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Abstract

The surface radiation budget affects different components of Earth’s climate sys-

tem. Accurate assessments of the surface radiation budget help improve climate

forecasts, such as drought prediction. In addition, short-term diabatic heating and

cooling influence convection, temperature, and wind. Surface observations are the

most accurate way to measure surface radiative fluxes. However, many locations

across the globe do not have access to precise surface radiation measurements. In

addition, surface observations are point-based measurements and offer little spatial

coverage. As a result, areas with little to no surface observations rely on top-of-

the-atmosphere (TOA) satellite instruments to measure surface radiation. Accurate

radiative flux measurements from space are much more complicated and prone to

errors than surface observations as they are derived from TOA radiances. Thus, a

thorough understanding of satellite-based surface flux data are needed.

The Clouds and the Earth’s Radiant Energy System (CERES) is an instrument

currently deployed on four satellites. Surface radiative fluxes derived from CERES

TOA measurements must account for atmospheric variables such as aerosol optical

depth, zenith angle, aerosol and trace gas concentrations, cloud fraction, cloud optical

thickness, and cloud albedo. The State of Oklahoma invested in a dense Mesonet net-

work of 120 stations. A dense population of Mesonet stations with a high-resolution

product makes it possible to effectively evaluate the CERES surface downward short-

wave radiative fluxes based on a simple parameterized code.

This work compares the CERES-Aqua and CERES-Terra Single Scanner Foot-

print (SSF) Level 2 Edition 4A surface radiation product collocated with the Mesonet-

derived observed downward shortwave radiative fluxes for the period 2019 to 2021. We

explore clear-sky and all-sky environments by separating the dataset into three dif-

ferent bins using the Moderate Resolution Imaging Spectrometer (MODIS). We find

a strong correlation (i.e., correlation coefficient greater than 0.9) between CERES-

Aqua and CERES-Terra downward shortwave surface radiative fluxes with the col-

located equivalent Mesonet irradiance observations for all three cloud fraction bins.
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The correlation coefficients of the all-sky bins slightly increased versus the clear-sky

bins. During all three years, the CERES-Terra data had higher Mean Absolute Dif-

ference (MAD), Mean Bias Difference (MBD), and Root Mean Squared Difference

(RMS) than the CERES-Aqua data. We also examine the seasonal dependence of

the CERES-Mesonet differences, where the summer all-sky differences are larger than

the other seasons.
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Chapter 1

Background and Introduction

1.1 Atmospheric Radiation

Energy is the ability to do work on an element of mass (Ahrens 2016). Radiation is

the thermal energy transfer from one substance through space. Atmospheric radiation

travels through Electromagnetic (EM) waves in the direction orthogonal to the electric

and magnetic fields (Figure 1.1) (Petty 2006).

Figure 1.1: Schematic from Petty (2006), the direction of the electric field, magnetic
field, and wave propagation on the x, y, z plane.

Convection, sensible heat processes, climate feedbacks, the hydrological cycle,

snow melt, and the Greenhouse Effect are all driven at least in part by atmospheric

radiation (Chakraborty and Lee 2021). The wavelength of EM waves is defined as the

1



distance between two crests (Ahrens 2016). Ahrens also defines the EM Spectrum as

classifying spectral bands based on their wavelengths (Figure 1.2).

Figure 1.2: Schematic from Wallace and Hobbs (2006), the full Electromagnetic Spec-
trum.

The solar zenith angle (θ) is the angle of the incoming solar radiation, relative to

the k unit vector (Petty 2006). The solar azimuth angle (φ) is counterclockwise from

a reference point in the horizon on the x, y plane. The solid angle (ω) is defined as

the three-dimensional area formed by a conical area (Figure 1.3).
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Figure 1.3: The relationship between the solar zenith angle (θ), azimuth angle (φ),
and solid angle (ω) (Hartmann 2016).

The spectral radiance (Iλ) is defined as the incoming EM radiation from a specific

direction per unit time per unit area at a given wavelength (Wallace and Hobbs 2006).

Radiance (I) is the integration of the spectral radiances over a given spectral band

I =

∫ λ2

λ1

Iλdλ (1.1)

where λ1 and λ2 are the lower and upper wavelengths of the spectral band, respec-

tively. Irradiance, or flux density (F ), is the power measurement per unit area (Kato

3



et al. 2018). It is calculated by integrating the radiance times the cosine of the zenith

angle over a given solid angle.

F =

∫
2π

I cos θdω (1.2)

A blackbody is a surface that absorbs all incoming solar radiation (Wallace and

Hobbs 2006). In the atmosphere, the constituents do not absorb all solar radiation,

but using an idealized blackbody model can help understand the emission of radia-

tion by different sources. The Planck Function describes the radiation emitted by a

blackbody (Bλ) as a function of temperature (T ) and wavelength (λ) (Wallace and

Hobbs 2006).

Bλ =
c1λ

−5

π
(
e

c2
λT − 1

) (1.3)

Figure 1.4: Planck Curves for the Sun (left side) and the Earth (right side) (Wallace
and Hobbs 2006; Goody and Yung 1995).
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The Planck curves show the emission of blackbody radiation by the sun and Earth

at given temperatures (Figure 1.4). Wein’s Displacement Law describes the relation-

ship between the temperature and wavelength of a blackbody. Wien’s Displacement

Law describes that the maximum emitted wavelengths are inversely proportional to

the temperature of the blackbody. (Wallace and Hobbs 2006). Since the Sun is

much warmer than the Earth, the Sun’s maximum emission is at shorter wavelengths.

Therefore, we classify emitted solar radiation as shortwave and emitted terrestrial ra-

diation as longwave.

1.2 Surface Radiation Budget

The global energy budget is an essential component of the Earth-atmosphere system,

as it is one of the unique aspects of Earth that allows for life (Wallace and Hobbs 2006).

In a balanced Earth, the energy received by the Earth should be approximately equal

to the energy outgoing (Forster et al. 2021; Brown et al. 2014). The surface radiation

budget also influences hydrologic and oceanic processes (Forster et al. 2021). There

are significant differences between cloud-free conditions and atmospheric conditions

in the presence of clouds. Clouds are critical contributors to the scattering and

absorption of atmospheric radiation (Lenhardt et al. 2023). As a result of the changes

to the surface radiation budget as a consequence of clouds, it is paramount to study

the surface radiation budget in both all-sky and clear-sky conditions.

5



Figure 1.5: Global radiation budget for all-sky (top panel) and clear-sky (bottom
panel) atmospheres. Numbers indicate globally averaged radiative fluxes with 95%
confidence interval in parentheses (Forster et al. 2021; Wild et al. 2015).
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The schematic above is the global averaged radiation budget at 2000 (Figure

1.5). In clear-sky conditions, more shortwave radiation reaches the surface, and less

shortwave and longwave radiation is reflected to space (Forster et al. 2021; Wild

et al. 2015). Since there is a top-of-the-atmosphere (TOA) radiation imbalance under

clear-sky conditions, the Earth would be significantly warmer without the presence of

clouds. While we mostly understand the TOA radiation budget, the surface radiation

budget has much more uncertainty (Forster et al. 2021; Kato et al. 2018; Kratz et al.

2010). Regional surface radiative budget analysis has even more uncertainties due

to the deficiency of surface observations. As a result, there are many uncertainties

with the regional surface radiative budget, and this project works to ameliorate our

understanding of these uncertainties.

1.3 Atmospheric Aerosols

Atmospheric aerosols are small particles suspended in the air (Wallace and Hobbs

2006). Particle sizes vary from Aiken nuclei (0.001 µm-0.1 µm), large particles (0.1

µm-5 µm), and giant particles (5 µm-100 µm) (Wallace and Hobbs 2006). Some

aerosols are naturally occurring, and others are anthropogenic. Anthropogenic aerosols

are important drivers of climate change and have a high degree of uncertainty (Re-

demann et al. 2021). The Intergovernmental Panel on Climate Change (IPCC) is

interested in studying anthropogenic aerosols as their emissions can be controlled by

government intervention (Forster et al. 2021).

To understand how aerosols impact the climate, radiative forcing, cloud develop-

ment, and human health, determining aerosol composition is essential. Anthropogenic
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aerosols can be broadly placed into four categories: sulfates, carbons, dust, and sea

salt (Ramanathan et al. 2001).

Aerosols scatter (to space or other parts of the atmosphere), absorb, or transmit

solar radiation. The sum of the scattering and absorption of solar radiation is known

as extinction. The aerosol extinction coefficient (βe,aerosol) is a mathematical represen-

tation of the amount of solar radiation scattered and absorbed by the aerosol (Petty

2006). The Aerosol Optical Depth (AOD; τaerosol) measures the optical thickness as a

result of aerosol extinction (Wallace and Hobbs 2006). It is calculated by integrating

the aerosol extinction coefficient over a vertical layer

τaerosol =

∫ s2

s1

βe,aerosolds (1.4)

where s1 and s2 are the lower and upper altitudes of the layer. Studying AOD will

help determine which regions have the most aerosol loading.

1.4 Aerosol-Cloud-Radiation Interactions

1.4.1 Aerosol-Radiation Interactions

Aerosols and radiation interactions have profound impacts on the global and regional

climate. The amount of radiation scattered and absorbed by aerosols depends on

their size, chemical composition, and optical properties (Petty 2006). A decrease in

downwelling irradiance is expected as a fraction of the incoming solar radiation is

scattered back toward the TOA as cloud cover and aerosol concentration increase.

(Xie and Liu 2013). Aerosols disperse a fraction of shortwave irradiance back to

space, which leads to a net cooling effect (Forster et al. 2021). On the other hand,
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there will be a local warming effect due to sensible heating in the aerosol layer for

absorbing aerosols. Below the aerosol layer, less solar radiation reaches the surface

locally, as more radiation is attenuated.

Figure 1.6: Scattering aerosols (a) locally and (b) regionally, and absorbing aerosols
(c) locally and (d) regionally (Stocker et al. 2013).

On a regional scale, scattering aerosols extend a net cooling effect spatially due

to atmospheric circulation and mixing (Forster et al. 2021). However, there is a net

warming effect regionally at the surface and atmosphere for absorbing aerosols as

thermal energy is redistributed through mixing and the general circulation (Figure

1.6).
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Most atmospheric aerosols lie within the Mie scattering regime. Thus, most radia-

tion is scattered forward, while little is scattered elsewhere (Ensor et al. 1971; Budyko

1969). Direct radiative forcing is defined as the changes to the climate resulting from

aerosol extinction (Ramanathan et al. 2001). The indirect radiative effects are the

increases in droplet number concentration due to more aerosols and the increase in

cloud fraction due to aerosol-induced effects on cloud lifetime. Understanding the

aerosol direct and indirect effects will result in a better understanding of regional

climate and weather processes.

1.4.2 Aerosol-Cloud Interactions

Aerosol-cloud interactions have a large degree of uncertainty due to the complex

processes involved and the lack of understanding of the governing physics. Further-

more, aerosols are spatially and temporally heterogeneous due to variations in aerosol

sources (Redemann et al. 2021). Aerosols form the basis of CCN; therefore, the cloud

drop number concentration increases are proportional to increases in CCN for some

clouds (Figure 1.7) (Twomey 1959; Forster et al. 2021).
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Figure 1.7: (a) CCN forming from aerosols, which are the basis for cloud droplets;
(b) aerosols are proportional to the amount of solar radiation reflected (Stocker et al.
2013).

Effective radiative forcing (ERF) is the combined radiative effects of the tropo-

spheric land and surface changes and stratospheric temperature changes (Smith et al.

2018). The instantaneous radiative forcing (IRF) is the sum of the cloud-albedo and
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aerosol effects (Smith et al. 2018). ERF is calculated using Eq. (1.5) (Smith et al.

2018; Chung and Soden 2015)

ERF = IRF + AT + ATs + Aq + Aα + Ac + ϵ (1.5)

where “Ax is the rapid adjustment x due to atmospheric temperature (T ), surface

temperature (Ts), water vapor (q), surface albedo (α), and clouds (c)” (Smith et al.

2018). Assuming a constant liquid water content as cloud effective radius decreases,

cloud albedo increases, which induces negative surface radiative forcing (Forster et al.

2021).

Since the IPCC AR5 report, the AR6 report note significant progress in aerosol re-

mote sensing (Forster et al. 2021). Despite progress, considerable uncertainty exists in

evaluating the effect of aerosol-cloud interactions on ERF. Aerosol-cloud interactions

have the largest amount of error since 1750 of −1.45 to −0.25 Wm−2 (Figure 1.8)

(Forster et al. 2021). Due to the large uncertainties on how aerosol-cloud interactions

affect ERF, it is important to learn about the distribution of aerosol chemical com-

positions, sizes, and types across the globe (Lohmann and Feichter 2005; Lenhardt

et al. 2021). Performing regional radiative transfer analysis will help understand local

aerosol-cloud interactions and improve climate modeling.
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Figure 1.8: Contribution of different atmospheric constitutions from 1750 to 2019.
Blacks lines are error bars (Forster et al. 2021).

1.5 Oklahoma Geography and Climate

Oklahoma was chosen due to its dense surface Mesonet network, of which all loca-

tions contain pyranometers. The nine unique climate zones offer an opportunity to

examine which atmospheric system components affect the differences between surface

observations and satellite-based measurements. Before the 1950s, the climate zones

were primarily based on topography, land use and land cover, river districts, forecast

areas of responsibility, and drainage basins (Guttman and Quayle 1996). After the

1950s, climatological variables were considered, with a reliable dataset beginning in

the mid-1980s (Guttman and Quayle 1996). Temperature, precipitation, and heat-

ing/cooling degree days are all considered when determining climatic zones (Figure

1.9) (Guttman and Quayle 1996).
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Figure 1.9: Oklahoma Climate Divisions defined from Guttman and Quayle (1996).
Figure produced by the Oklahoma Climatological Survey (McPherson et al. 2007;
Brock et al. 1995)

Understanding the regional differences in the radiation budget is important be-

cause it affects geophysical variables, such as soil moisture, which has large impli-

cations for the local economy. These include cash crops, such as wheat production

(Illston et al. 2004; Zhang and Nearing 2005). Furthermore, the state has a diverse

land use and land cover, with the eastern portion consisting of forested areas and

the western portions featuring mainly cropland and grasslands (Figure 1.10) (Dewitz

2021).
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Figure 1.10: Land use and land cover map from the United States Geological Survey
(Scott et al. 2000).

As with the land use and land cover distribution across Oklahoma, the precip-

itation and temperature magnitudes are strongly regional dependant. The eastern

portions of the state average approximately 50 in of liquid equivalent precipitation

a year, while western edges of the Panhandle average about 15 in of precipitation

annually (Figure 1.11) (McPherson et al. 2007; Brock et al. 1995). Therefore, the

eastern portions of the state average over three times more precipitation than the

panhandle. This has enormous implications on land use and land cover, temperature

distribution, and radiative effects. While the precipitation distribution is longitudi-

nally dependent, the temperature distribution of Oklahoma is latitudinally dependent.

The annual mean temperatures are coolest in the panhandle due to less latent heat

release and warmest across the southern tier of the state (Figure 1.12) (McPherson

et al. 2007; Brock et al. 1995). The mean annual temperature difference from the

southern tier of Oklahoma to the panhandle (in ◦F) is approximately five to seven

degrees (McPherson et al. 2007; Brock et al. 1995). An annual difference of even

a few degrees Fahrenheit greatly affects the climate system. As a result of the dis-

crepancy of climate regimes in Oklahoma, understanding the regional differences in
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gaseous properties and their impacts on the radiation balance in Oklahoma are key

components of this work.
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Figure 1.11: Average annual precipitation (in) from NCEI. Figure produced by the
Oklahoma Climatological Survey (McPherson et al. 2007; Brock et al. 1995).

Figure 1.12: Average annual temperature (◦F) from NCEI. Figure produced by the
Oklahoma Climatological Survey (McPherson et al. 2007; Brock et al. 1995).
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1.6 Project Goals and Scientific Significance

1.6.1 Project Goals

While ground-based radiation measurements are direct observations and less error-

prone, they are too costly to maintain a dense global network of radiation instruments.

Many locations across the globe do not have access to accurate surface radiation

measurements. We rely on remote sensing instruments to observe their radiative

budget from the TOA. Precise radiative flux measurements from remote sensing are

much more complicated and prone to error than surface observations. Clouds and

the Earth’s Radiant Energy System (CERES) is an instrument currently deployed on

four satellites. The device measures TOA radiances and converts them into surface

irradiances using angular distribution models and simple parameterized code (Kratz

et al. 2020; Loeb et al. 2016; Wielicki et al. 1996).

Oklahoma invested in a dense Mesonet network of 120 stations across the entire

state (McPherson et al. 2007; Brock et al. 1995). A dense population of Mesonet

stations within a region with diverse climate zones and reliable statistics makes it

viable to effectively evaluate the CERES surface downward shortwave radiative flux

simple parameterized code.
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Figure 1.13: Schematic of shortwave radiative transfer theory relative to instrumen-
tation used in this study.

This project aims to evaluate CERES downward shortwave radiative flux mea-

surements, in which atmospheric properties are possible sources for errors in either

the CERES or Mesonet products (Figure 1.13). This work uses CERES-Aqua and

CERES-Terra surface radiation products collocated with the Mesonet-derived ob-

served downward shortwave radiative fluxes from 2019 to 2021. Both clear-sky and

all-sky filtering will be used to determine the contribution of clouds to the error and

uncertainty.

1.6.2 Scientific Importance

This project provides a regional evaluation of the CERES-derived surface radiation

product using a densely populated network of well-calibrated surface pyranometers
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in multiple regional climate regimes. We can to scrutinize the regional differences

and suggest which properties are possible explanations for larger CERES-Mesonet

differences. In addition, this work can be conveyed to the CERES and Mesonet

teams to inform them of any adjustments that need to be made to their products.

After evaluating the radiative fluxes, studies to improve the ability to study Earth’s

radiation budget from space with critical links to dynamics and the hydrologic cycle

are possible.

1.6.3 Science Questions

This project aimed to understand the strengths and limitations of the CERES product

using ground-based measurements. The following science questions are addressed:

1. How well do CERES- and OK Mesonet-derived downwelling solar irradiances

at the surface compare in 2019-2021?

2. Are there spatial and seasonal patterns to differences between CERES- and

Mesonet-derived surface irradiances?

3. Are the spatiotemporal patterns attributable to specific cloud types?
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Chapter 2

Data & Methods

2.1 Datasets and Instrumentation

2.1.1 Oklahoma Mesonet

Figure 2.1: Oklahoma Mesonet stations map overlaid with climate divisions (McPher-
son et al. 2007; Brock et al. 1995; Guttman and Quayle 1996).

The Oklahoma Mesonet is a weather station network currently containing 120

stations across Oklahoma (McPherson et al. 2007; Brock et al. 1995). The distribu-

tion of the Mesonet stations is heterogeneous, with more stations concentrated over
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population centers and fewer stations in the panhandle (Figure 2.1). The Mesonet

Li-Cor pyranometers undergo a rigorous quality assurance assessment to ensure ac-

curacy (Shafer et al. 2000). The sensors are calibrated indoors as necessary at the

Kipp and Zonen Calibration Facility and only take a few minutes (McPherson et al.

2007). The instruments are mounted 1.5 m above ground level and are on a beam

along the tower’s southern part to avoid lightning damage (Figure 2.2) (McPherson

et al. 2007).

Figure 2.2: Side view of an Oklahoma Mesonet station with a zoomed-in image of
the LI-COR pyranometer on the right (McPherson et al. 2007).

The specific pyranometers used on the station are LI-COR LI-200R series (McPher-

son et al. 2007). These instruments must be used outdoors and require unblocked

direct sunlight (McCree 2022). The LI-200R pyranometers measure total (diffuse plus

direct) incoming shortwave irradiances. Their spectral range is between 400-1100 nm.
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In addition, the pyranometer uses an unfiltered silicon photodiode and is corrected

for cosine-dependent measurement errors. Accuracy estimates apply to data collected

for incident angles up to 82◦, beyond which the instrument response function and sur-

face reflections and obstructions become non-negligible contributions to measurement

uncertainty.

2.1.2 Clouds and the Earth’s Radiant Energy System

Clouds and the Earth’s Radiant Energy System (CERES) instruments measure TOA

radiances in three spectral bands: 0.2-100 µm, 0.2-5 µm, and 8-12 µm (Kratz et al.

2010). After integrating the radiances with angular distribution models, the irradi-

ances are gridded and time-averaged. The Single Scanner Footprint (SSF) Edition

4A product uses a simple parameterization to calculate the surface shortwave irradi-

ances. The spatial resolution is 20 km at the nadir and up to 50 km at the swath

edges (Kratz et al. 2020). The downward shortwave surface radiative flux (F0) is

calculated by

F0 = S0µd
−2︸ ︷︷ ︸

1

Ta︸︷︷︸
2

Tc︸︷︷︸
3

(2.1)

with S0 equalling the solar constant, d equalling the earth-sun distance, µ equalling

the cosine of the solar zenith angle, Ta equalling the atmospheric transmission of

a clear-sky atmosphere, and Tc equalling the transmittance by clouds (Kratz et al.

2020). Term 1 represents the inverse square law, which describes that the total

radiation emitted from the sun is inversely proportional to the distance squared. Term

2 represents the atmospheric transmission using a variation of Beer-Lambert’s Law

Ta = (1 +B) exp (−τz) (2.2)
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where B is the scattering of trace gasses and aerosols and τz is the extinction optical

depth (Kratz et al. 2010). Finally, term 3 represents the cloud transmittance, which

was empirically derived by Darnell et al. (1992) as

Tc = 0.05 + 0.95

(
Rovc − Tmeas

Rovc −Rclr

)
(2.3)

where Rovc is the overcast TOA reflectance, Rclr is the TOA clear-sky reflectance,

and Rmeas is the TOA measured reflectance by CERES (Darnell et al. 1992; Kratz

et al. 2010). While a version of the instrument is deployed on four satellites, we

only use Terra and Aqua here. We chose Terra and Aqua due to their longer, more

comprehensive data record than the Suomi NPP and NOAA-20 satellites. Terra and

Aqua are polar-orbiting satellites that view Oklahoma approximately once per day

during the daylight hours, which are 10:30 AM and 1:30 PM for Terra and Aqua,

respectively (Kato et al. 2013).

2.1.3 Moderate Resolution Imaging Cloud Spectrometer

The Moderate Resolution Imaging Spectroradiometer (MODIS) imagers, which also

operate on Aqua and Terra, cover most mid-latitude regions twice daily, day and

night. We use cloud and aerosol products derived from MODIS radiances within

the CERES footprint to provide insights on which constituents the CERES simple

parameterized code might not correctly account for. How CERES accounts for cloud

properties is a crucial source of uncertainty (Kato et al. 2013). Aerosol optical depth,

cloud top height, and cloud fraction are all used to evaluate how CERES performs

under specific background environments.
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2.2 Collocation of Mesonet and Satellite

Instruments

The Oklahoma Mesonet and CERES have two completely different methods of obser-

vation. The Oklahoma Mesonet stations are stationary, and the pyranometers collect

total incoming shortwave radiation measurements every 5 seconds (McPherson et al.

2007; Brock et al. 1995; Illston et al. 2004). These observations are ground-based

“point” observations with exact latitudes and longitudes. On the other hand, CERES

shortwave surface radiative flux measurements only occur once per day per satellite.

In addition, the measurements are part of a swath, with a 20 km spatial resolution

near the nadir and a 50 km spatial resolution near the swath edges. Therefore, the

collocation with Mesonet was with the CERES swaths latitude and longitude cen-

troids.

Since the CERES measurements are not exactly at the same time each day, and

Mesonet only measures irradiances every five minutes, each measurement was assigned

to the nearest five minutes. For example, a CERES-Terra overpass time of 10:33 AM

would be rounded to 10:35 AM, and a CERES-Aqua measurement at 1:32 PM would

be rounded to 1:30 PM. After rounding, the great circle distance (d) from each CERES

measurement to the fixed Mesonet station was calculated using the Haversine Formula

(Chopde and Nichat 2013).

2.3 Cloud Fraction Categories

We looked at cloud-free versus cloudy cases to evaluate how the CERES product

performed in a simpler framework. To identify clear-sky cases, we used the cloud
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fraction product derived from MODIS radiances and collocated within the CERES

footprint. We defined clear-sky cases as cloud fractions less than or equal to 5%

based on Kato et al. (2018) study. All-sky encompassed all cases, regardless of the

cloud fraction. Most statistical techniques discussed in section 2.4 were studied under

all-sky and clear-sky cases.

2.4 Statistical Methods

After collocating CERES-Terra and CERES-Aqua measurements with Mesonet ob-

servations and applying filtering for clear-sky conditions, we created regular and

density-gradient scatterplots to determine where outliers were clustered. Further-

more, we used ordinary least squares (OLS) linear regression to calculate the line-

of-best fit. Since both sensors measure the surface shortwave irradiances at approx-

imately the same longitude and latitude, an OLS close to the unity line indicates

excellent agreement between the two sensors. The strength of the linear relation-

ship was determined by calculating Pearson’s Correlation Coefficient (Isaac 2018).

We calculated Spearman’s Rank Correlation Coefficient to establish the general re-

lationship between CERES-Terra/Aqua and Mesonet at Terra/Aqua overpass times

(Schober et al. 2018). Root mean squared differences (RMS), mean bias differences

(MBD), and mean absolute differences (MAD) were used to determine the average

magnitude and bias of the error (Chai and Draxler 2014). All correlation values are

dimensionless, and error values are reported in watts per square meter (Wm−2).

After performing the OLS analysis for clear-sky cases, the analysis was repeated

from 3 different cloud fraction bins. We separated clear-sky cases into two separate

bins, less than one percent cloud fraction and between one and five percent cloud

26



fraction, to further reduce cloud contamination. The last bin, between five and fifty

percent cloud fraction, represents a portion of the all-sky cases. Pearson’s Correlation

Coefficient, Spearman’s Rank Correlation Coefficient, RMS, MBD, and MAD were

calculated for each cloud fraction bin.

One concern is that the five to fifty percent cloud fraction bin has larger samples

than the other two bins by an order of magnitude. As a result, we might have

misinterpreted the correlations and error statistics from the larger sample size of

the five to fifty percent bin. To combat this issue, we used bootstrapping (Efron

1979). Bootstrapping randomly grabbed 500 samples from each bin and calculated

Pearson’s Correlation Coefficients. This process was repeated 5,000 times to achieve

an approximately normal distribution of correlation coefficients. The 95% confidence

interval was created from this distribution to determine if the large sample size caused

the original correlation coefficient or if it truly represented the data and was not

skewed by sample size.

After determining how the outliers vary by cloud fraction bin, we created two

time-series to determine if there was any seasonal dependence on the outliers. The

observed Mesonet irradiances and measured CERES irradiances were averaged daily

for all stations each study year. This was for Terra and Aqua overpass times. The

positioning of significant separation between the CERES and Mesonet irradiances

gives insight into possible explanations, such as seasonal climate changes, for the

cause of the outliers found in the comparison.

The next set of analyses involved looking at the spatial distribution of differences

by taking the difference between CERES and Mesonet downward shortwave radiative

fluxes (∆F ):

∆F = FCERES − FMesonet (2.4)
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where F is the downward shortwave surface irradiance for each instrument. We

calculated annual mean irradiance differences for each station after calculating the

irradiance differences at the Terra and Aqua overpass times. The stations were placed

into the climate divisions defined in Chapter 1 to understand the regional variation

of the CERES-Mesonet differences. First, we used box-and-whisker plots to examine

CERES-Mesonet differences for all stations and Terra and Aqua overpass times. The

lower and upper quartiles represent the 25th and 75th percentiles, respectively. The

medians are also displayed with a red center line. The edges of the whiskers (lower

and upper extremes) were calculated by using the Turkey Inner Fences method

LE = Q1 − 1.5 (IQR) (2.5)

UE = Q3 + 1.5 (IQR) (2.6)

with LE representing the lower extreme, UE representing the upper extreme, Q1

representing the lower quartile, Q3 representing the upper quartile, and IQR repre-

senting the interquartile range (Schwertman et al. 2004). The same methodology was

used to calculate one box-and-whisker plot for each Terra and Aqua overpass times

for each climate division. Like the first box-and-whisker plots, the box-and-whisker

plots were averaged over all three years.

In addition, cloud and aerosol properties were analyzed to explore possible sources

of the outliers. AOD, cloud fraction, cloud top height, and deep blue single scattering

albedo from MODIS radiances were atmospheric variables used to determine if the

outliers were primarily caused by cloud or aerosol properties. The annual mean for

all variables was plotted for all nine climate divisions. The correspondence of these
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aerosol and cloud properties to areas of more prominent outliers will be investigated

further to determine if these constituents are a potential explanation for the outliers.
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Chapter 3

Results

3.1 Regression of CERES Measured Irradiances

on Mesonet Observed Irradiances

3.1.1 Clear-sky Measurements

As mentioned in Section 2.4, the CERES-Terra and CERES-Aqua overpasses were

collocated spatially and temporally for each Oklahoma Mesonet station. As the solar

zenith angles at 10:30 AM and 1:30 PM are similar in magnitude, the CERES-Terra

and CERES-Aqua irradiances should be similar in a clear-sky environment. Recall

that a clear-sky environment is defined as having a collocated cloud fraction of 5% or

less.
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(a)

(b)

(c)

Figure 3.1: CERES Aqua/Terra vs. Mesonet scatterplots at Aqua/Terra overpass
times for (a) 2019, (b) 2020, and (c) 2021. Terra points are plotted in green, and
Aqua points are in blue. The unity lines are black dashed, and the Ordinary Least
Squares linear fit lines are red dashed.
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(a)

(b)

(c)

Figure 3.2: CERES vs. Oklahoma Mesonet density-gradient scatterplots for (a) 2019,
(b) 2020, and (c) 2021. Terra overpass times are in green, and Aqua are in blue.
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The 2019 clear-sky CERES-Terra or CERES-Aqua vs. the Oklahoma Mesonet

downward shortwave surface radiative fluxes scatter plot shows all the collocated

CERES-Mesonet pairs for the year (Figure 3.1a). As mentioned in Section 2.4,

OLS Regression Pearson’s Correlation Coefficient, Spearman’s Correlation Coeffi-

cient, RMS, MBD, and MAD were calculated. The regression coefficients for the

Terra and Aqua overpass times are 0.86 and 0.88, respectively. Since the slope is less

than one and the offsets are positive, CERES tends to be larger Mesonet, especially

at lower irradiances. There also seems to be a clustering above the unity line at large

irradiances but at a smaller scale (Figure 3.2a). That said, Pearson’s and Spear-

man’s correlation coefficients are larger than 0.9 for Terra and Aqua overpasses, so

these outliers represent the minority of cases. For Terra, RMS, MBD, and MAD are

69.23, 19.52, and 34.72 Wm−2. For Aqua, RMS is 67.51, MBD is 13.51, and MAD

32.35 Wm−2. While the difference values aren’t very large, Terra overpasses have

consistently larger CERES-Mesonet differences than Aqua overpasses. This will be

explored later in Section 5.1.

For 2020, the same methodology was used as in the 2019 scatter plots. The

regression coefficients were comparable to the 2019 scatter plots (Figure 3.1b). The

difference in statistics indicates that the MBD of Terra is 15.19 Wm−2 larger than

Aqua. RMS and MAD are also larger in magnitude for Terra than Aqua, but not

as much as the MBD. The 2D histogram frequency is larger for 2020 than 2019, but

that is a function of more cloud-free days in 2020 over 2019 (Figure 3.2b). Other than

that, there is robust clustering along the unity line as expected with high correlation

coefficient values.

Once again, the same methods were used for the 2021 scatter plots. The corre-

lation coefficients were the largest in 2021, with all values above 0.94 (Figure 3.1c).
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The regression coefficients are also larger than 0.9, and the offset is lower for Terra.

The MBD is larger for 2021 than for 2020 and 2019. However, the RMS is smaller

than in both 2019 and 2020. Therefore, there is less influence from outliers. The

2D histogram shows significant clustering above the unity line, corresponding with

approximately 20 Wm−2 MBD (Figure 3.2c). Clustering also appears to be closer to

the unity line closer to the 600-800 Wm−2 range.

3.1.2 All-sky Measurements

Since the clear-sky CERES-Mesonet comparison had relatively high correlation coef-

ficients, the next logical step in the analysis was looking at cases in the presence of

clouds. The data was broken up into three cloud fraction bins using the same cloud

fraction product as in Section 3.1.1. The three bins are less than one percent cloud

fraction, between one and five percent cloud fraction, and between five and fifty per-

cent cloud fraction. These bins were chosen because they represented an even more

cloud-free environment and an environment with clouds. The methods for developing

the scatter plots are identical to Section 3.3.1.
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(a)

(b)

(c)

Figure 3.3: CERES Aqua/Terra vs. Mesonet at Aqua/Terra pass times for (a) 2019,
(b) 2020, and (c) 2021. The data were separated into three separate bins to determine
the performance of the by cloud fraction (Green: 0.00-0.01, Pink: 0.01-0.05, Blue:
0.05-0.50). The unity lines are black dashed.
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(a)

(b)

(c)

Figure 3.4: Finalized CERES Aqua/Terra vs. Mesonet at Aqua/Terra pass times for
(a) 2019, (b) 2020, and (c) 2021. This analysis is for the ≤ 1% cloud fraction bin
only. The unity lines are black dashed.
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(a)

(b)

(c)

Figure 3.5: CERES Aqua/Terra vs. Mesonet at Aqua/Terra pass times for (a) 2019,
(b) 2020, and (c) 2021. This analysis is only for the 1 < C.F. ≤ 5% bin. The unity
lines are black dashed.
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(a)

(b)

(c)

Figure 3.6: CERES Aqua/Terra vs. Mesonet at Aqua/Terra pass times for (a) 2019,
(b) 2020, and (c) 2021. This analysis is only for the 5 < C.F. ≤ 50% bin. The unity
lines are black dashed.
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The data for all three cloud fraction bins were plotted on the same figure for 2019,

2020, and 2021 to visually interpret the differences between the three bins (Figure

3.3). At first glance, the highest cloud fraction bin, between five and fifty percent

cloud fraction, has the largest number of outliers for all three years. However, since

days with higher cloud fractions are much more common in Oklahoma, the higher

number of outliers might be just a function of the larger sample size and needs to be

evaluated on a relative basis. Qualitatively, 2019 appears to have more outliers than

2020 and 2021, but that will be discussed later from a quantitative perspective.

Table 3.1: Pearson’s Correlation (r), Spearman’s Correlation (ρ), Root Mean Squared
Difference (RMS), Mean Bias Difference (MBD), Mean Absolute Difference (MAD),
and number of samples (n) for all three cloud fraction (C.F.) bins for 2019.

Cloud Fraction Satellite rrr ρρρ RMS MBD MAD nnn

C.F. ≤ 1% Terra 0.89 0.92 81.15 22.62 42.31 806

C.F. ≤ 1% Aqua 0.88 0.90 83.36 18.08 41.17 682

1% < C.F. ≤ 5% Terra 0.93 0.95 59.92 17.45 29.62 1202

1% < C.F. ≤ 5% Aqua 0.94 0.96 55.25 10.15 26.80 1083

5% < C.F. ≤ 50% Terra 0.92 0.93 65.72 18.87 32.67 12844

5% < C.F. ≤ 50% Aqua 0.94 0.94 62.40 10.46 30.44 12125

Then, the analysis was separated into individual scatter plots for each cloud frac-

tion bin. Difference statistics were also calculated for each bin (Table 3.1). For 2019

the RMS and MAD are surprisingly much higher than the two other cloud fraction

bins (Figures 3.4a, 3.5a, and 3.6a). The MBD is also larger for the smallest cloud frac-

tion bin, which may indicate that large-scale cloud cover is not the dominant driver

of uncertainty. Another possibility is that the smaller sample size of the less than one

percent cloud fraction bin could mean that outliers are more likely to influence the
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difference values. As a result, it is important to look at multiple years of data to see

if the pattern holds yearly.

Table 3.2: r, ρ, RMS, MBD, MAD, and n for all three cloud fraction (C.F.) bins for
2020.

Cloud Fraction Satellite rrr ρρρ RMS MBD MAD nnn

C.F. ≤ 1% Terra 0.89 0.89 68.21 20.79 40.57 1404

C.F. ≤ 1% Aqua 0.88 0.91 68.80 6.83 39.08 1291

1% < C.F. ≤ 5% Terra 0.92 0.94 67.62 24.50 34.30 1592

1% < C.F. ≤ 5% Aqua 0.95 0.97 48.77 8.19 26.17 1548

5% < C.F. ≤ 50% Terra 0.93 0.94 66.55 20.91 34.39 13550

5% < C.F. ≤ 50% Aqua 0.94 0.95 64.09 11.41 31.05 12492

In 2020, the number of clear-sky samples increased (Table 3.2). As a result, we

can get a better interpretation of whether or not the small sample size of the 2019

clear-sky results had an impact on why the difference values were higher than the

all-sky bin. The correlation coefficients of the less than or equal to one percent cloud

fraction bin are still smaller than the other two bins by around 0.03-0.05 (Figures

3.4b, 3.5b, and 3.6b). However, the MBD, RMS, and MAD values are comparable

between the three cloud fraction bins with only 3-10 Wm−2 difference between the

bins on average. Terra’s difference values are still larger than Aqua’s. In addition, the

regression coefficients and y-intercepts are closer to one and smaller, respectively, than

the 2019 dataset. As a result, the 2020 comparison features an improved relationship

between CERES and Mesonet.
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Table 3.3: r, ρ, RMS, MBD, MAD, and n for all three cloud fraction (C.F.) bins for
2021.

Cloud Fraction Satellite rrr ρρρ RMS MBD MAD nnn

C.F. ≤ 1% Terra 0.93 0.94 59.50 24.22 37.16 1126

C.F. ≤ 1% Aqua 0.93 0.94 59.16 15.51 34.60 1160

1% < C.F. ≤ 5% Terra 0.94 0.96 57.95 23.64 31.84 1536

1% < C.F. ≤ 5% Aqua 0.94 0.96 56.37 13.74 25.91 1435

5% < C.F. ≤ 50% Terra 0.94 0.95 60.09 23.76 32.26 13044

5% < C.F. ≤ 50% Aqua 0.94 0.95 59.91 14.44 28.63 12156

In 2021, the number of clear-sky cases was slightly less than in 2020 but still more

than in 2019. The correlation coefficients for all satellites and all cloud fraction bins

range from 0.93-0.96. Therefore, there is no appreciable difference in the correlation

between the cloud fraction bins. Similarly, there is little change in RMS and MAD by

cloud fraction bin. However, MBD for Terra was still approximately 9 Wm−2 larger

than Aqua’s. Therefore, after looking at all the cloud fraction bins and comparing the

correlation coefficients and difference values against each other, it appears probable

that cloud fraction is not a primary source of difference.

3.1.3 Linear-least Squared Bi-sector Method and

Bootstrapping

One downside of OLS regression is that it assumes that the independent variable

represents the truth by merit of minimal measurement uncertainty. However, we

cannot assume that either variable is true in this study. As a result, we applied the

linear-least squared bi-sector method to get a linear regression line more represen-

tative of the data. In addition, one concern about calculating Pearson’s Correlation
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was that the smaller sample size of the clear-sky bins affected its lower correlation

coefficient. To get a 95% confidence interval for the correlation coefficients, Monte

Carlo bootstrapping was used. The bootstrapping approach randomly selected 500

samples from each bin, then calculated Pearson’s correlation for each iteration. Then,

the 95% confidence limits on the correlation probability distribution function (PDF)

were used for the lower and upper bounds.

(a)

(d)

(b)

(e)

(c)

(f)

Figure 3.7: Linear-least squared bi-sector fit for CERES Terra/Aqua vs. Mesonet
at Terra/Aqua overpass times for (a, d) less than or equal to 1% cloud fraction, (b,
e) between 1 and 5% cloud fraction, and (c,f) between 5 and 50% cloud fraction for
2019. r for the bi-sector method is given, with 95% confidence limits in the square
brackets.
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(a)

(d)

(b)

(e)

(c)

(f)

Figure 3.8: Linear-least squared bi-sector fit for CERES Terra/Aqua vs. Mesonet
at Terra/Aqua overpass times for (a, d) less than or equal to 1% cloud fraction, (b,
e) between 1 and 5% cloud fraction, and (c,f) between 5 and 50% cloud fraction for
2020. r for the bi-sector method is given, with 95% confidence limits in the square
brackets.
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(a)

(d)

(b)

(e)

(c)

(f)

Figure 3.9: Linear-least squared bi-sector fit for CERES Terra/Aqua vs. Mesonet
at Terra/Aqua overpass times for (a, d) less than or equal to 1% cloud fraction, (b,
e) between 1 and 5% cloud fraction, and (c,f) between 5 and 50% cloud fraction for
2021. r for the bi-sector method is given, with 95% confidence limits in the square
brackets.
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In 2019, the bi-sector method increased the regression coefficients to match Pear-

son’s correlation coefficients for all three cloud fraction bins for both Aqua and Terra

(Figure 3.7). This occurred for both the 2020 and 2021 data. This means the re-

gression lines represent the organization of the CERES-Mesonet differences (Figures

3.8 and 3.9). While the outliers slightly influence the bi-sector method, it is much

more representative of the actual pattern. The 95% confidence interval from the boot-

strapping is found in the brackets next to the correlation coefficients. All of Pearson’s

Correlations lie within the confidence interval, which means we can say that the cor-

relations were not influenced by sample size. Therefore, the bi-sector method is the

primary regression used in the discussion.

3.2 Time-series Analysis
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(a)

(b)

(c)

Figure 3.10: Clear-sky Surface downwelling shortwave fluxes for CERES (Terra in
teal, Aqua in blue) and Mesonet Timeseries (in red) for (a) 2019, (b) 2020, and (c)
2021.
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Figure 3.10 shows the seasonal evolution of Mesonet and CERES irradiances for

clear-sky conditions. The peak difference between CERES-Aqua and Mesonet in

2019 and 2020 occurs during the convective season, May through September. There

appears to be less of a CERES-Mesonet difference in late Summer 2021. Outside

the convective season, there is much more alignment between CERES and Mesonet.

CERES-Terra has a higher separation from Mesonet during this period than Aqua.

This is verified by the higher year-to-year MBD values in Terra for all three years

(Tables 3.1, 3.2, and 3.3).

3.3 Geospatial Analysis

One of the benefits of performing the study in Oklahoma is the presence of diverse

climate zones, topography, and landscapes. These characteristics enable the results

of this study to be applied all over the globe for similar climates. The geospatial

analysis was conducted to understand the differences and uncertainty associated with

each climate regime.

3.3.1 CERES-Mesonet Differences Statistics

We calculated the Mesonet-CERES downwelling shortwave irradiance differences for

each station using Eq. 2.5. Then, the annual means and standard deviations were

calculated for each Mesonet station. The irradiance differences were calculated for all

cloud fractions. Then, they were examined to determine if there were any consistent

patterns regionally each year.
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(a)

(b)

(c)

Figure 3.11: The mean flux differences of Mesonet from CERES in (a) 2019, (b) 2020,
and (c) 2021 with red squares indicating CERES was larger than Mesonet and blue
squares showing lower CERES irradiances than Mesonet.
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In 2019, the mean difference between CERES and Mesonet was highest in the

southeast climate zone. CERES exceeded Mesonet at the Idabel and Broken Bow

stations by approximately 60 Wm−2 on average (Figure 3.11a). Additionally, the Still-

water area had large CERES-Mesonet differences on the order of 20-50 Wm−2. Also,

the central panhandle stations, Eva, Goodwell, and Hooker, had CERES-Mesonet dif-

ferences around 30 Wm−2. Consistent with the scatter plots in Section 3.1, Terra had

larger CERES-Mesonet differences than Aqua. There are 7 out of the 120 stations

where CERES-Terra mean differences are less than Mesonet.

In 2020, CERES-Terra had even fewer measurements where the mean downward

shortwave surface radiative flux difference was smaller than the Mesonet stations

(Figure 3.11b). Only 4 out of 120 stations had this characteristic, and all four had

values larger than CERES in 2019. In addition, CERES-Terra and CERES-Aqua

are larger than Mesonet in the central panhandle. The Stillwater area stations still

show large CERES-Mesonet differences, but not as large a magnitude as in 2019.

The Idabel and Broken Bow areas still had large CERES-Mesonet difference during

Terra overpasses, but Aqua only had CERES-Mesonet differences of approximately 5

Wm−2 at these stations.

Finally, in 2021, Terra had positive CERES-Mesonet differences for all 120 sta-

tions (Figure 3.11c). There seemed to be no spatial pattern with the CERES-Mesonet

differences in 2021, and it was systematic across all 120 stations. The central panhan-

dle continued to show large CERES-Mesonet differences for the CERES-Aqua data.

Interestingly, the Idabel and Broken Bow Mesonet stations report similar irradiances

to CERES-Terra/Aqua, unlike in 2019 and 2020 (for Terra).
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(a)

(b)

(c)

Figure 3.12: The standard deviations of the differences of Mesonet from CERES in
(a) 2019, (b) 2020, and (c) 2021 with yellow and red squares representing smaller and
larger magnitudes of standard deviation, respectively.
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While the mean difference plots give a general interpretation of which stations

tend to have higher differences, they do not show the data distribution. The mean

standard deviation of the flux differences shows which stations are more influenced

by outliers.

In 2019, there was a slight variation in the standard deviation by region (Fig-

ure 3.12a). There was also little difference in the standard deviations between Terra

and Aqua. In 2020, two distinct regions with higher standard deviations stood out:

the southeast and the western regions, excluding the panhandle (Figure 3.12b). The

panhandle tends to have lower standard deviations than the rest of the state. The

rest of the standard derivations had no consistent pattern in 2020. There were little

variations in the spatial pattern between Terra and Aqua in 2020. In 2021, the west-

ern regions, excluding the panhandle and the southeast regions still has the highest

standard deviations (Figure 3.12c). With a few exceptions, the panhandle still has

lower standard deviations than the other regions. Unlike 2019 and 2020, Aqua did

have, on average, lower standard deviations of differences than Terra in 2021.

3.3.2 Distribution of Outliers

While the standard deviation of the differences plots provided an idea of the overall

distribution of the CERES-Mesonet differences, it is not an accurate count of all the

outliers by region. In addition, the analysis was done annually and not combined for

all three years. The data were standardized using a normal distribution to determine

which areas of Oklahoma have the most outliers. The z-scores are the mean CERES-

Mesonet difference subtracted from each difference divided by the standard deviation.

These were calculated for each CERES-Mesonet difference.
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Figure 3.13: The frequency of observations with a CERES-Mesonet difference greater
than 1.96 standard deviations away from the mean per Mesonet station.

After calculating the z-scores, the number of times the CERES-Mesonet difference

exceeded the 95% confidence interval, and the z-score was greater than or equal to

1.96 was determined per station. The distribution of these differences was plotted

(Figure 3.13). The western half of Oklahoma, excluding the panhandle, had the

most outliers for Terra and Aqua overpass times. The panhandle had the lowest

points that exceeded 1.96 standard deviations away from the mean for both Terra and

Aqua. For Terra overpasses, the northeast climate division had few, approximately

15, measurements that exceeded the 95% confidence interval. In contrast, during

the Aqua overpasses, the count nearly doubled with approximately 30 measurements

per station, where the difference calculations exceeded 1.96 standard deviations away

from the mean. The southeast climate division had a larger number of high z-scores

for the Terra overpass times than the Aqua overpass times, which was analogous to

the general pattern with Terra having higher MBD than Aqua.
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3.4 Climate Division Analysis

The previous section provided an overview of which regions have the most outliers.

However, it did not indicate each climate zone’s overall PDF. The best way to deter-

mine how the distribution of the CERES-Mesonet differences changes with climate

zone is to make box-and-whisker plots.

Figure 3.14: All-sky CERES-Mesonet surface downwelling irradiances differences box-
and-whisker plots by climate division for 2019-2021. Red lines are the median of each
division, and the colors of each box match the colors of the climate divisions shown
in Figure 2.1.

Figure 3.14 shows box-and-whisker plots created for all-sky irradiances. The lower

quartile for the panhandle and north central regions during the Terra overpass time

is above zero, indicating that CERES Terra irradiances are larger than Mesonet ir-

radiances over 75% of the time. The range and interquartile range are much larger

in the southeast region. Greater Mesonet station density in the central region might

be a reason for the lower standard deviation. That said, the station density in the
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southeast region is larger than the panhandle and has a larger standard deviation.

Therefore, it is likely that some systematic differences in the panhandle are causing

the large range and interquartile range.

3.5 Seasonal Dependence

3.5.1 Flux Differences Distributions

The cloud and aerosol properties vary seasonally in addition to regionally. As a

result, it is important to look at both the PDFs of the climate zone and seasonal

CERES-Mesonet surface irradiance differences. The seasonal box-and-whisker plots

are for all-sky and clear-sky environments to determine which differences are most

likely cloud or aerosol driven.
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Figure 3.15: All-sky CERES-Mesonet surface downwelling irradiances differences box-
and-whisker plots by climate division and season for 2019-2021. Red lines are the
median irradiance difference for each division, green boxes are for Terra overpass
times, and blue boxes are for Aqua overpass times.
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Figure 3.16: Clear-sky CERES-Mesonet surface downwelling irradiances differences
box-and-whisker plots by climate division and season for 2019-2021. Red lines are
the median irradiance difference for each division, green boxes are for Terra overpass
times, and blue boxes are for Aqua overpass times.
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The box-and-whisker plots showed distinct seasonal patterns for the all-sky condi-

tions (Figure 3.15). In the northern hemispheric winter, the ranges and interquartile

ranges for all nine climate zones were the lowest of all the seasons. The medians for

both Terra and Aqua are very close to zero CERES-Mesonet difference. Interestingly,

the Terra overpass medians are greater than zero for all nine climate divisions, and

the Aqua overpass medians are less than zero. The southeast climate zone has a much

larger standard deviation than the other climate divisions in the winter.

In the spring, the standard deviation increases in all the climate zones except for

the southeast region. The southeast region still has the largest standard deviation,

but range and interquartile roughly remain the same as winter cases. The other

major change from the spring is that Terra and Aqua now have medians over zero for

eight out of nine climate divisions. Terra still has a larger CERES-Mesonet median

difference for all nine climate zones.

In the summer, the standard deviation is considerable for all nine climate zones.

The medians for all nine climate zones are now significantly above zero. Terra differ-

ences are still larger than Aqua for all the climate zones, and the median difference of

differences from Mesonet to Terra and Aqua CERES, respectively, is 5 Wm−2. The

southeast region still has the largest standard deviation out of all the climate zones.

The fall box-and-whisker plots look almost identical to the spring plots. There is

little variation in the ranges and interquartile ranges of the climate zones, except for

the southeast region. The Terra and Aqua medians appear slightly larger than the

spring medians. Terra still has larger medians than Aqua for all climate zones, and

both Terra and Aqua overpasses are above zero.
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The clear-sky results are very different from the all-sky results (Figure 3.16). The

major difference is less seasonal dependence with the clear-sky results than with all-

sky results. The spring clear-sky plots have the highest ranges and interquartile

ranges of the four seasons. Summer, fall, and winter have roughly the same ranges

and interquartile ranges as a whole. Another interesting component of the compar-

isons is that the median Aqua differences are negative for winter, summer, and fall.

Furthermore, the southeast region still has the highest range and interquartile range

for the winter, summer, and fall.

3.5.2 Seasonal Scatterplots

While examining the box-and-whisker plots by season gives a general idea of the tem-

poral distribution of the CERES-Mesonet difference, they do not show the individual

data points. Visualizing the individual points for all-sky and clear-sky environments

is important for justifying the hypothesis examined in the previous section. The

best-fit line was calculated using the bi-sector method, and the confidence intervals

for Pearson’s correlations were done using bootstrapping.
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(h)

Figure 3.17: Linear-least squared bi-sector fit for all-sky CERES Aqua/Terra vs.
Mesonet for (a, e) winter, (b, f) spring, (c, g) summer, and (d, h) fall in 2019-2021.
r for the seasonal bi-sector regression and bootstrapped 95% confidence interval are
given.

(a)
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(f)

(c)

(g)

(d)

(h)

Figure 3.18: Linear-least squared bi-sector fit for clear-sky CERES Aqua/Terra vs.
Mesonet for (a, e) winter, (b, f) spring, (c, g) summer, and (d, h) fall in 2019-2021.
r for the seasonal bi-sector regression and bootstrapped 95% confidence interval are
given.
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The seasonal all-sky comparisons show a stark contrast between seasons for both

Terra and Aqua overpasses (Figure 3.17). In the northern hemispheric winter, the

correlation between CERES and Mesonet is relatively strong, with Pearson’s corre-

lation values of 0.85 and 0.87 for Terra and Aqua, respectively. Unlike the winter

scatterplots, the spring and summer plots have much lower correlations.

Finally, the fall scatter plots resemble the winter scatterplots with strong positive

correlation coefficients. The regression coefficients match the correlation coefficients

indicating that the line of best fits matches the trends. In addition, all correlations for

all seasons lie in the 95% confidence interval indicating that the correlations should

be similar with a smaller sample size.

The clear-sky results do have some differences from the all-sky results. Like the

previous figures, a clear-sky atmosphere was defined by eliminating cases with a

collocated cloud fraction greater than five percent. The winter and fall clear-sky

scatterplots are similar to the all-sky scatterplots (Figure 3.18). However, there were

major differences between the clear-sky and all-sky springs and summers for both

Terra and Aqua. There was a 0.09 increase in the correlation coefficient for Terra

and a 0.05 increase for Aqua overpasses in the clear-sky scatterplots. In addition, the

summer correlation coefficient for Aqua is much lower than Terra. All correlations

are within the bootstrapped 95% confidence interval, indicating the sample size does

not explain the higher or lower correlation coefficients.
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Table 3.4: r, ρ, RMS, MBD, MAD, and n by season in 2019-2021.

Season
Atmo-
sphere Satellite rrr ρρρ RMS MBD MAD nnn

Winter All-sky Terra 0.85 0.87 53.18 8.95 26.09 11379

Winter All-sky Aqua 0.87 0.89 52.44 1.36 26.30 12039

Winter Clear-sky Terra 0.87 0.91 51.26 8.91 23.88 1221

Winter Clear-sky Aqua 0.86 0.88 50.77 3.66 25.55 1485

Spring All-sky Terra 0.76 0.84 73.74 17.70 37.57 12053

Spring All-sky Aqua 0.70 0.82 75.52 11.67 36.90 11578

Spring Clear-sky Terra 0.81 0.88 69.43 17.16 36.07 1316

Spring Clear-sky Aqua 0.78 0.86 64.77 9.31 21.91 1229

Summer All-sky Terra 0.65 0.77 91.34 38.15 51.91 15078

Summer All-sky Aqua 0.59 0.71 95.89 31.23 50.57 12193

Summer Clear-sky Terra 0.74 0.83 87.07 41.01 51.68 1838

Summer Clear-sky Aqua 0.64 0.76 91.83 32.27 51.17 1136

Fall All-sky Terra 0.86 0.91 61.79 21.69 32.35 18637

Fall All-sky Aqua 0.88 0,92 57.70 11.55 28.06 17698

Fall Clear-sky Terra 0.87 0.91 52.57 18.88 30.51 3291

Fall Clear-sky Aqua 0.89 0.92 48.55 8.66 26.90 3349

For both the all-sky and clear-sky cases, the same difference statistics calculated

for the yearly scatterplots were calculated with the seasonal scatterplots (Table 3.4).

In addition to the correlation coefficients being smaller during the summer, the dif-

ference values were much larger. The RMS for clear-sky and all-sky environments

averaged about 91 Wm−2. The summer MBD was also much larger than the other

seasons, with a mean value of 33.16 Wm−2. That is just under 20 Wm−2 larger than

the spring and fall, and just under 30 Wm−2 larger than the winter. While difference
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values are generally higher for Terra than Aqua, that trend changes in the summer-

time. The RMS is about 4 Wm−2 larger for Aqua than Terra for clear-sky and all-sky

contamination, even though the MBD is larger in the Terra overpasses. Consistent

with the correlation coefficients, the spring has the second largest RMS, and the Fall

and Winter have the lowest RMS. Overall, all seasons, except the summer, have a

relatively low difference, and the simple parameterized code does a phenomenal job

at resolving the downward shortwave irradiances from the TOA.

3.5.3 Robust Outlier Rejection

Even though we applied cloud fraction to indicate clear-sky environments, the results

suggest it is not an excellent filter to eliminate small cloud obstruction. We observed

little change in correlation with an increase in cloud fraction every year. This section

describes the results of applying a robust outlier rejection to remove potentially small-

cloud affected observations. This function eliminated samples outside three standard

deviations from the mean.
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Figure 3.19: Linear-least squared bi-sector fit with outlier rejection all-sky CERES
Aqua/Terra vs. Mesonet for (a, e) winter, (b, f) spring, (c, g) summer, and (d, h)
fall in 2019-2021.

(a)
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(b)

(f)
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(g)
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(h)

Figure 3.20: Linear-least squared bi-sector fit with outlier rejection clear-sky CERES
Aqua/Terra vs. Mesonet for (a, e) winter, (b, f) spring, (c, g) summer, and (d, h)
fall in 2019-2021.
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Table 3.5: RMS, MBD, MAD, and n by season in 2019-2021 with outlier rejection.

Season Atmosphere Satellite RMS MBD MAD nnn

Winter All-sky Terra 12.30 1.77 10.00 9275

Winter All-sky Aqua 14.13 −6.71 11.36 9899

Winter Clear-sky Terra 12.51 2.06 10.05 1025

Winter Clear-sky Aqua 13.12 −3.74 10.53 1198

Spring All-sky Terra 20.75 10.35 16.82 9892

Spring All-sky Aqua 19.69 2.94 15.67 9592

Spring Clear-Sky Terra 20.42 10.78 16.69 1068

Spring Clear-sky Aqua 10.13 2.79 14.45 1041

Summer All-sky Terra 33.11 26.24 28.16 12281

Summer All-sky Aqua 29.56 18.88 24.30 10017

Summer Clear-sky Terra 36.32 30.44 31.43 1537

Summer Clear-sky Aqua 32.81 24.96 27.53 945

Fall All-sky Terra 21.75 14.55 17.81 15942

Fall All-sky Aqua 17.39 4.57 13.96 15170

Fall Clear-sky Terra 24.32 14.86 19.79 2915

Fall Clear-sky Aqua 20.44 5.48 16.34 2947

After restricting to clear-sky cases, we calculated new regression coefficients and

intercepts (Figures 3.19 and 3.20). The new regression coefficients for the winter

and fall were both 0.99 for all-sky conditions. While the winter regression coefficients

remained at 0.99 for clear-sky, there was a slight decrease in the regression coefficients

in the fall to 0.98. This indicates that there are minimal CERES-Mesonet differences

in the winter and fall.

Before the robust outlier rejection, regression coefficients for the summer were

0.66 for Aqua and 0.76 for Terra for clear-sky, and 0.59 and 0.65 for Aqua and Terra,

64



respectively, for all-sky. Also, all difference values were reduced for robust outlier

versus unfiltered cases. The average RMS for the winter, spring, and fall is 16.41

Wm−2, while the summer averaged RMS for all instances is 32.95 Wm−2. That

means the summer still has 100% larger differences than the average of the other

three months. The MBD and MAD, while reduced versus the unfiltered cases, are

still much larger in the summer. This could still be partly due to cloud contamination,

but absorbing aerosol contamination could contribute to the larger differences.
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Chapter 4

Discussion

4.1 Potential Sources of Error

4.1.1 Terra vs. Aqua

One finding was the systematically larger CERES-Mesonet differences during Terra

overpasses versus Aqua overpasses. This occurred in multiple different facets of the

results. In tables 3.1-3.3, CERES-Terra had larger mean bias differences than CERES-

Aqua by 6.31, 15.19, and 9.34 Wm−2 for 2019, 2020, and 2021, respectively. The RMS

also was larger for CERES-Terra than CERES-Aqua but by only 1.72, 9.17, and 0.98

Wm−2 for the same three years. The pattern of larger MBD for CERES-Terra than

CERES-Aqua continued for the higher cloud fraction bins, with approximately the

same magnitudes of error as the clear-sky bins.

For the bi-sector correlation coefficient analysis, the correlations for all cloud frac-

tion bins indicated a strong positive correlation. The separation between Terra and

Aqua regarding the correlation with Mesonet was minimal for all three years and all

cloud fraction bins, with the most significant difference in correlation being 0.02 for

the 2019 and 2020 five to fifty percent cloud fraction bin. The bootstrapping analysis

was done to determine if the cause of the relatively lower correlation of the less than

one percent cloud fraction bin caused the lower sample size, which was the null hy-

pothesis. All correlations lie well within the 95% confidence interval. Therefore, we
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reject the null hypothesis, and the cause of the lower correlation in the smallest cloud

fraction must be caused by something other than the sample size. Possible reasons

for this will be explored later in the discussion.

There are more areas in 2019, 2020, and 2021 where CERES-Terra-Mesonet differ-

ences are larger than CERES-Aqua. In addition, CERES-Terra has larger magnitudes

of differences than CERES-Aqua when both instruments’ means are larger than the

annual mean Mesonet irradiances.

In the climate division box-and-whisker plots, the median downward shortwave

irradiances for all nine climate divisions were larger for Terra than Aqua. The differ-

ences between CERES-Terra and CERES-Aqua were uniformly about 15 Wm−2. The

offset appears not only with the medians but also with the quartiles and extrema.

4.1.2 Regional Aerosol and Cloud Climatology

Aerosol and cloud-effective radiative forcing have significant impacts on the climate.

Clouds and aerosols both scatter and absorb shortwave solar radiation and can result

in a net decrease in surface solar irradiance. CERES-Mesonet differences are usually

positive, especially in all-sky conditions. The seasonal changes in aerosol and cloud

properties could affect the CERES-Mesonet differences.
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Figure 4.1: Mean cloud fraction for MODIS-Terra (solid lines) and MODIS-Aqua
(dashed lines) (%) by climate division and winter (blue lines), spring (green lines),
Summer (brown lines), and fall (orange lines) in 2019-2021.

Figure 4.1 shows the mean cloud fraction. This would have the largest impact

on the all-sky data as the clear-sky data filters out cloud fractions greater than 5%.

On average, the mean cloud fraction tends to be larger during Terra overpasses than

Aqua. As a result, some of the larger CERES-Mesonet differences during Terra

overpasses could be cloud-driven, even though the correlation between CERES-Terra

and Mesonet in the larger cloud fraction bin is robust. Furthermore, there is also a

seasonal dependence on the amount of cloud fraction. Generally, summers and springs

have higher mean cloud fractions than other seasons. This could be a major reason
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why the CERES-Mesonet differences for all-sky are much larger in the summertime

than in other seasons and why the Summer CERES-Mesonet clear-sky differences are

not very different from the other seasons.

(a) (b)

Figure 4.2: Mean cloud top height (CTH) for MODIS-Terra (solid lines) and MODIS-
Aqua (dashed lines) (%) by climate division and winter (blue lines), spring (green
lines), summer (brown lines), and fall (orange lines) in 2019-2021. (a) High clouds
and (b) low clouds are considered.

The mean low and high cloud top heights indicate the cloud type. Cloud type

is essential for this study because the type influences how much shortwave solar

radiation is transmitted through the cloud. Cirrus clouds are optically thin, trans-

mitting more solar radiation to the surface (Fu and Liou 1993). Even though there is

less radiation attenuated by cirrus, the amount could still contribute to some of the

CERES-Mesonet differences if the cirrus cloud fraction is not adequately accounted

for in the parameterized CERES surface flux estimation scheme. Since cirrus scat-

ter less radiation back into space, they are much harder to detect on passive remote

sensors, even at near-infrared and infrared wavelengths. The high cloud top heights
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have a strong seasonal dependence (Figure 4.2a). This is due to seasonal changes in

the tropopause height. Warmer air causes the free troposphere to expand, and cooler

air results in the free troposphere getting shallower (Chan and Wood 2013). For

the low cloud top heights, the summer and spring tend to have the highest altitudes

(Figure 4.2b). This is due to the increased frequency of cumuliform clouds in these

seasons due to the more significant water vapor concentration and forcing for ascent.

The winter and fall have lower cloud top heights due to the drier climate and more

stable static stability. This results in less cumulus congestus clouds, which are more

optically thick.
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Figure 4.3: Mean aerosol optical depth (AOD) for MODIS-Terra (solid lines) and
MODIS-Aqua (dashed lines) (%) by climate division and winter (blue lines), spring
(green lines), summer (brown lines), and fall (orange lines) in 2019-2021.

According to Gui et al. (2021), aerosol optical depth (AOD) tends to be the largest

in North America in the summer and the smallest in the winter. The AOD retrievals

verified that AOD is largest in the Oklahoma summer and smallest in the winter,

with an average difference of 0.13 between the two seasons (Figure 4.3). The fall and

spring were similar in the mean aerosol optical depths for all three years. As a result,

the summer is more likely to influence aerosol concentration and could explain the

considerable CERES-Mesonet differences by changing the atmospheric transmittance

term of the parameterization. However, the distribution of aerosol loading is spatially
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heterogeneous and highly dependent on mesoscale sources, such as wildfires and dust

(Chang et al. 2021). As a result, significant weather and climate events can drastically

change the AOD every year.

Figure 4.4: Mean single scattering albedo (SSA) for MODIS-Terra (solid lines) and
MODIS-Aqua (dashed lines) (%) by climate division and winter (blue lines), spring
(green lines), summer (brown lines), and fall (orange lines) in 2019-2021.

The single scattering albedo (SSA) is the ratio of the scattering coefficient to the

extinction coefficient (Petty 2006). Therefore, SSA is a good measure of how much

solar radiation is scattered by the atmosphere. SSA suggests the aerosol type. From

2019-2021, the SSA was lower in the summer than in the other three seasons (Figure

4.4). However, the differences between the summer and winter SSAs is only about

72



0.015. They are significantly smaller than the CERES-derived SSA product standard

error. Therefore, the seasonal differences of SSA are insignificant, and we cannot

draw any conclusions from the SSA.

4.1.3 Small Cloud Obstruction

One of the challenges with the CERES simple parameterized code is the calculation of

cloud transmittance. The product uses cloud reflectance to estimate how much radia-

tion is attenuated before reaching the surface. Still, isolated, small aerial clouds with

large optical depths would drastically decrease the downward shortwave irradiance at

that specific Mesonet station. However, since the CERES footprint is 20-50 km, the

effects of small cumulus clouds are not seen in most of the footprint. Consequentially,

the overall CERES measured downward shortwave radiative flux would be much larger

than the Mesonet observed surface irradiance. The CERES measurement is from the

TOA, and the algorithm only calculates the estimated cloud transmittance in the

pixel. Since the Mesonet is a surface observation, an optically thick cumulus cloud

directly over the pyranometer greatly reduces the surface irradiance. In addition,

the frequency of these optically thick small cumuli is very seasonal dependant. Since

the moisture content is climatologically larger in the summer, cloud nucleation and

formation are more common (Yang et al. 2019). As a result, small cloud obstruction

tends to be more of an influence with the comparison in the summer months.

4.1.4 Diffuse Radiative Transfer Effects

Another possible source of uncertainty is the diffuse radiation from clouds and multi-

ple scattering. Previous work by Chakraborty and Lee (2021) discussed how CERES
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struggled to estimate the diffuse component of solar radiation than the direct. This is

due to the complicated nature of diffuse radiation. Diffuse radiation involves at least

two plus orders of scattering (Petty 2006). Even after being reflected in the cloud,

the light is scattered in multiple directions and can be scattered more by aerosols,

gases, and other clouds. For example, on a typical summer day in Oklahoma, there

might be dozens of fair weather cumuli in the CERES footprint.

In addition to clouds, surface reflectance also contributes to the diffuse component

of shortwave solar radiation. The amount of surface reflection is dependent on the

land surface. This is calculated using the Bi-directional Reflectance Function (BRDF)

(Koepke et al. 1985). The BRDF formula is completely reliant on the land surface.

Generally, the amount of radiation reflected from the surface is related to the surface

albedo (Tang et al. 2006). Lighter surfaces, like fresh snow and sand, have higher

albedos, which reflect more solar radiation at shorter wavelengths. Darker surfaces,

such as pavement and forest, have lower albedos and reflect less radiation from the

surface. As a result, Mesonet stations in the western portion of Oklahoma are more

likely to have an increased diffuse radiation component from the land surface than

the eastern portion of Oklahoma. Therefore, the diffuse component of solar radiation

is likely larger in the western, less forested region of Oklahoma and likely contributes

to some of the negative CERES-Mesonet differences.

In addition to surface reflection in the smaller wavelengths, there is surface emis-

sion in the longer wavelengths. While the primary goal of this study was to examine

shortwave radiation, CERES considers wavelengths up to 5 µm as part of the short-

wave band. Surface emission increases around 3 µm for sandy or desert surfaces and

around 4 µm for urban areas (Tang et al. 2006). Conversely, there is little surface

emission from forested land surfaces. Therefore, CERES is likely measuring some
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longwave radiation from the surface in the 3-5 µm range in the central and western

portions of the state, which would result in larger CERES-Mesonet differences. The

eastern regions of the state are mostly forested, so there would be less contribution

from surface emission there.

Currently, one of the best tools available for calculating the total downwelling

shortwave radiation reaching the surface is the libRadtran radiative transfer model

(Emde et al. 2016; Mayer and Kylling 2005). This model can simulate radiative

transfer involving many layers of cloud and aerosol optical properties, effective radii,

and customize the sensor wavelengths. Therefore, to understand the 3D radiative

effects of clouds in Oklahoma, future work with libRadtran, local field campaigns

with measured diffuse radiation, and additional modeling will be needed to resolve

the 3D radiative effects.

4.1.5 Wavelength Dependence

One of the challenges of comparing CERES and Mesonet is that they have different

spectral ranges. The CERES instrument measures 250-5000 nm, and the Mesonet

Li-Cor LI-200R pyranometers measure 400-1100 nm. As a result, the spectral bands

between 250-400 nm and 1100-5000 nm are not measured from the Mesonet measure-

ments. Instead, the Li-Cor instruments are calibrated to provide irradiance “equiva-

lents” to cover the entire solar spectral range. That is, out-of-Li-Cor-range spectral

contributions are assumed to change in the same way that the in-range contribu-

tions vary. In that way, the smaller spectral range of the Li-Cor is accounted for in

the calibration procedure, and uncertainties only arise when the out-of-band spec-

tral contributions do not change proportionally to the in-band contributions. This is
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possible in the presence of clouds and for changing solar zenith angles. To estimate

this effect, we estimate below the out-of-Li-Cor-range contributions for different solar

zenith angles and cloud properties using the LibRadTran radiative transfer model

with a 250-4000 nm spectral range (Emde et al. 2016; Mayer and Kylling 2005).

To approximate the standard atmosphere, we made the following assumptions:

• A U.S. standard atmosphere for trace gas profiles.

• A default rural aerosol profile of 0-1.5 km in the boundary layer.

• An AOD of 0.1, applying the mean AOD in Figure 4.3.

• A cloud fraction of 25% using the mean cloud fraction in Figure 4.1.

• Liquid water clouds have an effective radius of 10 µm.

• Only low clouds, with a 0.7-1.0 km cloud layer.

• No ice water clouds.

• A Lambertian surface with a low spectral dependent albedo (Petty 2006).

• No surface emission (maximum wavelength of 4 µm).

We calculated the surface downward direct and diffuse irradiances with these assump-

tions for both the Mesonet and CERES wavelength ranges. Both spectral curves were

integrated over all wavelengths as a function of cloud optical depth (COD) and so-

lar zenith angle (SZA). Figure 4.6 shows the percentage of radiation not directly

measured by Mesonet.
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Figure 4.5: Percentage of solar irradiance not measured from Mesonet as a function
of cloud optical depth (COD) and solar zenith angle (SZA), assuming a cloud fraction
of 25% and an AOD of 0.1.

Table 4.1: LibRadtran approximate percentage of radiation not directly measured by
Mesonet per season, solar zenith angle (SZA, June 21 and December 21), and cloud
fraction (C.F.).

Season SZA C.F. Approx. Pct. of Radiation

Summer 17.43◦ 0% 25%

Summer 17.43◦ 25% 24%

Winter 60.69◦ 0% 23%

Winter 60.69◦ 25% 22%

From Figure 4.5, the approximate percentage of radiation not directly measured

from Mesonet was extracted (Table 4.1). The percent of solar radiation not directly

measured in the winter decreases due to the higher solar zenith angle. The percentage
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of unmeasured radiation is also higher for clear-sky cases because clouds and water

vapor absorb much of the radiation in the 1100-5000 nm band, thereby minimizing the

out-of-Li-Cor-range contributions to downwelling radiation. Without postprocessing

or calibration of the Mesonet, the Mesonet would be lower than CERES by 200-

250 Wm−2. However, the Mesonet vs. CERES MBE is nowhere near that large in

magnitude, with the seasonal mean maximum MBE being 38.15 Wm−2.

Therefore, the CERES-Mesonet differences will decrease with cloud obstruction.

Small cloud obstruction directly over the Mesonet site will cause a local increase in

the CERES-Mesonet surface irradiance difference since the CERES footprint is too

large to account for small clouds properly. Contrarily, CERES will be lower Mesonet

in the presence of nearby convection due to not correctly accounting for the diffuse

component of solar radiation. In addition, the percentage of unmeasured radiation

decreases with the presence of clouds, which will cause the Mesonet to be overly

corrected.

4.2 Broader Impacts and Future Work

This study was a regional assessment of the CERES-derived surface radiation product

using a densely populated network of well-calibrated surface radiometers in multiple

regional climate regimes. Due to the diversity of climate regimes in Oklahoma, the

results found regionally in Oklahoma may apply to other areas with similar climates.

This work has also been shared with Dr. Sajo Kato at NASA Langley and Dr.

Brad Illston at the Oklahoma Mesonet so that they can identify potential areas of

improvement with their radiation products. Furthermore, these estimates are crucial

tests of our ability to study Earth’s surface radiation budget from space with critical
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links to dynamics and the hydrologic cycle. The hydrologic cycle is essential to the

Earth’s system as it drives convection and other latent heat processes.

To examine how our understanding of the overall climate system changes based

on the CERES-Mesonet comparison, the study needs to be extended beyond three

years. A multidecadal study could help infer regional changes in the radiation budget,

which could be later applied globally. Global dimming and brightening are the long-

term decrease or increases in the downward shortwave surface radiative fluxes (Wild

2009). This analysis will use CERES Energy Balanced and Filled (EBAF) Ed4.2 and

Clouds and Radiative Swath (CRS) Ed4 products for long-term analysis and spatial

variability, respectively (Kato et al. 2018; Scott et al. 2022). These are based on

the more complex Fu-Liou radiative transfer model instead of a simple parameterized

code (Fu and Liou 1993). These changes will be studied by climate division, and other

beneficial meteorological and geographical properties, such as rainfall frequency and

topography, will be explored. In addition, future work will examine 3D cloud and

radiative properties using the Multi-angle Image Spectrometer (MISR) and Cloud-

Sat W-Band Radar. These observations will be used for understanding the fractal

geometry of smaller clouds and, to some extent, the 3-D structure of larger clouds,

which will help scientists understand their radiative properties. Radiation closure

studies will need to be applied to understand the causality of the differences. Cloud-

Sat W-band radar will provide vertically resolved cloud properties. When included

in Global Climate Models, these findings enable new climate assessments, helping

policymakers evaluate future climate mitigation efforts. In addition, data from the

Small-Scale Variability of Solar Radiation (SV2SR) field campaign at Atmospheric

Radiation Measurement (ARM) Southern Great Plains (SGP) in Summer 2023 may
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be used to evaluate small-scale variability in the surface radiation budget. In ad-

dition, the relationships between aerosol and cloud properties discussed earlier and

libRadtran will be further explored, informed by the atmospheric composition derived

from the collocated satellite sensors (Emde et al. 2016). In addition, ice water clouds

will need to be accounted for, given Oklahoma’s large percentage of ice water clouds

(Chiu et al. 2012).
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Chapter 5

Conclusion

Overall, the key findings are that the more considerable CERES-Mesonet differences

are during the Terra overpasses versus the Aqua overpasses. Unlike our results, Kratz

et al. (2020) found similar bias between Terra and Aqua in their comparison over

continents. Additionally, Scott et al. (2022) RMS values for both all-sky and clear-

sky are significantly larger than in our study. Both Scott et al. (2022) and Kratz

et al. (2020) show that all-sky irradiances have higher RMS and MBD than clear-sky

irradiances over continents. However, the CERES-station difference in Scott et al.

(2022) is only 4 Wm−2. This study found little difference in the RMS and correlation

coefficients between the three cloud fraction bins. However, there is a difference

between the all-sky and clear-sky seasonal analyses. It is quite likely that since the

largest bin of the non-bi-squared regression analysis is 50% cloud fraction, much of

the higher CERES-Mesonet differences lie with cloud fractions greater than 50%. The

systematic larger Terra CERES-Mesonet differences than Aqua were not expected.

A possible explanation for the larger CERES-Mesonet differences during Terra could

be high-level cirrus, which MODIS struggles to detect and is often indistinguishable

from dust (Roskovensky and Liou 2005).

The southeast region of Oklahoma has the largest distribution of irradiance differ-

ences. This is possibly due to water vapor feedbacks and higher annual mean cloud

fraction. In addition, the Mesonet station density is smaller in the southeast region,
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which could have influenced the larger standard deviations, RMS, and MBD. Before

the spatial analysis, we expected the southeast region to have the largest RMS and

MBD, so our results were unsurprising. In addition, the southwest region has a high

frequency of thunderstorm days per year.

The spring and summer had the highest CERES-Mesonet differences. Possible

explanations for the larger decrease in correlations in these seasons are increases in

overall cloud fraction and aerosol optical depth during spring and summer. The late

spring and summer also feature more deep convective clouds. These clouds are more

optically thick, have larger cloud top heights, and are more likely to scatter diffuse

shortwave radiation, which CERES is less likely to resolve (Chakraborty et al. 2022).

The fall and winter seasons have a relatively good agreement for all-sky and clear-

sky days. This mirrors our expectation as the three-dimensional fractal nature of

convective clouds is difficult to account for in a simple parameterization.

This work will be helpful to apply elsewhere globally with similar climate regimes.

Additionally, we learned that the simple parameterization performs well in clear-sky

environments and decently in all-sky environments. As a result, the CERES product is

a great product to estimate the surface radiation budget on cloud-free days and cloudy

days in the fall and winter, when cloud transmittance can be more easily assessed.

Future upgrades to the CERES product will use the Fu-Liou radiative transfer model,

which will help resolve the three-dimensional radiative effects of convective clouds.

Improving our understanding of the surface radiation budget will help us improve

existing global climate models to more accurately model climate change.
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