several simplify-

ing assumptions. The problems we will explore in later chapters call for at least two

generalizations of the simplest scenario already discussed. First, both the response

and the influence can be vectors, which then requires a tensor susceptibility,

〈x(ω)〉ρ0 = χ(ω) · f(ω). (2.45)

Further, the response and the influence can be fields that depend on spatial coor-

dinates, which in general results in a nonlocal susceptibility,

〈x(ω; r)〉ρ0 =

∫
dr′χ(ω; r, r′) · f(ω; r′). (2.46)

We shall now see how the FDT in Eq. (2.42) should be modified for a vector field

response. We will still assume that the operator is Hermitian.

The correlation function now becomes tensor which depend on two sets of space-

time coordinates. Explicitly, we write out its component as

Cij(t, r; t′, r′) = 〈xi(t, r)xj(t
′, r′)〉ρ0 . (2.47)

The translational symmetry, the conjugate relation and the KMS relation for the

correlation function in Eq. (2.47) now read

Cij(t, r; t′, r′) = Cij(t− t′; r, r′), (2.48a)

Cij(t− t′; r, r′)∗ = Cji(t
′ − t; r′, r), (2.48b)
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Cji(t
′ − t; r′, r) = Cij(t− t′ − i~β; r, r′). (2.48c)

The translational symmetry in time again follows from the cyclic property of the

trace operation, and is always satisfied. However, we have not invoked the trans-

lational symmetry in space, because it is often broken. It is only strictly valid for

vacuum and approximately valid for systems that are homogeneous, and without

boundaries.6 Simple boundaries, like a planar surface or spherical surface, can par-

tially break the spatial translational symmetry in their normal directions, leaving

the symmetries in other directions intact.

The symmetrized correlation function is now defined as

Sij(t− t′; r, r′) =
1

2
[Cij(t− t′; r, r′) + Cji(t

′ − t; r′, r)]. (2.49)

With the KMS relation, we can verify again its connection with the nonsymmetrized

correlation function:

Sij(ω; r, r′) =
1

2
Cij(ω; r, r′)(1 + e−β~ω). (2.50)

The susceptibility also becomes a tensor which is nonlocal in spatial coordinates

χij(t− t′; r, r′) =
i

~
θ(t− t′)[Cij(t− t′; r, r′)− Cji(t′ − t; r′, r)]. (2.51)

Now, we calculate the Fourier transform of its anti-Hermitian part, in contrast to

the ordinary imaginary part, and find

=χij(ω; r, r′) =
χij(ω; r, r′)− χji(ω; r′, r)∗

2i
=

1

2~
Cij(ω; r, r′)(1− e−β~ω). (2.52)

Apparently, a generalized version of the FDT in Eq. (2.43) is still respected between

the components of the symmetrized correlation tensor and the anti-Hermitian part

of the susceptibility tensor,

Sij(ω; r, r′) = ~=χij(ω; r, r′) coth

(
β~ω

2

)
. (2.53)

6It, for example, constitutes a decent approximation for crystals when the required resolution is

above the atomic distances within the crystal. [44]
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Thus, we obtain the FDT for responses which are vector fields. For a more detailed

account, see the Appendixes on FDT in Ref. [45] 7.

If there does exist translational symmetry in space, the FDT relation can be

further transformed into the momentum space as

Sij(ω,k) = ~=χij(ω,k) coth

(
β~ω

2

)
. (2.54)

More explicitly, the anti-Hermitian part of the susceptibility tensor in frequency-

momentum domain is 8

=χij(ω,k) =
χij(ω,k)− χji(ω,k)∗

2i
=
χij(ω,k)− χji(−ω,−k)

2i
, (2.55)

where we have used χ(ω,k)∗ = χ(−ω,−k), a fact which follows from the reality of

χ in spacetime domain.

What directly occurs in the calculation we will perform in this thesis is often the

correlation between two Fourier components of the response. If we directly Fourier

transform both of the two sets of spacetime coordinates in Eq. (2.47), we find

〈xi(ω,k)xj(ν, k̄)〉ρ0 = (2π)4δ(ω + ν)δ(k + k̄)Cij(ω,k), (2.56)

and a similar relation holds for the symmetrized product of the response. We may

then rewrite Eq. (2.54) as

〈Sxi(ω,k)xj(ν, k̄)〉ρ0 = (2π)4δ(ω + ν)δ(k + k̄)~=χij(ω,k) coth

(
β~ω

2

)
, (2.57)

where S dictates that the product of the response operators be symmetrically or-

dered, 〈Sxixj〉 = 〈xixj + xjxi〉/2.

7Note in Ref. [45], the authors did not include θ(t− t′) in the definition of susceptibility.
8Note that we have deliberately placed the star symbol after the arguments of the susceptibility.

This is to emphasized that the complex conjugate is always taken after the Fourier transform, instead

of otherwise.
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2.3 Quantization

In Sec. 2.1, we have reviewed the classical formulas for electromagnetic force and

power. In Sec. 2.2, we have briefly introduced the FDT. Here, in this section, we

will learn how to apply the FDT for dipole and field operators occurring in the

expressions for force and power. After applying FDT properly, these formulas are

quantized automatically and ready for use in the later calculations.

The system we will consider always consist of a particle and the radiation field.

Each of them have their own free Hamiltonian, HP and HR. The interaction of the

two provides a perturbation term which can be written in a form as

HI(t) = −
∫
dr P (t, r) ·E(t, r), (2.58)

where P stands for the polarization field caused by the particle. As a result of

the interaction, the particle will respond to the radiation field and vice versa. Re-

calling Eq. (2.46), the responses are connected to the influence (source) via the

corresponding susceptibilities,

〈P (ω; r)〉 =

∫
dr′χ(ω; r, r′) ·E(ω; r′)

〈E(ω; r)〉 =

∫
dr′ Γ(ω; r, r′) · P (ω; r′), (2.59)

where we have omitted the subscript ρ0 for the expectation value. The susceptibility

χ will be determined by the internal dynamics of the particles. The electromagnetic

Green’s tensor, Γ, will be determined only by the boundary conditions, since we

have presumed that no other source than the particle exists in the configuration.

(These could be hard boundaries like a perfect conductor or soft boundaries given

by some macroscopic matter in the configuration.)

Reminiscent of Eq. (2.53), we may write down the FDT which relates the fluc-

tuations of P and E fields in equilibrium with the corresponding susceptibilities as

follows:

〈SP ′(ω′; r′)P ′(ν ′, r̃′)〉 = (2π)δ(ω′ + ν ′)~=χ′(ω′; r′, r̃′) coth

(
β′P~ω′

2

)
, (2.60a)
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〈SE(ω; r)E(ν, r̃)〉 = (2π)δ(ω + ν)~=Γ(ω; r, r̃) coth

(
βR~ω

2

)
. (2.60b)

Whenever relative motion between the particles and the system is involved, it is

important to specify with respect to which frame is the physical quantity measured.

Note that all quantities appearing in Eq. (2.60a) refer to the rest frame of the

particle, P, and are denoted with a prime, while those in Eq. (2.60b) refer to the

reference frame of the radiation, R, and are all unprimed. Such notations will be

invoked whenever needed throughout the paper.

Now consider a point particle. In its rest frame, the polarization field caused by

such a particle located at origin is P ′(ω′; r′) = d′(ω′)δ(r′). When this is plugged into

Eq. (2.60a), we find fluctuation of the dipole moments, d, localized at the position

of the particle,

〈Sd′(ω′)d′(ν ′)〉 = 2πδ(ω′ + ν ′)~=α′(ω′) coth

(
β′P~ω′

2

)
, (2.61)

where α′ is the polarizability of a point particle defined in its rest frame and is

connected to χ′ via

χ′(ω′; r′, r̃′) = α′(ω′)δ(r′)δ(r̃′). (2.62)

As commented earlier, the spatial translational symmetry is not always guaran-

teed. The translational symmetry could be broken by boundaries or involvement

of inhomogeneous materials in the configuration. In fact, in this thesis, apart from

the vacuum case, we will often consider planar geometries where only one of the

spatial direction, say z, is not translational invariant. This allows us to Fourier

transform the transverse coordinates, x and y, but keep the z coordinates in the

field operators from being transformed. For example, for the field operators, the

FDT relation can be written as

〈SE(ω,k⊥; z)E(ν, k̄⊥; z̃)〉 = (2π)3δ(ω + ν)δ(k⊥ + k̄⊥)~=Γ(ω,k⊥; z, z̃) coth

(
βR~ω

2

)
,

(2.63)

where ⊥ refers to the transverse directions that possess translational symmetry.

Finally, it is often advantageous to perform calculations in the rest frame of the

particle, P, because the free energy in that frame takes a simpler form. But we

have to be careful in applying the FDT for the field in that frame. First of all, the
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Green’s tensor should be transformed from the rest frame of radiation, R, to frame

P. Second, the argument of coth factor is no longer isotropic written in terms of

frequency and momentum in frame P. We will always, in this thesis, without loss

of generality, assume the particle to be moving in the x direction, with velocity

v = vx̂ relative to the radiation. Transforming Eq. (2.63) to frame P, the FDT now

should read

〈SE′(ω′,k′⊥; z′)E′(ν ′, k̄′⊥; z̃′)〉 = (2π)4δ(ω′ + ν ′)δ(k′⊥ + k̄′⊥)

~=Γ′(ω′,k′⊥; z′, z̃′) coth

(
βR~γ(ω′ + k′xv)

2

)
. (2.64)

Note that the Lorentz shifting of the frequency in the thermal factor reflects the

fact that the product of inverse temperature and frequency is a Lorentz invariant

and the thermal distribution is only isotropic in the natural frame for radiation, R,

βµRkµ = βRω = βRγ(ω′ + k′xv) = β′Rω
′ − β′R · k′. (2.65)

The above relation implies that the radiation temperature transformed into the

particle’s rest frame, P, becomes a four vector, which reads

βµ
′

R = (γβR,−γβRv). (2.66)

Of course, there have always been controversies regarding the Lorentz transfor-

mation of temperature [46]. Therefore, we shall always try to avoid using this

four-temperature and write out the coth factor in terms of βR.

2.4 Electromagnetic Green’s tensor

In this section, we give a detailed account for the electromagnetic Green’s tensor.

We first discuss the symmetries of the Green’s tensor in Sec. 2.4.1, which are, in

fact, also valid for other generalized susceptibilities. We then derive in Sec. 2.4.2

a differential equation satisfied by the electromagnetic Green’s tensor from the

Maxwell equations. Great generality is assumed here, for we have taken into account

the magnetic properties, anisotropy, inhomogeneity and nonlocal spatial dispersion.
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In Sec. 2.4.3, we give the vacuum Green’s tensor, which is the most symmetric and

simplest. Finally, in Sec. 2.4.4, we give the form of the Green’s tensor in a planar

geometry, which will be most useful for the problems that will be discussed in later

chapters.

2.4.1 General symmetry properties

The generalized susceptibilities constructed from the commutator of the response

operators as in Eq. (2.29) share the common property: they are retarded and real in

spacetime. This can also be directly seen by considering the connection between the

susceptibility and the correlation function in Eq. (2.51), together with the conjugate

relation for the correlation in Eq. (2.48b). From these, it directly follows

χ(t− t̃; r, r̃) = −2

~
θ(t− t̃) ImC(t− t̃; r, r̃). (2.67)

Notice this is written as a tensorial equation so that the relation is satisfied com-

ponent by component.

Since the Green’s tensor, Γ, is the generalized susceptibility corresponding to

the field operators, it must also be real in the spacetime domain. As we shall see,

symmetry properties of various Fourier transforms of the Green’s tensor can be

derived from this simple fact. Considering a planar geometry, where translational

symmetry in space is only broken in the z direction, we may write

Γ(t− t̃; r⊥ − r̃⊥, z, z̃) = Γ(t− t̃; r⊥ − r̃⊥, z, z̃)∗, (2.68)

where r⊥ = (x, y) denotes the coordinates of the two translational invariant direc-

tions. When this is Fourier transformed to frequency space, we find

Γ(ω; r⊥ − r̃⊥, z, z̃) = Γ(−ω; r⊥ − r̃⊥, z, z̃)∗. (2.69)

It can be further transformed into the momentum space utilizing the translational

symmetry in x and y directions,

Γ(ω,k⊥; z, z̃) = Γ(−ω,−k⊥; z, z̃)∗. (2.70)
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One could also retain the time coordinate and only take the Fourier transform of

Eq. (2.68) into the momentum space, though it is rarely used,

Γ(t− t̃;k⊥; z, z̃) = Γ(t− t̃;−k⊥; z, z̃)∗. (2.71)

Below, we give the symmetry properties for the real and imaginary part of the cor-

responding Fourier transform of the Green’s tensor based on Eq. (2.69) - Eq. (2.71):

Re Γ(ω; r⊥ − r̃⊥, z, z̃) = Re Γ(−ω; r⊥ − r̃⊥, z, z̃),

Im Γ(ω; r⊥ − r̃⊥, z, z̃) = − Im Γ(−ω; r⊥ − r̃⊥, z, z̃), (2.72a)

Re Γ(ω,k; z, z̃) = Re Γ(−ω,−k; z, z̃),

Im Γ(ω,k; z, z̃) = − Im Γ(−ω,−k; z, z̃), (2.72b)

Re Γ(t− t̃;k⊥; z, z̃) = Re Γ(t− t̃;−k⊥; z, z̃),

Im Γ(t− t̃;k⊥; z, z̃) = − Im Γ(t− t̃;−k⊥; z, z̃). (2.72c)

To sum up, the real part of the Green’s tensor is even while the imaginary part of the

Green’s tensor is odd. But, notice that these symmetry properties only concerns

the complete reflection of the Fourier transformed coordinates, i.e., Im Γ(ω,k) 6=
− Im Γ(−ω,k), except in special situations.

Finally, let us emphasize that the general symmetry properties discussed here

apply to not only the electromagnetic tensor but any generalized susceptibility.

2.4.2 Equations of motion

Let us now derive the equations of motion satisfied by the electromagnetic Green’s

tensor. The macroscopic Maxwell equations without any free charge or currents

reads

∇ ·D(ω, r) = 0, (2.73a)
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∇ ·B(ω; r) = 0, (2.73b)

∇×E(ω; r) = iωB(ω, r), (2.73c)

∇×H(ω; r) = −iωD(ω; r). (2.73d)

This set of equations is able to describe a system consisting the radiation field

and some bulk material. The electric and magnetic responses of the bulk material

to the radiation fields is described by the permittivity tensor, ε, and permeability

tensor, µ, respectively, through the constitutive relations:

D(ω; r) =

∫
dr′ε(ω; r, r′) ·E(ω; r′), (2.74a)

B(ω; r) =

∫
dr′µ(ω; r, r′) ·H(ω; r′). (2.74b)

These relations can be inverted as

E(ω; r) =

∫
dr′ε−1(ω; r, r′) ·D(ω; r′), (2.75a)

H(ω; r) =

∫
dr′µ−1(ω; r, r′) ·B(ω; r′), (2.75b)

where the inverse permittivity, ε−1 and inverse permeability, µ−1 are to be solved

from ∫
dr′ε(ω; r, r′) · ε−1(ω; r′, r′′) = 1δ(r − r′′), (2.76a)∫
dr′µ(ω; r, r′) · µ−1(ω; r′, r′′) = 1δ(r − r′′). (2.76b)

We need to introduce external polarization, P , and the magnetization, M , into

the Maxwell equations by letting 9

D =⇒D + P , H =⇒H −M . (2.77)

As a result, the Maxwell equations in Eq. (2.73) are modified by the additional

9In the context of this thesis, a neutral particle interacts with the radiation field and bulk material

(if any), and the external polarization and magnetization are precisely due to the neutral particle.
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source densities, ρs, and js caused by P and M .

∇ ·D(ω; r) = −∇ · P (ω; r) = ρs(ω; r), (2.78a)

∇ ·B(ω; r) = 0, (2.78b)

∇×E(ω; r)− iωB(ω, r) = 0, (2.78c)

∇×H(ω; r) + iωD(ω; r) = −iωP (ω; r) +∇×M (ω; r) = js(ω; r). (2.78d)

In Eq. (2.78), D and B can be eliminated in favor of E and H using the constitutive

relations and their inverses. The equations of motion for E and H can be derived

by taking a curl on Eq. (2.78c) and Eq. (2.78d), respectively,

∫
dr′
[

1

ω2
∇× µ−1(ω; r, r′) ·∇′×−ε(ω; r, r′)·

]
E(ω; r′)

=

∫
dr′DE(ω; r, r′)E(ω; r′)

=P (ω; r) +
i

ω
∇×M(ω; r), (2.79a)

∫
dr′
[

1

ω2
∇× ε−1(ω; r, r′) ·∇′×−µ(ω; r, r′)·

]
H(ω; r′)

=

∫
dr′DH(ω; r, r′)H(ω; r′)

=

∫
dr′∇× ε−1(ω; r, r′) ·

[
− i
ω
P (ω; r′) +

1

ω2
∇′×M (ω; r′)

]
. (2.79b)

Note that the differential operators, DE and DH, are dual under the interchange of

the permittivity and permeability, ε↔ µ.

There should be four different kinds of Green’s tensors that connect E and H

to P and M :E(ω; r)

H(ω; r)

 =

∫
dr′

ΓEP(ω; r, r′) ΓEM(ω; r, r′)

ΓHP(ω; r, r′) ΓHM(ω; r, r′)

P (ω; r′)

M (ω; r′)

. (2.80)

The integro-differential equations satisfied by each of the Green’s tensors therefore

read ∫
dr′DE(ω; r, r′) · ΓEP(ω; r′, r′′) = 1δ(r − r′′), (2.81a)
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∫
dr′DE(ω; r, r′) · ΓEM(ω; r′, r′′) =

i

ω
∇× 1δ(r − r′′), (2.81b)∫

dr′DH(ω; r, r′) · ΓHP(ω; r′, r′′) = − i
ω
∇× ε−1(ω; r, r′′), (2.81c)∫

dr′DH(ω; r, r′) · ΓHM(ω; r′, r′′) = − 1

ω2
∇× ε−1(ω; r, r′′)×

←−
∇′′. (2.81d)

The magnetization effect induced by a particle is typically far smaller than the

electric polarization effect. Also, the electric field and magnetic field are not inde-

pendent, but they are directly related through Eq. (2.78c). These considerations

allow us to focus on only the Green’s tensor that connects E to P , ΓEP. In later

chapters, Green’s tensor always refer to ΓEP and we shall drop the subscript on it

for convenience.

In the above derivation, we have taken into account the spatial nonlocality in

the permittivity and permeability tensors. If we can treat them as being local,

ε(ω; r, r′)→ ε(ω; r)δ(r − r′), µ(ω; r, r′)→ µ(ω; r)δ(r − r′), (2.82)

then the integro-differential equation Eq. (2.81a) reduces to a differential equation:

[
1

ω2
∇× µ−1(ω; r) ·∇×−ε(ω; r)·

]
Γ(ω; r, r̃) = 1δ(r − r̃). (2.83)

2.4.3 Vacuum Green’s tensor

In vacuum (free space), ε = µ = 1, and the differential equation, Eq. (2.83) reduces

to [
1

ω2
∇×∇×−1·

]
Γ(ω; r, r̃) = 1δ(r − r̃), (2.84)

which is satisfied by the vacuum Green’s tensor. If we take the divergence of the

above equation, we obtain

∇ · Γ(ω; r, r̃) = −∇ · 1δ(r − r̃). (2.85)

Let us define the divergenceless part of the Green’s tensor to be

G(ω; r, r̃) = Γ(ω; r, r̃) + 1δ(r − r′), (2.86)
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The retarded solution to Eq. (2.84), in terms of G is

G(ω; r, r̃) =∇×∇× 1
eiωR

4πR
= (∇∇−∇21)

eiωR

4πR
,

=
[
R̂R̂(3− 3iωR− ω2R2)− 1(1− iωR− ω2R2)

] eiωR
4πR3

, (2.87)

where R = |r − r̃| and R̂ = R
R

. In the coincident limit, R → 0, while R̂R̂ → 1/3,

upon averaging over all directions, G becomes

G(ω; r, r̃) −→ 1

[
ω2

6πR
+ i

ω3

6π
+O(R)

]
, (2.88)

that is, in vacuum, ReG becomes divergent in the coincident limit while ImG is

convergent. We will see in Chapter 3 that it is ImG that enters the formula for

computing the radiative heat transfer and quantum frictional forces in vacuum.

The Green’s tensor G in Eq. (2.87) can be transformed into (ω,k) space, since

it possesses a full spatial translational symmetry,

G(ω;R) =

∫
d3k

(2π)3
eik·RG(ω,k). (2.89)

Doing the inverse Fourier transform, we findG is precisely the usual vacuum photon

propagator,

Gij(ω,k) =
−kikj + k2δij
(ω + iη)2 − k2

, (2.90)

where η is a small positive parameter which renders the poles of the propagator to

be only found in the lower half ω plane. That is, the propagator is retarded.

In the calculations we will perform in later chapters, the Green’s function is al-

ways evaluated in the limit of coincident spatial coordinates, the particle’s position.

Therefore, the original Green’s tensor, Γ, is divergent due to the delta function

in Eq. (2.86). We shall always discard this delta function and only be concerned

with the divergenceless Green’s tensor, G. This is, effectively, the point-splitting

prescription, which is commonly seen in field theory for regularization purposes.
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2.4.4 Green’s tensor in planar geometry

When an interface is introduced into the vacuum (free space), the full spatial trans-

lational symmetry will be broken. Let us now consider a planar interface, lying at

z = 0. Above the interface (z > 0) is vacuum, below the interface is some medium

characterized by an isotropic and homogeneous permittivity, ε, and permeability,

µ. The index of refraction of the media is

n(ω) =
√
ε(ω)µ(ω), (2.91)

which, in general, can be dispersive in frequency.

The geometry still possesses a spatial translational symmetry in the x-y plane,

which permits us to Fourier transform the Green’s tensor in these spatial directions,

G(ω; r, r̃) =

∫
d2k⊥
(2π)2

eik⊥·(r⊥−r̃⊥)G(ω,k⊥; z, z̃). (2.92)

In this geometry, the Green’s tensor evaluated in the vacuum region (z, z̃ > 0) 10

takes the following form:

G(ω,k⊥; z, z̃) =


k2x
k2
∂z∂z̃g

H +
k2y
k2
ω2gE kxky

k2
∂z∂z̃g

H − kxky
k2
ω2gE ikx∂zg

H

kxky
k2
∂z∂z̃g

H − kxky
k2
ω2gE

k2y
k2
∂z∂z̃g

H + k2x
k2
ω2gE iky∂zg

H

−ikx∂z̃gH −iky∂z̃gH k2gH

, (2.93)

where k2 = k2
x + k2

y.

As is seen, the Green’s tensor above is constructed from the two scalar Green’s

functions, corresponding to the transverse electric (E) and transverse magnetic (H)

modes, respectively. They satisfy the following differential equation,

(
− ∂2

∂z2
+ k2 − ω2

)
gE,H(ω, k; z, z̃) = δ(z − z̃). (2.94)

Each of the scalar functions consists of a bulk part and a scattering part,

gE,H(ω, k; z, z̃) =
1

2κ
e−κ|z−z̃| +

rE,H

2κ
e−κ(z+z̃), (2.95)

10In this thesis, the Green’s tensor is always evaluated at the position of the particle, which is

moving in the vacuum region.

27



where κ is the propagation wave number corresponding to the vacuum,

κ2 = k2 − ω2. (2.96)

with the reflection coefficients,

rE =
κ− κn/µ
κ+ κn/µ

, rH =
κ− κn/ε
κ+ κn/ε

. (2.97)

and κn is the propagation wave number associated with the medium,

κ2
n = k2 − ω2εµ = k2 − ω2n2. (2.98)

In certain regions of ω and k⊥, κ and κn will develop imaginary parts.11 In

those regions, the branch is so chosen that the Green’s tensor is guaranteed to be

retarded,

κ→ −isgn(ω)
√
ω2 − k2, ω2 > k2; κn → −isgn(ω)

√
ω2εµ− k2, ω2εµ > k2.

(2.99)

Note that κ and κn become odd in ω in the regions where they develop imaginary

parts.

If we now take the vacuum limit, ε = µ = 1, for the planar Green’s tensor in

Eq. (2.93), κn = κ, and the reflection coefficients vanish, rE = rH = 0. There is

no interface in the geometry and the Green’s tensor only has a bulk contribution,

which reads

G0(ω,k⊥; z, z̃) =
1

2κ
e−κ|z−z̃|


ω2 − k2

x −kxky −ikxκsgn(z − z̃)

−kxky ω2 − k2
y −ikyκsgn(z − z̃)

ikxκsgn(z̃ − z) ikyκsgn(z̃ − z) k2

.
(2.100)

Obviously, the vacuum Green’s tensor is a symmetric matrix, which reflects the

reciprocity of the vacuum.

Another limit to take is to assume the interface to be a perfectly conducting

11It is precisely these modes that give rise to the quantum frictional effects that we will be

discussing.
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boundary for which the permittivity, ε, and permeability, µ, take the extreme val-

ues, 12,

ε→∞, µ→ 0 (2.101)

so that the reflection coefficients simplify to be

rE,H = ∓1. (2.102)

The Green’s tensor in the presence of a perfectly conducting plate therefore has

both a bulk contribution and a scattering contribution,

GPC = G0 +GSC, (2.103)

where the bulk part G0 is identical to the vacuum Green’s tensor in Eq. (2.100)

while the scattering part is

GSC(ω,k⊥; z, z̃) =
1

2κ
e−κ(z+z̃)



−(ω2 − k2
x) kxky −ikxκ

kxky −(ω2 − k2
y) −ikyκ

ikxκ ikyκ k2


. (2.104)

The vacuum Green’s tensor and the Green’s tensor in the presence of a perfectly

conducting plate are special in that they evaluate the same in frame P as in frame

R,

G′(ω′,k′⊥; z, z̃) = G(ω′,k′⊥; z, z̃). (2.105)

This can be checked explicitly using the Lorentz transformations for Green’s tensors

listed in Appendix A. The quantization in frame P therefore becomes easier in these

geometries, since we do not need to worry about Lorentz transforming the Green’s

tensor.

Finally, let us consider an interface lying at z = 0, which separates two different

isotropic and homogeneous materials (which could be dispersive) characterized by

12To mimic a perfectly conducting boundary, materials with impedance Z =
√

µ
ε → 0 is desirable.

The index of refraction n =
√
εµ does not have to remain unity but should be finite [47].
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Figure 2.1: Illustration of the two-layer geometry.

permittivity and permeability ε1, µ1 and ε2, µ2, respectively. This two-layer geom-

etry is illustrated in Figure 2.1. The Green’s tensor in region 1 is now modified to

be

G(ω,k⊥; z, z̃) =


k2x
k2
∂z∂z̃

gH

ε21
+

k2y
k2
ω2gE kxky

k2
∂z∂z̃

gH

ε21
− kxky

k2
ω2gE ikx∂z

gH

ε21
kxky
k2
∂z∂z̃

gH

ε21
− kxky

k2
ω2gE

k2y
k2
∂z∂z̃

gH

ε21
+ k2x

k2
ω2gE iky∂z

gH

ε21

−ikx∂z̃ g
H

ε21
−iky∂z̃ g

H

ε21
k2 gH

ε21

, (2.106)

Note µ1 does not explicitly enter the Green’s tensor but implicitly through the two

scalar Green’s functions, which now satisfy different differential equations:


(
− ∂2

∂z2
+ k2 − ω2ε1µ1

)
gE(ω, k; z, z̃) = ε1δ(z − z̃),

(
− ∂2

∂z2
+ k2 − ω2ε1µ1

)
gH(ω, k; z, z̃) = µ1δ(z − z̃).

(2.107)

Now, they read


gE(ω, k; z, z̃) = ε1

[
1

2κ1
e−κ1|z−z̃| + rE

2κ1
e−κ1(z+z̃)

]
,

gH(ω, k; z, z̃) = µ1

[
1

2κ1
e−κ1|z−z̃| + rH

2κ1
e−κ1(z+z̃)

]
.

(2.108)

The reflection coefficients are

rE =
κ1/µ1 − κ2/µ2

κ1/µ1 + κ2/µ2

, rH =
κ1/ε1 − κ2/ε2

κ1/ε1 + κ2/ε2

, (2.109)
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where

κ1 = k2 − ω2ε1µ1, κ2 = k2 − ω2ε2µ2. (2.110)

2.5 Polarizability Tensor

In this section, we discuss another important susceptibility, the polarizability tensor.

Unlike the Green’s tensor, which is fully determined by the macroscopic boundary

conditions, the polarizability should in principle be derived from the atomic and

molecular properties of the materials. However, we will not go deeply in the atomic

or condensed matter consideration of the subject. Rather, the emphasis here is

to introduce some decent models for the polarizability, both for a nanoparticle in

Sec. 2.5.1 and for an atom in Sec. 2.5.2, so that we could use them to estimate the

fluctuation-induced effects that will be discussed in later chapters.

2.5.1 Polarizability of a nanoparticle

The expressions in Eq. (2.31) and Eq. (2.32) are only practically useful to calculate

the susceptibility of a system with a small number of energy levels. For a macro-

scopic particle, on the contrary, its energy spectrum becomes so dense that its

susceptibility, effectively, becomes a continuous function in frequency. In that case,

instead of deriving the susceptibility from the information about the microscopic

energy spectrum (which will be enormous), one usually relies on some empirical

model for the susceptibility which only uses a few parameters of the macroscopic

material as input.

If we assume the nanoparticle is isotropic and made of homogeneous material,

its polarizability, α(ω), can then be expressed in terms of its volume, V , and the

permittivity of the material, ε(ω), through the Lorenz-Lorentz relation

α(ω) = 3V
ε(ω)− 1

ε(ω) + 2
. (2.111)

An introduction of the Lorenz-Lorentz relation can be found in Refs. [48]. The

relation takes into account the distinction between fields acting on the atoms in a

medium and the actual applied field [49]. In the “dilute” limit, ε(ω) → 1, where
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such distinction is not important, the Lorenz-Lorentz relation reduces to a volume

summation of the local susceptibility

α(ω) ∼ V [ε(ω)− 1] = V χ(ω), (2.112)

which can be easily extended for a particle made of inhomogeneous material,

α(ω) =

∫
dr χ(ω; r). (2.113)

The permittivity of the material, ε(ω), can often be modeled by a series of

resonant-damped oscillators [50]

ε(ω) = 1 +
∑
i

ω2
p,i

ω2
0,i − ω2 − iωνi

, (2.114)

where ω0,i, ωp,i and νi are the resonant frequency, plasma frequency, and damping

frequency corresponding to each oscillator. For metals, however, it is usually a good

approximation, to just keep one term with zero resonance frequency:

ε(ω) = 1− ω2
p

ω2 + iων
. (2.115)

In later chapters, we will often use gold as a concrete example. The nominal value

for its plasma frequency and damping parameter are: ωp = 9.00 eV and ν = 0.0350 eV

[51].

Combining Eq. (2.111) and Eq. (2.115), we find the polarizability of a nanopar-

ticle made of metal to be

α(ω) = V
ω2
p

ω2
1 − ω2 − iων , (2.116)

where through the Lorenz-Lorentz relation, the free oscillator term have now ac-

quired a resonance frequency ω1 = ωp/
√

3. 13 The real part and the imaginary part

13If we were to consider a nanoparticle made of an insulator, we would, similarly, see a shift of

the old resonance frequency, ω2
0 → ω2

0 + ω2
p/3.
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of the polarizability in Eq. (2.116) can be readily found,

Reα(ω) = V
ω2
p(ω

2
1 − ω2)

(ω2
1 − ω2)2 + ω2ν2

, Imα(ω) = V
ω2
pων

(ω2
1 − ω2)2 + ω2ν2

. (2.117)

Notice Reα(ω) is even in ω and Imα(ω) is odd in ω, which is just the symmetry

property of a spatially local generalized susceptibility.

The polarizability in Eq. (2.116) is temperature independent if all the parameters

involved are constant. However, in reality, even though the plasma parameter, ωp,

has very weak temperature dependence, the damping parameter, ν, is usually more

sensitive to variation of temperatures. It is therefore more realistic to adopt a

temperature dependent model for the damping parameter. Damping of a simple

metal is mainly due to the scattering of electrons by phonons and can be well

described by the Bloch-Grüneisen (BG) model [52, 53],

ν(T ) = ν0

(
T

θ

)5 ∫ θ
T

0

dx
x5ex

(ex − 1)2
. (2.118)

For gold, the Bloch-Grüneisen temperature θ is 175 K. And the constant ν0 in

Eq. (2.118) can be determined to be 0.0832 eV from the room temperature (300 K)

value of the damping parameter ν = 0.0350 eV given in Refs. [51, 54, 55].14 The low

and high temperature limits of the Bloch-Grüneisen damping can be easily worked

out,

ν(T )→


5Γ(5)ζ(5)ν0

(
T
θ

)5
, T � θ,

ν0
4

(
T
θ

)
, T � θ.

(2.119)

In Fig. 2.2, we plot the Bloch-Grüneisen damping parameter for gold as a function

of temperature. The transition between the low and high temperature behavior of

ν is seen to occur at a rather low temperature around T = 40 K.

14The value for ν0 we use is slightly different than that in Appendix D of [51] where the room

temperature is taken to be 295 K. There is, of course, no definite consensus on the meaning of the

room temperature. Nonetheless, taking it to be 300 K is more consistent with the source of the raw

data in [55].
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Figure 2.2: The temperature-dependent damping parameter ν in Eq. (2.118) is

illustrated for gold with θ = 175 K and ν0 = 0.0832 eV.

2.5.2 Polarizability of an atom

Thanks to the development of the atomic precision experiments and spectroscopy,

physicists have accumulated a good knowledge about the energy spectrum of most

common atoms. A convenient resource for finding such data is [56]. These data, in

principle, enables us to compute the polarizability of an atom using Eq. (2.32)

α(ω) = −1

~
lim
η→0+

∑
n,m

σnm
ω + ωnm + iη

. (2.120)

Here, σnm is a tensorial oscillator strength determined by relevant energy levels and

the dipole transition matrix elements,

σnm =
(e−βEn − e−βEm)

Z
〈n|d|m〉 〈m|d|n〉 , (2.121)

which possesses the obvious symmetry

σnm = −σmn. (2.122)

If Eq. (2.120) were strictly true, α(ω) would be purely real and even at all

off-resonant frequencies,

α(ω) = −1

~
∑
n,m

σnm
ω + ωnm

=
2

~
∑
n,m<n

σnmωnm
ω2 − ω2

nm

, ω 6= −ωnm, (2.123)
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and the imaginary part of the polarizability could only arise at resonances

Imα(ω) = −π
~
∑
n,m

σnmδ(ω + ωnm) = −π
~
∑
n,m<n

σnm [δ(ω − ωnm)− δ(ω + ωnm)] ,

(2.124)

which is manifestly odd.

More realistically, instead of being infinitely thin, each resonance should have a

finite width, ηnm(ω), which could also be a function of frequency. Then, Eq. (2.120)

is replaced with

α(ω) = −1

~
∑
n,m

σnm
ω + ωnm + iηnm(ω)

, (2.125)

where the width could be linear in ω or behave as ω3, depending on whether the

velocity gauge or length gauge is employed [57]. Considering the finite width, the

polarizability develops an imaginary part at off-resonant frequencies as well.

Even though all frequency modes will contribute to the fluctuation-induced ef-

fects, the contributions from frequency modes much higher than the corresponding

temperature, ~ω � kBT are suppressed due to an ever-present Bose-Einstein factor

in the expressions for these effects. In other words, at temperatures lower than

that corresponding to the first excited energy of the atom, T < T1, all resonance

contributions will be suppressed. It is therefore a decent approximation to treat

the polarizability as being purely real and even replace the dynamic polarizability

with the static polarizability for these sufficiently low temperatures. In this case,

we will see that the various fluctuation-induced effects will be of second order in

the intrinsic polarizability of the atom. For temperatures higher than T1, the reso-

nance modes become important in the evaluation of the fluctuation-induced effects

and these effects will be of first order to the polarizability. But, for the discus-

sion of fluctuation-indeuced effects, we should not consider temperatures exceeding

the ionization temperature of the atom, Ti, beyond which the atom will be ion-

ized and cannot stay neutral anymore. That is, at such high temperatures, all of

the fluctuation-induced effects will be completely flooded by the classical charged

effects.
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Chapter 3

Quantum Vacuum Frictional Effects

(QVF)

What is the simplest setting for quantum frictional effects, i.e., forces and heat

transfer, to occur on a neutral but polarizable particle? Surprisingly, a particle

moving uniformly in free space, not in contact with or close to any other objects, can

experience a force, parallel to its motion, originating from the vacuum fluctuations.

We will call such a frictional force quantum vacuum friction (QVF). In the case

of an intrinsically dissipative particle, the fluctuations can also induce a radiative

heat transfer so that the particle will either absorb energy from or release energy

to the surrounding blackbody radiation, which we can name as quantum vacuum

radiative heat transfer (QVRHT).

In this chapter, we explore these vacuum effects. In Sec. 3.1, we study QVF

and QVRHT for an intrinsically dissipative nanoparticle. In Sec. 3.2, we investigate

the quantum vacuum frictional effects for a nondissipative atom. They have to be

treated differently. For the former, quantum vacuum frictional effects are induced

by both the electromagnetic field fluctuations and intrinsic dipole fluctuations. For

the latter, the only dissipation mechanism for the particle is through its interaction

with the surrounding blackbody radiation. As a result, a nondissipative atom will

always be found in the nonequilibrium steady state (NESS), where it never loses

or gains internal energy. On the contrary, a dissipative nanoparticle can be out of

NESS and therefore has its own temperature independent of the radiation. The

separate treatments for the two different kinds of particle are still needed for the
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discussion of quantum frictional effects in other more complicated scenarios than

vacuum. So, what we discuss in this chapter provides a paradigm for the discussions

in the following chapters.

The nonrelativistic discussion of frictional force on particles moving in free space

filled with only blackbody radiation can be traced back to the works of Mkrtchian

et al. [16] or even Einstein and Hopf [3]. Ever since, there has been considerable

interest in the subject of blackbody friction/quantum vacuum friction (QVF) [58,

17, 59, 60]. Recently, we have also investigated such quantum vacuum frictional

effects on a particle moving with relativistic velocities, be it a nondissipative atom

[21] or an intrinsically dissipative nanoparticle [22].

In this chapter, we will set the universal constants, c = kB = 1 in the analytic

expressions. SI units, however, are reinstated in the numerical evaluations. Primes

will be used on physical quantities that are referring to the rest frame of the particle,

P. Since the inverse temperature of the radiation, βR, and that of the particle, β′P,

are always defined in their respective rest frames, we omit the subscript on these

symbols throughout the chapter. That is, starting from this chapter, we will use

the following shorthand notation for the two temperatures, βR → β and β′P → β′.

3.1 Quantum Vacuum Frictional Effects on a Dissipative

Nanoparticle

In this section, we will consider a neutral but polarizable nanoparticle which is

intrinsically dissipative, that is, its polarizability is complex in frequency space.

For simplicity, we will also assume that the polarizability is isotropic and only

dispersive in frequency, that is

α(ω) = α(ω)1 = [Reα(ω) + i Imα(ω)] 1. (3.1)

It then immediately follows that Reα(ω) is even in frequency while Imα(ω) is odd.

The particle is dissipative intrinsically so that it can exchange energy with the

environment. This indicates that the particle has its own temperature, T ′, indepen-

dent of the temperature of the radiation, T , and it does not have to be in thermal
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equilibrium or nonequilibrium steady state (NESS) with the environment filled with

blackbody radiation.

3.1.1 Radiative heat transfer of a particle at rest

Even if the atom is at rest in free space, there will be radiative heat transfer between

the atom and the environment induced by the fluctuations when they are not in

thermal equilibrium. In Chapter 2, we have found that the radiative power on a

moving electric dipole could be obtained by differentiating a free energy as follows:

P (t) =
∂

∂t
F = − ∂

∂t1
[d(t0) ·E(t1,vt) + µv(t0) ·B(t1,vt)] |t0=t1→t, (3.2)

where µv(t) = d(t)× v is the magnetic dipole moment induced by the motion of

the electric dipole. For v = 0, this reduces to

P (t) =− ∂

∂t1
d(t0) ·E(t1,0)|t0=t1→t

=

∫
dω

2π
e−iωtd(ω) ·

∫
dν

2π
e−iνtiνE(ν; 0), (3.3)

where we have assumed that the dipole is stationary at position r = 0. The ex-

pression in Eq. (3.3) involves the dipole moment and the electric field. But, the

nanoparticle does not carry any intrinsic dipole moment. Neither is there any ex-

ternal field present in the configuration. That is, the expectation value of both

operators are zero for the particle-radiation system. However, a radiative heat

transfer can still be induced because of the nonvanishing expectation value of the

product of these operators, that is, due to the fluctuations.

Two types of fluctuations exist in the system: field fluctuation (EE) and dipole

fluctuation (dd). Expanding the dipole in Eq. (3.3) through the polarizability of

the particle,

d(ω) = α(ω) ·E(ω; 0), (3.4)

we find the radiative power induced by the field fluctuation,

PEE(t) =

∫
dω

2π
e−iωt

∫
dν

2π
e−iνtiν 〈SE(ν; 0) ·α(ω) ·E(ω; 0)〉 , (3.5)
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where S refers to the symmetrization of the field operators. The field in Eq. (3.3)

can also be expanded through the Green’s tensor in vacuum,

E(ν; 0) =

∫
drG(ν; 0, r) · P (ν; r), (3.6)

where P is the polarization field caused by a particle at rest,

P (ν; r) = d(ν)δ(r). (3.7)

The radiative power induced by the dipole fluctuation is,

Pdd(t) =

∫
dω

2π
e−iωt

∫
dν

2π
e−iνtiν 〈Sd(ω) ·G(ν; 0,0) · d(ν)〉 . (3.8)

Now we use the appropriate forms of FDT to quantize PEE and Pdd, respectively:

〈SE(ω; 0)E(ν,0)〉 = (2π)δ(ω + ν) ImG(ω; 0,0) coth

(
βω

2

)
, (3.9a)

〈Sd(ω)d(ν)〉 = 2πδ(ω + ν) Imα(ω) coth

(
β′ω

2

)
. (3.9b)

Note that the anti-Hermitian parts of the corresponding susceptibilities tensor re-

duce to their ordinary imaginary part. This is possible for the polarizability, α

because we have assumed that it is isotropic. It is also allowed for the Green’s

tensor because it is reciprocal (invariant under interchange of spatial indices and

coordinates) in vacuum. As a result, we find the total radiative heat transfer is

time independent

P =

∫
dω

2π
ω Imα(ω) tr ImG(ω; 0,0)

[
coth

(
βω

2

)
− coth

(
β′ω

2

)]
, (3.10)

for which we have utilized the symmetry properties of the susceptibilities and the

integrand. The vacuum Green’s tensor, in the coincident limit, is isotropic and has

a finite imaginary part as recorded in Eq. (2.88)

ImG(ω; 0,0) =
ω3

6π
1. (3.11)
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When this is plugged back into Eq. (3.10), we find

P =
1

4π2

∫
dω ω4 Imα(ω)

[
coth

(
βω

2

)
− coth

(
β′ω

2

)]
=

1

π2

∫ ∞
0

dω ω4 Imα(ω)

[
1

eβω − 1
− 1

eβ′ω − 1

]
. (3.12)

This radiative heat transfer on a particle at rest is nonzero so long as the particle

is not in thermal equilibrium with the radiation background, T ′ 6= T .

How long will it take for the nanoparticle at rest come to equilibrium with the

radiation? Suppose the heat capacity of the particle, CV , is a known function of the

particle’s temperature. To find out the time for the particle to reach thermal equi-

librium with the blackbody radiation at temperature T from an initial temperature,

T0, we have

CV (T ′)dT ′ = P (T, T ′)dt =⇒ ∆t =

∫ T

T0

dT ′
CV (T ′)

P (T, T ′)
(3.13)

A suitable model to use for the heat capacity might be the Debye model for a

crystalline:

CV (T ′) =
∂U

∂T ′

∣∣∣∣
V

, U = 3V nD3(x), x =
θ

T ′
, (3.14)

where U is the internal energy, V and n are the volume and number density (num-

ber/volume) of the solid, θ is the Debye temperature of the solid, and D3 is the

Debye function (of order 3) defined as

D3(x) =
3

x3

∫ x

0

dt
t3

et − 1
. (3.15)

A discussion of the cooling of a nanoparticle utilizing the Debye model for its heat

capacity can be found in our recent work Ref. [61].

3.1.2 Radiative heat transfer of a uniformly moving particle and the

nonequilibrium steady state (NESS)

Now, let us consider what will happen to a nanoparticle moving at constant velocity,

v, with respect to the blackbody background. Physical quantities now become frame

dependent. If we perform a Lorentz transformation from the rest frame of the
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radiation, R, to the rest frame of the particle, P, where the velocity of the particle

becomes v′ = 0, the derivations above can still be used to calculate the radiative

heat transfer in frame P. We just need to keep in mind that every physical quantity

involved is defined in frame P, and we shall denote those with primes,

P ′EE(t′) =

∫
dω

2π
e−iωt

′
∫

dν

2π
e−iνt

′
iν 〈SE′(ν; 0) ·α′(ω) ·E′(ω; 0)〉 , (3.16a)

P ′dd(t) =

∫
dω

2π
e−iωt

′
∫

dν

2π
e−iνt

′
iν 〈Sd′(ω) ·G′(ν; 0,0) · d′(ν)〉 , (3.16b)

To quantize the equations in Eq. (3.16), we must apply the FDTs in frame P. For

the field fluctuations, we recall Eq. (2.64)

〈SE′(ω,k⊥; z)E′(ν, k̄⊥; z̃)〉 = (2π)4δ(ω+ν)δ(k⊥+k̄⊥)=G′(ω,k⊥; z, z̃) coth

(
β~γ(ω + kxv)

2

)
(3.17)

and find

P ′EE =

∫
dω

2π

d2k⊥
(2π)2

ω Imα′(ω) tr ImG′(ω,k⊥; 0, 0) coth

(
βγ(ω + kxv)

2

)
. (3.18)

Notice it is the motion of the particle that breaks the complete translational sym-

metry of the particle-radiation system and compels us to apply FDT in momentum

space. And, we deliberately leave the z coordinates not transformed, so that the

equations derived here for vacuum can be readily extended to planar geometries.

For the dipole fluctuations, we use Eq. (2.61)

〈Sd′(ω)d′(ν)〉 = 2πδ(ω + ν) Imα′(ω) coth

(
β′ω

2

)
. (3.19)

and find

P ′dd = −
∫
dω

2π

d2k⊥
(2π)2

ω Imα′(ω) tr ImG′(ω,k⊥; 0, 0) coth

(
β′ω

2

)
. (3.20)

The total radiative heat transfer is therefore

P ′ =

∫
dω

2π

d2k⊥
(2π)2

ω Imα′(ω) · tr ImG′(ω,k⊥; 0, 0)

{
coth

[
β

2
γ(ω + kxv)

]
− coth

(
β′ω

2

)}
.

(3.21)
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For the vacuum background, the Green’s tensor is happily invariant in different

frames,

G′(ω,k⊥; z, z̃) = G(ω,k⊥; z, z̃)

=
1

2κ
e−κ|z−z̃|


ω2 − k2

x −kxky −ikxκsgn(z − z̃)

−kxky ω2 − k2
y −ikyκsgn(z − z̃)

ikxκsgn(z̃ − z) ikyκsgn(z̃ − z) k2

, (3.22)

where κ =
√
k2 − ω2. The trace of the Green’s tensor evaluated in the coincident

limit is therefore

trG′(ω,k⊥; z = z̃) =
ω2

κ
. (3.23)

Its imaginary part can only arise from κ for ω2 > k2,

κ⇒ −isgn(ω)
√
ω2 − k2, ω2 > k2, (3.24)

where the branch is chosen so that the Green’s tensor is retarded. Inserting these

into Eq. (3.21), the integration on ky can be performed. Further, with the change

of variable, kx = ωu and y = γ(1 + uv) the power in Eq. (3.21) can be written as

P ′ =
1

2π2γv

∫ ∞
0

dω Imα(ω)ω4

∫ y+

y−

dy

[
1

eβωy − 1
− 1

eβ′ω − 1

]
,

=
1

2π2γv

∫ ∞
0

dω Imα(ω)ω4

[
1

βω
ln

(
1− e−βωy−
1− e−βωy+

)
− 2γv

eβ′ω − 1

]
(3.25)

where the integral limits on y are y− = γ(1 − v) and y+ = γ(1 + v). Note we

have taken advantage of the integrand’s evenness in ω and the cancellation of the

divergent piece in the coth factors.

It can be seen that, for nonzero velocity, P ′ 6= 0 when the temperature of the

particle is equal to the temperature of the radiation, β′ = β. But, for a fixed velocity,

there exists a temperature, β̃, at which the particle reaches a nonequilibrium steady

state (NESS) where there is no net flow of energy between the particle and the

background [62]. Therefore, the NESS temperature, β̃, can be found as a function
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of velocity and the radiation temperature by solving the implicit equation

P ′(v, β, β′ = β̃) = 0. (3.26)

This equation shall be referred to as the NESS condition for the moving particle.

For ease of discussion of the NESS condition, let us define a function

I(ξ) =

∫ ∞
0

dω Imα(ω)ω4 1

eξω − 1
. (3.27)

The NESS condition P ′ = 0 can then be written as

∫ y+

y−

dy I(β̃) =

∫ y+

y−

dy I(βy). (3.28)

Using the above, we can eliminate β in Eq. (3.25) and rewrite P ′ as

P ′ =
1

π2

[
I(β̃)− I(β′)

]
. (3.29)

Because I(ξ) is a decreasing function, the sign of P ′ (the direction of the radiative

heat transfer) is determined by the deviation of the temperature of the particle

from its NESS temperature as below,

T ′ < T̃ ⇒ P ′ > 0,

T ′ = T̃ ⇒ P ′ = 0,

T ′ > T̃ ⇒ P ′ < 0.

(3.30)

Imagine the particle slightly deviating from NESS with a temperature lower than

the NESS temperature, T ′ < T̃ . According to Eq. (3.30), the particle will absorb

net energy thereafter, which will in turn raise the temperature of the particle T ′ 1

so that it becomes closer to the NESS temperature T̃ . Likewise, the particle will

be cooled down to the NESS temperature if it is initially hotter, T ′ > T̃ . Therefore,

the particle would tend to return to NESS after deviating from it.

1Here, we assume the change of the particle’s temperature is adiabatic so that it still has a

well-defined temperature while it is away from NESS.

43



To determine the NESS temperature as a function of the radiation temperature

and the velocity, β̃ = β̃(β, v), requires a specific model for Imα(ω). But we may also

discuss some general features of the NESS temperature independent of Imα(ω).

First of all, in the low velocity limit, v � 1, the deviation of the NESS tem-

perature from the radiation temperature starts with a quadratic term. There is no

linear correction in the velocity,

β̃ ∼ β +O(v2), v → 0. (3.31)

In fact, this is not just true for the vacuum case but is general because it directly

follows from the v-reflection invariance of the general expression for the radiative

heat transfer, P ′, in Eq. (3.21). As is seen there, changing the sign of v does not

alter P ′ because the integrand is even under the combined reflection of ω and k⊥.

So, the NESS inverse temperature, β̃, obtained by requiring P ′ = 0, must also be

even in v.

Second, independent of the model for Imα(ω), the vacuum NESS temperature, T̃ ,

must be greater than the Planck-Einstein transformed temperature of the blackbody

radiation T/γ [63]. We need the following assumptions to prove this theorem:

Imα(ω) ≥ 0 and lim
ω→0

ω4 Imα(ω) = 0. (3.32)

The first assumption is usually satisfied by a realistic particle made of ordinary

lossy materials [64]. The second assumption is to avoid an infrared divergence in

Eq. (3.25). Noting γ is the midpoint of the interval [y−, y+] and I(ξ) is a decreasing

and convex function, that is, I ′(ξ) < 0 and I ′′(ξ) > 0, the following inequality follows,

∫ y+

y−

dy I(βy) >

∫ y+

y−

dy I(βγ). (3.33)

Combining Eq. (3.33) and Eq. (3.28), we find

∫ y+

y−

dy I(β̃) >

∫ y+

y−

dy I(βγ). (3.34)

Since both I(β̃) and I(βγ) are independent of y, they can be taken out of the
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integral. It then follows that I(β̃) > I(βγ). Recalling I(ξ) is a decreasing function,

we conclude

β̃ < βγ ⇒ T̃ >
T

γ
. (3.35)

The theorem therefore predicts the Planck-Einstein temperature is a lower bound

for the NESS temperature of a particle moving in vacuum. In proving this, we used

the NESS condition for an isotropic particle. However, this conclusion also applies

to particles with a nonisotropic but diagonal polarizability. The more general proof

for this theorem can be found in Ref. [22].

3.1.3 Quantum vacuum friction in the rest frame of the particle

We now turn to the calculation of the frictional force caused by electromagnetic

radiation in the rest frame of the particle, P. According to Chapter 2, the force can

be obtained by differentiating the free energy with respect to the spatial coordinates

in the field operator. We are interested in finding the force parallel to the motion

of the particle, which we assume to be the x direction. It can therefore be written

out as 2

F ′(t′) =− ∂

∂x′
F ′(t′) =

∂

∂x′
d′(t′) ·E′(t′, r′)|r′→0

=−
∫
dω

2π

∫
dν

2π

∫
d2k⊥
(2π)2

e−i(ω+ν)t′(ikx)F
′(ω, ν,k⊥; 0), (3.36)

where F′ is the Fourier transform of the free energy, F ′,

F′(ω, ν,k⊥; 0) = −d′(ω) ·E′(ν,k⊥; z′ = 0). (3.37)

Expanding the dipole operator as

d′(ω) = α′(ω) ·E′(ω; r̃′ = 0) = α′(ω) ·
∫

d2k̄⊥
(2π)2

E′(ω, k̄⊥; z̃′ = 0), (3.38)

2We will drop the subscript x on the frictional force throughout the thesis.
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we obtain the contribution from the field fluctuations to be

F ′EE(t′) =

∫
dω

2π

dν

2π

d2k⊥
(2π)2

d2k̄⊥
(2π)2

e−i(ω+ν)t′(ikx)
〈
SE′(ν,k⊥; z′ = 0) ·α′(ω) ·E′(ω, k̄⊥; z̃′ = 0)

〉
,

(3.39)

Upon quantization using Eq. (2.64), it becomes

F ′EE =

∫
dν

2π

d2k⊥
(2π)2

kx Imα′(ν) · ImG′(ν,k⊥; 0, 0) coth

[
β

2
γ(ν + kxv)

]
, (3.40)

where we have used the symmetry property, Imα′(−ν) = − Imα′(ν).

If we expand the field operator in Eq. (3.36),

E′(ν,k⊥; z′ = 0) =

∫
dz̃′G′(ν,k⊥; 0, z̃′) · P ′(ν,k; z̃′) = G′(ν,k⊥; 0, 0) · d′(ν), (3.41)

where P (ν,k; z̃′) = d′(ν)δ(z̃′), we obtain the contribution to the force from the dipole

fluctuations,

F ′dd(t
′) =

∫
dω

2π

∫
dν

2π

∫
d2k⊥
(2π)2

e−i(ω+ν)t′ikx 〈Sd′(ω) ·G′(ν,k⊥; 0, 0) · d′(ν)〉 . (3.42)

Quantizing it with Eq. (2.61), we find

F ′dd = −
∫
dω

2π

d2k⊥
(2π)2

kx Imα′(ω) · ImG′(ω,k⊥; 0, 0) coth

(
β′ω

2

)
. (3.43)

The two contributions combine to give the total frictional force in frame P,

F ′ =

∫
dω

2π

d2k⊥
(2π)2

kx Imα′(ω) · ImG′(ω,k⊥; 0, 0)

{
coth

[
β

2
γ(ω + kxv)

]
− coth

(
β′ω

2

)}
,

(3.44)

which is a general expression for F ′ and can be applied to different configurations.

Note that all the components of the vacuum Green’s tensor in Eq. (3.22) are

even in kx, except for Gxz and Gzx, which are vanishing in the coincident spatial

limit. As a result, when we specify the background to be vacuum, the second

term in Eq. (3.44), originating from the dd fluctuations, will not contribute because

of its oddness in kx. The QVF in frame P is therefore only originates from the

field fluctuations and only depends on the radiation temperature. For an isotropic
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particle, we find

F ′ =
1

2π2γ2v2

∫ ∞
0

dω ω4 Imα′(ω)

∫ y+

y−

dy
(y − γ)

eβωy − 1

=
1

2π2γ2v2

∫ y+

y−

dy (y − γ)I(βy), (3.45)

where I(ξ) is already defined in Eq. (3.27). If the I(βy) factor were not present, the

integral in Eq. (3.45) would be zero. Recalling that I(ξ) monotonically decreases,

we can conclude that F ′ is negative definite. That is, it is a true drag. This has an

important physical implication: to maintain the particle’s relative motion through

the blackbody background, an external force in the direction of the motion,

F ′ext = −F ′ (3.46)

is required.

3.1.4 Quantum vacuum frictional force in the rest frame of radiation

The frictional force we derive in Sec. 3.1.3 is the friction observed in frame P,

which balances the external force needed to keep the particle moving relative to

the surrounding blackbody radiation. But, what does the frictional force look like

in the rest frame of radiation, R? Will it still be negative definite? There are two

ways of approaching this. We will defer the quick but slick approach to Sec. 3.1.5.

In this section, let us perform an honest calculation again by applying the principle

of virtual work in frame R.

In Chapter 2.1, we have derived the force on a moving dipole to be

F (t) = −∇F(t), F(t) = −d(t) ·E(t,vt)− d(t)× v ·B(t,vt), (3.47)

where we have ignored the total time derivative of the Röntgen momentum, d(t)×

B(t,vt) since it does not contribute to the frictional force upon quantization using

FDT.

We will assume the particle moves in the following trajectory:

r(t) = (x = vt, y = 0, z = a), (3.48)
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where we deliberately keep the z coordinate nonzero so that the derivation below

can be easily generalized to the problems with a planar interface lying at z = 0. Of

course, this makes no difference to the vacuum case discussed here, for it shall be

independent of the position of the particle. The frictional force (the x component

of the quantized Lorentz force) therefore is,

F (t) = ∂x {d(t) ·E(t, r) + v [dz(t)By(t, r)− dy(t)Bz(t, r)]} |r=r(t). (3.49)

Let us Fourier transform Eq. (3.49) in time and two transverse spatial directions

(again, to keep our discussion readily extensible to planar geometry):

F (t) = −
∫
dω

2π

dν

2π

d2k⊥
(2π)2

e−i(ω+ν−kxv)t(ikx)F(ω, ν,k⊥; a),

where F(ω, ν,k⊥; a) = −d(ω) ·E(ν,k⊥; a)− v [dz(ω)By(ν,k⊥; a)− dy(ω)Bz(ν,k⊥; a)] .

(3.50)

Here, F is precisely the Fourier transform of the free energy expressed in terms of

the dipole and fields in frame R. Using the Faraday’s law

iνB(ν; r) =∇×E(ν; r) (3.51)

we can eliminate the magnetic fields in F and obtain

F(ω, ν,k⊥; a) = −d(ω) ·E(ν,k⊥; a)

− v

iν
{dz(ω) [ikzEx(ν,k⊥; a)− ikxEz(ν,k⊥; a)]− dy(ω) [ikxEy(ν,k⊥; a)− ikyEx(ν,k⊥; a)]} .

(3.52)

Ideally, we want to quantize the frictional force Eq. (3.50) in frame P. Let us

then try to express it in terms of the dipole and fields in frame P. To do that, we

need the proper Lorentz transformations for dipole moment and field operators in

Appendix A. It is then convenient to use the frequency and momentum attached

to frame P (denoted by primes) as new integration variables,

ω′ = γω, ν ′ = γ(ν − kxv), k′x = γ(kx − νv), k′y = ky, (3.53)
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After the Lorentz transformation, the frictional force becomes

F (t) = −
∫
dω′

2π

dν ′

2π

d2k′⊥
(2π)2

e−i(ω
′+ν′) t

γ [iγ(k′x + ν ′v)]F(ω′, ν ′,k′⊥; a), (3.54)

where

F(ω′, ν ′,k′⊥; a) = −1

γ

(
d′x(ω

′)E ′x(ν
′,k′⊥; a)

+
d′y(ω

′)

ν ′ + k′xv

{
ν ′
[
E ′y(ν

′,k′⊥; a) + vB′z(ν
′,k′⊥; a)

]
+ k′yvE

′
x(ν
′,k′⊥; a)

}
+

d′z(ω
′)

ν ′ + k′xv

{
ν ′
[
E ′z(ν

′,k′⊥; a)− vB′y(ν ′,k′⊥; a)
]
− iv∂zE ′x(ν ′,k′⊥; a)

})
.

(3.55)

Notice the Lorentz transformations reintroduce the magnetic fields in Eq. (3.55).

Once again, we should express them in terms of electric fields using Faraday’s law

in momentum space,

iν ′B′y(ν
′,k′⊥; a) = ∂zE

′
x(ν
′,k′⊥; a)− ik′xE ′z(ν ′,k′⊥; a)

iν ′B′z(ν
′,k′⊥; a) = ik′xE

′
y(ν
′,k′⊥; a)− ik′yE ′x(ν ′,k′⊥; a). (3.56)

Inserting Eq. (3.56) into Eq. (3.55) and reorganizing the terms, we find, miracu-

lously,

F(ω′, ν ′,k′⊥; a) = −1

γ
d′(ω′) ·E′(ν ′,k′⊥; a). (3.57)

When it is compared with Eq. (3.37), we find a simple relationship between the free

energies in the two frames,

F =
1

γ
F ⇒ F =

1

γ
F (3.58)

Back to Eq. (3.54), the frictional force therefore reads

F (t) =

∫
dω′

2π

dν ′

2π

d2k′⊥
(2π)2

e−i(ω
′+ν′) t

γ [i(k′x + ν ′v)]d′(ω′) ·E′(ν ′,k′⊥; a). (3.59)

Comparing Eq. (3.59) for F with Eq. (3.36) for F ′, the main differences are the shift

in the momentum factor, k′x → k′x + ν ′v, and the slightly different time argument
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on the exponential, t/γ, where the latter can be recognized as the proper time

attached to the particle. So, we can follow the same quantization procedure outlined

in Sec. 3.1.3 to quantize Eq. (3.124). Adding the contributions from the field

fluctuations and the dipole fluctuations, we obtain

F =

∫
dν ′

2π

d2k′

(2π)3
(k′x+ν

′v) Imα′(ν ′)·ImG′(ν ′,k′⊥; a, a)

{
coth

[
β

2
γ(ν ′ + k′xv)

]
− coth

(
β′ν ′

2

)}
.

(3.60)

Apparently, F can be written as

F = F ′ + P ′v, (3.61)

where P ′ is the radiative heat transfer in Eq. (3.21) and F ′ is the quantum friction

in Eq. (3.44). If we further impose the NESS condition, P ′ = 0, the frictional force

in R becomes identical to that in P. That is, for a particle in NESS, the frictional

force on the particle is

F̃ = F ′. (3.62)

It is negative definite and should be balanced by the external force, Fext, so that

the total force on the particle is zero,

F̃tot = F̃ + Fext = 0 (3.63)

In general, the particle can be out of NESS, P ′ 6= 0. In particular, the sign of P ′

can be positive for T ′ < T̃ . The particle can absorb energy when it is cooler than

the NESS temperature. In this case, the positive non-NESS contribution to the

force, vP ′, could overcome the negative definite contribution, F ′, and could render

F positive. That is, the frictional force induced by fluctuations appears to be a

push instead of a drag in the rest frame of radiation!

In addition, when the particle is out of NESS, the total force on it will be

nonzero. In the rest frame of radiation, R, applying the Newton’s second law to

the moving particle, we have

Ftot = F + Fext =
d

dt
γmv. (3.64)
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Here, m is the rest mass of the particle, which varies when the particle absorbs or

emits net energy. Since the particle is moving with constant velocity, the rate of

change of the particle’s momentum is only due to its mass change,

d

dt
γmv =

dm

dt′
v = P ′v, (3.65)

where we have used the time dilation relation, dt = γdt′ and identified the rate of

change in the particle’s mass with rate of change in internal energy of the particle

through the radiative heat transfer. The relations Eq. (3.61)–Eq. (3.65), leads to

Fext = −F ′. (3.66)

Recalling again Eq. (3.46), we find the same amount of external force is needed

whichever frame we are viewing the interplay between the particle and radiation

fields,

Fext = −F ′ = F ′ext. (3.67)

All of the above remarks are general. But, let us now use Eq. (3.60) to evalu-

ate the quantum frictional force that an isotropic particle feels in vacuum. After

inserting the vacuum Green’s tensor, we find

F =
1

2π2γ2v2

∫ ∞
0

dω ω4 Imα(ω)

∫ y+

y−

dy

(
y − 1

γ

)[
1

eβωy − 1
− 1

eβ′ω − 1

]
. (3.68)

Some numerical results regarding to both the NESS temperature and NESS fric-

tional force for a gold nanosphere is given in Ref. [22].

3.1.5 Interrelations between the powers and forces in different frames

We have calculated P ′ in Sec. 3.1.2. It tells us the rate that the particle emits or

absorbs energy. Now, we turn to the calculation of the power in frame R, P , which

tells us the rate that the radiation field is doing work on the particle.

Exactly parallel to the discussion in Sec. 3.59 for the frictional force, let us write
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down from the first principle:

P (t) =
∂

∂t
F(t), F(t) = −d(t) ·E(t,vt)− d(t)× v ·B(t,vt). (3.69)

This can be Fourier transformed to yield

P (t) =

∫
dω

2π

dν

2π

d2k⊥
(2π)2

e−i(ω+ν−kxv)t(iν)F(ω, ν,k⊥; a), (3.70)

where F(ω, ν,k⊥; a) is still the Fourier transformed free energy as defined in Eq. (3.50).

With the coordinate transformation in Eq. (3.53), F can be rewritten in terms of

the dipole and field operator in frame P as

F(ω′, ν ′,k′⊥; a) = −1

γ
d′(ω′) ·E′(ν ′,k′⊥; a). (3.71)

As a result, the radiation power reads

P (t) =

∫
dω′

2π

dν ′

2π

d2k′⊥
(2π)2

e−i(ω
′+ν′) t

γ [i(ν ′ + k′xv)]d′(ω′) ·E′(ν ′,k′⊥; a). (3.72)

After quantization using FDT, we obtain

P =

∫
dω′

2π

dν ′

2π

d3k′

(2π)3
(ν ′ + k′xv) Imα′(ν ′) · ImG′(ν ′,k′)

(
coth

βγ(ν ′ + k′xv)

2
− coth

β′ν ′

2

)
.

(3.73)

Specifying the background to be vacuum and the particle to be isotropic leads to

P =
1

2π2γ2v

∫ ∞
0

dω Imα(ω)ω4

∫ y+

y−

dy y

(
1

eβωy − 1
− 1

eβ′ω − 1

)
. (3.74)

This expression agrees with the time component of the four-force that Pieplow and

Henkel derive for blackbody friction in Ref. [65] using a fully covariant formulation,

and with the thermal radiation power (a different sign convention is used there,

though) obtained by Dedkov and Kyasov in Ref. [66].

Just as in Eq. (3.61) for F , P can be expressed in terms of P ′ and F ′ as well:

P = P ′ + F ′v. (3.75)
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Even if the particle is in NESS, P ′ = 0, the rate of work done on the particle

P̃ = F ′v (3.76)

is nonzero unless the particle is stationary relative to the radiation background.

The relations, Eq. (3.61) and Eq. (3.75), which express F and P in terms of F ′

and P ′, are general and hold whether the particle is in or out of NESS. We will

benefit from these interrelations because the calculations for F ′ and P ′ are easier.

We arrive at these relations by examining the results derived from first principles.

One might wonder if these relations follow, from a simpler explanation. We attempt

to give one by assuming the existence of an effective static action describing the

interaction between the particle and radiation. Of course, the action should be

Lorentz invariant,

W = −FT = −F ′T ′, (3.77)

where F and F ′ are the interacting free energies and T and T ′ are the duration of

the configuration. The latter two are related by the time dilation relation, T = γT ′,
which then leads to

F =
1

γ
F ′, (3.78)

which is confirmed in Eq. (3.58) by a detailed calculation of the free energies.

Utilizing the transformation of the free energy, one can derive the transformations

for power and force between the two frames, R and P symbolically as below:

P =
∂

∂t
F = γ

(
∂

∂t′
− v ∂

∂x′

)
1

γ
F ′ =

(
∂

∂t′
− v ∂

∂x′

)
F ′ = P ′ + vF ′, (3.79a)

F = − ∂

∂x
F = −γ

(
∂

∂x′
− v ∂

∂t′

)
1

γ
F ′ = −

(
∂

∂x′
− v ∂

∂t′

)
F ′ = F ′ + vP ′. (3.79b)

This derivation is rather formal, because the derivatives involved are to be under-

stood as only differentiating the field operators in the free energy. (The free energy

is, otherwise, independent of time and spatial coordinates.) Nonetheless, the trans-

formation of the derivatives here essentially carries out the Lorentz transformation

of the frequency and momentum in the Fourier space. As a result, it does leads to

the right interrelations for both the power and force.
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3.2 Quantum Vacuum Frictional Effects on a Nondissi-

pative Particle in Vacuum

Continuing our previous investigations, let us now consider a particle whose po-

larizability is purely real before it is dressed by radiation. The particle is then

guaranteed to be in the nonequilibrium steady state (NESS), where it absorbs and

emits energy at the same rate, P ′ = 0. In NESS, the quantum vacuum frictional

force, F = F ′, is shown to be a true drag, independent of the model for polariz-

ability and the polarization state of the particle. And the electromagnetic work

done on the particle in frame R is precisely given by P = Fv. Finally we also give

an estimate of the quantum vacuum friction on a gold atom and comment on the

feasibility of detecting such quantum vacuum frictional effects.

3.2.1 Second order in polarizability

For a nondissipative particle, Imα(ω) = 0, therefore, the quantum frictional power

and forces derived in Sec. 3.1 would all vanish. However, quantum frictional effects

can still arise, if these expressions are expanded to the second order in the real

polarizability, α(ω).

We have learned that P ′, F ′, F and P can all be derived from the free energy in

frame P,

F ′(t′) = −
∫
dω

2π
e−iωt

′
d′(ω) ·

∫
dν

2π

∫
d2k⊥
(2π)2

e−iνt
′
E′(ν,k⊥; a). (3.80)

Their interrelations in Eq. (3.79) is still true for a nondissipative particle. Through

these relations, we will know all four quantities with the knowledge of any two of

them.

Let us first try to calculate the radiative heat transfer, P ′, which can be obtained

by taking the time derivative of the field operator in the expression for free energy,

P ′(t′) =

∫
dω

2π
e−i(ω+ν)t′

∫
dν

2π

∫
d2k⊥
(2π)2

(iν)d′(ω) ·E′(ν,k⊥; a) (3.81)

If we only expand the expression to first order in α(ω) as in Eq. (3.16), we find
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both the EE and dd contributions will vanish because α(ω) only has a real part,

which is even in ω. Therefore, we have to at least expand Eq. (3.81) to second order

in α. There exist two routes for the expansion, which corresponds to the contri-

bution from direct field fluctuation and that from the induced dipole fluctuation,

respectively.

The first route is to expand only the dipole operator to second order in α as

d′(ω) = α′(ω) ·
∫

d2k̄⊥
(2π)2

E′(ω, k̄⊥; a)

= α′(ω) ·
∫

d2k̄⊥
(2π)2

G′(ω, k̄⊥; a, a) · d′(ω)

= α′(ω) ·
∫

d2k̄⊥
(2π)2

G′(ω, k̄⊥; a, a) ·α′(ω) ·
∫

d2k̃⊥
(2π)2

E′(ω, k̃⊥; a). (3.82)

Replacing the dipole operator in Eq. (3.81) with Eq. (3.82) gives the contribution

from direct field fluctuation

P ′EE(t′) =

∫
dω

2π

dν

2π

d2k⊥
(2π)2

d2k̄⊥
(2π)2

d2k̃⊥
(2π)2

ei(ω+ν)t′(iν)

×E′(ν,k⊥; a) ·α′(ω) ·G′(ω, k̄⊥; a, a) ·α′(ω) ·E′(ω, k̃⊥; a). (3.83)

Using the FDT in Eq. (2.64) for the product of the two E operators in frame P,

we obtain

P ′EE =

∫
dν

2π

d2k⊥
(2π)2

d2k̄⊥
(2π)2

(iν)α′(−ν) ·G′(−ν, k̄⊥; a, a) ·α′(−ν) · ImG′(ν,k⊥; a, a)

× coth
βγ(ν + kxv)

2
. (3.84)

Considering the symmetry properties of the polarizability and the Green’s tensor,

it is the imaginary part of the first Green’s tensor that will be picked up and P ′EE

can be rewritten as

P ′EE =

∫
dν

2π

d2k⊥
(2π)2

d2k̄⊥
(2π)2

ν α′(ν) · ImG′(ν, k̄⊥; a, a) ·α′(ν) · ImG′(ν,k⊥; a, a)

× coth
βγ(ν + kxv)

2
. (3.85)

The second route is to expand both the dipole operator and the field operator
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in Eq. (3.81) to first order in the polarizability so that their product is still second

order in α:

d′(ω) = α′(ω) ·
∫

d2k̄⊥
(2π)2

E′(ν, k̄⊥; a)

E′(ν,k⊥; a) = G′(ν,k⊥; a, a) · d′(ν) = G′(ν,k⊥; a, a) ·α′(ν) ·
∫

d2k̃⊥
(2π)2

E′(ν, k̃⊥; a).

(3.86)

Notice both dipole operators in Eq. (3.86) are induced by the field through the

polarizability. No intrinsic dipole fluctuation exists in the nondissipative particle.

However, we may say that this expansion results in a contribution from the induced

dipole fluctuation due to filed fluctuations,

P ′dd(t
′) =

∫
dω

2π

dν

2π

d2k⊥
(2π)2

d2k̄⊥
(2π)2

d2k̃⊥
(2π)2

ei(ω+ν)t′(iν)

×α′(ω) ·E′(ω, k̄⊥; a) ·G′(ν,k⊥; a, a) ·α′(ν) ·E′(ν, k̃⊥; a). (3.87)

Upon quantization using FDT and considering the symmetry properties, we find

P ′dd = −
∫

dν

2π

d2k⊥
(2π)2

d2k̃⊥
(2π)2

ν α′(ν) · ImG′(ν, k̃⊥; a, a) ·α′(ν) · ImG′(ν,k⊥; a, a)

× coth
βγ(ν + k̃xv)

2
. (3.88)

Adding the two contributions in Eq. (3.85) and Eq. (3.88), we find the total

radiative heat transfer for the nondissipative particle vanishes,

P ′ = 0. (3.89)

That is, the nondissipative particle is guaranteed to be in NESS while it interacts

with the surrounding radiation fields. The explanation for this can be both intuitive

and profound. Intuitively, a nondissipative particle with a purely real intrinsic po-

larizability, Imα(ω) = 0 , can only act as an energy bookkeeper precisely because of

its lack of ability to either store or release net energy. More profoundly, this relates

to the fact that its effective polarizability (that is, the polarizability after dressing

by the radiation), α̂(ω), satisfies the optical theorem, Im α̂(ω) = Im Γ′(ω)|α̂(ω)|2
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[67, 21].

Next, let us calculate the quantum friction in frame P, F ′, which can be obtained

by taking the spatial derivative (with a minus sign) of the field operator in the free

energy,

F ′(t′) =

∫
dω

2π
e−i(ω+ν)t′

∫
dν

2π

∫
d2k⊥
(2π)2

(ikx)d
′(ω) ·E′(ν,k⊥; a). (3.90)

Comparing F ′ in Eq. (3.90) with P ′ in Eq. (3.81), it is apparent that F ′ can be

obtained from P ′ by the replacement, ν → kx. We then find, immediately,

F ′EE =

∫
dν

2π

d2k⊥
(2π)2

d2k̄⊥
(2π)2

kxα
′(ν) · ImG′(ν, k̄⊥; a, a)·α′(ν) · ImG′(ν,k⊥; a, a)

× coth
βγ(ν + kxv)

2
. (3.91a)

F ′dd = −
∫

dν

2π

d2k⊥
(2π)2

d2k̃⊥
(2π)2

kxα
′(ν) · ImG′(ν, k̃⊥; a, a)·α′(ν) · ImG′(ν,k⊥; a, a)

× coth
βγ(ν + k̃xv)

2
. (3.91b)

Notice kx appears in the Doppler shift of the thermal factor for F ′EE but not F ′dd.

As a result, when the two terms are added, the total friction is nonzero and can be

written as

F ′ =

∫
dν

2π

d2k⊥
(2π)2

d2k̄⊥
(2π)2

(kx − k̄x)α′(ν) · ImG′(ν, k̄⊥; a, a) · α′(ν) · ImG′(ν,k⊥; a, a)

× coth
βγ(ν + kxv)

2
. (3.92)

Therefore, though an energy bookkeeper, the particle acts as a momentum con-

verter. Due to the relative motion between the particle and the blackbody radia-

tion, the radiation carries a momentum bias and causes a blackbody wind blowing

on the particle. It is precisely this momentum bias that is transferred to the particle

and gives rise to the quantum vacuum friction on the particle.

Since the particle is in NESS, P ′ = 0, according to the interrelation Eq. (3.79),

we find the quantum friction is the same in frame R as in frame P

F = F ′, (3.93)
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and the frictional power in frame R relates to the force simply through

P = F ′v. (3.94)

Then, the only independent quantity to evaluate is F ′. If we now specify the

Green’s tensor to be the vacuum Green’s tensor in Eq. (2.100), only the diago-

nal components of the Green’s tensor can contribute to the frictional force on an

isotropic particle because the off-diagonal components are either odd in ky or evalu-

ate to zero in the coincident limit. Further considering the diagonal components of

the Green’s tensor are all even in kx, we find F ′dd actually vanishes. The surviving

contribution, F ′EE, is found to be

F = FEE =
1

12π3γ2v2

∫ ∞
0

dω α2(ω)ω7

∫ y+

y−

dy (y − γ)
1

eβωy − 1
. (3.95)

where we use again the definition introduced in Sec. 3.1, y− = γ(1 − v) and y+ =

γ(1 + v).

The frictional force shown in Eq. (3.95) is clearly negative definite, indicating

that it is a true drag on the particle, opposing its motion. An external driving force

Fext = −F ′ = −F is needed to balance the quantum friction caused by radiation

whether we view the situation in frame P or in frameR. The energetics are different,

though. In frameR, the quantum friction does negative work on the moving particle

and causes it to lose energy to the electromagnetic vacuum in the rate of P = F ′v =

Fv. In the meantime, the external force, which keeps the particle moving in constant

velocity, does positive work on the particle and causes it to gain energy exactly in

the same rate as the loss, Pext = Fextv = −Fv. Overall, the internal energy of the

neutral particle is conserved. In frame P, neither the quantum friction nor the

external force do any work on the particle , and, as a result, the particle’s internal

energy is conserved too. Or, in other words, the particle is guaranteed to be in

NESS.

In the nonrelativistic limit, Eq. (3.95) reduces to

F ∼ − v

72π3

∫ ∞
0

dω α2(ω)ω7 βω

sinh2(βω/2)
. (3.96)
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The spectrum of the frictional force here reminds us of the Einstein-Hopf drag [3].

Indeed, if we introduce an effective polarizability, denoted by α̂(ω),

Im α̂(ω) =
ω3

6π
α2(ω), (3.97)

the quantum friction in Eq. (3.96) can be rewritten as

F = − v

12π2

∫ ∞
0

dω Im α̂(ω)ω4 βω

sinh2(βω/2)
. (3.98)

This is precisely the form of the Einstein-Hopf drag on a neutral atom written in

various modern papers [16, 20, 68]. A detailed account for the connection between

the formula Eq. (3.98) and the original Einstein-Hopf drag can be found in [17].

Let us observe that α̂ in Eq. (3.97) does have the correct dimension for a po-

larizability. In fact, Eq. (3.97) only shows the second order in α approximation for

the imaginary part of the full effective polarizability, that is, the polarizability of

the particle dressed by radiation. This is the lowest order term in Im α̂, when the

particle is nondissipative, as will be seen more clearly in the next section.

3.2.2 Effective polarizability

In the end of last section, we are able to recast the correct nonrelativistic QVF us-

ing the effective polarizability. It therefore seems possible that there exists another,

more convenient, viewpoint for the frictional effects on a nondissipative atom, which

avoids performing calculations to second order in the particle’s intrinsic polarizabil-

ity.

An effective polarizability must account for the dressing of the particle by the

radiation fields. In frame P, the total dipole moment of a particle is

d′(ω) = α′(ω) ·E′(ω;R0), (3.99)

where R0 is the fixed position of the particle in its rest frame. In the following, let

us suppress the frequency and position arguments whenever no ambiguity arises.

59



In a space free from any external field, the total field, E can be split into two parts,

E′ = E′f +E′i = E′f +G′ · d′ = E′f +G′ ·α′ ·E′. (3.100)

Here, E′f is the fluctuating field in space without any reference to the particle. On

the other hand, E′i is the induced field due to the presence of the particle, which is

itself expressed in terms of the total field, E′. The above relation can be inverted

as

E′ =
1

1−G′ ·α′E
′
f , (3.101)

expressing the total field, E′, in terms of the fluctuating field, E′f . Apparently, all

scattering effects of the particle are encoded in the prefactor.

Using Eq. (3.101), the dipole moment at the position of the particle is written

as

d′ = α′ · 1

1−G′ ·α′E
′
f . (3.102)

Now, if we define the effective polarizability as

α̂′ = α′ · 1

1−G′ ·α′ , (3.103)

the dipole moment can be reexpressed in terms of the fluctuating field, E′f , instead

of the total field E′,

d′ = α̂′ ·E′f . (3.104)

In Eq. (3.99), the scattering effects by the particle are included in the total field,

E′. In Eq. (3.104), however, they are now hidden in the effective polarizability, α̂′.

In the regime where the scattering contribution is subdominant, we can expand

Eq. (3.103) perturbatively,

α̂′(ω) = α′(ω) +α′(ω) ·G′(ω;R0,R0) ·α′(ω) + . . . (3.105)

Now, as we take the imaginary part of the effective polarizability, we find, for a

dissipative particle, the leading term is first order in the intrinsic polarizability, α′

Im α̂
′(1)(ω) ∼ Imα′(ω), (3.106)
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while for a nondissipative particle, the leading term is second order in the intrinsic

polarizability,

Im α̂
′(2)(ω) ∼ α′(ω) · ImG′(ω;R0,R0) ·α′(ω). (3.107)

That is why the leading quantum frictional effects are first order in α′ for an in-

trinsically dissipative particle, but second order in α′ for a nondissipative particle.

Now, with the effective polarizability, we try to rewrite the second-order quan-

tum vacuum friction on a nondissipative particle in Eq. (3.91). For the direct field

fluctuation contribution, F ′EE, this is straightforward,

F ′EE =

∫
dν

2π

d2k⊥
(2π)2

kxα
′(ν) · ImG′(ν;R0,R0) ·α′(ν) · ImG′(ν,k⊥; a, a) coth

βγ(ν + kxv)

2

=

∫
dν

2π

d2k⊥
(2π)2

kx Im α̂
′(2)(ν) · ImG′(ν,k⊥; a, a) coth

βγ(ν + kxv)

2
, (3.108)

where the effective polarizability here is

Im α̂
′(2)(ν) = α′(ν) · ImG′(ν;R0,R0) ·α′(ν). (3.109)

However, such a replacement cannot be done for the induced dipole fluctuation

contribution, F ′dd, because the two Green’s tensors appearing in Eq. (3.91b) are

entangled with the kx factor and the coth factor respectively. As a result, they can

not be directly integrated to yield ImG′(ν;R0,R0). But, we can still introduce a

spatially dispersive effective polarizability 3 as

Im α̂
′(2)(ν, k̃⊥) = α′(ν) · ImG′(ν, k̃⊥; a, a) ·α′(ν), (3.110)

which enables us to rewrite F ′dd as

F ′dd = −
∫

dν

2π

d2k⊥
(2π)2

d2k̃⊥
(2π)2

kx Im α̂
′(2)(ν, k̃⊥) · ImG′(ν,k⊥; a, a) coth

[
β

2
γ(ν + k̃xv)

]
.

(3.111)

In the coincident limit, the imaginary part of the vacuum Green’s tensor is (See

3This indicates that the effective polarizability is spatially translationally invariant inherited from

the geometry.
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Eq. (2.88).)

ImG =
ω3

6π
1. (3.112)

As a result, only the diagonal components of the intrinsic polarizability will be

picked up. For an isotropic, nondissipative particle in vacuum, the second-order

effective polarizability will also be isotropic, being precisely the form in Eq. (3.97),

Im α̂
′(2)(ω) =

ω3

6π
α′2(ω). (3.113)

In addition, F ′dd vanishes for the vacuum background. The remaining contribu-

tion, F ′EE, can be recast into the following form using the effective polarizability in

Eq. (3.111),

F ′ = F ′EE =
1

2π2γ2v2

∫ ∞
0

dω ω4 Im α̂
′(2)(ω)

∫ y+

y−

dy
(y − γ)

eβωy − 1
, (3.114)

which is a relativistic extension of the nonrelativistic Einstein-Hopf formula in

Eq. (3.98). This now also has the same form as the quantum friction for an in-

trinsically dissipative particle in Eq. (3.95). Such a resemblance only exists if F ′dd

vanishes.

In principle, we can extend the calculation for the QVF to all orders in α′ (the

intrinsic polarizability) by replacing the second order effective polarizability with

the full effective polarizability in Eq. (3.103), which includes the contribution of

scattering process to arbitrary orders. However, we find ourselves immediately

running into problems when we try to expand Im α̂′ beyond second order in α′. For

example,

Im α̂
′(3)(ω) = 2α′(ω) · ImG′(ω;R0,R0) ·α′(ω) · ReG′(ω;R0,R0) ·α′(ω). (3.115)

Apparently, higher order contributions to Im α̂′ involve the real part of the Green’s

tensor, which is divergent in the coincident limit according to Eq. (2.88).

In order to obtain finite results, we effect a renormalization of the bare intrinsic

polarizability, α′ by absorbing ReG′(ω;R′0,R
′
0) into the definition of a renormalized
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polarizability, α′R. We now proceed to formalize this prescription:

α̂′ = α′ (1−G′ ·α′)−1
= α′ (1− ReG′ ·α′ − i ImG′ ·α′)−1

= α′
{[

1− i ImG′ ·α′ (1− ReG′ ·α′)−1
]

(1− ReG′ ·α′)
}−1

= α′ (1− ReG′ ·α′)−1
[
1− i ImG′ ·α′ (1− ReG′ ·α′)−1

]−1

= α′R (1− i ImG′ ·α′R)
−1
, (3.116)

where we have dropped all of the obvious arguments and the renormalized polariz-

ability, α′R reads

α′R(ω) ≡ α′(ω)
1

1− ReG′(ω;R0,R0)α′(ω)
(3.117)

is the renormalized intrinsic polarizability, which clearly inherits from the bare

intrinsic polarizability the properties of being real and symmetric.

In vacuum, the full effective polarizability may therefore be written, using α′R

as

α̂′(ω) = α′R(ω)
1

1− i ImG′(ω;R0,R0) ·α′R(ω)
= α′R(ω)

1

1− i ω3

6π
α′R(ω)

, (3.118)

which agrees with the functional form of the atomic polarizability obtained in

Ref. [68] by a perturbative analysis on the energy shift. The imaginary part of

the full effective polarizability now reads

Im α̂′(ω) =
ω3

6π
α
′2
R(ω)

1

1 +
(
ω3

6π

)2
α
′2
R(ω)

. (3.119)

In general, α
′2
R(ω) = α′R(ω) ·α′R(ω), while, for an isotropic particle, α

′2
R(ω) = α

′2
R(ω).

The quantum vacuum friction in Eq. (3.114) can now be extended to all orders in

the intrinsic polarizability by replacing Im α̂
′(2) with the full effective polarizability

in Eq. (3.119),

F ′ =
1

2π2γ2v2

∫ ∞
0

dω ω4 Im α̂′(ω)

∫ y+

y−

dy
(y − γ)

eβωy − 1
, (3.120)

Since it is the renormalized polarizability that is measured in a lab, the intrinsic

polarizability which enters all previous formulas as an input should have been un-
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derstood as the renormailzed polarizability. But, for simplicity, we shall drop the

subscript R on the renormalized polarizability, that is, α′R → α′ .

3.2.3 Numerical estimates of the quantum vacuum friction for a gold

atom

How big is quantum vacuum friction on a nondissipative atom? Will it be accessible

to experiments? To answer these questions, in this section let us obtain an estimate

for the quantum friction on an atom moving uniformly in vacuum. We will assume

the renormalized intrinsic polarizability of the atom is isotropic 4. Further, let us

also assume the atom stays in its ground state and that we can approximate its

polarizability at different frequencies with its static value

α′(ω) ∼ α01. (3.121)

These assumptions break down when the environment temperature is higher than

the temperature corresponding to the atom’s first excitation energy, T1. For such

high temperatures, the thermal agitation is able to excite the atom to its excited

states and we would have to use the dynamical polarizability then. For much lower

temperatures, it is safe to use the static value for the atom’s intrinsic polarizability.

In this static approximation, the effective polarizability in Eq. (3.119) becomes

Im α̂′(ω) =
ω3

6π
α2

0

1

1 + (ω
3

6π
)2α2

0

. (3.122)

For a gold atom, the static polarizability is 5.33×10−24cm3 according to Ref. [69].

For low frequencies, the higher order correction to the effective polarizability is

negligible and Im α̂′(ω) reduces to the well-known radiation reaction model [71],

ω3

6π
α2

0. For high frequencies, however, Im α̂′(ω) becomes 6π
ω3 , which is independent of

the value for the static polarizability.

4Atoms are usually quite isotropic. That is, their anisotropy is typically small compared to the

isotropic part of the polarizability. Closed-shell atoms are almost exactly isotropic [69]. Within a

single period in the chemical table, the anisotropy is largest when the first p electron is added [70].
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Plugging Eq. (3.122) into the formula for quantum friction Eq. (3.120), we obtain

F = F ′ =
α2

0

12π3

∫ ∞
0

dω
ω7

1 + (ω
3

6π
)2α2

0

∫ y+

y−

dy

γ2v2

y − γ
eβωy − 1

. (3.123)

For ease of numerical evaluation, let us introduce a dimensionless frequency x = βω
2

and a dimensionless temperature λ =
(
α0

6π

)1/3 2
β
. Then Eq. (3.123) can be rewritten

as

F = F0

∫ ∞
0

dx
λ8x7

1 + λ6x6

∫ y+

y−

dy

γ2v2

y − γ
e2xy − 1

, F0 =
(6π)8/3

12π3
α
−2/3
0 . (3.124)

For a gold atom, the dimensional factor F0 in Eq. (3.124), which is independent of

temperature and velocity, evaluates to F0 = 6.99 × 10−6 N, after converting to SI

units. The remaining factor in Eq. (3.124) is a dimensionless function of velocity

v and rescaled temperature λ. The integral in Eq. (3.124) is dominated by the

low-frequency contributions in the low-temperature limit (λ � 1) and the high-

frequency contributions in the high-temperature limit (λ � 1). Therefore, the

behavior of the QVF on the atom depends on the value of λ.

For the gold atom, λ = 1 corresponds to a temperature of 1.74× 107 K. This far

exceeds the ionization temperature of the gold atom, Ti = 107 000 K [72], let alone

the first excitation temperature, T1 = 13 100 K [73]. Therefore, the atom would have

been ionized and no longer stay neutral long before it reaches the temperature for

the higher order corrections to become important. Effectively, when evaluating the

frictional force on the gold atom, we can use the low frequency approximation for

Im α̂′(ω) and find

Fλ�1 = F0

∫ ∞
0

dx λ8x7

∫ y+

y−

dy

γ2v2

y − γ
e2xy − 1

= −4π5α2
0γ

6

45β8

(
8

3
v +

16

3
v3 +

8

7
v5

)
. (3.125)

Here, we note the nonrelativistic limit of the low-temperature blackbody friction

agrees exactly with Eq. (15) in Ref. [71].

Suppose there exist some atom (nondissipative particle) which could stay neu-

tral at very high temperatures so that the corresponding λ � 1. Then at such

high temperatures, we should take the opposite limit and use the high frequency
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approximation for the effective polarizability. The QVF becomes

Fλ�1 = F0

∫ ∞
0

dx λ2x

∫ y+

y−

dy

γ2v2

y − γ
e2xy − 1

=
π

2γ2v2β2

[
ln

(
1 + v

1− v

)
− 2γ2v

]
. (3.126)

We see that the high temperature behavior of QVF is independent of the actual

value of the intrinsic polarizability of the particle.

For the sake of attracting the attention of experimentalists, let us comment on

the possibility of detecting the quantum vacuum friction on a gold atom. Pre-

sumably, such a friction will cause the gold atom to decelerate when the external

driving force is removed. To make a rough estimate of the time taken for the atom

to decelerate by a noticeable amount, we assume the gold atom would be in a “quasi

nonequilibrium steady state” where the friction on it could still be calculated using

the NESS formulas derived here. For all realistic purposes, we can use the low

temperature approximation for the force in Eq. (3.125). In addition, since it is

hard, experimentally, to accelerate a neutral particle to relativistic velocities, we

should also be content with a nonrelativistic discussion, where we can safely apply

Newton’s second law together with the lowest order (in v) approximation of the

frictional force shown in Eq. (3.125):

F (v) = −32π5α2
0

135β8
v = m

dv

dt
. (3.127)

The time taken for the gold atom to decelerate from an initial velocity vi to a final

velocity vf is then found to be

∆t = −τ ln
vf
vi
, τ =

135mβ8

32π5α2
0

, (3.128)

where τ is evaluated to be 1.72× 1025 s at room temperature T = 300 K.5

For example, the time taken for the velocity of to be reducing by 10% is ∆t =

1.81×1024 s. It then seems hopeless to detect the quantum vacuum frictional effect at

room temperature. However, if the experiment could be performed at T = 30, 000 K,

∆t would be 16 orders of magnitude shorter, being 1.81× 108 s = 5.91 yrs.

5The mass of a gold atom is 197u = 1.84× 1011 eV. The conversion factors used in the estimate

are kB = 8.62× 10−5eV/K, ~c = 1.97× 10−5 eV · cm and c = 3.00× 1010 cm/s.
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Chapter 4

Quantum Friction in the Presence of a

Perfectly Conducting Plate (QFPC)

It is well known that, when a neutral but polarizable particle sits near a perfectly

conducting (PC) plate, it feels a force normal to the surface, pulling it towards

the plate. This attractive force is often named after Casimir and Polder, who

predicted it back in 1948 [7]. And the Casimir-Polder force was first experimentally

confirmed by measuring the deflection of a sodium atom beam passing through a

gold cavity [9]. There have been many experiments confirming the existence of

the Casimir-Polder force ever since. Another ingenious method, which is suitable

for detecting the thermal effects at larger atom-surface separation, is through the

measurement of the center-of-mass oscillation frequencies of a rubidium atom Bose-

Einstein condensate [74, 75].

In this chapter, we ask and answer this question: will a force parallel to the

surface of the PC plate arise when the particle moves parallel to a PC plate?

Even though the subject of quantum friction (QF) with a dielectric surface has

been much discussed in the literature, this more idealized case involving a PC plate

seems to have been largely ignored. The lack of discussion of this case may be due

to an incorrect intuition arising from the image particle picture. One might think

that the interaction between the particle and the PC plate can be entirely mimicked

by the particle’s interaction with its image. As the particle moves above the plate,

the image moves below the plate. Because the plate is perfectly conducting, the

image keeps up with the particle and is always located at the mirror position of
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the particle. Consequently, any interaction between the two would only lie in the

direction normal to the surface of the plate and no force in the transverse directions

could possibly arise. This reasoning sounds convincing except that it ignores one

important aspect: the particle interacts with the blackbody radiation surrounding

it even when the plate is taken away, resulting in the quantum vacuum friction

(QVF) which we have just discussed in Chapter 3. Now, when a PC plate is added

into the configuration, the vacuum field (electromagnetic field fluctuations) in the

vicinity of the plate will be different from that of the vacuum. We therefore expect

the QVF to be modified and become spatially varying in the normal direction. For

convenience of presentation, we will refer to this new quantum frictional force on a

neutral particle passing above a PC plate as QFPC.

Throughout this chapter, we set kB = c = ~ = 1 in the analytic expressions. SI

units are reinstated in the numerical evaluations.

In this section, we will explore QFPC on a nondissipative atom. Much of the

discussion is based our paper [23].

The physical situation we consider is illustrated in Fig. 4.1. A PC plate lies

in the x-y plane. An atom is at a distance a from the plate and moves in the x

direction with constant velocity v. The polarizability of the atom is α(ω), which

could be dispersive in frequency and have different components corresponding to

different polarization states of the atom. Since the atom we consider is intrinsically

nondissipative, α(ω) is a real quantity. The radiation background is at finite tem-

perature T . We assume the PC plate is in thermal equilibrium with the radiation

background. Due to its motion, the atom is not in equilibrium with the radiation.

However, it is guaranteed to be in the nonequilibrium steady state (NESS) because

we assume the atom is nondissipative and cannot change its internal energy.

The quantum friction on an intrinsically nondissipative particle moving in a
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Figure 4.1: Illustration of an atom flying above a PC plate.

planar background can be obtained by generalizing Eq. (3.92) as1

F =

∫
dω

2π

d2k⊥
(2π)2

d2k̄⊥
(2π)2

(k̄x − kx) trα′(ω) · =G′(ω,k⊥; a, a)·α′(ω) · =G′(ω, k̄⊥; a, a)

× coth
βγ(ω + k̄xv)

2
, (4.1)

where the ordinary imaginary parts of the Green’s tensor, ImG, are replaced by the

anti-Hermitian parts of the Green’s tensor, =G, defined as

(=G)ij(ω,k⊥; z, z̃) =
Gij(ω,k⊥; z, z̃)−G∗ji(ω,k⊥; z̃, z)

2i

=
Gij(ω,k⊥; z, z̃)−Gji(−ω,−k⊥; z̃, z)

2i
. (4.2)

Note the frequencies and momenta being integrated over in Eq. (4.1) are intrinsic

to the rest frame of the particle, P, but we are not keeping the primes on these

integration variables because doing so will not cause confusions here.

The quantum friction in Eq. (4.1) is again just the x component of the Lorentz

force on a moving dipole quantized using the fluctuation-dissipation theorem (FDT).

Because the atom is intrinsically nondissipative, the frictional force is second order

in α like that discussed in Sec. 3.2. There are two contributions to the force: the

k̄x term comes from the field fluctuations directly while the kx term comes from the

induced dipole fluctuations. Although entering the friction formula with different

1This frictional force has also been calculated in Ref. [21] and tabulated for different polarization

states in Appendix D therein. The formulas there are equivalent to Eq. (4.1) here when we take

into account the transformations in Appendix A.
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signs, these two contributions do not cancel each other due to the Doppler shifting

of the frequency in the coth factor. Even at zero temperature, the quantum friction

does not vanish in general. But we have learned from the previous chapters that if

the background is just free space, the resultant QVF does vanish at zero tempera-

ture [21, 22]. This is also the case when a PC plate is added into the configuration.

That is, no QFPC arises at zero temperature. In Appendix B, we prove that the

zero temperature QF is absent not only for the vacuum case and the PC case, but

also for the broader class of diaphanous materials.

In general, to calculate the frictional force, we need first express G′ in terms of

G using the transformations recorded in Appendix A. For the special background

of the PC plate, G reads, according to Eq. (2.103) and Eq. (2.104),

GPC(ω,k⊥; a, a) =



ω2−k2x
2κ

(1− e−2κa) −kxky
2κ

(1− e−2κa) − i
2
kxe
−2κa

−kxky
2κ

(1− e−2κa)
ω2−k2y

2κ
(1− e−2κa) − i

2
kye
−2κa

+ i
2
kxe
−2κa + i

2
kye
−2κa k2

2κ
(1 + e−2κa)


(4.3)

with κ =
√
k2 − ω2. When we apply the transformations in Appendix A to the

tensor above, we find

G′PC(ω,k⊥; a, a) = GPC(ω,k⊥; a, a), (4.4)

similar to the vacuum situation. In addition, the off-diagonal components gxy = gyx

and gyz = −gzy will not contribute to the friction due to their oddness in ky.

We see from the starting formula Eq. (4.1) that each contribution to the fric-

tional force is proportional to the product of two nonvanishing components of the

polarizability tensor. The matrix structure under the trace in the integrand is still

complicated because of many contributing terms that mixes the different compo-

nents of the polarizability. Let us now assume that the polarizability is diagonal.

Then there are only four nonvanishing contributions left. They are proportional to

α2
xx, α

2
yy, α

2
zz, αxxαzz and will be denoted as FXX, FYY, F ZZ and FXZ, respectively.

70



Among them, the only contribution to the friction involving the off-diagonal compo-

nents of the Green’s tensor, which mixes different components of the polarizability

tensor is

FXZ = 2

∫
dω

2π

d2k⊥
(2π)2

d2k̄⊥
(2π)2

(k̄x − kx)αxx(ω)(=G)PC
xz (ω,k⊥; a, a)

× αzz(ω)(=G)PC
zx (ω, k̄⊥; a, a) coth

[
β

2
γ(ω + k̄xv)

]
. (4.5)

In fact, FXZ turns out to be the most interesting contribution to the frictional force,

because it actually corresponds to a push instead of a drag.

Crucial to the calculation is finding the anti-Hermitian part of the relevant com-

ponents of GPC. It can be seen from Eq. (2.104) that =GPC = 0 unless the propa-

gation wave number κ develops an imaginary part. Since the integrand in Eq. (4.1)

involves the product of two Green’s tensors evaluated at (ω,k⊥) and (ω, k̄⊥), respec-

tively, the integration is restricted to regions where the propagation wave numbers

associated with both Green’s tensors become imaginary,

κ→ −isgn(ω)
√
ω2 − k2, k2 < ω2, κ̄→ −isgn(ω)

√
ω2 − k̄2, k̄2 < ω2. (4.6)

The branches need to be chosen so that the Green’s tensor is retarded. The anti-

Hermitian parts of the relevant components of the Green’s tensor therefore read

(=G)xx(ω,k⊥; a, a) = Im Gxx(ω,k⊥; a, a) = sgn(ω)
ω2 − k2

x

2
√
ω2 − k2

[
1− cos

(
2
√
ω2 − k2a

)]
,

(4.7a)

(=G)yy(ω,k⊥; a, a) = Im Gyy(ω,k⊥; a, a) = sgn(ω)
ω2 − k2

y

2
√
ω2 − k2

[
1− cos

(
2
√
ω2 − k2a

)]
,

(4.7b)

(=G)zz(ω,k⊥; a, a) = Im Gzz(ω,k⊥; a, a) = sgn(ω)
k2

2
√
ω2 − k2

[
1 + cos

(
2
√
ω2 − k2a

)]
,

(4.7c)

(=G)xz(ω,k⊥; a, a) = −(=G)zx(ω,k⊥; a, a) = −isgn(ω)
kx
2

sin
(

2
√
ω2 − k2a

)
. (4.7d)

The off-diagonal components of =G are different from the diagonal components in

several respects. First of all, they are purely imaginary. Second, they are odd in

kx. As a result, in Eq. (4.1), FXZ contributes to the total friction through the −kx
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term, while FXX, FYY and F ZZ all contribute through the k̄x term. It is precisely

the minus sign in the −kx term that renders FXZ positive, corresponding to a push

instead of a drag.2 Third, they do not contain terms independent of the atom-plate

separation, a, as those in the diagonal components. These terms reflect the vacuum

contributions. So, the off-diagonal components do not contribute to the QVF.

Without any further assumptions, we insert Eq. (4.7) into Eq. (4.1) and integrate

kx, ky and k̄y analytically. With a further change of variable, k̄x = ωu, we find the

contribution to the QFPC from the PQ polarization states can be written as

FPQ =
1

32π3

∫ ∞
0

dω αpp(ω)αqq(ω)ω7FPQ(x, v, z), (4.8)

and for each contribution, FPQ reads

FXX(x, v, z) =

{
4

3
− 2

x3

[
x cosx+ (x2 − 1) sinx

]}
×
∫ 1

−1

du u
(
1− u2

) [
1− J0

(
x
√

1− u2
)] 1

exγ(1+uv)z − 1
, (4.9a)

FYY(x, v, z) =

{
4

3
− 2

x3

[
x cosx+ (x2 − 1) sinx

]}
×
∫ 1

−1

du u

[
1

2
(1 + u2)− J0

(
x
√

1− u2
)

+

√
1− u2

x
J1

(
x
√

1− u2
)] 1

exγ(1+uv)z − 1
,

(4.9b)

FZZ(x, v, z) =

{
4

3
− 4

x3
[x cosx− sinx]

}
×
∫ 1

−1

du u

[
1

2
(1 + u2) + u2J0

(
x
√

1− u2
)

+

√
1− u2

x
J1

(
x
√

1− u2
)] 1

exγ(1+uv)z − 1
,

(4.9c)

2Physically, the −kx term comes from the induced dipole fluctuations, while the k̄x term comes

from the direct field fluctuations. In the QVF case, only the direct field fluctuation contributes to

the QVF on an atom as discussed in Chapter 3.
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FXZ = −2

{
2

x4

[
−3x cosx− (x2 − 3) sinx

]}
×
∫ 1

−1

du u
√

1− u2J1

(
x
√

1− u2
) 1

exγ(1+uv)z − 1
. (4.9d)

Here, we have introduced a dimensionless frequency scaled by the distance a,

x = 2ωa, (4.10)

as well as a dimensionless inverse temperature also scaled by a,

z =
β

2a
=

1

2aT
. (4.11)

So far, the expressions we have for QFPC in Eq. (4.9) are exact and involve

the dynamical polarizability of the atom. For frequencies smaller than the lowest

excitation energy of the atom, the dynamical polarizability, α(ω), can be replaced

by the static polarizability [70], α(0). Due to the common exponential factors in

Eq. (4.9a)–(4.9d), the high frequency modes with βω = xz � 1 will be cut off and do

not significantly contribute to the ω integral. Therefore, so long as the temperature

is not high enough to excite the atom to its higher energy states, we can work in the

static limit, where we substitute the polarizability with its static value. This allows

us to take the product of the polarizabilities out of the ω integral in Eq. (4.8):

FPQ =
αpp(0)αqq(0)

32π3(2a)8
fPQ(v, z), fPQ(v, z) =

∫ ∞
0

dx x7FPQ(x, v, z), (4.12)

where the dimensionless functions fPQ now characterize contributions to QFPC

from different polarization states.

Note the magnitude of z determines the dominating modes of the x integral in

Eq. (4.12). For z � 1, it is dominated by the large x modes, where the complicated

x dependences in the integrands become subdominant and drop out, except for

the common factor of x7

exγ(1+uv)z−1
. As a result, the diagonal contributions FXX,

FYY and F ZZ become distance independent and proportional to T 8. Indeed, for

z � 1, the diagonal contributions of QFPC precisely reduce to the corresponding

contributions of QVF in Ref. [21]. On the other hand, FXZ, which is proportional to

T 4/a4, becomes completely negligible in comparison to the diagonal contributions.
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To sum up, the contributions to QFPC in the small z limit read

FPQ
z�1 =

α2
pp(0)

32π3(2a)8
fPQ
z�1(v, z), (4.13a)

fPQ
z�1(v, z) =



−4Γ(8)ζ(8)
3z8

32
105
γ4v(7 + 3v2), PQ = XX

−4Γ(8)ζ(8)
3z8

32
105
γ6v(14 + 37v2 + 9v4), PQ = YY,ZZ

16Γ(4)ζ(4)
z4

v
γ4
, PQ = XZ.

(4.13b)

As is shown in Eq. (4.13), unlike the diagonal contributions which monotonically

increase with velocity, we find FXZ vanishes when the velocity approaches the speed

of light.

It is not so surprising that the small z limit of QFPC coincides with QVF. Small

z values correspond to large distances or high temperatures. When the atom is far

away from the PC plate, it is obvious that QFPC should reduce to QVF. In the

case of high temperatures (but not so high to ionize the atom), the atom interacts

with photons of very high frequency. It therefore mainly probes the very short

distances around it and, effectively, does not feel the PC plate. That is, in the high

temperature limit, the distribution of energy eigenvalues of photons interacting with

the atom is insensitive to the presence of the plate.

Since quantum vacuum friction has been explored for a nondissipative atom in

Chapter 3, the new physics really lies in the large z limit, the short-distance or

low-temperature behavior of QFPC. For z � 1, the small x modes dominate the

integrals. We can therefore expand the integrands in powers of x before carrying

out the integrals. Quite interestingly, the integrands for various polarization states

exhibit different leading power behaviors in x, which determine the distance and

temperature dependences of their contributions to QFPC. After expansion in x,

both the x and u integrals can be done exactly if we keep only the leading in z

terms. For z � 1, the resultant QFPC is found to be

FPQ
z�1 =

αpp(0)αqq(0)

32π3(2a)8
fPQ
z�1(v, z), (4.14a)
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fPQ
z�1(v, z) =



−Γ(12)ζ(12)
15z12

64
3465

γ6v(99 + 110v2 + 15v4), PQ = XX

−Γ(12)ζ(12)
15z12

32
3465

γ8v(297 + 1034v2 + 625v4 + 60v6), PQ = YY

−8Γ(8)ζ(8)
3z8

64
105
γ6v(14 + 37v2 + 9v4), PQ = ZZ

2Γ(10)ζ(10)
15z10

8
63
γ6v(21 + 30v2 + 5v4), PQ = XZ.

(4.14b)

Since the results shown in Eq. (4.14) are for the large z limit, it is apparent that F ZZ

dominates over the contributions from the other polarizations. In this limit, F ZZ is

independent of distance a and proportional to T 8, just as is the case for QVF. In

fact, we find F ZZ is precisely four times the corresponding QVF contribution shown

in Eq. (4.13). The next leading contribution, FXZ, is proportional to a2T 10 with

an overall positive sign, suggesting that this particular contribution corresponds

to a push instead of a drag. The smallest contributions, FXX and FYY, are both

proportional to a4T 12. On closer examination of Eq. (4.14), we also observe that

fYY is always greater than fXX, for arbitrary velocities.

Interestingly, these behaviors of QFPC may be easily understood from the image

particle picture criticized in the beginning of this chapter. In fact, there is noth-

ing wrong with replacing the PC plate by an image particle moving synchronously

with the actual particle. We only need to keep in mind that both particles would

interact with the surrounding photon bath, so that a frictional force does indeed

arise. Following this line of reasoning, the image particle would double the normal

component of the fluctuation-induced field, Ez, but eliminate the tangential com-

ponents, Ex and Ey, at the surface of the PC plate. Since these fluctuation-induced

frictional forces are proportional to the product of the relevant fields, F ZZ is there-

fore quadrupled while the other contributions are all suppressed when the distance

between the particle and the PC plate approaches zero.

The physics here is analogous to a classical situation in hydrodynamics. For

example, Krüger and Rauscher [76] studied colloidal particles driven through a sus-

pension of mutually noninteracting Brownian particles and the corresponding fric-

tional force induced by the nonequilibrium fluid structure. (The flow field comoving
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with the colloidal particles is not in equilibrium with the Brownian particles.) They

found that the frictional force on a single colloidal particle traveling along a wall

(analogous to the PC plate in our case) is precisely the same as that on two col-

loidal particles driven side by side. The authors also found an enhancement of the

friction due to the wall or image colloidal particle in comparison to the friction on

an isolated colloidal particle. From the density plot of the solute Brownian parti-

cles, they interpret this increase in friction as the result of more Brownian particles

aggregating in front of the colloidal particles when the wall or image particle is

present. An analogous interpretation applies to what we see here for QFPC. That

is, the electromagnetic energy density is stronger near the PC plate.

So far, both the small z results in Eq. (4.13) and the large z results in Eq. (4.14)

are exact in velocity. Another meaningful limit to take is the nonrelativistic (NR)

limit without assuming anything about z. It turns out that all contributions to

QFPC start with a term linear in v in the NR limit. In Appendix C, we use FXZ

to illustrate how to obtain the small z limit, the large z limit as well as the non-

relativistic limit analytically. The approach listed there will work for contributions

from other polarizations as well.

As one of the contributions, FXZ, is positive (a push), while the others are all

negative (a drag), a natural question arises: could the overall “frictional” force on

an atom ever flip sign and therefore become a push? Of course, from Eq. (4.13) and

Eq. (4.14), we can already conclude that the overall QFPC is negative definite in

both the small z (vacuum/high-temperature) limit and large z (short-distance/low-

temperature) limit. But, there is no convincing argument just from the analytic

results suggesting that QFPC cannot switch sign in the intermediate z regime.

Therefore, we resort to numerical methods to ascertain the sign of QFPC.

We will therefore consider atoms in their ground states, the polarizability of

which is normally quite isotropic and can be well approximated by its static value,

α(ω) = α(0)1. For such isotropic atoms, the sign of the QFPC is determined by the

sum of the dimensionless functions introduced in Eq. (4.12):

F ISO =
α2(0)

32π3(2a)8
f ISO(v, z), f ISO(v, z) = fXX(v, z) + fYY(v, z) + fZZ(v, z) + fXZ(v, z).

(4.15)
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We show the absolute value of these dimensionless functions across their transi-

tion region in Fig. 4.2. Starting from small z values, the total frictional force on the

isotropic particle is dominated almost evenly between the ZZ and YY contributions.

But as z grows larger, the weight of the YY contribution decays so that the ZZ con-

tribution solely dominates the entire frictional force. As for the unique positive

contribution from the XZ polarization, it is completely negligible when z is small

but it eventually surpasses the contributions from the XX and YY polarizations for

large z. Nonetheless, it never dominates the ZZ polarization. The asymptotic (in z)

expressions in Eq. (4.13) and Eq. (4.14) are consistent with these behaviors and the

agreement with the numerical data in their supposedly valid regimes are also clearly

illustrated in the figure. So, we can conclude that the total QFPC on an isotropic

atom is always a drag, since it cannot change sign even in the intermediate z

regime.
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Figure 4.2: The absolute values of the dimensionless functions fPQ in Eq. (4.15)

are shown as functions of z for fixed velocity (v = 0.5). The numerical results

are computed directly using Eq. (4.9) and Eq. (4.12). Their small z and large z
approximations are obtained from Eq. (4.13) and Eq. (4.14), respectively. Since the

small z approximation for fZZ and fYY is identical, the dashed purple line overlaps

with the dashed red line. As is seen, the small z approximation of FXZ cannot give

a good description of the numerical data beyond z = 1. A further detailed plot is

provided in Appendix C, where the agreement between the analytic approximation

and the numerical data for FXZ is more clearly demonstrated for smaller z values.

Another interesting aspect of the force is, of course, its magnitude. Fluctu-

ation induced forces are typically small. But, is the QFPC possibly accessible

to experiment? Here, we estimate QFPC on a cesium (Cs) atom, which has the
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Figure 4.3: The magnitude of the total frictional force on a Cs atom moving at

v = 0.5 and at a distance a = 10 nm from the PC plate is plotted as a function of

temperature. The friction at the first excited temperature is indicated by the red

triangle, with a magnitude of 1.30× 10−25 N.

largest static polarizability,3 according to Ref. [69], αCs(0) = 59.3 Å3. Because the

expression (4.12) we use for numerical calculation is obtained in the static limit,

the corresponding numerical results are only expected to be appropriate when the

atom is in its ground state, that is, up to the temperature that corresponds to the

�rst excitation energy of the Cs atom, T1 = 16 100 K,4 beyond which a model for

its dynamical polarizability is needed. In Fig. 4.3, we show the magnitude of the

total frictional force on a Cs atom up to T1, fixing velocity and distance. The fric-

tion clearly exhibits a power-law dependence on temperature. This is no surprise

because we already know that the frictional force should behave as T 8 in both the

large z (low T ) and small z (high T ) regimes.

Of course, QFPC also depends on the distance between the atom and the plate,

distinguishing it from QVF. Considering the size of the Cs atom5, we should keep

the distance greater than 1 nm to avoid additional surface effects. We therefore show

the magnitude of QFPC for a Cs atom as a function of distance in Fig. 4.4, from

1 nm to 1µm, fixing the velocity at v = 0.5 and temperature at T = T1. It is seen

that the total friction is only doubled when the distance is reduced from 1µm to

3Within a period, the alkali metal atoms generally have the biggest polarizabilities. They are

also supposed to have very tiny anisotropy because their valence electrons are in s states [70]. Cs

has the largest polarizability among the alkali metal atoms.
4This temperature and the ionization temperature used later are obtained from the first excitation

energy of Cs listed in Ref. [77].
5Cesium also has the largest covalent radius (244 pm) among the nonradioactive atoms according

to Ref. [78].
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1 nm. This can be well understood from the asymptotic behavior of the dominant

contributions: the ZZ contribution quadruples, yet the YY contribution vanishes at

small distances, which is also clearly illustrated in the figure.
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Figure 4.4: The magnitude of the total frictional force, along with its contributions

from different polarizations, on a Cs atom moving at v = 0.5 and at its first excited

temperature T = 16 100 K is plotted as a function of distance. The largest magnitude

of the total friction shown by the black dots is for a = 1 nm, being 1.57× 10−25 N.

Finally, QFPC depends on the velocity of the atom. As is shown in Fig. 4.5a,

the magnitude of the frictional force is linear in v for very small velocities; however,

the velocity dependence becomes more prominent for larger velocities. In Fig. 4.5b,

we not only plot the total frictional force at the first excitation temperature, T1 =

16 100 K, but also extrapolate our numerical results to the ionization temperature

of the cesium atom, Ti = 45 100 K [77]. Above Ti, the outermost electron will be

stripped off the atom so that the cesium atom cannot stay neutral. It is therefore

not feasible experimentally to detect the quantum friction on an atom above its

ionization temperature. In between T1 and Ti, the atom can be excited, though

not ionized. Now, the frequencies corresponding to the transition of the atom’s

internal energy levels become important in evaluating QFPC. At these frequencies,

the polarizability of the atom develops an imaginary part [57], which results in

a QFPC that is first order in the polarizability. This effect is not included in

the results we show for T = Ti. In addition, by employing the static value for

the polarizability, we underestimate the magnitude of the second order QFPC,
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because atoms in excited states, e.g., Rydberg atoms,6 tend to have much larger

polarizabilities.

exact

NR Limit
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Figure 4.5: The velocity dependence of the magnitude of the total frictional force

on a cesium atom at a distance of a = 10 nm away from the PC plate. (a) At the first

excitation temperature, T1 = 16 100 K, the frictional force is plotted as a function

of velocity for velocities, v ∈ [0.005, 0.100]. The red dots show the exact numerical

results based on Eq. (4.12) and Eq. (4.9). The blue solid line shows the term linear

in v obtained using the nonrelativistic approximation detailed in Appendix C. (b) In

the more relativistic regime, v ∈ [0.100, 0.995], the red dots show the total frictional

force at the first excitation temperature, T1 = 16 100 K, while the purple dots show

the numerical results extrapolated to the ionization temperature, Ti = 45 100 K. For

the maximum velocity shown in the figure, v = 0.995, the magnitude of the total

friction is 1.66× 10−19 N at T1 and 6.30× 10−16 N at Ti.

6Even though Rydberg atoms possess much larger polarizabilities, which presumably will enhance

the resulting frictional effect, we are unsure whether they could be appropriate candidates for

experimental consideration, because blackbody radiation induces transitions to lower n states and

reduces the lifetime of the Rydberg states. Even at room temperature, transitions induced by

blackbody radiation can contribute more to the decay rate than the spontaneous transitions [79].

At higher temperatures, the transition rate induced by blackbody radiation is even larger.
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Chapter 5

Induced Cherenkov Friction (ICF)

We have discussed the two simplest backgrounds for quantum frictional effects

to occur, the vacuum whose permittivity is 1 and the perfectly conducting plate

whose permittivity is infinite. The next logical step is, of course, to consider the

presence of a medium with a finite permittivity different than unity or infinity.

Here, for simplicity, we will ignore the permeability of the medium and assume the

permittivity is isotropic, which also results in a finite index of refraction, ε = n2.

What has been known for almost a century as the Vavilov-Cherenkov effect

[80, 81, 82] states that a charged particle moving faster than the speed of light

of the surrounding medium emits radiation. For pedagogical discussions, see, for

example [49, 48]. Similar effects have also been investigated for moving dipoles

[83, 84, 85, 20]. The frictional force which accompanies the energy loss of the

moving particle can be referred to as Cherenkov friction. Such a force will slow

down a fast-moving particle in a medium even if the collision between the charged

particle and the medium particles could be ignored. In this chapter, however, we will

illustrate that an induced Cherenkov friction (ICF) can also occur for fast-moving

particles in a vacuum region above the medium, even for a neutral but polarizable

particle which does not carry an intrinsic dipole moment. Emphasis will be placed

on how the usual Cherenkov condition, v > 1/n, arises in these situations.

We examine ICF on charged particles in Sec. 5.1. Dispersion of the medium

is ignored in Sec. 5.1.1, which allows us to derive the frictional force analytically.

Dispersion is taken into account in Sec. 5.2, where we obtain the expressions of ICF

ready for numerical evaluation. Quantum Cherenkov friction resulting from fluctu-
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ations is discussed in Sec. 5.2. We obtain the expression for ICF on a dissipative

nanoparticle and give some numerical estimates of the force for a gold nanosphere.

Of course, quantum Cherenkov friction could also be induced between two moving

media, like that being discussed in [86].

5.1 Induced Cherenkov Friction on a Charged Particle

x

z

y q
v

a

ε = n2 µ = 1

FC

F

Figure 5.1: Illustration of a charged particle flying above a medium with a real

index of refraction n.

Before diving into the quantum realm, let us first investigate the friction induced

on a charged particle when it moves parallel to a dielectric with index of refraction n.

The discussion here is in fact within the realm of classical electrodynamics, because

the friction does not originate from fluctuations. Therefore, no quantization is

involved. But, the setting here does differ from the classic setting for Cherenkov

radiation, where the charged particle itself moves inside the medium. Here, the

charged particle, q, moves with constant velocity, v, parallel to a dielectric plate

in vacuum. For simplicity, we ignore the magnetic properties of the medium. The

physical situation is illustrated in Fig. 5.1. The static Coulomb interaction between

the surface and the charged particle, FC, is normal to the planar surface. But, we

shall see that there also exists a tangential component of the classical Lorentz force,

F , which acts as a frictional force on the charged particle.
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5.1.1 A nondispersive medium

The Lorentz force on a charged particle is

F = q(E + v×B). (5.1)

The trajectory of the charged particle shown in Figure 5.1 is

R(t) = (x = vt, y = 0, z = a). (5.2)

The Lorentz force in the direction of the particle’s motion (x) acts as a frictional

force on the particle,

F (t) = qEx(t,R(t)). (5.3)

The current density due to the moving charged particle is

jx(t, r) = qvδ(x− vt)δ(y)δ(z − a) ⇒ jx(ω; r) = qei
ω
v
xδ(y)δ(z − a). (5.4)

The field induced by the current in Eq. (5.4) is

Ex(ω; r) = − 1

iω

∫
dr̃Gxx(ω; r, r̃)jx(ω; r̃)

= − q

iω

∫
dky
2π

e(i
ω
v
x+ikyy)Gxx

(
ω, kx =

ω

v
, ky; z, a

)
. (5.5)

Notice only special modes ω = kxv are selected to contribute to the frictional force,

F = q2

∫
dω

2π

(
− 1

iω

)∫
dky
2π

Gxx

(
ω, kx =

ω

v
, ky; a, a

)
. (5.6)

The frictional force in Eq. (5.6) is independent of time and independent of the sign

of the charge. In addition, only the odd in ω part in Gxx will contribute to the

frictional force.

According to Eq. (2.93), Gxx in a planar geometry reads

Gxx(ω,k⊥; z, z̃) =
k2
x

k2
∂z∂z̃g

H +
k2
y

k2
ω2gE. (5.7)
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The scalar Green’s functions are

gE,H(ω, k; z, z̃) =
1

2κ
e−κ|z−z̃| +

rE,H

2κ
e−κ(z+z̃) (5.8)

where the reflection coefficients involve two different propagation wave numbers

associated with the vacuum and the medium, respectively,

rE =
κ− κn
κ+ κn

, rH =
κ− κn/n2

κ+ κn/n2
. (5.9)

The vacuum propagation wave number, κ, is purely real for the contributing

modes because

κ2 = k2 − ω2 =
(ω
v

)2

+ k2
y − ω2 =

ω2

γ2v2
+ k2

y > 0. (5.10)

It is also even in ω. As a result, the bulk part of the Green’s function, which only

involves κ, does not contribute to the friction.

The propagation wave number in the dielectric for the contributing modes, how-

ever, could become purely imaginary if

κ2
n = k2 − ω2n2 = κ2 − ω2(n2 − 1) = ω2

(
1

v2
− n2

)
+ k2

y < 0. (5.11)

which can be satisfied in the integration region

k2
y < k2

n =

(
n2 − 1

v2

)
ω2. (5.12)

Such integration region is null unless

nv > 1, (5.13)

which is precisely the standard Cherenkov condition. We assume n is constant in

this section, so that the Cherenkov threshold velocity vC = 1/n is nondispersive in

frequency.
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Above the Cherenkov threshold, v > vC , and in the integration region, k2
y < k2

n,

κn =⇒ −isgn(ω)
√
ω2(n2 − 1)− κ2 = −isgn(ω)

√
k2
n − k2

y (5.14)

becomes odd in ω and purely imaginary. The frictional force, therefore, only arises

from the imaginary part of the Green’s function,

F = − q2

4π2

∫
dω

ω

∫
k2y<k

2
n

dky ImGxx

(
ω, kx =

ω

v
, ky; a, a

)
. (5.15)

In view of Eq. (5.10), it is convenient to introduce polar coordinates as integration

variables by letting
ω

γv
= κ cos θ, ky = κ sin θ. (5.16)

As a result,

F = − q2

4π2

∫
dθ

1

cos θ

∫
dκ ImGxx (ω = γvκ cos θ, kx = γκ cos θ, ky = κ sin θ; a, a) ,

(5.17)

for which k2
n > k2

y translates to

cos2 θ >
1

(γ2 − 1)(n2 − 1)
(5.18)

independent of κ. This allows us to easily integrate κ out when plugging in the

Green’s function. Since κ is real definite and the friction arises from the imaginary

part of κn, only the scattering part of the Green’s function contributes to the friction

through the imaginary reflection coefficients,

F = − q2

8π2(2a)2

∫
dθ

cos θ

γ2 cos2 θ + sin2 θ

[
(γ2 − 1) sin2 θ Im rE + γ2 Im rH

]
= − q2

32π2a2

[
fE(γ, n) + fH(γ, n)

]
, (5.19)
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where

Im rE = Im
2

1 + κn/κ
= 2sgn(cos θ)

√
(γ2 − 1)(n2 − 1) cos2 θ − 1

(γ2 − 1)(n2 − 1) cos2 θ
,

(5.20)

Im rH = Im
2

κ+ κn/n2
= 2sgn(cos θ)

1
n2

√
(γ2 − 1)(n2 − 1) cos2 θ − 1

1− 1
n4

√
(γ2 − 1)(n2 − 1) cos2 θ − 1

. (5.21)

Notice both the integrand in Eq. (5.19) and the integration region Eq. (5.18) are

even in cos θ, which enables us to rewrite the integral with the new variable x = sin θ,

fE(γ, n) =
4√

(γ2 − 1)(n2 − 1)

∫ x0

−x0
dx

x2

x2
1 − x2

√
x2

0 − x2

1− x2

fH(γ, n) =
4n2/v2√

(γ2 − 1)(n2 − 1)

∫ x0

−x0
dx

1

x2
1 − x2

√
x2

0 − x2

x2
2 − x2

, (5.22)

with the shorthand notations

x2
0 = 1− 1√

(γ2 − 1)(n2 − 1)
< 1, x2

1 =
1

v2
> 1, x2

2 = 1 +
n4 − 1√

(γ2 − 1)(n2 − 1)
> 1.

(5.23)

The integrals in Eq. (5.22) are manifestly convergent and in fact can be inte-

grated analytically,

fE(γ, n) = − 4π√
(γ2 − 1)(n2 − 1)

(
1 +

√
γ2 − 1

n2 − 1
− nγ√

n2 − 1

)
,

fH(γ, n) =
4π√

(γ2 − 1)(n2 − 1)

(
γ2n2√

(γ2 + n2)(n2 − 1)
− nγ√

n2 − 1

)
. (5.24)

The sum of the two contributions reads

f tot = fE + fH =
4π√

(γ2 − 1)(n2 − 1)

(
γ2n2√

(γ2 + n2)(n2 − 1)
−
√
γ2 − 1

n2 − 1
− 1

)
, (5.25)

which can be shown to be positive for nv > 1 and to vanish at the threshold velocity

vC . Therefore, the induced Cherenkov friction is negative definite, that is, a true

drag, and it only exists when the charged particle moves faster than the Cherenkov

threshold velocity.
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In the relativistic limit, we find

γ � n > 1 : f tot −→ 4π. (5.26)

It is quite surprising that the friction becomes independent of velocity and insensi-

tive to the index of refraction of the dielectric in this limit. In the static situation, 1

the Coulomb force in the normal direction reads

FC = − q2

4a2

n2 − 1

n2 + 1
. (5.27)

The ratio of the (relativistic) tangential ICF to the normal force is therefore

F

FC

=
1

2π

n2 + 1

n2 − 1
. (5.28)

On the other hand, in the perfectly conducting limit,

n� γ > 1 : f tot ∼ 4π

√
γ2 − 1

n
−→ 0, (5.29)

the friction on the charged particle vanishes. That is, a genuine frictionless surface

needs to be not only perfectly smooth but also perfectly conducting!

5.1.2 A dispersive medium

In the last section, the assumption that the index of refraction is just a constant,

independent of frequency, is undoubtedly an oversimplication. Let us in this section

take into account the dispersion of the dielectric surface.

An immediate complication of worrying about the dispersion is that the Cherenkov

condition, Eq. (5.13), now also becomes frequency dependent,

n(ω)v > 1. (5.30)

This condition selects the frequency modes that will contribute to the ICF in

1Here, we are citing the familiar results of electrostatics [48, 49], ignoring the modification of the

Coulomb force due to the relativistic motion. A more careful treatment would be examining the z
component of the Lorentz force using the method outlined for computing the ICF in this section.
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Eq. (5.15) and can be complicated depending on the specific form of n(ω). 2 Here,

we will still make an assumption that n(ω) is purely real, which avoids the entangle-

ment between the effect of induced Cherenkov radiation and that of the dissipation

in the dielectric surface. As a consequence, n(ω) is an even function in ω. 3

The integrand in Eq. (5.15) is then guaranteed to be even in both ω and ky so

that it can be rewritten as

F = − q
2

π2

∫ ∞
0

dω

ω

∫ ∞
0

dky ImGs
xx

(
ω, kx =

ω

v
, ky; a, a

)
. (5.31)

The integration range in Eq. (5.31) is only formal, because not all those modes

with positive ω and ky will contribute to the ICF. This can be seen by analyzing

the two relevant propagation wave numbers. The vacuum propagation wave number

is guaranteed to be real and even in ω,

κ2 =
√
k2
y + k2

1, k1 =
ω

γv
. (5.32)

Therefore, the only source for an imaginary part to arise in the Green’s function is

the propagation wave number in the medium, κn, and it so happens only if

κ2
n = k2

y − ω2

[
n(ω)2 − 1

v2

]
< 0. (5.33)

This requires not only the Cherenkov condition in Eq. (5.30) to hold, but also

k2
n = ω2

[
n(ω)2 − 1

v2

]
> k2

y. (5.34)

Under these conditions, κn becomes purely imaginary and odd in ω,

κn =⇒ −isgn(ω)
√
k2
n − k2

y. (5.35)

The actual calculation differs from the nondispersive case in that we want to

retain ω as an integration variable, since the index of refraction depends on ω

2If the permittivity of the medium can be modeled by a set of resonant oscillators, the Cherenkov

modes usually lies below the resonance frequencies of each oscillator. Of course, the widths of the

continuous Cherenkov band is very sensitive to the velocity of the particle [49].
3Since ε = n2, the permittivity, ε, is real when n is real. As a generalized susceptibility, the real

part of the permittivity must be even in ω. It then follows that n(ω) is even.
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explicitly. The reflection coefficients should therefore be written as

Im rE = 2sgn(ω)

√
(k2

1 + k2
y)(k

2
n − k2

y)

k2
1 + k2

n

,

Im rH = 2sgn(ω)

1
n2

√
(k2

1 + k2
y)(k

2
n − k2

y)

(1− 1
n4 )k2

y + (k2
1 + 1

n4k2
n)
. (5.36)

The ICF on the particle can be split into the contributions from the E mode and

the H mode,

F = − q
2

π2

∫ ∞
0,n(ω)v>1

dω ω
(
fE + fH

)
, (5.37)

where fE and fH are

fE =

∫ kn

0

dky
k2
y

ω2

v2
+ k2

y

√
k2
n − k2

y

k2
1 + k2

n

e−2
√
k21+k2ya,

fH =

∫ kn

0

dky
1

n2v2

k2
1 + k2

y

ω2

v2
+ k2

y

√
k2
n − k2

y

(1− 1
n4 )k2

y + (k2
1 + 1

n4k2
n)
e−2
√
k21+k2ya. (5.38)

Both fE and fH are dimensionless functions. It is therefore useful to introduce the

following dimensionless variables,

ky
kn

= y,
ω/v

kn
=

1√
n2v2 − 1

= b,
k1

kn
=
b

γ
, x = 2ωa, (5.39)

so that Eq. (5.38) becomes

fE(x, n, v) =

∫ 1

0

dy
y2

y2 + b2

√
1− y2

1 + b2

γ2

e
−x
v

√
y2

b2
+ 1
γ2 ,

fH(x, n, v) =

∫ 1

0

dy
1

n2v2

y2 + b2

γ2

y2 + b2

√
1− y2

(1− 1
n4 )y2 + ( b

2

γ2
+ 1

n4 )
e
−x
v

√
y2

b2
+ 1
γ2 . (5.40)

In the case of a constant n, the ω integral in Eq. (5.37) can be easily integrated

and the results, of course, coincide with those found in Sec. 5.1.1. But, in general,

one needs to first identify the frequency modes that satisfy the Cherenkov condition,
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Figure 5.2: Plots of dimensionless functions shown in Eq. (5.40). (a) For x = 1,

n = 2.5, fE and fH are plotted as functions of velocity for v ∈ [0.4, 1.0]. (b) For

x = 1, v = 0.5, fE and fH are plotted as functions of the index of refraction for

n ∈ [2, 10].

n(ω)v > 1. Due to the presence of the exponential factor appearing in Eq. (5.40), the

Cherenkov modes with the lowest frequencies will contribute the most to the ICF

on the charged particle, while the contributions from higher frequency modes will

be suppressed. In addition, ICF is also exponentially suppressed with increasing

distance.

For a particular frequency and a fixed distance such that x = 2ωa = 1, we

illustrate how the dimensionless functions in Eq. (5.40) vary with velocity and the

index of refraction in Figure 5.2. It is seen from the plot that fE monotonically

increases with both v and n while fH exhibits peaks in both. As a result, even

though fH dominates over fE for velocities/index of refraction just above threshold,

fE eventually surpasses fH for higher velocities and index of refraction.

5.2 Quantum Cherenkov Friction on a Neutral Polariz-

able Particle

In this section, we study instead the Cherenkov friction induced on a neutral but

polarizable particle when it moves parallel to a planar dielectric plate at a distance.

The physical situation is illustrated in Figure 5.3. We already know that there

exists the famous Casimir-Polder force, which is normal to the surface. We have

also discussed and calculated the frictional effect due to the surrounding blackbody
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Figure 5.3: Illustration of a neutral but polarizable particle flying above a medium

with a real index of refraction n.

radiation in Chapter 3. Here, we will focus on the frictional effect caused by the

induced Cherenkov radiation.

The general formula for quantum friction on an intrinsically dissipative particle,

Eq. (3.60), obtained through quantization of the classical Lorentz force law by FDT

still applies here:

F =

∫
dν ′

2π

d2k′

(2π)3
(k′x + ν ′v) tr=α′(ν ′) · =G′(ν ′,k′⊥; a, a)

×
{

coth[
βγ(ν ′ + k′xv)

2
]− coth

(
β′ν ′

2

)}
. (5.41)

The above is slightly generalized than Eq. (3.60) in that it takes into account a

non-symmetric polarizability tensor or Green’s tensor.

Unlike QVF in Chapter 3 and QFPC in Chapter 4, for which we performed the

entire calculation in the rest frame of the particle, P, here, the presence of a dielec-

tric plate with finite permittivity makes the rest frame of radiation, R, a preferred

frame for the discussion, where we do not need worry about the transformation of

material properties. Let us, therefore, use the frequency and momentum intrinsic

to frame R as integration variables by making the following variable changes:

ν ′ = γ(ν − kxv), k′x = γ(kx − νv). (5.42)
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This leads to

F =

∫
dν

2π

d2k

(2π)3

kx
γ

tr=α′ [γ(ν − kxv)] · =G′ [γ(ν − kxv), γ(kx − νv), ky; a, a]

×
{

coth

(
βν

2

)
− coth

[
β′

2
γ(ν − kxv)

]}
. (5.43)

For the configuration illustrated in Figure 5.3 where the polarizable particle moves

in vacuum, the bulk contribution to the friction is precisely the QVF already dis-

cussed in Chapter 3. 4 This allows us to set aside the bulk contribution and focus

on the scattering contribution. Let us also assume that the polarizability tensor of

the nanoparticle is isotropic so that

F =

∫
dν

2π

d2k

(2π)3

kx
γ

Imα′ [γ(ν − kxv)] · Im trG′s [γ(ν − kxv), γ(kx − νv), ky; a, a]

×
{

coth

(
βν

2

)
− coth

[
β′

2
γ(ν − kxv)

]}
. (5.44)

Now, we want to transform the trace of the Green’s tensor from frame P to frame

R. This can be done with the transformations for the Green’s tensor provided in

Appendix A. Here, we follow Ref. [30] and further rewrite the trace as a combination

of the scalar Green’s functions, gE and gH in frame R:

trG′s [γ(ν − kxv), γ(kx − νv), ky; a, a] =
∑
σ=E,H

φσ(ν,k⊥)gsσ(ν,k⊥). (5.45)

Here, φE,H are real valued scalar functions

φE = [γ(ν − kxv)]2 + 2γ2v2k2
y(1−

ν2

k2
),

φH = [γ(ν − kxv)]2 + 2(k2
x + γ2k2

y)(1−
ν2

k2
), (5.46)

and gs,σ are the scalar Green’s functions in Eq. (2.95),

gs,σ(ν,k) =
1

2κ
rσe−2κa, (5.47)

4If the medium below fills the region where the polarizable particle moves, the situation is more

parallel to the classic Cherenkov effect on charged particles, where the friction will be purely due

to the bulk contribution. If, instead, the particle moves in a different medium, both the bulk and

the scattering will contribute to the friction, which will result in two different Cherenkov conditions

corresponding to the two different media.
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which can develop imaginary parts through the propagation wave numbers in vac-

uum and in the medium, κ and κn.

There can be three different sources of dissipation in the particle-radiation sys-

tem,

1Ovacuum dissipation: κ2 = k2 − ν2 < 0.

2Osurface dissipation: the index of refraction is imaginary. (5.48)

3Oinduced Cherenkov dissipation: κ2
n = k2 − ν2n2 < 0.

In general, the three mechanisms listed above will interfere together, which renders

the calculation complicated. Here, we wish to isolate the friction caused by the

induced Cherenkov dissipation. Surface dissipation can be avoided by considering

a dielectric surface with a real index of refraction, n. And we shall now see that the

vacuum dissipation is turned off at zero temperature, T = T ′ = 0.

Using the evenness of the integrand in Eq. (5.44), the friction can be rewritten

as

F =
1

4π3γ

∫ ∞
−∞

dν

∫ ∞
0

dkx

∫ ∞
−∞

dky kx Imα′ [γ(ν − kxv)]
∑
σ=E,H

φσ(ν,k⊥) Im gs,σ(ν,k⊥)

× [sgn(ν)− sgn(ν − kxv)] . (5.49)

The difference of the sgn functions can be translated onto the integral limits for ν,

F =
1

2π3γ

∫ ∞
0

dkx

∫ kxv

0

dν

∫ ∞
−∞

dky kx Imα′ [γ(ν − kxv)]
∑
σ=E,H

φσ(ν,k⊥) Im gs,σ(ν,k⊥).

(5.50)

Apparently, the propagation wave number in vacuum, κ, is now real definite because

κ2 = k2
y + k2

1, k2
1 = k2

x − ν2 > 0. (5.51)

There is therefore no vacuum dissipation. The only source of dissipation is in the

propagation wave number in the medium, κn, which only develops an imaginary
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part if

κ2
n = k2

y − k2
n < 0 and k2

n = ν2n2 − k2
x > 0 =⇒ ν >

kx
n

and k2
y < k2

n. (5.52)

Under these conditions, κn becomes purely imaginary,

κn −→ −isgn(ω)
√
k2
n − k2

y. (5.53)

Taking these considerations into account, the ICF on the polarizable particle

should be written as

F =
1

2π3γ

∫ ∞
0

dkx

∫ kxv

kx
n

dν

∫ kn

−kn
dky kx Imα′ [γ(ν − kxv)]

∑
σ=E,H

φσ(ν,k⊥) Im gs,σ(ν,k⊥),

(5.54)

from which we see that a nonvanishing friction automatically implies the Cherenkov

condition,

nv > 1. (5.55)

The expression for ICF obtained here precisely agrees that found in Ref. [30].

Now, for the purpose of evaluating the friction, let us write explicitly

Im gs,E = Im
1

κ+ κn
e−2κa =

√
k2
n − k2

y

ν2(n2 − 1)
e−2
√
k2y+k21a,

Im gs,H = Im
1

κ+ κn/n2
e−2κa =

1
n2

√
k2
n − k2

y

(k2
x + k2

y)(1− 1
n4 )− ν2(1− 1

n2 )
e−2
√
k2y+k21a. (5.56)

A model for the polarizability is also needed. We will again consider a nanoparticle

made of gold, the imaginary part of which maybe described by Eq. (2.117) as

Imα(ω) = V
ω2
pωη

(ω2
1 − ω2)2 + ω2η2

, (5.57)

where V is the volume of the nanoparticle, ωp = 9 eV is plasma frequency of gold,

ω1 = ωp/
√

3 = 5.20 eV is the resonance frequency induced by the Lorenz-Lorentz

relation, and η = 0.035 eV is the damping parameter of gold.

Now, we have all ingredients needed to evaluate the ICF in Eq. (5.54). Special

attention needs to be paid to the fact that the frequency of the polarizability needs
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to be Lorentz shifted before plugging into the ICF in Eq. (5.54). It is also convenient

to scale out the dimensional factors in Eq. (5.54) using

ν = ω1u, kx = ω1x, ky = ω1y, η = ω1δ, w = 2ω1a. (5.58)

After the scaling, ICF on the nanoparticle can be written as,

F =
V ω2

pω
3
1

π3

[
fE(n, v, δ, w) + fH(n, v, δ, w)

]
, (5.59)

where the two dimensionless functions read

fE(n, v, δ, w) =

∫ ∞
0

dx

∫ xv

x/n

du

∫ √u2n2−x2

0

dy
x(u− xv)δ

[1− γ2(u− xv)2]2 + γ2(u− xv)2δ2

×
[
γ2(u− xv)2 + 2γ2v2y2

(
1− u2

x2 + y2

)]
×
√
u2n2 − x2 − y2

(n2 − 1)u2
e−w
√
x2+y2−u2 ,

fH(n, v, δ, w) =

∫ ∞
0

dx

∫ xv

x/n

du

∫ √u2n2−x2

0

dy
x(u− xv)δ

[1− γ2(u− xv)2]2 + γ2(u− xv)2δ2

×
[
γ2(u− xv)2 + 2(x2 + γ2y2)

(
1− u2

x2 + y2

)]
×

1
n2

√
u2n2 − x2 − y2

(x2 + y2)
(
1− 1

n4

)
− u2

(
1− 1

n2

)e−w√x2+y2−u2 .

(5.60)

The above expressions allow the index of refraction to be dispersive, that is, de-

pending on u. Here, however, we will assume it to be a constant, which allows us

to numerically integrate over the dimensionaless frequency u and give an estimate

of the ICF. This differs from the discussion in [30], where more emphasis is put on

the spectrum of the ICF.

For a fixed n = 2.5, 5 the Cherenkov threshold velocity is vC = 0.4, below

which the ICF will vanish. The magnitude of the friction obviously scales with the

size of the nanoparticle. For example, the volume of a nanosphere is V = 4
3
πr3,

where r is the radius of the nanosphere. The other length in the problem is the

5This is close to the index of refraction of diamond at a wavelength of λ = 589 nm.
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Figure 5.4: A gold nanosphere of radius r = 10 nm is moving with a constant velocity,

v = 0.5c, above a planar dielectric plate with index of refraction, n = 2.5. The mag-

nitude of the induced Cherenkov friction on the nanosphere is plotted as a function

of the separation between the nanosphere and the plate for a ∈ [40 nm, 400 nm]. The

E mode contribution, the H mode contribution and the total friction are indicated

by blue dots, red dots and purple dots, respectively.

distance between the particle and the dielectric plate, a. To minimize any other

surface effects, a should be at least several times greater than r. As can be seen in

Eq. (5.60), the magnitude of the force should decay with increasing distance due

to the exponential factor. A question then arises as to whether the size effect or

the distance effect is more prominent. That is, can a bigger friction be achieved by

considering a larger nanosphere, even though it is farther away from the surface?

Let us now fix the velocity to be v = 0.5 and compare numerically the friction for a

smaller nanosphere of radius, r = 10 nm at a distance a = 100 nm to that for a larger

nanosphere with r = 100 nm at a distance of a = 1000 nm = 1µm:

r = 10 nm, a = 100nm =⇒ F = −2.45× 10−21 N,

r = 100 nm, a = 1000nm =⇒ F = −2.42× 10−24 N. (5.61)

This suggests that the decay of ICF with distance is more prominent than the size

effect of the nanoparticle.

In Figure 5.4, we illustrate the distance dependence of ICF on a moving gold

nanosphere for fixed velocity. Apparently, for v = 0.5 c, the friction is dominated
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Figure 5.5: A gold nanosphere of radius r = 10 nm is moving above a planar di-

electric plate with index of refraction, n = 2.5 at a fixed distance, a = 100 nm. The

magnitude of the induced Cherenkov friction on the nanosphere is plotted as a func-

tion of the velocity of the nanosphere for v ∈ [0.4, 0.99]. The E mode contribution,

the H mode contribution and the total friction are indicated by blue dots, red dots

and purple triangles, respectively.

by the contributions from the H mode. When the distance between the particle

and the surface is just four times the radium of the particle (a = 4r = 40 nm), the

magnitude of ICF reaches −F = 6.89× 10−19 N.

In Figure 5.5, the velocity dependence of ICF is illustrated instead for a nanosphere

moving at a fixed distance, a = 10r = 100 nm above the dielectric surface. The fric-

tion is completely dominated by the H mode contribution for smaller velocities just

above the Cherenkov threshold. For higher velocity, however, it is clearly seen that

the E mode contribution becomes more and more important and even surpasses

that of the H mode at some highly relativistic velocities. The largest magnitude of

the friction on the plot is for v = 0.99, where it reaches −F = 1.10× 10−15 N, well

within the current experimental reach for minute forces. Of course, the above is

just a very rough estimate, particularly in view that we have not allowed dispersion

in the dielectric surface. Nonetheless, it does indicate that one might be able to

observe the induced Cherenkov friction on a gold (metal) nanosphere if it could be

made to move at relativistic speeds.
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Chapter 6

Conclusions and Outlook

In this thesis, we have discussed fluctuation-induced-frictional effects on atoms and

nanoparticles. These particles possess neither charge nor intrinsic dipole moments.

But, they are polarizable and can be polarized by electromagnetic fields. Even

without any external fields, the neutral but polarizable particles can be polarized

by the quantum and thermal fluctuations of electromagnetic fields. When the par-

ticles acquire a nonzero velocity, frictional forces and radiative heat transfer can

be induced on the particles. In this thesis, we calculate these quantum frictional

effects by quantizing the first principles in classical electrodynamics, namely the

Lorentz force law and the Joule heating law, with the fluctuation-dissipation theo-

rem (FDT). Such a unified approach is applied to the calculation of the quantum

frictional effects in several simple backgrounds. First, we discuss the quantum vac-

uum friction (QVF) and quantum vacuum radiative heat transfer (QVRHT) for

particles moving in vacuum (free space, not in contact with or close to any other

object). The nonequilibrium steady state (NESS) is defined as the state where

QVRHT vanishes in the rest frame of the particle, P. These discussions are based

on our recently published papers [21, 22], both of which feature a fully-relativistic

treatment. Next, we explore the quantum friction on the particle moving parallel to

a perfectly conducting plate (QFPC). This frictional force has been unaddressed by

the theoretical community until recently by us [23]. Both QVF and QFPC vanish at

zero temperature and QFPC is best understood as QVF modified by the perfectly

conducting boundary condition. Finally, we study the friction on a particle moving

in vacuum, parallel to a nondissipative dielectric plate with a finite index of refrac-
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tion. In this case, even at zero temperature, if the particle’s velocity exceeds the

speed of light in the dielectric plate, it will experience an induced Cherenkov friction

(ICF). The zero-temperature ICF on a neutral particle arises purely from the quan-

tum fluctuations. Both QVF and QFPC reflect that the electromagnetic vacuum

itself can be dissipative, while ICF reflects the dissipative nature of the modified (by

nondissipative material) electromagnetic vacuum. Discussion of finite-temperature

ICF would require a consideration of both mechanisms, which is not detailed in this

thesis.

Another obvious extension to the discussions already presented here is to allow

the dielectric plate to be dissipative. Quantum frictional effects on particles passing

above a dissipative surface had been studied by other groups for years, for example,

in Refs. [87, 88, 89, 62]. However, the analyses in these works are restricted to zero-

temperature and nonrelativistic regime. A finite-temperature and fully-relativistic

treatment of such a situation is in fact very hard because several different dissi-

pation mechanisms would be at work and interfere with each other. We hope the

straightforward approach we supply here may prove advantageous in attacking this

task systematically.

Furthermore, fluctuation-induced effects are not confined to frictional force and

radiative heat transfer. Analogous to the quantum frictional force on a moving

particle, a rotating particle experiences a quantum frictional torque which will slow

down its rotation, either in vacuum [90, 91] or in the presence of a surface [92].

More intriguingly, a spontaneous torque can be induced on a nonreciprocal par-

ticle (αij 6= αji) sitting in vacuum if the particle is not in equilibrium with the

surrounding environment. The nonreciprocity can be activated by a magnetic field,

which breaks the time-reversal symmetry1 of the system apart from the applied

magnetic field [94]. A concrete example of a magnetic-field-induced nonsymmetric

permittivity tensor for n-doped InSb was used in Ref. [95]. On the contrary, spon-

taneous forces (first order in the susceptibility) on nonreciprocal particles seem to

require not only a time-reversal symmetry-breaking mechanism, but also a surface.

Consideration of the spontaneous effects together with the frictional effects leads

to potentially observable terminal linear velocity and terminal angular velocity of

1A comprehensive tutorial on the origin of nonreciprocity and its relationship with time-reversal

symmetry breaking can be found in Ref. [93].
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the nonreciprocal particle. In Ref. [61], we investigate these nonreciprocal effects.

Moreover, a quantum propulsion force (second order in the local susceptibility) on a

reciprocal extended body at rest is actually possible, provided that the body is not

in thermal equilibrium with the environment and exhibits inhomogeneity across its

volume [96, 97].

Numerical estimates of QVF for a gold atom and QFPC for a cesium atom are

provided in this thesis. In both of these situations, the quantum frictional forces

are too tiny to be observed at room temperature, but they are proportional to T 8

and, therefore, it is hoped that they might be measured at higher temperatures.

However, the temperature must not exceed the ionization temperature of the atom,

Ti, above which the atom will no longer stay neutral. In addition, the analysis

presented in this thesis assumes a static polarizability for atoms, which could only

be justified up to the temperature corresponding to the first excitation energy of the

atom, T1. For temperatures in between T1 and Ti, a more careful analysis is needed

to include the first order frictional effect because the polarizability of the atom

develops an imaginary part at the atomic transition frequencies, the contribution

of which to the quantum friction cannot be ignored. If we further consider the finite

width of each resonance, additional off-resonance first-order frictional effects need

to be taken into account as well.

Apart from temperature, the quantum frictional forces also depend on velocity.

They are generally too small to be observed unless the velocity of the particle

reaches a fraction of the speed of light. An immediate question arises as of how to

accelerate the neutral atoms. The solution is to combine the ion accelerators with

a neutralizer where fast ions can be converted to neutral atoms with little change

in momentum. In this way, MeV energy has been successfully achieved for argon

beam and copper beam in Refs. [98, 99], respectively. 2

However optimistic we try to be, it seems the task of directly measuring the

quantum frictional forces is challenging. Therefore, it is desirable to find other

signatures for the quantum frictional effects. In the introduction, we mention that

some authors have proposed that the geometric phase might be a fruitful venue

for the investigation of quantum frictional effects [32, 33, 34]. Here, we provide

2For copper, 1 MeV is equivalent to a velocity of 0.0058c, while for argon, it is equivalent to

0.0073c.

100



another one based on the calculations we had done. In Ref. [22], we study the

QVRHT on a moving nanoparticle and find that the radiative heat transfer always

tends to bring the nanoparticle to its NESS temperature, which would be different

from the environment temperature. We therefore propose that the deviation of

the NESS temperature from the environment temperature could serve as a feasible

signature for the quantum vacuum frictional effects. For a gold nanosphere moving

at half of the speed of light, at temperatures lower than 1000 K,3 the deviation of

its NESS temperature from the temperature of the environment can reach 18%.

In fact, for nonrelativistic velocities, the deviation is approximately described by

∆ = 2
3
v2, which seems to be detectable even at much lower velocities.

3In practice, we should not consider temperatures much higher than this, since gold melts at

1337 K.
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Appendix A

Lorentz Transformations of Dipole,

Field and Green’s Tensor

When the particle moves with a velocity relative the radiation background, there

exist naturally two frames to describe the physics, the rest frame of radiation, R,

and the rest frame of the particle, P. We find the quantization is often easier

done in frame P. Therefore, in most calculations throughout the thesis, we will

try to first transform the dipole and the fields in the first-principle expressions

into frame P and then apply the fluctuation-dissipation theorem to it. But when

it comes to evaluate the quantized expression, the electromagnetic Green’s tensor

must be transformed back to frame R, where we know its form. As a result, Lorentz

transformations between the two frames are frequently performed for the dipole,

the electromagnetic fields and the Green’s tensor. In this appendix, we describe

how these quantities transform under a Lorentz boost in the x direction with speed

v. Primes are used throughout for quantities and coordinates in frame P. In order

to apply these directly to the problems in the main text, an underlying planar

symmetry in the x-y plane is assumed. That is, the z coordinates are prevented

from being transformed into the Fourier space.

The transformations of different components of dipole moment in the frequency

space are

dx(ω) = d′x(γω), dy(ω) = γd′y(γω), dz(ω) = γd′z(γω). (A.1)

In the time domain, the transformations are

dx(t) =
1

γ
d′x

(
t

γ

)
dy(t) = d′y

(
t

γ

)
, dz(t) = d′z

(
t

γ

)
. (A.2)

In spacetime coordinates, the transformations of different components of the

electric field read

E ′x(r
′, t′) = Ex(r, t),

E ′y(r
′, t′) = γ[Ey(r, t)− vBz(r, t)], (A.3)

E ′z(r
′, t′) = γ[Ez(r, t) + vBy(r, t)],

where the transformation of the spacetime coordinates are

t = γ(t′ + vx′), x = γ(x′ + vt′), y = y′, z = z′. (A.4)
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In frequency-momentum space, these transformations become

E ′x(ω
′,k′⊥; z′) = Ex(ω,k⊥; z),

E ′y(ω
′,k′⊥; z′) = γ [Ey(ω,k⊥; z)− vBz(ω,k⊥; z)] ,

E ′z(ω
′,k′⊥; z′) = γ [Ez(ω,k⊥; z) + vBy(ω,k⊥; z)] , (A.5)

where the transformation of the coordinates are

ω = γ(ω′ + k′xv), kx = γ(k′x + ω′v), ky = k′y, z = z′. (A.6)

The transformation of the components of the Green’s tensor can be obtained by

considering the Lorentz transformation of the fields and applying the FDT in both

frames consistently. Here, the transformations of the material properties like ε or µ
are never invoked because we always express G′ in terms of G (instead of the other

way around) as below:

G′xx(ω
′,k′⊥; z′, z̃′) = Gxx(ω,k⊥; z, z̃),

G′yy(ω
′,k′⊥; z′, z̃′) =

1

ω2

(
ω′

2
Gyy + γ2k′y

2
v2Gxx + ω′γk′yvGxy + ω′γk′yvGyx

)
(ω,k⊥; z, z̃),

G′zz(ω
′,k′⊥; z′, z̃′) =

1

ω2

(
ω′

2
Gzz + γ2v2∂z∂z̃Gxx + iω′γv∂z̃Gzx − iω′γv∂zGxz

)
(ω,k⊥; z, z̃),

G′xy(ω
′,k′⊥; z′, z̃′) =

1

ω

(
ω′Gxy + γk′yvGxx

)
(ω,k⊥; z, z̃),

G′yx(ω
′,k′⊥; z′, z̃′) =

1

ω

(
ω′Gyx + γk′yvGxx

)
(ω,k⊥; z, z̃),

G′zx(ω
′,k′⊥; z′, z̃′) =

1

ω
(ω′Gzx − iγv∂zGxx) (ω,k⊥; z, z̃),

G′xz(ω
′,k′⊥; z′, z̃′) =

1

ω
(ω′Gxz + iγv∂z̃Gxx) (ω,k⊥; z, z̃),

G′yz(ω
′,k′⊥; z′, z̃′) =

1

ω2

(
ω′

2
Gyz − iγ2k′yv

2∂z̃Gxx + iω′γv∂z̃Gyx − ω′γk′yvGxz

)
(ω,k⊥; z, z̃),

G′zy(ω
′,k′⊥; z′, z̃′) =

1

ω2

(
ω′

2
Gzy + iγ2k′yv

2∂zGxx − iω′γv∂zGxy − ω′γk′yvGzx

)
(ω,k⊥; z, z̃),

(A.7)

where the transformation of the coordinates are

ω = γ(ω′ + k′xv), kx = γ(k′x + ω′v), ky = k′y, z = z′, z̃ = z̃′. (A.8)
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Appendix B

The Absence of Zero Temperature

Quantum Friction in the Presence of a

Diaphanous Medium

In this appendix, we supply a proof for why no zero temperature quantum friction

(QF) should arise for a nondissipative particle in the vacuum or in the presence of

a perfectly conducting (PC) plate. Further, we extend the claim to include the case

where a diaphanous, nondissipative medium with the property εµ = 1 exist in the

environment.

The QF for a nondissipative particle is second order in the intrinsic polarizability

of the particle, α(ω). See Eq. (4.1). At zero temperature, it can be rewritten as the

following:

F = 2

∫ ∞
0

dω

2π

∫
d2k⊥
(2π)2

d2k̄⊥
(2π)2

k̄x trα(ω)·=G′(ω,k⊥; a, a) ·α(ω) · =G′(ω, k̄⊥; a, a)

×
[
sgn(ω + k̄xv)− sgn(ω + kxv)

]
. (B.1)

To obtain Eq. (B.1), we have exchanged kx and k̄x for the second term in Eq. (4.1)

and used the evenness of the integrand under the total reflection of its frequency

and wave vector arguments (ω,k⊥, k̄⊥) → (−ω,−k⊥,−k̄⊥). In order to make the

argument clearer, let us change the k⊥ and k̄⊥ into dimensionless variables using ω
as a positive scale,

kx = ωx, ky = ωy, k̄x = ωx̄, k̄y = ωȳ. (B.2)

The friction now reads

F =
1

16π5

∫ ∞
0

dω ω5

∫
dx dy dx̄ dȳ x̄ trα(ω)·=G′(ω, ωx, ωy) ·α(ω) · =G′(ω, ωx̄, ωȳ)

× [sgn(1 + x̄v)− sgn(1 + xv)] , (B.3)

where we have suppressed the spatial z coordinates of the Green’s tensors. The

difference in the sgn functions can be translated back into limits for the x and x̄
integrals, leading to

F =
1

8π5

∫ ∞
0

dω ω5

∫
dy dȳ

[∫ − 1
v

−∞
dx

∫ ∞
− 1
v

dx̄−
∫ ∞
− 1
v

dx

∫ − 1
v

−∞
dx̄

]
x̄

× trα(ω) · =G′(ω, ωx, ωy) ·α(ω) · =G′(ω, ωx̄, ωȳ). (B.4)
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By exchanging x and x̄ again for the second term inside the bracket of Eq. (B.4),

we find the frictional force becomes

F =
1

8π5

∫ ∞
0

dω ω5

∫
dy dȳ

∫ − 1
v

−∞
dx

∫ ∞
− 1
v

dx̄ (x̄− x)

× trα(ω) · =G′(ω, ωx, ωy) ·α(ω) · =G′(ω, ωx̄, ωȳ). (B.5)

Now, the limit on x prevents the vacuum propagation wave number of the first

reduced Green’s tensor, κ, from developing an imaginary part, because of

κ2 = k2 − ω2 = ω2(x2 + y2 − 1) > 0, x < −1

v
. (B.6)

For the simplest vacuum situation where only the diagonal components of the

Green’s tensor contribute to the integral (see Appendix A of Ref. [21] for a detailed

discussion), the anti-Hermitian part reduces to the ordinary imaginary part. But

the only possible source of an imaginary part for the first Green’s tensor in Eq. (B.5),

κ, is now real definite. As a result, the zero temperature QVF vanishes.

For backgrounds other than vacuum, zero temperature quantum friction exists

in general because the propagation wave number associated with the medium can

become imaginary since

κ2
n = k2 − ω2n2 = ω2(x2 + y2 − εµ) (B.7)

does not have a definite sign unless the index of refraction is smaller or less than 1,

n2 = εµ ≤ 1. (B.8)

In particular, for a diaphanous medium with the special property,

εµ = 1, (B.9)

the propagation wave number associated with the diaphanous medium coincides

with the vacuum one, κn = κ. This nice coincidence renders the reflection coeffi-

cients in Eq. (2.97) to be real definite as long as ε and µ are real,

rE =
µ− 1

µ+ 1
=

1− ε
1 + ε

, rH =
ε− 1

ε+ 1
. (B.10)

Therefore, the only source of the imaginary part in the scalar Green’s functions

Eq. (2.95) is still just κ, which turns out to be real definite recalling Eq. (B.6). It can

be further checked that the anti-Hermitian part of G′ vanishes unless κ develops an

imaginary part even though the off-diagonal components of the Green’s tensor and

the transformation between G′ and G needs to be taken into account. Therefore, we

conclude that =G′ = 0 even if a diaphanous medium is present in the background,

and as a result, zero temperature QF for such case must be absent.

Now, apparently, both the perfect conductor defined by Eq. (2.101) and Eq. (2.102)

and the vacuum can be deemed as members of the family of diaphanous materials,

for which the total reflection coefficient rE + rH = 0.
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Appendix C

Analytical Method for Extracting

Limits of QFPC

In this appendix, we provide a systematic analytical method for extracting the

nonrelativistic limit, the small z (large separation/high temperature) limit and the

large z (small separation/low temperature) limit of QFPC discussed in Chapter 4.

We will illustrate the method with the most interesting contribution, FXZ. The

method, though, applies to other contributions as well. A static polarizability is

still assumed throughout this appendix.

Let us first review the expression for FXZ. We find in Eq. (4.12),

FXZ =
αxx(0)αzz(0)

32π3(2a)8
fXZ(v, z) =

αxx(0)αzz(0)

32π3(2a)8

∫ ∞
0

dx x7FXZ(x, v, z) (C.1)

and FXZ is defined in Eq. (4.9d), which can be rewritten using the half-integer

Bessel functions 1,

J 5
2
(x) =

√
2x

π
j2(x) = −

√
2

πx
5
2

[3x cos(x) + (x2 − 3) sin(x)] (C.2)

as

FXZ(x, v, z) = −√π 2
3
2x−

3
2J 5

2
(x)

∫ 1

−1

du u
√

1− u2 J1

(
x
√

1− u2
) 1

exγz(1+uv) − 1
. (C.3)

Now, the key step of the analysis is to expand the thermal occupation factor

in Eq. (C.3) as a Maclaurin series in the v variable, but retaining the implicit

dependence of γ on v,

1

exγz(1+uv) − 1
=
∞∑
n=0

vn

n!

[
∂n

∂vn
1

exγz(1+uv) − 1

]∣∣∣∣
v=0

=
∞∑
n=0

vnun

n!
(xγz)n

∂n

∂(xγz)n
1

exγz − 1
,

(C.4)

Doing that, we obtain

FXZ(x, v, z) = −√π 2
3
2x−

3
2J 5

2
(x)

∞∑
n=0

vn

n!
zn

∂n

∂zn
1

exγz − 1

×
∫ 1

−1

du un+1
√

1− u2 J1

(
x
√

1− u2
)
. (C.5)

1The other contributions can all be rewritten using Bessel functions with different half-integer

orders.
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Noticing that, in Eq. (C.5), any even n terms vanishes on account of the sym-

metry of the u integral, we immediately conclude, in the nonrelativistic limit, the

leading term should be linear in v, given by the n = 1 term,

FXZ
NR(x, v, z) = −v√π 2

3
2x−

3
2J 5

2
(x)z

∂

∂z

1

exz − 1

∫ 1

−1

du u2
√

1− u2 J1

(
x
√

1− u2
)
. (C.6)

We find integration formula 6.683-6 found in [100], for given Re ρ > −1 and Reµ >
−1, ∫ π/2

0

dθ Jµ(a sin θ)(sin θ)µ+1(cos θ)2ρ+1 = 2ρΓ(ρ+ 1)a−ρ−1Jρ+µ+1(a). (C.7)

We can now carry out the u integral in Eq. (C.7) by making a change of variable,

u = cos θ, and finding

FXZ
NR(x, v, z) = −4πvx−3J2

5
2
(x)z

∂

∂z

1

exz − 1
. (C.8)

The function fXZ is to be obtained by integrating on x as shown in Eq. (C.1)

fXZ
NR = −8vz

∂

∂z

∫ ∞
0

dx
[3x cosx+ (x2 − 3) sinx]

2

x

1

exz − 1
. (C.9)

Realizing that z ∂
∂z

only acts on the exponential factor and can be exchanged for x ∂
∂x

allows us to integrate by part on x and arrive at

fXZ
NR = 8v

∫ ∞
0

dx
[
x
(
2x2 + 3

)
+ x2

(
x2 − 6

)
sin(2x) + x

(
4x2 − 3

)
cos(2x)

] 1

exz − 1
,

(C.10)

where the first term in the bracket is obviously easy to integrate, while the next

two terms can be generated by differentiation using the formula 3.951-12 in [100],∫ ∞
0

dx
sin(bx)

ex − 1
=
π

2
coth(bπ)− 1

2b
. (C.11)

This leads to

fXZ
NR = 8v

{∫ ∞
0

dx
(2x3 + 3x)

exz − 1
+

[
d4

db4
− 4

d3

db3
+ 6

d2

db2
− 3

d

db

] [
π

2z
coth

(
bπ

z

)
− 1

2b

]}∣∣∣∣
b=2

= v

(
16π4

15z4
+

4π2

z2
− 18

+

{
32π5

z5

[
3 coth2

(
2π

z

)
−2

]
coth

(
2π

z

)
+

32π4

z4

[
3 coth2

(
2π

z

)
−1

]
+

48π3

z3
coth

(
2π

z

)
+

6π2

z2

}
csch2

(
2π

z

))
.

(C.12)

We therefore obtain in Eq. (C.12) the nonrelativistic limit valid for arbitrary z
values.
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Now, we turn to find the small z (vacuum/high temperature) limit and the

large z (short distance/low temperature) limit of fXZ for arbitrary velocities, which

requires us to consider all the odd n = 2m+ 1 terms in Eq. (C.5),

FXZ(x, v, z) = −πJ 5
2
(x)

∞∑
m=0

v2m+1

m!
22−mx−(m+3)Jm+ 5

2
(x) z2m+1 ∂

2m+1

∂z2m+1

1

exγz − 1
, (C.13)

As a result, we have

fXZ(v, z) = −π
∞∑
m=0

v2m+1

m!
22−mz2m+1 ∂

2m+1

∂z2m+1

∫ ∞
0

dx x4−mJ 5
2
(x) Jm+ 5

2
(x)

1

exγz − 1
,

(C.14)

which may be cast in forms suitable for small or large z by employing representations

of the integrand (other than the thermal occupation factor) that are appropriate

for large or small x, respectively.

For z � 1, we use the finite series representation

Jn+ 1
2
(x) =

√
2

πx

sin
(
x− π

2
n
) bn2 c∑
k=0

(−1)k(n+ 2k)!

(2k)!(n− 2k)!
(2x)−2k

+ cos
(
x− π

2
n
) bn−1

2 c∑
k=0

(−1)k(n+ 2k + 1)!

(2k + 1)!(n− 2k − 1)!
(2x)−(2k+1)

 ,
(C.15)

appropriate for large x to generate an expansion for fXZ(v, z). We will be content to

establish the leading-order term for small z, which derives from the leading-order

term in the above representation for large x:

Jn+ 1
2
(x) ∼

√
2

πx
sin
(
x− π

2
n
)
, x→∞. (C.16)

Using Eq. (C.16) in Eq. (C.14) and keeping only the m = 0 term, corresponding to

the leading x-power in the integrand, we readily obtain, as z → 0,

fXZ(v, z) ∼ −8v z
∂

∂z

∫ ∞
0

dx x3 sin2 x
1

exγz − 1
∼ −4v z

∂

∂z
Γ(4)ζ(4)(γz)−4 =

16π4v

15γ4z4
.

(C.17)

It is interesting to note the appearance of the Planck-Einstein transformed tem-

perature, Tγ ≡ T
γ
, in this (high-temperature) limit. Note Eq. (C.17) captures not

only the correct z dependence but also the velocity dependence of fXZ in the small

z limit. Taking further the nonrelativistic limit amounts to ignoring the γ4 factor,

which agrees with Eq. (C.12). The agreement of Eq. (C.17) with the numerical

data for v = 0.5 is also illustrated in Fig. C.1.

For z � 1, we use instead

Jµ(x)Jν(x) =
∞∑
n=0

(−1)n(µ+ ν + n+ 1)n
n!Γ(µ+ n+ 1)Γ(ν + n+ 1)

(x
2

)µ+ν+2n

, (C.18)
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Figure C.1: At fixed velocity v = 0.5, the numerical results for fXZ (dots) and its

small z approximation (dashed line) obtained in Eq. (C.17) are shown for z ∈ [0, 1].

appropriate for small x to generate an expansion for fXZ(v, z). In this case, the

leading x-power in the integrand in Eq. (C.14) is independent of m, so all terms

must be included, resulting in

fXZ(v, z) ∼ −π
∞∑
m=0

v2m+1

m!

2−(3+2m)

Γ
(

7
2

)
Γ
(
m+ 7

2
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dx x9 1

exγz − 1

= −π
∞∑
m=0

v2m+1

m!

2−(3+2m)

Γ
(

7
2

)
Γ
(
m+ 7

2

)z2m+1 ∂
2m+1

∂z2m+1
Γ(10)ζ(10)(γz)−10

= π
∞∑
m=0

v2m+1

m!

2−(3+2m) (2m+ 10)! ζ(10)

Γ
(

7
2

)
Γ
(
m+ 7

2

) 1

(γz)10

=
28ζ(10) v

15 γ10z10

∞∑
m=0
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=
2113 ζ(10)

z10
γ6v (21 + 30v2 + 5v4), z →∞, (C.19)

where we have used the identity

γ2n =
1

(n− 1)!

dn−1

d(v2)n−1

1

1− v2
=

1

(n− 1)!
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m=0

v2m(m+1)(m+2) · · · (m+n−1). (C.20)

The result obtained in Eq. (C.19) is precisely that found in Eq. (4.14).
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