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CHAPTER I 

INTRODUCTION 

Turbulence is a phenomenon which occurs widely in nature and in many 

engineering systems. In the atmosphere, oceans, rivers, heat exchangers, and au­

tomobile engines, turbulence becomes a common feature and its importance is 

self-evident. The understanding of turbulence has long been a fundamental prob­

lem in physics. Since the pioneering work by Osborne Reynolds at the end of 

the nineteenth century, considerable progress has been made in understanding the 

nature of turbulence, which includes measurement of key parameters in turbulent 

flows, mathematical formulation, and numerical calculation of various turbulence 

problems. These studies have revealed that the problem of turbulence is, in fact, 

very difficult to solve because of its nonlinearility in its governing equations. Prof. 

George Carrier of Harvard University emphasized this point with the remark: "If, 

in the year 2000, someone delivers a lecture on fluid mechanics research in the next 

50 years, he will probably start by noting that turbulence is our major unsolved 

problem" [5]. 

Because of the difficulties in finding the exact solutions for turbulent flows, 

many statistical methods have been utilized to study turbulence. In the past the 

results were more descriptive than quantitative. In 1940s Kolmogorov proposed a 

classical model [13] which describes the fully developed turbulence. In his model, 

turbulence is viewed as a cascade of turbulent kinetic energy from the largest eddies 

of size 10 to smaller eddies with a constant energy flux £. The cascade continues 

until the size of the eddies becomes comparable to the dissipation length lrrun· In 

the theory the Kolmogorov cut-off length lrrun "" 10 ( v3 / c) t, where vis the kinematic 

viscosity of the fluid. According to Kolmogorov, only two parameters, land£, are 

1 
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relevant to the small scale turbulence, when the length scale I is in the inertial 

range lmin <I< 10 • With a simple dimensional argument, one can show that the 

scaling velocity (or the eddy velocity) u(l) "' (d)l. The theory ignores the effect 

of boundaries and assumes the flow to be isotropic and homogeneous. However, 

in many real flows, boundaries are always finite and different coherent structures 

have been observed in systems. Many recent studies have been focused on how the 

kinematic energy is transported in real turbulent flows. There are two directions 

from which turbulence can be approached. One can start from the steady flows 

that are just barely unstable, and proceed through various states as the control 

parameter is increased. Or one can prepare the flow directly into a well developed 

turbulent state and study its putatively universal statistical properties. 

An example is Rayleigh-Benard convection, which is named after the first 

two scientists, Benard (experimental study in 1901) and Rayleigh (theoretical cal­

culation in 1916), who studied thermal convection system at the beginning of this 

century. When a horizontal layer of fluid is heated from below, Rayleigh-Benard 

convection will occur if the temperature difference '6.T across the fluid layer ex­

ceeds a critical value '6.Tc. The control parameter in thermal convection is the 

Rayleigh number Ra, which is proportional to '6.T. In recent years much attention 

has been focused on Rayleigh-Benard convection both in the chaotic regime, where 

Ra slightly exceeds a critical value Rae (proportional to '6.Tc), and in the turbu­

lent regime whe~e Ra ~ Rae, The recent discovery of scaling laws in the heat flux 

and temperature .statistics in turbulent convection [6][39] shed new light on the 

nature of the convective tur:bulence. These experiments have stimulated consider­

able experimental [29] and theoretical efforts'. [18][22][23], aimed at explaining the 

observed scaling laws in the temperature field. The theoretical calculations arrive 

at similar conclusions for the temperature field, but have different assumptions 

and predictions for the velocity field in turbulent bulk regions and near viscous 

and thermal boundary layers. In contrast to the great number of temperature 

measurements, however, experimental information about velocity fluctuations and 

their statistics in turbulent convection is very limited. This motivated us to carry 
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out a systematic experimental study of the statistical properties of the velocity 

field in turbulent convection. With the direct measurements of velocity fluctua­

tions and their statistics, we can verify the assumptions and test the predictions of 

various theoretical models [6][28]. The advantages of using Rayleigh-Benard con­

vection as an example to study turbulence are: (1) Rayleigh-Benard convection 

has well defined boundary conditions; and (2) the change of turbulent states in 

thermal convection can be observed in a well controlled way (by controlling the 

Rayleigh number Ra). 

The lack of the velocity information in turbulent convection is partially due 

to the fact that the conventional methods for measuring velocity, such as hot-wire 

anemometry and laser Doppler velocimetry (LDV), are not suitable for thermal 

turbulence (limitations will be discussed in Chapter III). To overcome the ex­

perimental difficulties, Tong, Xia, and Ackerson [36] have developed a new light 

scattering technique of incoherent cross-correlation spectroscopy (ICS) to measure 

the local velocity fluctuations and their statistics. This technique has the advan­

tages of high spatial resolution, fast temporal response, and ease of use. In this 

thesis, we have used the ICS technique to study the statistical properties of the 

local velocity in turbulent convection. We have also exploited the technique of pho­

ton correlation spectroscopy (HCS) to measure the velocity difference at various 

length scales. These studies have found notable features of turbulent convection 

and have resulted in a series of publications [25][26][35]. 

This thesis is a summary of our light scattering study of turbulent Rayleigh­

Benard convection during the last five years. Chapter II briefly reviews the recent 

theoretical work. Experimental methods and apparatus appear in Chapter III, 

and our experimental results are discussed in Chapter IV. Finally the thesis is 

concluded in Chapter V. 



CHAPTER II 

BACKGROUND 

In this chapter we review some background information about Rayleigh­

Benard convection and discuss recent theoretical models for turbulent convection. 

Rayleigh-Benard Convection 

When a horizontal layer of fluid is heated from below, Rayleigh-Benard con­

vection will occur if the temperature difference D.T across the layer exceeds a 

critical value D.Tc. Because of the buoyancy effect due to gravity, the cooler fluid 

on the top of the fluid layer will start a downward motion and the warmer fluid 

on the bottom of the fluid layer will start its upward motion. Thus, a convection 

flow is established. As an incompressible fluid in a closed box, Rayleigh-Benard 

convection can be described by the following equations of motion: 

Incompressibility equation: 

V·v=O; (1) 

Momentum equation: 

(~: + v · Vv) = vV2v - Vp /Po+ aD.Tg z. (2) 

Heat equation: 

(3) 

where <I> denotes the dissipation function, due for example to viscous friction; for 

our experiments <I> is negligible. In the above, v, p, and T are, respectively, the 

unknown velocity, pressure, and temperature :fields, p0 is the density of the fluid, 

g is the gravitational acceleration, v is the kinematic viscosity, c,, is the specific 

4 
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heat, K,d the thermal diffusivity, a= ;~ is the thermal expansion coefficient, and 

b.T = Tbottom - Ttop is the temperature difference between the upper and lower 

plates. The vertical coordinate is denoted as z with the positive direction pointing 

upwards. 

To get the above equations, we have used Boussinesq [38] approximation, in 

which all fluid properties, except for the density, are assumed to be temperature 

independent. The time averaged density variation is so small compared to the 

density itself that one may neglect its effect in all terms of the equations except 

for the buoyancy term. Eq. {1) is obtained from the mass conservation equation, 

:: + v' · (pv) = 0, simplified under the .Boussinesq approximation. Eq. (2) is 

the N avier-Stokes equation with the external force being the net buoyance force 

ab.Tgz. Eq. {3) is the heat equation for thermal convection. 

For turbulent convection, the unknown ;fields v, p, and T are coupled to­

gether. Furthermore, the nonlinear operator v · v' makes it very difficult to find 

exact solutions .for the equations. However, there exists qualitative analysis which 

can shed some light on the problem. Using the temperature difference b.T, the 

cell height h, and the typical thermal diffusion time h2 / K,d as the scaling variables 

for the temperature T, the length L, and the time t, one may rewrite Eqs. (1), 

(2), and (3) in dimensionless forms: 

v' • V = 0, 

8T 2 -· + V. v'T = v' T 
8t ' 

1 (av • ) • 2 A 

Pr Bt + v · v'v + v'p = v' v - Raz. 

(4) 

(5) 

{6) 

The boundary conditions are: (1) Vaidewalls = Vp/ates = 0, (nonslip condition); 

{2) Ttop = 1 /2, nottom = -1 /2, (regulated temperature at the upper and lower 

plates); and (3) (v'T·n)sidewalls = 0 (no heat flux leakage at the sidewalls). Eq. (6) 

illustrates that solutions for the velocity v(x, t), temperature T(x, t), and pressure 

P(x, t) only depend on the dimensionless Rayleigh number 

(7) 



and the Prandtl number 
11 

Pr=-. 
Kd 
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(8) 

Different fluids with the same values of Ra and Pr will have a similar flow be-

havior, because the fluid parameters enter the problem only through these two 

dimensionless numbers. The Rayleigh number can also be expressed as the ratio 

of the buoyancy contribution to the diffusion contribution, 

R Tt Tv a---- 2' 
Tb 

(9) 

where Tt "' h2 / Kd is the thermal diffusion time, r 11 "' h2 /11 is the viscous diffusion 

time, and 11, "' ( h / a) t "' ( ga~T) t is the time for the buoyant force to move the 

fluid from the lower plate to the upper plate. When Ra is increased above the 

critical value Rae "' 103 , the buoyancy force overcomes the viscous and thermal 

diffusions, and the fluid starts to flow. In this case, the heat is transferred by 

convection other than the conduction. Similarly, the Prandtl number Pr can be 

expressed in terms of the ratio of thermal diffusion contribution to viscous diffusion 

contribution, 
Tt 

Pr=·-:-. 
Tv 

(10) 

In convection experiments, both the Rayleigh number Ra and the Prandtl 

number Pr are well controlled. Because Ra can be easily changed in the experiment, 

most recent experimental studies have been focused on characterizing the flow 

states of the convection with different Ra. As Ra is increased from 103 to 1014 , 

the motion of the fluid undergoes several different phases from pure convection to 

turbulence (Figure 1 ). To characterize the flow states, a group of researchers led by 

Prof. Albert Libchaber at University of Chicago have carried out an experiment in 

which the Nusselt number Nu was measured as a function of Ra while keeping Pr 

constant. The Nusselt number Nu is the total heat flux, qtotal, transferred vertically 

through the cell, normalized, by the pure conductive heat flux qc = kw ~T / h, where 

kw is the thermal conductivity of the fluid. Therefore, we have 

N _ qtotal 

u - kw~T/h 
(11) 
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Figure 1. Flow states of thermal convection (From [31]). 
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slope of 1/3 in the region marked "soft turbulence," but the slope 
decreases to a value of 2/7 in the region marked "hard turbulence" 
(From [31]). 
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The experiment was performed in helium gas at 5° k, and Figure 2 shows the 

measured Nu vs. Ra curve. As shown in the Figure 2, the heat transported by 

convection is increased as the flow gets more and more turbulent. The Chicago 

group has found that turbulent convection can be further classified into two states : 

"soft" turbulence and "hard" turbulence ( details will be given later). The Rayleigh 

number, which separates the two states is approximately Ra - 4 x 107• In our 

convection experiment in water, Ra is varied in the range between 107 and 1011 • 

In this Ra range, fluid motion starts at the upper end of the "soft" turbulence 

regime and extends well into the "hard" turbulence regime. 

The local velocity u, which is a function of position and time, may also 

change with Rayleigh number. In turbulent convection, the Reynolds number Re 

is often used as the dimensionless velocity. The Reynolds number is defined as 

R _ (v · "v)v _ ul (l2) 
e - 't"72 - , 

Ziv V ll 

where u is a typical velocity and l is the characteristic size of the related turbu­

lent flow. As shown in Eq. (12), the Reynolds number Re measures the relative 

importance of the nonlinear advection term to the viscous term in Eq. (6). The 

Peclet number Pe is also used as the dimensionless velocity. The Peclet number 

Pe, which is defined as 

(v · "v)T ul 
Pe= Re Pr= . "v2T ~ ·-, 

K.d K.d 
(13) 

gives the ratio of the temperature advection to the thermal diffusion. When the 

Prandtl number Pr - 1, which is the case for convection experiments in water, the 

Reynolds number and the Peclet number are essentially the same. 

A Brief Introduction To Turbulence 

In the above, the word "turbulence" has been mentioned again and again. 

But what exactly is "turbulence?" 

There is no simple definition for turbulence. A commonly used definition is 

that turbulence is a chaotic motion both in time and in space. Some characteristics 

of turbulent flows are: 
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(1) Irregularity. This makes the deterministic approach to turbulence prob­

lems very difficult. 

(2) Turbulent diffusivity. This enhances the mixing and transferring of mass, 

momentum, and heat. 

(3) Large Reynolds numbers. This introduces the instability of flows. 

( 4) Three dimensional vorticity fluctuations. 

(5) Dissipation. A constant supply of energy is required. 

Because of the difficulties of finding the exact solution for turbulent flows, 

one often relies on dimensional analysis and other statistical methods to analyze 

turbulent flows. When a fl.ow property, such as temperature or velocity, only 

depends on a few independent variables, one may use a dimensional analysis to 

qualitatively predict a relationship between the control parameters and the flow 

property concerned. An example is the ! law of the energy spectrum developed by 

Kolmogorov in the 1940s [13]. The energy spectrum E(k) is defined as the kinetic 

energy per unit mass and per unit wavenumber k. In the Kolmogorov theory, 

the turbulent energy is assumed to cascade from large scales to small scales as 

illustrated in Figure 3. After the turbulent fl.ow reaches a steady state, the energy 

is injected into the fl.ow at the largest scale "' 10 (the largest eddy) and then is 

transferred successively to smaller eddies of sizes"' 11 , "' 12 , ···until the dissipation 

cut-off length lmin is reached. The smaller eddies are exposed to the strain-rate 

field of the larger eddies. By increasing their vorticity, the smaller eddies gain their 

own energy at the expense of the energy of the larger eddies. As a result, there 

is an energy flux, e, transferred from the larger eddies to the smaller ones. For 

simplicity, Kolmogorov theory assumes that en ~ e is a constant. The kinematic 

energy per unit mass associated with the nth generation of the eddy ln is 

1kn+l 
E(n) = E(k)dk, 

kn 
(14) 

where kn "'l;-1 is the relevant wave number. In the above, the eddy energy 

E(n) "'u!, (15) 
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Figure 3. The energy cascade according to the 1941 Kolmogorov theory. 
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where Un is the characteristic velocity of the eddy ln. It should be pointed out that 

Un is rather a typical velocity difference Un = 8v(ln) across a distance ln, than a 

mean fl.ow velocity. Therefore the eddy turn over time is given by 

(16) 

This relation will not apply to the two extreme cases at the beginning of the 

cascade and at the end of it. At the largest scale 10 , the cascade is not local and 

t 0 = 10 / u 0 should be used as the time scale. At the end of the cascade, the energy 

transfer is no longer able to compete with the dissipation. The thermal and viscous 

dissipation times can be estimated as 

and 
l2. 

tther"' ~. 
,q 

(17) 

(18) 

At the length scale /min, the kinetic energy will dissipate into heat, and the eddies 

can not further cascade into any smaller sizes. In accordance with the time range 

· tdiss ~ t;,, ~ to, there exists an inertial range, /min ~ ln ~ lo, in which one may 

ignore the dissipation and the boundary effect. In this inertial range, 

(19) 

then we have 

(20) 

and 

(21) 

After the Fourier transformation, Eq. (21) yields the Kolmogorov spectrum [14] 

(22) 

Another useful method for the study of turbulence is the asymtotic invariance 

analysis. This method approaches turbulence as the control parameter goes to 
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infinity. For turbulent convection, the extreme high Rayleigh number could be 

achieved by letting the height of the convection cell go to infinity, while fixing the 

temperature difference between the upper and lower plates. The original theory 

for turbulent boundary layers was developed using the asymptotic approach. For 

turbulent convection, it has been observed that the average temperature gradient 

~; is concentrated mainly in thin thermal boundary layers near the upper and 

lower plates [1]. The flow at the center of the cell is homogeneous and the central 

region is an isothermal region, as shown in Figure 4 (for SF6 at Ra = 4.8 x 107, 

b,. = 16.3°0, and h = 15.2 cm. The inset shows an enlargement of the region close 

to the plate). Then it is natural to define the thermal boundary layer thickness 8 

as 
b,.T /2 . 8T 

0 = ( Bz )at plate, (23) 

where the b,.T /2 is used to preserve the symmetry of the upper and lower thermal 

boundary layers. Using the scaling approach, we have 

(24) 

The thickness of the thermal layer will reach a finite limit even when the height 

of the cell and thus the Rayleigh number go to infinity. In this case the thermal 

boundary layer at the upper plate does not communicate with that at the lower 

plate. The only value for /3, which makes 8 independent of the cell height, is 

1/3 since Ra ,..., h3 • With the definition of Nu in Eq. (11), we may relate the 

Nusselt number with the boundary layer thickness 8 by equating the total heat 

flux transferred through the cell with that just out of the thermal boundary layer: 

8T 
qtotal = kw ( Bz )at plate• (25) 

Therefore, we have 
h 

. Nu= 20· (26) 

Because Nu can be measured with little technical difficulty and great accuracy, Eq. 

(26) has become a useful way to estimate the thermal boundary layer thickness 
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5. From Eqs. (24) and (26), one obtains an important power law in the classical 

theory of thermal convection: 

Nu,..., Raf3, (27) 

with /3 = 1/3. With the critical Rayleigh number Rae - 1870, one can even 

estimate the amplitude in Eq. (27) as 

Ra 1 1 
Nu,..., (-R )a= 0.04Raa. 

ac 
(28) 

Besides.the power law dependence in Nu (Ra), the RMS values of the temperature 

and velocity fluctuations at the cell center have also been expressed in power law 

functions of Ra. The characteristic temperature scale 5Tc (i.e., the RMS value) 

varies with the Rayleigh number, 

(29) 

The calculated values for 'Y varies among different models, from -! to -! 
· [16][19][20]. The characteristic velocity Uc in the central region (or the corre­

sponding Reynolds number) increases with the Rayleigh number according to 

Uch R w _,..., a. 
V 

(30) 

The value of w has been estimated as ,..., 1/2 in the classical theory of turbulent 

convection [13]. 

Do the scaling exponents in Eqs. (20), (27), (29), and (30) accurately describe 

the temperature and velocity statistics in turbulent convection? Many experimen­

tal studies have been carried out to· examine the Rayleigh number dependence of 

the Nusselt number. Perhaps the experiments carried out by the Chicago group, 

that we mentioned in the last section, represent the most accurate results in the 

temperature measurements [12]. The Chicago experiment has found that (1) in 

"soft" turbulence regime, in which Ra is in the range between 5 x 105 and 4 x 107 , 

the relation Nu ,..., Rai holds; and (2) when in the "hard" turbulence regime 

(Ra> 4 x 107 ), the measured Nu can be well described by a power law 

Nu= 0.23 x Rao.2s2±0.oos,..., Ra2/1. (31) 
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The obtained power law in Eq. (31) differs from Eq. (28) not only in the power law 

amplitude but also the exponent. Another important difference between the soft 

turbulence and the hard turbulence is that their temperature probability density 

functions (PDF) have different functional forms: in the soft turbulence regime, 

the temperature PDF at the cell center has a Gaussian form, whereas in the hard 

turbulence regime, the temperature PDF is ofan exponential form. Figs. 5 (Ra= 

8.41 x 106 ) and 6 (Ra= 1.47 x 108 ) show the measured temperature PDFs in the 

Chicago experiment. In this experiment the value of the exponent "I in Eq. (29) 

is found to be "I= -0.147 ~ -1/7. 

In contrast to the great number of temperature measurements, experimen­

tal information about the velocity field in turbulent convection is very limited. 

In this thesis we study the statistical properties of the velocity field in turbulent 

convection. In one experiment [35], we have used the technique of homodyne pho­

ton correlation spectroscopy to measure the velocity difference u(l) over varying 

length scale 1. It is found that the relative velocity u(l) - 1315, which is differ­

ent from the Kolmogorov prediction u(ln) - zJ shown in Eq. (20). The 3/5 

exponent for velocity scaling is the Bolgiano scaling exponent [4][22]. In turbu-

, lent convection, the energy cascade gives rise to different size eddies and these 

eddies can convert different amounts of kinematic energy to potential energy in 

the gravitational field. Energy flux c is no longer a constant because of this leak. 

Only entropy flux still is conserved in this case [18]. The I-dependence of c gives 

the /3/ 5 dependence of velocity difference u(l). Using the technique of incoherent 

cross-correlation spectroscopy, which is recently developed by Tong, Xia, and Ack­

erson, we also measured the PDF of the local velocity at the cell center [25]. The 

experiment reveals that the value of the exponent w in Eq. (30) is w = 0.44 (we 

will discuss the experimental details in Chapter IV). 

Large-Scale Circulation And Thermal Plumes 

There are two main coherent structures involved in turbulent convection. 

They are: (1) the coherent large-scale circulation near the boundaries of the cell; 
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Figure 5. Histogram of the temperature distribution in soft turbulence regime. 
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Figure 6. Histogram of the temperature distribution in hard turbulence regime. 
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and (2) intermittent bursts of thermal plumes from the thermal boundary layers. 

The large scale circulation is also called wind when it is near the upper and lower 

plates and its size is comparable with the cell height h. Thermal plumes and the 

large-scale circulation, which modifies the boundary layers via its shear, are found 

to coexist in a closed convection cell [24][40]. The two salient features of turbulent 

convection are directly related to the transport of heat and momentum across the 

cell, and have been adopted in several theoretical models [28]. A central unan-

. swered question in the study of turbulent convection is which coherent structure 

dominates the heat transport in turbulent convection? The large-scale circulation 

or the thermal plumes? 

Kadanoff and coworkers developed a scaling model to derive the non-classical 

values of the exponents /3, 1, and w in the hard turbulence regime. Their model 

involves thermal plumes but ignores the large-scale circulation completely. It is 

assumed that the convective heat flux equals the conductive heat flux near the 

thermal boundary layers. The heat is transported through the central region of 

the cell by thermal plumes with a typical velocity Uc and temperature Tc. In this 

.case, we have 

(32) 

To match the boundary layer with the turbulent core region, it is further proposed 

that there is a mixing zone in between the two regions, whose thickness hmix 

satisfies the condition S < hmix ~ h. In the mixing zone the thermal plumes 

break off from the boundary layer, accelerate to certain velocity, and merge into 

the flow in the central region. For strong turbulent mixing, thermal diffusion can 

be ignored. With a simple dimensional argument, one can estimate the velocity of 

the plumes at the center to be proportional to the free-fall velocity, 

(33) 

On the other hand, Uc may be considered as the maximum velocity of the plumes, 

at which the buoyancy force is balanced by the viscous forces. Therefore, we have 

o:gb.T S2 

Uc"' 
11 

(34) 



20 

Substituting Eqs. (26), (27), (29), and (30) into Eqs. (32), (33), and (34), one 

finds the scaling exponents f3, "Y, and w 

"Y = 2w - 1; 

w = 1-2/3. 

(35) 

(36) 

(37) 

The final solutions for the above equations are: f3 = 2/7; "Y = -1/7; and w = 3/7. 

These values are in excellent agreement with the experimental results: 

f3 = 0.283, "Y = -0.147, and w = 0.44, which were discussed in the last sec­

tion. However a recent experiment shows [2] that a large part of the heat is carried 

by the large-scale circulation motion near the side wall of the cell. This is contrary 

to the assumption by Kadanoff et al. that the heat is transported through the cen­

tral region by thermal plumes. In accordance with the new experimental result, 

. Shraiman and Siggia proposed a different model [27], which ignores the effect of 

. the thermal plumes on the heat transport assuming the thermal boundary layers 

lie within the shear layers. It is assumed in the model that the heat is carried 

mainly by the large-scale circulation, which moves horizontally near the upper and 

lower surfaces and vertically near the side-walls of the convection cell. In this case, 

NuRa ,...;< (v'v)2 >. (38) 

Similar to the velocity profile in a turbulent pipe flow and other open turbulent 

flows, the velocity profile v(z) in the closed convection cell as a function of the 

distance from the lower (or upper) plate is assumed to have the logarithmic form 

with 

v = u.(2.5ln(z/z.) + 5), 

Pr 
z. = -, . u. 

(39) 

(40) 

and where the characteristic velocity u. is related to large-scale Reynolds number 

by 
Pr Re 

u. = . 
2.5(ln( u./ Pr) + 6 

(41) 



With Eqs. (38), (39), (40), and (41), one can show that [28] 

Nu,..., Ra2l7 f 1 (Pr, A), 

and 

Re ,..., Ra3!7 h(Pr, A), 
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(42) 

where fi(Pr, A) and h(Pr, A) are functions of the Prandtl number Pr and the 

aspect ratio A, respectively. Although the model by Shraiman and Siggia uses 

different assumptions for the mechanism of the heat transport, its solutions for 

the scaling exponents /3 and w are the same as those obtained by Kadanoff and 

coworkers. 

To examine the effect of the large-scale circulation on the heat transport, 

Solomon and Gollub [29] have carried out an experiment, which used a moving 

boundary of mercury to enhance the large-scale circulation near the lower thermal 

boundary layer. The Nusselt number Nu was found to increase by as much as 

70% with water being the convection fluid. This increase in the heat flux could 

be attributed to the enhanced large-scale circulation. However, some theoretical 

calculations have suggested that though the large-scale :flow plays an important 

role in the heat transport, it is impossible for the large-scale circulation to carry 

all the heat in turbulent convection. The point is partially supported by the fact 

that the shear velocity in the experiment by Solomon and Gollub was much larger 

than that in the natural convective flow. 

Inspired by the recent studies of turbulent convection, we have conducted a 

novel convection experiment in a closed cell with rough surfaces on both the upper 

and lower plates. The vertical heat flux is found to be increased by 20%, when the 

Rayleigh number becomes larger than a transition value. The experiment reveals 

that the main effect of the surface roughness is to increase the emission of large 

thermal plumes, which travel vertically through the central region. These extra 

thermal plumes enhance the heat transport, and they are also responsible for the 

anisotropic behavior of the velocity :fluctuations at the cell center. Our experiment 

suggests both the large-scale circulation and the thermal plumes contribute to 
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the heat transport in turbulent convection. There may well be a middle ground 

between the model by Kadanoff et al. in which the large-scale circulation is ignored, 

and the model by Shraiman and Siggia, in which the thermal plumes play no role 

in the heat transport. 



CHAPTER III 

MEASUREMENT METHODS AND APPARATUS 

Rayleigh-Benard Cell 

The convection cell used in the experiment was a vertical cylindrical cell 

with an inner diameter of 20 cm, and it is shown in Figure 7. The upper and 

lower plates were made of brass and their surfaces were electroplated with a thin 

layer of gold. The sidewall of the cell was a cylindrical ring made of transparent 

Plexglas to admit the incident light in the horizontal direction and transmit the 

scattered light. There was a filling stem at the center of the upper plate and 

the. vertical incident light could go through the stem. The cylindrical cell can 

sn1ooth out some undesirable velocity fluctuations, which could be produced by 

the <;:orners of a square celL Four cylindrical rings with heights of 6.6, 13.2, 20, 

· and 40 cm were used, respectively, to extend the accessible range of Ra. In our 

. e.xperiments; Ra was varied between 107 and 1011 • The corresponding aspect ratios 

(A= diameter/height) for these cells are 3.0, 1.5, 1.0, and 0.5, respectively. 

To regulate the temperature of the upper plate, we used a cooler and a 

circulator (both from NESLAB) to pump 2° C water through the cooling chamber 

fitted on the top of the upper plate. The lower plate was heated uniformly at 

a constant rate by two circular silicone rubber heaters ( Model SRFR 7 /10 from 

OMEGA). The two heaters were sandwiched in between two copper plates on the 

back side of the lower plate and were sealed with conducting grease to ensure a 

uniform heating. The electric resistance of each heater was 33.4!1, and the total 

resistance of the two parallel-connected heaters was 16. 7!1. The electric current 

going through the heaters was provided by a de power supply with 0.1 % long-term 

stability. Two OMEGA 44031 thermistors were embedded in the upper and lower 
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cooling chamber 

heaters 

Figure 7. Thermal convection cell with A= 1. 
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plates, respectively, and they were used to record the temperature of both plates. 

At the beginning of the whole project, we checked the temperature distribution 

of the upper and lower plates. It was found that the temperature at different 

points on the upper plate was uniform within 0.1°G for any given Ra. Similar 

temperature uniformity was also achieved on the lower plate. The temperature 

difference between the upper and lower plates, was varied between 4 ° C and 50° C. 

The control parameter in the convection experiment is the Rayleigh number Ra = 
agh3 b.T /111;,d, with o: being the thermal expansion coefficient, g the gravitational 

acceleration, h the height of the convection cell, b.T the temperature difference 

between the upper and lower plates, 11 and K.d the kinematic viscosity and the 

thermal diffusivity of the convecting fluid (water), respectively. Water was chosen 

as the convecting fluid because its molecular properties (a, 11, and K.d) at different 

temperatures are well documented and it is easily available in the laboratory. 

Thermal measurements were conducted to study the heat transport in tur­

bulent convection. The heat transport is measured by the Nusselt number Nu, 

which is the ratio of the total vertical heat flux across the cell to the heat flux 

carried by conduction. In our experiment, the total heat flux across the cell was 

determined by the electric power, V,? / R, required to keep the lower plate at a con­

stant temperature. Here Ve is the de voltage applied to the heaters and R =16. 70 

is the total resistance of the heating circuit. Because the heat flux by conduction 

is K.w6.T/h, the Nusselt number then becomes Nu= ~~: .... In the heat transport 

measurements, the convection cell was well insulated by a square box made of gold 

fiber glass to prevent heat leakage. The insulation box is not shown in Figure 7 

for a better view of other components in the setup. The heat flux measurements 

were carried out in both the "smooth cell" and the "rough cell". The upper and 

lower plates for -the rough cells were made of the same brass plates as those used 

in the smooth cells, but had woven V-shaped grooves on them. The grooves had 

a vertex angle of 90° and their spacing was such that a square lattice of pyramids 

was formed on the surface. The height of the pyramids (the roughness height ho) 
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was 3.175 mm and their spacings =6.35 mm. Both the smooth and rough brass 

plates were electroplated with a thin layer of gold to prevent corrosion in the fluid. 

The cell was filled with distilled water, which was seeded with monodispersed 

polymer latex spheres. We used 0.14 µm diameter latex particles in the measure­

ment of velocity differences and 0.95 µm diameter particles in the measurement 

of local velocity fluctuations. These particles had a high surface charge density to 

ensure their stability in the convecting fluid. The density of the particles is very 

close to that of water, so that they can faithfully follow the fluid motion. The 

volume fraction of the seed particles used in our experiments was between 10-5 

and 10-7 • At these particle concentrations, the mean spacing between the seed 

particles is much larger than their diameter ( dilute solution) but much smaller 

than the smallest turbulent scale (sufficient sampling). 

To completely characterize a turbulent flow, one needs to measure the pres­

sure, the temperature and the velocity fields, simultaneously. The pressure field 

is perhaps the most difficult one to measure, because the spatial resolution and 

the response time of currently available pressure sensors (piezoelectric transducers) 

are limited. Semiconductor thermistors and cold wires are commonly used in the 

temperature measurements. The conventional methods for measuring velocity are 

hot-wire anemometry and laser Doppler velocimetry (LDV). However, these two 

techniques are· not suitable for the study of thermal convection. This is because 

large temperature fluctuations in thermal convection may ruin the calibration of 

a hot-wire anemometer. Strong fluctuations of the fluid refractive index due to 

temperature fluctuations can cause the two laser beams used in LDV to wander 

and defocus in the fluid. This co·rruption of laser beam properties will reduce the 

signal-to-noise level of LDV. While visualization techniques are still useful in rec­

ognizing fl.ow patterns, they have limited spatial resolution and statistics for the 

velocity measurement. After reviewing all the experimental methods available, we 

decided to use two new light scattering methods in our study of turbulent con­

vection. The technique of homodyne correlation spectroscopy (HCS) was used to 

measure the velocity differences over various length scales. A newly developed 
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technique of incoherent cross-correlation spectroscopy was used to measure the lo­

cal velocity and its PDF. In the following three sections, we will discuss details of 

these experimental methods. 

Scattering From Seed Particles 

A good starting point is to consider the scattering of N identical particles in 

the fluid. Figure 8 shows a schematic diagram of the scattering geometry. Let a 

plane wave E0 exp[i(ko · r - w0 t)] illuminate the scattering sample. Here k0 is the 

incident wave vector, w0 is the angular frequency, and E0 is the amplitude of the 

incident wave. The incident field induces a radiating dipole moment in each of the 

particles. The total electric field E(t) at a distance R from the sample is a sum of 

the fields radiated by each of the particles, and has the form 

N 

E(t) =LE~ exp[i<P;(t) - iwot]. {43) 
j=l 

Here E~ is the amplitude of the field scattered by each of the particles, and is 

independent of the position of the particles. It is given by 

E~ :-- E0 [exp{ik., · R)/ R]{w0 /c)2{o - a0 )V sin VJ, {44) 

where k., is the scattering wave vector, c is the speed of the light, tp is the angle 

· between the polarization direction of E0 and the propagation direction of the scat­

tered wave k.,, a - o 0 is the dipole polarizability difference between the particle 

and the solvent, and Vis the volume of the scattering particle. The phase factor 

<P;(t) in Eq. {43) is 21r/,\ (,\ is the wavelength of the incident light) times the 

difference in path length between the jth particle and the origin 0. Thus when R 

is at a large distance from the scattering region, we have 

<P;(t) = q · r;(t), {45) 

where r;(t) is the position of the jth particle. The momentum transfer vector q, 

whose magnitude is (41rn/ ,\)sin!, is a vector difference between the incident and 
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Figure 8. Schematic diagram of light scattering from seed particles. 
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scattered wave vectors. In the above, n is the refractive index of the solvent and (} 

is the scattering angle. 

When the polarization of the incident wave is perpendicular to the scattering 

plane, the total electrical field scattered by isotropic particles has a simple form, 

N 
E(t) = ce-iwot L e't/1,(t)' (46) 

j=l 

where C is a proportionality constant, which is associated with the particle scat­

tering ability. 

The cross-correlation function of the scattering intensity is defined by 

< E;(O)Eb(O)E;(t)Eg(t) > K 
9c(t) = < E;(O)Eb(O) >< E;(O)E9 (0) > = QbQ9 ' 

(47) 

where the angle brackets represent a time average. In the above, Eb and E9 are 

the scattered electric fields from the same laser source. In our experiment the 

laser beam consists of the blue and green lights, which are from a argon-ion laser 

operated under the multiline mode. When the laser is operated under the single 

line mode, Eb= E9 and the green light(,\= 514.5nm) is used. Substituting Eq. 

(46) into Eq. (47), we have the normalized scattering intensity Qb = Q9 = Q with 

N .. 
Q = L < e-iq,[r;(t)-r,(t)) >, (48) 

i,j 

and 

N . . . . . 
K = L < e-i{qi,·[r;{O)-r;(O)]+q,.[r,.(O)-r1(o)]} e-iq9J: dt'{v[r,.(t'))-v[r;(t')]} > . ( 49) 

i,j,k,l 

In the above, qb and qg are the momentum transfer vectors for the blue light and 

the green light, respectively. In Eq. ( 49) we have used the fact that 

(50) 

where v[r,(t')] is the local velocity at position r1(t'), and the particles are assumed 

to follow the motion of the fluid. 

Because the seed particles are randomly distributed in the fluid, the :fluc­

tuation terms (i =/ j) in Eq. (48) do not survive a time or ensemble average. 
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Then we have Q = Na.t1g, where Na.t1g is the average number of the particles 

in the scattering volume and the particle scattering power has been normalized 

to unity. With the same spirit, the fluctuation terms in Eq. ( 49) may also 

be dropped, and the remaining terms in Eq. (49) must satisfy the condition 

qb · [ri(O) - r;(O)] + qg · [rk(O) - rz(O)] = 0. The possible choices to satisfy the 

condition are 

(1) i = j = k = l, for arbitrary nonzero qb and gg; 

(2) i = j =/: k = l, for arbitrary nonzero qb and gg; 

(3) i = l =/: j = k, for qb = qg = q =/: O; 

( 4) i = k =/: j = l, for qb = -qg = q f. 0. 

Equation ( 4 7) then can be written as 

(t) = < N(O)N(t) > + _1_ '°' < e-iq-J: dt'{v[r1,(t')]-v[r,(t')]} > 
~ ~ ~~ ' a.tJg a.tJg i#;j 

(51) 

where N(t) is the number of particles in the scattering volume at time t. The 

· condition (1) (i = j = k = l) gives rise to the first term in Eq. (51), and the 

conditions (3) and (4) (i = l =/: j = k and i = k =/: j = I) result in the second 

term in Eq. (51). Two assumptions have been made in getting Eq. (51). First, we 

dropped all the terms in Eq. (49) which satisfy the condition (2) (i = j =/: k = I), 
since rotation does not make any difference for isotropic particles in the dilute 

solution. Second, the number of the particles in the scattering volume changes 

with time, because the fluid motion carries the seed particles in and out of the 

laser beam. 

Eq. (51) can be rewritten as 

9c(t) ~ 1 + 9N(i) + 9coh(qi, = ±~, t), {52) 

with 

( ) _ < SN(O)SN(t) > 
9N t - N2 ' a.tJg 

{53) 

and 
1 Navg t 

gcoh(t) = _ 2_ ~ < e-iqJ0 dt'{v[r,.(t')]-v[r,(t')]} > . 
Na.tJg k::/:i 

{54) 



31 

In the above, 8N(t) = N(t) - Na.vg is the number :fluctuation, and a second order 

term ("" N! ) is ignored in Eq. (52). Because < N(O) N(t) > in Eq. (53) 
avg 

goes as Na.vg, we have 9N(t)"" N~vg· In Eq. (54) the sum has N(N - 1) ""N2 

terms, and thus 9coh(t) ""1. In the experiment, 9N(t) and 9coh(t) can be measured 

separately by controlling the number of the particles in the scattering volume. With 

the different Na.v9-dependence in 9N(t) and 9coh(t), one can measure the velocity 

difference and the local velocity in a turbulent flow. We now discuss experimental 

details of the two scattering methods. 

Measurement Of Velocity Differences At Various Length Scales 

In studies of turbulence, it is of great interest to measure the velocity dif­

ference 8v(R) = v(r) - v(r + R) at various length scale R. In our experiment, 

8v(R) is measured by the technique of homodyne correlation spectroscopy (HCS). 

With this technique, the laser is operated under the single color mode (,\ =514.5 

nm), so that qb = qg = q. According to Eq. (52), the measured correlation 

function is 9c(t) = 1 + 9N(t) + 9coh(q, t). In the experiment, we carefully adjust 

the particle concentration so that Na.vg > 100. In this case, 9N(t) ("" NI ) has a 
avg 

much smaller magnitude than 9coh(t), and the decay of 9N(t) is at least ten times 

slower than that. of 9coh(t). Therefore, 9N(t) in Eq. (52) can be omitted, and 

g(t) = 1 + bgcoh(q,t), with b $ 1 being an instrumental constant, whose value 

depends on the e~perimental setup. 

Figure 9 shows the physical arrangement for the HCS experiment with the 

incident beam being in the horizontal direction. The incident beam was from a 4-W 

argon-ion laser (Coherent Innova-304), which was under the single-line operation 

with ,\ = 514.5 nm. The lens 11 (its focus length f = 15 cm) focused the laser beam 

at the center of the convection cell. The focused beam had a typical diameter of 

0.1 mm, The lens 12 then projected the image of the scattering beam onto the 

slit S, whose width could be varied from 0.1 to 1.3 mm. Three lenses with focal 

lengths of 3, 8, and 20 cm were used in order to vary the magnification. With the 

combination of the three magnifications and the range of the slit widths, the real 



32 

L1 Cell 

laser i----4--+----+-r--+----r--

) 

Ko 

--s 

PC CQRl-----1. PMT 

Figure 9. Schematic diagram of HCS setup (horizontal beam orientation). 
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length L of the thin cylindrical scattering volume viewed by the photo-detector was 

varied between 0.1 and 17 mm. The length L determines the maximum measurable 

eddy size, to which the auto-correlation function g(t) is sensitive. Light passing 

through the slit fell on the photomultiplier (PMT), which recorded the time-varying 

intensity I(t). The photomultiplier was located far behind the slit ("' 130 cm), so 

that light was collected from roughly one coherence area. In the measurement of 

the L-dependence of the velocity difference u(L), the scattering angle() was fixed 

at 90°. To measure the q-dependence of the correlation function g(t), the lens £ 2 , 

the slit S, and the photomultiplier P MT were placed on a rotation track, with 

which one could change the scattering angle () from 25° to 110°. The corresponding 

change of the momentum transfer vector, q = (47rn/..X) sin(0/2), was from 7.0 x 104 

to 2.3 x 105 cm-1 • 

Figure 10 shows the physical arrangement of the HCS experiment with the 

incident beam in the vertical direction. The setup is similar to that shown in 

Figure 9. The polarizer P was added to align the polarization direction of the laser 

beam. Mirrors m1, m2, and m3 were used to convert the horizontal beam into a 

vertical incident beam in the z direction. In this setup, the scattering angle () was 

fixed at 90°. 

As will be shown later in the experiment, the shortest turbulent eddy 

turnover time, tL, is much longer than the typical decay time for 9coh(t). In this 

case, one can replace the integral in Eq. {54) with Sv(R, t')t, where R = r1 - rk, 

and Sv(R, t') · v[rk(t')] - v[rk(t') + R]. The summation in Eq. (54) can be 

replaced by an integration over the scattering volume, which is a line segment of 

length L. When the particles are grouped into pairs, we can rewrite Eq. (52) as 

g(t) = 1 + foL dR h(R) < cos[q · Sv(R, t')t] >t', (55) 

where h( R) is the number fraction of particle pairs separated by a distance R in 

the scattering volume L, and < cos[q · Sv(R; t')t] >t' denotes a time average over 

t' [33]. One can easily show [33]that 

h(R) = ;~-=-n{) ~ (2/N)(l - n/N) = (2/L)(l - R/L). (56) 
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Here we have assumed that N > 1 and that the particles are uniformly distributed 

in a quasi-one-dimensional scattering volume. Furthermore, the time average < 

cos[q·8v(R, t')t] >t• can be replaced by an ensemble average, and Eq. (55) becomes 

{L 1+00 g(t) = 1 + Jo dR h(R) -oo d [8vq(R)] P[8vq(R)] cos[q · 8v(R)t], (57) 

where 8vq(R) is the component of 8v(R) along the direction of q, and P[8vq(R)] 

is the probability density function of 8vq(R). When P[8vq(R)] has a scaling form 

(58) 

with u(R) being a characteristic scaling velocity and Q[8vq(R)/u(R)] a homoge­

neous function, Eq. (57) becomes 

g[qtu(L)] = 1 + laL dR h(R) F[qtu(R)]. (59) 

In the above, F[qtu(R)] is the Fourier cosine transform of Q[8vq(R)/u(R)]. 

Measurement Of Local Velocity Fluctuations 

To overcome the difficulties in measuring the local velocity in convective tur­

bulence, a new scattering method [36], named incoherent cross-correlation spec­

troscopy (ICS), is developed. This method measures the frequency spectrum of 

the scattering amplitude fluctuations, but not the rapid phase fluctuations caused 

by the relative Doppler shifts of the scattering particles. It has advantages of high 

spatial resolution, fast temporal response, and ease of use. 

Figs. 11 and 12 show the setups for ICS. When comparing res with HCS, one 

finds two major differences in the set-up. First, the incident beam for res consisted 

of two colors, which was produced by an argon-ion laser (Coherent Innova-304) 

under the multiline operation with a wavelength range from 458.0 to 514.5 nm. 

Second, two photomultipliers, PMl and P M2, were used to record the blue and 

the green lights, respectively, and they were mounted at right angles in a cubic 

box. A beam-splitter BS, which had a reflection-to-transmission ratio of 50/50, 

was placed at the center of the box, and it split the incoming light into the two 



36 

nu .tr------~ Il13 

p 

) 

--S 

PC_ COR 

Figure 11. Schematic diagram of ICS setup (vertical beam orientation). 



37 

p L1 Cell 

) 

--S 

PC~ COR 

Figure 12. Schema.tic dia.gra.m of ICS setup (horizontal bea.m orientation). 



38 

photomultipliers. Two interference filters (Fl and F2) were mounted in front of 

the photomultipliers, separately, and their band width was 1 nm. The spectral line 

for Fl was 488 nm, and that for F2 was 514.5 nm. The scattering volume viewed 

by the photomultipliers was a thin cylinder, whose length L is much larger than 

its waist radius a. The intensity profile was measured using a translational stage, 

a pin hole of size 5 µm, and a photodiode. Figure 13 shows the measured intensity 

profile I( r) as a function of the radial distance r from the center of the laser beam. 

The solid curve is the fitted Gaussian form 

J(r) = Ioe-2(r/u)2, (60) 

with a= 48 ± 3 µm being the beam diameter, and [0 being the light intensity at 

the center of the beam. 

As discussed in the last section, when Qb =/- qg, 9coh(t) = 0, and hence 

the measure 9c(t) = 1 + bgN(t). To have a larger signal-to-noise ratio for 9N(t), 

the number of the particles in the scattering volume was controlled in the range 

1 < Navo < 100. This is because 9N(t) goes as N.1 . Large latex particles of 0.94 µm 
avg 

in diameter were used in the measurements in order to have a better signal and 

each 9c(t) was measured for more than 20 minutes.· An ALV-5000 correlator was 

used to measured 9c(t), and it is capable of measuring fluctuating signals with a 

signal-to-noise ratio as low as 0.1 %. 

Because of the fluid motion, the seed particles move in and out of the scat­

tering volume and hence the particle numbers in the scattering volume changes 

with time. In this case, 9N(t) can be rewritten as 

( ) _ _ l_f d3r J d3ro I(r) I(ro) P(r - ro, t) 
gN t - Navg [f d3r I(r)]2 ' (61) 

where I(r) is the light intensity profile, and P(r - r0 , t) is the probability density 

function for a particle to move from r0 tor during time t. The function P(r-r0 , t) 

characterizes the dynamics of the fluid motion. When the particles in the scattering 

volume have a uniform velocity v, the function P(r - r0 , t) takes the form 

P(r - r0 , t) = 8[(r - r0 ) - vt], (62) 
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Figure 13. Measured intensity profile I(r) as a function of the radial distance r. 
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and then 

9N(t) = _l_e-(11t/u)2. 
Na.vu 

(63) 

Because the time required for a particle to cross the laser beam is much shorter 

than the turbulent eddy turnover time tL, Eq. (63) can also be applied to turbulent 

flow, as long as the local velocity vis averaged over its probability density function 

P(v). In this case, Eq. (63) becomes 

(64) 

where P2(v,, v;) is the probability density function for the velocity components Vi 

and v; in two different directions, both orthogonal to the incident laser beam. Be­

cause of the radial symmetry of the laser beam, 9N(t) is only sensitive to v; + vJ. 
This feature is particularly useful in studying the convective fl.ow in the central 

region, where the mean velocity is zero and thus velocity fluctuations can be di­

rectly measured. Velocity components in different directions can be measured by 

changing the incident direction of the laser beam. 



CHAPTER IV 

EXPERIMENTAL RESULTS 

In this chapter, we present our velocity measurements in turbulent convec­

tion. The first section is devoted to the measurements of the velocity difference u( l) 

at various length scales. The second section discusses the local velocity measure­

ments at the center of the convection cell. The third section presents the results of 

the heat transport and the local velocity measurements in a convection cell whose 

upper and lower plates are made of "rough" surfaces. 

Velocity Difference At Various Scales 

A unique feature of convective turbulence is its interaction with the gravi­

tational field at various length scales. Temperature is not a passive scalar in the 

system. This is absent in the normal barotropic turbulence such as that in a pipe 

flow. According to the Kolmogorov theory [13] of fully developed barotropic turbu­

lence, turbulent kinetic energy is continuously transferred from the largest eddies 

of size 10 to eddies of smaller sizes, until it dissipates when the size of the eddies 

becomes comparable to the viscous dissipation length lmin· In the inertial range, 

!min~ l ~ 10 , the energy cascades at a constant rate e with negligible dissipation. 

As a consequence of the argument, the velocity difference 8v(l, t) is expected to be 

scale invariant (8), and its probability density function P(8v, l) has a homogeneous 

form 

P(8v,l) = Q[Sv/u(l)]/u(l). (65) 

With a simple dimensional argument [8][13], one can show that the scaling velocity 

u(l),..., (d)f (for more details, also see discussion in Chapter II). For thermal con­

vective turbulence, on the other hand, velocity fluctuations produce temperature 

41 
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fluctuations of various sizes, and eddies of different sizes can exchange different 

amounts of energy with the gravitational field. Therefore, the energy cascade 

rate c becomes l dependent, which will be responsible for the departure from the 

Kolmogorov scaling. It has been shown [18)[22] that for convective turbulence, 

u(l) "' z3! 5• Since the high-Ra convection provides an interesting variation of 

turbulence, direct measurement of the new exponent becomes fundamentally im­

portant in testing the general scaling argument for the description of turbulence. 

Our experiment is carried out using both the horizontal beam setup and ver­

tical beam setup, as described in Chapter III. The technique of photon-correlation 

homodyne spectroscopy (HCS) [3] is utilized to probe the instantaneous velocity 

difference c5v(l, t). With the HCS scheme, small seed particles in the fluid scatter 

light and follow the local flow. A photo-detector records the scattered light inten­

sity I(t), which fluctuates due to the motion of the flowing particles. The output of 

the detector is therefore modulated at frequencies equal to differences in Doppler 

shifts of all particle pairs in the scattering volume. The intensity autocorrelation 

function [3] 

( )- < I(t'+t)I(t') > _ 1 bG( l) 
g t - . < I >2 - + q, t, ' (66) 

is measured as a function of the delay time t for different values of q and l. In the 

above, b is an instrumental constant which is chosen so that 

G(t = 0) = 1. (67) 

When the PDF P(c5v, l) has the homogeneous form shown in Eq. (65) as we have 

derived in Chapter III, the function G( q, t, l) becomes [33] 

G[qtu(L)] = lL dl' h(l') F[qtv(l')], (68) 

where· h( l') is the number faction of particle pairs separated by a distance l' in the 

thin scattering volume of length L and F[qtv(l')] is the Fourier cosins transform of 

Q[V/u(l')]. The HCS technique has been used previously to study turbulent flows 

in a pipe and in a square tunnel [33][34]. 
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To characterize the decaying function G(q,t,L), which does not necessarily 

behave like an exponential function, a decay rate f(q, L) is defined as 

r-1 (q,L) = fo00 dtG(q,t,L). (69) 

This definition of f(q, L) emphasizes the initial decay of G(q, t, L) governed by L. 

With a simple dimensional argument one can show that [33] 

f(q,L) ~ qu(L). (70) 

Thousands of correlation functions have been measured as a function of L and 

Ra. In the absence of convection (Ra = 0), G(q, t, L) still decays because of 

the Brownian motion of the seed particles. The Brownian motion contributes 

a factor exp(-2DB q2t) to G(q, t, L), where DB is the diffusion constant of the 

seed particles [3]. The Brownian decay rate 2DBq2 has been subtracted from the 

measured f ( q, L). This correction is especially important for the low-Ra data, 

because the flow-induced decay rate in this case is comparable to the Brownian 

decay rate. 

The measured G(q, t, L) is found to be of scaling form G(i,;) as shown in Eq. 

(68), with 

i,; = f(q,L)t ~ qu(L)t. {71) 

To verify the scaling form for G(i,;), we superimpose Log-Log plots of the measured 

G( q, t, L) for different L by sliding them horizontally with respect to each other. 

The decay time r-1 (q, L) defined above quantitatively characterizes the amount of 

the horizontal translation that is required to bring the correlation functions into 

coincidence. Figure 14 shows a typical Log-Log plot of G(i,;) as a function of K for 

various values of Land Ra. The functions coincide well with each other. Additional 

measurements have been conducted to verify the linear q-dependence of the decay 

rate r(q, L). With fixed values of Land Ra, we measured G(q, t, L) for different 

scattering angles, ranging from 30° to 110°. Figure 15 shows the measured f(q, L) 

vs. q. The straight fitting line in Figure 15 is the fitting function 0.15 + 5 x 10-4q. 

As shown in Eq. (68), a scaling G[qu(l)t)] implies that the probability density 
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Figure 14. The scaling correlation function. The experimental conditions are 
L = 4.1mm, Ra = 9.1 x 109 (solid triangles); L = 6.8mm, 
Ra = 9.1 x 109 (open aquares); and L = 13.5mm, Ra = 3.4 x 109 

( open triangles). 
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Figure 15. The measured decay rate of the correlation function as a func­
tion of the scattering vector q. The experimental conditions are 
Ra= 5.7 x 1010, L = 8.8mm. 
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function P(Sv,l) has the form shown in Eq. (65). Our data thus suggests that the 

functional form of P( Sv, l) and, hence, the turbulent structure are invariant in Ra, 

and the statistical properties of Sv(l, t) over varying length scales become identical 

under an appropriate scaling of velocities. 

The scale dependence of the scaling velocity is examined by measuring the 

L-dependence of I'(q, L). Figure 16 shows the measured I'(q, L) as a function of 

L at three different values of Ra, when the laser beam is shone through the cell 

horizontally. In this case, the direction of the velocity difference is perpendicular 

to the direction of the gravity. Figure 17 shows the measured r( q, L) as a function 

of L at three different values of Ra, when the laser beam is in the vertical direction. 

The velocity difference measured in this beam orientation has a component parallel 

to the direction of the gravity There are several important features in these two 

plots. First, the decay rate I'(q, L) as a function of L obeys a power law 

(72) 

and thus, 

(73) 

From the straight-line segment (solid lines in Figs. 16 and 17), one finds the 

exponent 

t O 50+0.02 
(,- · -0.04! (74) 

for both the vertical and horizontal velocity differences. The power-law behavior 

of I'(q, L) is found when 2 x 107 ~ Ra~ 1011 • Our experiment, therefore, directly 

confirms the theoretical prediction (18][22) that ~ = ?- The exponent ~ was also 

inferred from a temperature measurement by Wu et al. (39]. 

Second, the velocity differences u(L, t) at the center of the convection cell 

are isotropic. Figure 18 compares the measured r( q, L) and hence u( L) for the 

vertical beam ( solid circles} with that for the horizontal beam ( open circles) at 

Ra = 1.1 x 1011 • Figure 18 shows that the components of the relative velocity 

in different directions not only obey the same power law but also have the same 
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Figure 16. Variations of the decay rate f(L) with the length L (horizontal beam 
orientation) measured at Ra= 9.1 x 109 (top curve), Ra= 2.2 x 109 

(middle curve), and Ra = 3.7 x 108 (botttom curve). The solid 
lines are power-law fits: 4.47L0•6 [1/ms] (top line), 2.14L0·6 [1/ms] 
(moddle line), and 0.63L0·6 [1/ms] (bottom line). 
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Figure 17. Variations of the decay rate f(L) with the length L (vertical beam orien­
tation) measured at Ra= 1.0 x 1010 (top curve), and Ra= 3.7 x 108 

(botttom curve). The solid lines are power-law fits: 4.5L0 ·6 [1/ms] 
(top line), and 0.63L0•6 [1/ms] (bottom line). 
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Figure 18. Measured velocity differences in vertical direction ( open circles) and 
horizontal direction (solid circles) at Ra= 1.1 x 1011 • The solid line 
is the power-law fit: u(L) = 0.2741°·6 • 
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magnitude when the control parameter, Ra, is the same. This suggests that the 

small-scale relative velocity fluctuations in turbulent convection are isotropic. 

The third feature in Figs. 16 and 17 is that at a fixed L, the measured r{ q, L) 

[or equivalently u(L)] is also a function of Ra. In Figure 19a, the dimensionless 

velocity (Reynolds number), Re(L) = hu(L)/11 = hr(L)/q11, is plotted as a func­

tion of Ra for two different values of L. The measured Re( L) as a function of Ra 

is well described by the power law ( solid lines) 

(75) 

The uncertainty for the exponent is ±0.03. Combining Figs. 16, 17, and 19, we 

have 

(76) 

This result appears to be different from the theoretical prediction [18] that 

Re(L) ~ (L/h)315Ra112• (77) 

One possible reason for this deviation from the predicted scaling exponent in 

Ra is the anisotropic nature of convective turbulence at length scales comparable 

to the size of the cell h. Fluctuations of the velocity difference 8v(l, t), between 

two points separated by l ~ h, in the direction parallel to the gravity are certainly 

different from those in the perpendicular direction. Unlike the situation in the 

central region where the flow is isotropic, there is enough turbulent mixing near 

the sidewalls and the upper and lower plates. The prediction in Eq. (77), on the 

other hand, is obtained by assuming the velocity fluctuations are isotropic when 

l ~ h. Put in another way, the local Rayleigh number Ra(L) should be used as 

a scaling variable rather thari. the global Rayleigh number Ra. This argument 

can explain the observation that the h:-dependence of the measured Re(L) is also 

different from the theoretical prediction. Figure 19 shows the measured Re(L) as 

a function of Ra at L = 13.5 mm in the h = 6.6 cm cell ( open circles). The solid 

line in the plot is the power-law fit Re(L) "' Ra0·67• The dashed line shows the 

extrapolation of the measured Re( L) in the h = 20 cm cell with the predicted h-3/ 5 
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Figure 19. The measured Reynolds number Re(L) as a function of Ra. (a) 
L = 13.5mm (solid circles) and L = 5.4mm (open circles) in 
the h = 20cm cell. The solid line are the power-law fits by 
Re(L) "' Ra0·67 • (b) L = 13.5mm (open circles) in the cell with 
h = 6.6cm. The solid line is the power-law fit by Re( L) "' Ra0·61• 

The dashed line shows the extrapolation of the measured Re(L) in 
the h = 20cm cell with the h-3/ 5 correction. 
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correction. Figure 19 also shows that Re(L) is larger for smaller values of h when 

the other experimental conditions are kept unchanged. However, the data fails to 

show the predicted h-3/ 5 dependence. 

Another feature in Figs. 16 and 17 is that there is a cutoff length le, below 

which f(q, L) levels off. It is seen that the cutoff length le decreases as Ra is 

increased. The measured le as a function of Ra is shown in Figure 20 ( solid 

·circles). The result can be described by the power law (lower solid line) 

le = 34.3Ra-rp cm. 

The exponent cp = 0.3 ± 0.03, which agrees with the theoretical prediction [18] 

The scatter in the data is due to the uncertainty in determining le from the plot 

of f(L) vs L. Procaccia and Zeitak [22] have proposed that there may be a length 

scale, 

le ,..,, Ra-3/28' 

below which a crossover to Kolmogorov exponents is expected. However, such a 

length scale is not observed in our measurements of f ( q, L). This finding supports 

L'vov's argument that in high-Ra convective turbulence the entropy flux at various 

length scales is constant [17][18]. 

We now address an important issue concerned with the relationship between 

coherent structures and the velocity scaling. It has been found [29][40] that the 

thermal plume is one of the two main coherent structures in the convective turbu­

lence. The thermal plumes consist of a column of buoyant fluid emanating from 

the boundary layer and culminating in a cap, and become free plumes not con­

nected to the boundary layers when they move into the central region of the cell. 

Because they are generated from the boundary layers, the smallest size of these 

coherent structures (the diameter of the thermal plumes, see Fig. 1 of Ref. [40]) 

is naturally controlled by the thermal boundary layer thickness S. In Figure 20 we 

plot S (open triangles), which is obtained from the measured Nusselt number Nu, 
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Figure 20. Variations of the cutoff length (solid circles) and thermal boundary 
thickness (open triangles) as a function of Ra. The upper solid 
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using the well tested relation 6 = h/(2Nu). The data are well described by the 

power law 

6 = 63.0Ra-0•3 cm, 

when 5 x 107 ~ Ra ~ 1010• It turns out that the value of our 6 is very close to the 

value measured directly from the temperature profile in a similar convection cell 

[40]. It is seen from Figure 20 that the two length scales, le and 6, have similar 

power-law behavior. The values of the two exponents are the same within our 

experimental uncertainties. The numerical values of the two length scales only 

differ by a factor of 2. 

As shown in Figs. 16 and 17, the measured f(q, L) becomes L-independent 

below le. This is an interesting phenomenon. New measurements are in progress to 

investigate the velocity field at the scale below le [32]. It should be mentioned that 

below le the typical decay time of G( q, t, L) becomes close to the Brownian diffusion 

time of the seed particles, and therefore the velocity signal is very small. The 

leveling-off behavior might be caused by the interaction between the convective flow 

and the Brownian motion [9]. I think it is plausible that the measured cutoff length 

le in the velocity scaling is determined by the thermal boundary layer thickness, 

which is the smallest scale for the coherent structures in the core region of turbulent 

.. convection. 

Local Velocity Fluctuations In Turbulent Convection 

Figs. 11 and 12 in Chapter III show the experimental setup for the measure­

ments of the local velocity at the center region of the cell. The newly developed 

technique of incoherent cross-correlation spectroscopy (ICS) [36] was utilized to 

·· probe the local velocity v and its probability density function (PDF) P( v ). Pre­

vious temperature measurements have revealed two distinct turbulent states in 

convection: soft turbulence when Ra < 108 and hard turbulence for Ra > 108 

· [12]. The Rayleigh number range of our velocity measurements covered the upper 

·end of the soft turbulence region and three decades of the hard turbulence region. 

Velocity components in different directions were measured in both turbulent states. 
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As we have already discussed in Chapter III, with the ICS scheme, one uses 

two photodetectors to record the scattering intensities of the blue and green lights, 

lb(t) and lo(t), respectively. The output signals then are fed to an ALV-5000 

correlator, whose output gives the intensity cross-correlation 

(t) = < lb(t' + t) lg(t') > = 1 + bG (t) 
9c < lb > < lg > C ' 

(78) 

where b ($ 1) is an instrumental constant. Because there is no phase coherence be­

tween lb(t) and lo(t), 9c(t) is only sensitive to the scattering amplitude fluctuations 

produced by the seed particles moving in and out of the laser beam. Therefore, the 

Gc(t) measures the particle number :fluctuation in the scattering volume. When 

the seed particles have a uniform velocity v, Gc(t) in Eq. (78) takes the form [36] 

Gc(t) = _l_e-(vt/u)2. 

Na.vu 
(79) 

where NAvg is the average number of the particles in the scatting volume. For 

turbulent flows Gc(t) becomes 

1 1+00 1+00 2 2 2 2 G (t) = -- dv· dv·P.2· (v· v·)e-(v,+v,)t /u 
C N. 1 J . 1 1 J , 

a.vg -oo -oo 
(80) 

where A(vi,v3) is the PDF for the velocity components Vi and v3 in two different 

directions, both orthogonal to the incident laser beam. The decay time for Gc(t) 

is the transit time for a particle to cross the laser beam, whose intensity profile is 

of Gaussian form l = 10 exp[-2(r/o-)2], with r being the radial distance from the 

center of the beam. By changing the direction of the incident laser beam, one can 

measure different components of the local velocity. Because of the axial symmetry 

of the laser beam, Gc(t) is only sensitive to vl + vJ. This feature is particularly 

useful in studying the convective flow in the central region, where the mean flow 

velocity is zero [2] and, thus, velocity fluctuations can be directly measured. Be­

cause the acceptance angle of thereceiving optics is large enough, small amplitude 

beam wandering in the convecting fluid will not affect the measurement. 

Figure 21 shows the measured 9c(t) as a function of the delay time t at 

Ra = 3.5 x 1010• The measurement was made when the laser beam was horizontally 
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The measured cross-correlation function c!.8 a function of the delay time 
tat Ra= 3.5 x 1010• The solid curve is a fit to 1 + a/(l + (ft)2 ) with 
a= 0.045 and r = 0.15ms-1 • The dashed curve shows a Gaussian 
function 1 + aexp[-(,t)2]. 
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shone through the center of the cell with the aspect Ratio A= 0.5. The data can 

be well fitted by the function 

a 
9c(t) = 1 + l + (ft)2' (81) 

with a = 0.045 and r = 0.15 ms-1 (the solid curve). The Lorentzian form of 

the measured Gc(t) [= 9c(t) - 1] differs substantially from the Gaussian function 

(the dashed curve) shown in Eq. (79), which has been measured in a laminar 

Poiseuille flow [36]. According to Eq. (80), the PDF, P2(vi,Vj), can be obtained 

by a simple Laplace inversion of the measured G c( t). For a Lorentzian G c ( t), we 

find the corresponding P2(vi,vj) is of the Gaussian form 

P.2 (v· v ·) = ..!_ e-(vl+0)/vi 
,, 3 2 ' 

Vo 
(82) 

where v0 = ru is therms velocity. To obtain Eq. (82), we have used the fact that 

velocity fluctuations in the central region are isotropic (see Figs. 24 and 25 below). 

Gaussian-like velocity PDF's have also been found in many barotropic turbulent 

flows [21]. 

The Lorentzian form of the measured Gc(t) is found to remain unchanged 

when Ra is in the range between 108 and 1011 • In this Ra range only the decay rate 

r changes with Ra. Plots of Gc(t) at different Ra can be brought into coincidence 

by scaling the time axis with f. Figure 22 shows typical Gc(t) as a function of 

ft for various values of Ra when the laser beam was shone horizontally through 

the cell center. Figure 23 shows typical Gc(t) as a function of ft when the laser 

beam was shone vertically through the center of the cell. Note that the two beam 

orientations actually probe different components of the local velocity. In the former 

case (horizontal beam) the velocity components in the vertical direction and in 

one of the horizontal directions are measured, whereas in the latter case (vertical 

beam) only the horizontal components of the local velocity are measured. It is 

seen from Figs. 22 and 23 that the measured Gc(t)'s in the hard turbulence regime 

· superimpose with each other. Furthermore, the measured Gc(t)'s in two different 

beam orientations are found to have the same Lorentzian form. This suggests 
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Figure 22. The measured cross-correlation function as a function of rt when the 
laser beam was horizontally shone through the cell center. The 
experimental conditions are (1) Ra= 7.5 x 1010 (solid circles); (2) 
Ra = 2.3 x 109 (open squares); (3) Ra = 4.6 x 107 (open circles); 
(4) Ra= 1.4 x 107 (solid triangles). 
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Figure 23. The measured cross-correlation function as a function of ft when 
the laser beam was vertically shone through the cell center. The 
experimental conditions are (1) Ra= 4.4 x 1010 (open circles); (2) 
Ra= 7.8 x 108 (solid triangles); (3) Ra= 2,J x 107 (open squares) 
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that the functional form of A(vi,v;) and, hence, the turbulent structure in the 

hard turbulence regime are invariant with Ra. In mixing length theories, velocity 

fluctuations are often related to temperature fluctuations 8T through the buoyancy 

effect [6] 

v(t) = [agh8Tt] 1l 2 • (83) 

If this is true in a strict deterministic sense (i.e., hotter fluid moves faster), then 

the PDF for v would be the same as that for '18f. In fact, it is known that the 

PDF for '18f, 
P( \!ST) = 2\IST P( 8T), (84) 

is not a Gaussian function, because the measured PDF P(8T) for 8T is a sim­

ple exponential function [6][12]. Figs. 21, 22, and 23 thus imply that velocity 

fluctuations at small scales are not strongly influenced by the buoyancy. 

With the measured u and r, we now plot therms velocity, v0 = ru, as a 

function of Ra. Figure 24 compares the measured v0 for the vertical beam ( open 

circles) with that for the horizontal beam (solid circles) at different Ra. The 

measurements were made in the cell with A= 0.5. It is found from Figs. 22, 23, 

and 24 that velocity fluctuations in the central region are isotropic. As shown in 

Figure 25, the measured v0 is well described by the power law 

Vo= 2.2 x 10-5 Rai (cm/s). (85) 

The straight line is the fit with f = 0.44±0.015. If the Peclet number, Pe = v0 h/ K-d, 

is chosen as a dimensionless velocity, we find from Figure 25 that 

(86) 

Using mixing length ideas, Kraichnan [14] predicts f = 4/9, and recent scaling ar­

guments [6][27] give f = 3/7. While we cannot resolve the small difference between 

the two predicted values of f within the experimental uncertainties, the measured 

f is certainly in good agreement with the. theoretical predictions. A similar value 

of f was also obtained in previous experiments [10][30], where the velocity data 

from different convection systems were compiled together. However, difficulties in 
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Figure 24. The measured local velocity fluctuations as a function of Ra for the ver­
tical beam ( open circles) and for the horizontal beam ( solid circles) 
with A= 1. 
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Figure 25. The measured local velocity fluctuations as a function of Ra when the 
laser beam was horizontally shone through the center of the cells, 
with A = 1.0 and A = 0.5. The solid lines are the power-law fit 
2.2 x 10-5 Ra0·44 to the solid circles. 
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measuring small velocity :fluctuations and limited statistics were reported in these 

measurements. Our new scattering technique used in this experiment, on the other 

hand, is capable of measuring the velocity PDF with a large dynamic range and a 

high statistical accuracy. 

The above velocity measurements reveal that, in the hard turbulence regime, 

velocity :fluctuations are isotropic and their PDF has an invariant Gaussian form. 

These findings are consistent with visual observations of the temperature field that, 

in the hard turbulence regime, thermal plumes emitted from the boundary layers 

are broken into small structures, as a result of strong turbulent mixing, before 

traversing through the center region of the. cell [29]. 

An important question one might ask is how the local velocity :fluctuates in 

the soft turbulence regime, where the thermal plumes are found to span the full 

height of the convection cell [29]. To answer this question, we now examine the 

measured Gc(t) in the cell with A= 3. The shorter cell was used to reduce Ra and 

to allow the thermal plumes to traverse into the center region easily. As shown 

in Figure 23, when the laser beam is vertically shone through the cell center, the 

measured Gc(t) in the soft turbulence regime has the same Lorentzian form as that 

measured in the hard turbulence regime. When the laser beam is horizontally shone 

through the cell center (see Figure 22), however, the measured Gc(t) continuously 

changes its functional form as Ra is increased from 1.2 x 107 to 2.0 x 108 • At lower 

Ra the measured Gc(t) has a Lorentzian tail at large t, but its initial decay is 

slower than a Lorentzian function. As Ra is increased, the initial part of Gc(t) 

approaches the Lorentzian form. 

To characterize the decay of a non-Lorentzian Gc(t), we measure the half­

decay time T112 of Gc(t). For a Lorentzian function, the half-decay time T112 = 1/f. 

Figure 26 compares the measured v0 (= u/T112 ) for the horizontal beam (solid 

circles) with that for the vertical beam (open circles) at different Ra. The solid 

line in Figure 26 is an attempted power law fit 

{87) 
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Figure 26. The measured local velocity :fluctuations as a function of Ra for the 
vertical beam ( open circles) and for the horizontal beam ( solid cir­
cles) with A = 3. The solid line is an attempted power-law fit 
1.1 x 10-5 Ra0·58 to the open circles, and the dashed line is an at­
tempted power-law fit 1.0 x 10-4 Ra0•44 to the solid circles. 
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to the open circles, and the dashed line is an attempted power-law fit 

vo = 1.0 x 10-4Ra0.44 (cm/s) (88) 

to the solid circles. Note that the fitted power law for the open circles differs 

from that obtained in the hard turbulence regime. Furthermore, the power law 

fits in Figure 26 are different from each other, both in amplitude and in exponent. 

Figure 26 thus suggests that, in the soft turbulence regime, velocity fluctuations 

in the vertical direction parallel to gravity differ substantially from those in the 

horizontal directions. From the measurements in the cell with A = 3, we conclude 

that in the soft turbulence regime the PDF's for the vertical velocity fluctuations 

do not have a universal form and appear to depend on the coherence of thermal 

plumes emitted from the boundary layers. 

Turbulent Convection Over Rough Surfaces 

The rough cell condition was made by replacing the smooth upper and lower 

plates of the cell with two brass plates, which had woven V-shaped grooves on the 

surface. As discussed in Chapter III, this experiment is motivated by recent studies 

of the effects of coherent structures on the transport property of a turbulent fluid 

[6][7][27]. Thermal plumes and the large-scale circulation have been observed as 

two main coherent structures in turbulent convection. The question is which plays 

the major role in carrying the heat away. As we have discussed in Chapter II, there 

are two theoretical models, which represent the main stream of the recent work. 

One assumes no thermal plumes involved in the heat transport (27] and the other 

takes no account of the effect of the large-scale circulation [6]. To understand the 

real mechanism of the heat transport in turbulent convection, Solomon et al. have 

conducted an experiment, in which they artificially introduced a flow beneath the 

lower thermal boundary layer by using a moving boundary of mercury under the 

convecting fluid. Oscillatory shear substantially alters the structure of the thermal 

plumes, with minimal effect on the heat flux. This result appears to be inconsistent 

with the marginal stability theory by Kadanoff and his coworkers. With Solomon's 
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experiment and our own velocity measurements discussed in the last section, can 

we conclude that the large scale circulation plays the dominant role in carrying the 

heat through the cell? With this question in mind, we conducted a new convection 

experiment with a different boundary condition, i.e. both the upper and lower 

surfaces of the cell are changed to the rough surfaces. Figs. 27 and 28 compare the 

measured Nusselt number Nu(Ra) (the normalized heat flux) in the rough cells 

{open circles) with that in the smooth cells (solid triangles). The measurements 

were conducted in the cells with A= 0.5 (see Figure 27) and A= 1.0 (see Figure 

28). The measured Nu(Ra) in both smooth cells is well described by the power 

law { solid lines) 

Nu= 0.16Ra.B. (89) 

The scaling exponent P = 0.281 ± 0.015, which agrees well with previous measure­

ments. The measured heat flux in the rough cells is found to be the same as that in 

the smooth cells for small values of Ra. When Ra becomes larger than a transition 

value Rao, the measured Nu is increased by - 20% as compared with that in the 

smooth cells. It is seen from Figs. 27 and 28 that the onset of the enhanced heat 

transport occurs at Rao ~ 4 x 108 in the A = 1.0 cell and at Rao ~ 5 x 109 in the 

A= 0.5 cell. It is notable that in the limited range of Ra (> Rao), the rough cell 

data can also be described by the power law 

Nu= 0.19Ra.B, (90) 

where the exponent Pis the same as that for the smooth cells, but the amplitude 

is changed from 0.16 to 0.19 {dashed lines). 

To judge the effect of the surface toughness on the heat transport, one needs 

to compare the roughness height hR with the thermal boundary layer thickness 

8th(Ra). When hR is small compared with 8th, the rough elements on the surface 

are buried beneath the thermal boundary layer, and hence the effect of the surface 

roughness will be small. This happens in the lower Ra region, where Ra < Ra0 • 

In the opposite limit of large Ra, where hR > 8th, the surface roughness will 

strongly affect temperature fluctuations near the surface and thereby alters the 
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Figure 27. The measured Nu as a function of Ra in the rough cells ( open cir­
cles) and in the smooth cells (solid triangles) with A = 0.5. The 
solid line is an attempted pow-la.wfi.t Nu == 0.16 x Ra0•281 to the 
solid triangles, and tthe dashed line is an attempted power-law fit 
Nu= 0.19 x Ra0•281 • 
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Figure 28. The measured Nu as a function of Ra in the rough cells ( open cir­
cles) and in the smooth cells (solid triangles) with A = 1.0. The 
solid line is an attempted pow-law fit Nu = 0.16 x Ra0·281 to the 
solid triangles, and tthe dashed line is an attempted power-law fit 
Nu= 0.19 x Ra0·281• 
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heat transport. Clearly there will be a transition region between the two extreme 

limits. The values of 6th can be calculated from the measured Nu using the well­

tested relation 6th = h/(2Nu) [1]. At the transition Rayleigh number (Rao ~ 

4 x 108 for the A= 1.0 cell and Rao ~ 5 x 109 for the A= 0.5 cell), we find the 

6th~ 2.4mm for both smooth cells. The corresponding length ratio 6th/hR ~ 0.8 

is close to unity. Figs. 27 and 28 thus support the above arguments for the onset 

of the enhanced heat transport. 

To further understand the mechanism for the enhanced heat transport in the 

rough cells, we measure the local velocity v and its statistics in the central region 

using the JCS technique [36]. The experimental setup and apparatus have been 

detailed in Chapter III. Figs. 29 and 30 show the measured Gc(t) in the rough cells 

at various values of Ra, when the laser beam was shone through the cell center 

horizontally (Figure 29) and vertically (Figure 30). As discussed in the previous 

section, the two beam orientations actually probe different components of the 

local velocity. In the former case {horizontal beam) the velocity components in the 

vertical direction and in one of the horizontal directions are measured, whereas in 

the latter case (vertical beam) only the horizontal components of the local velocity 

are measured. It is seen from Figure 30 that the functional form of Gc(t) for 

the vertical beam is well described by the Lorentzian function 1/[1 + (rt)2] (solid 

curve), and only the decay rater changes with Ra. Plots of Gc(t) at different Ra 

superimpose with each other once the time axis is scaled by r. As discussed in the 

last section, the PDF, P2(vi,v;), can be obtained by a simple Laplace inversion of 

measured Gc(t). For a Lorentzian Gc(t), we find the corresponding P2{vi,v;) is of 

the Gaussian form P2{ Vi,v;) = ~e-<11l+v;)/v~, where v0 = fu is therms velocity. In 

the above, we have used the fact that the velocity :fluctuations in the horizontal 

directions are isotropic. As discussed in the previous section, Gaussian-like velocity 

PDF's have also been found in the smooth cells [25]. Figure 30 thus suggests that 

the statistics of velocity fluctuations in the horizontal directions are not strongly 

influenced by the surface roughness. In contrast to horizontal velocity :fluctuations, 

however, velocity fluctuations in the vertical direction are affected by the surface 
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Figure 29. The measured cross-correlation function as a function of rt in the rough 
tells when the laser beam was horizontally shone through the cell 
center. The experimental conditions are: Ra = 1.2 x 1010 (circles), 
1.2 x 109 (triangles) and 3.4 x 108 (squares) all in the A= 1.0 cell. 
The solid curve is the Lorentzian function. 
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Figure 30. The measured cross-correlation function as a function of rt in the 
rough cells when the laser beam was vertically shone through the cell 
center. The experimental conditions are: Ra= 4.5 x 108 (triangles), 
2.5 x 109 (circles) in the A= 1.0 cell and Ra= 7.0 x 1010 (squares) 
in the A = 0.5 cell. The solid curve is the Lorentzian function. 
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roughness. As shown in Figure 29, when the laser beam is horizontally shone 

through the cell center, the measured Gc(t) changes its functional form as Ra is 

increased. Near the transition Rayleigh number Rao~ 4 x 108 , the decay of Gc(t) 

is slower than a Lorentzian function. When Ra becomes much larger than Ra0 , 

Gc(t) approaches the Lorentzian form (solid curve). This behavior is found in both 

rough cells with A = 0.5 and A = 1.0. 

To characterize the decay of a non-Lorentzian Gc(t), we measure the half­

decay time T1t2 of Gc(t). With the measured u and r (or T112), we now plot the 

rms velocity v0 = ur = u /T1t2 as a function of Ra in Figure 31 (for A = 0.5 

cell) and Figure 32 (A= 1.0 cell). These two figures compare the measured v0 for 

the vertical beam ( solid circles) with that for the horizontal beam ( open squares) 

at different Ra in the rough cells. It is seen that the convective flow changes its 

characteristic when Ra reaches the transition Rayleigh number Ra0 • The values 

of Rao found in the Figs. 31 and 32, i.e., Rao ~ 4 x 108 for the A= 1.0 cell and 

Rao ~ 5 x 109 for the A= 0.5 cell, correspond well with those obtained from the 

Nu measurements shown in Figs. 27 and 28. When Ra is below the transition 

number (i.e., when hR < 0th), velocity fluctuations in different directions have the 

same rms velocity, suggesting that the flow in the central region is isotropic. As 

discussed in the last section, our velocity experiments [25] in the smooth cells have 

revealed that in the hard turbulence regime (Ra > 108 ), velocity fluctuations are 

isotropic and the measured v0 (for both horizontal and vertical beam orientations) 

obeys the power law 

(91) 

The solid line in Figure 31 shows the above equation. If the Peclet number Pe 

( = v0h/ Kd) is chosen as the dimensionless velocity, the power law becomes 

Pe= 0.30 x Ra0·44• (92) 

Figure 31 shows that the values of v0 obtained in the rough cell coincide with those 

in the smooth cell, when the Rayleigh number is smaller than the transition value 

Rao. This observation further supports our argument that when the roughness 
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Figure 31. The measured local velocity as a function of Ra for the vertical beam 
(solid circles) and for the horizontal beam (open squares) in the 
rough cells with A= 0.5. The solid line is an attempted power-law 
2.2 x 10-5 Ra0•44. The long dashed line 1.4 x 10-5 Ra0·44. The short 
dashed line 3.0 x 10-5 Ra0•44. 
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Figure 32. The measured local velocity as a function of Ra for the vertical 
beam (solid circles) and for the horizontal beam (open squares) 
in the rough cells with A = 1.0. The long dashed line is an at­
tempted power-law fit 0. 73 x 10-5 Ra0•61 • The short dashed line 
1.2 x 10-5 Ra0•61• 
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height hR is lower than the thermal boundary layer thickness bth, the flow in the 

rough cell should behave the same as that in the smooth cell. 

When the Rayleigh number becomes larger than Ra0 , the measured v0 in 

the rough cell deviates from that in the smooth cells, and it also changes with 

the beam orientation. It is seen from Figs. 31 and 32 that the surface roughness 

affects the vertical velocity :fluctuations (horizontal beam) more than the horizon­

tal velocity fluctuations (vertical beam). The dashed lines in Figure 31 are the 

attempted power law fits 1.4 x 10-5 Ra0 A 4 (long-dashed line), 3.0 x 10-5 Ra0·44 

(short-dashed line), and those in Figure 32 are 0.73 x 10-6 Ra0·61 (long-dashed 

line), 1.2 x 10-6 Ra0·61 (short-dashed line). Note that the power law fits in Figs. 31 

and 32 are different among themselves both in amplitude and in exponent. Figs. 

31 and 32 thus indicate that velocity fluctuations in the vertical direction parallel 

· to gravity become substantially different from those in the horizontal directions, 

once the flow feels the surface roughness (i.e., when hR < Sth). This anisotropic 

behavior of velocity fluctuations in the rough cells at large Ra (> Ra0 ) is very 

similar to that found in the smooth cells [25] at small Ra. As discussed in the last 

section, when Ra is in the soft turbulence regime, the thermal plumes span the 

full height of the cell [29]. By comparing the velocity measurements with the Nu 

measurements, we find that the anisotropic behavior of velocity fluctuations in the 

central region is directly related to the enhanced heat transport as shown in Figs. 

27 and 28. 

From the temperature and velocity measurements in the rough and smooth 

cells, we conclude that the main effect of the surface roughness is to increase the 

emission of large thermal plumes from the interstices between the roughness ele­

ments, and these large thermal plumes travel vertically from the boundary into the 

cell center. The extra thermal plumes produced by the surface roughness enhance 

the heat transport, and they are also responsible for the anisotropic behavior of 

velocity fluctuations in the central region. Similar increase in intermittent bursting 

of coherent structures is also found in the wind tunnel with rough walls [11][15]. 
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Our experiment reveals that the influence of the surface roughness is not 

only confined to the near-wall region, but also extended into the central region 

of the cell. When the flow feels the surface roughness, the power law behavior of 

velocity :fluctuations is changed considerably, even though the exponent /3 for the 

normalized heat flux Nu remains unchanged. It appears that the scaling behavior 

of velocity fluctuations ( and temperature :fluctuations) in the center region is very 

sensitive to the detail structure of turbulence, whereas the power law exponent f3 

for Nu is not. The striking effects of the surface roughness provide new insights 

into the roles of the thermal plumes played in determining the heat transport 

in turbulent convection. Our experiment in the rough cells indicates that both 

the large-scale circulation and thermal plumes contribute to the heat transport in 

turbulent convection, and their relative weight has little effect in determining the 

power law exponent f3 for Nu. The discovery of the enhanced heat transport in 

the rough cells also has important applications in engineering for more efficient 

heat transfer. 



CHAPTER V 

SUMMARY 

Conclusion 

We have studied turbulent convection using the scattering techniques of pho­

ton correlation spectroscopy (RCS) and incoherent cross-correlation spectroscopy 

(ICS). Measurements of the intensity correlation function 9e(t) give access to the 

information about spatial_ and temporal fluctuations of the local velocity field in 

turbulent convection. The Rayleigh number Ra, which is the control parameter in 

our experiment, is varied from 107 to 1011 • Scaling laws in the velocity statistics 

and in the scale-dependence of the velocity difference are found in the hard tur­

bulence regime of turbulent convection. Notable changes are observed when rough 

upper and lower surfaces are introduced to the convection cell. Our experiment 

produces a benchmark against which future theoretical models can be tested. 

With the RCS scheme, we have measured the intensity auto-correlation func­

tion 9eoh(t), whose decay rater,..., qu(l) can be used to probe the velocity difference 

8v(l) at various length scales l. The measured 9coh(t) is found to be of the scal­

ing form g[qu(l)t], with u(l) ,..., 1°·6 being the characteristic turbulent velocity at 

the length scale l and in the direction of the scattering vector q. The measured 

power-law exponent in u(l) agrees well with the recent theoretical predictions by 

L'vov [18], Zeitak and Procaccia [22]. Our measurements suggest that the prob­

ability density function P(8v, l) for the velocity difference 8v(l) has the scaling 

form Q[8v/u(l)] / u(l). It is found that fluctuations of the velocity difference are 

isotropic at the center of the convection cell. It is also found that there exists 

a cutoff length le below which the velocity difference scales differently from that 

in the inertial range. The Rayleigh number dependence of the cutoff length le 
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is similar to that of the thermal boundary layer thickness S. This indicates that 

the measured cutoff length le in the velocity scaling is determined by the smallest 

length scale of the coherent structures in the core region of turbulent convection. 

Using the ICS technique we have measured the local velocity v and its prob­

ability density functions P( v ). Previous temperature measurements have revealed 

two distinct turbulent states in convection: soft turbulence when Ra < 4 x 107 

and hard turbulence for Ra> 4 x 107 • Our velocity measurements show that local 

velocity :fluctuations at the center of the convection cell are isotropic in the hard 

turbulence regime, and their probability density functions in the center region 

have an invariant Gaussian form P(v) = (l/vi) exp[-(v/v0)2]. The rms velocity 

v0 ,..., Ra0·44, which is in good agreement with the theoretical predictions [6][27]. 

In the soft turbulence regime, on the other hand, velocity :fluctuations in the ver­

tical direction parallel to gravity differ substantially from those in the horizontal 

direction. The probability density functions for the vertical velocity fluctuations 

do not have a universal form and appear to depend on the coherence of thermal 

plumes emitted from the boundary layers. The probability density functions for 

the horizontal velocity :fluctuations remain an invariant Gaussian form. 

The Nusselt number Nu has been measured as a function of the Rayleigh 

number in both the "smooth" and "rough" cells. It is found that the vertical heat 

flux is increased, by ,..., 20% in the rough cells, when the Rayleigh number becomes 

larger than a transition value. The transition occurs when the thermal boundary 

layer thickness becomes comparable with the height of the surface roughness. It 

is observed that the influence of the surface roughness is not only confined to 

the near-wall regi~n, but also extended into the central region of the cell. The 

experiment reveals that the main effect of the surface roughness is to increase 

the emission of large thermal plumes, which travel vertically through the central 

region. These extra thermal plumes enhance the heat transport, and they are also 

responsible for the anisotropic behavior of velocity :fluctuations in the cell center. 
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Future Work 

One promising path for the study of turbulent convection is to exploit the 

aspect ratio parameter. As discussed in Chapter II, there are three control param­

eters for thermal convection: the Rayleigh number Ra, the Prandtl number Pr, 

and the aspect ratio A of the convection cell. In the experiments described in this 

thesis, we have continuously varied Ra while we kept Pr ("' 1) and A constant. 

Because it is very difficult to continuously vary the Prandtl number and at the 

same time keep Ra constant using common fluids, we are unable to study the ef­

fect of Pr at this point. However, it is possible to study how the aspect ratio A 

affects turbulence states and the associated coherent structures. An experimental 

setup can be designed to change A continuously for a given temperature differ­

ence between the upper and lower plates. When A~ 1 (i.e., for a tall tube), the 

large-scale circulation will dominant the heat transport whereas the effect of the 

thermal plumes will be limited to the region near the upper and lower plates. In 

the opposite limit A~ 1, where the distance between the upper and lower plates 

is much smaller than the diameter of the cell, the thermal plumes will play the 

dominant role in carrying the heat away and the large-scale circulation will be 

completely suppressed. The study of the temperature and velocity fluctuations in 

the above two extreme limits and in the transition region between these two limits 

will provide new insights toward the further understanding of some important is­

sues. These issues include: {1) is the soft turbulence state a universal phenomenon 

or is it a simple transition state towards the universal hard turbulence regime? (2) 

What is the origin of the large-scale circulation? (3) What are the relative contri­

butions of the large-scale circulation and the thermal plumes to the turbulent heat 

transport? A systematic study of the aspect ratio effect will answer these unsolved 

questions. 

In the experiment discussed in Chapter IV, we have carried out the mea­

surements of the local velocity and the heat flux in a cell with rough upper and 

lower surfaces. The velocity measurements were only conducted at the center of 
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the cell. A more extensive study of convective turbulence in the rough cells should 

be conducted in the future. One can first measure the velocity difference Sv(l) over 

various length scales in the rough cells. An anisotropic behavior similar to that 

found for the local velocity fluctuations is expected for Sv(l). One can also mea­

sure temperature fluctuations and their PDF's in the central region of the rough 

cell. Previous temperature measurements in the smooth cell have shown that the 

temperature PDF changes its functional form when the thermal plumes traverse 

through the cell center vertically [12][29]. Similar transition for the velocity field 

has also been observed in the rough cell, when the Rayleigh number approach a 

transition value Ra.0 • I speculate that in the rough cell the temperature PDF will 

remain a simple exponential form for Ra < Rao, and it will be altered when Ra 

becomes larger than Ra.0 , in which case the surface roughness will produce extra 

thermal plumes. With the ability to perturb the boundary layers and to alter the 

resulting eruptions of the thermal plumes, one will be able to examine how the sur­

face roughness affects the boundary layers, the spatial structure of the large-scale 

circulation, and the temperature and velocity statistics. 

Another important but unanswered question in the study of convective tur­

bulence is how the temperature field interacts with the velocity field. This question 

is directly related to the physical mechanisms for the heat transport and the en­

ergy cascade in turbulent convection. In mixing length theory [6], the velocity field 

is usually assumed to coupled to the temperature field through a free-fall veloc­

ity Ve "" (ag6Th)l [6]. However, our velocity measurements at the central region 

of the cell [26] show that the velocity PDF's are not directly correlated with the 

temperture PDF's. To understand the correlation between the temperature and 

velocity fields, one needs to conduct simultaneous temperature and velocity mea­

surements, from which the temperature-velocity cross-correlation function can be 

obtained. In the experiment, one can use LDV (with some changes in optics [37]) 

to measure the flow velocity and a thermistor to sense the fluid temperature. The 

simultaneous temperature-velocity measurements will complement the individual 

temperature and velocity measurements conducted in recent years. Furthermore, 



the experiment may find new scaling laws for the cross-correlation function, and 

provide a body of reliable data, with which one can build new theoretical models 

to understand the nature of convective turbulence. 
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