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CHAPTER I 

INTRODUCTION 

Peanut (Arachis hypogaea L.) is an important crop grown on 19.86 

million hectares worldwide. In the United States, peanut is grown in Alabama, 

Florida, Georgia, New Mexico, North Carolina, Oklahoma, South Carolina, 

Texas, and Virginia (39). Peanut is an annual herbaceous legume that has a 

prostrate or an upright growth habit. Peanut leaves are compound and each 

leaf is composed of four leaflets. Leaves are arranged in alternate fashion on 

stems. Flowers are mainly self-pollinated and appear four to six weeks after 

planting. After pollination and fertilization, a gynophore (peg) develops and 

grows toward the soil. After entry into the soil, the peg grows horizontally and 

its tip begins to swell to form the peanut pod (39). 

The unique fruiting habit of peanut, in addition to its dense canopy and 

the fact that pods are in soil for a long time all contribute to make peanut 

especially susceptible to soilborne diseases. Sclerotinia blight (caused by 

Sclerotinia minor Jagger), southern blight (caused by Sclerotium rolfsii Sacc.), 

and pod rot (caused mainly by Pythium myriotylum Drechs.) are three of the 

most important soilborne diseases in Oklahoma, other peanut producing states, 

and several countries worldwide (37). 
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Sclerotinia blight was initially reported in Argentina in 1922. The first 

report in the U.S., was in Virginia in 1971. It was first reported in Oklahoma 

in 1974. By 1979, nine of the 23 peanut producing counties reported 

Sclerotinia blight (44). 

Sclerotinia blight causes yield losses by killing all or parts of the plants 

prior to harvest. It also causes decay of the stems and pegs which results in 

pod loss at harvest. The ability of the pathogen to survive in soil for prolonged 

periods combined with the lack of effective control methods make this disease 

one of the most important factors limiting profitable peanut production. 

Plants infected with Sclerotinia minor display a wide array of symptoms 

and signs. Disease symptoms include flagging and wilting of one .to several 

stems. Under conditions of high humidity and low wind speed, the white fluffy 

mycelium of S. minor can be seen on stems and pegs in the early morning 

hours. As the season progresses, the fungus forms black, irregularly shaped 

sclerotia. Sclerotia are formed internally in the stem pith cavities and on seeds, 

or externally on stems and pods (37). 

Sclerotia are the overwintering structures of S. minor. The size of 

sclerotia ranges from 0.5 to 3.0 mm. As conducive conditions prevail, sclerotia 

germinate eruptively (44). Under favorable conditions, only one sclerotium per 

100 g soil is needed to cause disease in peanut (36). Fields with a previous 

history of Sclerotinia blight have viable sclerotia throughout the plow layer for 

several years after the last crop of peanut. High relative humidity, cool 

temperatures (18-20°C), and a pH of 6.5 are the optimum conditions for 
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sclerotial germination (37). 

Sclerotinia minor is disseminated locally or to geographically separate 

areas by a variety of means. Wadsworth and Melouk showed that dry mycelia 

and sclerotia on infected peanut seeds may be potential vehicles for pathogen 

spread (44). Akem and Melouk showed that under greenhouse conditions, S. 

minor was seed transmitted in peanut; however, this transmission was 

genotype dependent (3). S. minor may also be transmitted by farm animals. 

Melouk et al. showed that up to 38 % · of sclerotia were viable after passing 

through the digestive tract of a ruminant animal (32). Another report suggested 

that Eclipta prostrata, a predominant weed in irrigated peanut fields, is a host 

to S. minor and may play a role in the survival and dissemination of the 

pathogen (33). 

Control of Sclerotinia blight is an ongoing challenge. Chemicals have 

been partially effective in controlling this disease (39, 41 ). Only four peanut 

cultivars Tamspan 90, VA Bunch 81, VA 938, and Southwest Runner, have 

partial resistance to Sclerotinia blight (6, 7, 39, 40). Several potential biological 

control organisms were reported in the literature to have some effect against 

S. minor (2, 31 ). Akem and Melouk investigated the potential of Penicillium 

citrinum as a biocontrol agent against sclerotia of S. minor. They reported that 

55% of S. minorsclerotia in non-pasteurized soil were colonized by P. citrinum. 

In pasteurized soil, up to 75 % of the sclerotia were destroyed (31}. Adamsen 

et al. indicated that rape (Brassies napus L.) seed meal, which contains 

glucosinolate, applied to moist soils was capable of reducing the viability of 
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microsclerotia of Cylindrocladium crotalariae Bell and Sobers, the causal agent 

of black rot of peanut ( 1 ) . It was suggested that the decomposition of 

glucosinolate in rape seed meal under favorable conditions results in formation 

of isothiocyanates, which are in the same class of chemical compounds 

produced by the decomposition of metham-sodium (1 ). 

Subbarao et al. investigated the effect of deep plowing on the distribution 

of sclerotia of S. minor and on the incidence of lettuce drop. They reported a 

reduction in the number of sclerotia retrieved sclerotia immediately following 

deep plowing, however, the incidence of lettuce drop increased in the following 

crop (43). Other cultural control studies include plant canopy modification (11) 

and manipulating the soil micro- and macroelements (23). 

Little is known about the infection process of S. minor on peanut. 

Lumsden described the infection process where fungal propagules come in 

contact with the host tissue. Sclerotinia spp. invade their hosts using several 

structures ranging from the germinating ascospore to mycelial infection (29). 

Mycelial infection seems to be the main method of host tissue penetration. 

Unless infection occurs through natural openings, infection cushions are 

formed. A cross-section in:an infection cushion reveals three types of hyphae: 

thin diameter hyphae that are also densely safranin-staining on the top of the 

cushion. In the center of the cushion, hyphae are inflated, granular and lightly 

safranin staining. Dichotomously branched penetration hyphae are at the 

bottom (26). 

Infection cushions adhere to the surface of the host by a mucilaginous 

4 



matrix. This matrix and the dome shape of the cushion, allows the fungus to 

forcefully penetrate the cuticle through pegs that arise from swollen hyphal tips 

at the underside of the cushion. Penetration pegs form vesicals under the host 

cuticle and above the epidermal cells. Infection hyphae arise from these pegs 

(26). 

Southern blight, also known as stem rot or white mold, is caused by 

Sclerotium rolfsii Sacc. Damage from southern blight results when plants are 

killed prior to harvest and or when pods are decayed. S. rolfsii produces large 

amounts of a phytotoxin, oxalic acid. This toxin produces necrosis and foliage 

chlorosis in the early stages of disease development. When S. rolfsii grows in 

and around developing pods, oxalic acid causes purple seed staining, an 

indication of toxin damage. Southern blight is prevalent in all peanut producing 

areas of the world. It is considered to be the most damaging soil borne disease 

in southeastern states such as Florida and Georgia (30). 

Infected plants can be identified by yellowing and wilting of a branch. 

The entire plant may display symptoms if the main stem is infected. The 

presence of white coarse mycelium on and around infected plants is a sign of 

infection. The mycelium usually produces large numbers of 0.5 to 2 mm 

sclerotia that are initially white. but change color to dark brown as they mature. 

The fungus overwinters as sclerotia in the soil or in infected plant debris or 

weeds. Due to their dependence on oxygen, sclerotia germinate only when 

present in the top layers of the soil profile. Sclerotial germination also is 

activated by alcohols and other volatiles released from decomposing organic 
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matter (30). Several cultural control practices are used to prevent inoculum 

build-up. Deep plowing after harvest to bury crop residue and sclerotia is 

reported to be partially effective. The most frequently used fungicide to control 

southern blight has been Pentacholornitrobenzene (PCNB). The experimental 

fungicides tebuconazole and flutolanil were reported to provide better control · 

of southern blight than PCNB ( 10). Three insecticides, ethoprop, fensulfothion, 

and chlorpyrifos, in addition to dinitro herbicides have been reported to reduce 

disease incidence (30). 

Peanut pod rot is another disease that causes yield loss in Oklahoma and 

other peanut producing areas of the world. Symptoms are pod discoloration 

with dark brown to black lesions, followed by pod and seed decay. The 

junction between the peg and pod is also decayed by this disease. Yield is 

reduced due to pod decay or to pods left in the soil after digging (36, 37). 

The etiology of pod rot is complex. Calcium availability has been 

implicated in pod rot (8, 9, 22, 34). High levels of calcium applied to soil as 

gypsum (CaS04.H20) have been reported to reduce pod rot (8, 9, 22). Pods 

with less than 0.15% calcium in the hulls had more pod rot than those with 

more than 0.20% calcium (22). It was suggested that a decrease in calcium 

in the cell walls of the hull results in increased susceptibility to plant pathogens. 

Others have concluded that pod rot is similar to blossom end rot of tomato, and 

is primarily caused by a calcium deficiency (8, 9). According to this view, 

fungal pathogens are of secondary importance in pod rot initiation. 

Pod rot also has been reported to have a biotic etiology. Some 
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researchers have not found a relationship between levels of applied calcium and 

pod rot (12, 34). Filonow et al. (12, 13, 15) have shown that in Oklahoma pod 

rot is caused by Pythium myriotylum Drechs. and/or Rhizoctonia solani kuhn 

(anastomosis group IV). In addition to P. myriotylum, other species, e.g. P. 

irregulare Busiman have been implicated as causal agents of pod rot (36, 37). 

Rhizoctonia solani ( 14, 15, 17), Fusarium solani Mart. ( 16) and Sclerotium 

rolfsii Sacc. (36, 37), are other fungi reported to cause pod rot. Pod rot is 

usually considered to be a disease complex involving combinations of fungal 

pathogens. The etiology of pod rot also involves soilborne mites (38), plant 

parasitic nematodes such as Meloidogyne arenarea (Neal) Chitwood and M. 

hap/a Chitwood (15, 18), and insects such as the southern corn root worm 

(36). 

Reports of effective fungicidal control of pod rot are few. In Georgia, 

PCNB and metalaxyl were generally ineffective (9). Filonow and Jackson ( 14) 

had variable success with metalaxyl plus PCNB or metalaxyl plus tolclofos­

methyl. Metam sodium (Vapam) applied preplant by sprinkler irrigation to soil 

significantly reduced pod rot incidence; however, it was not effective in 

reducing oospore populations in soil (27). The difficulty in the chemical control 

of pod rot may be attributed to the diverse array of fungi and other organisms 

that may be present in a given soil. 

Crop rotation for control of pod rot was reported to have some value 

depending on what fungi are present in the soil (36, 37). Fields with a history 

of pod rot that were left fallow for two years had significantly less pod rot than 
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fields that were planted with peanut continuously for several years (5, 9). 

Peanut cultivars have been evaluated for resistance to pod rot (5, 19, 

28). Resistant peanut lines may have higher levels of lignin and tannin 

compounds in addition to a more uniform sclerenchyma layer in their pods (35). 

More lignified walls in the epicarp and mesocarp were associated with lines less 

susceptible to pod rot (19, 20). Lewis and Filonow showed that Florigiant and 

other Virginia bunch market types were more susceptible to pod rot than runner 

of spanish market types. Currently, Tamspan 90 is the only cultivar that 

exhibits a high degree of resistance to Pythium spp (28). 

Presently, there is no biological control for pod rot. Biological control of 

Pythium-induced diseases using microorganisms has been reported by several 

workers (4, 24, 30). Mechanisms of control included antibiosis (24), 

competition (4) and mycoparasitism (30) .of oospores or hyphae. 

Several researchers reported temporal changes in soil populations of 

Pythium spp. during the growing season (14, 28, 42). Filonow and Jackson 

(14) observed an 8-10 fold increase in populations of Pythium spp. in a peanut 

field. Populations peaked at 60 days after planting (DAP) in one year and at 75 

DAP in another. These peaks occurred after pegs had entered the soil. 

Populations declined rapidly thereafter and remained low until harvest. This 

proliferation and decline was also reported by Lewis and Filonow (28). Soufi 

and Filonow also reported similar temporal patterns during the growing season. 

These patterns occurred in three different peanut growing areas in dissimilar 

soils planted with different peanut cultivars. In the Ft. Cobb location, 
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populations of Pythium spp. fluctuated randomly in the fallow plots, whereas 

populations in adjacent plots planted with peanut peaked several weeks after 

pegging then rapidly declined by harvest. They suggested that dynamics of 

Pythium spp. populations were mainly influenced by the presence and 

phenology of the peanut host (42). 

This dissertation consists of two manuscripts written in a format that will 

facilitate submission to a national scientific journal. The manuscripts are 

written as chapters, and each is complete without additional supporting 

material. Chapter II, entitled "Use of cultivars, cropping sequences, green 

manures and an organic amendment in the management of Sclerotinia blight, 

southern blight and peanut pod rot in Oklahoma", describes evaluating the 

effect of three year crop rotations, two green manures and an organic 

amendment on the populations of the pathogens, disease incidence, and peanut 

yield and grade. Chapter Ill, entitled "Use of cellophane surface to quantify 

infection cushions formed by Sclerotinia minor Jagger", describes a technique 

to study and quantify infection cushion formation by S. minor on synthetic 

pouches made of cellophane tubing. The manuscript also describes several 

applications of this technique such as its use in evaluating fungicidal activity, 

comparing different fungal isolates. 
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CHAPTER II 

USE OF CUL TIVARS, CROPPING SEQUENCES, GREEN MANURES AND AN 

ORGANIC AMENDMENT IN THE MANAGEMENT OF SOILBORNE 

DISEASES OF PEANUT IN OKLAHOMA 

Abstract 

Cropping sequences, peanut cultivars, green manures, an organic amendment, 

and a cover crop treatment were evaluated over a period of three years for their 

effect on incidence of Sclerotinia blight and southern blight; severity of pod rot, 

and populations of Sclerotinia minor, Sclerotium rolfsii, and Pythium spp in soil. 

The effect practices on peanut yield and grade was also determined. In the first 

cropping sequence study, crop rotations included the peanut cultivars Okrun 

(Sclerotinia susceptible) and Tamspan 90 (Sclerotinia resistant). Evaluated 

rotations were peanut-peanut-peanut, peanut-rotational crop-peanut, rotational 

crop-rotational crop-peanut, and fallow-fallow-fallow. Rotational crops were 

sudan grass, wheat, and grain sorghum. The second cropping sequences 

study, included 'Okrun', an organic amendment, a cover crop and two green 

manures. Cropping sequences were Okrun-Okrun-Okrun, Okrun-cover crop­

Okrun, cover crop-cover crop-Okrun, and fallow-fallow-fallow. The organic 

amendment (rapeseed meal) and green manures (canola and rape) treatments 
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were applied to Okrun-Okrun-Okrun, i.e. canola/Okrun - canola/Okrun -

canola/Okrun. Sudan grass was used as a cover crop. In the crop rotation, 

Okrun-Okrun-Okrun had higher (P=0.05) disease incidence and populations of 

S. minor and Pythium spp. than all other rotations including Tamspan 90-

Tamspan 90-Tamspan 90. Two year rotations with sudan grass followed by 

Tams pan 90 had 2 sclerotia of S. minor per 100 g soil which was lower 

(P = 0.05) than any other rotation. Incidence of sclerotinia blight was only 

affected by the choice of cultivar. Tamspan 90 rotations had significantly lower 

(P = 0.01) disease incidence than Okrun rotations; There were no significant 

differences (P =0.1) between treatments within each rotation. Two year 

rotations with wheat or sorghum reduced populations of Pythium spp. more 

than any other cropping sequence (P = 0.01). Pod rot severity was lower 

(P = 0.01) on Tamspan 90 rotations than Okrun. No significant differences were 

detected between treatments within each rotation. Peanut yield and grade 

were higher (P =0.01) in Tamspan 90 than Okrun. 

In the organic amendments study, continuous planting of the susceptible 

peanut Okrun resulted in the highest populations of Pythium spp. at 319 p/g. 

The lowest populations of Pythium spp. were in the fallow-fallow-fallow and 

canola/Okrun - canola/Okrun - canola/Okrun treatments. Using canola as a 

green manure for three years reduced sclerotial populations of S. minor and 

incidence of sclerotinia blight. The same treatment also reduced the 

populations of Pythium spp. and pod rot severity. Furthermore, using canola 

resulted in peanut yields of 2653 kg/ha which was higher (P=0.05) than all 
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other treatments. 

Southern blight incidence and sclerotial populations of S. rolfsii were 

consistently low throughout the duration of both studies and were generally not 

different among treatments. 

Introduction 

Profitable production of peanut (Arachis hypogaea L.) depends upon the 

management of diseases that affect yield and quality. Sclerotinia blight caused 

by Sclerotinia minor Jagger, southern blight caused by Sclerotium rolfsii Sacc. 

and peanut pod rot caused mainly by Pythium myriotylum Dresch. are three of 

the most important soilborne diseases that affect pod yield and quality in 

Oklahoma as well as other peanut producing states (20, 29, 32, 39). 

Aromatic hydrocarbon fungicides such as PCNB and dicloran were initially 

recommended for the control of Sclerotinia blight (5). Procymidone, a member 

of the dicarboxymide family, was reported to be highly effective against 

Sclerotinia blight (31 ), but research on this compound in the United States 

ceased in 1979 (37). In Virginia and North Carolina, PCNB and iprodione have 

been the only fungicides recommended to control Sclerotinia blight since 1986 

(37). However, the efficacy of these fungicides has been low (7). The most 

frequently used fungicide to control southern blight is PCNB ( 1 2). The 

fungicides tebuconazole and flutolanil were reported to provide better control 

of southern blight (12). Reports of effective fungicidal control of pod rot are 

few. In Georgia, PCNB and metalaxyl were generally ineffective (11 ). Filonow 
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and Jackson { 17) had variable success with metalaxyl plus PCNB or metalaxyl 

plus tolclofos-methyl. Metam sodium {Vapam) applied preplant by sprinkler 

irrigation to soil significantly reduced pod rot incidence; however, it was not 

effective in reducing oospore populations in soil (23). 

The difficulty in achieving consistent control of these pathogens might 

be attributed to their wide host range and ability to form durable overwintering 

survival structures, sclerotia as in Sclerotinia minor and Sclerotium rolfsii, and 

thick walled oospores of Pythium myriotylum (32). Inconsistent results of 

chemical control, cost of chemicals, and recent concerns about chemical 

toxicity and environmental quality, have resulted in increased interest in 

developing other disease management practices including biological control and 

cultural controls. Subbarao et al. (38) investigated the effect of deep plowing 

on the distribution of sclerotia of S. minor and on the incidence of lettuce drop 

disease. They reported a reduction in the number of sclerotia in soil 

immediately following deep plowing. However, the incidence of lettuce drop 

increased in the following crop however, due to increasing the potential of plant 

infection (38). Penicillium citrinum was reported as a potential biocontrol agent 

against sclerotia of S. minor (2, 28). Other studies on cultural control include 

plant canopy modification (15) and manipulating the soil micro- and 

macroelements (21). Several cultural practices are used to prevent inoculum 

buildup of S. rolfsii including deep plowing after harvest to bury crop residue 

and sclerotia (32). Presently, there is no biological control for pod rot. 

Four peanut cultivars {VA Bunch 81, VA 938, Southwest Runner and 
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Tamspan 90) have resistance to Sclerotinia blight (9, 10, 29, 36). Several 

peanut genotypes and cultivars have been evaluated for resistance to pod rot 

(6, 18, 19, 24, 30). Lewis and Filonow (24) showed that Florigiant and other 

Virginia bunch market types were more susceptible to pod rot than runner or 

spanish types. Tamspan 90 exhibited a high degree of resistance to Pythium 

spp. (24). 

One year crop rotations with corn or grain sorghum were reported to be 

effective in preventing heavy infestations of southern blight (32). Crop rotation 

for control of pod rot was reported to have some value depending on what 

fungi are present in the soil (11 ). Fields with a history of pod rot that were left 

fallow for two years had significantly less pod rot than those planted with 

peanut continuously for several years (11, 23). 

Lumsden et al. (26, 27) studied the effect of sewage sludge as an 

organic amendment on several soil borne diseases including lettuce drop. Dillard 

and Grogan ( 14) reported on the effect of green manure on the populations of 

S. minor. Johnson et al. (22) investigated the effect of rapeseed meal on the 

population of nematodes. 

Adamsen et al. (1) indicated that rapeseed meal of Brassies napus L., 

applied to moist soil was capable of reducing the viability of microsclerotia of 

Cylindrocladium crotalariae Bell and Sobers, the causal agent of black rot of 

peanut. It was suggested that the decomposition of glucosinolates in rape seed 

meal results in formation of several volatile biocides including isothiocyanates. 

The objectives of this research were to investigate the effect of cropping 
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sequences, peanut cultivars, a cover crop, green manures, and an organic 

amendment on: 1) the population of S. minor, S. rolfsii and P. myriotylum in 

soil; 2) peanut yield and grade; and 3) on incidence of Sclerotinia blight and 

southern blight, and on severity of pod rot . 

. Materials and Methods 

Crop rotation: Three year crop rotatjons were evaluated for their effect on 

pathogen populations and disease incidence from 1992 to 1994 at the Caddo 

Research Station near Ft. Cobb, OK. The soil was Menofine sandy loam with 

a pH of about 6.9. Rotations were peanut-peanut-peanut, peanut-rotation crop­

peanut, rotation crop-rotation crop-peanut, and fallow-fallow-fallow. The 

peanut cultivars Okrun (Sclerotinia susceptible) and Tamspan 90 (Sclerotinia 

resistant) were used. Rotational crops were sud an grass, wheat, and grain 

sorghum (Table 1 ). Plots consisted of six rows, 10.9 m long with 0.91-m row 

spacing. Plots were separated by alleys. Alleys were 1.83 m on the side and 

6. 1 m around the top and bottom. Alleys were planted to wheat to minimize 

soil movement. There were four replicate plots per treatment in a randomized 

complete block design. Plots cropped to peanut were planted on 26 May 1992, 

15 May 1993, and 19 May 1994. Peanut seeds were planted at 15 seeds/m 

for Okrun and 21 seeds/m for Tamspan 90. Plots were planted with a John 

Deere 71 Flexi planter (Deere & Co., Moline, IL) equipped with belt cones. 

Plots were harvested on 7 October 1992, 23 October 1993, and 4 October 

1994, using a Paulk peanut digger-invertor (United Farm Tools, Fitzgerald, GA) 
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and threshed with a stationary peanut thresher. Sudan grass was planted at 

a rate of 26 seeds/musing a Columbia push planter in 30.5 cm spaced rows. 

The sudan grass was cut during the season as needed and the hay was 

removed from the plots. Wheat plots were planted on 13 November 1991, for 

the 1992 rotation and 7 October 1992, for the 1993 rotation. Wheat was 

drilled with a hoe drill at a rate of 67 .2 kg/ha in rows spaced at 18 cm apart. 

Grain sorghum plots were planted at a rate of 16 seeds/m in 92 cm rows on 15 

May 1992 and 26 May 1993 with a 71 Flexi J.D. planter with cones attached. 

Organic amendments and cover crop: The effects of an organic amendment, 

green manures, and a cover crop on pathogen populations, disease severity, 

and yield and grade were evaluated. Crop sequences were Okrun-Okrun-Okrun, 

Okrun - cover crop - Okrun, cover crop - cover crop - Okrun, and fallow-fallow­

fallow. In the case of the organic amendment (rapeseed meal) and green 

manure (canola and rape), the treatments were applied to Okrun-Okrun-Okrun, 

i.e. canola/Okrun - canola/Okrun - canola/Okrun, etc. Crops included sudan, 

rape and canola as green manures, rape seed meal as organic amendment and 

watermelon as a cash crop (Table 2). Peanut plots were planted to Okrun at 

15 seeds/m on 12 June 1992, 26 May 1993, and 27 May 1994, using the 

same equipment as in the crop rotation experiment and harvested on 9 

November 1992, 26 October 1993, and 18 October 1994. In the rape and 

canola plots, seeds were hand broadcasted at 5.6 kg/ha in March of 1992 and 

in September of 1993 and 1994. Rape and canola plots were then roto-tilled 
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two weeks prior to planting Okrun or watermelon. Watermelon was planted by 

hand on 12 June 1992, 26 May 1993 and resulted in high sclerotial populations 

of S. rolfsii in soil (Table 7). Watermelon was dropped from the study in 1994. 

Rapeseed meal (36 µm glucosinolate/g meal) was applied to plots in mid April 

at a rate of 2242 kg/ha, and incorporated with a roto-tiller to a depth of 10 cm. 

Sudan grass plots were planted on 11 June 1992, and 26 May 1993. After 

"heading" the plants were mowed with a circular tractor mower and the residue 

was left on the soil surface. Plots consisted of six rows, 10.9 m long with 

0.91 m row spacing. There were four plots per treatment in a randomized 

complete block design. 

In peanut plots, the recommendations of the Oklahoma Cooperative 

Extension Service for, fertility, weed control, insect control, and foliar disease 

control were followed (35). In plots planted to wheat, sudan grass or grain 

sorghum, the recommendations of the Oklahoma Cooperative Extension Service 

for fertilization were followed (4). 

Sampling of soil: In both studies, soil in each plot was sampled to a depth of 

7 cm several times from before planting to harvest. Five samples per plot were 

taken, one from the center of the plot and four from each of the corners, and 

combined to form a composite sample per plot. Samples were transported to 

the laboratory and kept at 5°C until processing. Each Sample was thoroughly 

mixed, and a 10-g subsample was taken to assay for Pythium populations. 

Populations of Pythium spp. were determined by suspending _ 10 g soil 

subsamples in 90 ml of sterile 10% (w/v) agar in water in 250 ml flasks. Flasks 
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were shaken for 30 min on a rotary shaker. Two-tenth ml of 1: 10 or 1 :50 soil 

dilution was applied to each of five Petri plates (9 cm) containing a Pythium 

selective medium (24). Plates were incubated at room temperature for 24-36 

hr and washed under running water, and Pythium colonies were counted. 

Pythium populations were expressed as propagules per gram of soil (p/g). The 

remaining portion of the sample was bench-dried at 22-24°C for 48 hr. 

One hundred g subsamples of dry soil were taken to determine sclerotial 

populations of S. minor using a wet sieving extraction technique (33). Sclerotia 

were surface disinfected in 1 % NaCIO for 2 min, plated on potato-dextrose-agar 

in 9 cm Petri plates amended with streptomycin sulfate at 100 pg/ml (SPDA). 

Plates were then incubated at room temperature for 72-96 hr, and checked for 

mycelial growth of S. minor. Sclerotial populations of S. minor were expressed 

as number of viable sclerotia per 100 g soil. 

Sclerotial populations of S. rolfsii were determined by inducing the 

eruptive germination of sclerotia with ,1 % methanol (34). Soil was rolled using 

a metal rolling pin to form a -uniform soil texture. Two hundred twenty g 

subsamples of bench dried soil were equally divided into eight 9-cm dia. plastic 

Petri plates, and a 1 % aqueous solution of Methanol (Fisher Sci., Fairlawn, NJ) 

was added to each of the plates by using an eye dropper to reach saturation. 

Plates were incubated at 22-24°C for 4-6 days, then the number of germinating 

sclerotia was counted. Disease incidence of Sclerotinia blight and southern 

blight was assessed in the middle two rows of each peanut plot several times 

from mid season to harvest by counting the number of infection loci including 
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lesions, mycelia, sclerotia and dead plants with a maximum of one infection 

locus per 15 cm of row. 

Pod yields were determined, and subsamples of pods were taken to 

determine grade and pod rot severity. Pods were rated for rot severity using 

a pod rot severity index where 1 = no pod rot; 2 = < 10% rot on the surface 

of the pod; 3 = > 11 % to < 75% pod rot; and 4 = > 75% pod rot. A pod rot 

index was calculated by summing the weight ofpods in classes 3 and 4 then 

dividing by the weight of the total sample. Two hundred gram pod subsamples 

were also taken to determine the grade. Peanut kernel grades were sized with 

screens which have the following openings: 6.35 x 19.05 mm for Okrun and 

5.95 x 19.05 mm for Tamspan 90 (13). 

Statistical analysis. The data were analyzed using analysis of variance, 

correlations, and contrasts using SAS (SAS Institute, Cary, NC). 

Results and Discussion 

Crop rotation. In 1992, at the end of season sample there were no significant 

(P = 0. 1) rotation or cultivar effects on sclerotial populations of S. minor in soil 

(Table 3, 6). The choice of cultivar significantly (P =0.01) affected Sclerotinia 

blight incidence however. Okrun had an average of 42.5% and 91 % Sclerotinia 

blight incidence in the mid season and harvest readings, respectively. This was 

significantly higher (P = 0.01) than Tamspan 90 which had disease readings of 

17% and 49%, respectively. Southern blight incidence and sclerotial 

populations of S. rolfsii were consistently low throughout the season in 1992. 
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No significant differences (P = 0.1) were detected between any of the 

treatments. Pythium populations were significantly influenced by rotation and 

cultivar (Table 6). Pythium populations reached a peak of 21 7 p/g soil in 

Okrun, in the mid season sample, which was significantly higher (P =0.05) than 

the other treatments including 104 p/g in Tamspan 90. There was a significant 

(P = 0.01) effect of cultivar, but not rotation, on pod rot index. Average pod rot 

index on Okrun was 41 %, which was higher (P = 0.01) than Tamspan 90 

(23%). This was also true for peanut yield and grade. Average peanut yield 

in the Tams pan 90 rotations was 2299 kg/ha which was higher (P = 0. 1) than 

1681 kg/ha for Okrun. Tamspan 90 also had higher (P =0.05) grades than 

Okrun, 69 and 65, respectively (Table 3). 

In 1993, rotation and peanut cultivar affected (P = 0.05) sclerotial 

populations of S. minor (Table 6). Two years of sud an grass in the Tamspan 

90 rotation, ie sudan-sudan-Tamspan 90, resulted in an average of 3 viable 

sclerotia of S. minor per 100 g soil in the end of season sample. This was 

significantly lower (P = 0.05) than any of the other rotations. Okrun-Okrun had 

an average of 10 sclerotia per 100 g soil which was higher (P = 0.05) than 4 in 

Tamspan 90-Tamspan 90. Sclerotinia blight incidence, at mid season and 

harvest, was significantly (P = 0.05) affected by cultivar but not rotation. 

Sclerotinia blight in the Okrun rotations was 43% and 90% which was higher 

(P=0.05) than Tamspan 90 rotations (10% and 45%). S. rolfsii's sclerotial 

populations and southern blight incidence were very low throughout the season 

with no detectible differences between rotations (P = 0. 1). Pythium populations 

24 



were affected (P=0.001) by rotation and cultivar in 1993 (Table 6). Pythium 

spp. populations in the mid season sample were 335 p/g and were highest 

(P = 0.01) in Okrun-Okrun compared to all other rotations including Tamspan 90 

at 106 p/g. Both peanut cultivars had higher (P=0.01) Pythium populations 

than all other rotations. The choice of peanut cultivar, but not rotation, 

significantly affected (P = 0.01) pod rot index. Okrun rotations had an average 

pod rot index of 43% which was higher (P =0.01) than 27% for Tamspan 90. 

Peanut yield and grade were not influenced by rotation but by cultivar 

(P=0.05). Peanut yield in the Tamspan 90 rotations was 2629 kg/ha which 

was higher (P =0.05) than 1531 kg/ha for Okrun. Tamspan 90 also had higher 

(P=0.05) grades than Okrun, 70 and 65, respectively (Table 4). 

Both rotation and cultivar significantly (P=0.05) affected sclerotial 

populations of S. minor in the 1994 (Table 6). The sudan-sudan-Tamspan 90 

rotation had an average of 2 viable sclerotia of S. minor per 100 g soil which 

was significantly lower (P=0.05) than all other rotations. Sclerotinia blight 

incidence was only influenced (P =0.01) by cultivar but not rotation. Sclerotinia 

blight incidence in the Okrun-Okrun-Okrun was 60% and 90% at mid season 

and harvest. This was higher (P = 0.01) than all other rotations including 

Tamspan 90-Tamspan 90-Tamspan 90 which had 8% and 25%, respectively. 

All Okrun rotations had higher .Sclerotinia blight incidence (P =0.05) than 

Tamspan 90. There were no significant differences (P = O. 1) in disease 

incidence among Okrun rotations or Tamspan 90 rotations. 

As in the previous two years, Pythium spp. populations were affected by 
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both cultivar and rotation. Pythium spp. in sorghum-sorghum-Tamspan 90 were 

lower (P =0.05) than any of the other rotations. Okrun rotations had higher 

Pythium populations than Tamspan 90 rotations (P =0.01 ). Pod rot index, 

yield, and grade were significantly affected by the choice of cultivar (P =0.01 ). 

Pod rot index in the Okrun rotations was 0.5 which was higher (P = 0.01) than 

0.2 in the Tamspan 90 rotations. The highest yield in the Tamspan 90 

rotations was 4895 kg/ha in the sudan-sudan-Tamspan 90 rotation. All 

Tamspan 90 rotations had higher yields (P = 0.01) than Okrun rotations (3206 

kg/ha in the Okrun-Okrun-Okrun rotation). Tamspan 90 rotations had an 

average grade of 71 which was higher (P=0.01) than 67for Okrun (Table 5). 

Sclerotial populations were not different among treatments in the 1992 

crop rotation. The number of sclerotia was also not affected by rotation or the 

selection of peanut cultivar (Table 6). The same was not observed in 1993. 

S. minors sclerotial populations were lowest when rotating for two years with 

sudan grass. The effect of the cultivar was also observed. Planting Okrun, a 

susceptible peanut, for two successive seasons resulted in 10 sclerotia, 

whereas planting Tamspan 90 for two years resulted in 4 sclerotia per 100 g 

soil. The same trend continued in 1994. Continuous planting of Okrun for 

three years resulted in an increase of sclerotial populations from 4 to 7 sclerotia 

per 100 g soil (Figure 1 ). In contrast, continuous planting of Tamspan 90 

increased sclerotial populations only from 4 to 5 per 100 g soil (Table 3, 5). 

Sclerotial populations were lowest in sudan-sudan-Tamspan 90 at 2 per 100 g 

soil (Table 5). 
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Sclerotinia blight incidence was heavily influenced by the choice of 

peanut cultivar. In all three years of the rotation, Okrun rotations had 

consistently higher disease readings than Tamspan 90. This is consistent with 

field results that show Tamspan 90 is less susceptible to Sclerotinia blight than 

Okrun (27). There were no significant differences in disease readings between 

rotational treatments within the Okrun or Tamspan 90 rotations. The inability 

of cropping sequences to affect disease incidence may be attributed to the fact 

that even though a reduction in pathogen populations was noticed, the 

population was still capable of causing disease. In the case of Sclerotinia 

blight, only 1 sclerotium per 100 g soil is needed to cause 50% disease in the 

field (30). 

As in 1992 and 1993, S. rolfsii's sclerotial populations and southern 

blight incidence were low during the season with no significant (P =0.1) 

differences between rotations. Southern blight incidence and sclerotial 

populations of S. rolfsiiwere extremely low throughout the duration of the crop 

rotation with no observed differences due to rotation or the peanut cultivar 

used. 

The effect of rotations on populations of Pythium spp. has been reported 

by several researchers (20, 22, 30). In our experiments, populations of 

Pythium spp. were affected by rotations and the choice of peanut cultivar. 

Rotations with Tamspan 90 had lower populations of Pythium than those with 

Okrun in all three years of the rotation. Our results also showed that two year 

rotations with wheat or sorghum where highly effective in reducing Pythium 
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populations compared to continuous planting of peanut (Figure 2). Pod rot 

index was not mainly affected by rotation but by cultivar. Pod rot index was 

significantly higher (P =0.01) in Okrun than in Tamspan 90 rotations. Okrun 

treatments had an average pod rot index of 41 % in 1992, 43 % in 1993 and 

47% in 1994. Whereas Tamspan 90 rotations had, 23% in 1992, 27% in 

1993 and 22 % in 1994, respectively. There was no correlation between the 

population of Pythium spp. in soil and pod rot index on the pods. This can be 

attributed to the fact that Tamspan 90 or two year rotations with sorghum or 

wheat reduced Pythium populations to about 65 p/g which is still sufficient to · 

produce Pythium pod rot, since it only takes 45 p/g to produce pod rot (8). 

Pod yield and grade were mainly affected by the choice of cultivars and 

not the rotation. Yield and grade were higher in Tamspan 90 than in Okrun 

rotations in all three years. There were no significant differences in yield and 

grade between rotational treatments within the Okrun or Tamspan 90 rotations. 

Organic amendments and cropping sequences (cover crops). Cropping 

sequence significantly (P = 0.05) affected sclerotial populations of S. minor and. 

S. rolfsii in 1992 (Table 10). In the end of season sample in 1992, the sudan 

and canola/Okrun treatments had an average of 1 and 2 sclerotia, respectively, 

of S. minor per 100 g soil which was significantly lower (P = 0.05) than any of 

the other treatments. Sclerotinia blight incidence was not affected (P = 0.1) by 

treatment however. No differences (P = 0. 1) in Sclerotinia blight readings were 

detected in treatments that had peanut at the mid and end of season readings. 

Sclerotial populations of S. rolfsii in canola/watermelon were 8 per 100 g soil 
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and were higher (P = 0.05) than any of the other treatments. Southe~n blight 

incidence was low throughout the season, and did not significantly vary among 

treatments. Pythium populations were influenced by the cropping sequence 

(P = 0.01). Fallow soil had lower (P = 0.05) Pythium populations than any of the 

other crops. The highest Pythium populations were in Okrun at 138 p/g soil. 

Rape/Okrun had the highest (P = 0.05) yield at 1853 kg/ha, including Okrun at 

1140 kg/ha. Pod rot index and peanut grade were not affected (P = 0. 1) by 

cropping sequences. The average pod rot index for all Okrun treatments was 

43%. Okrun had an average grade of 66 (Table 7). 

In 1993, sudan-sudan and canola/Okrun-canola/Okrun had the lowest 

(P = 0.05) populations of S. minor sclerotia with an average of 1 and 3 per 100 

g soil, respectively. No differences in disease readings (P =0.05) were detected 

among the peanut treatments.. Southern blight incidence and sclerotial 

populations of S. rolfsii were low throughout the season with no significant 

differences (P=0.05) between treatments. Pythium populations were highest 

(P=0.05) in peanut-peanut, and lowest in fallow-fallow and canola/peanut­

canola-peanut. Canola/Okrun-canola/Okrun-canola/Okrun had the highest yield 

(P =0.1) at 2168 kg/ha. Pod rot index and peanut grade were not significantly 

different among treatments. Average pod rot index was 47% and average 

grade was 67 (Table 8). 

In 1994, the treatments canola/Okrun-canola/Okrun-canola/Okrun, and 

canola/watermelon-canola/watermelon-Okrun had 36.5% and 39.5% sclerotinia 

blight which was significantly lower (P=0.05) than all other treatments. 

29 



Sclerotial populations of S. minor were lowest (P=0.05) in canola/Okrun­

canola/Okrun-canola/Okrun which. had 1 sclerotium per 100 g soil, this was 

lower than any of the other treatments. As in 1992 and 1993, southern blight 

incidence and population of S. rolfsii sclerotia were low with no significant 

difference (P =0.05) between the treatments. Continuous planting of 

susceptible Okrun for three years resulted in the highest populations of Pythiµm 

spp. at 319 p/g. Pythium populations were lowest (P =0.05) in the fallow­

fallow-fallow (46 p/g) and canola/Okrun-canola/Okrun-canola/Okrun (79 p/g). 

Pod rot index in the same treatment was 28% which was lower (P =0.05) than 

all other treatments. Peanut yield in canola/peanut-canola/peanut-canola/peanut 

was 2653 kg/ha which was significantly higher than all other treatments. 

Peanut grade did not differ (P = 0. 1) among treatments and had an average of 

69 (Table 9). 

Cropping sequences affected the populations of S. minor, S. rolfsii and 

Pythium spp. in all three years of the organic amendments study. Disease 

incidence did not follow the same trend though. Sclerotinia blight was 

influenced by cropping sequence only in 1994 but not in 1993 and 1992. Pod 

rot index was also not influenced by the cropping sequences. As in the crop 

rotation experiments this may be attributed to the fact that although a reduction 

in pathogen populations had occurred, the population was still high enough to 

cause disease. In the case of Sclerotinia blight, only 1 sclerotium per 100 g soil 

is needed to cause 50% disease in the field (32). 

Although the use of rapeseed meal has been reported in the literature to 
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reduce the populations of several soilborne pathogens including S. minor (1, 

22), our field results did not corroborate this. Our results however showed a 

significant treatment effect (Table 10). Using canola as a green manure for 

three years or in combination with watermelon reduced sclerotial populations 

of S. minor (Figure 3) and sclerotinia blight incidence. The same treatments 

also reduced the populations of Pythium spp. (Figure 4) and pod rot index, 

which coincides with Li et. al's report of the effect of canola greens on several 

soilborne pathogens (23). 
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Table 1. Crop sequences in the crop rotation study 1992-1994. 

Planned 
cropping 
sequence 

P-P-PZ 
P-S-P 
P-G-P 
P-W-P 
S-S-P 
G-G-P 
W-W-P 
P-P-P 
P-S-P 
P-G-P 
P-W-P 
S-S-P 
G-G-P 
W-W-P 
F-F-F 

1992 

Peanut (Okrun) 
Peanut (Okrun) 
Peanut (Okrun) -
Peanut (Okrun) 
Sudan grass (Sweet grazin) 
Grain sorghum (Pioneer 8486) 
Wheat (Chisolm) 
Peanut (Tamspan 90) 
Peanut (Tamspan 90) 
Peanut (Tamspan 90) 
Peanut (Tamspan 90) 
Sudan grass (Sweet grazin) 
Grain sorghum (Pioneer 8486) 
Wheat (Chisolm) 
NA 

Year 

· 1993 

Peanut (Okrun) 
Sudan grass (GTR-1 Gro N Graze) 
Grain Sorghum (Pioneer 3500) 
Wheat (Karl) 
Sudan grass (GTR-1 Gro N Graze) 
Grain sorghum (Pioneer 3500) 
Wheat (Karl) 
Peanut (Tamspan 90) 
Sudan grass (GTR-1 Gro N Graze) 
Grain Sorghum (Pioneer 3500) 
Wheat (Karl) 
Sudan grass (GTR-1 Gro N Graze) 
Grain sorghum (Pioneer 3500) 
Wheat (Karl) 

z P: Peanut; S: Sudan grass; G: Grain sorghum; W: Wheat; and F:Fallow. 

1994 

Peanut (Okrun) 
Peanut (Okrun) 
Peanut (Okrun) 
Peanut (Okrun) 
Peanut (Okrun) 
Peanut (Okrun) 
Peanut (Okrun) 
Peanut (Tamspan 90) 
Peanut (Tamspan 90) 
Peanut (Tamspan 90) 
Peanut (Tamspan 90) 
Peanut (Tamspan 90) 
Peanut (Tamspan 90) 
Peanut (Tamspan 90) 
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Table 2. Crop sequences in the organic amendments study 1992-1994. 

Planned 
cropping 
sequence 

0-Q-QZ 
0-CW-O 
0-RW-O 
0-S-O 
CW-CW-0 
RW-RW-0 
S-S-0 
CO-CO-CO 
RO-RO-RO 
MO-MO-MO 
F-F-F 

Year 

1992x 199JY 

Okrun Okrun 
Okrun Canola, Watermelon 
Okrun Rape, Watermelon 
Okrun Sudan grass 
Canola, Watermelon Canola, Watermelon 
Rape, Watermelon Rape, Watermelon 
Sudan grass Sudan grass 
Canola, Okrun Canola, Okrun 
Rape, Okrun Rape, Okrun 
Rapeseed meal, Okrun Rapeseedmeal, Okrun 
NA 

1994vv 

Okrun 
Okrun 
Okrun 
Okrun 
Okrun 
Okrun 
Okrun 
Canola, Okrun 
Rape, Okrun 
Rapeseed meal, Okrun 

x In 1992, Peanut variety was Okrun; Sudan grass: Sweet Grazin; Canola: CX-CC1; Rape: Emerald; and Watermelon: 
Crimson Sweet. 
v In 1993, Peanut variety was Okrun; Sudan grass: GTR-1 Gro N Graze; Canola: Ceres; Rape: Dwarf Essex; and 
Watermelon: Crimson Sweet. 
vv In 1994, Peanut variety was Okrun; Canola: Ceres; and Rape:Dwarf Essex. 
z 0: Okrun; CW: Canola, Watermelon; RW: Rape, watermelon; S: Sudan grass; CP: Canola, Okrun; RO: Rape, Okrun; 
MO:Rapeseed meal, Okrun; and F:Fallow. 
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Table 3. Sclerotial populations of Sclerotinia minor, % Sclerotinia blight, sclerotial populations of Sclerotium rolfsii, % 
southern blight, Pythium spp. populations and pod rot index results in 1992 in the crop rotation study. 

Planned S. minor Sclerotinia Sclerotinia S. rolfsii Southern Pythium Pythium Yield Gradezz 
cropping population blight, mid blight, end population blight, mid population Pod rot kg/haz 
sequence /100g soil season season /100g soil season p/g index 

Q-Q-QY 4vv a 44 a 92 a Oa Oa 240 a 0.4 a 1779 65 
0-S-O 4a 43 a 90 a 0.5 a Oa 199 a 0.4 a 1694 64 
0-G-O Ba 41 a 91 a Oa Oa 211 a 0.4 a 1600 66 
0-W-O 6a 43 a 94 a 0.5 a Oa 230 a 0.4 a 1652 65 
S-S-0 7a NA NA Oa NA 69 C NA NA NA 
G-G-0 5a NA NA Oa NA 53 C NA NA NA 
W-W-0 5a NA NA 0.3 a NA 71 C NA NA NA 
T-T-T 4a 19 b 48 b 0.3 a Oa 114 b 0.2 b 2109 70 
T-S-T 3a 20 b 53 b Oa Oa 129 b 0.2 b 2523 68 
T-G-T 4a 15 b 48 b 1 a Oa 109 b 0.2 b 2168 70 
T-W-T 7a 17 b 48 b 2a Oa 65 C 0.3 b 2388 69 
S-S-T 4a NA NA Oa NA 81 C NA NA NA 
G-G-T 4a NA NA 0.3 a NA 42 C NA NA NA 
W-W-T Ba NA NA Oa NA 55 C NA NA NA 
F-F-F 4a NA NA Oa NA 42 C NA NA NA 

P=0.01 P=0.01 P=0.1 P=0.1 P=0.05 P=0.01 

v 0: Okrun; S: Sudan grass; G: Grain sorghum; W: Wheat; T: Tamspan 90; and F: Fallow. 
vv each data entry is an average of four readings. 
Data with similar letters in a column were not significantly different at that level. 
z Okrun yields were significantly lower than Tamspan 90 at P = 0. 1. 
zz Tamspan 90 grades were significantly higher than Okrun at P=0.05. 
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Table 4. Sclerotial populations of Sc/erotinia minor, % Sclerotinia blight, sclerotial populations of Sclerotium rolfsii, % 
southern blight, Pythium spp. populations and pod rot index results in 1993 in the crop rotation study. 

Planned S. minor Sclerotinia Sclerotinia S. rolfsii Southern Pythium Pythium Yield Gradezz 
cropping population blight, mid blight, end population blight, mid population Pod rot kg/haz 
sequence /100g soil season season /100g soil season p/g index 

Q-Q-QY 1 pv a 43 a 92 a 3a 6a 335 a 0.4a 1531 65 
0-S-O 7a NA NA 0.5 a NA . 62 C NA NA NA 
0-G-O 5b NA NA 1 a NA 47 C NA NA NA 
0-W-O 7 ab NA NA Oa NA 45 C NA NA NA 
S-S-0 8 ab NA NA Oa NA 43 C NA NA NA 
G-G-0 6 ab NA NA 0.5 a NA 61 C NA NA NA 
W-W-0 4b NA NA Oa NA 55 C NA NA NA 
T-T-T 4b 10 b 45 b 1 a 1 a 106 b 0.3 b 2629 70 
T-S-T 6 ab NA NA 1 a NA 48 C NA NA NA 
T-G-T 12 a NA NA Oa NA 40c NA NA NA 
T-W-T 6 ab NA NA Oa NA 36 C NA NA NA 
S-S-T 3c NA NA Oa NA 37 C NA NA NA 
G-G-T 10 a NA NA Oa NA 40 C NA NA NA 
W-W-T Sa NA NA Oa NA 40 C NA NA NA 
F-F-F 6b NA NA· Oa NA 27 C NA NA NA 

P=0.1 P=0.01 P=0.01 .P=0.1 P=0.1 P=0.05 P=0.01 

v 0: Okrun; S: Sudan grass; G: Grain sorghum; W: Wheat; T: Tamspan 90; and F: Fallow. 
vv each data entry is an average of four readings. 
Data with similar letters in a column were not significantly different at that level. 
z Okrun yields were significantly lower than Tamspan 90 at P=0.05. 
zz Tamspan 90 grades ·were significantly higher than Okrun at P=0.05. 
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Table 5. Sclerotial populations ofSclerotinia minor, % Sclerotinia blight, sclerotial populations of Sclerotium rolfsii, % 
southern blight, Pythium spp. populations and pod rot index results in 1994 in the crop rotation study. 

Planned S. minor Sclerotinia Sclerotinia S. rolfsii Southern Pythium Pythium Yield Gradezz 
cropping population blight, mid blight, end population blight, mid population Pod rot kg/haz 
sequence /100g soil season season /100g soil season p/g index 

Q-Q-QY 7vv a 59 a 94 a 0.5 a 1.3 a 296 a 0.5 a 3206 68 
0-S-O 7a 59 a 92 a 0.5 a 1.5a 208 a 0.5 a 3019 68 
0-G-O 4b 53 a 92 a Oa 4a 246 a 0.4 a 2575 64 
0-W-O 4b 56 a 99 a 0.3 a 5a 190 a 0.5 a 2754 67 
S-S-0 5 ab 71 a 91 a Oa Oa 175 a 0.5 a 2813 68 
G-G-0 3b 59 a 92 a 0.8 a Oa 105 b 0.5 a 2699 65 
W-W-0 6b 61 a 91 a Oa 1 a 103 b 0.4 a 3130 66 
T-T-T 5b Sb 43 b Oa 1.8 a 83 b 0.2 b 4489 71 
T-S-T 3b 11 b 41 b 0.8 a 3a 85 b 0.3 b 4510 72 
T-G-T 3b 7b 46 b 1.3 a 3a 94 b 0.2 b 4608 70 
T-W-T 3b 7b 43 b Oa 3a 86 b 0.2 b 4073 70 
S-S-T 2c 12 b 38 b Oa 5a 84 b 0.3 b 4895 71 
G-G-T 4 ab 11 b 43 b Oa 3a 61 b 0.3 b 4325 71 
W-W-T 5 ab 9b 54 b Oa Oa 69 b 0.3 b 4225 71 
F-F-F 4b NA NA Oa NA 42 C NA NA NA 

P=0.05 P=0.01 P=0.01 P=0.1 P=0.1 P=0.05 P=0.01 

v 0: Okrun; S: Sudan grass; G: Grain sorghum; W: Wheat; T: Tamspan 90; and F: Fallow. 
vv each data entry is an average of four readings. 
Data with similar letters in a column were not significantly different at that level. 
z Okrun yields were significantly lower than Tamspan 90 at P=0.01. 
zz Tamspan 90 grades were significantly higher than Okrun at P = 0.01. 
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Table 6. Analysis of variance, in the crop rotation study, for the effect of rotation and peanut cultivar on sclerotial 
populations of S. minor, Sclerotinia blight incidence, populations of Pythium spp., and pod rot index. 

Mean square 
Source of df -
variation Sclerotial Sclerotinia blight Pythium spp. Pod rot 

populationsa incidenceb populationsb indexa 

1992 
Rotation (R) 14 34.13 0.648 23191.2f 0.758 
Cultivar (C) 1 14.00 0.019° 1704.46f 0.044d 
RXC 6 25.15 0.071 176499.4f 0.069 

1993 
Rotation (R) 14 26.792d 0.587 20680.1f 0.812 
Cultivar (C) 1 13. 781c 0.023d 18865.1f 0.037d 
RXC 6 34.197 0.066 76963.3f 0.044 

1994 
Rotation (R) 14 38.971d 0.719 2789.9° 0.6898 

Cultivar (C) 1 18.285d o.015t 8587.88 0.0588 

RXC 6 46.494 0.089 3473.5 8 0.041 8 

a End of season sample. 
b Mid season sample. 
c Significant at P =0.1 
d Significant at P = 0.05 
0 Significant at P = 0.01 
t Significant at P=0.001 
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Table 7. Sclerotial populations of Sclerotinia minor, % Sclerotinia blight, sclerotial populations of Sc/erotium rolfsii, % 
southern blight, Pythium spp. populations and pod rot index results in 1992 in the organic amendments study. 

Planned S. minor Sclerotinia Sclerotinia S. rolfsii Southern Pythium Pythium Yield Gradezz 
cropping population blight, mid blight, end population blight, mid population Pod rot kg/haz 
sequence /100g soil season season /100g soil season p/g index 

0-Q-QY 17vv a 30 a 99 a Sa Oa 138 a 0.5 a 1141 64 
0-CW-O 6b 29 a 95 a 0.5 b Oa 126 a 0.4 a 1542 68 
0-RW-O 4b 32 a 100 a Ob Oa 193 a 0.4 a 1336 66 
0-S-O 8 ab 29 a 100 a Sa Oa 146 a 0.4 a 1216 67 
CW-CW-0 4b NA NA Ob NA 95 b NA NA NA 
RW-RW-0 4b NA NA Ob NA 42 b NA NA NA 
S-S-0 1 a NA NA. Ob NA 65 b NA NA NA 
CO-CO-CO 2a 27 a 100 a Ob Oa 45 b 0.4a 1430 67 
RO-RO-RO 4b 32 a 93 a Ob Oa 105 a 0.4a 1853 65 
MO-MO-MO 12 ab 32 a 93 a Ob Oa 104 a 0.4 a 1174 68 
F-F-F 3b NA NA Ob NA 57 C NA NA NA 

P=0.1 P=0.1 P=0.1 P=0.1 P=0.1 P=0.05 P=0.1 

v 0: Okrun; CW: Canola/watermelon; RW: Rape/watermelon; S: Sudan grass; CO: Canola/Okrun; RO: Rape/Okrun; 
MO:Rapeseed meal/Okrun; F: Fallow. 
vv Each data entry is an average of four readings. 
Data with similar letters in a column were not significantly different at that level. 
z Rape/Okrun had 1853 kg/ha which was higher than any of the other peanut treatments at P = 0.05. 
zz No significant differences were observed between Okrun grades at P = 0. 1. 
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Table 8. Sclerotial populations of Sclerotinia minor, % Sclerotinia blight, sclerotial populations of Sclerotium rolfsii, % 
southern blight, Pythium spp. populations and pod rot index results in 1993 in the organic amendments study. 

Planned S. minor Sclerotinia Sclerotinia S. rolfs,7 Southern Pythium Pythium Yield Gradezz 
cropping population blight, mid blight, end population blight, mid population Pod rot kg/haz 
sequence /100g soil season season /1 OOg soil season p/g index 

O-o-oz 5vv b 45 a 95 a 1 a 2a 220 a 0.5 a 2053 67 
0-CW-O Sa NA NA 4a NA 83 b NA NA NA 
0-RW-O 6 ab NA NA 1 a NA 70 b NA NA NA 
0-S-O 7a NA NA Oa NA 87 b NA NA NA 
CW-CW-0 3c NA NA 6a NA 66 b NA NA NA 
RW-RW-0 4b NA NA 3a NA 72 b NA NA NA 
S-S-0 1 C NA NA Oa NA 66 b NA NA NA 
CO-CO-CO 3c 41 a 93 a Oa 2a 80 b 0.5 a 2168 69 
RO-RO-RO 5b 42 a 97 a Oa 1 a 73 b 0.5 a 1728 68 
MO-MO-MO 4 b 54 a 100 a Oa Oa 106 ab 0.5 a 1687 69 
F-F-F 4b NA NA Oa NA 50 C NA NA NA 

P=0.1 P=0.1 P=0.1 P=0.1 P=0.1 P=0.05 P=0.1 

z 0: Okrun; CW: Canola/watermelon; RW: Rape/watermelon; S: Sudan grass; CO: Canola/Okrun; RO: Rape/Okrun; 
MO:Rapeseed meal/Okrun; F: Fallow. 
vv Each data entry is an average of four readings. 
Data with similar letters in a column were not significantly different at that level. 
z Canola/Okrun-Canola/Okrun had the highest yield at 2168 kg/ha at P = 0. 1 . 
zz Okrun grades were not significantly different among treatments at P = 0. 1. 



Table 9. Sclerotial populations of Sclerotinia minor, % Sclerotinia blight, sclerotial populations of Sclerotium rolfsii, % 
southern blight, Pythium spp. populations and pod rot index results in 1994 in the organic amendments study. 

Planned S. minor Sclerotinia. Sclerotinia S. rolfsii Southern Pythium Pythium Yield Gradezz 
cropping population blight, mid blight, end population blight, mid population Pod rot kg/ha2 

sequence /100g soil season season /100g soil season p/g index 

O-o-oz 5vv a 71 a 91 a Oa Oa 3198 0.5 a 1761 71 
0-CW-O 4a 60 a 96 a 0.5 a Oa 271 8 0.5 a 2167 68 
0-RW-O 4a 52 a 92 a Oa Oa 2688 0.4 a 1840 69 
0-S-O 4a 49 a 95 a Oa Oa 127ab 0.5 a 2434 69 
CW-CW-0 2b 39 b 76 b 0.5 a Oa 53c 0.3 b 2445 68 
RW-RW-0 4a 52 a 95 a Oa Oa 2648 0.4 a 2456 70 

~ S-S-0 4a 53 a 94a Oa Oa 109b 0.4 a 1875 68 w 
CO-CO-CO 2b 37 b 68 b Oa Oa 79c 0.3 b 2653 69 
RO-RO-RO 3a 60 a 93 a Oa Oa 129b 0.5 a 1954 65 
MO-MO-MO 3 a 82 a 96 a Oa Oa 130b 0.4 a 1098 67 
F-F-F 3a NA NA Oa NA 45c NA NA NA 

P=0.1 P=0.05 P=0.05 P=0.1 P=0.1 P=0.01 P=0.05 

z 0: Okrun; CW: Canela/watermelon; RW: Rape/watermelon; S: Sudan grass; CO: Canola/Okrun; RO: Rape/Okrun; 
MO:Rapeseed meal/Okrun; F: Fallow. 
vv Each data entry is an average of four readings. 
Data with similar letters in a column were not significantly different at that level. 
z Canola/Okrun-Canola/Okrun-Canola/Okrun had the highest yield at 2653 kg/ha at P = 0.05. 
zz Okrun grades were not significantly different among treatments at P = 0. 1. 
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Table 10. Analysis of variance, in the organic amendments experiments, for the effect of cropping sequences, green 
manure, and organic amendment on sclerotial populations of S. minor, Sclerotinia blight incidence, populations of 
Pythium spp., and pod rot index. 

Mean square 
Source of df 
variation Sclerotial Sclerotinia blight Pythium spp. Pod rot 

populationsa incidenceb populationsb indexa 

1992 
Treatment (T) 10 8. 14° 0.617 3127.5d 0.583 
Rep. (R) 3 44.28 0.015 298.37 0.044 
TXR 30 15.05 0.071 279.3d 0.029 

1993 
Treatment (T) 10 9.95° 0.599 2957.1d 0.512 
Rep. (R) 3 39.527 0.016 365.4 0.037 
TXR 30 10.43 0.049 310.3 0.026 

1994 
Treatment (T) 10 10.5° 0.645d 3417.6° 0.458° 
Rep. (R) 3 51.35 0.013 316.24 0.041 
TXR 30 9.18 0.0072 235.88 0.037 

a End of season sample. 
b Mid season sample. 
0 Significant at P = 0.05 
d Significant at P =0.01 
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CHAPTER Ill 

USE OF CELLOPHANE SURFACE TO QUANTIFY INFECTION CUSHIONS 

FORMED BY SCLEROTINIA MINOR JAGGER. 

Abstract 

The root systems of 14-day-old plants were each enclosed in a moist 10 x 4.9 

cm pouch made of dialysis tubing (12,000 MW cut-off) that enclosed the plant 

crowns. Each pouch was planted into potting mix infested with mycelial 

fragments of Sclerotinia minor and maintained in a greenhouse for seven days. 

Roots were removed from pouches and the cellophane was carefully washed 

with cold water to remove soil residue. A 1-cm ring was cut around the 

periphery of each pouch at soil line. Ten squares (1 cm2 each) were cut from 

the ring, placed on a glass slide with the inner surface of cellophane contacting 

the glass, stained with cotton blue, and the number of infection cushions per 

cm2 was counted using a light microscope. This technique was used to 

compare the formation of infection cushions by S. minor as affected by 

susceptible and resistant peanut cultivars and several rotational crops. Okrun, 

a Sclerotinia-susceptible peanut, had 23 infection cushions per cm2 which was 

higher (P = 0.01) than Tamspan 90, a Sclerotinia-resistant peanut, and other 

plant species including wheat, grain sorghum, sudan grass, and fallow which 
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had 13, 9, 6, 7 and 4, respectively. This technique also was used to compare 

infection cushion formation by six isolates of S. minor, five of which were 

sclerotia forming and one was not. Isolate N is nonpathogenic on peanut under 

greenhouse conditions and does not form sclerotia on nutrient media, produced 

fewer (P =0.05) infection cushions than the other five pathogenic isolates. The 

number of infection cushions was correlated (r = 0.81) with the number of 

sclerotia of S. minor produced on the cellophane. This technique also was used 

to test the effec~ of two fungicides, fluazinam and iprodione, applied to peanut 

plants, on the number of infection cushions formed by S. minor. The number 

of infection cushions was significantly lower (P = 0.05) in the fluazinam 

treatment (1, 0.9, 0. 7 in Okrun, Tamspan 90, and Southwest Runner, a 

Sclerotinia resistant peanut genotype, respectively) than iprodione or water. 

Okrun, Tamspan 90 and Southwest Runner had 12, 5, and 4.5 infection 

cushions, respectively in water which was significantly higher (P =0.01) than 

the iprodione treatment (4, 2. 7, 2.9, respectively). 

Introduction 

Sclerotinia minor Jagger (6) causes Sclerotinia blight on peanut (Arachis 

hypogaea L), in Oklahoma, Virginia, and North Carolina (1 ). This disease was 

first reported in Virginia in 1971 ( 12), then in Oklahoma and North Carolina in 

1972 (12, 18). Disease symptoms include flagging, wilting, and necrosis of one 

to several stems. Sclerotinia blight also causes shredding of stems and pegs 

(19). The white fluffy mycelium of the fungus can be seen during the morning 
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hours when conditions of high humidity, low temperatures, and low wind speed 

are prevalent (18). As the season progresses, black irregular sclerotia are 

formed on and in stems, pods and seed ( 13). These sclerotia are the 

overwintering structures of the fungus and can survive in soil for extended 

periods of time in the absence of peanut. The wide host range of S. minor and 

the ability of sclerotia to survive in the absence of the host, coupled with the 

lack of consistent chemical controls make Sclerotinia blight a difficult disease 

to manage once .it is established. Four peanut cultivars Tamspan 90 (15), 

Southwest Runner (11), VA Bunch (2) and VA 938 (3) have resistance to 

Sclerotinia blight. Therefore, screening peanut germplasm for resistance to S. 

minor is very important. Several methods of screening for resistance have been 

used. Porter et al. tested 19 peanut genotypes for their resistance to S. 

sclerotiorum (13). Melouk et al. developed a detached shoot technique to 

evaluate the reaction of peanut genotypes to S. minor ( 10). Melouk and 

Aboshosha were the first to study the formation of infection cushions by S. 

minor on different peanut cultivars by using cellophane paper (Melouk, 

unpublished). Other studies on infection cushion formation by other Sc/erotinia 

species and other fungal pathogens also have been reported in the literature (7, 

8, 9, 14). Lumsden and Row studied the histopathology of infection of bean 

hypocotols by Sclerotinia sclerotiorum. They described three different hyphal 

types that constitute the dome-shaped infection cushion (7). Infection cushions 

are also formed by other fungal pathogens such as Rhizoctonia solani (8). 

Martinson (9) reported on the formation of infection cushions by R. solani on 
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cellophane and nylon. Therefore, this study was initiated to further evaluate 

the use of cellophane surface to quantify the formation of infection cushions by 

S. minor. 

The objectives of this research were: 1) to determine the utility of 

cellophane surface to study the formation of infection cushions by S. minor, 2) 

to quantify the effect of different plant hosts on the formation of infection 

cushions by S. minor, and 3) to determine the feasibility of using this technique 

to study the efficacy of fungicides against S. minor. Some preliminary results 

from this work and a summary of the procedure have been published (16, 17). 

Materials and methods 

Plant hosts. Okrun (Sclerotinia susceptible peanut), Tamspan 90 (Sclerotinia 

resistant peanut), and Southwest Runner (Sclerotinia resistant peanut) were 

coated with captan 50% WP (Captan, Gustafson, Dallas, TX) by placing the 

fungicide and seeds in coin envelops and shaking for 30-45 seconds. The 

seeds were then germinated on moist Whatman #1 (Maidston, England) filter 

papers in glass Petri plates. The plates were incubated in a growth chamber for 

24-48 hr at 30°C. After germination, clean seeds with good radical growth 

were planted in 11.5 x 10.5 cm plastic pots containing a mix of soil, sand, and 

shredded peat (1 :2:1, v/v/v), one seed per pot. Five seeds of wheat 

(Chisholm), sudan grass (Sweet Grazin), and grain sorghum (Pioneer 8486) also 

were planted as described above. For the fallow treatment, two 1.5 x 14.5 cm 

glass test tubes were used. A 2 cm layer of sand was applied to the top of all 
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pots to reduce moisture loss. Plants were maintained in a greenhouse and 

watered daily. Host plant treatments were selected to simulate crop selections 

in a three year crop rotation experiment conducted at the Caddo Research 

Station. 

Source of S. minor cultures. Six isolates of S. minor were used' in this study. 

Isolate C was used in most experiments and was collected by H.A. Melouk from 

infected peanut, cv Florunner, grown at Stillwater, OK. Two experiments were 

conducted using, in addition to C, isolate N which was obtained from X. Li, and 

four other isolates (7C, 28, 11 E~ and 3D) which were collected by J.P. 

Damicone from various peanut growing counties in Oklahoma. All isolates were 

maintained on potato dextrose agar PDA amended with streptomycin sulfate 

( 1 00 pg/ml). 

lnoculum production. In one experiment, two-day-old cultures of S. minor 

grown on potato dextrose agar, PDA (Sigma Chemical Co., St. Louis, MO) in 

a 9-cm-diameter Petri plate were homogenized in 50 ml of deionized water by 

using a Tekmar II Tissumizer Mark II (Tekmar Co., Cincinnati, OH) set at 13500 

rpm for 30-45 seconds. The resulting homogenate was then mixed with the 

top 5 cm of the soil mix, at a rate of one culture homogenate per pot. 

In another experiment, 1-crn-diameter agar plugs from the periphery of 

2-day-old cultures were used to inoculate autoclaved sterile flasks containing 

100 ml of potato dextrose broth PDB, (Difeo Laboratories, Detroit, Ml) one plug 

per flask. The inoculated flasks were then placed on a Lab-Line Orbit shaker 

(Lab-Line Instrument Inc., Melrose Park, IL) set at 150 rpm for 6 days. 
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Contents of each flask were then passed through a Whatman #3 (Maidston, 

England) filter paper disks. The mycelium was then dried on a series of 

Whatman #3 filter paper disks until its texture was leathery and no moisture 

was detected on the filter paper disks. The fresh mycelium was then 

homogenized in 50 ml of deionized water, and resulting homogenate was then 

used to inoculate the top 5 cm of a soil mix as previously described. 

To standardize inoculum levels, a calibration experiment was conducted. 

The amount of fresh mycelium homogenized in water ranged from 12 grams of 

fresh mycelium (a whole mycelial mat) to 9, 6, 3, 1.5 to O g. The same levels 

of S. minor inoculum also were used to inoculate 14-days-old Okrun plants in 

a dew chamber. Mycelial fragments were prepared then mixed with top soil as 

previously described. · The plants were then placed in a dew chamber where 

relative humidity was maintained at 95-100%, temperatures were 25 ±2° Cat 

night and 29±2° C during the day. Disease and severity were estimated six 

days after inoculation using an index of 1-7 where: 1 = No mycelial growth; 

2 = Trace growth; 3 = 1 cm lesion on stem; 4 = A lesion larger than 1 cm to 

< 25% colonization; 5 = 25-50% Colonization; 6 = 51-75% Colonization; and 

7 = >76% Colonization (Table 1). 

Dry weight measurements of S. minor mycelium were conducted to 

standardize the amount of mycelial inoculum to be used in future experiments. 

The S. minor inoculum was produced in PDB liquid culture, harvested, dried on 

filter paper, and fresh weights were taken. To calculate the dry weight, fresh 

mycelial mats were air dried in an oven at 70° C for 24 hrs. Regression 
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analysis was used to quantify the relationship between dry and wet weights. 

The relationship was expressed by the following equation: 

Y = 0. 7953 + 0.0496 X 

where Y is the dry weight and X is the wet weight. 

Description of the infection cushion technique: Pouches were formed from 

moistened 10 x 4.9 cm dialysis tubing (12,000 mol. wt. cut off, # D9402, 

Sigma Chemical Company, St. Louis, MO) by a tying knot at one end of the 

dialysis tube. The root systems of uprooted and washed 14-day-old 

greenhouse-grown plants were each enclosed in a pouch and tied above the 

plant crown with a twist tie. Pouches were transplanted into potting soil mixes 

as described above. The top 5 cm of the soil mix was removed, infested with 

S. minor inoculum, then returned to the pot. Plants were maintained in a 

greenhouse for seven days and watered daily for normal growth. Plants were 

then uprooted, the soil mix was carefully removed with cold water and the 

portion of cellophane above the soil line was discarded. A 1 cm ring was cut 

from the circumference of each pouch at the soil line. Ten cellophane squares 

(1 cm2 each) were cut from each ring, placed on a glass slide with the inner 

surface of cellophane contacting the glass, stained with cotton blue, covered 

with a glass cover slip, and the number of infection cushions per cm2 was 

counted using a light microscope. 

Formation of infection cushions by various isolates of S. minor. In addition to 

isolate C, five other isolates (7C, 28, 11 E, 3D, and N) were used. The six S. 

minor isolates were compared for their formation of infection cushions per cm2 • 
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Root systems of 14-day-old Okrun plants were enclosed in cellophane pouches 

and planted in 11.5 x 10.5 cm plastic pots with a soil mix containing inoculum 

of S. minor, isolate C, equivalent to 3 g of fresh mycelial weight per pot. The 

same procedure was used for the other five isolates. Seven days after 

inoculation, cellophane was removed and gently washed in cold water, and the 

number of infection cushions per cm2 was determined as previously described. 

Relationship between the number of infection cushions and formation of 

sclerotia. Root systems of 14-day-old Okrun, Tamspan 90 and Southwest 

Runner peanut plants were placed in cellophane pouches and individually 

planted in 11. 5 x 10. 5 cm plastic pots with soil mix containing inoculum of S. 

minor equivalent to 3 g of fresh mycelial weight per pot, which was 

incorporated into the top of the soil mix as previously described. Pouches were 

removed after seven days of inoculation. A cellophane ring was cut from each 

pouch at the point of the soil line to a depth of 1 cm. The ring was further 

divided into two equal half circles of cellophane. Five squares of cellophane (1 

cm each) were cut from the first half-circle to count the number of infection 

cushions as previously described. The other half-circle was placed on moist 

paper towels in a glass container with the inner side of cellophane contacting 

the paper towels. The glass container was then covered with aluminum foil to 

prevent moisture loss and incubated at 22-24° C for 7 days. After incubation, 

the number of S. minor sclerotia on cellophane was counted and reported as 

the number of viable sclerotia per cm2 of cellophane. 
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Effect of fungicides on infection cushion formation. The infection cushion 

technique was also used to determine the effect of fluazinam (Fluazinam 500, 

ISK Biosciences, Mentor, OH) and iprodione (Rovral 4F, Rhone Poulenc, 

Research Triangle, NC) on the number of S. minor infection cushions per cm2 

of cellophane. Root systems of 14-day-old Okrun, Tamspan 90 and Southwest 

runner peanut plants were placed in cellophane pouches and individually planted 

in 11.5 x 10.5 cm plastic pots with soil mix containing inoculum of S. minor 

equivalent to 3 g of fresh mycelial weight per pot, which was incorporated into 

the top of the soil mix as previously described. Three days after transplanting 

the pouches, 0.23 ml of the fungicides were applied, using an atomizer, around 

the crowns of the plants at rates equivalent to 0. 71 kg/ha and 1.12 kg/ha for 

fluazinam and iprodione, respectively. Four days after fungicide application, the 

cellophane was removed and gently washed in cold water, and the number of 

infection cushions per cm2 was determined using a light microscope. 

Statistical analysis. The data were analyzed by using analysis of variance and 

regression using SAS (SAS Institute, Cary, NC). Only significant (p =0.05) data 

are discussed unless otherwise stated. 

In all experiments regardless of the method of inoculum preparation, 

there were five plants per treatment, and each experiment was repeated at least 

once. 
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Results 

Effect of host species on infection cushion formation. In the tests where 

inoculum was produced on agar plates, the susceptible cultivar Okrun had 23 

infection cushions per cm2 , which was higher (P =0.01) than the resistant 

cultivar Tams pan 90 ( 1 6 infection cushions per cm2). Wheat, grain sorghum, 

sudan grass, and fallow had 9, 6, 7, and 4 infection cushions, respectively 

which was significantly lower than both peanut cultivars, Okrun and Tamspan 

90. All plant treatments had higher (P =0.05) numbers of infection cushions 

per cm2 than the fallow treatment (Table 2). 

In the other tests where inoculum was produced in liquid cultures, Okrun 

had the highest (P = 0.01) number of infection cushions per cm2 • Tams pan 90 

and Southwest Runner had higher (P = 0.01) numbers of infection cushions per 

cm2 than wheat, sudan grass, grain sorghum, and fallow (Table 2). 

Formation of infection cushions by various isolates of S. minor. Isolate N, a 

non sclerotia forming and non pathogenic on Okrun, had 3 infection cushions 

per cm2, which was significantly lower (P = 0.01) than any of the other isolates. 

There were no significant differences (P=0.05) in the numbers of infection 

cushions per cm2 formed by the sclerotia forming and pathogenic isolates C, 

7C, 28, 11 E, and 3D (Table 3). 

Relationship between the number of infection cushions and formation of 

sclerotia. Okrun had the highest (P = 0.01) numbers of infection cushions and 

sclerotia per cm2 • Tamspan 90 and Southwest Runner had higher (P =0.01) 

numbers of infection cushions, but not sclerotia per cm2 than wheat, sudan 
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grass, grain sorghum, and fallow (Table 4). The number of infection cushions 

was significantly correlated (r = 0. 81) with the number of sclerotia per cm2 • 

Effect of fungicides on the formation of infection cushions by S. minor. The 

number of infection cushions per cm2 of cellophane was significantly lower 

(P =0.01) in the fluazinam treatment (1.0, 0.9, 0. 7 in Okrun, Tamspan 90, and 

Southwest Runner, respectively) than iprodione or water (Table 5). Okrun, 

Tamspan 90 and Southwest runner had 12.0, 5.0, and 4.5 infection cushions 

in water which was significantly higher (P = 0.01) than iprodione (4.0, 2. 7 and 

2.9, respectively). 

Discussion 

The use of cellophane surface provided a method to quantify the effect 

of peanut cultivars and other plant species on the formation of infection cushion 

by S. minor. This technique was also useful in comparing infection cushion 

formation by various isolates of S. minor collected from different peanut 

producing counties in Oklahoma. 

Regardi'ess of the inoculum production method (on agar plates or in liquid 

culture), infection cushion formation on different plant hosts, especially Okrun 

vs Tamspan 90 and Southwest Runner, was consistent with field results that 

show Okrun is more susceptible and supports higher Sclerotinia blight incidence 

and severity than Tams pan 90 and Southwest Runner (4). For a fallow 

treatment, glass test tubes were used to simulate the effect of a solid surface 

without a host plant on the formation of infection cushions by S. minor. 
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Producing S. minor inoculum in liquid culture has allowed us to test the effect 

of the plant hosts on infection cushion formation without the interference of 

external nutrients from the potato dextrose agar. 

Fresh mycelial weight of 3 g per pot produced disease on Okrun in the 

dew chamber and also produced consistent numbers of infection cushions per 

square cm of cellophane. Lower mycelial concentration (1.5 g) also produced 

disease in the dew chamber on Okrun, but resulted in inconsistent numbers of 

infection cushions where many squares of cellophane contained no infection 

cushions. The use of mycelial inoculum produced in liquid culture allows more 

accurate standardization of inoculum between different tests. 

Results from infection cushion production by different Sclerotinia isolates 

showed isolate N produces the least number of infection cushions per cm2 • 

This isolate was also observed not to produce sclerotia on PDA agar plates and 

did not cause disease on Okrun in dew chamber tests. 

The number of infection cushions was correlated with the number of 

sclerotia of S. minor per cm2 • Results from these tests showed Okrun supports 

higher numbers of infection cushions and results in higher numbers of sclerotia 

than any of the other tested plant species. This is significant especially when 

decisions about what peanut cultivars are to be planted in fields that are 

infected with S. minor. Our results showed that planting Okrun would increase 

the numbers of sclerotia when compared to resistant cultivars like Tamspan 90 

or Southwest runner, or to other plant species like wheat, sudan grass, and 

grain sorghum. 
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Another use of the infection cushion technique is to evaluate the efficacy 

of fungicides against S. minor. Our results showed that fluazinam reduced 

infection cushion formation when compared to iprodione or water. This is 

consistent with field evaluations that show fluazinam to be more effective in 

controlling Sclerotinia blight than iprodione or no control (4). 

The previous test is also an example of several variations or modifications 

that can be done to the cellophane surface technique. Another modification is 

to use different types of S. minor inoculum such as sclerotia. Another area 

where the use of this technique might be very helpful is testing breeding lines 

and newly developed cultivars for their susceptibility to S. minor. Finally, our 

results showed that Okrun supported more infection cushions per cm2 than 

Tamspan 90 or Southwest Runner and any other plant host that was included 

in the tests. All peanut cultivars had more infection cushions than nonhosts. 

Sclerotinia minor isolate N produced less infection cushions per cm2 than any· 

of the other isolates tested. Except for N, there were no significant differences, 

among the tested isolates, in the number of infection cushions produced per 

cm2 • Okrun supported higher numbers of infection cushions and sclerotia per 

cm2 than Tamspan 90, Southwest Runner or other plant species. Fluazinam 

reduced infection cushion formation in comparison to iprodione or the water 

control. 
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Table 1 . Relationship between amount of inoculum of S. minor, the number of 
infection cushions formed on cellophane, and severity of Sclerotinia blight on 
Okrun. 

Amount of Mycelial Number of Infection Average ranking of 
lnoculum (g/pot) Cushions/cm2 blight severityx 

12Y 21.3z a 29 

9 19.9 a 23 

6 15.7 b 17 

3 9.9 C 13 

1.5 6.9 C 8 

0 0.0 d 3 

x Okrun plants were inoculated, by mixing mycelial fragments of S. minor with 
top 5 cm of soil in 11.5 x 10.5 cm plastic pots, with levels of S. minor's 
inoculum then placed in a dew chamber. Disease severity was rated after six 
days of inoculation on 1-7 scale where: 1 = No mycelial growth on stem; 2 = 
Trace growth; 3 = 1 cm lesion on stem; 4 = A lesion larger than 1 cm to < 
25 % colonization; 5 = 26-50% Colonization; 6 = 51-75 % Colonization; and 
7 = > 76% Colonization. Low ranking indicates low Sclerotinia blight severity 
on Okrun. 

v Dry weight equivalents can calculated by using the regression equation: 
Y = 0. 7953 + 0.0496 X 
Y is the fresh weight 
X is the dry weight 

z Mean of five replicates, means followed by the same letter are not significantly 
different (P=0.05). Data represent averages from two experiments. 
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Table 2. Formation of infection cushions by S. minor on cellophane in response 
to peanut cultivars and several plant species. 

Number of Infection Cushions/cm2 

Treatment 

Agar plate inoculumx Liquid culture inoculumxx 

Okrunv 23.oz a 9.6 a 

Tamspan 90YY 13.0 b 5.1 b 

Southwest RunnerYY N/A 4.9 b 

Wheat 9.0 C 1.9 C 

Grain Sorghum 6.0 C 2.0 C 

Sudan Grass 7.0 C 1.6 C 

FallowYYY 4.0 d 0.9 C 

x lnoculum was produced by homogenizing a 2-day-old culture of S. minor 
grown on potato dextrose agar (PDA) in 50 ml deionized water. The inoculum 
was then mixed with top 5 cm of the soil mix, one culture homogenate per pot. 

xx lnoculum was produced by homogenizing 6-day-old cultures of S. minor 
grown in potato dextrose _broth (PDB) in 50 ml deionized water. The inoculum 
was then mixed with top 5 cm of the soil mix, at a rate of 3g fresh wt. per pot. 

v Sclerotinia susceptible cultiva.r. 

vv Sclerotinia resistant cultivars. · 

m Two 1.5 x 14.5 cm glass test tubes were enclosed in the cellophane pouch 
to simulate the effect of a solid surface without a host plant on the formation 
of infection cushions by S. minor. 

z Mean of five replicates. Means within a column followed by the same letter 
are not significantly different (P =0.05). Average readings from two 
experiments. 
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Table 3. Formation of infection cushions by various isolates of S. minor on 
cellophane in response to Okrunz 

Isolate Infection cushions/cm2 

C 9.3Y a 

7C 8.7 a 

28 9.1 a 

11E 10.2 a 

3D 9.5 a 

N 2.5 b 

z Isolate C was recovered by H.A. Melouk from peanut cv Florunner grown at 
Stillwater, OK. Isolate N was obtained from X. Li, Oklahoma State University. 
Isolates 7C, 28, 11 E, 3D were obtained from J. P. Damicone, Oklahoma State 
University, which were collected from various peanut growing counties in 
Oklahoma. lnoculum consisted of mycelial fragments of S. minor grown in 
potato dextrose broth (PD8) liquid medium. The inoculum was then mixed with 
top 5 cm of the soil mix, at a rate of 3g fresh wt. per pot. 

v Mean of 5 replicates. Means followed by the same letter are not significantly 
different (P=0.05). Data represent averages from two experiments. 
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Table 4. Formation of infection cushions and sclerotia by S. minor on 
cellophane in response to several plant speciesx. 

Treatment Infection cushions/cm2 Sclerotia per cm2 

OkrunY 10.52z a 2.6z a 

Tamspan 90YY 4.6 b 0.8 b 

Southwest RunnerYY 4.5 b 0.8 b 

Wheat 1.7 C 0.4 b 

Grain Sorghum 1.6 C 0.4 b 

Sudan Grass 1.2 cd 0.3 b 

FallowYYY 0.8 d 0.3 b 

x lnoculum was produced by homogenizing 6-day-old cultures of S. minor 
grown in potato-dextrose-broth (PDB) in 50 ml deionized water. The inoculum 
was then mixed with top 5 cm of the soil mix, at a rate of 3g fresh wt. per pot. 
Pouches were removed after seven days of inoculation. A cellophane ring was 
cut from each pouch at the point of the soil line to a depth of 1 cm. The ring 
was further divided into two equal . half circles of cellophane. Five, 1 cm 
squares of cellophane were cut from the first half circle to count the number of 
infection cushions. The other half circle was placed on moist paper towels in 
a glass container with the inner side of cellophane contacting the paper towels. 
The glass container was then covered with aluminum foil to prevent moisture 
loss and incubated at 22-24° C for 7 days. After incubation, the number of S. 
minor sclerotia on cellophane was counted and reported as the number of viable 
sclerotia per cm2 of cellophane. 

v Sclerotinia susceptible cultivar. YY Sclerotinia resistant cultivars. YYY Two 1.5 
x 14.5 cm glass test tubes were enclosed in the cellophane pouch to simulate 
the effect of a solid surface without a host plant. 

z Mean of five replicates. Means within a column followed by the same letter 
are not significantly different (P = 0.05). Average readings from 2 experiments. 
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Table 5. Effect of fluazinam, iprodione, and water on infection cushion 
formation by S. minor on cellophane in response to Okrun, Tamspan 90 and 
Southwest runner peanutx. 

Number of Infection Cushions/cm2 

Treatment 

OkrunY Tamspan 90YY Southwest RunnerYY 

Fluazinamxx 1.oz a 0.9 a 0.7 a 

lprodionexx 4.0 b 2.7 b 2.9 b 

Waterxx 12.0 C 5c 4.5 C 

x lnoculum was produced by homogenizing 6-day-old cultures of S. minor 
grown in potato dextrose broth (PDB) in 50 ml deionized water. The inoculum 
was then mixed with top 5 cm of the soil mix, at a rate of .3g fresh wt. per pot. 

xx Three days after inoculation, 0.23 ml of the fungicides were applied, using 
an atomizer, around the crowns of the plants at rates equivalent to 0. 71 kg/ha 

· and 1.12 kg/ha for fluazinam and iprodione, respectively. Four days after 
fungicide application, the cellophane was removed and gently washed in cold 
water; and the number of infection cushions per cm2 was determined using a 

· light microscope. 

v Sclerotinia susceptible cultivar. 

YY Sclerotinia resistant cultivars. 

z Mean of five replicates .. Means within a ·column. followed by the. same Jetter 
are not- significantly different (P =0.05). ·· Average readings from- two 
experiments. 
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Figure 1. Light micrograph showing an infection cushion of Sclerotinia minor on 
cellophane. 
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