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Chapter One: Introduction 

"Everything is vague to a degree you do not realize until you have tried to make 

it precise." - Bertrand Russell (as cited in Kosko, 1993) 

In these days of high technology, precision appears to be of paramount 

importance. Classifying items as A or not-A is the goal of various software applications 

throughout the world. Is the stock price high enough to seU? Is the satellite within radio 

range? Do the symptoms correspond to a given diagnosis? Is the pattern an "A?" Is 

the letter string a word? Such examples point to the tradition in Western culture of the 

Aristotlean approach of classification. The present project expects to show that the A 

or not-A approach to lexicality ("wordness") overlooks a rich source of information. The 

idea that all letter strings belong to one oftwo piles (words or not-words) may constrict 

the amount of information available from data collected in the typical lexical-decision 

task paradigm. The present results should indicate whether people process letter 

strings in a continuous ("fuzzy") manner, rather than an either-or (Aristotlean) approach. 

The remainder of the current section describes some issues in the argument of using 

bivalence versus multivalence to describe phenomena. Subsequent sections in this 

chapter explain the fuzzy logic model of perception, word recognition theories, and a 

fuzzy logic model of lexicality. 

The history of modern science is deeply rooted in bivalent, either-or 

explanations of phenomena. However, there are a few drawbacks to the Aristotlean 

approach. One problem is that most measured quantities are continuous. When a 

person claims to weigh 150 pounds, this value has been rounded off. Very few (if any) 

individuals weigh exactly 150 pounds. Continuous quanitities are rounded off all the 

time, especially to fit constraints of a computer's 1 s and Os. This rounding error is 

labelled the quantization problem (Kosko, 1993). Parts of reality are discarded to "fit 

the grid." Compact disc audio technology was heralded as cleaner than analog 

recording techniques, yet serious audiophiles complain that the quantization used in 
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digital recording robs the sound of its richness. Even at 44,100 samples per second, 

parts of the signal are lost to fit the grid (Kesko, 1993). The present disucussion will 

suggest that current lexicality models lose information due to the quantization problem. 

Given a glass with a little water left in it, people round off the amount of water 

and call the glass empty. As a result, the 5% or 10% left in the glass has been 

quantized to 0%. Similarly, a glass filled to 80% or 90% of capacity is rounded to 100% 

when quantized. A glass filled to exactly 50% of its capacity presents a problem to 

bivalent logic, namely how to round 50%. Does 50% get rounded to 0% or 100%? 

Bivalent logic demands an answer to the question "Is the glass full or empty?" 

Similarly, standard lexical decision paradigms sort letter strings into two categories, 

"word" or "not word." How do people classify a word they commonly misspell? 

Technically it is not a word, but to the misspeller it is. Again, this example illustrates 

how information may be lost when the only alternatives are yes or no. 

Another classic example of the limitations of bivalent logic is found in Bertrand 

Russell's barber example. In this example a barber posts a sign in his shop that states 

"I shave all, and only, those men in town who do not shave themselves." Who shaves 

the barber? If he shaves himself, he contradicts his sign. If he does not shave himself, 

his sign claims that he does. He appears to shave and not shave himself at the same 

time. This problem is deemed a paradox by bivalent logic standards. 

The examples of the glass and the barber are called midpoint phenomena 

(Kesko, 1993). A fuzzy interpretation is one way to avoid these midpoint phenomena. 

A continuum of response values allows the glass to be half full or half empty. Because 

bivalence operates on the law of the excluded.middle, the barber and the glass present 

a paradox to the Aristotlean dichotomy. Multivalence allows the midpoint so that a 

glass can contain 50% of its capacity. An answer of "half" is acceptable in a 

multivalence approach. 
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A more modern example considers a new car owner's pride and joy parked in 

two spaces to avoid those dreaded first door dings. The bivalent view states that the 

car is parked in whichever space is most covered by the vehicle, necessarily rounded to 

one car per space. In the bivalent case, the statement ''I parked in space A" is either 

totally true or totally false. Multivalence, however, allows a car parked in several 

spaces, most of them to degree 0%. Perhaps the new car owner parked 80% in space 

A and 20% in space B. Then the statement "I parked in space A" is 80% true and 20% 

false. Fuzzy logic avoids the quantization problem ("I parked in space A" can only be 

true or false) through the use of intact information ("I parked in space A" is true to the 

degree 80%). 

Many critics of fuzzy logic claim that it is just probability theory in disguise. This 

claim is false. When a person draws an ellipse, the ellipse can be viewed from a fuzzy 

perspective (it is a fuzzy circle) or a probabalistic perspective (it is probably a circle). 

Which perspective is more accurate? Kosko (1993) asks the crucial question of where 

to find the randomness required by the probability view. In his argument that fuzziness 

is not probability, Kosko states that probability is a fiction used to round off the excuded 

middle. Kosko also claims that probability just predicts long-term average behavior 

based on the past, e.g., flipped coins, but that no one can catch probability in the act. 

Probability may give structure to competing hypotheses about how the future unfolds, 

but probability is really all in one's mind. For the ellipse as fuzzy circle example, one 

could base the fuzziness of the circle on the ratio of the major and minor axes. When 

these axes are equal, the ellipse is a circle to the degree 100%. When one axis is 

infinite and the other is zero, the ellipse is a line and thus a circle to the degree 0%. 

There is no similar analog to the probabilistic view of the ellipse. One may base 

whether the ellipse is classified as "probably" a circle by polling a number of raters, but 

there is still no reality involved. There is a big difference between an ellipse with axes 

of ratio 0.5 (a circle to 50%) and a 50% chance of a shape being labeled a circle. 
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Similarly, there is also a big difference between a letter string rated with degree of 

"wordness" 50% and a letter string with a 50% chance of being a word. 

From another angle, probability decreases when precision increases. More 

information diminishes the need for probability. However, when precision increases, 

fuzziness increases as well (Koska, 1993). More information helps to pin down the 

exact shape of the curve between "thing" and "non-thing." Bivalence only describes 

whether an item is considered part of a category or not. Mulitvalence describes the 

boundary between thing and non-thing. Therefore, more information only helps clarify 

which items go on which side of the boundary in the bivalent case, whereas in the 

multivalent case more information helps clarify the actual boundary. 

The present study investigates the multivalent perspective as applied to 

lexicality ratings. The bivalent perspective considers letter strings as either words or 

nonwords. More examples of letter strings increase an individual's awareness of what 

is or is not a word. Neural networks are excellent bivalent classifiers. Seidenberg and 

McClelland (1989) designed a neural network which classified letter strings as words or 

nonwords with fairly good (85% accuracy) success. However, the multivalent case 

describes word strings with degrees of wordness. An increase in the exposure to letter 

strings and a broad range of the degrees of wordness increases an individual's 

awareness of the factors that actually contribute to the lexical decision. The main 

research question of the present study is whether lexical information is lost due to the 

quantization problem. To answer this question, individuals will be allowed to rate letter 

strings with degrees of lexicality, as opposed to traditional yes/no approaches. The 

data should show that individuals process lexicality information according to a 

multivalent approach. 

A Model of Perception 

Massaro's (1988a) fuzzy logic model of perception (FLMP) is used as the 

backbone for the present investigation. This flexible model has been applied to speech 
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perception (Massaro, 1988a, Oden & Massaro, 1978), pattern recognition (Massaro, 

1994), and depth perception (Massaro, 1988b). The FLMP for lexicality will be used in 

the present investigation as a starting point to determine if people will consistently rate 

letter strings according to a multivalent approach. 

The FLMP is a model consisting of three operations - feature evaluation, feature 

integration, and decision (see Figure 1). Features can be any physical event 

transduced by the sensory system and are continuously valued from O to 1. Features 

are assumed independent of one another in the detection·stage of processing (Oden & 

Massaro, 1978). Examples of features are the acoustic components of speech 

syllables such as place and voicing (Oden & Massaro, 1978), auditory and visual cues 

in speech perception (Massaro, 1988a), and depth perception cues such as size, 

height, occlusion, and motion parallax (Massaro, 1988b). 

During the feature evaluation stage, features are evaluated according to 

prototype descriptions in memory. Features are assumed to be independent - "the 

value of one feature does not influence the value of another'' during the feature 

evaluation stage (Oden & Massaro, 1978, p. 173) Prototypes, which are 

representations in long-term memory coincident with perceptual units, are generated for 

the task at hand. Prototypes are not just a collection of features, "but rather are 

propositions that may be, in principal, arbitrarily rich in logical structure" (Oden & 

Massaro, 1978, p. 17 4). For example, the phoneme /b/ would be represented by the 

propostition (labial) AND (voiced). Similarly, /p/ would be represented by the proposition 

(labial) AND [not (voiced)] (Oden & Massaro, 1978). 

Features of prototypes correspond to ideal values that an exemplar should have 

if it is a member of a given category. Feature evaluation provides information 

concerning the degree of match between the feature of the stimulus and the 

corresponding feature in the prototype. The FLMP assumes that a feature is not simply 
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detected, but is "perceptually more or less present" (Oden & Massaro, 1978. p. 175). 

For example, Massaro (1988a, p. 129) explains 

Although the prototype /ba/ is supported to degree .999 by a visual /ba/ 
articulation, the prototype for /bda/ also is supported .331. Thus, a visual 
/ba/ is fairly consistent with the alternative /bda/. Similarly, a visual /da/ 
supports not only Ida/ .937, but also /tha/ to degree .535. 

During the integration stage, features within each prototype are conjoined. The 

result of this combination is that the FLMP reports back the degree to which each 

protoype matches the stimulus. In other words, prototypes are generated for the task, 

the stimulus is broken down into features, the degree of match between stimulus 

feature and prototype feature is produced, and the degrees of all the matches are 

combined. The result is an overall degree of match between the stimulus and each of 

the generated prototypes. 

Finally, a decision is made as to the match of the relevant prototype relative to 

the sum of the matches of all the relevant prototypes. The sum of the matches gives a 

rating judgment of the degree to which the stimulus matches a prototype. Some 

prototypes may match the stimulus to the degree of 0%, others may match to the 

degree of 50%, while still others may match to the degree 90% or 100%. The relative 

goodness of match provides a rating judgment corresponding to the degree to which 

the stimulus matches the generated category (Massaro, 1988a, 1993). To put it 

another way, because perception is a noisy process, the decision stage is a 

probabalistic process due to the fact that a given physical stimulus can be perceived 

different ways at different times. As a result, the probability of identifying a given 

stimulus should correspond to the goodness of match for that prototype relative to the 

sum of the goodness-of-match values for all prototypes under consideration (Oden & 

Massaro, 1978). 

The processes of the FLMP just described may appear very similar to 

Selfridge's (1959) pandemonium model. In that model, Selfridge's computational 
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demons would do the feature evaluation, the cognitive demons would perform the 

prototype match, and the decision demons would choose among the prototype 

alternatives. Oden and Massaro explain the differences in the models: 

[W]hereas the fuzzy logical model is intended to describe the 
cognitive processes that are actually used by humans to 
identify speech sounds, Selfridge (1959) was primarily interested 
in the problem of learning to make correct identifications. Thus, 
Selfridge concentrated on how Pandemonium might be made to 
come to discover the appropriate features and feature integration 
rules over the course of training trials. In contrast, the [fuzzy logical 
model] ... relied on intuition and on the analytic linguistic description 
of the phonemes to formulate the corresponding prototype 
specifications (Oden & Massaro, 1978, p. 187). 

Massaro (1988a, 1988b, 1993, 1994) and Oden and Massaro (1987) have 

tested the FLMP in several different areas (speech perception, pattern recognition, and 

depth perception). Most of this work has dealt with speech perception, and the findings 

have been consistently in favor of the FLMP over more traditional models such as a 

categorical model (Massaro, 1988a) or additive model (Oden & Massaro, 1978). In the 

speech perception domain, Massaro (1987) has successfully demonstrated the FLMP 

fits observed data significantly better than a categorical representation using a visual 

continuum only, an auditory continuum only, combined visual and auditory contiua, 

forced choice trials (rate the given syllable as /ba/ or Ida/), open-ended trials (rate the 

given syllable as /ba/, Ida/, /dba/ (a /ba/-/da/ hybrid), Iva/, /ga/, or other), and across 

age groups. Oden and Massaro (1978) varied voice onset times and place of 

articulation of speech syllables and found the fuzzy model fit the data better than the 

more traditional additive model. 

Similarly for depth perception, the FLMP was found to fit the data significantly 

better than an additive model of perception (Massaro, 1988b). Oden (1977) also found 

a fuzzy model provided an excellent fit for the degree of match of exemplars to 

categories (A robin is a bird, A butterfly is a bird). Because of the consistent findings of 

fuzzy model studies, the FLMP will be used in the present experiments as a 
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springboard by which to investigate whether people will rate letter strings according to a 

fuzzy model. 

One of the main ideas of the FLMP used in the present investigation is that as 

one informational component becomes ambiguous or unusable, individuals will rely on 

other available informational components to make response decisions. For example, in 

the speech perception domain, if the auditory component becomes ambiguous, 

individuals have been found to rely on the visual component (Massaro, 1988a). 

Similarly, the phenomenon of the "McGurk effect" indicates that visual information can 

influence what is heard when the combination of nonsensical visual and auditory stimuli 

are interpreted as a meaningful speech event (Massaro, 1988a). One of the main 

working assumptions of the present study is that, when rating a letter string's degree of 

wordness, people will rely on the phonological component of the string if the 

orthographic component gives no helpful information and vice versa. 

The present project is undertaken on the basis of two working assumptions. 

The first, the substitutability assumption is consistent with the FLMP in that individuals 

will rely more on alternative information sources when a particular source is ambiguous. 

In the speech perception case, if the visual information is ambiguous, individuals will 

rely on the auditory component of the stimulus for response selection. Similarly for 

depth perception, if occlusion is ambiguous, individuals will rely more on size, height, 

and motion parallax for their final depth perception rating. The substitutability 

assumption in the present study is that, as one component of written language 

becomes ambiguous, the other(s) will be relied upon more to determine the degree of a 

letter string's wordness. For example, given two illegal nonwords (e.g., SNARE, 

FTARI), the decision of which is more wordlike may rest on the stimuli's respective 

neighborhoods or bigram frequencies because other components of written language 

(e.g., word frequency, phonology) are of no help to the judgment of wordness for illegal 

nonwords. 
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The second, generalizability assumption of the present study claims that a fuzzy 

model of lexicality will agree with current theories of word processing. In other words, 

the fuzzy model of lexicality should support previous lexical processing results. An 

example would be that, all other components being equal, wordness may be rated as a 

function of bigram frequency (cf. Massaro, Jastrzembski, & Lucas, 1981), phonology 

(cf. Van Orden, Johnston, & Hale, 1988), or frequency (cf. Stone & Van Orden, 1993). 

The generalizability assumption claims a multivalent model will provide richer 

information about lexical processing than a bivalent model. The elimination of the 

quantization problem by using a multivalent approach should expand previous 

research, not fly in the face of it. 

Word Recognition 

One common methodology in the study of word recognition is the lexical 

decision task. Rubenstein, Garfield, and Millikan (1970) first used the lexical decision 

task to test the hypothesis that word recognition involves use of a mental lexicon. As in 

most subsequent lexical decision experiments, participants were required to respond 

"yes" if they thought a stimulus was a word and "no" if they believed the stimulus was 

not a word. Dependent variables were reaction times and percent correct. Data 

indicated that the longest reaction times for word stimuli were in the low frequency

nonhomographic case. Low frequency-nonhomographic words (e.g., CAFE) were 

recognized more quickly than nonwords (VERK), but more slowly than homographs or 

polysemous words (BANK). Other significant variables influencing Rubenstein et al.'s 

reaction time scores were frequency (low vs. high), homography (many meanings vs. 

one meaning), and an interaction between concreteness (perceptible through the 

senses versus abstract) and homography. These findings have been supported 

throughout the lexical-decision literature (see Gernsbacher, 1984, for a review). 

Other variables investigated with the lexical-decision task are neighborhood (the 

number of words made by changing one letter in a given stimulus) and bigram 
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frequency (the frequency values of letter pairs, e.g., ea or th, within a word). Coltheart, 

Davelaar, Jonassen, and Besner (1977) defined the neighborhood (N) measure and 

used it to study neighborhood effects on lexical decision latencies. Coltheart et al. 

found no neighborhood latency effects for words, but found a difference in response 

latency between high N and low N nonwords. · Andrews (1992) took Coltheart et al.'s 

study further by investigating N and bigram frequencies. Andrews found N effects were 

due to lexical similarity and not orthographic redundancy. However, Gernsbacher 

(1984) has shown that only experiential familiarity (not printed frequency) significantly 

affected recognition reaction times. 

Other studies using the lexical decision task have investigated word superiority 

effects (Paap, Newsome, McDonald, & Schvaneveldt, 1982). The lexical-decision task 

has also been used as a means of supporting the continuous debate as to the 

existence of a mental lexicon (Besner, Twilly, McCann, & Seergobin, 1990; Fera & 

Besner, 1992; Seidenberg & McClelland, 1989, 1990; Morton, 1969). The latter issue 

arose out of developments in neural net modeling and pertains to whether local 

representations of words are required to perform the lexical-decision task, or whether 

distributed representations of words are sufficient to perform the task. 

The lexical decision literature ( see Massaro, et al., 1981) suggests word 

frequency and word regularity play some role in lexical-decision processing. Reguarity 

is the extent to which English words can be pronounced by analogy to other English 

words. In other words, regularity is how much a word violates grapheme-to-phoneme 

correspondence rules. The present generalizability assumption claims that a fuzzy 

model of lexicality will not contradict previous lexical-decision findings. For that reason, 

both printed frequency and regularity will be manipulated to determine their roles (if 

any) in the fuzziness of lexicality (i.e., in wordness ratings). Previous research 

(Massaro, et al., 1981) suggests that higher frequency or greater regularity will lead a 

letter string to be rated as more wordlike than stimuli of low frequency or less regularity. 
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One way to investigate the frequency and regularity variables is to use pairwise 

comparisons. Given two words matched for phonology and frequency (e.g., 

homonyms), the string with the greater regularity should be chosen as more wordlike if 

regularity plays a role in wordness ratings. In the present study, homonyms matched 

for frequency will be compared to determine if regularity is a component of lexicality. 

Alternatively, homonyms matched for regularity will be compared to determine if 

frequency is a component of lexicality ratings .. 

In the nonword case, bigram frequency is used instead of regularity. Therefore, 

an illegal nonword (e.g., SNARE) should be selected as more wordlike than an illegal 

nonword with lower bigram frequency (e.g., TNEZT). In this case, frequency and 

phonology are not variables and thus would not enter into the decision. Such pairwise 

comparisons will allow an isolation of variables pertinent to wordness ratings. 

Oden (1977) used pairwise comparisons to determine whether individuals would 

consistently rate categorical exemplars according to a fuzzy model. Participants chose 

which of two sentences were more representative of a category (A ROBIN IS A BIRD, 

AN OSTRICH IS A BIRD) and rated the subjective difference between the stimuli. 

Oden found exemplars of categories fit a fuzzy model. The present study changes 

Oden's stimuli from sentences to letter strings. This change results in a modification of 

the typical lexical-decision task. Types of letter strings can then be manipulated to 

determine the lexicality of those strings. The present study manipulates the letter 

strings for frequency, regularity or bigram frequency, and phonology. The specific 

manipulations will be described in the next section. These manipulations will help 

determine which (if any) variables are components in fuzzy lexicality processing. 

Prior research suggests people will consistently rate letter strings according to a 

fuzzy model. Gernsbacher (1983, as cited in Gernsbacher, 1984) found printed 

frequency to be a fuzzy, not a crisp, concept. She had participants rate same

frequency words according to familiarity. Her results showed that low-printed-frequency 

11 



words differed substantially across experiential familiarity. Balota and Chumbley (1984, 

p.352) suggested 

the basic notion is that words and nonwords differ on a 
familiarity/meaningfulness (FM) dimension. A particular letter string's value on 
this FM dimension is based primarily on its orthographic and phonological 
similarity to actual words. The word and nonword distributions on the FM are 
separated but overlap. 

Gernsbacher's (1983) findings and Balota and Chumbley's suggestion indicate that 

frequency is a fuzzy variable. If that is the case, frequency should contribute to the 

fuzziness in lexicality ratings because a decision based on a fuzzy quantity is in itself a 

fuzzy quantity (Pedrycz, 1991). 

For the phonological case, Van Orden, Johnston, and Hale (1988) found that 

false positive errors to pseudohomophones were more likely than false positive errors 

to nonhomophonic nonword control foils. For example, false positive errors were found 

more often in the case "SUTE" as AN ARTICLE OF CLOTHING than in the case 

"SULE" as AN ARTICLE OF CLOTHING. Van Orden et al. stated that phonological 

characteristics of nonword foils are critical to word identification. Gernsbacher (1984) 

also states that pronounceable nonwords are harder to reject as nonwords than 

nonpronounceable nonwords. Because phonology appears to contribute to nonword 

lexicality, it will be included in the present experiments. Learning that phonology 

contributes to wordness ratings, if the hypothesis is confirmed, will provide converging 

evidence that pronounceable nonwords are more similar to words than are 

phonologically illegal nonwords. This evidence will also support the idea that all 

nonword lexicality is not equal. 

Finally, the generalizability assumption encourages the inclusion of reaction 

time data in the present experiments. Pisoni and Tash (1974, as cited in Oden & 

Massaro, 1978) found decision latencies for a choice that two sounds were the same 

phoneme were dependent on the phonemes' degree of similarity with respect to voice 
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onset time. Stone and Van Orden (1993) found that correct reaction times to words 

and the advantages of high-frequency over low-frequency words were greater when the 

nonword foils were more wordlike. These resultswere true in the case of illegal versus 

legal nonwords and legal nonwords versus pseudohomophones. The present 

experiments include reaction time (surreptitiously measured) as a variable in order to 

show that these previous findings can be included in a multivalent model of lexicality. 

To recapitulate the concepts introduced so far, (a) fuzzy logic claims that most 

events are a matter of degree, (b) the FLMP predicts that individuals make decisions 

based on the degrees to which various stimulus components contribute to the overall 

psychological experience of the stimulus, c) decisions based on fuzzy quantities are 

fuzzy decisions, and d) the word recognition li.terature suggests that phonology, 

orthography, frequency, and neighborhood each contribute to lexical decisions. 

A model of computed lexicality 

The main idea of the present discussion is that prior word recognition studies 

have overlooked information due to the quantization problem, or rounding off the 

excuded middle. The proliferation of bivalent models of lexicality may be due to the 

idea of a lexicon, or mental dictionary. Lexicon-based models assume people have a 

separate node for each word they have learned. These models constrict the concept of 

lexicality to the bivalent case; either a letter string is in the lexicon (is a word) or it is not 

in the lexicon (is a nonword). 

Seidenberg and McClelland (1989) developed a parallel distributed processing 

(PDP) model to show that a lexicon is not necessary for word recognition or 

pronounciation. The PDP model involved the training of a neural network on a corpus 

of almost 3000 words and their pronounciations. Seidenberg and McClelland found 

that their trained model could perform the lexical decision task fairly well without the 

use of a lexicon. Thus, the door has been opened to the use of non-lexicon-based 

models. 
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However, neural networks are not the only answer. Many areas in science and 

engineering are now combining neural networks with fuzzy systems to enhance the 

capabilities and accuracies of neural networks alone (Kesko, 1993). The time may 

have come for the Seidenberg and McClelland (1989) model to be combined with a 

fuzzy system. If the expected results obtain, this combination of neural network and 

fuzzy system may be the next step in computational models of lexicality. 

Variables used in the present study 

Previous word recognition research as mentioned above has indicated that 

some of the important variables in lexical~decision tasks are word frequency, regularity, 

orthograpy, and phonology. Each of these variables will be manipulated to determine 

what role (if any) it plays in the fuzziness of wordness decisions. The manipulations fall 

within two broad categories, various types of word and and various types of nonword 

letter strings. Words will not be compared with nonwords. However, several 

comparisons will be made within each category. 

In the nonword category, pseudohomophones (BRANE, PHLAG), legal 

nonwords (SOOK, BLORE), and illegal nonwords (BSETE, WRATL) will be used to 

investigate the orthographic and phonological variables. Each letter string will be 

compared to the other letter strings in the nonword category. The results are expected 

to show that relative truthfulness ratings of the comparisons (e.g., BRANE IS A WORD, 

SOOK IS A WORD) will follow a pattern consistent with the fuzzy model. Results are 

expected to show that 1) pseudohomophones will be selected as more wordlike than 

legal and illegal nonwords, 2) legal nonwords will be selected as more wordlike than 

illegal nonwords, and 3) when two letter strings of the same type are presented (e.g., 

two different illegal nonwords) the string with the larger bigram frequency will be 

selected as more wordlike. 

In the word category, homonyms will be matched for frequency or regularity. 

The use of homonyms (e.g., BLEW, BLUE) eliminates phonology as a component in 
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the lexicality decision. Thus, the higher frequency or more regular homonym should be 

selected as more wordlike than the lower frequency or less regular alternative. 

Irregular words (HAVE, AISLE) will be matched for frequency, with the assumption that 

higher frequency irregular words will be chosen as more wordlike than lower frequency 

irregular words. In the irregular word case, orthography is held at a low level to 

compare the stimuli for frequency effects. Similarly, irregular words will be compared 

with regular words matched for frequency. The data should show that regular words 

are considered more wordlike than irregular words of the same frequency. In this case, 

orthography is manipulated between the regular and irregular words. 

A visualization of one possible continuum of lexicality ratings is shown in Figure 

2. Illegal nonwords should most likely be considered least wordlike of the stimuli. 

Similarly, the word stimuli should all be rated as fairly wordlike, but the actual order of 

frequency, regularity, and phonology will be determined by the data. The right side of 

Figure 2 indicates how traditional bivalent models group lexicality. The figure suggests 

how some of the richness of the data can be lost in the bivalent case. 
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Hypotheses 

The current hypotheses, based on previous research findings and the present 

discussion are listed below. Figure 3 illustrates in tabular form the hypotheses and the 

stimuli expected to be favored for each one. 

For the nonword category: 

1) Pseudohomphones will be selected as more word like more often than illegal 

nonwords. 

2) Pseudohomophones will be selected as more wordlike more often than legal 

nonwords. 

3) Legal nonwords will be selected as more wordlike more often than illegal 

nonwords. 

4) When legal nonwords are compared with other unique legal nonwords, the 

stimulus with the larger neighborhood will be selected as more wordlike more often. 

5) When illegal nonwords are compared with other unique illegal nonwords, the 

stimulus with the larger neighborhood will be selected as more wordlike more often. 

For the word category: 

6) Given a homonym pair matched for frequency, the word with greater 

regularity will be chosen as more wordlike more often than the less regular word. 

7) Given a homonym pair matched for spelling, the higher frequency word will 

be chosen as more wordlike more often than the lower frequency word. 

8) High frequency irregular words will be chosen as more wordlike than low 

frequency irregular words. 

9) When matched for frequency, regular words will be chosen as more wordlike 

than irregular words. 

10) Response latencies should be longer for stimuli which are closer together on 

the lexicality continuum than stimuli which are farther apart (e.g., the response latency 

for the lexicality decision between a pseudohomophone and an illegal nonword should 
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be much shorter than the response latency to decide the greater lexicality of two unique 

illegal nonwords). 
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Chapter Two: Method 

Design. The current investigation used a within-subjects design. All participants 

evaluated all of the letter strings. The reason for this approach is that frequency is an 

internal dimension and the comparison of subjects across groups may produce invalid 

results. Archer and Wang (1991) have shown that grade of membership is subjective 

and context-dependent, therefore, stimulus ambiguity will vary differently for different 

individuals. Similarly, regional dialects may play a role in the extent to which some 

stimuli are considered pseudohomophones. As a result, participants were exposed to 

all the manipulations of orthography, phonology, and frequency. 

Subjects. Thirty Oklahoma State University undergraduate volunteers (nine male, 

twenty-one female, average age 22.8 years) participated in the experiment. All were 

native speakers of English with normal to corrected-to-normal vision and received a 

small amount of course credit for their participation. 

Apparatus. The stimuli were presented on an Apple II computer with a monochromatic 

screen. Stimulus presentation and scoring programs were written in BASIC. 

Stimuli. Nonword stimuli were taken from Stone and Van Orden (1993) and Andrews 

(1989). Homonym pairs can be found in McRae, Jared, and Seidenberg (1990). A list 

of all the stimuli is included in Appendix A. Average bigram frequency for the illegal 

nonword case was one for the low condition and 33 for the high condition. For the 

legal nonword case, the average bigram frequency was 90.5 for the low condition and 

191 for the high condition. Pseudohomophone bigram freqencies were 76.5 for the low 

condiiton and 178 for the high condition. Bigram frequencies were computed from 

tables in Mayzner and Tressalt (1965). Values of average counterpart word 

frequencies for the pseudohomophones (Kucera & Francis, 1967) were 39.67 for the 

high condition and 2 for the low condition. 

The mean word frequencies (taken from Kucera & Francis, 1967, with 

frequencies listed as per million) of the stimuli used were as follows. For the matched 
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frequency homonym case, the mean frequencies were 40.6 for the regular words and 

60.5 for the irregular words. For the matched spelling homonym case, the high 

frequency condition mean was 181.0, while the low frequency condition mean was 4.5. 

For the irregular low frequency case, the mean frequency was 3.1, while the regular low 

frequency case mean frequency was 5.4. For the irregular high frequency case, the 

mean frequency was 167.6, while the irregular low frequency case mean was 7.8. 

Procedure. Participants were presented with two sentences (e.g., BRANE IS A WORD, 

PH LAG IS A WORD). One sentence was presented above the other sentence, 

separated by a blank line of type. Individuals were instructed to enter their choice of 

which sentence had a greater truth value and then enter a rating of how much more 

truthful the selected stimulus was as compared to the remaining stimulus. Ratings 

ranged from "9" (very much more truthful) to "1" (about the same amount of 

truthfulness). Each trial was surreptitiously timed by a software clock (Price, 1979) from 

the moment the stimulus appeared on the screen until the participant responded by 

pressing the appropriate response key ("1" for the top sentence, "2" for the bottom 

sentence). 

Participants were asked to compare all nonword stimuli with all other nonword 

stimuli. Each nonword letter string was compared to all the other nonword letter strings. 

As a result, 190 nonword comparisons were made, 45 for the illegal nonword/illegal 

nonword comparison, 10 each for the legal nonword/legal nonword and 

pseudohomophone/pseudohomophone comparisons, 50 for the legal nonword/illegal 

nonword comparison, 50 for the illegal nonword/pseudohomophone comparison, and 

25 for the legal nonword/pseudohomophone comparison. Ten unique illegal nonwords 

and ten unique legal nonwords (five legal, five pseudohomophones) comprised the 

nonword stimulus set. Ten frequency-matched homonym pairs, ten spelling-matched 

pairs, ten high-frequency regular words, ten high-frequency irregular words, and five 

high-frequency and five low-frequency irregular words comprised the word stimulus set. 
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Participants were only asked to compare words of similar categories (e.g., 

irregular/regular words, matched homonym pairs). In all, 145 word stimuli comparisons 

were made. Thus, participants compared 335 stimulus pairs. Each stimulus pair 

presentation was initiated by the participant (e.g., a self-paced schedule was used). 

The order of stimulus presentation was randomized in several ways. The stimuli 

were randomized within category (e.g., all the illegal nonwords were randomized 

amongst themselves), within presentation pair (whether a particular stimulus was 

presented first or second in a given comparison), and across the experiment (e.g., the 

order of presentation of the various types of comparisons). The randomization reduced 

the amount of confounding that might have occurred due to order effects or practice 

effects. 

Three dependent variables were measured. The first variable was reaction time 

between stimulus presentation and selection of the sentence rated as more truthful. 

The second variable was the choice of letter string in each trial selected as more 

wordlike. The third variable was the rating of how much more truthful the selected 

sentence was as compared to the first sentence. 
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Chapter Three: Results 

Nonword comparisons 

Significant differences were found for most of the hypotheses listed in Chapter 

1. The mean number of pseudohomophones chosen over illegal nonwords (hypothesis 

1) was 46.67 (out of 50 comparisons), a value which differs significantly from a chance 

value of 25, ! (29) = 33.84, Q < .00001. Similarly, the mean number of times a legal 

nonword was chosen over an illegal nonword (hypothesis 3) was 47.4, again a reliable 

difference from the chance value of 25, ! (29) = 45.25, Q < .00001. Of a total of 25 

comparisons, the mean number of pseudohomophones chosen over legal nonwords 

(hypothesis 2) was 16.27, a value also significantly different from the chance value of 

12.5, ! (29) = 6.06, Q < .00001. 

For the cases in which like stimuli were compared (e.g. an illegal word with an 

illegal word, MRAUB/LREOT), bigram frequency counts were used to separate the 

letter strings into two groups. In the case of illegal nonwords, the letter strings with 

higher bigram frequency were chosen significantly more often than the strings with 

lower bigram frequency. The mean number of illegal strings with higher bigram 

frequency chosen over those with lower bigram frequency (hypothesis 5) was 15.33 

(out of 25 comparisons). This value differs significantly from the chance value of 12.5, 

! (29) = 5.50, Q < .00001. 

When legal nonword strings were compared with each other (hypothesis 4) no 

significant differences were found based on bigram frequency. The mean number of 

higher bigram frequency strings chosen (out of 6 comparisons) was 3.1, compared to 

the chance value of 3, a non-significant difference,! (29) = 0.45, Q > .05. 

The instance of comparing pseudohomophones with each other suggested two 

ways to analyze the data. One was to look at the bigram frequencies, in order to be 

consistent with the measures of the other two (illegal and legal) nonword cases. 

Because these strings are pseudohomophones, however, they were also compared 
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according to the frequency of the words they sound like. For example, the 

pseudohomophone SHU RT would be assigned the frequency of the real word SHIRT. 

In the case of bigram frequency, no significant difference was found between high and 

low bigram frequency pseudohomophones. The mean number of times a higher 

bigram frequency pseudohomophone was selected over the lower frequency 

pseudohomphone (out of 6 comparisons) was 2.63, a value not reliably different than 

the chance value of 3, ! (29) = 1.59, Q. > .05. 

A different finding is apparent when the pseudohomphones are compared using 

the frequencies of their real-word counterparts. The mean number of times a string 

with a higher frequency counterpart was chosen over the lower frequency counterpart 

(out of 6 comparisons) was 3.53, a significant difference from the chance value of 3, t 

(29) = 2.39, Q. < .025. 

Word comparisons 

For the case of homonyms (BETTER/BETTOR) matched for spelling with 

different frequencies (hypothesis 7), the word of higher frequency was chosen as more 

wordlike significantly more often than the word of lower frequency. The mean number 

of times the higher frequency word was chosen over the lower frequency word (out of 

10 comparisons) was 7.43, a significant difference from the chance value of 5, ! (29) = 

8.38, Q. < .00001. 

Homonyms with different regularity and similar frequencies (e.g., SITES/ 

SIGHTS, hypothesis 6) also produced frequency effects. Words with higher frequency 

were chosen more often than those of lower frequency. The mean number of higher 

frequency words chosen (out of 10 comparisons) was 6.37, again a reliable difference 

from the chance value of 5, ! (29) = 5.44, Q. < .00001. However, no reliable regularity 

effect was found because the average number of higher regularity words chosen was 

5.5 (out of 10 comparisons), which is not statistically different from the chance value of 

5, ! (29) = 1.82, Q._> .05. 
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For words of similar frequency but different regularity (hypothesis 9), regular 

words (e.g., CLOWN) were chosen as more wordlike more often than irregular words 

(e.g., RESIGN). The mean number of times a regular word was chosen as more 

wordlike (out of 100 comparisons) was 68.77, a reliable difference from the chance 

value of 50, ! (29) = 9.03, Q < .00001. 

In the case of matched irregularity and different frequency (e.g., CAFE/BUILD, 

hypothesis 8), the higher frequency words were chosen as more wordlike more often 

than the lower frequency words. The mean number of times the higher frequency 

irregular word was chosen (from 25 comparisons) was 16.60, a Significant difference 

from the chance value of 12.5, ! (29) = 6.59, Q < .00001. 

Reaction times 

Mean reaction times for each comparison type are listed in Table 1. Table 2 

describes which of the reaction time differences are significant. A graph of all the 

reaction times is shown in Figure 4. 
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Chapter 4: Discussion 

The following discussion consists of two parts. The fist part will describe how 

the present data show that participants used graded judgments of wordness. The 

second part will describe a tentative process model of those wordness ratings. The 

second part will be divided into explanations of reaction time data· and explanations of 

preference data. 

Evidence against a categorical model 

To review, a categorical model implies that judgments are made in a simple yes 

or no fashion. The categorical approach to lexicality suggests that people rate letter 

strings as "words" or "nonwords." Given a large number of letter strings, people 

(according to the categorical view) would divide the strings into two piles only, a word 

pile and a nonword pile. The lexical decision task forces individuals to use this 

dichotomous approach. In the lexical decision task, participants are requested to state 

whether a letter string is a word or not. While this approach has provided a wealth of 

information about the processes used in the perception of written language, it leaves 

untouched the question of whether all words (or nonwords) are created equal with 

respect to lexical status. -

On the other hand, a continuous model allows graded judgments. Responses 

of "sort of," "mostly," and "not really" are allowed in addition to "yes" or "no." The 

continuous approach to lexicalty implies people rate letter strings according to a 

continuum. Given the same large number of letter strings suggested in the preceding 

paragraph, any number of wordlike piles may be used, according to how finely a person 

wants to discriminate the letter strings. 

In a lexicality rating task such as the one used in the present experiment, 

participants chose which letter string was more wordlike and indicated the degree of 

difference, thus allowing a continuous rating scale. If participants were actually using a 

categorical model of lexicality, the results of a rating task given comparisons of the 
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same type (e.g., two words or two nonwords) should produce chance results. Thus, the 

rating task should show whether or not all words (or nonwords) are given equal 

responses. The purpose of the present investigation was to answer the question of 

discrete vs. graded responses and perhaps to go on from there as to the factors 

involved in the rating process. 

The present results support a continuous model of lexicality. For both the word 

and nonword cases, significant differences were found in the choices made by 

participants. In every case in which the participants compared dissimilar nonwords or 

dissimilar words, the individuals significantly chose letter strings with higher 

orthographic or phonological consistency or higher frequency. For example, legal 

nonwords were chosen as more wordlike significantly more often than illegal nonwords. 

This legal over illegal preference was almost totally exclusive (95%). Similarly, for the 

case of pseudohomophones compared with illegal nonwords, the pseudohomophones 

were also almost exclusively chosen over the illegals (93%). Also, the comparison of 

pseudohomophones and legal nonwords resulted in pseudohomophones chosen 

significantly more often than the legal nonwords (65%). These results by themselves 

provide strong evidence against a categorical model. 

However, the word data present strong evidence against a categorical model as 

well. For homonym pairs (either same-spelling, e.g., BETTER/BETTOR, or different 

spelling, e.g., FLEX/FLECKS), the word with the higher frequency was chosen 

significantly more often. For irregular spelling/regular spelling nonhomonym pairs of 

similar frequency (e.g., YACHT/SPOON), the regular word (SPOON) was chosen 

significantly more often than the irregular word (YACHT). Finally, in the case of two 

irregular words (e.g., ANSWER/ACHE) of differing frequencies, a reliable frequency 

effect was obtained. Therefore, the present word data show that all words are not 

created equal. 
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To summarize, a categorical model of lexicality predicts that, given two letter 

strings of the same class (word or nonword), people will show no significant 

preferences for one type of letter string (e.g., pseudohomophone or regular) over 

another. A continuous model of lexicality predicts signficantly different preferences of 

letter string type. The data support the continuous model in both word string and 

nonword string cases. 

Development of a lexicality model 

As mentioned in Chapter 1, the model developed by Seidenberg and 

McClelland (1989) could be combined with a fuzzy logic model to enhance the neural 

network only approach. To review, the Seidenberg and McClelland model used parallal 

distibuted processing (PDP) to show that a mental dictionary, or lexicon, is not 

necessary to process letter strings. The network was trained on 2897 words and 

pronounciations and then tested on new words. The PDP model could successfully 

pronounce the words and perform the lexical decision task with about 85% accuracy. 

It should be noted that the model presented here has been developed post hoc 

based on the data obtained. Therefore, all instances of the model's predictions are the 

model's explanation of the present data. However, the model can be used to predict 

outcomes of future work, and can be used as a starting point for a more definitive 

model of fuzziness in lexicality ratings. 

The PDP model provides two types of error scores, a phonological error score 

(PES) and an orthographic error score (OES). The PES is the sum of the squared 

differences between the target activation value for each of the 460 phonological units 

and the actual activation computed by the network. The OES is the sum of squares of 

the differences between a) the values computed by the network's hidden units and fed 

back to the orthographic units and b) the actual inputs given to the orthographic units. 

As just outlined, the PDP computes a phonological score and an orthographic 

score. The frequency of an input can be found in the connection weights within the 
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network. As such, the PDP is an excellent candidate to begin an outline of a fuzzy 

model of lexicality. The remainder of the present discussion will describe a way to 

modify the Seidenberg and McClelland (1989) PDP model to incorporate the present 

findings, with additions from components of Massaro's (1988a) FLMP . 

A fuzzy computational model of lexicality (FCML) 

Strictly speaking, the Seidenberg and McClelland (1989) model is based on a 

categorization task in that it has been used to simulate the lexical decision task, itself a 

categorical method by definition. In Seidenberg and McClelland's version of the lexical 

decision task, the orthographic error score (OES) is set to a certain criterion. If the 

OES is greater than the criterion, the string is labelled a nonword. If the OES is less 

than the criterion, the string is labelled a word. If the present data indicated only the 

orthographic component contributed to lexicality ratings, converting Seidenberg and 

McClelland's model to a fuzzy model would be relatively easy. The model would 

compute the OES for the first letter string, compute the OES for the second letter string, 

compare the two, and select the string with the lower OES as more wordlike. 

The advantage of the FCML over a lexicon-based model is apparent in that the 

type of input string is irrelevant. The model can accept two words, a word and a 

nonword, or two nonwords and can generate a sensible response to any of these 

combinations. This input stage flexibility is one of the reasons the Seidenberg and 

McClelland model was selected as a springboard for a fuzzy lexicality model. However, 

the present data indicate three factors are contributing to the lexicality rating decision. 

Thus, the Seidenberg and McClelland model would require more ability than that 

involving the comparison of the OES for two letter strings. The remainder of the 

discussion describes what changes could be made to the Seidenberg and McClelland 

model to incorporate the present findings. This new model will be referred to as a 

Fuzzy Computational Model of Lexicality (FCML). 
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The FCML computes three decision components at the same time. Thus, an 

orthographic error score (OES), a phonological error score (PES), and a 

frequency/familiarity rating are computed in parallel. Note that the phonological error 

score would be a rating of the pronouncability of a letter string, e.g., how 

unambiguously an individual can find a way to pronounce that string. Seidenberg and 

McClelland (1989) produced OES and PES in their model. They stated that the model 

did show frequency effects, and that these effects were based on the connection 

weights produced during the training phase. Frequencies are introduced into the model 

at the training stage as a pobability. This probability is based on the log of a word's 

frequency as found in Kucera and Francis (1967). These familiarity/frequency values 

will be used in the FCML. 

The FCML and decision times 

Given the present task, the FCML would compute the decision components and 

compare them. The string with the smallest error scores and/or highest familiarity rating 

would be chosen as more wordlike than the other letter string. The three comparisons 

may get equal weight or, if future research.demands it, the model could be modified to 

allocate different weights to the three components, orthography, phonology, and 

familiarity. The factor (OES, PES, or frequency) with the largest difference given the 

two letter strings would determine the choice of letter string. Large intrafactor 

differences (in one, two, or all three factors) between the letter strings would result in 

rapid decision times, while small intrafactor differences produce longer decision times. 

For example, given an illegal nonword (MRAUB) and a pseudohomophone (SKORE), a 

large OES is produced for MRAUB, but a small OES is produced for SKORE. Similar 

results would be found for the PES, while the familiarity ratings for both letter strings 

should be low, but possibly a little higher for SKORE. The FCML predicts a fast 

reaction time for the illegal nonword/pseudohomophone comparison because two 

factors have large intrafactor differences, the OES and the PES. Also, the error scores' 
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differences would be big enough to produce highly consistent choices of the 

pseudohomophone over the illegal nonword. The present data support both the fast 

reaction time prediction and the consistency prediction. Up to this point, however, the 

FCML has not provided any information not available from a categorical model. 

The comparison of legal nonwords provides the evidence needed to 

demonstrate the superiority of the FCML over a categorical approach. The FCML 

predicts slower decision times for stimuli which are more similar on all three dimensions 

of comparison. For example, a legal nonword (SLURT) and a pseudohomophone 

(SKORE) would produce more similar OES and PES values than the illegal 

nonword/pseudohomophone case, but the two still have similar familiarity ratings 

because both stimuli are nonwords. 

Because the error scores are more similar in the legal nonword/ 

pseudohomophone case than in the illegal nonword/pseudohomophone case, the 

model predicts that decision times for the legal nonword/pseudohomophone case 

should increase and the consistency of choices should decrease relative to the illegal 

nonword/pseudohomophone case. The FCML predicts that subjects will consistently 

choose the pseudohomophone over the legal nonword. The categorical model predicts 

chance consistency because both strings are legal nonwords and neither excite any 

lexical entries enough to make consistent discriminative decisions. The data support 

the predictions of the model, in that decision times did increase over the illegal 

nonword/pseudohomophone case, and that consistency also declined but was still 

statistically different than chance in the legal nonword/pseudohomophone comparison. 

Finally, the model predicts that cases with no discernable intrafactor differences 

will require the longest decision time and the lowest consistency in choice of preferred 

letter string. The data again support both predictions. For nonwords, a comparison of 

two legal nonwords (e.g., TREST and SLURT) produced the longest decision times and 

least consistent selection of individual items. According to the model, the OES and the 

29 



PES are not different enough to produce a consistent choice of which letter string is 

more wordlike, and the ambiguity results in longer decision times. Again, because 

these are nonword strings, the familiarity ratings are very low. Therefore, the nonword 

data support the FCML, while a categorical model is not supported by the same 

nonword data. 

For the comparisons involving actual words, the model still holds. For the case 

of same-spelling variable-frequency homonyms (e.g., BETTER/BETTOR), the model 

predicts rapid decision times if the difference in frequency is very large. The decision 

times in this case can only depend on frequency because phonology and orthography 

are held constant. Therefore, the decision times should depend on the difference in 

frequency. The data support the model. The difference in mean frequencies was 

176.5, a fairly large difference. The mean reaction time was in the midrange of all of 

the reaction times measured. A future study could vary the difference in frequency of 

the same-spelling homonym strings to determine if there is an increase in decision time 

as the frequency difference decreases. 

The pairs containing irregular words of differing frequency provide still more 

support for the FCML. In this case, the orthographic regularity is considered low for 

both groups of words, but the frequencies differ (difference of the mean frequencies is 

159.8). Thus, the OES values should be about equal, but the familiarity ratings should 

be very different. It is difficult to determine at this point how the PES values are 

computed in this case, but the difference in phonology should decrease the decision 

times compared to the same-spelling homonym case above. An added difference in 

one of the factors (in this case a phonology difference is added to the frequency 

difference) should decrease the decision times. The data support the FCML in that a 

frequency effect was obtained and the decision times decreased as a result of the 

differing phonologies. 
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For the case of same frequency words with differing regularity, the model 

predicts a regularity effect. Recall that irregular words (e.g., CAFE) cannot be 

pronounced by analogy to other English words, that is, they violate grapheme-to

phoneme correspondence rules. From the nonword data, large orthographic 

differences resulted in the shortest decision times. Thus, the model predicts fairly rapid 

decision times for a large difference in nonword orthography. The model therefore also 

predicts shorter decision times for more regular words (more consistent orthography). 

Again, it is difficult at this point to determine the exact contribution of the differences in 

phonology. But, that a difference exists surely contributes to the decision times. The 

data support the FCML regularity prediction here as well, with decision times for more 

regular words less than those times based on items with similar frequency but low 

regularity. 

Finally, the similar frequency homonym comparisons support the FCML as well. 

In this case, both strings have identical phonology, low OES, and similar familiarity. 

Thus, their decision times should be very long. The data show the longest decision 

times in the case of similar frequency homonyms. The model predicts that one small 

difference and two indiscernable differences produce longer decision times. The data 

in the similar frequency homonym condition support that prediction because two of the 

differences are very small (phonology, orthographic regularity) and one is only slightly 

larger (frequency). 

To summarize, the model predicts longer decision times for stimuli with similar 

factor scores, suggesting an inversely proportional relationship for decision time and 

difference in error scores or familiarity ratings. Thus, one or more very large error score 

differences will produce rapid decision times. A few smaller differences would produce 

longer decision times. No discernable differences or highly ambiguous stimuli on all 

factors would result in the longest decision times. The present data have shown 

consistent support for the decision time explanations of the FCML. 
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The FCML and lexicality decisions 

The FCML also explains lexicality decisions which are reflected in the present 

data. The lexicality decisions also depend on the differences in the error scores or 

familiarity ratings. Larger differences should produce more consistency (choosing the 

same type of letter string consistently) in the choice of greater lexicality. Smaller 

differences should produce less consistency. The data reflect the choice model as 

follows. In all circumstances, the conditions that lead to slower decision times can be 

expected to create less consistent classifications of wordness. 

For the cases involving nonwords, an illegal nonword paired with any legal 

nonword string (including pseudohomophones) will result in a large difference in OES 

and thus a high consistency in the choice of the legal nonword string. The data support 

this prediction, showing the highest consistency for the illegal nonword/legal nonword 

case (95%). The illegal nonword/pseudohomophone case also very high (93%) and is 

not significantly different from the illegal nonword/legal nonword case in consistency. 

In the comparison of legal nonwords and pseudohomophones, the pseudohomophones 

should be chosen consistently over the illegal nonwords, but with a lower consistency 

because the orthography is the same. The consistency with which participants chose 

pseudohomophones over nonwords is based on the phonology differences of the two 

strings, which appears to have a lesser contribution than orthography. The data 

support this view, as the consistency of pseudohomophones chosen over legal 

nonwords dropped to 65%, a number more in line with the word findings. 

The FCML also predicts lower consistencies for the nonword cases in which the 

stimuli are highly similar. The pseudohomophone/pseudohomophone comparison 

showed a lower consistency of choice (59%), which appeared to be based primarily on 

counterpart word frequency. The FCML predicts that the higher counterpart frequency 

pseudohomophone will be chosen more often than the pseudohomophone with a lower 

counterpart frequency. This prediction is supported by the data in that the mean 
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number of times the higher counterpart frequency string was chosen was 3.53, 

significantly different than the chance value of 3.0. 

A higher consistency may be found with a larger difference in counterpart 

frequencies. The mean frequency difference for the present stimuli was only 37. A 

future study could vary the counterpart frequencies of the pseudohomophones to 

determine if higher consistencies are found with larger counterpart frequency 

differences. The FCML predicts a direct relationship between lexicality choice 

consistency and pseudohomophone counterpart frequency differences. The FCML 

predicts non-significant differences for the cases of legal nonwords compared with 

other legal nonwords, and illegal nonwords with other illegal nonwords. The data 

support this prediction, which contradicts the original hypothesis that the choice would 

be based on bigram frequency. 

For the comparisons involving word stimuli, the data also support the FCML. In 

the comparison of same-spelling homonyms, the present model predicts the 

consistency of the choice is dependent on the difference in the frequencies. The 

consistency found for the present data was the highest for the word comparisons 

(74%). Future work could, again, systematically vary the difference in frequency to 

determine the relationship between the frequency difference and the consistency of 

choices. The model predicts that as the frequency difference increases, so will the 

consistency of the lexicality choice. 

For differences in regularity, the model predicts regular words to be chosen over 

irregular words with a consistency less than that of the same-spelling homonyms. The 

data show a reliable consistency (69%), but that may be due to the fact that regularity 

is not as concrete a factor as frequency. Further work could vary the regularity 

according to rules similar to those of Massaro, Venezky, and Taylor (1979). The model 

predicts consistency will increase as the difference in regularity increases. Another 

problem with regularity is that it is, at this juncture, hard to determine how much of 

33 



regularity effects are due to orthography and how much are due to phonology. The 

present study assumes that the majority of the difference is due to orthography, but 

further work needs to be done to confirm or refute this assumption. 

When frequency differs for low regularity words, the model predicts that the 

higher frequency words will be chosen as more wordlike, but again with lower 

consistency than the case of the same-spelling homonyms. This prediction is based 

on the contribution of orthographic regularity, familiarity, and the relationship between 

the two. Lower regularity words' familiarity may vary across individuals according to 

familiarity more widely than is characterized by the words' frequencies. As 

Gernsbacher (1984) pointed out, words of similar frequency can vary widely according 

to familiarity. Therefore, the familiarity of low regularity words may vary widely within 

the same frequency range and thus lower the consistency of which word is chosen as 

more wordlike. Additional work comparing low regularity words with differing familiarity 

(as opposed to printed frequency) may provide clarification to this problem. 

Finally, in the case of word comparisons, the model predicts that same

frequency homonyms of differing regularity should show a regularity effect. The 

present data suggest a regularity trend in similar frequency homonyms, but the effect is 

not statistically significant. The data also indicated a frequency effect, even though the 

difference of the frequency means was only 20. The FCML explains these findings in 

that the only intrafactor difference big enough to show a reliable consistency difference 

is that of frequency. A choice of variable-regularity homonyms varying more in 

regularity values with closer frequency (or familiarity) values may determine if the model 

is describing the data correctly. 

Massaro's FLMP (1988a) suggests that the auditory and visual factors are 

independent in the evaluation stage (see Figure 1). This independence implies that 

when a feature is assigned to one source of information it remains independent of 

values assigned to other sources of information. This type of independence does not 
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imply statistical independence, as operations that occur in other parts of the model 

(e.g., integration) can introduce statistical dependence. The fuzzy computational model 

of lexicality (FCML) may be operating under the same type of independence, but it is 

beyond the scope of the present investigation to determine if that is the case. Figure 5 

presents the FCML in a similar fashion to the FLMP (Figure 1). The orthographic, 

phonological, and familiarity components are all computed in the evaluation stage 

according to algorithms similar to those described by Seidenberg and McClelland 

(1989). The psychological values of these factors (given by the lower case letters in 

the figure and represented by the OES, PES, and familiarity rating, respectively, for the 

orthographic, phonological and familiarity components) are presented to the integration 

stage. The integration may be a minimization function, a multiplicative function, or 

some other combinatorial function of the three factors. The psychological value of the 

integration stage is output to the classification stage, where it is converted to a 

response. The classification stage can be bivalent (as in the lexical decision task), a 

rating of some kind, or selection of an item as more wordlike (as in the present task). 

Figure 6 presents a timeline for the FCML. The time required to compute the 

OES, PES, and familiarity values for the two letter strings should be approximately the 

same, regardless of the string type (word or nonword). Also, the response time in the 

present task to press the appropriate computer key for the top or bottom letter string 

should be consistent across trials. Therefore, the actual comparison stage should 

determine the variance in decision times for the different types of comparisons. Large 

intrafactor differences lead to shorter comparison times because the differences in the 

OES, PES, and familiarity differences are more obvious. Similarly, small intrafactor 

differences will lead to longer comparison times because the OES, PES, and familiarity 

differences are more ambiguous. 

As stated at the beginning of this chapter, the present discussion is not intended 

to prove the existence of fuzzy logic and lexicality decisions, but to act as a springboard 
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for future research into a multifactor approach to how people interpret fuzzy quantities 

such as letter strings. The FCML is merely a first step in trying to integrate the present 

results. 

The next step in the present line of investigation is to incorporate the present 

suggestions into the Seidenberg and McClelland (1989) model to compare two letter 

strings and see how the FCML data compare with human data, much like Seidenberg 

and McClelland did with lexical decision data and their parallel distributed processing 

model. Also, work could be done to further develop Massaro's FLMP to incorporate 

specific degrees of wordness as he has done with degrees of speech perception. 

Finally, more extensive replications of the present findings could be done for each of 

the comparisons herein. This is especially true with the homonyn comparisons. 

Methodological contributions 

As stated earlier, the lexical decision task has led to a wealth of information 

concerning how individuals process written language. However, the lexical decision 

task, by design, forces a bivalent categorization of the input stimuli into two categories: 

words and nonwords. The lexical decision task has also generated wide controversy 

due to its susceptibility to strategy factors (Seidenberg, Walters, Sanders & Langer, 

1984). The present investigation avoids both shortcomings of the lexical decision task 

by eliminating the categorical bias of the lexical decision task. 

The purpose of using the present method was to determine if lexicality did, in 

fact, follow a continuum. The present results have shown that lexicality does have 

varying degrees. As a result, a whole new avenue of written language research has 

opened up. The present discussion suggests several ways to improve upon the current 

findings, but only by choosing stimuli according to stricter guidelines. The actual 

method has been shown to produce reliable results, results that indicate individuals 

process written language in a fuzzy, not a categorical, manner. 
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Illegal Nonwords 

MRUAB 

RN EGA 

LKOGI 

TNIOF 

RSEUV 

TLSEI 

LREOT 

PQAUK 

RBEJU 

RHUTD 

Matched Frequency 

CANNON (7) CANON (5) 

AISLE (6) ISLE (5) 

WOE (5) WHOA (1) 

BERRY (9) BURY (6) 

SITES (16) SIGHTS (15) 

PAST (281) PASSED (157) 

FLEX (2) FLECKS (1) 

RED (197) READ (173) 

WRAP (5) RAP (2) 

RIGHTS (77) RITES (41) 

Appendix A 

Stimulus lists 
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Legal Nonwords 

SN EEK 

TREET 

SHU RT 

SKORE 

SWERL 

SN ERK 

TREST 

SLURT 

SKIRE 

SWARL 

Matched Spelling 

BETTER (414) BETTOR (1) 

CURRENT (104) CURRANT (1) 

COURSE (465) COARSE (10) 

FEET (283) FEAT (6) 

DEAR (54) DEER (13) 

LIE (59) LYE (1) 

REAL (260) REEL (2) 

BIRTH (66) BERTH (4) 

SLOW (60) SLOE (2) 

STEEL (45) STEAL (5) 



Table 1 - Mean Reaction Times 

Nonword Comparisons Word Comparisons 

Stimuli RT (ms) 

legal/legal 3446 
legal/ph 3126 
ph/ph 3013 
illegal/illegal 2952 
illegal/legal 2149 
illegal/ph 2095 

ph = pseudohomophone 

Stimuli RT (ms) 

Homo/matched F 3906 
Homo/matched spell 2989 
lrreg - vary F 2513 
Low F - vary reg. 2316 

homo = homonym 
irreg = irregular 
F = printed word frequency 

Table 2 - Significant differences between reaction times 

Comparison 1 
legal/legal 
legal/legal 
legal/legal 
illegal/illegal 
illegal/legal 

RT 
3906 
3906 
3906 
2952 
2149 

Comparison 2 
legal/ph 
ph/ph 
illegal/illegal 
illegal/legal 
illegal/ph 
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RT 
3126 
3013 
2952 
3906 
2095 

Q value 
>.05 
<.01 
<.025 
<.0001 
>.05 
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Figure 1. Illustration of the FLMP operations. Upper case letters represent 
sources of information (audio or visual), while lower case letters indicate 
psychological values. The overall degree of support following the integration 
stage is represented by pij, and the response is shown by Rij. 
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FLMP for Lexicality Categorical Model of Lexicality 

a b C d e f 

line a: illegal nonword 

line b: very low frequency word/legal nonword 

line c: irregular word 

lined: pseudohomophone 

line e: high neighborhood word 

line f: high frequency word 

11 NONWORD11 

illegal nonword 
legal nonword 
pseudohomophone 
very low frequency word 
some irregular words 

Figure 2. Comparison of hypothetical representations of the FLMP and 
Categorical models for lexical decisions. 

11WORD11 

other irregular words 
low, medium, high frequency words 
all size neighborhood words 
some misspellings 
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Pseudohomophone 

Legal Nonword 

Illegal Nonword 

Nonword Catgory 

Illegal 
Nonword 

Pseudohomo 
phones 
chosen 
more often 
than illegal 
nonwords 

Legal 
nonwords 
chosen 
more often 
than illegal 
nonwords 

Choice 
determined as 
as function of 
big ram 
frequency -
Larger f chosen 

Legal 
Nonword 

Pseudohomo 
phones 
chosen 
more often 
than legal 
nonwords 

Choice 
determined as 
as function of 
big ram 
frequency -
Larger f chosen 

Legal 
nonwords 
chosen 
more often 
than illegal 
nonwords 

Word Catgory 

High frequency homonyms chosen 
over low frequency homonyms 

Large neighborhood homonyms 
chosen over small neighborhood 
homonyms 

High frequency irregular words 
chosen over low frequency 
irregular words 

Matched-frequency regular 
words chosen over irregular 
words 

Figure 3. Tabular representation of the various lexicality 
hypotheses. 
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Matched F Legal/ 
Homonym Legal 
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Pho mo 

Pho mo/ 
phomo 

Mactched Illegal/ 
Spelling Illegal 
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Irregular 
LowF/ 
Irregular 
High F 

Irregular/ Illegal/ 
Regular Legal 

Figure 4. Mean decision times (in ms) for all comparisons 
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Figure 5. Illustration of the Fuzzy Computational Model of Lexicality (FCML) 
using orthography (Oi), phonology (Pj), and frequency (Fk) inputs. 
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Figure 6. Illustration of the FCML timeline. T1 and T2 are the times needed to 
evaluate and integrate the input strings. T3 is the time needed to compare the 
input strings, and can vary. T 4 is the time needed to make a response 
(keypress). 
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