THE SYNTHESIS AND STRUCTURE-ACTIVITY RELATIONSHIPS OF DIALKYL 2,6-DIMETHYL-3,5-DICARBOXYLATE-4-(3-NITRO-PHENYL)-1,4-DIHYDROPYRIDINES USING SINGLE CRYSTAL X-RAY DIFFRACTION AND MOLECULAR MODELING METHODS

By

KRISTIN RAE ROWAN

Bachelor of Science University of Kentucky Lexington, Kentucky 1992

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY May, 1996 THE SYNTHESIS AND STRUCTURE-ACTIVITY RELATIONSHIPS OF DIALKYL 2,6-DIMETHYL-3,5-DICARBOXYLATE-4-(3-NITRO-PHENYL)-1,4-DIHYDROPYRIDINES USING SINGLE **CRYSTAL X-RAY DIFFRACTION AND** MOLECULAR MODELING METHODS

Thesis Approved: iesis T lin

Dean of the Graduate College

ACKNOWLEDGMENTS

I wish to express my sincere appreciation to my major advisor, Dr. Elizabeth M. Holt. She was an invaluable source for intelligent supervision, constructive guidance, iinspiration, and friendship throughout my stay at Oklahoma State University. My appreciation extends to my other advisory committee members Dr. W. T. Ford, Dr. Darrell Berlin, and Dr. James B. Blair including all other inorganic and organic faculty members for their guidance, assistance, encouragement and insight in Chemistry.

I would like to thank Dr. Elizabeth M. Holt, the Department of Chemistry for providing me with this research opportunity and their generous financial support.

I would also like to give my special appreciation and admiration to my husband, Daryl L. Kaczmarek, for his friendship, encouragement, support and understanding throughout this whole process. I also wish to thank all of my family members (especially my father) for their constant support and belief in my eventual success.

Finally, none of this would have been possible without the presence and encouraging love of the Lord, without which I would have given up on many things long ago.

iii

TABLE OF CONTENTS

Page

Chapter

I. INTRODUCTION AND BACKGROUND	1
II. X-RAY CRYSTALLOGRAPHY	41
III. MOLECULAR MODELING	56
IV. EXPERIMENTAL	61
V. RESULTS AND DISCUSSION	75
BIBLIOGRAPHY	299

iv

LIST OF TABLES

Table		Page
1.	Derivatives of the 1,4-Dihydropyridine Class	13
2.	1,4-Dihydropyridine Derivatives Studied by X-Ray Crystallography	29
3.	The Seven Crystal Classes	42
4.	Compounds synthesised in this study	76
5.	Selected X-Ray Parameters	78
6.	Selected Docking Parameters	104
7.	Crystal Data for Dimethyl 2,6-dimethyl-4-(2-nitrosophenyl)- pyridine-3,5-dicarboxylate(I)	115
8.	Positional Parameters for Dimethyl 2,6-dimethyl-4- (2-nitrosophenyl)-pyridine-3,5-dicarboxylate(l)	116
9.	Anisotropic Thermal Parameters for Dimethyl 2,6-dimethyl-4-(2- nitrosophenyl)-pyridine-3,5-dicarboxylate(I)	119
10.	Bond Distances and Bond Angles form Dimethyl 2,6-dimethyl-4-(2- nitrosophenyl)-pyridine-3,5-dicarboxylate(I)	121
11.	Torsion Angles for Dimethyl 2,6-dimethyl-4-(2-nitrosophenyl) -pyridine-3,5-dicarboxylate(I)	123
12.	Crystal Data for Bis(2,6-dimethyl-3,5-dicarbomethoxy- 4-(2-nitrophenyl)-pyridine)dichloro-copper(II)(II)	126
13.	Positional Parameters for Bis(2,6-dimethyl-3,5-dicarbomethoxy- 4-(2-nitrophenyl)-pyridine)dichloro-copper(II)(II)	127
14.	Anisotropic Thermal Parameters for Bis(2,6-dimethyl-3,5- dicarbomethoxy-4-(2-nitrophenyl)-pyridine)dichloro-copper(II) (II)	129

	15.	Bond Distances and Bond Angles forBis(2,6-dimethyl-3,5- dicarbomethoxy-4-(2-nitrophenyl)-pyridine)dichloro-copper(II)(II).	130
	16.	Torsion Angles for Bis(2,6-dimethyl-3,5-dicarbomethoxy- 4-(2-nitrophenyl)-pyridine)dichloro-copper(II)(II)	132
	17.	Crystal Data for2,6-Dimethyl-3,5-dicarboxylate-4-(3-nitrophenyl)- pyridine • NO ₃ • H ₂ O(III)	134
·	18.	Positional Parameters for 2,6-Dimethyl-3,5-dicarboxylate-4-(3- nitrophenyl)-pyridine • NO ₃ • H ₂ O(III)	135
	19.	Anisotropic Thermal Parameters for 2,6-Dimethyl-3,5- dicarboxylate-4-(3-nitrophenyl)-pyridine • NO ₃ • H ₂ O(III)	137
	20.	Bond Distances and Bond Angles for 2,6-Dimethyl-3,5- dicarboxylate-4-(3-nitrophenyl)-pyridine • NO ₃ • H ₂ O(III)	138
	21.	Torsion Angles for 2,6-Dimethyl-3,5-dicarboxylate-4- (3-nitrophenyl)-pyridine • NO ₃ • H ₂ O(III)	139
	22.	Crystal Data for Dimethyl 2,6-dimethyl-4-(3-nitrophenyl)- pyridine-3,5-dicarboxylate(IV)	141
	23.	Positional Parameters for Dimethyl 2,6-dimethyl-4- (3-nitrophenyl)-pyridine-3,5-dicarboxylate(IV)	142
	24.	Anisotropic Thermal Parameters for Dimethyl 2,6-dimethyl-4-(3- nitrophenyl)-pyridine-3,5-dicarboxylate(IV)	144
	25.	Bond Distances and Bond Angles for Dimethyl 2,6-dimethyl-4-(3- nitrophenyl)-pyridine-3,5-dicarboxylate(IV)	145
	26.	Torsion Angles for Dimethyl 2,6-dimethyl-4-(3-nitrophenyl)- pyridine-3,5-dicarboxylate(IV)	146
	27.	Crystal Data for Diethyl 2,6-dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate(V)	148
	28.	Positional Parameters for Diethyl 2,6-dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate(V)	149
	29.	Anisotropic Thermal Parameters for Diethyl 2,6-dimethyl-4-(3- nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate(V)	151
	30.	Bond Distances and Bond Angles forDiethyl 2,6-dimethyl-4-(3- nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate(V)	152

,

31.	Torsion Angles forDiethyl 2,6-dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate(V).	153
32.	Crystal Data forDiethyl 2,6-dimethyl-4-(3-nitrophenyl)- pyridine-3,5-dicarboxylate(VI)	155
33.	Positional Parameters for Diethyl 2,6-dimethyl-4-(3-nitrophenyl)- pyridine-3,5-dicarboxylate(VI)	156
34.	Anisotropic Thermal Parameters for Diethyl 2,6-dimethyl-4-(3- nitrophenyl)-pyridine-3,5-dicarboxylate(VI)	158
35.	Bond Distances and Bond Angles for Diethyl 2,6-dimethyl-4-(3- nitrophenyl)-pyridine-3,5-dicarboxylate(VI)	159
36.	Torsion Angles for Diethyl 2,6-dimethyl-4-(3-nitrophenyl)- pyndine-3,5-dicarboxylate(VI)	160
37.	Crystal Data forDipropyl 2,6-dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate(VII)	162
38.	Positional Parameters forDipropyl 2,6-dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate(VII)	163
39.	Anisotropic Thermal Parameters for Dipropyl 2,6-dimethyl-4-(3- nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate(VII)	165
40.	Bond Distances and Bond Angles for Dipropyl 2,6-dimethyl-4-(3- nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate(VII)	166
41.	Torsion Angles for Dipropyl 2,6-dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate(VII)	167
42.	Crystal Data for Di-isopropyl 2,6-dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate(VIII)	169
43.	Positional Parameters for Di-isopropyl 2,6-dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate(VIII)	170
44.	Anisotropic Thermal Parameters for Di-isopropyl 2,6-dimethyl-4-(3- nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate(VIII).	172
45.	Bond Distances and Bond Angles for Di-isopropyl 2,6-dimethyl-4-(3- nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate(VIII)	173
46.	Torsion Angles for Di-isopropyl 2,6-dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate(VIII)	175
47		

47. Crystal Data for Dibutyl 2,6-dimethyl-4-(3-nitrophenyl)-

	1,4-dihydropyridine-3,5-dicarboxylate(IX)	177
48.	Positional Parameters for Dibutyl 2,6-dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate(IX)	178
49.	Anisotropic Thermal Parameters for Dibutyl 2,6-dimethyl-4-(3- nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate(IX)	180
50.	Bond Distances and Bond Angles for Dibutyl 2,6-dimethyl-4-(3- nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate(IX)	181
51.	Torsion Angles for Dibutyl 2,6-dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate(IX)	183
52.	Crystal Data for Di-isobutyl 2,6-dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate(X)	185
53.	Positional Parameters for Di-isobutyl 2,6-dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate(X)	186
54.	Anisotropic Thermal Parameters for Di-isobutyl 2,6-dimethyl-4-(3- nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate(X)	188
55.	Bond Distances and Bond Angles for Di-isobutyl 2,6-dimethyl-4-(3- nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate(X)	189
56.	Torsion Angles for Di-isobutyl 2,6-dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate(X)	191
57.	Crystal Data for Di-isobutyl 2,6-dimethyl-4-(3-nitrophenyl)- pyridine-3,5-dicarboxylate(XI)	193
58.	Positional Parameters for Di-isobutyl 2,6-dimethyl-4-(3-nitrophenyl)- pyridine-3,5-dicarboxylate(Xl)	194
59.	Anisotropic Thermal Parameters for Di-isobutyl 2,6-dimethyl-4-(3- nitrophenyl)-pyridine-3,5-dicarboxylate(XI)	196
60.	Bond Distances and Bond Angles for Di-isobutyl 2,6-dimethyl-4-(3- nitrophenyl)-pyridine-3,5-dicarboxylate(XI).	197
61.	Torsion Angles for Di-isobutyl 2,6-dimethyl-4-(3-nitrophenyl)- pyridine-3,5-dicarboxylate(XI)	199
62.	Crystal Data for Di- <i>tert</i> -butyl 2,6-dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate(XII)	201
63.	Positional Parameters for Di-tert-butyl 2,6-dimethyl-4-(3-nitrophenyl)-	

•

, •

	1,4-dihydropyridine-3,5-dicarboxylate(XII)	202
64.	Anisotropic Thermal Parameters for Di- <i>tert</i> -butyl 2,6-dimethyl-4-(3- nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate(XII)	204
65.	Bond Distances and Bond Angles for Di- <i>tert</i> -butyl 2,6-dimethyl-4-(3- nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate(XII)	205
66.	Torsion Angles for Di- <i>terti-</i> butyl 2,6-dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate(XII)	207
67.	Crystal Data for Dipentyl 2,6-dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate(XIII)	209
68.	Positional Parameters for Dipentyl 2,6-dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate(XIII)	210
69.	Anisotropic Thermal Parameters fo Dipentyl 2,6-dimethyl-4-(3- nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate(XIII).	212
70.	Bond Distances and Bond Angles for Dipentyl 2,6-dimethyl-4-(3- nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate(XIII)	213
71.	Torsion Angles for Dipentyl 2,6-dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate(XIII)	215
72.	Crystal Data for Di-isopentyl 2,6-dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate(XIV)	217
73.	Positional Parameters for Di-isopentyl 2,6-dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate(XIV)	218
74.	Anisotropic Thermal Parameters for Di-isopentyl 2,6-dimethyl-4-(3- nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate(XIV)	220
75.	Bond Distances and Bond Angles for Di-isopentyl 2,6-dimethyl-4-(3- nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate(XIV)	221
76.	Torsion Angles for Di-isopentyl 2,6-dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate(XIV)	223
77.	Crystal Data for Di-isopentyl 2,6-dimethyl-4-(3-nitrophenyl)- pyridine-3,5-dicarboxylate(XV)	225
78.	Positional Parameters for Di-isopentyl 2,6-dimethyl-4-(3-nitrophenyl)- pyridine-3,5-dicarboxylate(XV)	226
79.	Anisotropic Thermal Parameters for Di-isopentyl 2,6-dimethyl-4-(3- nitrophenyl)-pyridine-3,5-dicarboxylate(XV).	228

•

80.	Bond Distances and Bond Angles for Di-isopentyl 2,6-dimethyl-4-(3- nitrophenyl)-pyridine-3,5-dicarboxylate(XV)	229
81.	Torsion Angles for Di-isopentyl 2,6-dimethyl-4-(3-nitrophenyl)- pyridine-3,5-dicarboxylate(XV)	231
82.	Crystal Data for Dineopentyl 2,6-dimethyl-4-(3-nitrophenyl)- pyridine-3,5-dicarboxylate(XVI)	233
83.	Positional Parameters for Dineopentyl 2,6-dimethyl-4-(3-nitrophenyl)- pyridine-3,5-dicarboxylate(XVI)	234
84.	Anisotropic Thermal Parameters for Dineopentyl 2,6-dimethyl-4-(3- nitrophenyl)-pyridine-3,5-dicarboxylate(XVI)	236
85.	Bond Distances and Bond Angles for Dineopentyl 2,6-dimethyl-4-(3- nitrophenyl)-pyridine-3,5-dicarboxylate(XVI)	237
86.	Torsion Angles for Dineopentyl 2,6-dimethyl-4-(3-nitrophenyl)- pyridine-3,5-dicarboxylate(XVI)	239
87.	Crystal Data fo Dihexyl 2,6-dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate(XVII)	241
88.	Positional Parameters for Dihexyl 2,6-dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate(XVII)	242
89.	Anisotropic Thermal Parameters for Dihexyl 2,6-dimethyl-4-(3- nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate(XVII)	245
90.	Bond Distances and Bond Angles for Dihexyl 2,6-dimethyl-4-(3- nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate(XVII).	247
91.	Torsion Angles for Dihexyl 2,6-dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate(XVII)	249
92.	Crystal Data for Dihexyl 2,6-dimethyl-4-(3-nitrophenyl)- pyridine-3,5-dicarboxylate(XVIII)	251
93.	Positional Parameters for Dihexyl 2,6-dimethyl-4-(3-nitrophenyl)- pyridine-3,5-dicarboxylate(XVIII)	252
94.	Anisotropic Thermal Parameters for Dihexyl 2,6-dimethyl-4-(3- nitrophenyl)-pyridine-3,5-dicarboxylate(XVIII).	254
95.	Bond Distances and Bond Angles for Dihexyl 2,6-dimethyl-4-(3- nitrophenyl)-pyridine-3,5-dicarboxylate(XVIII).	255

96.	Torsion Angles for Dihexyl 2,6-dimethyl-4-(3-nitrophenyl)- pyridine-3,5-dicarboxylate(XVIII)	257
97.	Crystal Data for Diheptyl 2,6-dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyndine-3,5-dicarboxylate(XIX)	259
98.	Positional Parameters for Diheptyl 2,6-dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate(XIX)	260
99.	Anisotropic Thermal Parameters for Diheptyl 2,6-dimethyl-4-(3- nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate(XIX)	262
100.	Bond Distances and Bond Angles for Diheptyl 2,6-dimethyl-4-(3- nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate(XIX)	264
101.	Torsion Angles for Diheptyl 2,6-dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate(XIX)	266
102.	Crystal Data for Dioctyl 2,6-dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate(XX)	268
103.	Positional Parameters for Dioctyl 2,6-dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate(XX)	269
104.	Anisotropic Thermal Parameters for Dioctyl 2,6-dimethyl-4-(3- nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate(XX)	271
105.	Bond Distances and Bond Angles for Dioctyl 2,6-dimethyl-4-(3- nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate(XX)	273
106.	Torsion Angles for Dioctyl 2,6-dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate(XX)	275
107.	Crystal Data for Di(2-methoxyethyl) 2,6-dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate(XXI)	277
108.	Positional Parameters for Di(2-methoxyethyl) 2,6-dimethyl-4-(3- nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate(XXI).	278
109.	Anisotropic Thermal Parameters for Di(2-methoxyethyl) 2,6- dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine- 3,5-dicarboxylate(XXI)	280
110.	Bond Distances and Bond Angles for Di(2-methoxyethyl) 2,6- dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine- 3,5-dicarboxylate(XXI)	281
111.	Torsion Angles for Di(2-methoxyethyl) 2,6-dimethyl-4-(3-nitrophenyl)	-

	1,4-dihydropyridine-3,5-dicarboxylate(XXI)	283
112. 113.	Crystal Data for (Dibenzyl 2,6-dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate) • 0.5 CH ₃ CN (XXII). Positional Parameters for (Dibenzyl 2,6-dimethyl-4-(3-nitrophenyl)-	285
	1,4-dihydropyridine-3,5-dicarboxylate) • 0.5 CH3CN (XXII).	286
114.	Anisotropic Thermal Parameters for (Dibenzyl 2,6-dimethyl-4-(3- nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate) • 0.5 CH ₃ CN (XXII).	288
115.	Bond Distances and Bond Angles for (Dibenzyl 2,6-dimethyl-4-(3- nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate) • 0.5 CH ₃ CN (XXII).	290
116.	Torsion Angles for (Dibenzyl 2,6-dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate) • 0.5 CH3CN (XXII).	292
117.	Crystal Data for Ethyl Methyl 2,6-dimethyl-4-(3-nitrophenyl)- pyridine-3,5-dicarboxylate(XXIII)	294
118.	Positional Parameters for Ethyl Methyl 2,6-dimethyl-4-(3-nitrophenyl) pyridine-3,5-dicarboxylate(XXIII)	- 295
119.	Anisotropic Thermal Parameters for Ethyl Methyl 2,6-dimethyl-4-(3-nitrophenyl)-pyridine-3,5-dicarboxylate(XXIII)	296
120.	Bond Distances and Bond Angles for Ethyl Methyl 2,6-dimethyl-4-(3- nitrophenyl)-pyridine-3,5-dicarboxylate(XXIII)	297
121.	Torsion Angles for Ethyl Methyl 2,6-dimethyl-4-(3-nitrophenyl)- pyridine-3,5-dicarboxylate(XXIII)	299

LIST OF FIGURES

.

Figure		Page	
1.	The General Structure and Gating Characteristics of Ion Channels		
2.	The Subunit Organization of the Calcium Channel		
3.	Transmembrane Organization of the Calcium Channel	9	
4.	General Structure of DHP's, Phenylalkylamines and Benzothiazepines	10	
5.	Structural Formula of Nifedipine Analogs	12	
6.	General Structural Requirements of the 1,4-DHP's for Antagonistic Activity	27	
7.	X-Ray structure of Nifedipine	28	
8.	Illustration of the <i>s,p</i> and <i>a,p</i> Conformation of the Phenyl Substituents	33	
9.	Illustration of Positional Change of Phenyl as DHP Ring Flattens	33	
10.	Illustration of the s,p and a,p Conformation of the Ester Substituents	34	
11.	General Conformational Details Consistent with High Activity of the 1,4-Dihydropyridine Derivatives	35	
12.	Stereodiagram of Nimodipine Bound to the Proposed Receptor Surface	37	
13.	Decomposition Scheme for 1,4-Dihydropyridine Compounds	39	
14.	Siemens P4 Automated 4-circle Diffractometer with PC-486DX Computer and Printer	72	

15.	Plots of the SUM Value versus the Number of Carbons in the Ester Alkyl Group	83
16.	Plots of the Deviation Value versus the Number of Carbons in the Ester AlkylGroup	84
17.	Graph of the Cone Angle versus the Number of Carbons in the Ester Alkyl Group	85
18.	Plots of the Cone Angle versus the Deviation and SUM Values	87
19.	Graph of the Activity versus the SUM value	88
20.	Superimposition of the thirteen parent compounds of this study on the graph of Activity vs SUM of known compounds	90
21.	Graph of Deviation vs Activity of known compounds	91
22.	Superimposition of the Thirteen Parent Compounds of this Study on the Graph of Activity vs Deviation of Known Compounds	92
23.	Graph of the SUM value + the Deviation Value versus the Relative Activities of Known Compounds	94
24.	Superimposition of the Thirteen Parent Compounds of this Study on the Graph of Activity vs SUM + Deviation of Known Compounds	93
25	Graph of the Cone Angle versus the Relative Activity of Known Compounds	96
26.	The Nitroso Decomposition Product of Nifedipine Docked in Proposed Receptor Site	103
27.	Di-isopropyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5- dicarboxylate(VIII) docked in proposed receptor site	108
28.	Dihexyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5- dicarboxylate(XVIII) docked in proposed receptor site	109
29.	Dioctyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine- 3,5- dicarboxylate(XII) docked in proposed receptor site	111

30.	Di- <i>tert</i> -Butyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-c dicarboxylate(XX) docked in proposed receptor	lihydropyridine-3,5- site	112
31.	Projection view of Dimethyl 2,6-dimethyl-4-(2-nit pyridine-3,5-dicarboxylate(I)	rosophenyl)-	114
32.	Projection view of Bis(2,6-dimethyl-3,5-dicarbon nitrophenyl)-pyridine)dichloro-copper(II)(II)	nethoxy-4-(2-	125
33.	Projection view of 2,6-Dimethyl-3,5-dicarboxylat (3-nitrophenyl)-pyridine $\cdot NO_3 \cdot H_2O(III)$	e-4-	133
34.	Projection view of Dimethyl 2,6-dimethyl-3,5-dic (3-nitrophenyl)-pyridine(IV)	arboxylate-4-	140
35.	Projection view of Diethyl 2,6-dimethyl-3,5-dicar (3-nitrophenyl)-1,4-dihydropyndine(V)	boxylate-4-	147
36.	Projection view of Diethyl 2,6-dimethyl-3,5-dicar (3-nitrophenyl)-pyridine(VI)	boxylate-4-	154
37.	Projection view of Dipropyl 2,6-dimethyl-3,5-dica (3-nitrophenyl)-1,4-dihydropyndine(VII)	arboxylate-4-	161
38.	Projection view of Di-isopropyl 2,6-dimethyl-3,5- (3-nitrophenyl)-1,4-dihydropyndine(VIII)	dicarboxylate-4-	168
39.	Projection view of Dibutyl 2,6-dimethyl-3,5-dicar (3-nitrophenyl)-1,4-dihydropyridine(VIV)	boxylate-4-	176
40.	Projection view of Di-isobutyl 2,6-dimethyl-3,5-d (3-nitrophenyl)-1,4-dihydropyridine(X)	icarboxylate-4-	184
41.	Projection view of Di-isobutyl 2,6-dimethyl-3,5-d (3-nitrophenyl)-pyridine(XI)	icarboxylate-4-	192
42.	Projection view of Di- <i>tert</i> -butyl 2,6-dimethyl-3,5 (3-nitrophenyl)-1,4-dihydropyridine(XII)	-dicarboxylate-4-	200
43.	Projection view of Dipentyl 2,6-dimethyl-3,5-dica (3-nitrophenyl)-1,4-dihydropyridine(XIII)	arboxylate-4-	208
44.	Projection view of Di-isopentyl 2,6-dimethyl-3,5- (3-nitrophenyl)-1,4-dihydropyridine(XIV)	dicarboxylate-4-	216
45.	Projection view of Di-isopentyl 2,6-dimethyl-3,5- (3-nitrophenyl)-pyridine(XV)	dicarboxylate-4-	224

46.	Projection view of Dineopentyl 2,6-dimethyl-3,5-dicarboxylate-4- (3-nitrophenyl)-pyridine(XVI)	232
47.	Projection view of Dihexyl 2,6-dimethyl-3,5-dicarboxylate-4- (3-nitrophenyl)-1,4-dihydropyridine(XVII)	240
48.	Projection view of Dihexyl 2,6-dimethyl-3,5-dicarboxylate-4- (3-nitrophenyl)-pyridine(XVIII)	250
49.	Projection view of Diheptyl 2,6-dimethyl-3,5-dicarboxylate-4- (3-nitrophenyl)-1,4-dihydropyridine(XVIV)	258
50.	Projection view of Dioctyl 2,6-dimethyl-3,5-dicarboxylate-4- (3-nitrophenyl)-1,4-dihydropyridine(XX)	267
51.	Projection view of Di-(2-methoxyethyl) 2,6-dimethyl-3,5- dicarboxylate-4-(3-nitrophenyl)-1,4-dihydropyridine(XXI)	276
52.	Projection view of (Dibenzyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4- dihydropyridine-3,5-dicarboxylate) • 0.5 CH ₃ CN (XXII)	284
53.	Projection view of Methyl Ethyl 2,6-dimethyl-3,5-dicarboxylate-4- (3-nitrophenyl)-pyridine(XXIII)	293

CHAPTER I

INTRODUCTION AND BACKGROUND

Scope of Thesis Study

Numerous structure-activity relationships (SAR's) for 1,4-dihydropyridine (DHP) derivatives are available in the literature. However, the influence of the alkoxy groups at the C3 and C5 ester positions on the conformation of the rest of the molecule and, thus, on the activity is still somewhat unclear. A further understanding of 1) the effect of increasing the length and bulk of the ester alkyl groups on the overall conformation of 1,4-DHP compounds and 2) the conformational changes associated with DHP decomposition to the nitro-pyridine form and the potential effects on the calcium antagonistic activity of these changes was the focus of this study. The nine new compounds prepared and the four prepared using literature preparations have C3 and C5 ester alkyl groups that range from a two carbon to an eight carbon chain (compounds V, VII, VIV, XIII, XVII, XVIV, and XX). In order to observe the conformational dependence upon increased bulk of these side chains; isopropyl, isobutyl, tertiary butyl, isopentyl, and benzyl groups were also included (compounds VIII, X, XII, XIV, and XXII). The decomposition products studied were those of nifedipine (I and II), dimethyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (IV), 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (III), diethyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (VI), di-isobutyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (XI), di-isopentyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5dicarboxylate (XV), di-neopentyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate(XVI), dihexyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (XVIII), and nitrendipine(XXIII). To investigate the effect of inserting an oxygen in the side chain di-2-methoxyethyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (XXI) was synthesized. These compounds are tabulated in TABLE 4. Compounds V, VII, VIII, and XXI, which had been prepared previously, but had not been examined by single crystal studies.

Calcium in biological processes

Calcium is the most abundant metal ion in the body. Over 90% is in the form of hydroxyapatite, which occurs in the bones and teeth. The rest is in the form of the soluble calcium ion, Ca^{2+1} . This ion is involved in numerous functions in the cell acting as a intercellular messenger and also as a trigger for cell death.

Cells normally maintain a very low concentration of Ca²⁺ (~ 10⁻⁸ M), but this value can rise transiently during cell excitation. Calcium is involved in the regulation of excitation-contraction and stimulus-secretion coupling. The cellular mechanism that links surface membrane excitation with an increase in intracellular calcium, and thus with the initiation of contraction, is termed excitation-contraction coupling. In smooth, cardiac, and skeletal muscle cytoplasmic calcium ions regulate contractile protein activation and the generation of tension of the cell¹. The sarcoplasmic reticulum (S. R.) is an intracellular organelle that acts as a reservoir for calcium ions within muscle cells. Following membrane excitation, calcium is released from the S.R. which activates the contractile proteins². Ca²⁺ can thus be regarded as a cellular trigger which interacts with calcium-binding proteins such as troponin C and calmodulin². This interaction, in turn, initiates the stimulus-response coupling of the cell. A constant elevation of the calcium ion concentration within the cell may also serve as a lethal cell signal, the rise being caused by excessive cell stimulation, cell damage, or disease³.

Events mediated by Ca^{2+} actions at extracellular sites, including blood clotting, cell adhesion, and membrane stabilization, are low affinity processes operating at the millimolar concentrations of Ca^{2+} found in the serum³. The intracellular Ca^{2+} mediated processes, such as the major categories of excitation-contraction and stimulus-secretion coupling, are high affinity processes occurring at the micromolar concentrations of ionized Ca^{2+} achieved in excitable cells³.

Ion Channels

Cells normally maintain an asymmetric distribution of ions across the cell membrane, maintained by the selective permeability of the cell membrane itself and by the operation of metabolically driven pumps. Since the cell membrane is made up of a lipid bilayer, impermeable to ions, ion channels are used to transport ions from the intracellular space to the extracellular space (Figure 1). These channels are proteins that span the membrane and form aqueous pores through which ions can travel⁴. The movement of ions, subsequent to cell stimulation, serves to carry current and allows certain ions to act as cellular messengers³. The possible functions of a channel may be defined by the location on the cell, the voltage range over which a given type of channel opens, and the duration of that opening.

lon channels are a regulated species and can be considered as allosteric enzymes. As part of the membrane, ion channels respond to chemical and electrical signals (hence regulation) and allow ion flow and membrane potential change. Ion channels are regulated by a variety of receptor initiated stimuli and by various organic and inorganic ligands. They possess specific drug binding sites and are regulated by various drugs. They may also possess a multitude of ligand binding sites, for example, the voltage-gated Na⁺ channel possesses at least five⁵.

Figure 1: A generic ion channel, shown as a protein molecule that spans the lipid bilayer (m). (A) Selectivity filter determining which ions may pass; (B) Channel gate(s); (C) Sensor that determines the position of the gate.⁴

lon channels can be classified according to many different criteria, such as ion selectivity, voltage sensitivity, and pharmacological sensitivities^{3,5}. There are two basic classes of ion channels that are involved in the generation of electrical signals: ligand gated and voltage sensitive. Voltage sensitive channels mediate rapid, voltage-gated changes in membrane ion permeability during action potentials (the change of electrical conductance of the cell) in excitable cells and also modulate membrane potential⁶. Ligand gated channels play a role more akin to a receptor. These ligand gated ion channels include the nicotinic acetylcholine receptor, γ -aminobutyric acid (GABA) receptor, and the glycine receptor. These channels also mediate local increases in ion conductance at chemical synapses⁶.

Ion channels exist in different states of activation, which may alter their affinity for various ligands. Therefore, different points of view must be considered in the analysis of these channels as sites for drug regulation. For example, different states may have different affinities for certain drug molecules, certain ligands may stabilize different channel states, and the structure-activity relationships of a class of compounds may change depending upon which state of the channel with which they are interacting.

lon channels also have certain gating characteristics. Normally there are three gating processes, a) activation, b) deactivation, and c) inactivation⁴. These gating characteristics dictate the availability of an ion channel to regulation by the binding of ligands.

Calcium Channels

The type, location, density and function of calcium channels varies with different kinds of cells⁷. The calcium channel is highly selective for calcium, as opposed to Na⁺ or Mg²⁺, which may arise from high affinity Ca²⁺ binding sites in the ion conducting pore⁷.

The physiology of these channels include a wide variety of functions such as excitation-contraction coupling, control of secretion, excitability, conduction and pacemaker activity⁸. It has also been shown that three different modes of channel gating exist for the calcium channel⁹.

Voltage-sensitive Ca²⁺ channels play many essential roles in the cell. They are an important part of all excitable cells in that they convert electrical signals into biochemical events¹⁰. They constitute the link between transient changes in membrane potential and are involved in a variety of cellular responses such as secretion of neurotransmitters and hormones, initiation of contraction in cardiac and smooth muscle, and activation of second messenger responses in many types of cells¹¹. In cardiac and smooth muscle, voltage-dependent calcium channels are important in controlling the supply of calcium that is directly or indirectly used in the contractile process^{2,12}.

Calcium channels are usually classified as receptor operated (ROC) or potential dependent channels (PDC). Receptor operated channels are far less well characterized than the potential dependent channels, and less is known about their function.

The potential dependent channels have been much more susceptible to pharmacologic and electrophysiological definition, thus, a variety of subclasses have emerged. At least 3 classes of voltage sensitive calcium channels that require a large amount of depolarization before they are activated (high-threshold), have been observed, and one class of the low-threshold type^{3,8,13}.

1) L channels ---- This type plays a key role in excitation-contraction coupling in smooth and cardiac muscle. They may also be involved in modulating membrane excitability and the release of some hormones and neurotransmitters. They are sensitive to the class of compounds known as the 1,4-dihydropyridines (DHP). The highest concentration of DHP sensitive L channels is in skeletal muscle, where they mediate slowly activated, long lasting Ca²⁺ currents. The evidence of the essential role of these channels in the heart is the observation that channel blockade with DHP's or phenylalkylamines results in decreased force of cardiac contraction and can result in total suppression of cardiac activity². 2) N channels ---- These are found mainly in neuronal cells and play a major role in neurotransmitter release². They are DHP insensitive.

3) P channels ---- These are insensitive to DHP's, but sensitive to certain spider toxins².

4) T channels (transient) ---- These are low threshold, that is they are activated with small amounts of depolarization and inactivate rapidly². They are most abundant in sinoatrial and purkinje cells, the pacemaker cells of the atria and ventricles, respectively, and are insensitive to DHP's.

Subtypes of the above channels also exist in different cell and tissue types.

The greatest advances in elucidation of the structure and composition of a calcium channel has been made for the L-type calcium channel of skeletal muscle². This is a result of the abundance in skeletal muscle t-tubules of L-type calcium channels with high-affinity binding sites for the dihydropyridine class of compounds and of the availability of a variety of DHP ligands to which these channels are sensitive.

The primary amino acid (AA) sequence for the DHP receptor from rabbit skeletal and cardiac muscle has been deduced^{7,14}. There is a 66% degree of AA sequence homology between the cardiac and the skeletal muscle DHP receptor (calcium channel). The skeletal muscle DHP receptor AA sequence is homologous to that of the sodium channel. The general similarity in biochemical properties of Na⁺ channel subunits and Ca²⁺ channel subunits has its basis in this substantial similarity of AA sequence.

Sodium and calcium channels consist of a principal transmembrane subunit, which forms the ion-conducting pore (Figure 1)¹⁵. The subunits of K⁺, Ca^{2+} , and Na⁺ channels are members of an homologous gene family, therefore they are all formed from a similar encoded gene and hence show similar

structure. It is now generally believed that the Ca²⁺ channel of skeletal muscle is composed of several subunits, termed $\alpha 1$, $\alpha 2$, β , γ and δ^6 . The overall structure of Ca²⁺ channels consists of a single principal subunit expressed in association with a variable number of other polypeptides. Only the $\alpha 1$ -subunit, which is the central component of the protein complex, binds calcium channel antagonist compounds (DHP's)¹⁶. Hofmann et al illustrated this by radiolabeling a DHP molecule, letting it bind to its receptor in the channel, and then isolating the portion that was labeled (Figure 2)¹⁰.

Figure 2: The Subunit Organization of the Calcium Channel.¹⁵

Since the α 1-subunit is the observed receptor in these channels, its membrane organization is important. Different models have been proposed for the transmembrane organization of the α 1-subunit^{7,14,15}. Given the homology between the Na and Ca channels, there will obviously be a similarity in secondary structure.

The sodium channel consists of four homologous domains¹⁴. It has been proposed that each of these domains contains six regions of probable α -helical structure long enough to span the membrane, which are designated S1-S6. It was suggested that S1 and S2, which are hydrophobic with occasional hydrophilic residues, and the S5 and S6 segments, which are uniformly hydrophobic, formed the transmembrane structure of the protein, whereas segments S3 which has more numerous charged residues, and S4, which are both hydrophobic and positively charged, project from the cytoplasmic surface of the protein ^{15,17}(Figure 3). This initial description of the S4 segments as probable α -helices with both hydrophobic and positively charged characteristics led to specific models of the voltage dependent gating in which these segments had a transmembrane organization.

The substantial AA sequence similarity of the calcium channel to the sodium channel led to a proposal of an analogous transmembrane structure. The proposed model by Tanabe et al indicates the presence of four internal repeats that exhibit sequence homology as stated above⁷. Each of the four repeats consists of six membrane spanning α -helical sequences. The S4 regions of each repeat, which consists of alternating charged and uncharged residues, likely characterizes the voltage sensor region of the channel (Figure 3).

Figure 3: Schematic representation of the predicted structural organization of the voltage-dependent calcium channel α1-subunit.¹⁸

The pharmacology of calcium channels differs depending on where the channel is located and its function. The major ligand classes active in the L-type voltage-dependent Ca²⁺ channel, which has been the best characterized, are the phenylalkylamines (Verapamil), 1,4-Dihydropyridine's (Nifedipine), and the benzothiazepines (Diltiazem) (Figure 4). There is substantial evidence that these three classes define three allosterically linked sites on a component of the protein channel. However, the binding sites of these compounds are not specifically known.

Figure 4: General structure of the DHPs, Phenylalkylamines and Benzothiazepines.

Calcium Antagonists – The 1,4-Dihydropyridines

A wide variety of chemical compounds exhibit calcium antagonistic properties. These range from simple metal ions to highly complex organic molecules^{8,19}.

Calcium channel antagonists inhibit the flow of calcium into the cell by blockage of certain membrane channels. Therefore, they mimic the effect of Ca^{2+} withdrawal on the heart and hence block contraction. These compounds produce a negative inotropic effect in heart muscle, a marked relaxation of smooth muscle, decreased vasoconstriction, and a decrease in cardiac arrhythmias. Calcium antagonists reduce the flow of calcium across the sarcolemma during the twitch of the heart muscle. Evidence implies that they do this by blocking calcium flow through slow calcium channels or by affecting the kinetics of the gating process²⁰. These agents are clinically used for the treatment of angina, hypertension, peripheral vascular disorders, and some types of cardiac arrhythmias^{8,21}. Calcium activators, or agonists, display the opposite effect. They promote the transport of Ca²⁺ through the calcium channels.

The 1,4-dihydropyridine (DHP) class of calcium antagonists has been very useful therapeutically, and also as a biochemical tool with which to analyze and probe the structure and function of the DHP sensitive type L calcium channel (Figure 5). This has been facilitated by the availability of large numbers of DHP derivatives (TABLE 1) and the existence of DHP compounds of similar structure possessing activator properties.

Figure 5: Structural Formula of Nifedipine Analogs.

X	<u>R1</u>	<u>R2</u>	<u>R3</u>	<u>R4</u>	<u>R5</u>	Reference
2-Br	CO ₂ CH ₃	CO ₂ CH ₃	CH3	CH3	H	29,37
3-Br	CO ₂ CH ₃	CO ₂ CH ₃	CH3	CH3	н	29,79
4-Br	CO ₂ CH ₃	CO ₂ CH ₃	CH3	CH3	H	29
2-Cl	CO2CH2CH3	CO ₂ CH ₂ CH ₃	CH3	CH3	[·] H	22
2-CI	CO2C(CH3)3	CO ₂ C(CH ₃₎₃	CH3	CH3	Н	22
2,6-Cl ₂	CO ₂ CH ₂ CH ₃	CO ₂ CH ₂ CH ₃	CH3	CH3	н	22
2-Cl	CO ₂ CH ₃	CO ₂ CH ₃	CH3	CH3	н	23,29,37,38,55
3-Ci	CO ₂ CH ₃	CO ₂ CH ₃	CH ₃	CH3	н	23,29,38
4-CI	CO ₂ CH ₃	CO ₂ CH ₃	СНз	СН _З	н	23,29,38
2-Cl	CO ₂ CH ₃	CO2CH2CH3	СНз	CH ₂ O(CH ₂) ₂ N(CH ₃) ₂	н	39
2-Ci	CO ₂ CH ₃	CO ₂ CH ₂ CH ₃	СНз	CH ₂ O(CH ₂) ₂	н	39
2-Cl	CO ₂ CH ₃	CO2CH2CH3	CH3	CH ₂ O(CH ₂) ₂ NHCH ₃	н	39

2-Cl 2-CF3 2-Ci, 6-F 3-Cl 2,3-Cl2 4-Cl 2,3-Cl2 2,3-Cl2 2,3-Cl2 2,6-Cl2 2,3-Cl2 2,5-Cl2 3,5-Cl2 2,4-Cl2 2,4-Cl2 4-Cl	CO2CH3 CO2CH3 CO2CH3 CO2CH3 CO2CH3 CO2CH3 CO2CH3 CO2CH3 CO2CH3 CO2CH3 CO2CH3 CO2CH3 CO2CH3	CO ₂ CH ₂ CH ₃ CO ₂ CH ₃ CO ₂ CH ₃	СH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 C	CH ₂ Q(CH ₂) ₃ N(CH ₃) ₂ CH ₂ Q(CH ₂) ₂ N(CH ₃) ₂ CH ₂ O(CH ₂) ₂ NHCH ₃ CH ₂ O(CH ₂) ₂ NH ₂ CH ₂ O(CH ₂) ₂ NH ₂ CH ₂ O(CH ₂) ₂ NH ₂ CH ₂ O(CH ₂) ₂ N ₃ CH ₂ O(CH ₂) ₂ N ₃ CH ₃ CH ₃	H H H H H H H (Felodipine) H	39 39 39 39 39 39 39 39 35,50	
2-CF3 2-Ci, 6-F 3-Ci 2,3-Ci2 4-Ci 2,3-Ci2 2,3-Ci2 2,3-Ci2 2,6-Ci2 2,3-Ci2 3,5-Ci2 2,4-Ci2 4-Ci	CO ₂ CH ₃ CO ₂ CH ₃	CO ₂ CH ₂ CH ₃ CO ₂ CH ₃ CO ₂ CH ₃ CO ₂ CH ₃	СН3 СН3 СН3 СН3 СН3 СН3 СН3 СН3 СН3	CH ₂ O(CH ₂) ₂ N(CH ₃) ₂ CH ₂ O(CH ₂) ₂ NHCH ₃ CH ₂ O(CH ₂) ₂ NH ₂ CH ₂ O(CH ₂) ₂ NH ₂ CH ₂ O(CH ₂) ₂ NH ₂ CH ₂ O(CH ₂) ₂ N ₃ CH ₂ O(CH ₂) ₂ N ₃ CH ₃ CH ₃	H H H H H H (Felodipine) H	39 39 39 39 39 39 39 35,50	
2-Ci, 6-F 3-Ci 2,3-Ci ₂ 4-Ci 2-Ci 2,3-Ci ₂ 2,3-Ci ₂ 2,6-Ci ₂ 2,5-Ci ₂ 3,5-Ci ₂ 2,4-Ci ₂ 4-Ci	CO ₂ CH ₃ CO ₂ CH ₃	CO ₂ CH ₂ CH ₃ CO ₂ CH ₃ CO ₂ CH ₃ CO ₂ CH ₃	СН3 СН3 СН3 СН3 СН3 СН3 СН3 СН3 СН3	CH ₂ O(CH ₂) ₂ NHCH ₃ CH ₂ O(CH ₂) ₂ NH ₂ CH ₂ O(CH ₂) ₂ NH ₂ CH ₂ O(CH ₂) ₂ NH ₂ CH ₂ O(CH ₂) ₂ N ₃ CH ₂ O(CH ₂) ₂ N ₃ CH ₃ CH ₃	H H H H H H (Felodipine) H	39 39 39 39 39 39 35,50	
3-Cl 2,3-Cl ₂ 4-Cl 2-Cl 2,3-Cl ₂ 2,3-Cl ₂ 2,6-Cl ₂ 2,3-Cl ₂ 3,5-Cl ₂ 3,5-Cl ₂ 2,4-Cl ₂ 4-Cl	CO ₂ CH ₃ CO ₂ CH ₃	CO ₂ CH ₂ CH ₃ CO ₂ CH ₃ CO ₂ CH ₃ CO ₂ CH ₃	СН3 СН3 СН3 СН3 СН3 СН3 СН3 СН3	CH ₂ O(CH ₂) ₂ NH ₂ CH ₂ O(CH ₂) ₂ NH ₂ CH ₂ O(CH ₂) ₂ NH ₂ CH ₂ O(CH ₂) ₂ N ₃ CH ₂ O(CH ₂) ₂ N ₃ CH ₃ CH ₃	H H H H H (Felodipine) H	39 39 39 39 39 35,50	
2,3-Cl2 4-Cl 2-Cl 2,3-Cl2 2,3-Cl2 2,6-Cl2 2,3-Cl2 3,5-Cl2 2,4-Cl2 4-Cl	CO ₂ CH ₃ CO ₂ CH ₃ CO ₂ CH ₃ CO ₂ CH ₃ CO ₂ CH ₂ CH ₃ CO ₂ CH ₃ CO ₂ CH ₃ CO ₂ CH ₃	CO ₂ CH ₂ CH ₃ CO ₂ CH ₃ CO ₂ CH ₃ CO ₂ CH ₃	СН3 СН3 СН3 СН3 СН3 СН3 СН3	CH ₂ O(CH ₂) ₂ NH ₂ CH ₂ O(CH ₂) ₂ NH ₂ CH ₂ O(CH ₂) ₂ N ₃ CH ₂ O(CH ₂) ₂ N ₃ CH ₃ CH ₃	H H H H (Felodipine) H	39 39 39 39 35,50	
4-Cl 2-Cl 2,3-Cl ₂ 2,3-Cl ₂ 2,6-Cl ₂ 2,3-Cl ₂ 3,5-Cl ₂ 2,4-Cl ₂ 4-Cl	CO ₂ CH ₃ CO ₂ CH ₃ CO ₂ CH ₃ CO ₂ CH ₂ CH ₃ CO ₂ CH ₃ CO ₂ CH ₃ CO ₂ CH ₃	CO ₂ CH ₂ CH ₃ CO ₂ CH ₂ CH ₃ CO ₂ CH ₂ CH ₃ CO ₂ CH ₃ CO ₂ CH ₃ CO ₂ CH ₃	СН3 СН3 СН3 СН3 СН3 СН3	CH ₂ O(CH ₂) ₂ NH ₂ CH ₂ O(CH ₂) ₂ N ₃ CH ₂ O(CH ₂) ₂ N ₃ CH ₃ CH ₃	H H H H (Felodipine) H	39 39 39 35,50	
2-Cl 2,3-Cl ₂ 2,3-Cl ₂ 2,6-Cl ₂ 2,3-Cl ₂ 3,5-Cl ₂ 2,4-Cl ₂ 4-Cl	CO ₂ CH ₃ CO ₂ CH ₃ CO ₂ CH ₂ CH ₃ CO ₂ CH ₃ CO ₂ CH ₃ CO ₂ CH ₃	CO ₂ CH ₂ CH ₃ CO ₂ CH ₂ CH ₃ CO ₂ CH ₃ CO ₂ CH ₃ CO ₂ CH ₃	СН ₃ СН ₃ СН ₃ СН3 СН3	CH ₂ O(CH ₂) ₂ N ₃ CH ₂ O(CH ₂) ₂ N ₃ CH ₃ CH ₃	H H H (Felodipine) H	39 39 35,50 29	
2,3-Cl ₂ 2,3-Cl ₂ 2,6-Cl ₂ 2,3-Cl ₂ 3,5-Cl ₂ 2,4-Cl ₂ 4-Cl	CO ₂ CH ₃ CO ₂ CH ₂ CH ₃ CO ₂ CH ₃ CO ₂ CH ₃ CO ₂ CH ₃	CO ₂ CH ₂ CH ₃ CO ₂ CH ₃ CO ₂ CH ₃ CO ₂ CH ₃	СН ₃ СН ₃ СН3 СН3	СН ₂ O(СН ₂) ₂ N ₃ СН ₃ СН ₃	H H (Felodipine) H	39 35,50	
2,3-Cl ₂ 2,6-Cl ₂ 2,3-Cl ₂ 3,5-Cl ₂ 2,4-Cl ₂ 4-Cl	CO ₂ CH ₂ CH ₃ CO ₂ CH ₃ CO ₂ CH ₃ CO ₂ CH ₃	СО ₂ СН ₃ СО ₂ СН3 СО2СН3	СН ₃ СН ₃ СНа	СН ₃ СН ₃	H (Felodipine)	35,50	
2,6-Cl ₂ 2,3-Cl ₂ 3,5-Cl ₂ 2,4-Cl ₂ 4-Cl	CO ₂ CH ₃ CO ₂ CH ₃ CO ₂ CH ₃	со ₂ сн ₃ со ₂ сн ₃	СН3 СНа	CH3	· H	20	
2,3-Cl ₂ 3,5-Cl ₂ 2,4-Cl ₂ 4-Cl	CO ₂ CH ₃ CO ₂ CH ₃	CO ₂ CH ₃	CHa		••	23	
3,5-Cl ₂ 2,4-Cl ₂ 4-Cl	CO ₂ CH ₃		3	CH3	H	29	
2,4-Cl ₂ 4-Cl		CO ₂ CH ₃	CH3	CH3	Н	29	
4-CI	CO ₂ CH ₃	CO ₂ CH ₃	CH3	CH3	н	29	
	CO ₂ CH ₃	CO2CH2CH(CH3)2	CH3	CH3	н	27	
2,3-Cl ₂	CO ₂ CH ₂ CH ₃	CO2CH2CH3	CH3	CH2OC(O)NH2	н	35	
2,4-Cl2	CO ₂ CH ₂ CH ₃	CO ₂ CH ₂ CH ₃	CH3	CH2OC(O)NH2	н	35	
2,6-Cl ₂	CO2CH2CH3	CO ₂ CH ₂ CH ₃	CH3	CH2OC(O)NH2	н	35	
3,4-Cl ₂	CO2CH2CH3	CO ₂ CH ₂ CH ₃	CH3	CH2OC(O)NH2	н	35	
2,3-Cl ₂	CO ₂ CH ₃	CO ₂ CH ₃	CH3	CH2OC(O)NH2	н	35	
2,3-Cl ₂	CO ₂ CH ₂ CH ₃	CO ₂ CH ₃	CH3	CH2OC(O)NH2	н	35	
2,3-Cl ₂			O 11		н	35	

2,3-Cl ₂	CO ₂ CH(CH ₃) ₂	CO ₂ CH ₃	CH3	CH2OC(O)NH2	н	35
2,3-Cl ₂	CO2CH2CH(CH3)2	CO ₂ CH ₃	CH3	CH2OC(O)NH2	Н	35
2,3-Cl ₂	CO ₂ CH ₃	CO2CH2CH3	CH3	CH2OC(O)NH2	н	35
2,3-Cl ₂	CO2CH(CH3)2	CO2CH2CH3	CH3	CH2OC(O)NH2	Н	35
2,3-Cl2	CO2CH2CH(CH3)3	CO2CH2CH3	CH3	CH2OC(O)NH2	н	35
2,3-Cl ₂	CO ₂ CH ₃	CO2CH2CH2CH3	CH3	CH2OC(O)NH2	, H	35
2,3-Cl2	CO ₂ CH ₃	CO ₂ CH(CH ₃) ₂	CH3	CH2OC(O)NH2	н	35
2,3-Cl ₂	CO ₂ CH ₂ CH ₃	CO ₂ CH(CH ₃) ₂	CH3	CH2OC(O)NH2	н	35
2,3-Cl ₂	CO ₂ CH(CH ₃) ₂	CO ₂ CH(CH ₃) ₂	CH3	CH2OC(O)NH2	н	35
2,3-Cl ₂	CO ₂ CH ₂ CH(CH ₃) ₂	CO ₂ CH(CH ₃) ₂	СНз	CH2OC(O)NH2	н	35
2,3-Cl ₂	CO ₂ CH ₃	CO2CH2CH2CH2CH3	CH3	CH2OC(O)NH2	н	35
2,3-Cl ₂	CO ₂ CH ₃	CO2CH2CH(CH3)2	СНз	CH2OC(O)NH2	н	35
2,3-Cl2	CO ₂ CH ₃	CO2CH2CH(CH3)2	CH3	CH2OC(O)NH2	н	35
2,3-Cl ₂	CO ₂ CH ₂ CH ₃	CO2CH2CH(CH3)2	CH3	CH2OC(O)NH2	н	35
2,3-Cl ₂	CO ₂ CH(CH ₃) ₂	CO ₂ CH ₂ CH(CH ₃) ₂	CH3	CH2OC(O)NH2	н	35
2,3-Cl ₂	CO2CH ₂ CH(CH ₃) ₂	CO2CH2CH(CH3)2	СНз	CH2OC(O)NH2	н	35
2,3-Cl ₂	CO ₂ CH ₂ CH ₃	CO ₂ CH ₂ CH ₃	СНз	CH ₂ OC(O)NHCH ₃	н	35
2,3-Cl ₂	CO ₂ CH ₂ CH ₃	CO ₂ CH ₂ CH ₃	CH3	CH2OC(O)NH (CH2)2CH3	н	35
2,3-Cl2	CO ₂ CH ₂ CH ₃	CO ₂ CH ₂ CH ₃	СНз	CH ₂ OC(O)(CH ₂) ₃ CH ₃	н	35
2,3-Cl ₂	CO ₂ CH ₂ CH ₃	CO ₂ CH ₂ CH ₃	СНз		н	35
2,3-Cl ₂	CO ₂ CH ₂ CH ₃	CO2CH2CH3	СН _З	CH ₂ OC (O)NHC(CH ₃) ₃	н	35
2,3-Cl ₂	CO ₂ CH ₂ CH ₃	CO ₂ CH ₂ CH ₃	СНз	CH ₂ OC(O)N(CH ₃) ₂	н	35

2,3-Cl ₂	CO ₂ CH ₂ CH ₃	CO ₂ CH ₂ CH ₃	CH3	CH ₂ OC(O)N(CH ₃)	Н	35
2,3-Cl ₂	CO ₂ CH ₂ CH ₃	CO ₂ CH ₂ CH ₃	CH3	CH ₂ OC(O)N(CH ₃)	н	35
2,3-Cl2	CO2CH2CH3	CO ₂ CH ₂ CH ₃	СНз	CH2CC(O)N	` Н	35
2,3-Cl2	CO2CH2CH3	CO ₂ CH ₂ CH ₃	CH3	CH2OC(O)N	н	35
2,3-Cl2	CO ₂ CH(CH ₃) ₂	CO ₂ CH ₃	CH3	CH3	н	35
2,4-Ci2	C(O)N(CH2CH2)2	C(O)N(CH2CH2)2	CH3	СН _З	н	46
2-CI, 4-OH	CO ₂ CH ₂ CH ₃	CO2CH2CH3	CH3	CH3	н	22
4-CI, 5-H2NSO2	CO2CH2CH3	CO ₂ CH ₂ CH ₃	CH3	СНз	, H	22
2,4-Cl ₂ , 5-H ₂ NSO ₂	CO2CH2CH3	CO ₂ CH ₂ CH ₃	CH3	СН _З	н	22
2-NO ₂ , 4-Cl	CO ₂ CH ₃	CO ₂ CH ₃	CH3	СН _З	н	24
3-NO ₂ , 6-Cl	CO ₂ CH ₃	CO ₂ CH ₃	СНз	CH3	н	24
3-NO ₂ , 4Cl	CO2CH2CH3	CO ₂ CH ₂ CH ₃	CH3	CH3	н	24
3-NO ₂ , 6-CI	CO2CH2CH3	CO ₂ CH ₂ CH ₃	СНз	CH3	н	24
3-NO ₂ , 6-CI	CO2CH2CH=CH2	CO2CH2CH=CH2	CH3	CH3	н	24
2-F, 6-Cl	CO ₂ CH ₃	CO ₂ CH ₃	CH3	СН _З	н	29,38
2-Cl, 3-CF3	CO ₂ CH ₃	CO ₂ CH ₂ CH ₃	CH3	NH ₂	н	39
2-Cl, 5-NO ₂	CO ₂ CH ₃	CO ₂ CH ₃	CH3	CH3	н	29
2-CF3	CO ₂ CH ₃	CO ₂ CH ₃	CH3	CH3	н	22,29,42,43,79,8
2-CF3	CO ₂ CH ₂ CH ₃	CO2CH2CH3	СН _З	CH3	н	22
2-CF3	CO ₂ C(CH ₃) ₃	CO ₂ C(CH ₃) ₃	CH3	CH3	н	22
3-CF3	CO ₂ CH ₂ CH ₃	CO2CH2CH3	CH3	CH3	н	22
4-CF3	CO ₂ CH ₂ CH ₃	CO ₂ CH ₂ CH ₃	СНз	CH3	н	22

2-CF3	CO ₂ CH ₂ CH ₃	CO ₂ CH ₂ CH ₃	CH3	CH3	CH3	22	
2-CF3	CO ₂ CH ₂ CH ₃	CO ₂ CH ₂ CH ₃	CH3	СН _З	CO ₂ CH ₂ CH ₃	22	
2-CF3	CO2CH2CH3	CO2CH2CH3	CH3	сн _з	C ₆ H ₅	22	
2-CF3	CO2CH2CH3	CO ₂ CH ₂ CH ₃	н	н	н	22	
2-CF3	CO2CH2CH3	CO2CH2CH3	CH ₂ CH ₃	CH ₂ CH ₃	н	22	
2-CF3	C(O)CH3	C(O)CH ₃	CH3	CH3	н	22	
2-CF3	CO2CH2CH3	CO ₂ CH ₂ CH ₃	CH3	CH3	Aromatic	22	
2-CF3	CO ₂ CH ₃	CO ₂ CH ₃	CH3	СНз	н	23	
3-CF3	CO ₂ CH ₃	CO ₂ CH ₃	CH3	CH3	н	23,29	
2-CF3	NO ₂	CO ₂ CH ₃	CH3	CH ₃	н	43,80,81	
2-CF3	CO ₂ CH ₃	CO2CH2CH(CH3)2	CH3	CH3	Ĥ	27	
3-CF3	CO ₂ CH ₃	CO2CH2CH(CH3)2	CH3	СН _З	н	27	
2-CN	CO ₂ CH ₃	CO ₂ CH ₃	CH3	CH3	H	23,29,38	
3-CN	CO ₂ CH ₃	CO ₂ CH ₃	CH3	СНз	н	25,29,38	
4-CN	CO ₂ CH ₃	CO ₂ CH ₃	CH3	СН _З	н	29	
3-CN	CO ₂ CH ₃	CO2CH2CH(CH3)2	CH3	СН _З	н	27	
2-CO ₂ CH ₃	CO ₂ CH ₂ CH ₃	CO2CH2CH3	CH3	СН _З	н	22	
4-CO ₂ H	CO ₂ CH ₂ CH ₃	CO2CH2CH3	CH3	CH3	н	22	•
2-CH=CH2	CO ₂ CH ₃	CO ₂ CH ₃	CH3	СН _З	н	29,79	
2-CH=CHCO2-	CO ₂ CH ₂ CH ₃	CO2CH2CH3	CH3	CH3	н	82	
С(Снз)з 2-СН ₂ СН ₃	CO ₂ CH ₃	CO ₂ CH ₃	CH3	СН _З	н	29	
2-F	CO ₂ CH ₃	CO ₂ CH ₃	CH3	CH3	н	29,37,38	

			•			
2-F	CO ₂ CH ₃	CO ₂ CH ₂ CH ₃	СН _З	CH ₂ O(CH ₂) ₂ N ₃	н	39
2-F	CO ₂ CH ₃	CO ₂ CH ₂ CH ₃	СН _З	CH ₂ O(CH ₂) ₂ NH ₂	Н	39
2,3,4,5,6-F5	CO ₂ CH ₃	CO ₂ CH ₃	CH3	CH ₃	Н	25,29,38,43,79
3-F	CO ₂ CH ₃	CO ₂ CH ₃	CH3	CH3	н	29,38
4-F	CO ₂ CH ₃	CO ₂ CH ₃	CH3	CH3	Н	29,38
4-F	CO ₂ CH ₃	CO2CH2CH(CH3)2	CH3	CH ₃	Н	27
н	CO ₂ CH ₃	CO ₂ CH ₂ CH ₃	CH3	CH ₂ O(CH ₂) ₂ NH ₂	Н	39
н	CO ₂ CH ₃	CO ₂ CH ₂ CH ₃	CH3	CH2O(CH2)2N3	. H	39
н	CO ₂ CH ₃	CO ₂ CH ₂ CH(CH ₃) ₂	CH3	CH3	н	29
н	CO2CH2CH3	CO ₂ CH ₂ CH ₃	CH3	СН _З	н	22,58
н	CO ₂ C(CH ₃₎₃	CO ₂ C(CH ₃₎₃	CH3	CH3	· • H	22
Н	CO2CH2CH3	CO ₂ CH ₂ CH ₃	CH3	CH ₃	CH3	22
Н	CO2CH2CH3	CO ₂ CH ₂ CH ₃	CH3	CH3	CO2CH2CH3	22
н	CO2CH2CH3	CO ₂ CH ₂ CH ₃	CH ₃	CH3	C ₆ H ₅	22
н	CO2CH2CH3	CO ₂ CH ₂ CH ₃	Н	н	Н	22
н	CO2CH2CH3	CO ₂ CH ₂ CH ₃	CO ₂ CH ₂ CH ₃	CO ₂ CH ₂ CH ₃	н	22
н	CN	CN	CH3	CH ₃	н	22
Н	C(O)CH3	C(O)CH ₃	CH3	CH3	н	22
н	C(O)NHPh	C(O)NHPh	CH3	CH3	н	22
н	CO2CH2CH3	CO ₂ CH ₂ CH ₃	CH3	CH ₃	Aromatic	22
н	CO ₂ CH ₃	CO ₂ CH ₃	СН _З	CH ₃	н	21,23,29,38
2-1	COoCHo	COoCHo	CHa	CHa	н	29.37

3-1	CO ₂ CH ₃	CO ₂ CH ₃	СНз	CH3	H 1	29
4-i	CO ₂ CH ₃	CO ₂ CH ₃	CH3	CH3	H	29
2-CH3	CO ₂ CH ₂ CH ₃	CO ₂ CH ₂ CH ₃	CH3	CH3	н	22
2-CH3	CO ₂ CH ₃	CO ₂ CH ₃	СНз	CH3	н	23,29
2-CH3	CO ₂ CH ₃	CO2CH2CH3	CH3	CH2O(CH2)2NHCH3	н	39
2,5-(CH ₃)2	CO ₂ CH ₃	CO ₂ CH ₃	CH3	CH3	н	29
2,4, 6-(CH3)3	CO2CH2CH3	CO ₂ CH ₂ CH ₃	CH3	CH3	н	22
3-CH3	CO ₂ CH ₃	CO ₂ CH ₃	CH3	CH3	н	21
3-CH3	CO ₂ CH ₃	CO ₂ CH ₃	CH3	CH ₃	н	29,38
4-CH3	CO ₂ CH ₃	CO ₂ CH ₃	CH3	CH3	н	23,38
4-CH3	CO ₂ CH ₃	CO ₂ CH ₃	CH3	CH3	н	21,29
2-NO2	CO ₂ CH ₃	CO ₂ CH ₃	СНз	CH ₃	н	22-24,83
2-NO2	CO ₂ CH ₃	CO ₂ CH ₃	CH3	CH3	H Nifedioine	24,25,38,43,83
2-NO2	CO ₂ CH ₂ CH ₃	CO ₂ CH ₂ CH ₃	CH3	CH3	Н	24
2-NO2	CO2CH(CH3)2	CO ₂ CH(CH ₃) ₂	СН _З	СН _З	н	24
2-NO2	CO ₂ C(CH ₃) ₃	CO ₂ C(CH ₃₎₃	CH3	CH3	н	24
2-NO2	CO2CH2CH2OCH3	CO2CH2CH2OCH3	CH3	CH3	Н	24
2-NO2	CO ₂ (CH ₂) ₂ -OCH ₂ CH ₃	CO2(CH2)2-OCH2CH3	CH3	CH3	н	24
2-NO2	CH ₂ CH ₂ OH	CH ₂ CH ₂ OH	CH3	CH3	н	24
2-NO2	CH ₂ CH ∞ CH ₂	CH ₂ CH=CH ₂	CH3	CH3	н	24
2-NO2	сн ₂ сн сн	CH2CH CH	СНз	CH3	н	24
2-NO ₂ , 4-OCH ₃	CO ₂ CH ₃	CO ₂ CH ₃	СНз	CH3	н	24

2-NO ₂ , 4-OCH ₃	CO2CH2CH3	CO2CH2CH3	СНз	СНз	н	24	
2-NO2, 5-OCH3	CO2CH2CH3	CO ₂ CH ₂ CH ₃	СНз	CH3	н	24	
2-NO ₂ , 5-OH	CO2CH2CH3	CO ₂ CH ₂ CH ₃	СНз	СН _З	н	24	
2,4-(NO ₂) ₂	CO ₂ CH ₃	CO ₂ CH ₃	СНз	CH3	н	21	
2-NO2	CO ₂ CH ₃	CO2CH2CH(CH3)2	CH3	CH3	H Nisoldipine	27,38	
2-NO2	CO ₂ CH ₃	CO ₂ CH ₂ -2-Furyl	CH3	CH3	H Furnidipine	84	
3-NO2	CO2(CH2)2	CO ₂ CH ₃	CH3	CH3	H Nicardipine	35	
3-NO2	CO2CH3	CO ₂ CH ₃	CH3	CH3	н	21,23,24,38,83	
3-NO ₂	CO2CH2CH2OCH2CH2CH3	CO2(CH2)2O (CH2)2CH3	CH3	CH3	H Niludipine	23,24,26	
3-NO2	CO ₂ CH ₂ CH ₃	CO ₂ CH(CH ₃) ₂	CH3	CH3	· · H	23	
3-NO2	CO ₂ CH ₃	CO ₂ CH ₂ CH ₃	CH3	CH3	H Nitrendipine	23,26,38,43,80	
3-NO2	CO ₂ CH(CH ₃) ₂	CO2CH2CH2OCH3	СНз	CH3	H Nimodipine	23,26,38,44	
3-NO ₂	CO ₂ CH ₂ CH ₃	CO ₂ CH ₂ CH ₃	CH3	CH3	н	24,26	
3-NO2	CO2CH(CH3)2	CO2CH(CH3)2	CH3	́ СН з	н	24,26	
3-NO ₂	CO2CH2CH2OCH3	CO2CH2CH2OCH3	CH3	CH3	н	24,26	
3-NO2	CO2(CH2)2OCH2CH3	CO ₂ (CH ₂) ₂ OCH ₂ CH ₃	СНз	CH3	н	24,26	
3-NO2	CH ₂ -2-Pryidiyl	CH ₂ -2-Pryidiyl	СНз	CH3	н	24	
3-NO2	CH ₂ -2-Pryidiyl	CH ₂ -2-Pryidiyl	CH3	CH3	Н	24	
3-NO2	CH ₂ CH≖CH ₂	CH ₂ CH=CH ₂	CH3	CH3	н	24,26	
3-NO2, 4-OCH3	CO ₂ CH ₃	CO ₂ CH ₃	CH3	CH3	н	24	
3-NO2, 4-N(CH3)2	CO ₂ CH ₃	CO ₂ CH ₃	сн _з	CH3	[·] H	24	
3-NO2, 6-SCH3	CO ₂ CH ₃	CO ₂ CH ₃	сн _з	СН _З	н	24	
3-NO ₂ , 4-OH	CO ₂ CH ₂ CH ₃	CO ₂ CH ₂ CH ₃	CH3	CH3	н	24	
--	---	--	-----------------	-------------------	----------	----------	
3-NO ₂ , 6-SO ₃ H	CO ₂ CH ₂ CH ₃	CO2CH2CH3	CH3	CH3	н	24	
3-NO ₂ , 4-N(CH ₃) ₂	CO2CH2CH2OCH3	CO2CH2CH2OCH3	СНз	СН ₃	н	24	
3-NO ₂	CO ₂ C(CH ₃₎₃	CO ₂ CH ₃	CH3	CH3	н	83	
3-NO ₂	CO ₂ C(CH ₃₎₃	CO ₂ CH ₃	CH3	CH3	н	83	
3-NO2	CO ₂ C(CH ₃₎₃	CO ₂ CH ₃	CH3	CH3	Н	83	
3-NO2	CO ₂ C(CH ₃₎₃	CO ₂ CH ₂ CH ₃	CH3	CH3	н	83	
3-NO ₂	CO ₂ C(CH ₃) ₃	CO2CH2CH3	CH3	CH3	н	83	
3-NO ₂	CO ₂ C(CH ₃) ₃	CO ₂ CH ₂ CH ₃	CH3	СН ₃	н	83	
3-NO ₂	CO ₂ CH ₃	CO ₂ CH(CH ₃) ₂	CH3	CH3	н	26,38,51	
3-NO2	CO ₂ CH ₃	CO ₂ CH ₂ CH ₃	CH3	CH2-O-(CH2)2-NCH3	н	39	
3-NO ₂	CO ₂ CH ₃	CO2CH2CH(CH3)2	CH3	CH3	н	27	
3-NO2	CO2CH2CH2OCH3	CO2CH2CH2ONO2	CH3	CH3	н	47,56	
3-NO ₂	CO ₂ CH ₃	CO2CH2CH2ONO2	CH3	CH3	н	56,85	
3-NO ₂	CO ₂ CH ₃	CO ₂ CH ₂ CH ₂ Br	СНз	CH3	н	56	
3-NO2	CO ₂ CH ₃	CO2CH2CH2NHCH3	СН _З	CH3	н	67	
3-NO2	CO ₂ CH ₃	CO2CH2CH2N(Bz)CH3	CH3	CH3	Aromatic	67	
3-NO2	CO2CH2CH2CH3	CO2CH2CH2CH3	CH3	CH3	н	26	
3-NO ₂	CO2CH2CH3	CO2CH2CH2CH3	CH3	CH3	н	26	
3-NO2	CO ₂ CH ₂ CH(CH ₃) ₂	CO2CH2CH(CH3)2	CH3	CH3	н	26	
3-NO2	CO ₂ CH ₃	CO2CH2CH(CH3)2	СН3	СН ₃	н	26	
3-NO2	CO2CH2CH3	CO ₂ CH ₂ CH=CH ₂	СНз	CH3	н	26	

3-NO2	CO2CH2C(CH3)3	CO2CH2C(CH3)3	СНз	CH3	н	41	
3-NO2	CO2(CH2)2OCH2CH3	CO ₂ CH ₂ CH ₃	CH3	CH3	н	26	
4-NO2	CO ₂ CH ₃	CO ₂ CH ₃	СНз	CH3	н	23,38	
4-NO2	CO ₂ CH ₃	CO ₂ CH ₃	CH3	CH3	н	24	
4-NO2	CO2CH2CH3	CO2CH2CH3	CH3	CH3	н	24	
4-NO2	CO ₂ CH(CH ₃)2	CO ₂ CH(CH ₃) ₂	CH3	CH3	н	24	
4-NO ₂	CO ₂ C(CH ₃) ₃	CO ₂ C(CH ₃) ₃	CH3	CH3	н	24	
4-NO2	CO ₂ (CH ₂₎₃ OCH ₃	CO2(CH2)3OCH3	CH3	CH3	н	24	
4-NO ₂	CO2(CH2)3OH	CO ₂ (CH ₂) ₃ OH	CH3	CH3	н	24	
4-NO2	CO ₂ (CH ₂) ₂ CH≕CH ₂	CO ₂ (CH ₂) ₂ CH=CH ₂	CH3	СНз	н	24	
4-NO2	CO ₂ CH ₃	CO ₂ CH ₃	CH3	CH3	н	21,29	
2-OH, 5-NO ₂	CO ₂ CH ₃	CO ₂ CH ₃	CH3	CH3	н	29	
4-N(CH3)2	CO2CH2CH3	CO ₂ CH ₂ CH ₃	СНз	CH3	н	22	
3-N3	CO ₂ CH ₃	CO ₂ CH ₃	CH3	CH3	н	23,38	
3-N(CH ₃)3+	CO ₂ CH ₃	CO ₂ CH ₃	CH3	CH3	н	29,38	
2-NH ₂	CO ₂ CH ₃	CO2CH2CH3	CH3	СН _З	н	49	
3-N(CH3)2	CO ₂ CH ₃	CO ₂ CH ₃	CH3	CH3	н	29	
3-NH2	CO ₂ CH ₃	CO ₂ CH ₃	CH3	CH3	н	29	
4-N(CH ₃) ₂	CO ₂ CH ₃	CO ₂ CH ₃	CH3	CH3	н	29	
3-N3	CO ₂ CH ₃	CO ₂ CH ₃	CH3	CH3	н	29	
3-NH2	CO ₂ CH ₃	CO ₂ (CH ₂) ₂ N(Bz)CH ₃	CH3	СНз	н	67	
3-NH ₂	CO ₂ CH ₃	CO ₂ (CH ₂) ₂ NHCH ₃	СНз	СНз	н	67	

3-NH2	CO ₂ CH ₃	CO2(CH2)2NHCH3	CH3	CH3	Aromatic	67
2-0CH3	CO ₂ CH ₂ CH ₃	CO ₂ CH ₂ CH ₃	CH3	СНз	н	22
4-OH	CO ₂ CH ₂ CH ₃	CO ₂ CH ₂ CH ₃	CH3	СН3	н	22
2-0CH3	CO ₂ CH ₃	CO ₂ CH ₃	CH3	СНз	н	23,29,
3-0CH3	CO ₂ CH ₃	CO ₂ CH ₃	CH3	СНз	н	23,29,
4-OCH3	CO ₂ CH ₃	CO ₂ CH ₃	CH3	СНз	н	23
2-OCH3	CO ₂ CH ₃	CO2CH2CH3	CH3	CH2O(CH2)2NHCH3	н	39
2-OCH ₂ CH ₃	CO ₂ CH ₃	CO ₂ CH ₃	CH3	СНз	н	29
3-OH	CO ₂ CH ₃	CO ₂ CH ₃	CH3	СНз	н	29
2,4,5-(OCH ₃)3	CO ₂ CH ₃	CO ₂ CH ₃	CH3	CH3	н	29
3-OCH3	CO ₂ CH ₃	CO ₂ CH ₂ CH(CH ₃) ₂	CH3	СН _З	н	27
2-SCH3	CO ₂ CH ₃	CO ₂ CH ₃	CH3	CH3	н	23

The structure activity relationships (SAR's) of the 1,4-DHP's have been the most studied, because of the ease of synthesis of this class of compounds and also because of the therapeutic interest in similar chemical structure with both antagonist and activator properties. Numerous structure-activity studies are available for the DHP antagonists, but few SAR studies have been performed on the DHP activators²¹⁻³⁶. Calcium antagonistic activity of the 1,4-dihydropyridine family is influenced by a number of factors. The active conformation of these compounds normally includes the presence of the 1,4-dihydropyridine moiety with the DHP ring in a flattened boat configuration and the 4-phenyl substituent in a pseudoaxial conformation. Early SAR studies revealed some basic structural requirements for activity²². The activity of these compounds is defined as the compounds ability to block calcium entry into the cell.

i) Antagonist activity increases according to the C4 substituent on the DHP ring in the order: $H < CH_3 < cycloalkyl < heterocyclic < phenyl and substituted phenyl.$

ii) The position of the substituent on the 4-phenyl ring has an effect.
Activity increases as the substituent is moved from *para << meta < ortho*.
The presence of an electron withdrawing group in the ortho position is optimum.

iii) The DHP ring is essential, oxidation to pyridine greatly diminishes activity.

iv) The presence of an N1 hydrogen atom is essential, alkyl substitution at this position decreases activity. v) Ester groups at C3 and C5 of the DHP ring are optimum, replacement by other electron withdrawing groups such as CN and C(=O)CH3 reduces activity.

These original structural parameters have been largely confirmed in a variety of SAR studies using *in vitro* methods⁸. Subsequent SAR studies, summarized below, have led to further conclusions concerning the structural requirements of this class of compounds.

As stated previously, variation of the phenyl substituent led to the conclusion that ortho substituted derivatives are most active, meta being less active, and para being very inactive. The activity appears to be generally independent of the electronegativity of the phenyl substituent since those with electron withdrawing groups and electron-donating groups possess activity²². It has also been observed that the ortho NO₂ group present in the parent compound nifedipine is not essential and that an ortho CF₃ group is more effective²³.

The size of the phenyl substituent appears to have an influence^{21,23}. In a series of halogen substituted *ortho*--phenyl derivatives, as the size of the halogen increased, activity also increased³⁷.

Analysis of a series of nisoldipine derivatives (Figure 5) led to the conclusion that the effects of the ester groups and the phenyl ring substituent are expressed independently²⁷. Therefore, in all SAR studies performed, the rank order of activity for the phenyl ring substituents always is the same, o > m >> p, despite the changes in the ester R group¹.

Variation of the C3 and C5 ester substituents has led to conflicting evidence. In an early investigation, it was concluded that an increase in the bulk

of the ester side chain led to an increase in activity^{22,38}. However, in a series of *meta*-nitro phenyl derivatives, activity appeared to decrease with an increase in the bulk of the ester side chains^{23,35}. To complicate things further, another investigation reported that for *ortho* substituted phenyl derivatives, activity decreased as ester bulk increased; for *meta*-phenyl derivatives, activity increased as bulk increased; and for *para*-phenyl derivatives, activity was always observed to be low^{24} .

In all the above mentioned derivatives, the C3 and C5 ester groups were the same, therefore, they were symmetrical. However, when the ester groups are different from each other, the C4 carbon becomes chiral. It has been shown that unsymmetrically substituted derivatives tend to show higher activity²⁶ and stereoselectivity, one enantiomer being much more potent than the other^{28,39,40}. Also, it appears that unsymmetrical derivatives tend to exhibit higher activity overall²⁸.

Although the C3, C5 ester substituents and the phenyl ring substitution have been frequently studied with respect to structure-activity relationships, the effects of the 2, 6 substitution pattern have not been ignored¹. An amino substituent has been substituted in the 2-position²⁶ leading to maintenance of antihypertensive activity. Furthermore, it was shown that 2-dialkylamino-3,4-DHP's (hydrogens at C3 and C4 instead of N1 and C4) also exhibited antihypertensive activity comparable to that of the 2-amino derivatives. Therefore, it appears that the N1-H may not be as important as was originally thought.

From a series of 6-methyl 3-carbomethoxy-5-carboethoxy-4-(2chlorophenyl)-1,4-DHP's containing 2-aminoalkoxy-methyl substituents, it was observed that the derivative bearing a 2-dimethylaminoethoxymethyl substituent (amlodipine) (Figure 5) possessed activity comparable to that of nifedipine, the

parent compound of the 1,4-DHP calcium antagonists³⁹. Of considerable interest was the fact that the S-(--) - enantiomer of amlodipine was approximately 1000x more potent than the R-(+) enantiomer⁴⁰, suggesting an unsymmetrical binding site for the 2,6-substituents. These structural requirements are summarized in Figure 6.

N1 Hydrogen presence critical

Conformational Requirements

The conformational requirements for calcium channel activity of the 1,4-DHP's have been studied by solid-state and solution studies, the synthesis of rigid and semi-rigid analogs, and using theoretical calculations^{21,25,27,28,37,39-59}. Numerous DHP compounds have been studied in the solid-state by X-ray diffraction (TABLE 2). These diffraction studies show that the two rings of these compounds (phenyl and DHP) are not oriented coplanar with respect to each other. The 1,4-DHP ring exists as a boat-shaped structure with the C4 phenyl ring in a pseudoaxial position (Figure 7), oriented perpendicular to the plane of the base of the DHP boat.

Figure 7: X-Ray Structure of Nifedipine Illustrating General Conformation

1,4-Dihydropyridine Derivatives Studied by X-Ray Crystallography

X	B1	<u>B2</u>	R3	<u>B4</u>	<u>R5</u>	<u>Reference</u>
Н	CO ₂ CH ₂ CH ₃	CO ₂ CH ₂ CH ₃	CH3	CH3	Н	58
2-CF3	CO ₂ CH ₃	CO ₂ CH ₃	CH3	CH3	Н	42
2-Cl	CO ₂ CH ₃	CO ₂ CH ₃	СНз	СН _З	H	55
н	CO ₂ CH ₃	CO ₂ CH ₃	СНз	СНз	н	21
3-NO ₂	CO ₂ CH ₃	CO ₂ CH ₃	CH3	CH3	н	21
3-NO2	CO ₂ CH(CH ₃) ₂	CO2CH2CH2OCH3	СНз	СНз	H Nimodipine	28,44
2-NO ₂	CO ₂ CH ₃	CO ₂ CH ₃	CH3	CH3	H Nifecipine	25
3-CH3	CO ₂ CH ₃	CO ₂ CH ₃	CH3	CH3	н	21

4-CH3	CO ₂ CH ₃	CO ₂ CH ₃	CH3	CH3	н	21
4-NO2	CO ₂ CH ₃	CO ₂ CH ₃	CH3	СН _З	н	21
3-CN	CO ₂ CH ₃	CO ₂ CH ₃	СН3	СНз	н	25
2,4-(NO ₂)2	CO ₂ CH ₃	CO ₂ CH ₃	СН3	СН _З	н	21
2,3,4,5,6-F5	CO ₂ CH ₃	CO ₂ CH ₃	CH3	СНз	Н	25
2-NO2	CO ₂ CH ₃	CO2CH2CH2CH(CH3)2	CH3	СНз	H Nisoldipine	27
2-CF3	NO ₂	CO ₂ CH ₃	CH3	CH3	H	43
3-NO2	CO ₂ CH ₃	CO ₂ (C5H7N)-CH2C6H5	CH3	СНз	н.	52
2-NH2	CO ₂ CH ₃	CO ₂ CH ₂ CH ₃	CH3	СНз	н	49
2,3-Cl ₂	CO ₂ CH ₂ CH ₃	CO2CH2CH2CH(CH3)2	CH3	СНз	H Felodipine	50
н	CO ₂ CH ₃	CO2CH2CH2CH(CH3)2	CH3	CH3	Н	27
3-NO2	CO ₂ CH ₃	CO2CH2CH2CH(CH3)2	CH3	СНз	н	27
3-CN	CO ₂ CH ₃	CO2CH2CH2CH(CH3)2	CH3	СНз	н	27
3-OCH3	CO ₂ CH ₃	CO2CH2CH2CH(CH3)2	СНз	СНз	н	27
4-F	CO ₂ CH ₃	CO2CH2CH2CH(CH3)2	СН _З	CH3	н	27
2-CF3	CO ₂ CH ₃	CO2CH2CH2CH(CH3)2	СН3	СНз	н	27
2,4-Cl ₂	C(O)N(CH ₂ CH ₃) ₂	C(O)N(CH ₂ CH ₃) ₂	CH3	CH3	н	46

3-NO2	CO2CH2CH2OCH3	CO2CH2CH2ONO2	СНз	CH3	н	85	
3-NO2	CO ₂ CH ₃	CO2CH2CH2ONO2	CH3	CH3	н	47	
3-NO ₂	CO ₂ CH ₃	CO ₂ CH ₂ CH ₃	СН _З	СН _З	H Nitrendipine	28	
4-Cl	CO ₂ CH ₃	CO2CH2CH2CH(CH3)2	CH3	СНз	н	27	
3-CF3	CO ₂ CH ₃	CO2CH2CH2CH(CH3)2	СНз	CH3	н	27	
4-N(CH ₃) ₂	CO ₂ CH ₃	CO ₂ CH ₃	CH3	CH3	н	25	
3-NO2	CO ₂ CH ₂ C(CH ₃) ₃	CO2CH2C(CH3)3	CH3	CH3	H	41	
3-NO2	CO ₂ CH(CH ₃) ₂	CO ₂ CH ₃	CN	CH3	H Nilvadipine	51	
2-CI, 3-NO ₂	CO ₂ CH ₃	CO ₂ CH ₃	CH3	СНз	н	55	
2-Cl, 4-NO ₂	CO ₂ CH ₃	CO ₂ CH ₃	СН _З	CH3	н	55	
2-Cl, 5-NO ₂	CO ₂ CH ₃	CO ₂ CH ₃	CH3	CH3	н	55	

31

:

In this conformation, rotation of the phenyl ring is sterically hindered and the ring is therefore forced to lie close to the vertical plane passing through N1 and C4 and perpendicular to the base of the DHP boat³. As the phenyl ring approaches a perfect orthogonal position, activity increases. Synthesis and testing of rigid analogs also support this theory⁶⁰.

The conformation of the ortho or meta substituents on the phenyl may be oriented in the sp (away from the DHP) or ap (toward the DHP) conformation (Figure 8). In the solid state, the sp conformation appears to be the preferred orientation, two exceptions being the 3-CN (ap) and the 2-Cl, which adopts both the sp and ap conformations^{21,55}. Theoretical calculations support the favored stability of the sp conformation. Where some solution studies have indicated a bias toward the sp conformation, others indicate the opposite^{3,55,61}. This would be consistent with the observation that meta,meta'-disubstituted phenyl derivatives are also potent antagonists^{1,29}. Hence, the evidence seems to indicate a lack of bias towards the sp or ap conformation because rigid analogs in which the phenyl substituent is held in the sp conformation have higher activities than those in which the phenyl substituent is held in the ap conformation⁵⁵.

The receptor apparently distinguishes between ortho, meta-disubstituted and ortho, meta'-disubstituted derivatives⁵⁵. Hence, it is suggested that there is an asymmetric preference in the binding site for the phenyl substituents and is indicative of a preferred *sp* conformation for both substituents in the ortho, meta-disubstituted derivative (Figure 8).

Figure 8: Illustration of the *s*,*p* and *a*,*p* Conformations of the Phenyl Substituents.

The DHP ring adopts a flattened boat conformation in all compounds studied thus far. It has been proposed that a direct correlation exists between the flatness of this ring and activity. Flatness is not a sufficient condition for activity, because many inactive compounds have very flat DHP rings. However, it may be the corresponding change in the position of the phenyl ring that alters the activity (Figure 9).

Figure 9: Illustration of the Change in Conformation of the Phenyl Ring as the DHP Ring Becomes Flatter in the Active Pentafluorophenyl Derivative.³

Compounds with different ester substituents appear to have the same degree of ring flattening. Hence, the identity of the ester substituent does not appear to affect this parameter.

The ester substituents can adopt one of three different conformations. sp, sp {cis, cis}, ap, ap {trans, trans}, or sp, ap {cis, trans} (Figure 10). The ester carbonyl groups are always found to be nearly coplanar with the nearest double bond in the DHP ring, with the carbonyl group oriented either cis {sp} or trans {ap} to the neighboring carbon carbon double bond of the DHP ring.

Figure 1

Figure 10: Illustration of the s,p and a,p Conformation of the Ester Substituents.

It appears that in the solid state, ortho-substituted derivatives have a preference for sp, sp geometry, whereas the non-ortho-substituted derivatives prefer sp, ap geometry. These ratios are consistent with the thesis of non-equivalent environments adjacent to the DHP binding site, and the probability of the ester groups being oppositely oriented at the receptor site is high.

The preference for coplanar groups at the receptor is supported by the greater activity of rigid DHP analogs which favor this conformation. These conformational characteristics are summarized in Figure 11.

Figure 11: General Conformational Details Consistent with High Activity of the 1,4-Dihydropyridine Derivatives.

DHP Receptor Characteristics

The actual receptor that the 1,4-DHP's bind to is unknown. However, based on the amino acid sequence(AA) of the α 1-subunit of the voltage dependent calcium channel isolated from rabbit skeletal muscle transverse tubule

membranes, a receptor model has been proposed²⁸. This isolated AA sequence (receptor) has been shown to restore excitation-contraction coupling and restore slow calcium current when reconstituted into membrane bilayers¹⁴.

Characteristics of the voltage-sensing unit²⁸

Based on the AA sequences of the channel forming α -subunits of voltagegated channels, several models have been proposed to describe how the α subunits (α -helical segments) are arranged in the lipid bilayer^{15,17,62}. These ion channel sequences are characterized by four homologous repeating domains which are organized around an ion selective channel. Each of the four domains of the protein sequence contain eight α -helices, and the fourth helix in each domain, termed the S4 helix, has a regular pattern of five or six positively charged arginine (Arg) or lysine (Lys) residues spaced every third AA apart²⁸.

In an α -helix, each residue is displaced by a 100° right hand rotation from its preceding N-terminal residue. Therefore, there will be 300° right hand, or a 60° left hand helical displacement for each three residue separation. A pattern of five or six Arg and Lys residues, spaced three apart, would form a left handed spiral staircase of positive charges on the outside of the S4 helix. This staircase of charged Lys and Arg side chains has been proposed to H-bond the S4 helix to a matching helical pattern of H-bond accepting groups provided by the outer surrounding collar of α -helices in each voltage sensing bundle. It has also been proposed that the S4 helix is able to slide up or down in this semi-rigid collar of the sensing unit in response to changes in the membrane potential^{15,28}.

Calcium channel blocking drugs are thought to interfere with the voltageinduced movements of the S4 subunit²⁸. The DHP amine function should interact with proton accepting functional side chains of such AA's as aspartic acid (Asp), asparigine (Asn), glutamic acid (Glu), glutamine (Gln), serine (Ser), and threonine (Thr), while the ester carbonyl oxygens should form H-bonds with such proton donor as Arg, Lys, and histidine (His). Since Lys, Arg, and His residues were scarce on other transmembrane helices, it appeared logical to investigate whether or not a 1,4-DHP molecule could satisfy its H-bonding requirements by interacting with the S4 α -helix. The optimum docking site is proposed to be in between the side chains of two arginine residues lying parallel to each other on successive turns of the helix²⁸. While there are a number of these sequences present, modeling studies show that the peptide sequence Arg-Leu-Leu-Arg-Leu-Phe-Lys-IIe, offers the best fit of highly active members of the 1,4-DHP class. Therefore, this portion of the sequence has been used to explore docking efficiency. This was modeled by Langs et al, docking the drug molecule with the phenyl ring between two Arg side chains on the S4 helix (Figure 12)²⁸.

Figure 12: Stereodiagram of nimodipine bound to the proposed receptor surface²⁸

The unsubstituted para position of the phenyl ring is seen to have tight van der Waals interactions with the S4 helix core. Thus, this may explain why para substituted derivatives are much less active. The two Arg side chains flank opposite sides of the phenyl ring and also form H-bonds with the carbonyl oxygen atoms of the drug molecule. When the drug molecule is positioned as shown in Figure 12, the N1-H bond is approximately perpendicular to and directed away from the axis of the S4 helix, supposedly towards a H-bond acceptor, presumably located on an adjacent helical strand in the voltage sensing bundle ²⁸. The amount of ring pucker affects the projection of the N1-H bond, hence affecting the H-bonding capacity. Those with large ring puckers may not be able to form these H-bonds as well.

Based on the modeling results of Langs et al, it appears that the major recognition surfaces of the receptor lie in helical grooves on the S4 strand, or voltage-sensing α -helix that is positioned in the center of the bundle of transmembrane helices that define each of the four calcium channel domains. Multiple binding clefts defined by Arg-X-X-Arg reading frames exist on the S4 strand.

The tissue selectivity of certain derivatives may also be the result of the differences in lipophilic character, shape and volume of the ester groups. In this model, the ester groups slide under the aliphatic connecting arms of the Arg side chains and rest against the side chain residues of amino acids exposed in the next turn of the helix.

The above model given by Langs et al is merely an hypothesis. The cleft used is only one of many where the DHP may bind. However, it may be a starting point. The degree to which this model may be correct has not yet been established.

Decomposition of the 1,4-Dihydropyridines

1,4-Dihydropyridine derivatives undergo a photodecomposition sequence forming nitroso-pyridine derivatives and finally nitro-pyridine derivatives⁶³⁻⁶⁵. Nifedipine decomposition has been reported to be extremely wavelength sensitive. The two decomposition products have been identified by spectroscopic methods (Figure 13). Exposure to UV radiation appears to cause the aromatization of the dihydropyridine ring and reduction of the nitro group to a nitroso moiety (Figure 13b). Daylight and air oxidation lead to reoxidation of the nitroso group to a nitro function. (Figure 13c). The existence of these decomposition products has led to concern about shelf life, packaging and potency of the pharmaceutical^{65,66}.

Figure 13: Decomposition Scheme for 1,4-Dihydropyridine Compounds

Oxidation of the 1,4-dihydropyridine ring to pyridine is reported to diminish activity significantly in some cases²². The nitro-pyridine decomposition product has been identified as one of the major metabolites of the parent 1,4-dihydropyridine compound⁶⁷ and has been reported to be as much as 1000x less active⁶⁸. However, some of the oxidized derivatives do display some activity²².

Even though the SAR's of the dihydropyridine type compounds seemed highly developed, there appeared to be a lack of understanding concerning the effect of the C3, C5 ester alkyl groups on the activity. For example, there was really no systematic study of increasing the chain length of the ester alkyl groups and how this affected the overall conformation of the compounds. Also, the effect of decomposition on the conformation of the parent 1,4-DHP's was barely investigated at all.

Therefore, this thesis study set out to accomplish a further understanding of 1) the effect of increasing the length (bulk) of the ester alkyl groups on the overall conformation of these compounds and 2) the conformational changes associated upon decomposition to the nitro-pyridine derivatives and the potential effects of this on the calcium antagonistic activity of these compounds. Furthermore, a study of the calcium blocking efficiency of the parent compounds and their oxidized derivatives can lead to an understanding of the activity factors associated with the relative conformations of the two ring system and the ester alkyl groups.

CHAPTER II

X - RAY CRYSTALLOGRAPHY

The main objective of X-Ray crystallography is the acquisition of a detailed model of the three-dimensional contents of a crystal at the molecular level. A wealth of information is available from the positions of the individual atoms; bond lengths and angles, intermolecular interactions, molecular packing, conformation, and hydrogen bonding. Although this method can only be applied to crystalline materials, it can be adapted to a wide range of different temperatures, pressures and environments.

In the crystalline state, there exists a very high degree of internal order and symmetry. The molecules, atoms, or ions in the crystal are arranged in a precise regular way, a motif which is repeated over and over in all directions. It is this property of crystals that allows the diffraction of X-rays and the subsequent solution of a crystal structure. Most crystals are very regular in shape with sharp faces and edges, but this characteristic is not sufficient to define a crystal. They must have a repeating pattern in three dimensions, which defines the crystal lattice.

The basic "building block" in a crystal is the unit cell. The unit cell is characterized by its cell edges (a, b, and c) and angles (α , β , and γ). The crystal system to which a unit cell belongs is defined by the relationship between these edges and angles. There are seven possible crystal systems (TABLE 3).

Crystal system	Unit cell shape
Triclinic	$a \neq b \neq c, \alpha \neq \beta \neq \gamma \neq 90^{\circ}$
Monoclinic	a ≠ b≠ c, α = γ = 90°,β ≠ 90°
Orthorhombic	$a \neq b \neq c, \alpha = \beta = \gamma = 90^{\circ}$
Tetragonal	a = b ≠ c, α = β = γ= 90°
Rhombohedral	a =b = c, $\alpha = \beta = \gamma \neq 90^{\circ}$
Hexagonal	$a = b \neq c, \alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$
Cubic	$a = b = c, \alpha = \beta = \gamma = 90^{\circ}$

THE SEVEN CRYSTAL CLASSES

TABLE 3

The unit cell of a crystal also may contain a variety of symmetry elements relating atoms or molecules to each other. These can include:

<u>Mirror Plane</u>: A plane of reflection which must be perpendicular to an axis and parallel to one of the crystal faces.

Rotation Axis: An n-fold rotation axis in which the rotation through $2\pi/n$ (n=1, 2, 3 or 4) leaves the appearance of the motif unchanged.

<u>Glide Plane</u>: The combination of a mirror reflection and a translation.

<u>Screw axis</u>: The combination of a rotation and a translation.

Inversion axes: The combination of a rotation axis with a center of symmetry.

The crystal lattice can be classified as primitive, P, or face centered (A, B, or F) or body centered, I. Fourteen Bravais lattices result when the crystal system is combined with these lattice types. The combination of the fourteen Bravais lattices with the space symmetry elements gives rise to a total of 230 possible space groups. Each crystal crystallizes in a specific space group that characterizes that crystalline structure⁶⁹.

Since crystals have the highly ordered structure described above, they are capable of diffracting radiation similar to an optical grating. The diffraction pattern of a crystal is much more complicated because a crystal exhibits three-dimensional periodicity and gives rise to diffraction in all directions of space⁷⁰. When crystals diffract X-rays, it is the core electrons that possess the diffracting power. The core electrons act as secondary point sources and diffract the X-ray beam. The diffraction of an X-ray by a crystal obeys a mathematical relationship called Bragg's Law:

(1)

where λ is the incident radiation wavelength, d is the interplanar spacing or distance between the regularly oriented layers of a set of (hkl)-planes, θ is the angle of incidence and the angle of diffraction of the X-ray beam. Bragg's law, thus, describes the relationship between the wavelength of the incident radiation, the distance between the parallel planes of the crystal, and the angles at which specific diffracted beams will be observed. Bragg's law must be satisfied in order for diffraction to occur.

The diffraction pattern of a crystal is characteristic of the unit cell and the distribution of the atoms present. The intensities of the diffracted reflections are determined by the types of atoms present and the relative positions of these

atoms within the unit cell. Different types of elements have different abilities to scatter X-rays, which is dependent on the number of core electrons of that specific element. The "heavier" the atom, the greater the ability it possess to scatter the X-ray beam. Each crystal has its own diffraction pattern characteristic of its structure.

The intensity data collected from a crystal supplies all the information necessary to solve the molecular structure of that crystal. However, the intensities of these reflections are influenced by numerous other factors which must be taken into account. The raw intensity data (I_{meas}) must be corrected for these various effects before it can be used to solve the structure. This is termed *data reduction*. These corrections include i) background, ii) polarization, iii) Lorentz effect, iv) absorption factor, and v) decomposition.

i) *Background* — When a reflection intensity is measured, it is usually accompanied by a certain amount of scattered (background) radiation which must be eliminated to obtain the true intensity of a reflection⁷¹. The correction for the left and right background is calculated as follows:

$$l_{int} = (l_{meas}-L_{bg}-R_{bg}) \times Scan speed$$
 (2)

where:

I_{int} -- Integrated Intensity I_{meas} -- Measured Intensity

The error in this intensity measurement is given by:

 $\sigma l_{int} = (l_{meas} + L_{bg} - R_{bg})^{1/2} \times Scan speed$

(3)

where:

olint -- The standard deviation of lint

ii) *Polarization factor* — The polarization factor is a function of 20. As the data is collected, θ is varied. In so doing, the nature of the X-ray beam and the efficiency in which diffraction occurs also varies. A normal X-ray beam is unpolarized and contains two limiting components, one parallel to the reflecting plane (I_{||}) and one perpendicular to the reflecting plane (I_|), These components of the X-ray beam are diffracted by the crystal monochromator with different efficiencies and the ratio of these differences changes with the 20 angle. At lower 20, the I_{||} and I_⊥ components are diffracted with approximately equal efficiency. At higher 20 the efficiency of diffraction of the I_⊥ component decreases dramatically, causing the diffracted beam to become partially polarized. Thus, diffraction measured at high 20 appears to be less.

The polarization factor, P, is a function of 20 and is independent of the geometry of data collection. It is calculated by the following expression.

$$P = (1 + \cos^2 2\theta)/2$$
 (5)

iii) Lorentz factor — The Lorentz correction (L) is necessary because when the crystal is rotated at a constant speed, some reflections pass through the Bragg position at a faster rate than others. Reflections with low 20 are positioned in optimum diffraction geometry for a longer period than those with high 20. The Lorentz factor corrects for this effect and is given by:

$$L = (\sin 2\theta)^{-1} \tag{6}$$

The combination of the Lorentz and polarization factors results in what is known as the Lorentz-polarization factor (LP):

$$LP = (1 + \cos^2 2\theta)/2\sin 2\theta$$
(7)

iv) Absorption factor — As the data is collected, some of the intensity of the radiation is absorbed by the crystal. This absorption is dependent on the nature of the elements present in the compound being studied, the path length of the beam through the crystal, and the wavelength of the incident X-ray beam. Inorganic crystals containing heavy atoms absorb more strongly than purely organic molecules containing only C, H, N, O, or S. The absorption factor (A) is defined by the following mathematical expression:

$$A = (1 / V) \int e^{-\mu L} dv$$
 (8)

where μ is the linear absorption coefficient which is defined as absorption per mm of material passed through, L is the path length through the crystal, and V is the volume of the crystal.

v) *Decomposition* — Many crystals exhibit a steady decrease in diffraction intensity during the process of data collection. This effect appears to be a result of radiation damage to the crystal from the incident X-ray beam and can be observed by the remeasurement of certain high-intensity standard reflections at regular intervals. The correction for this effect is given by:

$$D = I_{orig} / I_{ave}$$
(9)

where:

 I_{orig} -- starting intensity of a standard reflection I_{ave} -- average current intensity of the standard reflection

Once all of the above corrections have been taken into account (data reduced), the total corrected intensity may be calculated by:

$$\mathbf{I}_{corr} = \mathbf{I}_{int} \times (LP)^{-1} \times A^{-1} \times D$$
 (10)

where:

l_{int} -- the integrated intensity (from background corrections) l_{corr} -- the overall corrected intensity

The reflection is considered to be observed if $I_{int} \ge 2\sigma(I_{int})$ and is used in the solution of the crystal structure.

lint is related to the structure factor (F) by:

 $|F_{hkl}| = (Kl_{hkl} / Lp)^{1/2}$

(4)

where:

p -- polarization factor

L -- Lorentz factor

K -- constant, based on crystal size, beam intensity and machine constants

The structure factor can be calculated, theoretically, once the positions of the atoms are known. Also, this factor is used in the calculation of electron density maps from which the position of the atoms can be determined. The relationship between F and I depends on the corrections listed above and must be taken into account in order to convert |F| into $|F_{obs}|$ which is used in the subsequent structure solution.

The X-rays scattered by a single unit cell of a structure in any direction in which there is a diffraction maximum has a particular combination of amplitude and phase which is termed the structure factor (F). The structure factor may be calculated from the positions of the atoms in the cell, their ability to scatter X-rays, and the phase angle, α_{hkl} (i.e. the difference in period, expressed as an angle, between the wave resulting from a specific set of planes and a wave resulting from scattering at the origin).

where:

| Fhkl | = { (Ahkl)² + (Bhkl)²}^{1/2} Ahkl = Σ fj cos 2 π (hxj + kyj+ lzj) Bhkl = Σ fj sin 2 π (hxj + kyj+ lzj) α hkl = tan⁻¹ (Bhkl / Ahkl)

where fj is the individual atomic scattering factors and xj, yj, zj are the positional parameters in the unit cell of atom j.

In order to acquire a three dimensional picture of the scattering matter (the electron distribution), a three dimensional Fourier synthesis must be performed. The number of electrons per unit volume or the electron density at any point X, Y, Z, represented by $\rho(XYZ)$ is given by:

$$\rho(XYZ) = (1/V_C) \sum_{\substack{h,k,l}} \sum |F_{hkl}| \cos \{2\pi (hX + kY + lZ) - \alpha\}$$
(13)

where:

Vc -- the volume of the unit cell

Fhkl -- structure factor for the particular set of indices h,k,l

 α -- phase angle

Therefore, if |F| and α were known, ρ could be computed for all values of X, Y, and Z and these values could be plotted to obtain a three-dimensional electron density map. However, only the structure factor can be obtained experimentally, not the phase angle. This value must be derived from the values of A and B from previously known structures or by purely analytical methods. This is what is known as the "phase problem" in X-ray crystallography. In order to solve a structure, a certain number of the phase angles must be determined approximately in order to compute an initial model from which to complete the structure. This problem has been solved mainly by two mathematical approaches: The Patterson method and direct methods.

The Patterson method is based on the idea that the phase angle is dominated by the presence of the heavy atoms. This method is only successful for structures containing elements with a higher molecular weight than sulfur. This method is based on the following equation

$$P(u, v, w) = (1 / Vc) \sum \sum |F|^2 \cos 2\pi (hu + kv + lw)$$
(14)

where only the indices and the $|F|^2$ value of each diffracted beam are needed and which are derivable from the primary experimental quantities. No phase information is required because no origin for the unit cell is implied, only the relative positions of the atoms. The peaks in this map occur at points whose distances from the origin correspond in magnitude and direction to distances between atoms in the crystal.

The Patterson function (P(u, v, w)) is always centrosymmetric (has a center of symmetry at the origin), therefore interatomic distances can be plotted assuming one atom is at the origin. A peak in the Patterson map, called a vector at (u,v,w) implies that there are two atoms in a crystal structure at (x1, y1, z1) and (x2, y2, z2) such that (x2-x1=u, y2-y1=v, z2-z1=w). Thus, the Patterson map gives the orientation and length of every interatomic vector. Depending on the space group in effect, certain spatial relationships can be used to help locate atoms. For example, if a space group contains a mirror plane perpendicular to the b axis, for every atom with coordinates x, y, z, there is another atom with coordinates x, -y, z. Thus the vectors between these atoms all have the coordinates 0, y, 0. This represents what is known as a Harker line⁷¹. If only one value is fixed, a Harker plane results (eg. 0, v, w from a rotation axis parallel to a).

The heights of the peaks in the Patterson map are proportional to the values of Z_iZ_j, where Z_i is the atomic number of the atom at one end of the vector and Z_j is the atomic number of the atom at the other end of the vector. The vectors formed between those atoms of high atomic number are much more visible than those formed between lighter atoms. Thus, the positions of the heavy atoms are determined from the map by analysis of the stronger Patterson vectors, Harker lines and planes and the use of the general equivalent positions of the space group of that crystal. In this way a starting trial model is obtained.

The second approach most commonly used to obtain the positional parameters of a structure is called direct methods and is applicable to both light and heavy atom structures. Direct methods is a way of determining the phase(s) based on relationships among the intensities of the reflections themselves. The practical objective of direct methods is to phase enough reflections to provide an identifiable representation of the molecule. The first step in this solution requires the conversion of the observed intensities into normalized structure factors by the following equation:

$$|E_{hkl}|^{2} = |F_{hkl}|^{2} / \sum f_{i}^{2}$$
(15)

where:

|Ehkl| = normalized structure factor fi = the scattering factor of the ith atom

This equation is applied in shells of $10^{\circ}\theta$. Once the structure factors are normalized, the effects of the decline in atomic scattering power with increasing 20 are eliminated.

The phases of a subset may be derived directly from the magnitudes of E_{hkl} . This value will allow the calculation of an electron density map from which one can derive a suitable structure.

In defining the electron density it will be recalled that the following equation holds:

$$\rho(XYZ) = (1/V_{C}) \sum \sum |F_{hkl}| \cos \{2\pi (hX + kY + lZ) - \alpha\}$$
(16)
h,k,l

where:

Vc -- the volume of the unit cell

Fhkl -- structure factor for the particular set of indices h,k,l

 α -- phase angle

In a centrosymmetric cell, this equation simplifies to:

$$\rho(XYZ) = (1/V_C) \sum \sum \pm |F_{hkl}| \cos 2\pi (hX + kY + lZ)$$
(17)
h,k,l

The phase angle has simplified because in a centrosymmetric cell, with each atom at x, y, z, there is an equivalent atom at -x, -y, -z, therefore the phase angle can only be 0 ° or 180 ° (hence the \pm sign in front of the structure factor). Thus, the electron density map can be constructed from equation (17), if the signs of a significant number of structure factors are known.

Phases can be initially assigned by the use of what is known as Harker-Kasper inequalities. These inequalities provided the first method of determining the phase of one reflection in terms of its magnitude and those of others. The inequalities that were derived are given below:

$$u^{2}_{hkl} \leq 1/2 + 1/2 u_{2h,2k,2l}$$
 (18)
 $u^{2}_{hkl} \leq 1/2 (\pm 1/2|u_{2h,2k,2l}|)$ (19)

where:

u - unitary structure factor

These equations are significant because the only unknown is the phase (or sign) of $u_{2h,2k,2l}$. The quantity u_{hkl}^2 must be positive. For example, if u_{hkl}^2 is equal to 0.60 and $|u_{2h,2k,2l}|$ is equal to 0.20, then it follows that the sign of $u_{2h,2k,2l}$ must be positive. Only then will equation (19) be satisfied.

Once a few initial phases are determined, it is possible to define relations among the them. These relationships are based on the fact that the electron density can never be negative and that electron density consists of discrete spherically symmetric atoms. For centrosymmetric structures, it can be shown that for any structure factor F_{hkl} , the phase is determined by the products of all of the phases of the pairs of structure factors whose indices add to give (hkl). Thus F213 depends on the products of the phases of F322 and F-1-11, F604 and F-41-1, and so on. This relationship is described in the following equation introduced by Sayre:

$$s(F_{h1k1l1}) \cdot s(F_{h2k2l2}) \approx s(F_{h1} + h_2, k_1 + k_2, l_1 + l_2)$$
 (20)

This is known as the triplet product sign relationship, where s means " sign of" and \approx means "is probably equal to". s(h, k, l) may be considered as ±1, and (h₁k₁l₁), (h₂k₂l₂) and (h₁+ h₂ k₁ + k₂ l₁+ l₂) are strong reflections with high | E | values. The triplet product sign relationship is used to expand the number of known phases. Therefore, if two of the signs in the equation are known, the third can be deduced. However, only a limited number of phases can be determined from the triplet relationship. A method termed symbolic addition is used to expand the number of phases known.

In symbolic addition, one starts with a limited number of phases and uses them in connection with equation (20) to build a large enough set of known phases in order to produce a recognizable electron density representation of the structure. The preliminary step in symbolic addition is the calculation of the E values for the entire data set as given in equation (15). For all the E values that are greater than a chosen minimum, a list is compiled of all the triples of reflections belonging to this set for which the indices sum to zero. The list of strongest relationships is used to select those reflections that are most often and most reliably interconnected, and appropriate ones of these are chosen for origin determination. In the centrosymmetric case, the origin is placed on one of the centers of symmetry in the unit cell. In any primitive, centrosymmetric space group in the triclinic, monoclinic, or orthorhombic systems, arbitrary signs can be allocated to three reflections in order to specify the origin. These form a basic set from which more phases can be defined by using the triplet product relationships. For example, if the signs of 601 and 133 are +1, then 734 is generated by the combination of these and its sign will be positive:

 $s(734) \approx s(601) \cdot s(133) = +1 \cdot +1 = +1$

Many times these starting reflections will combine to relate to two new ones and imply their phases by equation (20). The next step then involves the assignment of a new, strong reflection as a variable, a, b, or c. This variable stands for a general phase in the non-centrosymmetric case or a sign in the centrosymmetric case. These variables are then used to determine other phases exactly or in terms of one or more variables. This series is continued until a sufficient number of reflections have been phased to provide an initial structural model.

When enough phases have been determined, an electron density map (Emap) is calculated with the | E | values instead of the | F | values.

$$\rho(XYZ) = (1/V_C) \sum \sum \pm |E_{hkl}| \cos 2\pi (hX + kY + lZ)$$
(21)
h,k,l

A trial model is derived from the E-map.

When the initial model is defined, the phased structure factors (Fcalc) can be calculated and their magnitudes compared with those that have been measured (Fobs). This is performed by a least squares refinement method (refinement). Least-squares refinement modifies the atomic positional parameters of the calculated structure to improve the least-squares fit. This procedure then identifies any missing atoms (using the difference Fourier | (|Fobs|) - (|Fcalc|) |). The correctness of the model is given by the 'Residual Factor', Rf, defined as:

$$\mathbf{R}_{f} = \left(\sum | \left(|\mathbf{F}_{obs}| \right) - \left(|\mathbf{F}_{calc|} \right) | \right) / \left(\sum | \mathbf{F}_{obs} | \right)$$
(22)

Once this initial R factor is determined, refinement of the total set of atom positions in the crystal structure is performed using the least-squares method. As the model approaches completion, the difference between F_{ODS} and F_{Calc} is reflected in a lower Rf value.

The atom positions are first refined using isotropic temperature parameters. Each atom has an associated temperature parameter. This value, a measure of the thermal vibration of the atom, effectively spreads the electron cloud over a larger volume. This factor reflects the decrease in the atomic scattering factors as 20 increases. The scattering factor for an atom at rest is given by the following equation:

$$\exp\left\{-B_{iso}\left(\sin^2\theta\right)/l^2\right\}$$
(23)

where B_{iso} is the isotropic thermal parameter, which is equal to $8\pi^2 < u^2$, where $< u^2$ > is the mean square displacement of the atom from its equilibrium position. However, the atomic scattering behavior is more accurately defined by an anisotropic thermal parameter given by:

$$\exp -(b_{11}h^2 + b_{22}k^2 + b_{33}l^2 + b_{12}hk + b_{13}hl + b_{23}kl)$$
(24)

where bij is the individual anisotropic thermal parameter of the atom. The refinement is continued using the anisotropic form of the temperature parameter which provides more accurate positional parameters and hence a better R_f for the structure. These anisotropic thermal parameters describe an ellipsoidal electron distribution of the electron density.

Hydrogen atom positions are normally calculated using idealized geometry, unless the intensity data is sufficiently good to allow them to be located from the difference Fourier map. When all atoms have been located, an appropriate weighting scheme and extinction correction can be applied. The structural refinement is considered complete when the Rf factor reaches a value of between 3 - 6% and all atom bond lengths and angles are reasonable.

Tables of crystal information (cell dimensions), data collection conditions, anisotropic thermal parameters, positional parameters and bond distances and angles are now prepared. A table of final F_{obs} and F_{calc} structure factors is printed. Three dimensional drawings of the molecule and/or the unit cell are prepared to show the atoms as ellipsoids of 50% probability. From these data, structural characteristics can be interpreted such as bond type, H-bonding parameters, and structural conformation.

CHAPTER III

MOLECULAR MODELING

Introduction to Molecular Modeling

Molecular modeling (MM) is a computer-based method of predicting three dimensional details (bond lengths, bond angles, conformation, torsion angles, etc.) of a chemical structure from minimum energy evaluations. The results obtained can be compared to experimental values or used to predict the properties or reactivity of a molecule. Use of this method in biological research areas has grown extensively during the past decades due to advances in computer hardware and software, which has in turn brought high-performance computing and graphics within the capacity of many industrial and academic laboratories.

Molecular modeling (MM) systems supply the tools necessary to visualize, build, analyze, and store models of complex molecules without the necessity of synthesis. Most MM systems work in approximately the same fashion; the twodimensional structure of the molecule is entered and a corresponding 3-D model is calculated. Using an empirical, parameterized force field, the computer calculates a total energy value for the model. Subsequently, the model is subjected to small perturbations to reduce its energy until a local minimum is achieved (minimization). This conformation is then considered to be a stable conformer relative to other conformations which may have higher energy values in the gas phase (one molecule only). Conclusions may then be drawn about
structure-activity relationships, binding-site conformations, and reactivity of this conformer. MM can also be used to design new structures with specific biological properties (QSAR). This capacity has made MM an important tool for design of novel drugs because it can eliminate or speed up many processes that are normally very time consuming, i. e., the trial and error method of synthesizing and testing the new compounds. MM helps make this process more efficient by "testing" various 3-D characteristics of the new molecule to ascertain if synthesis and testing are warranted.

The two most common approaches used in drug design are the "direct" and "indirect" methods. Direct drug design utilizes the 3-D features of a known receptor site. The new drug is then designed to conform to this model. For example, if the 3-D structure of a certain protease or enzyme is known, the actual dimensions of the receptor site can be visualized and a molecule can be designed that will act as a key to fit the receptor site and which will inhibit or alter the function of the substrate. The indirect method is based on a known structure. with the desired biological activity, termed a lead compound. Analogs of this compound are designed and MM is used analyze the ability of the analog to mimic the 3-D structure of the lead compound. This is normally a good indication of the biological activity of the analog. Frequently, a number of derivatives have already been synthesized and tested, therefore these structure-activity relationships can be kept in mind during the design process. Direct and indirect methods can also be used together. For example, the indirect method may be used to assess the 3-D properties of various active and inactive molecules. The information gathered from the indirect method can be used to construct a "blueprint" of the receptor site. The selection of new molecules for MM studies, thus, becomes more rational. The 3-D structure of the lead compound can be determined by X-ray crystallography or NMR analysis. X-ray crystallography can

determine the precise 3-D structure of a compound in the solid state, but it requires preparation of a high-quality crystal. If a crystal structure is determined for one member of a class of compounds, there is no need to determine others since the MM system is able to give reasonable 3-D structures based on the data from the initial compound. NMR can also supply 3-D information about the lead compound. Two-dimensional NMR techniques have become highly advanced and can determine the 3-D structure of a molecule in solution using NOE and coupling constant analysis. This is advantageous because the structure of a molecule changes in response to its environment; i. e. solvation interactions may make the minimum energy conformation in solution different from that in the crystal. The application of MM techniques without any initial structural data is very difficult, requiring ab initio methods and quantum mechanical calculations. This is normally unrealistic because the computer time required is so extensive even for moderate sized molecules. However, if 3-D data is already known for a compound with similar structure, the MM system can use it as a starting point in determination of the structure of the unknown molecule and thus reduce the computer time required.

Many commercial MM programs are available. Each offers specific advantages, but most include a basic set of capabilities: manipulation and visualization of the 3-D structure of a molecule; structure building, rotating bonds, molecular mechanics and dynamics, conformational analysis, molecular surface displays, electronic properties, docking algorithms and calculation of various physical properties of the molecule. The two major MM packages available are SYBYL[®] and Discover[®]. The Discover® program was used in this research and its capabilities are described below.

The Discover® Program⁷²

The Discover[®] program enables the user to perform molecular simulations such as molecular mechanics, dynamics, energy minimizations and template forcing (forcing the conformation of one molecule to be similar to that of a template structure), calculation of interaction energies and vibrational frequencies. Using Discover[®], one can also evaluate docking interactions, such as enzyme-substrate, receptor-ligand, or polymer-polymer. Discover[®] can also evaluate the multitude of conformations available to a drug, catalyst, or polymer and energy refine a model-built structure.

Minimization

Discover® uses different algorithms for the energy minimization process. However, the final structure reached represents one of the low energy conformations. In order to find other low energy conformations, molecular dynamics can be used to search the conformational space and hence find other minima.

Minimization with solvent attempts to take into account the interactions of solvent molecules with the substrate. This is done by placing either a layer or sphere of solvent around the substrate. The whole system is then minimized. This will tend to alter the minima acquired versus that found with minimization in the gas phase. This new minima may provide insight into how the substrate conformation changes with a solvent environment and hence what the true conformation is in biological systems.

Docking

The Docking Module is used to evaluate the non-bond energy between two molecules. This energy is frequently used as a guide to the preferred orientation of one molecule relative to another. As in the minimization process described above, the parameters used in this calculation are stored in a force field file which calculates values for the van der Waals non-bond potential. The van der Waals interaction energy is calculated by summing the energy contributions between all atoms of the two molecules. Hydrogen bonding is also used as an indicator of a positive interaction. This is especially important in the interaction between a ligand and its receptor. (i. e. it is favorable to form more hydrogen bonds which will aid in the binding process). The primary objective of a docking calculation is to evaluate the interaction energies of many orientations of one molecule relative to another, while searching for the orientations that result in low interaction energies. The lowest energy value obtainable is used to describe a possible binding conformation of the substrate with respect to the receptor.

CHAPTER IV

EXPERIMENTAL

Materials. All chemicals were reagent grade materials and were used without further purification.

1,4-Dihydropyridine Synthesis

The synthetic procedure used to prepare the compounds of this study is known as the Hantzsch dihydropyridine synthesis⁷³, a " one pot" synthesis in which all the reactants are mixed in an alcohol solvent (CH₃OH, CH₃CH₂OH) and refluxed for 4-6 hours (scheme A). The product usually crystallizes out of the mother liquor, otherwise, evaporation of the alcohol solvent and replacement with another solvent usually CH₃CN, enhanced precipitation.

Scheme A: General Hantzsch Synthesis of Dlalkyl 2,6-Dimethyl-4-(3nitrophenyl)-1,4-Dihydropyridines.

Decomposition was carried out by oxidation with nitric acid (HNO₃), potassium permanganate (KMnO₄) (Scheme B), or (compound I), by placing the sample dissolved in an alcohol solvent in normal daylight.

Scheme B: Decomposition of 1,4-Dihydropyridines

Dimethyl 2,6-dimethyl-4-(2-nitrosophenyl)-pyridine-3,5-dicarboxylate (I)

Nifedipine (50 mg, 0.1445 mmol) (2,6-dimethyl-3,5-dicarbomethoxy-4-(2nitrophenyl)-1,4-dihydropyridine in an ethanol solution was exposed to normal sunlight. After approximately two days, light green crystals formed. A crystal with appropriate dimensions (< $0.5 \times 0.5 \times 0.5 \text{ mm}$) was mounted on a glass fiber for use in X-ray diffraction studies. (mp=93-95 °C)⁶⁴.

Bis(2,6-dimethyl-3,5-dicarbomethoxy-4-(2-nitrophenyl)pyridine)dichlorocopper(II) (II)

A mixture of 20 mg (0.0578 mmol) of nifedipine and 9.8 mg (0.07334 mmol) copper(II) chloride in 10 mL of ethanol was allowed to sit in an open container on the bench top. Dark purple crystals were produced after several weeks.

2,6-Dimethyl-3,5-dicarboxylate-4-(3-nitrophenyl)-pyridine • NO₃ • H₂O (III)

Di-*tert*-butyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate-(2 g ,4.65 mmol) was mixed with 30 ml of 2 N HNO3. The resulting solution was extracted with CHCl3. The organic layer was washed twice with water and once with 5% NaHCO3. The aqueous layer yielded transparent, colorless crystals.

Dimethyl 2,6-dimethyl-4-(3-nitrophenyl)-pyridine-3,5-dicarboxylate (IV)

A mixture of 6 g of 2,6-dimethyl-3,5-dicarbomethoxy-4-(3-nitrophenyl)-1,4 dihydropyridine was warmed with 5 M (110 ml) nitric acid to approximately 80°C.

The reaction mixture was stirred for 30 minutes and then extracted with methylene chloride(CH₂Cl₂). The extract was washed with water, 5% aqueous. NaHCO₃, again with water, and then dried over Na₂SO₄. Large crystals precipitated out of the organic layer (mp =121-124 °C).

Diethyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (V)

A solution of 5g (0.0331 mole) of 3-nitrobenzaldehyde, 8.61 g (0.06618 mole) ethyl acetoacetate, and 4.56 g (0.065moles) ammonium hydroxide was refluxed for approximately 4 hours. The product precipitated out of the reaction mixture, was filtered, and recrystallized from a methanol/water mixture (mp=205-207 °C).

Diethyl 2,6-dimethyl-4-(3-nitrophenyl)-pyridine-3,5-dicarboxylate (VI)

A mixture of 4g of 2,6-dimethyl-3,5-dicarboethoxy-4-(3-nitrophenyl)-1,4 dihydropyridine was warmed with 5 M nitric acid (100 ml) to approximately 80°C. The mixture was stirred at this temperature for approximately 30 minutes and extracted with CHCl₃. The organic layer was washed with water twice. The organic layer yielded clear crystals of diethyl 2,6-dimethyl-4-(3nitrophenyl)pyridine-3,5-dicarboxylate.

Dipropyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-

dicarboxylate (VII)

A solution of propyl acetoacetate (14.417 g, 0.1 mole), 3-nitrobenzaldehyde (7.556 g, 0.05 mole), and concentrated ammonium hydroxide (0.1 mole) was refluxed for 5-6 hours in 30 ml of ethanol. Yellow plate-like crystals precipitated out of the mother liquor upon cooling (mp =144-147 °C).

Di-isopropyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5dicarboxylate(VIII)

A solution of isopropyl acetoacetate (14.417 g, 0.1 mole), 3-nitrobenzaldehyde (7.556 g, 0.05 mole), and concentrated ammonium hydroxide (0.1 mole) was refluxed for 5-6 hours in 30 ml of ethanol. Yellow plate-like crystals precipitated out of the mother liquor upon cooling (mp =107-113 °C).

Dibutyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (IX)

A solution of n-butyl acetoacetate(15.82 g, 0.1 mole), 3-nitrobenzaldehyde (7.556 g, 0.05 mole), and concentrated ammonium hydroxide(3.85 g, 0.1 mole) was refluxed in ethanol for approximately 4 hours. The ethanol was removed and the resulting oil dissolved in acetonitrile. Large yellow crystals formed upon slow evaporation of the acetonitrile solution (mp = 89-94 °C).

Di-isobutyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5dicarboxylate (X)

A solution of 7.556 g (0.05 mole) of 3-nitrobenzaldehyde, 17.402 g (0.11 mole) isobutyl acetoacetate, and 3.85 g (0.11 mole) concentrated ammonium hydroxide was refluxed in ethanol for 7 hours. The product precipitated out of the reaction mixture, was filtered, and recrystallized from ethanol (mp=139-143 °C).

Di-isobutyl 2,6-dimethyl-4-(3-nitrophenyl)-pyridine-3,5-dicarboxylate (XI)

A mixture of 4 g of di-isobutyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4dihydropyridine-3,5-dicarboxylate (compound X) was warmed with 5N nitric acid (100ml) to approximately 80°C. The mixture was stirred for approximately 30 minutes and extracted with CHCl₃. The organic layer was washed twice with water. The organic layer yielded clear crystals of di-isobutyl 2,6-dimethyl-4-(3nitrophenyl)pyridine-3,5-dicarboxylate (XI).

di-*tert*-Butyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5dicarboxylate(XII)

A solution of 3-nitrobenzaldehyde (7.556 g, 0.05 mole), *tert*-butyl acetoacetate (17.402 g, 0.11 mole), and ammonium hydroxide (3.85 g, 0.11 mole) was refluxed in methanol for 7 hours. The methanol was removed under reduced pressure and the solid dissolved in acetonitrile (CH₃CN). Bright yellow crystals were formed on slow evaporation of the CH₃CN solution

(mp=175-178 °C).

Dipentyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-

dicarboxylate (XIII)

A solution of n-pentyl acetoacetate (17.20 g, 0.1 mole), 3-nitrobenzaldehyde (7.556 g, 0.05 mole), and concentrated ammonium hydroxide (3.85 g, 0.1 mole) were refluxed in ethanol for approximately 4 hours. Large yellow crystals formed upon slow evaporation of the ethanol solution.

Di-isopentyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5dicarboxylate (XIV)

A solution of di-isopentyl acetoacetate(17.20 g, 0.1 mole), 3nitrobenzaldehyde (7.556 g, 0.05 mole), and concentrated ammonium hydroxide (3.85 g, 0.1 mole) were refluxed in ethanol for approximately 4 hours. Large yellow crystals formed upon slow evaporation of the ethanol solution (mp = 115-117 °C).

Di-isopentyl 2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate (XV)

A solution of di-isopentyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4dihydropyridine-3,5-dicarboxylate (4.59g, 0.01 mole), potassium permanganate (1.58g, 0.01 mole), and montmorillonite KSF (3.42g) was refluxed in 60 ml benzene for 24 hours. The reaction mixture was filtered and subsequently solidified. The solid was recrystallized from methanol.

Di-neopentyl 2,6-dimethyl-4-(3-nitrophenyl)-pyridine-3,5-dicarboxylate (XVI)

A mixture of 4 g of di-neopentyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4 dihydropyridine 3,5-dicarboxylate was warmed with 5M nitric acid (100 ml) to approximately 80°C. The mixture was stirred for approximately 30 minutes and extracted with CHCl₃. The organic layer was washed twice with water. The organic layer yielded clear crystals of neopentyl 2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate.

Dihexyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (XVII)

A solution of n-hexyl acetoacetate (18.60 g, 0.1 mole), 3-nitrobenzaldehyde (7.556 g, 0.05 mole), and concentrated ammonium hydroxide (3.85 g, 0.1 mole) was refluxed in methanol for approximately 4 hours. The ethanol was removed under reduced pressure and the resulting oil dissolved in acetonitrile. Large yellow crystals formed upon slow evaporation of the acetonitrile solution (mp = 75-78 °C).

Dihexyl 2,6-dimethyl-4-(3-nitrophenyl)-pyridine-3,5-dicarboxylate(XVIII)

A solution of dihexyl 2,6-dimethyl-4-(3-nitrophenyl)-pyridine-3,5dicarboxylate (0.01 mole, 5.0 g), potassium permanganate (0.01mole, 1.58 g), montmorillonite KSF (3.42 g), and 60 ml benzene was refluxed for 24 hours. After the benzene was removed, the resulting oil was dissolved in hexane which yielded clear transparent crystals upon slow evaporation.

(Diheptyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5dicarboxylate) • CH3CN (XIX)

A solution of n-heptyl acetoacetate (20.02 g, 0.1 mole), 3nitrobenzaldehyde (7.556 g, 0.05 mole), and concentrated ammonium hydroxide (3.85 g, 0.1 mole) were refluxed in methanol for approximately 4 hours. Acetonitrile was added to the original mixture causing compound XIX to precipitate. Large yellow crystals formed upon slow evaporation of the acetonitrile solution.

Dioctyl 2,6-Dlmethyl-4-(3-nitrophenyl)-1,4-dihydropyridlne-3,5-dicarboxylate (XX)

A solution of n-octyl acetoacetate (21.40 g, 0.1 mole), 3-nitrobenzaldehyde (7.556 g, 0.05 mole), and concentrated ammonium hydroxide (3.85 g, 0.1 mole) was refluxed in methanol for approximately 4 hours. Acetonitrile was added to the original mixture causing compound XX to precipitate. Large yellow crystals formed upon slow evaporation of the acetonitrile solution (mp = 58-67 °C).

Di-(2-Methoxyethyl) 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5dicarboylate(XXI)

A solution of 3-nitrobenzaldehyde (4.53 g,0.03 mole), 2-methoxyethyl acetoacetate (10.4 g, 0.065 mole), and ammonium hydroxide(2.275 g, 0.065 mole) was refluxed in ethanol for seven hours. The product precipitated out of the reaction mixture, was collected by filtration, and recrystallized from ethanol (mp=125-129 °C).

(Dibenzyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5dicarboxylate) • 0.5 CH₃CN (XXII)

A solution of benzyl acetoacetate (0.1 mole), 3-nitro-benzaldehyde (0.05 mole), concentrated ammonium hydroxide (0.1 mole) was refluxed in 30 ml ethanol for approximately 5-6 hours. The product crystallized from the mother liquor as a yellow precipitate. The precipitate was dissolved in acetonitrile which yielded yellow plate-like crystals.

(2,6-Dimethyl-3-carbomethoxy-5-carboethoxy-4-(3-nitrophenyl)-pyridine) • NO3 (XXIII):

A solution of 2 g (5.55 mmole) of 2,6-dimethyl-4-(3-nitrophenyl)-3carbomethoxy-5-carboethoxy-1,4-dihydropyridine and 2 M HNO3 (100 ml) was refluxed for 4 hrs. The resulting solution was extracted with methylene chloride (CH₂Cl₂). The organic layer was washed twice with water, dried with Na₂SO₄ and the CH₂Cl₂ removed under reduced pressure. The resulting oil was dissolved in ethyl acetate and upon slow evaporation, yielded clear crystals suitable for X-ray diffraction.

CRYSTALLOGRAPHY

Crystals with the appropriate dimensions (<0.2 mm in all three dimensions) of each compound were chosen for X-ray diffraction. A single crystal of good quality was mounted on a glass fiber held in a brass support. The brass pin was placed in a goniometer head and mounted on a Siemens P4 automated four-circle diffractometer equipped with a PC-486DX computer (Figure 14). The crystals were irradiated with molybdenum radiation at an average wavelength of 0.71073 Å (a weighted average of k α 1 and k α 2). Unit cell dimensions were determined using the centered angles from 25 - 50 independent strong reflections which were refined by least-squares methods using the automated procedure in XSCANS⁷⁴. The intensity data were collected at room temperature using a variable scan rate, a θ -2 θ scan mode and a scan range of 0.6° below $k_{\alpha 1}$ and 0.6° above $k_{\alpha 2}$ to a maximum 20 value (normally 50.0° or the observed diffraction of the crystal). Backgrounds were measured at the ends of the scan range for a combined time equal to the total scan time. The intensities of three standard reflections were remeasured after every 97 reflections to monitor crystal decomposition. The raw intensity data collected were corrected for Lorentz, polarization, absorption, decomposition, centering and background effects, after which redundant and space group forbidden data were removed.

Observed reflections (F>4.0 σ F) were used to arrive at the non-hydrogen atom positions by direct methods⁷⁵⁻⁷⁷. Refinement of the scale factor, positional and anisotropic thermal parameters for all atoms was carried out using either

Figure 14. Siemens P4 automated 4-circle diffractometer with PC-486DX computer and printer

XLS (refinement on F) or SHELXL⁷⁸ (refinement on F²) to convergence. Scattering factors were taken from the International Tables for Crystallography. Hydrogen atom positions were calculated using idealized geometry. The profile fitting technique for data reduction was employed. A weighting scheme $\left(w = \frac{1}{\sigma^2(F) + |g|F^2}\right)$ and extinction correction were applied at the last stages of

refinement. Final refinement led to the final agreement factor, Rw.

MOLECULAR MODELING

The molecular modeling performed in this study were done on a Silicon Graphics IRIS[®] Workstation, which was graciously provided by the Department of Biochemistry and Molecular Biology at Oklahoma State University.. The program used for the minimization in the gas phase and in solution was Discover⁷². The coordinates of the X-ray crystal structure were introduced using FDAT file format. Minimizations were performed using these initial coordinates. The docking calculations were performed using the program Docking^{®72}. The α 1-subunit coordinates were obtained from Dr. David A. Langs at the Department of Molecular Biophysics, Medical Foundation of Buffalo, Inc. , Buffalo, New York. The molecules of this study as seen in their single crystal X-ray conformations were docked into the proposed receptor site and the Van der Waals interaction energy calculated.

Biological Evaluation

The biological testing procedures for the six compounds evaluated in this study were done by David J. Triggle using the method of Bolger³⁸ et. al. at the school of pharmacy at the University of Buffalo, State University of New York, C126 Cooke-Hochstetter Complex, Box 601200, Buffalo, NY, 14260-1200. The method used measured the displacement of 6.1 x 10^{-11} M [³H]-(+)-PN200-110 binding in rat brain membranes. Membrane protein was incubated in Tris buffer with the labeled compound and the drug under inspection. The total assay volume was 2.5 ml in Tris buffer at a pH of 7.2 at 25°C. The tested compounds

were incubated with the membrane protein and bound $[^{3}H]$ -(+)-PN200-110 for four hours. The amount of $[^{3}H]$ -(+)-PN200-110 that was displaced was measured using liquid scintillation counting. This gave a binding value which described the affinity of the compound being tested with respect to the labeled DHP derivative, $[^{3}H]$ -(+)-PN200-110.

CHAPTER V

RESULTS AND DISCUSSION

Numerous structure-activity relationships (SAR's) for 1,4-dihydropyridine (DHP) derivatives are available in the literature¹. However, the influence of the alkoxy groups at the C3 and C5 ester positions on the conformation of the rest of the molecule, and thus on the activity, is still somewhat unclear. A further understanding of 1) the effect of increasing the length and bulk of the ester alkyl groups on the overall conformation of 1,4-DHP compounds and 2) the conformational changes associated with DHP decomposition to the nitro-pyridine form and the potential effects on the calcium antagonistic activity of these changes was the focus of this study. The nine new compounds prepared, and the four prepared using literature preparations, (TABLE 4) have C3 and C5 ester alkyl groups that range from a two carbon to an eight carbon chain (compounds V, VII, VIV, XIII, XVII, XVIV, and XX). In order to observe the conformational dependence upon increased bulk of these side chains, isopropyl, isobutyl, tertiary butyl, isopentyl, and benzyl groups were also included (compounds VIII, X, XII, XIV, and XXII). The decomposition products studied were those of nifedipine (I and II), dimethyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5dicarboxylate (IV), 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5dicarboxylate (III), diethyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5dicarboxylate (VI), di-isobutyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (XI).

TABLE 4

Compound X		B <u>1</u>	<u>B2</u>	Decomposition Product (Ba)	
l	2-NO	CO ₂ CH ₃	CO ₂ CH ₃	yes	
II	2-NO2	CO ₂ CH ₃	CO ₂ CH ₃	yes	
111	3-NO2	CO ₂ H	CO ₂ H	yes	
IV	3-NO2	CO ₂ CH ₃	CO ₂ CH ₃	yes	
V ²⁶	3-NO2	CO ₂ CH ₂ CH ₃	CO ₂ CH ₂ CH ₃	no	
VI	3-NO2	CO ₂ CH ₂ CH ₃	CO ₂ CH ₂ CH ₃	yes	
VII ²⁶	3-NO ₂	CO ₂ CH ₂ CH ₂ CH ₃	CO ₂ CH ₂ CH ₂ CH ₃	no	
VIII ²⁶	3-NO2	CO ₂ CH(CH ₃) ₂	CO ₂ CH(CH ₃) ₂	no	
VIV	3-NO2	CO ₂ (CH ₂) ₃ CH ₃	CO ₂ (CH ₂) ₃ CH ₃	no	
x	3-NO2	CO ₂ CH ₂ CH(CH ₃) ₂	CO ₂ CH ₂ CH(CH ₃) ₂	no	
XI	3-NO ₂	CO2CH2CH(CH3)2	CO ₂ CH ₂ CH(CH ₃) ₂	yes	
XII	3-NO ₂	CO ₂ C(CH ₃) ₃	CO ₂ C(CH ₃) ₃	no	
XIII	3-NO2	CO ₂ (CH ₂) ₄ CH ₃	CO ₂ (CH ₂) ₄ CH ₃	no	
XIV	3-NO2	CO ₂ (CH ₂) ₂ CH(CH ₃) ₂	CO ₂ (CH ₂) ₂ CH(CH ₃) ₂	no	
XV	3-NO2	CO ₂ (CH ₂) ₂ CH(CH ₃) ₂	CO ₂ (CH ₂) ₂ CH(CH ₃) ₂	yes	
XVI	3-NO2	CO ₂ (CH ₂)C(CH ₃) ₃	CO ₂ (CH ₂)C(CH ₃) ₃	yes	
XVII	3-NO2	CO ₂ (CH ₂) ₅ CH ₃	CO ₂ (CH ₂) ₅ CH ₃	no	
XVIII	3-NO2	CO ₂ (CH ₂₎₅ CH ₃	CO ₂ (CH ₂₎₅ CH ₃	yes	
XVIV	3-NO ₂	CO ₂ (CH ₂₎₆ CH ₃	CO ₂ (CH ₂) ₆ CH ₃	no	
XX	3-NO2	CO ₂ (CH ₂)7CH ₃	CO ₂ (CH ₂₎₇ CH ₃	no	
XXI ²⁶	3-NO ₂	CO2CH2CH2OCH3	CO ₂ CH ₂ CH ₂ OCH ₃	no	
XXII	3-NO2	CO ₂ CH ₂ C ₆ H ₅	CO ₂ CH ₂ C ₆ H ₅	no	
XXIII	3-NO2	CO ₂ CH ₃	CO ₂ CH ₂ CH ₃	yes	

di-isopentyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (XV), dineopentyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate(XVI), dihexyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (XVIII), and nitrendipine(XXIII). To investigate the effect of inserting an oxygen in the side chain di(2-methoxyethyl) 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (XXI) was synthesized. These compounds are tabulated in TABLE 4. Compounds V, VII, VIII, and XX, which had been prepared previously, but had not been examined by single crystal studies.

All of the nifedipine derivatives previously examined by single crystal X-ray diffraction^{3,46} exhibit a flattened boat conformation of the 1,4-dihydropyridine ring with the nitrogen atom at the prow and the phenyl ring in pseudo-axial position at the bow. In order to quantify the effect of changes in bulk and length of the ester alkyl groups on the general conformation of the compounds in this study, specific structural parameters were defined. The parameters used were 1) the configuration of the ester carbonyl groups as sp or ap and of the phenyl substituent as ap or sp, 2) the sum of the internal torsion angles of the DHP ring to describe its planarity (SUM), 3) the deviation from orthogonality of the phenyl ring with respect to the base of the DHP boat, and 4) the cone angle of the ester groups to quantify the space occupied by the alkyl groups. The questions that I set out to answer were 1) How does the identity of the ester alkyl groups affect the deviation value of the phenyl ring, the planarity of the DHP ring, the conformation of the ester groups (ap vs sp) and that of the phenyl substituent (ap vs sp) and 2) based on these parameters, how does the identity of the ester alkyl group affect the activity? The X-ray parameters determined in this study are given in TABLE 5.

TABLE 5

Selected X-Ray Parameters for Compounds I-XXIII

Compound	Conformation of C3,C5 Esters ^a	Conformation of Phenyl Ring Substituent ^b	# Carbons in Ester Alkyi Chain	SUM (°) ^C	Deviation (°) ^d	Cone Angie(°)
(I) Dimethyl 2,6-dimethyl-4-(2- nitrosophenyl)pyridine-3,5- dicarboxylate	-	• • •	1	15.134	6.265	-
 (II) Dimethyl 2,6-dimethyl-4-(2- nitrophenyl)pyridine-3,5- dicarboxylate 	• •	-	1	11.688	5.751	-
(III) 2,6-Dimethyl-3,5-di- carboxylate-4-(3- nitrophenyl)pyridine • NO3 • H2O	-	-	0	6.4	32.8	-
(IV) Dimethyl 2,6-dimethyl-4-(3- nitrophenyl)pyridine-3,5- dicarboxylate	• •	-	1	12.6	33.1	-
(V) Diethyl 2,6-dimethyl-4-(3- nitrophenyl)-1,4-dihydro- pyridine-3,5-dicarboxylate	ap,sp	sp	2	67.9	9.6	44.4
(VI) Diethyl 2,6-dimethyl-4-(3- nitrophenyl)pyridine-3,5- dicarboxylate	× -		2	5.19	32.95	-
(VII) Dipropyl 2,6-dimethyl-4-(3- nitrophenyl)-1,4-dihydro- pyridine-3,5-dicarboxylate	sp,sp	sp	3	74.8	7.6	53.4

78

(VIII) Di-isopropyl 2,6-dimethyl-4- (3-nitrophenyl)-1,4-dihydro- pyridine-3,5-dicarboxylate	ap,sp	sp	3	97.2	8.4	48.3	
(VIV) Dibutyl 2,6-dimethyl-4-(3- nitrophenyl)-1,4-dihydro- pyridine-3,5-dicarboxylate	ap,sp	sp	4	103.4	14.8	52.7	
(X) Di-isobutyl 2,6-dimethyl-4-(3- nitrophenyl)-1,4-dihydro- pyridine-3,5-dicarboxylate	sp,sp	sp	4	100.97	8.88	56.2	
(XI)DI-Isobutyl 2,6-dimethyl-4-(3- nitrophenyl)pyridine-3,5- dicarboxylate	-	-	4	24.87	17.19	-	
(XII) Di- <i>tert</i> -butyl 2,6-dimethyl-4- (3-nitrophenyl)-1,4-dihydro- pyridine-3,5-dicarboxylate	sp,ap	sp	4	73.99	33.71	48.4	
(XIII) Dipentyl 2,6-dimethyl-4-(3- nitrophenyl)-1,4-dihydro- pyridine-3,5-dicarboxylate	sp,sp	sp	5	90	10.1	70.3	
(XIV) Di-isopentyl 2,6-dimethyl-4- (3-nitrophenyl)-1,4-dihydro- pyridine-3,5-dicarboxylate	sp,sp	sp	5	102.02	14.035	63.5	
(XV) Di-isopentyl 2,6-dimethyl-4- (3-nitrophenyl)pyridine-3,5- dicarboxylate	•	-	5	6.33	21.08	-	
(XVI) Dineopentyl 2,6-dimethyl-4- (3-nitrophenyl)pyridine-3,5- dicarboxylate		-	5	7.3	35.2		

(XVII) Dihexyl 2,6-dimethyl-4-(3- nitrophenyl)-1,4-dihydro- pyridine-3,5-dicarboxylate	sp,ap	sp	6	99	16.9	60.5
(XVIII) Dihexyl 2,6-dimethyl-4-(3- nitrophenyl)pyridine-3,5- dicarboxylate	-		6	14.7	21.1	-
(XVIV) Diheptyl 2,6-dimethyl-4-(3- nitrophenyl)-1,4-dihydro- pyridine-3,5-dicarboxylate	sp,sp	sp	7	68.2	5.9	44.2
(XX) Dioctyl 2,6-dimethyl-4-(3- nitrophenyl)-1,4-dihydro- pyridine-3,5-dicarboxylate	sp,ap	sp	8	103.2	21.8	64.7
(XXI) Di(2-methoxyethyl) 2,6- dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyridine-3,5- dicarboxylate	sp,sp	sp	3	66.2	4.6	61.1
(XXII) (Dibenzyl 2,6-dimethyl-4- (3-nitrophenyl)-1,4-dihydro- pyridine-3,5-dicarboxylate) • 0.5 CH ₃ CN	sp,sp	sp	7	99.6	8.0	50.0
(XXIII) Ethyl Methyl 2,6-dimethyl- 4-(3-nitrophenyl)pyridine- 3,5-dicarboxylate • NO3	•	-	1,2	6.86	39.07	÷

a. The ester carbonyl groups of the decomposition products are no longer conjugated with the double bonds of the pyridine ring, therefore, they cannot be classified as sp or ap.

b. The conformation of the phenyl ring substituent is in reference to the hydrogen atom on the DHP ring. In the decomposition products, this atom is missing, therefore, this classification can not be made

c. The sum of the absolute values of the internal torsion angles of the DHP or pyridine ring.

d. The deviation from orthogonality of the phenyl ring with respect to the base of the DHP boat or pyridine ring.

The ester groups can adopt 1 of 4 different conformations, sp,sp; ap,sp; sp,ap; or ap,ap. Of the thirteen parent compounds in TABLE 4, three adopt the ap,sp conformation, 7 adopt the sp,sp conformation, and 3 adopt the sp,ap conformation. It appears that the sp,sp conformation is favored (7/13) in the solid state. However, there appears to be no correlation between the size or length of the ester groups and their conformation in the X-ray structures.

The planarity of the DHP ring is described by the sum of the absolute values of the internal torsion angles of the DHP ring (SUM). As the number of carbon atoms increases, the SUM value also increases, i.e. the DHP ring becomes less planar. This is a general trend and is not very well obeyed by compounds dimethyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (a), VIV (n-butyl)* and XVIV (n-heptyl) (Figure 15a). A better correlation results if these compounds are not considered (Figure 15b).

The deviation of the phenyl ring from a perpendicular orientation to the base of the DHP ring is described using the C3-C4-C7-C8 torsion angle. The ideal value for this angle of the unoxidized parent compound is 60°. To arrive at the deviation value, the absolute value of the C3-C4-C7-C8 angle is subtracted from 60. The identity of the ester group appears to have an effect on this parameter. As the number of carbons in the ester alkyl chain increases, the deviation value also increases. This is represented graphically in Figure 16. This appears to be a general trend, which is not obeyed by compound XVIV, which contains a heptyl alkoxy group. This may be explained by the fact that the conformation of the ester groups are sp,sp. In the crystal lattice, the phenyl ring is flanked on both sides by heptyl chains from another molecule. Therefore, the phenyl ring would be forced to lie closer to the plane of bisection. In Figure 16a, all compounds in this study are represented. However, a better correlation exists

^{*} The phrase in parentheses denotes the identity of the ester alkyl chain throughout text.

if only linear chain alkoxy groups are considered (Figure 16b). Again, this is not well obeyed by the n-heptyl compound.

The conformation of the ester groups appears to have an effect on the deviation value. In the sp conformation the alkyl esterification group is extended towards and parallel to the phenyl ring. When both ester groups are oriented sp,sp, the phenyl ring is more constricted, and therefore will have a smaller deviation value. The deviation values for compounds having the sp,sp orientation range from 4.6 to 14.035°, those with one group ap, and one group sp, range from 8.4 to 14.8. Thus, the sp,ap conformation seems to cause an increase in the deviation value.

(a)

SUM versus Number of carbons (linear chain)

Figure 15: Plots of the SUM value versus the number of carbons in the ester groups. (a) all compounds in this study, (b) linear chain only

a: Dimethyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate b: Dineopentyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate

(a)

Number of Carbons VS Deviation of Phenyl Ring (linear chain)

Figure 16: Plots of the deviation value versus the number of carbons in the ester alkyl group

A parameter that can be used to describe the space occupied by an ester alkyl group is the cone angle⁸⁶. This is the angle swept out by the extent of the van der Waals radii of the group attached to the carboxy oxygen, assuming free rotation about the C3-C3' or C5-C5' bonds. These angle are given in TABLE 5. The number of carbons in the ester groups (branched and linear chain alike) appears to cause an increase in the cone angle parameter. Again, this trend is not followed as well by compound XVIV (n-heptyl). This is represented graphically in Figure 17.

Cone Angle versus the Number of Carbons in the ester alkyl chain

The effect of the magnitude of the cone angle on the deviation and SUM values was also investigated. The initial hypothesis was that as the cone angle increased, the deviation value would decrease. This was a logical conclusion

because the phenyl ring should be more restricted as the space occupied by the ester alkyl groups increased. This hypothesis was tested by plotting the cone angle against the deviation value (Figure 18a). The effect of the cone angle on the deviation value is exactly the opposite of that expected. As the cone angle increases, the deviation value also increases. However, three compounds do not obey this trend well, XIII (n-pentyl), XXI (2-methoxy ethyl) and XII (*t*-butyl-not shown).

The SUM value was plotted against the cone angle (Figure 18b). There is no correlation between these two values, hence, it does not appear that the cone angle affects the SUM value in any way.

Since SAR analysis indicates that as the SUM value increases, activity decreases, it would appear that as the number of carbons increases, activity should decrease. Similarly, as the number of carbons increases, the deviation value increases, and thus activity should decrease. Finally, since the deviation value appears to increase with an increase in cone angle, it would be logical to assume that compounds with large cone angles would display generally lower activities.

(a)

(b)

Figure 18: Cone Angle versus the a) deviation value, and b) SUM value

Activity Analysis

Structure-activity studies have demonstrated that flattening of the DHP boat conformation correlates with increased activity, presumably due to the concurrent change in position of the phenyl ring (Figure 9). As previously stated, the sum of the internal torsion angles is a measure of the planarity of the DHP ring. Published SAR's have indicated that as the SUM value decreases, calcium antagonistic activity increases. This trend is represented graphically in Figure 19²¹.

1: Dimethyl 2,6-dimethyl-4-(2,3,4,5,6-pentafluorophenyl)-1,4-dihydropyridine 3,5-dicarboxylate 2: Nifedipine

3: Dimethyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine 3,5-dicarboxylate

4: Dimethyl 2,6-dimethyl-4-(3-methylphenyl)-1,4-dihydropyridine 3,5-dicarboxylate

5: Dimethyl 2,6-dimethyl-4-phenyl-1,4-dihydropyridine 3,5-dicarboxylate

6: Dimethyl 2,6-dimethyl-4-(3-cyanophenyl)-1,4-dihydropyridine 3,5-dicarboxylate

Figure 19: Graph of the Activity versus the SUM value ²¹

This information may be used to predict the relative activity of compounds in which the activity has not been measured, i.e., compounds with higher SUM values should have lower activities.

The activities of the new compounds prepared in this study were estimated using this approach. Using the equation of the line (Figure 19), their activities were calculated and then plotted on the same graph (Figure 20). It was concluded that compounds V (ethyl), VII (n-propyl), XII (*t*-butyl), XVIV (n-heptyl), and XXI (2-methoxy ethyl) should be relatively active with activity values of; V (232), VII (120), XII (129), XVIV (225), and XXI (273). The SUM versus activity model predicted that compound VII (isopropyl) should have an activity value of 13.6, compound XVII (n-hexyl), 11.45, compound XII (*t*-butyl), 129, and compound XX (n-octyl), 7.6. These values are relative to the activity of nifedipine, which is assigned a value of 100. It also appears from this model that the identity of the ester group has no effect on activity.

In order to test these values, four new compounds were submitted for activity testing using the method of Bolger et al³⁸, actual results: VIII (isopropyl side chain; 80.6), XII (*t*-butyl; 3.7), XVII (n-hexyl; 16), and XX (n-octyl; 3.6). These values do not correspond with the values predicted from the above model.

One may also compare the order of activity of the four tested compounds. This order is VIII (isopropyl) > XVII (n-hexyl) > XII (*t*-butyl) ~ XX (n-octyl). Using the above analysis, the order calculated is XII (*t*-butyl) > VIII (isopropyl) ~ XVII (nhexyl) > XX (n-octyl). The order is correct except for compound XII (*t*-butyl). A possible reason for this failure could be that the model was constructed using compounds having only methyl alkyl groups on the ester substituents while the substituent on the phenyl ring was varied.

Figure 20: Graph of the Relative Activity versus the SUM value of six known compounds and the thirteen unoxidized parent compounds of this study

Known SAR's have indicated that as the deviation value decreases, activity increases. Therefore, a plot of relative activity versus the deviation value was prepared for the same compounds considered in Figure 17 (Figure 21).

Relative Activity versus Deviation Value(Known compounds)

1: Dimethyl 2,6-dimethyl-4-(2,3,4,5,6-pentafluorophenyl)-1,4-dihydropyndine 3,5-dicarboxylate 2: Nifedipine

3: Dimethyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine 3,5-dicarboxylate

4: Dimethyl 2,6-dimethyl-4-(3-methylphenyl)-1,4-dihydropyridine 3,5-dicarboxylate

5: Dimethyl 2,6-dimethyl-4-phenyl-1,4-dihydropyridine 3,5-dicarboxylate

6: Dimethyl 2,6-dimethyl-4-(3-cyanophenyl)-1,4-dihydropyridine 3,5-dicarboxylate

Figure 21: Graph of Deviation vs Activity of known compounds

The correlation resulting was not as good as that using SUM value versus relative activity. Nevertheless, the graph was used to predict the relative

Figure 22: Graph of the relative activity versus the deviation of the phenyl ring of six known compounds and thirteen unoxidized parent compounds from this study.
activities of the unoxidized compounds in this study (Figure 22). Based on this analysis, compounds V (ethyl, 80), VII (n-propyl, 134), VIII (isopropyl, 108.9), X (isobutyl, 96.13), XIII (n-pentyl, 70), XVIV (n-heptyl, 208.5), XXI (2-methoxy ethyl, 292.2), and XXII (benzyl, 121) should be active. Again, this hypothesis was tested using the compounds submitted for activity data. This model predicted that compound VIII (isopropyl) should have an activity of 109, however, the actual tests show a value of ~80. Also, it is known that compounds V (ethyl) and XXI (2-methoxy ethyl) have a relative activity of 80, but the activity versus deviation model predicts activities to be 79.73 and 292.2 respectively.

The order analysis as above, gives VIII (isopropyl) > XVII (n-hexyl) > XX (n-octyl) ~ XII (*t*-butyl), a much more consistent result. Therefore, this model may lead to a better order analysis, but not to absolute activity value predictions.

It appears that the activity is affected by the identity of the ester groups, since as the identity of the ester alkyl group increases in the number of carbon atoms in the four tested compounds, activity decreases.

It was concluded that a different combination of these two parameters would give a better model, since using each parameter by itself did not appear very satisfactory. If the SUM and deviation values are added together, the resulting sum describes both the deviation of the phenyl ring and the planarity of the DHP ring. This parameter will be termed SUM+Deviation (S+D). If one plots the S+D value of the known compounds listed below in Figure 23 against relative activity, a different correlation is obtained.

Sum value plus the Deviation value VS Relative Activities

1: Dimethyl 2,6-dimethyl-4-(2,3,4,5,6-pentafluorophenyl)-1,4-dihydropyridine 3,5-dicarboxylate 2: Nifedipine

3: Dimethyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine 3,5-dicarboxylate

4: Dimethyl 2,6-dimethyl-4-(3-methylphenyl)-1,4-dihydropyridine 3,5-dicarboxylate

5: Dimethyl 2,6-dimethyl-4-phenyl-1,4-dihydropyridine 3,5-dicarboxylate

6: Dimethyl 2,6-dimethyl-4-(3-cyanophenyl)-1,4-dihydropyridine 3,5-dicarboxylate

7: Dimethyl 2,6-dimethyl-4-(3-trifluoromethylphenyl)-1,4-dihydropyridine 3,5-dicarboxylate

8: Dimethyl 2,6-dimethyl-4-(4-nitrophenyl)-1,4-dihydropyndine 3,5-dicarboxylate

9: Dimethyl 2,6-dimethyl-4-(4-dimethylamino-phenyl)-1,4-dihydropyridine 3,5-dicarboxylate

Figure 23: Graph of the SUM value + the Deviation value versus the relative activities of known compounds

Using this new parameter and compounds of known activities, the activity of the compounds in this study were calculated. This is represented graphically in Figure 24. This model predicted the most active compounds to be XXI (2methoxy ethyl), XVIV (n-heptyl), V (ethyl), and VII (n-propyl). The order analysis gave VIII (isopropyl) > XII (t-butyl) > XVII (n-hexyl) > XX(n-octyl). This order is correct except for the position of the tertiary butyl derivative. However, testing this model with the known compound dimethyl 2,6-dimethyl-4-(2-chlorophenyl)-1,4-dihydropyridine-3,5-dicarboxylate gave more encouraging results.

3: Dimethyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine 3,5-dicarboxylate 4: Dimethyl 2,6-dimethyl-4-(3-methylphenyl)-1,4-dihydropyridine 3,5-dicarboxylate 5: Dimethyl 2,6-dimethyl-4-(3-cyanophenyl)-1,4-dihydropyridine 3,5-dicarboxylate 7: Dimethyl 2,6-dimethyl-4-(3-trifluoromethylphenyl)-1,4-dihydropyridine 3,5-dicarboxylate 9: DimMethyl 2,6-dimethyl-4-(4-nitrophenyl)-1,4-dihydropyridine 3,5-dicarboxylate

Figure 24: Graph of the SUM+Deviation value versus the Relative activity of thirteen known compounds and the thirteen parent compounds of this work

This compound displays an activity of ~150, while the model calculates a theoretical activity of 145, very close to the true value.

The effect of the cone angle on activity was also investigated. A plot of the cone angle versus activity of six known compounds (including the four compounds in which activity was tested) was graphed (Figure 25). From this model it appears that the cone angle does not have a direct effect on activity, since compound XII and VII have very similar cone angles but very different activities.

1: Dimethyl 2,6-dimethyl-4-(2,3,4,5,6-pentafluorophenyl)-1,4-dihydropyridine 3,5-dicarboxylate 2: Nifedipine

3: Dimethyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine 3,5-dicarboxylate

4: Dimethyl 2,6-dimethyl-4-(3-methylphenyl)-1,4-dihydropyridine 3,5-dicarboxylate

5: Dimethyl 2,6-dimethyl-4-phenyl-1,4-dihydropyridine 3,5-dicarboxylate

6: Dimethyl 2,6-dimethyl-4-(3-cyanophenyl)-1,4-dihydropyridine 3,5-dicarboxylate

Figure 25: Graph of the Cone Angle versus the Relative Activity of Known

Compounds.

Energy Minimization

In any crystal structure, the molecule under study is affected by the packing of neighboring molecules in the crystal lattice. Therefore, it seemed logical to assume that the various parameters used in this study(the deviation value and SUM) would be affected by the packing of the molecules in the crystal lattice.

One of the continuing arguments in structural biochemistry concerns the use of X-ray structures in structure activity relationships, i. e. whether or not the X-ray structure reflects the actual conformation *in vivo*.

In order to address this issue, the molecular modeling program Discover was used to perform energy minimizations on the crystal structures of the thirteen parent compounds in the gas and aqueous phases. This program uses the expected values for bond lengths and angles to calculate a theoretical conformation of lowest energy. All thirteen parent compounds show a SUM value of approximately 50 degrees and a deviation value of approximately 60 degrees in the gas and aqueous phases. Hence, no differences were observed to correlate activity with variations in structure. Therefore, the X-ray structures were used in all subsequent analyses.

This has been approached historically by synthesizing rigid analogs which hold the structure in a predefined conformation and then examining the activity. Conformationally restrained analogs of the 1,4-DHP calcium antagonists⁶⁰ were studied in this way. Baldwin et al synthesized conformationally restricted analogs of the 1,4-DHP's where the phenyl ring was held in different positions, which then gave different deviation values⁶⁰. Those compounds that exhibited the smallest deviation value showed the highest activity. Hence, Baldwin et. al. illustrated that at least one of the active conformations is that of the X-ray structure.

Decomposition Products

The decomposition products examined in this study are listed in TABLE 4. They display many differences when compared to their parent, unoxidized forms. The DHP ring has been oxidized to a pyridine ring, which has changed the overall conformation (Figure 31). Since the pyridine ring is planar, the 4-phenyl ring is not in a pseudoaxial position. The C7 and C10 carbon atoms of the phenyl ring are now coplanar with the C4 and N1 atoms of the pyridine ring and the phenyl ring is approximately perpendicular to the pyridine ring. Aromatization of the 1,4-dihydropyridine ring results in the loss of the hydrogen atom at N1, removing any possible hydrogen bonding interaction with the receptor site. However, the rotation of the 3,5 ester groups out of conjugation with the pi bonds of the ring may permit increased hydrogen bonding to these groups.

The conformation of the ester groups is changed significantly. In the majority of the more than 30 crystal structures of members of the nifedipine family, the ester groups are found to be nearly coplanar with the nearest double bond in the DHP ring, with the carbonyl group oriented either cis (sp, synperiplanar) or trans (ap, antiperiplanar) to that bond³. In nifedipine itself, the carbonyls of the ester groups are ap and sp and thus point in opposite directions. It is thought that only the sp conformation of the ester group permits hydrogen bonding to the carbonyl oxygen atom as an acceptor atom when the drug binds to its receptor site^{25,28}. In the decomposition products, the carbonyl groups of the ester oxygens out of reach or within reach of possible H-bonding with the receptor site.

In order to observe how these conformational differences between the parent compounds and their decomposition products affected the activity, two decomposition products were submitted for activity testing. These were

98

compounds I and XXIII, which are decomposition products of nifedipine and nitrendipine respectively. These two compounds exhibited no activity. Therefore, it could be concluded that the conformational changes arising upon decomposition abolish the calcium antagonistic properties of the 1,4-DHP's, and that the ester position has significant interaction with the receptor site.

Receptor Docking Analysis

Since all drug molecules have specific interactions with their receptors, one of the goals of molecular modeling is to elucidate this interaction spatially using 3-dimensional models of the receptor and the ligand, and evaluating the affinity of the ligand for its receptor. This type of analysis can give insight into the different interactions occurring in the receptor-ligand model. The 3-D atomic coordinates of the receptor site proposed by Langs et al was used (Figure 12)²⁸. The receptor cleft is that between the two Arginine side chains in which the phenyl ring is docked. Van der Waals interaction energy was used as a measure of the compounds affinity for the receptor site and the number of H- bonds was maximized allowing only reasonable H-Bond distances (1.9 - 2.8 Å).

Initially, compounds of known activities were docked at the receptor site to ascertain a favorable conformation. This was done using nifedipine, dimethyl 2,6-dimethyl-4-(2,3,4,5,6-pentaflourophenyl)-1,4-dihydropyridine-3,5-dicarbox-ylate (5-F), nitrendipine, nisoldipine, dimethyl 2,6-dimethyl-4-(2-triflouromethyl-phenyl)-1,4-dihydropyridine-3,5-dicarboxylate (2-CF3), felodipine, dimethyl 2,6-dimethyl-4-(3-cyanophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (3-CN), and dimethyl 2,6-dimethyl-4-(4-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (4-NO₂). Each molecule was brought slowly into contact with the receptor cavity as in Figure 12. Van der Waals interaction energy was minimized as much as possible by altering the position of the molecule. This was continued until a

minimum was found which maximized H-bonding of reasonable distances. The energy value that results can only be used as a guide to the relative activity, not as an indicator of the absolute value.

The six high activity compounds examined in the docking procedure gave interaction energy values in the range of 250 to 3000. This range was then considered as favorable. All of these compounds fit into the receptor cavity without difficulty, and with no great energy barrier (i.e. did not bump into anything before entering the receptor cavity). The number of H-bonds formed ranged from 1 to 5. The 3-CN compound, which is known to have a low activity, did not fit into the receptor without causing a very large increase in interaction energy (10⁶). This was due to the large deviation value (36.28°), which caused the cyano group on the phenyl ring to bump into one of the arginine side chains protruding from the receptor cavity. The $4-NO_2$ compound, also of low activity, could not fit into the receptor cavity because of negative interactions with the para-NO₂ group on the phenyl ring. The para-NO₂ group could not get past side chains extending from the receptor without a great increase in energy, therefore, the likelihood of this compound binding in the same manner as the high activity compounds above was low. This modeling provided information about the possible reasons for high or low activity.

Each of the compounds prepared in this study was modeled in the same way. These results are given in TABLE 6 below, which may be compared with modeling results of the known compounds. Conclusions were drawn about the relative binding affinities of all the compounds in this study.

The decomposition products displayed interaction energies in the range of 4.3×10^4 to 1×10^{14} . These energies were very high and therefore were not considered as indicative of a favorable interaction between the decomposition products and the receptor. The number of H-bonds varied for these compounds

(0 to 5). The decomposition product that displayed the lowest interaction energy was compound III. This compound contains carboxylic acid side chains, and hence encountered less resistance to binding than the others. All of the other decomposition products encountered much more resistance to binding. This could be explained from the fact that since the boat shaped DHP moiety is no longer present, the position of the ester side chains interfered much more. Figure 26 illustrates the binding conformation of the nitroso decomposition product of nifedipine, indicated by an arrow. When one compares this to Figure 12, it can easily be seen how structural changes on decomposition has adversely affected the binding process.

The thirteen parent compounds modeled in this way produced varying results. The main goal of this study was to elucidate the effect of the length and bulk of the ester side chains, therefore, the modeling was geared towards observing the interaction between the different ester side chains and the proposed receptor site.

Compound V, which contains ethyl alkyl groups, showed difficulty in binding because the ester group that was in the sp orientation bumped into the receptor core. This caused a great increase in interaction energy (6×10^3). Compound VII, with sp,sp propyl ester side chains, also displayed the same problem. The propyl groups tended to bump into the receptor core. This bumping interaction impedes the binding of both of these compounds. Other compounds with straight chain ester groups, compounds VIV (n-butyl), XIII (npentyl), XVII (n-hexyl), XVIV (n-heptyl) and XX (n-octyl) also display this problem. This adverse interaction appeared to be associated with the orientation of the ester groups. The ester orientation that seemed the most favorable for Hbonding interactions is sp, which allowed the most H-bonding to the arginine side chains from the keto oxygens. However, as the alkyl chain length increases, this orientation becomes disadvantageous, because the ester groups hit the receptor core before binding can occur. Therefore, it would seem logical to conclude that the methyl side chains are optimum, if both esters contain the same alkyl group.

It has been reported in the literature that unsymmetrically substituted 1,4-DHP's are more active. This was observed in the modeling of the known compounds given in TABLE 6. Compounds 5-F and 2-CF3 are symmetrically substituted with methyl ester groups, only the phenyl substituents were varied. In the docking of these two compounds, there was no interference from the ester side chains. One H-bond was formed with each compound to the arginine side chain of the receptor, both times to the sp oriented ester. Nitrendipine, which contains an ethyl ester and a methyl ester, had a higher energy, but formed more H-bonds, involving both of its ester groups. Nisoldipine, which contains an isobutyl and a methyl ester, displayed one of the lowest binding energies. This was attributed to the fact that the isobutyl ester group was oriented ap, and therefore did not interfere with the binding process. The methyl ester was sp, which formed a H-bond from its keto oxygen to one of the arginine side chains.

The effect on the binding process of branching the ester alkyl groups was investigated. Compound VIII (isopropyl), had a much lower interaction energy than its straight chain counterpart. In the docking of this compound, branching in the isopropyl group did appear to be advantageous. As this compound was brought towards the receptor site, the isopropyl groups did not interfere, and once the compound was in its optimal binding position, an H-bond was formed between its sp ester and one of the arginine side chains. This favorable interaction suggests that this compound should have a relatively high activity (interaction energy : ~1500). Compound X (isobutyl) did not display such favorable interactions. Both ester groups are oriented sp, which caused the

orientation becomes disadvantageous, because the ester groups hit the receptor core before binding can occur. Therefore, it would seem logical to conclude that the methyl side chains are optimum, if both esters contain the same alkyl group.

It has been reported in the literature that unsymmetrically substituted 1,4-DHP's are more active. This was observed in the modeling of the known compounds given in TABLE 6. Compounds 5-F and 2-CF3 are symmetrically substituted with methyl ester groups, only the phenyl substituents were varied. In the docking of these two compounds, there was no interference from the ester side chains. One H-bond was formed with each compound to the arginine side chain of the receptor, both times to the sp oriented ester. Nitrendipine, which contains an ethyl ester and a methyl ester, had a higher energy, but formed more H-bonds, involving both of its ester groups. Nisoldipine, which contains an isobutyl and a methyl ester, displayed one of the lowest binding energies. This was attributed to the fact that the isobutyl ester group was oriented ap, and therefore did not interfere with the binding process. The methyl ester was sp, which formed a H-bond from its keto oxygen to one of the arginine side chains.

The effect on the binding process of branching the ester alkyl groups was investigated. Compound VIII (isopropyl), had a much lower interaction energy than its straight chain counterpart. In the docking of this compound, branching in the isopropyl group did appear to be advantageous. As this compound was brought towards the receptor site, the isopropyl groups did not interfere, and once the compound was in its optimal binding position, an H-bond was formed between its sp ester and one of the arginine side chains. This favorable interaction suggests that this compound should have a relatively high activity (interaction energy : ~1500). Compound X (isobutyl) did not display such favorable interactions. Both ester groups are oriented sp, which caused the

Figure 26: Nitroso Decomposition Product of Methyl 2,6-dimethyl-4-(2nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (Nifedipine) docked in Proposed Receptor Site

Selected Docking Parameters

Compound	# H-bonds with Receptor	Relative energy of Binding
Nifedipine	2	256
Dimethyl 2,6-dimethyl-4-(2-nitrosophenyl)- pyridine-3,5-dicarboxylate(l)	5	233402
Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)- pyridine-3,5-dicarboxylate(II)	2	1010
Dimethyl 2,6-dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate	3	~7500
2,6-dimethyl-3,5-dicarboxylate-4-(3- nitrophenyl)-pyridine • NO3 • H2O(III)	5	42607
Dimethyl 2,6-dimethyl-4-(3-nitrophenyl)- pyridine-3,5-dicarboxylate(IV)	2	653580
Diethyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4- dihydropyridine-3,5-dicarboxylate(V)	4	6000
Diethyl 2,6-dimethyl-4-(3-nitrophenyl)- pyridine-3,5-dicarboxylate(VI)	1	10 ⁸
Dipropyl 2,6-dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate(VII)	5	79674
Di-isopropyl 2,6-dimethyl-4-(3- nitrophenyl)-1,4-dihydropyridine-3,5- dicarboxylate(VIII)	3	1534
Dibutyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4- dihydropyridine-3,5-dicarboxylate(VIV)	5	17000
Di-isobutyl 2,6-dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate(X)	0	1010
Di-isobutyl 2,6-dimethyl-4-(3-nitrophenyl)- pyridine-3,5-dicarboxylate(XI)	0	106
Di- <i>tert</i> -butyl 2,6-dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate(XII)	5	5.3 x 10 ⁷
Dipentyl 2,6-dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate(XIII)	4	109
Di-isopentyl 2,6-dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate(XIV)	0	1010
Di-isopentyl 2,6-dimethyl-4-(3-nitrophenyl)- pyridine-3,5-dicarboxylate(XV)	0	1011

Dineopentyl 2,6-dimethyl-4-(3- nitrophenyl)-1,4-dihydropyridine-3,5-	5	1012	
dicarboxylate Dineopentyl 2,6-dimethyl-4-(3- nitrophenyl)-pyridine-3,5-	0	1012	
dicarboxylate(XVI) Dihexyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4- dihydropyridine-3,5-dicarboxylate(XVII)	3	23256	
Dihexyl 2,6-dimethyl-4-(3-nitrophenyl)- pyridine-3,5-dicarboxylate(XVIII)	0	10 ¹⁴	a î g
Diheptyl 2,6-dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyridine-3,5-	0	10 ¹⁵	
Dioctyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4- dihydropyridine-3,5-dicarboxylate(XX)	0	1010	
Di(2-methoxy ethyl) 2,6-dimethyl-4-(3- nitrophenyl)-1,4-dihydropyridine-3,5- dicarboxylate(XXI)	4	106	
(Dibenzyl 2,6-dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate) • 0.5 CH3CN (XXII)	1	10 ⁸	n San San San San San San San San San San
Ethyl methyl 2,6-dimethyl-4-(3- nitrophenyl)-pyridine-3,5-dicarboxylate • NO3(XXIII)	2	71013	بر در به در ۲
Nitrendipine	5	2752	
5F Dimethyl 2,6-dimethyl-4-(2,3,4,5,6 pentafluorophenyl)-1,4-dihydropyridine- 3,5-dicarboxylate	1	361	
Nisoldipine	1	519	
Felodipine	1	1500	, 1, , , , , , , , , , , , , , , , , , ,
Dimethyl 2,6-dimethyl-4-(2-trifluoromethyl- phenyl)-1,4-dihydropyridine-3,5- dicarboxylate	1	450	i i i
Dimethyl 2,6-dimethyl-4-(3-cyanophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate	1	105	
Dimethyl 2,6-dimethyl-4-(4-nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate	0	106	

interaction energy (10¹⁰) to be great. The position of both side chains impeded the approach of the molecule and hence precluded the formation of any H-bonds. Thus, compound X should not display a very high affinity for the receptor. Compound XII (*t*-butyl), encountered a different kind of problem on docking. Its

105

• :

. . .

large deviation value (33.71°) impeded its approach to the receptor site and caused a high interaction energy (10^4) . Therefore, this may explain why the deviation of the phenyl ring is important, i.e. lack of orthogonality interferes with the approach of the molecule to the receptor site. Compound XIV (isopentyl) encountered the same problem as the isobutyl derivative (X). Since both ester groups were oriented sp, approach to the receptor site was practically impossible without hitting the extending arginine side chains. The interaction energy was far too great to suspect any activity for this compound. Therefore, it can be concluded that branching of the side chains normally has a adverse effect on the binding process. However, this conclusion is dependent on the orientation of the ester groups. Interaction energy is less if one of the ester groups is oriented sp, and the other ap. When both esters are sp, approach to the receptor site is greatly impeded.

The ability of this model to predict relative activities was also tested using the four compounds submitted for activity analysis. The order given from the activity study was isopropyl >> n-hexyl >> t-butyl ~n-octyl. Based on the interaction energies obtained from the modeling study described above, the order is also isopropyl (1534) >> n-hexyl (23256) >> t-butyl (10⁷) ~n-octyl (10¹⁰) (TABLE 6). This order can be explained by the docking interactions encountered for each individual compound.

Compound VIII, which contains isopropyl ester groups is seen to slide easily underneath the two arginine side chains (Figure 27). Also, the low deviation value (nearly ideal bisection of the DHP ring) allows this compound to enter the receptor site without any great energy barrier. The interaction energy for this compound is 1534.

Compound XVII, which contains n-hexyl ester substituents has an interaction energy of 23256. This high interaction energy arises from the "

bumping" of the hexyl side chain into the receptor core. This adverse interaction occurs only for the side chain that is oriented sp (Figure 28). The ap ester group does not interfere with the binding of this molecule. The high interaction energy precludes great activity on this compounds part. Compound XX, with the octyl ester alkyl groups is known to have a lower activity than that of the n-hexyl derivative. The n-octyl derivative has two more carbon atoms in its alkyl side chains that interfere to a greater extent than that of the n-hexyl alkyl side chains (Figure 29). This is indicated by the much greater interaction energy observed for this compound (10^{10}) .

Figure 27- Di-isopropyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5dicarboxylate(VIII) docked in proposed receptor site

Figure 28 - Dihexyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5dicarboxylate(VIII) docked in proposed receptor site

Figure 29- Dioctyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5dicarboxylate(VIII) docked in proposed receptor site

Figure 30 - Di-*tert*-butyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5dicarboxylate(VIII) docked in proposed receptor site

Conclusion

The questions to be addressed in this thesis were 1) How does the identity of the ester alkyl group affect the deviation of the phenyl ring, the planarity of the DHP ring, and the conformation of the esters (ap vs sp) and 2) based on these parameters, how does the identity of the ester alkyl group affect activity? Moreover, the conformational changes associated with decomposition to the nitro-pyridine derivatives and their potential effects on the calcium antagonistic activity of these compounds was investigated.

It appears the identity of the ester alkyl group has an effect on most of the significant parameters. The deviation value increases with the number of carbon atoms. It has been shown that as the number of carbon atoms in the chain increases, activity decreases. The SUM value is affected in the same manner by the length of the carbon chain. It has been shown that as the length of the ester group increases, the SUM increases and activity decreases. The cone angle, which is a reflection of the primary, secondary or tertiary character of the esterification group demonstrates the opposite effect of that expected. The initial hypothesis was that as the cone angle increased, the deviation value would decrease, due to increased bulk of neighboring groups. However, most bulky esterification groups exhibit ap, sp conformation of the ester groups and the phenyl ring tilts away from the bulk of the sp ester group, and thus the deviation value increases. This conclusion agrees with the fact that as the ester alkyl groups size increases, the deviation value increases.

Based on the molecular modeling analysis of the receptor-ligand complex, the general trend is that increasing the alkyl chain length causes a decrease in binding affinity due to increased repulsive interactions. Branching in the ester alkyl group decreases this repulsion, but only if the number of carbons is below three. One of the compounds prepared in this study, di-isopropyl 2,6-dimethyl-4-

112

(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (VIII), exhibited an activity value comparable to the high activity compound nitrendipine .

Figure 31: Projection view of Methyl 2,6-dimethyl-4-(2-nitrosophenyl)-pyridine-3,5-dicarboxylate(I)

CRYSTAL DATA FOR

Dimethyl 2,6-dimethyl-4-(2-nitrosophenyl)-pyridine-3,5-dicarboxylate (I)

 	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Formula	C17H16N2O5'
M. W.	328.3 g mole ⁻¹
<u>a</u>	18.171(4) Å
<u>b</u>	7.157(1) Å
C	26.165(5) Å
α	90.0 °
β	90.2 (1)°
γ	90.0 °
V	3402.6(13) Å ³
F(000)	1376
μΜοΚα	11.28 cm ⁻¹
λΜοΚα	0.71069 Å
D _{calc}	1.282 g/cm ³
Z	8
Meas refl	7522
Obs refl	1328
R	6.3%
Rw	10.0%
G. O. F.	1.136
Space Group	P21/c
 Octants meas	-1 ≤ h ≤ 19, -1 ≤ k ≤ 8, -31 ≤ l ≤ 31

.

POSITIONAL PARAMETERS FOR

Dimethyl 2,6-dimethyl-4-(2-nitrosophenyl)-pyridine-3,5-dicarboxylate (I)

АТОМ	X(SIG(X))	Y(SIG(Y))	Z(SIG(Z))
ATOM N1 C2 C2' C3 C3' O3' O3' C3" C4 C5 C5' C5" O5' O5' O5' O5' C6 C6' C7 C8 C9 C10 C11 C12 N2 O1A O1B N91 C92 C93' C93	X(SIG(X)) 0.2852(3) 0.3300(3) 0.3326(3) 0.3726(3) 0.4241(4) 0.4883(2) 0.3876(2) 0.4316(4) 0.3715(3) 0.3225(3) 0.3181(3) 0.2796(3) 0.3384(3) 0.2867(2) 0.2818(3) 0.2298(3) 0.4183(3) 0.2298(3) 0.4183(3) 0.3990(3) 0.4400(4) 0.5028(4) 0.5028(4) 0.5028(4) 0.5028(3) 0.4830(3) 0.5020(3) 0.5649(17) 0.5550(22) 0.0632(4) 0.0034(4) -0.0674(3) 0.0064(3) -0.0625(4) -0.1711(14) -0.1492(19) 0.0845(2)	Y(SIG(Y)) -0.1787(8) -0.0918(10) -0.1806(9) 0.0585(10) 0.1545(10) 0.1545(10) 0.1801(8) 0.2127(8) 0.2938(11) 0.1225(9) 0.0309(9) 0.0904(11) 0.3342(9) -0.0012(8) 0.2539(7) -0.1207(10) -0.2199(9) 0.2808(10) 0.4600(10) 0.4600(10) 0.5665(10) 0.3854(10) 0.2433(10) 0.2501(9) 0.2501(9) 0.4696(10) 0.5461(12) 0.7197(44) 0.7960(49) 0.5016(7)	Z(SIG(Z)) 0.0848(2) 0.0523(2) 0.0005(2) 0.0668(2) 0.0296(3) 0.03731(15) -0.0108(2) -0.0510(2) 0.1177(2) 0.1508(2) 0.2059(3) 0.2607(2) 0.2409(2) 0.2409(2) 0.1329(3) 0.1683(2) 0.1360(2) 0.1288(2) 0.1489(2) 0.1489(2) 0.1639(2) 0.1639(2) 0.1639(2) 0.1690(2) 0.1690(2) 0.1865(14) 0.1929(15) -0.0383(2) -0.0554(2) -0.0354(2) -0.0354(2) -0.0354(2) -0.1138(3) -0.1023(9) -0.1132(12)
O93" O93X C94 C95	-0.0903(33) -0.1004(29) 0.0739(4) 0.1370(4)	0.6592(75) 0.6788(61) 0.5358(10) 0.4472(10)	-0.1544(2) -0.0784(15) -0.0900(14) -0.1080(2) -0.0896(2)

	17.81				
C95'	0.2129(5)	0.4977(1	4)	-0.1100	(3)
C95"	0.2871(4)	0.7447(1	2)	-0.1359	(2)
O95'	0.2583(3)	0.3847(1	0)	-0.1222	(2)
O95"	0.2208(3)	0.6802(9	9)	-0.1111	(2)
C96	0.1295(4)	0.2991(1	ĺ ĺ)	-0.0556	(2)
C96'	0.1932(4)	0.1850(1	2)	-0.0359	(2)
C97	0.0749(3)	0.6917(1	ΙΟΊ	-0.1452	(2)
C98	0.0605(4)	0.8694(1	1)	-0.1304	(3)
C99	0.0592(4)	1.0135(1	0)	-0.1652	(3)
C910	0.0735(3)	0.9826(1	0)	-0.2163	(3)
C911	0.0855(3)	0.8038(1	0)	-0.2323	(2)
C912	0.0881(3)	0.6577(1	lŐ)	-0.1976	(2)
N92	0.1012(3)	0.4688(9	ə)´	-0.2111	(2)
O91	0.1145(3)	0.4430(7	7)	-0.2563	(2)
H2'A	0.2992(3)	-0.2845(9)	-0.0009	(2)
H2'B	0.3184(3)	-0.0894(9)	-0.0246	(2)
H2'C	0.3816(3)	-0.2232	9)	-0.0065	(2)
H3"A	0.4013(4)	0.3286(1	l 1)	-0.0796	(2)
H3"B	0.4534(4)	0.4038(1	1)	-0.0364	(2)
H3"C	0.4698(4)	0.2108(1	∣1)́	-0.0623	(2)
H5"A	0.2565(3)	0.4549(9)	0.2607(2	2)
H5"B	0.2509(3)	0.2492(9	Ð	0.2809()	2)
H5"C	0.3282(3)	0.3442(9))	0.2749(2)
H6'A	0.2309(3)	-0.1661(9)	0.2019(2)
H6'B	0.1810(3)	-0.2104	9)	0.1544	2)
H6'C	0.2439(3)	-0.3490(9)	0:1702(2)
H8A	0.3566(3)	0.4898(1	0)	0.1084(2)
H9A	0.4253(4)	0.7314(1	0)	0.1444(2)
H10A	0.5324(4)	0.6652(1	0)	0.1913	3)
H11A	0.5666(3)	0.3580(1	0)	0.2050(2)
H92'D	-0.0593(3)	0.1506(9	3)	-0.0114	(2)
H92'E	-0.0941(3)	0.3491(9))	-0.0190	(2)
H92'F	-0.0955(3)	0.2041(9	9)	-0.0639	(2)
H93"D	-0.1942(14)	0.8002(4	4)	-0.0778	(9)
H93"E	-0.1573(14)	0.7912(4	14)	-0.1318	(9)
H93"F	-0.2049(14)	0.6232(4	14)	-0.1123	(9)
H93A	-0.1680(19)	0.8804(4	19)	-0.0879	(12)
H93B	-0.1310(19)	0.8659(4	19)	-0.1418	(12)
H93C	-0.1879(19)	0.7142(4	19)	-0.1245	(12)
H95"A	0.2873(4)	0.8787(1	2)	-0.1375	(2)
H95"B	0.3288(4)	0.7027(1	2)	-0.1164	(2)
H95"C	0.2898(4)	0.6946(1	2)	-0.1699	(2)
H96'H	0.1732(4)	0.0877(1	2)	-0.0149	(2)
H96'I	0.2207(4)	0.1304(1	2)	-0.0635	(2)
H96'J	0.2252(4)	0.2626(1	2)	-0.0158	(2)
H98J	0.0483(4)	0.8934(1	1)	-0.0953	(3)

		TABLE 8 (Con	tinued)	
H99A H910A	0.0483(4) 0.0756(3)	1.1360(10) 1.0859(10)	-0.1523(3) -0.2397(3)	
H111G	0.0929(3)	0.7757(10)	-0.2678(2)	

ANISOTROPIC THERMAL PARAMETERS FOR

Methyl 2,6-dimethyl-4-(2-nitrosophenyl)-pyridine-3,5-dicarboxylate(I)

ΑΤΟΜ	U11	U22	U33	U23	U13	U12
 N1	38(3)	68(4)	78(4)		-4(3)	-1(3)
C2	34(4)	53(5)	70(5)	-13(4)	-12(4)	10(4)
C2'	62(4)	111(7)	77(5)	-19(5)	-17(4)	10(5)
C3	35(4)	62(5)	63(4)	4(4)	-5(3)	6(4)
C3'	67(5)	78(6)	53(4)	-1(4)	12(4)	14(5)
03'	50(3)	139(5)	74(3)	0(3)	5(3)	-7(4)
O3"	68(3)	147(5)	74(3)	34(4)	1(3)	8(4)
C3"	99(6)	181(10)	88(5)	17(7)	2(5)	10(7)
C4	36(4)	68(5)	62(4)	4(4)	-11(3)	9(4)
C5	40(4)	48(5)	54(4)	1(4)	-7(3)	7(4)
C5'	35(4)	64(6)	62(5)	-1(5)	0(3)	2(4)
C5"	98(6)	102(7)	86(5)	-38(5)	12(4)	-5(5)
05'	133(4)	138(6)	74(3)	32(4)	-10(3)	58(4)
05"	81(3)	67(4)	63(3) 70(5)	-7(3)	-1(3)	10(3)
	41(4)	51(5)	73(5)	14(4)	/(4)	5(4)
	77(5)	91(6)	106(5)	13(5)	3(4)	-18(5)
	33(4)	50(5)	59(4) 93(5)	-2(4)	-1(3)	5(4) 4(4)
	41(4)	50(5) 50(5)	83(5)	0(4)	-12(3)	4(4) 0(5)
C9 C10	61(5) 55(5)	53(5) 55(6)	101(5)	-0(J) 14(E)	-2(4)	9(5)
C10	33(3)	55(6) 55(5)	101(5) 97/5)	-14(5)	0(4)	-9(5)
C12	47(4) 50(4)	33(3) 42(5)	67(5) 67(4)	-2(4)	-11(4)	-3(4)
N2	65(5)	43(3)	112(5)	3(4) 9(4)	-3A(A)	3(4) 12(A)
01A	54(12)	46(12)	244(28)	-26(1A)	-02(12)	8(0)
018	113(23)	146(23)	208(25)	85(18)	-81(18)	33(16)
Ng1	92(5)	70(5)	51/3)	16(3)	2(4)	7(1)
C92	80(5)	61(5)	40(4)	3(4)	$\frac{2}{10}(4)$	0(5)
C92'	92(5)	100(7)	67(4)	23(5)	2(4)	-9(5)
C93	58(4)	63(5)	34(3)	7(4)	3(3)	Δ(Δ)
C93'	60(5)	77(6)	48(5)	-3(5)	-2(4)	-14(5)
C93"	89(18)	120(25)	79(15)	-11(16)	-49(15)	59(18)
C93X	139(25)	130(31)	156(22)	43(18)	48(18)	10(20)
O93'	63(3)	140(5)	63(3)	-24(3)	-13(2)	2(3)
O93"	95(12)	186(24)	91(27)	-37(20)	-41(20)	93(13)
	`	· · /	······································	- \ -/		

		TABLE 9	(Continu	ed)		
O93X 1	139(33)	100(15)	31(7)	-28(8)	-59(11)	55(16)
C94 €	65(5)	59(5)	37(4)	-4(4)	2(4)	9(À) Í
C95 €	66(5)	73(6)	37(4)	9(4)	5(4)	0(5)
C95' 7	77(7)	94(8)	57(5)	14(6)	-15(5)	-5(7)
C95" S	98(6)	221(12)	95(6)	40(7)	-4(5)	-41(8)
O95' S	91(4)	171(7)	117(4)	0(4)	26(3)	48(4)
O95" 5	54(3)	123(5)	91(4)	7(4)	8(3)	-12(4)
C96 7	78(5)	77(6)	49(4)	14(4)	-9(4)	30(5)
C96' 1	102(6)	209(11)	88(5)	55(6)	5(5)	50(7)
C97 4	48(4)	50(5)	52(4)	4(4)	2(3)	1(4)
C98 1	101(6)	66(6)	56(4)	7(5)	0(4)	9(5)
C99 1	110(6)	62(6)	69(5)	-9(5)	12(5)	6(5)
C910 8	32(5)	54(6)	68(5)	14(4)	-2(4)	-6(5)
C911 €	68(5)	61(5)	53(4)	14(4)	-3(4)	-11(5)
C912 4	47(4)	48(5)	58(4)	-1(4)	-3(3)	4(4)
N92 8	36(4)	70(5)	55(3)	1(4)	8(3)	7(4)
O91 3	39(4)	96(4)	60(3)	-11(3)	23(3)	8(4)

The anisotropic displacement exponent takes the form: $-2\pi^2(h^2a^{*2}U_{11} + ... + 2hka^{*}b^{*}U_{12})$

BOND DISTANCES (Å) AND BOND ANGLES (°) FOR

Dimethyl 2,6-dimethyl-4-(2-nitrosophenyl)-pyridine-3,5-dicarboxylate (I)

N1-C6	1.326(7)	C6-N1-C2	119.3(6)
N1-C2	1.332(7)	N1-C2-C3	122.2(6)
C2-C3	1.378(7)	N1-C2-C2'	113.6(6)
C2-C2'	1.500(7)	C3-C2-C2'	124.1(7)
C3-C4	1.408(7)	C2-C3-C4	120.3(6)
C3-C3'	1.518(8)	C2-C3-C3'	121.6(6)
C3'-O3'	1.197(7)	C4-C3-C3'	118.0(6)
C3'-O3"	1.315(7)	O3'-C3'-O3"	125.2(7)
O3"-C3"	1.446(6)	O3'-C3'-C3	124.3(7)
C4-C5	1.406(7)	O3"-C3'-C3	110.4(6)
C4-C7	1.495(8)	C3'-O3"-C3"	115.6(5)
C5-C6	1.394(7)	C3-C4-C5	116.2(6)
C5-C5'	1.506(7)	C3-C4-C7	122.6(6)
C5'-O5'	1.183(7)	C5-C4-C7	121.2(6)
C5'-O5"	1.307(7)	C6-C5-C4	119.5(6)
C5"-O5"	1.453(6)	C6-C5-C5'	120.8(6)
C6-C6'	1.503(7)	C4-C5-C5'	119.5(6)
C7-C8	1.343(7)	05'-C5'-O5"	124.5(7)
C7-C12	1.407(7)	O5'-C5'-C5	124.5(7)
C8-C9	1.373(7)	O5"-C5'-C5	110.9(6)
C9-C10	1.385(7)	C5'-O5"-C5"	118.1(5)
C10-C11	1.365(8)	N1-C6-C5	122.4(6)
C11-C12	1.370(7)	N1-C6-C6'	117.9(7)
C12-N2	1.429(8)	C5-C6-C6'	119.6(6)
N2-O1B	1.16(3)	C8-C7-C12	118.2(6)
N2-01A	1.25(3)	C8-C7-C4	122.1(6)
N91-C92	1.338(7)	C12-C7-C4	119.7(6)
N91-C96	1.358(7)	C7-C8-C9	121.3(6)
C92-C93	1.357(7)	C8-C9-C10	120.5(7)
C92-C92'	1.500(7)	C11-C10-C9 1	19.1(7)
C93-C94	1.397(7)	C10-C11-C12	119.9(6)
C93-C93'	1.501(8)	C11-C12-C7	121.0(6)
C93'-O93'	1.176(6)	C11-C12-N2	123.3(6)
C93'-O93"	1.33(5)	C7-C12-N2	115.7(6)
C93'-O93X	1.33(5)	O1A-N2-C12	115.5(12)
C93"-O93X	1.36(6)	C92-N91-C96	117.4(6)
C93"-O93"	1.65(5)	N91-C92-C93	122.9(6)
C93X-O93X	1.36(5)	N91-C92-C92'	113.7(6)
C93X-O93"	1.71(6)	C93-C92-C92'	123.3(7)
C94-C95	1.394(7)	C92-C93-C94	121.0(6)
C94-C97	1.481(8)	C92-C93-C93'	120.8(6)

TABLE 10 (Continued)

C95-C96 C95-C95' C95'-O95' C95'-O95" C95"-O95" C96-C96' C97-C98 C97-C912 C98-C99 C99-C910 C910-C911 C911-C912 C912-N92 N92-O91	$\begin{array}{c} 1.391(8)\\ 1.525(9)\\ 1.199(8)\\ 1.315(8)\\ 1.445(7)\\ 1.506(8)\\ 1.355(8)\\ 1.355(8)\\ 1.413(7)\\ 1.376(8)\\ 1.381(7)\\ 1.364(8)\\ 1.386(7)\\ 1.418(7)\\ 1.221(5)\end{array}$	C94-C93-C93' O93'-C93'-O93" O93'-C93'-C93 O93"-C93'-C93 C93'-O93"-C93" C95-C94-C93 C95-C94-C97 C93-C94-C97 C96-C95-C94 C96-C95-C94 C96-C95-C95' O95'-C95'-C95' O95'-C95'-C95 O95'-C95'-C95	118.0(6) 131.7(18) 123.7(7) 104.5(18) 103.5(24) 116.8(6) 123.9(6) 119.3(6) 119.1(6) 119.6(7) 121.0(6) 126.1(9) 123.9(9) 110.0(8)
C911-C912 C912-N92 N92-O91	1.386(7) 1.418(7) 1.221(5)	O95'-C95'-O95" O95'-C95'-C95 O95"-C95'-C95 C95'-O95"-C95" N91-C96-C96' C95-C96-C96' C98-C97-C912 C98-C97-C94 C912-C97-C94 C912-C97-C94 C97-C98-C99 C98-C99-C910 C911-C910-C99 C910-C911-C912 C911-C912-N92 C911-C912-C97 N92-C912-C97	126.1(9) 123.9(9) 110.0(8) 114.8(7) 122.8(6) 113.4(7) 123.7(7) 118.2(6) 121.1(6) 121.1(6) 121.2(7) 118.5(6) 120.8(6) 124.1(6) 120.0(6) 115.9(6)
		091-192-0912	114.8(0)

TORSION ANGLES (°) FOR

Dimethyl 2,6-dimethyl-4-(2-nitrosophenyl)-pyridine-3,5-dicarboxylate (I)

			+
C6-N1-C2-C3	-0.72	C6-N1-C2-C2'	175.68
N1-C2-C3-C4	1.78	C2'-C2-C3-C4	-174.23
N1-C2-C3-C3'	179.16	C2'-C2-C3-C3'	3.15
C2-C3-C3'-O3'	-126.31	C4-C3-C3'-O3'	51.13
C2-C3-C3'-O3"	56.66	C4-C3-C3'-O3"	-125.90
O3'-C3'-O3"-C3"	7.62	C3-C3'-O3"-C3"	-175.37
C2-C3-C4-C5	-3.10	C3'-C3-C4-C5	179.43
C2-C3-C4-C7	177.98	C3'-C3-C4-C7	0.51
C3-C4-C5-C6	3.48	C7-C4-C5-C6	-177.58
C3-C4-C5-C5'	179.78	C7-C4-C5-C5'	-1.29
C6-C5-C5'-O5'	65.12	C4-C5-C5'-O5'	-111.13
C6-C5-C5'-O5"	-112.74	C4-C5-C5'-O5"	71.01
05'-C5'-O5"-C5"	3.50	C5-C5'-O5"-C5"	-178.64
C2-N1-C6-C5	1.16	C2-N1-C6-C6'	179.06
C4-C5-C6-N1	-2.64	C5'-C5'-C6'-N1	-178.89
C5'-C5-C6-C6'	3.24	C5-C4-C7-C8	-97.16
C3-C4-C7-C8	81.71	C3-C4-C7-C12	79.48
C3-C4-C7-C12	-101.66	C12-C7-C8-C9	-1.29
C4-C7-C8-C9	175.40	C7-C8-C9-C10	-0.04
C8-C9-C10-C11	0.68	C9-C10C11-C12	0.07
C10-C11-C12-C7	-1.44	C10-C11-C12-N2	178.83
C8-C7-C12-C11	2.04	C4-C7-C12-C11	-174.73
C8-C7-C12-N2	-178.21	C4-C7-C12-N2	5.02
C11-C12-N2-O1A	-11.27	C7-C12-N2-O1A	168.99
C96-N91-C92-C93	2.33	C96-N91-C92-C92'	178.36
N91-C92-C93-C94	-3.35	C92'-C92-C93-C94	-179.00
N91-C92-C93-C93'	170.84	C92'-C92-C93-C93'	-4.81
C92-C93-C93'-O93'	-98.32	C94-C93-C93'-O93'	76.05
C92-C93-C93'-O93"	78.96	C94-C93-C93'-O93"	-106.68
O93'-C93'O93"-C93"	4.07	C93-C93'-O93"-C93"	-172.89
C92-C93-C94-C95	1.62	C93'-C93'-C94-C95	-172.73
C92-C93-C94-C97	-179.00	C93'-C93-C94-C97	6.64
C93-C94-C95-C96	0.84	C97-C94-C95-C96	-178.50
C93-C94-C95-C95'	174.97	C97-C94-C95-C95'	-4.37
C96-C95-C95'-O95'	40.19	C94-C95-C95'-O95'	-133.91
C96-C95-C95'-O95"	-138.71	C94-C95-C95'-O95"	47.19
O95'-C95'-O95"-C95"	8.68	C95-C95'-O95 " -C95"	-172.45
C92-N91-C96-C95	0.28	C92-N91-C96-C96'	-177.64
C94-C95-C96-N91	· -1.84	C95'-C95-C96-N91	-176.05
C94-C95-C96-C96'	175.87	C95'-C95-C96-C96'	1.66
C95-C94-C97-C98	-106.40	C93-C94-C97-C98	74.28

C95-C94-C97-C912	76.23	C93-C94-C97-C912	-103,09
C912-C97-C98-C99	-0.55	C94-C97-C98-C99	-177.98
C97-C98-C99-C910	-0.75	C98-C99-C910-C911	3.09
C99-C910-C91-C912	-4.14	C910-C911-C912-C97	2.91
C910-C911-C912-N92	-179.29	C98-C97-C912-C911	-0 .50
C94-C97-C912-C911	176.94	C98-C97-C912-N92	-178.48
C94-C97-C912-N92	-1.03	C911-C912-N92-O91	4.11
C97-C912-N92-O91	-178.01		
		+	

-

.

TABLE 11 (Continued)

Figure 32: Projection view of Bis(2,6-dimethyl-3,5-dicarbomethoxy-4-(2-nitrophenyl)-pyridine)dichloro-copper(II)(II)

•

CRYSTAL DATA FOR

Bis(2,6-dimethyl-3,5-dicarbomethoxy-4-(2-nitrophenyl)pyridine)2dichloro-

copper(II) (II)

Formula	C34 H32 Cl2 Cu N4 O12
M. W.	823.1 g mole ⁻¹
a	13.184(3) Å
b	7.768(2) Å
<u>c</u>	17.736(4) Å
α	90.0 °
β	91.5 (3)°
γ	90.0 °
V · · ·	1815.5(7) Å ³
F(000)	846
μΜοΚα	11.28 cm ⁻¹
λΜοΚα	0.71069 Å
D _{calc}	1.506 g/cm ³
Z	2
Meas refl	4231
Obs refl	1262
R	5.8%
R _w	7.1%
G. O. F.	1.70
Space Group	P _{21/n}
Octants meas	-1 < h < 15 -1 < k < 9 -21 <

•

.

POSITIONAL PARAMETERS FOR

Bis(2,6-dimethyl-3,5-dicarbomethoxy-4-(2-nitrophenyl)pyridine)₂dichlorocopper(II) (II)

АТОМ	X(SIG(X))	Y(SIG(Y))	Z(SIG(Z))	
Cu1	0.0	0.0	0.0	
CI1	-0.1450(2)	0.1416(3)	0.0165(1)	
N1	-0.0012(4)	0.069(1)	-0.1111(4)	
	-0.0505(5)	-0.029(1)	-0.1024(5)	
	-0.0997(7)	-0.193(1)	-0.1336(5)	
חב A נוסים	-0.0901	-0.2002	-0.0601	
	-0.1710	-0.1900	-0.1403	
	-0.0093	0.2900	-0.1372	
C4	-0.0040(6)	0.166(1)	-0.2615(5)	
C5	0.0419(6)	0.269(1)	-0.2010(0)	
C5'	0.0879(8)	0.436(1)	-0.2308(6)	
C5"	0.2004(10)	0.57(1)	-0.3108(8)	
H5"A	0.2489	0.5410	-0.3482	
H5"B	0.1484	0.6416	-0.3332	
H5"C	0.2339	0.6312	-0.2702	
O5'	0.0654(7)	0.572(1)	-0.2048(5)	
O5"	0.1555(5)	0.417(1)	-0.2823(4)	
C6	0.0418(6)	0.219(1)	-0.1328(5)	
C6'	0.0921(7)	0.326(1)	-0.0705(5)	
H6'A	0.0818	0.2700	-0.0230	
H6'B	0.1634	0.3329	-0.0795	
H6'C	0.0640	0.4399	-0.0693	
C7	-0.0173(7)	0.219(1)	-0.3432(5)	
C8	-0.0988(8)	0.327(1)	-0.3643(6)	
H8A	-0.1440	0.3669	-0.3264	
C9	-0.1165(10)	0.371(1)	-0.4385(8)	
H9A	-0.1707	0.4471	-0.4536	
C10	-0.0491(13)	0.309(2)	-0.4918(7)	
H10A	-0.0628	0.3365	-0.5439	
C11	0.0317(11)	0.210(1)	-0.4743(6)	
H11A	0.0786	0.1737	-0.5116	
C12	0.0418(8)	0.167(1)	-0.3991(5)	
N2	0.1249(17)	0.064(2)	-0.3867(10)	
	0.1451(13)	0.016(2)	-0.3364(12)	
02	0.1807(10)	0.004(2)	-0.4326(9)	
03.	-0.2068(5)	-0.587(9)	-0.2975(4)	
		TABLE 13 (Contin	lued)	
------	------------	------------------	-------------	----------
O3'	-0.0697(6)	-0.191(1)	-0.3368(4)	********
C3'	-0.1103(8)	-0.094(1)	-0.2959(5)	
C3"	-0.2676(8)	-0.15(1)	-0.3562(7)	
H3"A	-0.3375	-0.1159	-0.3540	
H3"B	-0.2429	-0.1266	-0.4056	
H3"C	-0.2618	-0.2708	-0.3458	
			=========	*****

•

ANISOTROPIC THERMAL PARAMETERS FOR

Bis(2,6-dimethyl-3,5-dicarbomethoxy-4-(2-nitrophenyl)pyridine)₂dichloro-copper(II) (II)

		ب: ــــــــــــــــــــــــــــــــــــ				
ΑΤΟΜ	U11	U22	U33	U23	U13	U12
N1 Cu1 Cl1 N1 C2 C2' C3 C4 C5 C5' C5' C5' C5' C5'' C5'' C6 C6' C7 C8 C9 C10 C11 C12 N2 O1 O2 O3'' C3'' C3'' C3''	$\begin{array}{c} 38(3)\\ 41(1)\\ 55(2)\\ 26(3)\\ 39(4)\\ 65(6)\\ 43(4)\\ 46(5)\\ 44(5)\\ 68(7)\\ 121(10)\\ 42(8)\\ 73(5)\\ 36(5)\\ 72(7)\\ 61(6)\\ 78(8)\\ 87(9)\\ 151(13)\\ 122(11)\\ 66(7)\\ 161(17)\\ 150(12)\\ 142(9)\\ 58(4)\\ 95(6)\\ 52(6)\\ 70(8)\end{array}$	68(4) 56(1) 94(2) 56(5) 42(7) 64(7) 43(5) 56(7) 36(6) 49(7) 116(11) 65(5) 82(5) 58(6) 63(7) 59(7) 76(8) 90(10) 112(12) 83(9) 75(8) 133(16) 171(13) 241(15) 98(6) 104(6) 66(7) 151(13)	78(4) 25(1) 49(1) 35(4) 39(5) 32(5) 32(4) 33(5) 32(5) 39(6) 83(10) 79(6) 63(5) 32(5) 44(6) 25(5) 48(7) 83(10 33(7) 40(7) 38(6) 94(13) 215(19) 168(13) 63(5) 63(5) 32(6) 87(9)	-9(4) 1(1) 24(1) 0(3) 9(4) -20(5) 0(5) 6(5) -1(4) 4(5) -68(9) 2(5) -21(4) 2(5) -7(6) -18(5) -14(7) -5(8) -49(11) -23(9) -3(6) -37(12) 3(11) 29(10) -14(4) 12(5) -13(6) -27(8)	$\begin{array}{c} -4(3) \\ 0(1) \\ 2(1 \\ -1(3) \\ 12(4) \\ 3(4) \\ 6(3) \\ 6(4) \\ 2(4) \\ 5(5) \\ 15(8) \\ 31(5) \\ 22(4) \\ 0(4) \\ -7(5) \\ 15(4) \\ 0(4) \\ -7(5) \\ 15(4) \\ -18(5) \\ -28(7) \\ -1(8) \\ 16(6) \\ -4(5) \\ -34(12) \\ 50(14) \\ 63(9) \\ -9(4) \\ -11(4) \\ 1(4) \\ -23(6) \end{array}$	-1(3) 2(1) 4(1) -9(4) -2(4) 0(5) -4(5) 4(5) 4(5) 4(5) 3(5) 7(8) 5(5) 3(4) -4(5) 1(5) 23(6) 32(8) 6(8) -14(6) 6(6) 20(11) -9(15) -64(11) -27(4) -41(5) -2(5) -48(9)
	• •	· ·	• •	· ·		. /

The anisotropic displacement exponent takes the form: $-2\pi^2(h^2a^{*2}U_{11} + ... + 2hka^{*b^*}U_{12})$

.

.

BOND DISTANCES (Å) AND BOND ANGLES (°) FOR

Bis(2,6-dimethyl-3,5-dicarbomethoxy-4-(2-nitrophenyl)pyndine)₂dichlorocopper(II) (II)

	, <u>a a a a a a a a a a a a a a a a a a a</u>		
Cu1-Cl1	2.232(2)	Cl1-Cu1-N1	90.7(2)
Cu1-N1	2.041(7)	CI1-Cu1-CI1	180.0(1)
Cu1-Cl1	2.232(2)	N1-Cu1-Cl1	89.3(2)
Cu1-N1	2.041(7)	Cl1-Cu1-N1	89.3(2)
N1-C2	1.34(1)	N1-Cu1-N1	180.0(1)
N1-C6	1.36(1)	CI1-Cu1-N1	90.7(2)
C2-C2'	1.52(1)	Cu1-N1-C2	120.0(6)
C2-C3	1.40(1)	Cu1-N1-C6	120.4(5)
C3-C4	1.36(1)	C2-N1-C6	119.5(7)
C3-C3'	1.52(1)	N1-C2-C2'	116.7(7)
C4-C5	1.38(1)	N1-C2-C3	120.8(8)
C4-C7	1.51(1)	C2'-C2-C3	122.4(8)
C5-C5'	1.49(1)	C2-C3-C4	120.2(8)
C5-C6	1.40(1)	C2-C3-C3'	120.2(8)
C5'-O5'	1.20(1)	C4-C3-C3'	119.6(7)
C5'-O5"	1.30(1)	C3-C4-C5	119.0(8)
C5"-O5"	1.43(1)	C3-C4-C7	118.8(8)
C6-C6'	1.52(1)	C5-C4-C7	122.0(8)
C7-C8	1.41(1)	C4-C5-C5'	120.3(8)
C7-C12	1.34(1)	C4-C5-C6	118.9(8)
C8-C9	1.37(1)	C5'-C5-C6	120.7(8)
C9-C10	1.40(2)	C5-C5'-O5'	124.2(10)
C10-C11	1.34(2)	C5-C5'-O5"	112.4(9)
C11-C12	1.38(1)	05'-C5'-O5"	123.5(11)
C12-N2	1.37(2)	C5'-O5-C5"	116.9(9)
N2-01	0.99(2)	N1-C6-C5	121.5(8)
N2-O2	1.20(2)	N1-C6-C6'	116.3(7)
O3"-C3'	1.30(1)	C5-C6-C6'	122.2(8)
O3"-C3"	1.48(1)	C4-C7-C8	117.8(8)
O3'-C3'	1.19(1)	C4-C7-C12	126.2(9)
		C8-C7-C12	116.0(9)
		C7-C8-C9	120.8(10)
		C8-C9-C10	117.9(12)
		C9-C10-C11	123.6(12)
		C10-C11-C12	114 8(12)
		C7-C12-C11	126.8(11)
		C7-C12-N2	122.3(11)
		C11-C12-N2	110.9(12)
,		C12-N2-O1	123 7(21)
		C12-N2-O2	128 0(17)
		O1 N2 O2	108 1/22)
***			100.1(22)

-

TABLE 15	(Continued)	
 	N2-01-02	39.9(15)
	N2-02-01	32.0(12)
	C3'-O3"-C3"	115.3(8)
	C3-C3'-O3"	110.9(8)
	C3-C3'-O3'	123.8(9)
	03"-C3'-O3'	125.2(9)

TORSION ANGLES (°) FOR

 $\label{eq:Bis} Bis (2,6-dimethyl-3,5-dicarbomethoxy-4-(2-nitrophenyl) pyridine)_2 dichloro-copper (II) (II)$

$\begin{array}{llllllllllllllllllllllllllllllllllll$	CL1-CU1-N1-C6 CL1-CU1-N1-C2	-87.4(0.5) 88.3(0.5)	C2-C3-C3'-O3" C2-C3-C3'-O3'	126.0(0.8) -54.4(1.3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CL1A CU1-N1-C6	92.6(0.5)	05"-C5'-C5-C6	82.7(1.0)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	CL1A CU1-N1-C2	-91.7(0.5)	O5"-C5'-C5-C4	-96.8(0.9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CU1-N1-C6-C5	178.9(0.5)	05'-C5'-C5-C6	-101.5(1.1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CU1-N1-C6-C6'	-2.4(0.9)	O5'-C5'-C5-C4	79.0(1.2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C2-N1-C6-C5	3.2(1.1)	C7-C8-N2-O2	177.7(1.6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2-N1-C6-C6'	-178.1(0.7)	C7-C8-N2-O1	2.2(2.9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CU1-N1-C2-C3	-180.0(0.6)	C9-C8-N2-O2	-4.4(2.5)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	CU1-N1-C2-C2'	1.7(0.9)	C9-C8-N2-O1	-179.9(2.1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C6-N1-C2-C3	-4.3(1.1)	C7-C8-C9-C10	-3.2(1.8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6-N1-C2-C2'	177.4(0.7)	N2-C8-C9-C10	179.0(1.3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C3"-O3"-C3'-C3	176.6(0.8)	C8-N2-O2-O1	-176.2(3.4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C3"-O3"-C3'-O3'	-3.0(1.4)	C8-N2-O1-O2	176.3(3.3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N1-C6-C5-C4	-0.4(1.1)	C7-C12-C11-C10	-1.4(1.7)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	N1-C6-C5-C5'	-179.9(0.7)	C8-C9-C10-C11	2.7(2.0)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	C6'-C6-C5-C4	-179.0(0.7)	C12-C11-C10-C9	-0.5(2.1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6'-C6-C5-C5'	1.5(1.2)	C8-C7-C12-C11	1.0(1.5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C3-C4-C7-C8	98.9(1.2)	C4-C3-C3'-O3"	-57.8(1.1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C3-C4-C7-C12	-84.5(1.0)	C4-C3-C3'-O3'	121.8(1.0)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C5-C4-C7-C8	-86.3(1.1)	C4-C7-C12-C11	-175.9(1.0)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C5-C4-C7-C12	90.3(1.1)		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C7-C4-C3-C2	175.0(0.7)		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C7-C4-C3-C3'	1.3(1.2)		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C5-C4-C3-C2	0.2(1.1)		
$\begin{array}{rcl} C7-C4-C5-C6 & -176.2(0.7) \\ C7-C4-C5-C5' & 3.3(1.1) \\ C3-C4-C5-C6 & -1.3(1.2) \\ C3-C4-C5-C5' & 178.2(0.7) \\ C5"-O5"-C5'-O5' & -0.7(1.5) \\ C5"-O5"-C5'-C5 & 175.1(0.8) \\ N1-C2-C3-C4 & 2.6(1.1) \\ N1-C2-C3-C4 & 2.6(1.1) \\ N1-C2-C3-C3' & 178.9(0.7) \\ C2'-C2-C3-C4 & -179.2(0.7) \\ C2'-C2-C3-C3' & -2.9(1.2) \\ C4-C7-C8-N2 & -4.3(1.8) \\ C4-C7-C8-N2 & 178.0(1.0) \\ C12-C7-C8-N2 & 179.0(1.2) \\ C12-C7-C8-C9 & 1.4(1.6) \\ \end{array}$	C5-C4-C3-C3'	-176.0(0.8)		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C7-C4-C5-C6	-176.2(0.7)		
C3-C4-C5-C6-1.3(1.2) $C3-C4-C5-C5'$ 178.2(0.7) $C5"-O5"-C5'-C5'$ -0.7(1.5) $C5"-O5"-C5'-C5$ 175.1(0.8) $N1-C2-C3-C4$ 2.6(1.1) $N1-C2-C3-C3'$ 178.9(0.7) $C2'-C2-C3-C4$ -179.2(0.7) $C2'-C2-C3-C3'$ -2.9(1.2) $C4-C7-C8-N2$ -4.3(1.8) $C4-C7-C8-N2$ 179.0(1.2) $C12-C7-C8-N2$ 1.4(1.6)	C7-C4-C5-C5'	3.3(1.1)		
C3-C4-C5-C5' $178.2(0.7)$ $C5"-O5"-C5'-C5'$ $-0.7(1.5)$ $C5"-O5"-C5'-C5$ $175.1(0.8)$ $N1-C2-C3-C4$ $2.6(1.1)$ $N1-C2-C3-C3'$ $178.9(0.7)$ $C2'-C2-C3-C4$ $-179.2(0.7)$ $C2'-C2-C3-C3'$ $-2.9(1.2)$ $C4-C7-C8-N2$ $-4.3(1.8)$ $C4-C7-C8-C9$ $178.0(1.0)$ $C12-C7-C8-N2$ $179.0(1.2)$ $C12-C7-C8-C9$ $1.4(1.6)$	C3-C4-C5-C6	-1.3(1.2)		
C5"-O5"-C5'-C5' $-0.7(1.5)$ $C5"-O5"-C5'-C5$ $175.1(0.8)$ $N1-C2-C3-C4$ $2.6(1.1)$ $N1-C2-C3-C3'$ $178.9(0.7)$ $C2'-C2-C3-C4$ $-179.2(0.7)$ $C2'-C2-C3-C3'$ $-2.9(1.2)$ $C4-C7-C8-N2$ $-4.3(1.8)$ $C4-C7-C8-C9$ $178.0(1.0)$ $C12-C7-C8-N2$ $179.0(1.2)$ $C12-C7-C8-C9$ $1.4(1.6)$	C3-C4-C5-C5'	178.2(0.7)		
C5"-O5"-C5'-C5175.1(0.8)N1-C2-C3-C4 $2.6(1.1)$ N1-C2-C3-C3'178.9(0.7)C2'-C2-C3-C4 $-179.2(0.7)$ C2'-C2-C3-C3' $-2.9(1.2)$ C4-C7-C8-N2 $-4.3(1.8)$ C4-C7-C8-C9178.0(1.0)C12-C7-C8-N2179.0(1.2)C12-C7-C8-C9 $1.4(1.6)$	C5"-O5"-C5'-O5'	-0.7(1.5)		
N1-C2-C3-C4 $2.6(1.1)$ N1-C2-C3-C3' $178.9(0.7)$ C2'-C2-C3-C4 $-179.2(0.7)$ C2'-C2-C3-C3' $-2.9(1.2)$ C4-C7-C8-N2 $-4.3(1.8)$ C4-C7-C8-C9 $178.0(1.0)$ C12-C7-C8-N2 $179.0(1.2)$ C12-C7-C8-C9 $1.4(1.6)$	C5"-O5"-C5'-C5	175.1(0.8)		
N1-C2-C3-C3' $178.9(0.7)$ C2'-C2-C3-C4 $-179.2(0.7)$ C2'-C2-C3-C3' $-2.9(1.2)$ C4-C7-C8-N2 $-4.3(1.8)$ C4-C7-C8-C9 $178.0(1.0)$ C12-C7-C8-N2 $179.0(1.2)$ C12-C7-C8-C9 $1.4(1.6)$	N1-C2-C3-C4	2.6(1.1)		
C2'-C2-C3-C4 -179.2(0.7) C2'-C2-C3-C3' -2.9(1.2) C4-C7-C8-N2 -4.3(1.8) C4-C7-C8-C9 178.0(1.0) C12-C7-C8-N2 179.0(1.2) C12-C7-C8-C9 1.4(1.6)	N1-C2-C3-C3'	178.9(0.7)		
C2'-C2-C3-C3' -2.9(1.2) C4-C7-C8-N2 -4.3(1.8) C4-C7-C8-C9 178.0(1.0) C12-C7-C8-N2 179.0(1.2) C12-C7-C8-C9 1.4(1.6)	C2'-C2-C3-C4	-179.2(0.7)		
C4-C7-C8-N2 -4.3(1.8) C4-C7-C8-C9 178.0(1.0) C12-C7-C8-N2 179.0(1.2) C12-C7-C8-C9 1.4(1.6)	C2'-C2-C3-C3'	-2.9(1.2)		
C4-C7-C8-C9 178.0(1.0) C12-C7-C8-N2 179.0(1.2) C12-C7-C8-C9 1.4(1.6)	C4-C7-C8-N2	-4.3(1.8)		
C12-C7-C8-N2 179.0(1.2) C12-C7-C8-C9 1.4(1.6)	C4-C7-C8-C9	178.0(1.0)		
C12-C7-C8-C9 1.4(1.6)	C12-C7-C8-N2	179.0(1.2)		
	C12-C7-C8-C9	1.4(1.6)		

Figure 33: Projection view of 2,6-dimethyl-3,5-dicarboxylate-4-(3-nitrophenyl)-pyridine • NO₃ • H₂O(III)

133

CRYSTAL DATA FOR

2,6-Dimethyl-3,5-dicarboxylate-4-(3-nitrophenyl)pyridine • NO₃ • H₂O (III)

C ₁₅ H ₁₅ N ₃ O ₁₀
397.3 g mole ⁻¹
8.8130(10) Å
9.5970(10) Å
12.805(2) Å
70.120(0) °
84.450(0) °
67.870(0) °
942.9(3) Å ³
412
11.28 cm ⁻¹
0.71069 Å
1.399 g/cm ³
2
3002
1318
5.00 %
6.11 %
1.29
P-1
$-1 \le h \le 9$, $-9 \le k \le 9$, $-13 \le l \le 13$

•

.

POSITIONAL PARAMETERS FOR

2,6-Dimethyl-3,5-dicarboxylate-4-(3-nitrophenyl)-pyridine • NO₃ • H₂O (III)

АТОМ	X(SIG(X))	Y(SIG(Y))	Z(SIG(Z))
N1	0.2679(5)	0.7168(4)	0.5523(3)
C2	0.2494(6)	0.6386(5)	0.6613(4)
C2'	0.2589(7)	0.4669(5)	0.6895(4)
C3	0.2227(6)	0.7183(5)	0.7389(4)
C3'	0.1893(9)	0.6343(6)	0.8575(5)
O3'	0.503(6)	0.6445(5)	0.8880(3)
O3"	0.3232(5)	0.5486(4)	0.9229(3)
C4	0.2149(6)	0.8788(5)	0.7039(4)
C5	0.2311(6)	0.9545(5)	0.5887(4)
C5'	0.2310(7)	1.1258(6)	0.5471(4)
O5'	0.3349(5)	1.1594(4)	0.5783(3)
O5"	0.1061(5)	0.12274(4)	0.4755(3)
C6	0.2578(6)	0.8737(6)	0.5117(4)
C6'	0.2799(7)	0.9420(6)	0.3882(4)
C7	0.1833(6)	0.9670(5)	0.7869(4)
C8	0.0483(7)	1.1132(6)	0.7700(4)
C9	0.163(8)	1.1934(6)	0.8470(5)
C10	0.1186(9)	1.1334(7)	0.9421(5)
C11	0.2512(8)	0.9899(7)	0.9579(4)
C12	0.2869(7)	0.9063(6)	0.8820(4)
N2	0.3609(9)	0.9208(8)	1.0592(4)
N3	0.2996(7)	0.4818(6)	0.3743(4)
01	0.3282(8)	0.9913(7)	1.1268(4)
02	0.4763(9)	0.8000(8)	1.0727(5)
O3	0.3692(6)	0.3788(5)	0.3271(3)
O4	0.3753(6)	0.5549(5)	0.3962(4)
O5	0.1510(6)	0.5088(4)	0.4032(3)
O6	0.2618(6)	0.3899(5)	1.1216(3)
H1A	0.2869	0.6719	0.4808
H2'A	0.2792	0.4385	0.6231
H2'B	0.3467	0.3964	0.7432
H2'C	0.1574	0.4584	0.7193
H2'D	0.2242	0.4492	0.7699
H2'E	0.3739	0.3916	0.6383
H2'F	0.1987	0.4320	0.6352
НЗ"В	0.2895	0.4731	1.0162
H5"A	0.1156	1.3177	0.4511

H6'A	0.2952	0.8636	0.3534	
H6'B	0.1850	1.0346	0.3551	
H6'C	0.3747	0.9710	0.3779	
H6'D'	0.2065	0.9349	0.3201	
H6'E'	0.2907	1.0727	0.3754	
H6'F*	0.3949	0.8400	0.3366	
H6A	0.2928	0.3895	1.2009	
H6B	0.1592	0.3551	1.1392	
H8A	-0.0221	1.1567	0.7049	
H12A	0.3809	0.8093	0.8947	
H9A	-0.0763	1.2915	0.8349	
H10A	0.0974	1.1889	0.9949	

*Disorder of methyl hydrogens on C2' and C6'

•

ANISOTROPIC THERMAL PARAMETERS FOR

2,6-Dimethyl-3,5-dicarboxylate-4-(3-nitroph	1enyl)-pyridine • NO3 • H2O	(111)
---	-----------------------------	-------

ATOM	U11	U22	U33	U23	U13	U12
N1	54(3)	46(3)	47(3)	-16(2)	-4(2)	-18(2)
C2	48(̀4)́	47(3)	53(4)	-13(3)	-4(3)	-18(3)
C2'	94(5)	49(3)	68(4)	-33(3)	9(3)	-29(3)
C3	44(3)	41(3)	44(3)	-10(3)	0(3)	-16(3)
C3'	77(5)	· 41(3)	54(4)	-20(3)	-5(4)	-18(3)
O3'	84(4)	109(4)	73(3)	-44(3)	2Ò(́3)	-24(2)
O3"	93(3)	69(3) -	61(3)	-28(2)	-11(2)	0(2)
C4	45(3)	39(3)	46(3)	-11(3)	-3(3)	-14(3)
C5	41(3)	37(3)	52(3)	-13(2)	-4(3)	-14(3)
C5'	50(4)	47(3)	51(3)	-14(3)	-2(3)	-11(3)
O5'	80(3)	60(2)	88(3)	-36(2)	-31(2)	-10(2)
O5"	68(3)	43(2)	101(3)	-18(2)	-29(2)	-1(2)
C6	43(4)	50(3)	50(3)	-15(3)	-5(3)	-18(3)
C6'	68(4)	67(4)	43(3)	-26(3)	0(3)	-18(3)
C7	58(4)	40(3)	51(3)	-18(3)	3(3)	-18(3)
C8	69(4)	45(3)	68(4)	-14(3)	0(3)	-26(3)
C9	85(5)	58(4)	75(4)	-21(3)	10(4)	-37(3)
C10	105(5)	64(4)	64(4)	-44(4)	22(4)	-37(3)
C11	89(5)	65(4)	45(3)	-38(4)	-1(3)	-22(3)
C12	66(4)	50(3)	51(3)	-20(3)	-7(3)	-11(3)
N2	133(6)	103(5)	50(4)	-54(4)	-12(4)	-23(4)
N3	68(4)	56(3)	63(3)	-21(3)	-1(3)	-22(3)
01	203(7)	173(5)	72(3)	-65(5)	-18(4)	-65(4)
02	213(7)	130(5)	109(4)	17(5)	-97(5)	-40(4)
O3	110(4)	90(3)	86(3)	-32(3)	4(3)	-56(3)
04	108(4)	110(4)	125(4)	-62(3)	25(3)	-76(3)
O5	67(3)	53(2)	104(3)	-15(2)	-3(3)	-11(2)
O6	149(4)	134(4)	48(2)´	-95(4)	-7(2)	-7(2))́

The anisotropic displacement exponent takes the form: $-2\pi^2(h^2a^{*2}U_{11} + ... + 2hka^{*}b^{*}U_{12})$

$$2\pi^2(h^2a^{*2}U_{11} + ... + 2hka^{*}b^{*}U_{12})$$

BOND DISTANCES (Å) AND BOND ANGLES (°) FOR

2,6-Dimethyl-3,5-dicarboxylate-4-(3-nitrophenyl)-pyridine • NO₃ • H₂O (III)

TORSION ANGLES (°) FOR

2,6-Dimethyl-3,5-dicarboxylate-4-(3-nitrophenyl)-pyridine • NO3 • H₂O (III)

C6-N1-C2-C2'	178.0(0.5)	C12-C11-N2-O2	1.4(1.2)
C6-N1-C2-C3	-1.7(0.7)	C10-C11-N2-O1	1.6(1.1)
C2-N1-C6-C5	1.7(0.7)	C10-C11-N2-O2	-178.5(0.8)
C2-N1-C6-C6'	-179.5(0.5)	C11-C10-C9-C8	-1.2(1.0)
N1-C2-C3-C3'	175.3(0.5)	C10-C9-C8-C7	1.3(1.0)
N1-C2-C3-C4	0.0(0.7)		
C2'-C2-C3-C3'	-4.4(0.8)		
C2'-C2-C3-C4	-179.6(0.5)		
C2-C3-C3'-O3'	88.5(0.7)		
C2-C3-C3'-O3"	90.6(0.7)		
C4-C3-C3'-O3'	86.7(0.8)		
C4-C3-C3'-O3"	-94.2(0.6)		
C2-C3-C4-C5	1.5(0.7)		
C2-C3-C4-C7	179.0(0.5)		
C3'-C3-C4-C5	-173.6(0.5)		
C3'-C3-C4-C7	3.9(0.8)		
C3-C4-C5-C5'	-177.4(0.4)		
C3-C4-C5-C6	-1.5(0.7)		
C7-C4-C5-C5'	5.1(Ò.7)		
C7-C4-C5-C6	-179.0(0.5)		
C3-C4-C7-C12	57.2(0.7) [′]		
C3-C4-C7-C8	-122.9(0.5)		
C5-C4-C7-C12	-125.4(0.5)		
C5-C4-C7-C8	54.5(0.8)		
C4-C5-C5'-O5'	61.4(0.7)		
C4-C5-C5'-O5"	-118.3(0.5)		
C6-C5-C5'-O5'	-114.6(0.6)		
C6-C5-C5'-O5"	65.7(0.6)		
C4-C5-C6-N1	0.0(0.7)		
C4-C5-C6-C6'	-178.7(0.5)		
C5'-C5-C6-N1	175.9(0.4)		
C5'-C5-C6-C6'	-2.8(0.7)		
C4-C7-C12-C11	-178.6(0.5)		
C8-C7-C12-C11	1.5(0.9)		
C4-C7-C8-C9	-178.6(0.6)		
C12-C7-C8-C9	-1.5(0.9)		
C7-C12-C11-C10	` -1.4(1.0)		
C7-C12-C11-N2	178.6(0.6)		
C12-C11-C10-C9	1.2(1.1)		
N2-C11-C10-C9	-178.8(0.7)		
C12-C11-N2-O1	-178.4(0.7)		
	· /		

• • •

Figure 34: Projection view of Methyl 2,6-dimethyl-3,5-dicarboxylate-4-(3-nitrophenyl)-pyridine(IV)

CRYSTAL DATA FOR

Dimethyl 2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate (IV)

Formula	C ₁₇ H ₁₆ N ₂ O ₆
M. W.	344.3 g mole ⁻¹
<u>a</u>	11.598(1) Å
b	14.526(1) Å
Q	10.612(1) Å
α	90.0 °
β	111.500(10) °
γ	90.0 °
V	1663.4(2) Å ³
F(000)	720
μΜοΚα	11.28 cm-1
λΜοΚα	0.71069 Å
D _{calc}	1.375 g/cm ³
Ζ	4
Meas refl	2068
Obs refl	1173
R	4.71 %
Rw	6.48 %
G. O. F.	1.53
Space Group	P21/c
 Octants meas	$-11 \le h \le 10, -13 \le k \le 1, -1 \le l \le 10$

.

POSITIONAL PARAMETERS FOR

Dimethyl 2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate (IV)

АТОМ	X(SIG(X))	Y(SIG(Y))	Z(SIG(Z))
ATOM N1 C2 C2' C3 C3' C3' C3' C3' C3' C3' C3' C4 C5 C5' C5' C5' C5' C5' C5' C5' C5' C5'	X(SIG(X)) 0.0313(3) 0.0916(4) 0.0462(4) 0.1916(4) 0.2482(4) 0.3750(5) 0.2351(3) 0.3165(3) 0.2343(4) 0.1737(4) 0.2280(5) 0.1944(5) 0.3291(3) 0.1515(3) 0.0697(4) -0.0011(4) 0.3431(4) 0.3354(4) 0.4366(5) 0.5496(5) 0.5555(4) 0.4559(4) 0.6741(5) 0.7693(4) 0.6703(4) -0.0233 0.1123 0.0220 0.4222 0.4290 0.3122 0.1341	Y(SIG(Y)) 0.3562(3) 0.3135(3) 0.2193(3) 0.3545(3) 0.3098(3) 0.1882(4) 0.3364(3) 0.2368(2) 0.4406(3) 0.4823(3) 0.5664(3) 0.7212(3) 0.5691(2) 0.6378(2) 0.4390(3) 0.4811(3) 0.4811(3) 0.5670(4) 0.4811(4) 0.4843(3) 0.5670(4) 0.4811(4) 0.4384(3) 0.4315(5) 0.4763(4) 0.3476(4) 0.2030 0.1761 0.2179 0.1374 0.2292 0.1655 0.7695	Z(SIG(Z)) -0.1119(4) 0.0056(5) 0.0210(5) 0.1072(4) 0.2434(5) 0.3673(5) 0.3431(4) 0.2403(3) 0.0850(5) -0.0402(5) -0.0759(4) -0.1478(5) -0.0811(3) -0.1037(3) -0.1358(4) -0.2698(5) 0.1893(4) 0.2391(5) 0.3815(5) 0.3815(5) 0.3812(5) 0.3812(5) 0.3695(5) -0.0587 0.0339 0.0983 0.3539 0.4339 0.3982 -0.1643
H5"B H5"C H6'A H6'B	0.2707 0.2083 -0.0676 -0.0344	0.7404 0.7081 0.4410 0.5393	-0.1843 -0.0789 -0.2298 -0.3208 -0.2568

		TABLE 23 (U	ontinued)	
H6'C	0.0534	0.4903	-0.3184	
H8A	0.2574	0.6029	0.2056	
H9A	0.4279	0.6711	0.3682	
H10A	0.6214	0.5961	0.4459	
H12A	0.4645	0.3776	0.2068	

·

BLE 23 (Continued)

ANISOTROPIC THERMAL PARAMETERS FOR

АТОМ	U11	U22	U33	U12	U13	U23
N1 C2 C2' C3 C3" O3' O3" C4 C5 C5' C5" O5' C5" C5" C5" C5" C5" C5" C5" C5" C5" C5"	53(2) 52(3) 76(3) 52(3) 57(3) 117(4) 100(3) 93(2) 42(3) 42(3) 42(3) 42(3) 42(3) 42(3) 42(3) 42(3) 42(3) 42(3) 42(3) 42(3) 42(3) 42(3) 42(3) 58(2) 66(2) 48(3) 58(3) 48(3) 49(3) 70(4) 62(4) 46(4) 51(3) 64(4) 53(3)	52(3) 49(3) 71(4) 47(3) 43(3) 70(4) 85(3) 62(2) 42(3) 44(3) 46(3) 51(3) 80(3) 49(2) 55(3) 71(4) 44(3) 57(3) 72(4) 96(5) 91(4) 60(3) 161(6) 241(6)	55(3) 55(3) 77(4) 43(3) 56(4) 68(4) 53(2) 54(2) 50(3) 46(3) 43(3) 81(4) 94(3) 83(3) 48(3) 53(3) 43(3) 55(3) 67(4) 50(3) 40(3) 42(3) 52(3) 111(4)	-7(2) -4(3) -16(3) 4(3) -3(3) 20(3) 19(2) 20(2) 5(2) 4(2) 6(3) 2(3) 9(2) 5(2) 6(3) 1(3) -2(3) -2(3) -2(3) -16(3) -23(4) 4(3) 3(3) 21(5) 2(3)	16(2) 21(3) 26(3) 16(3) 27(3) 40(3) 37(2) 32(2) 18(3) 15(3) 12(2) 40(4) 33(2) 29(2) 17(3) 5(3) 19(3) 15(3) 15(3) 15(3) 15(3) 15(3) 14(3) 14(3) -2(3)	-3(2) -2(3) 5(3) 6(3) -3(3) 19(3) 1(2) 12(2) -3(3) -2(3) 1(2) 9(3) 27(2) 9(2) -2(3) -2(3) -2(3) 1(2) -7(3) -20(3) -12(3) 10(3) 6(3) 10(4) -38(4)
02	101(3)	149(4)	97(4)	59(4)	33(3)	45(4)

Dimethyl 2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate (IV)

The anisotropic displacement exponent takes the form: $-2\pi^2(h^2a^{*2}U_{11} + ... + 2hka^{*b^*}U_{12})$

BOND DISTANCES (Å) AND BOND ANGLES (°) FOR

Dimethyl 2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate (IV)

N1-C2	1.337 (6)	C2-N1-C6	119.8(4)
C5'-O5"	1.327 (6)	N1-C2-C2'	116.2(4)
C5"-O5"	1.450 (6)	N1-C2-C3	121.7(4)
C6-C6'	1.489 (6)	C2'-C2-C3	122.1(4)
C7-C8	1.382 (7)	C2-C3-C3'	120.5(4)
C7-C12	1.388 (6)	C2-C3-C4	119.9(4)
C8-C9	1.368 (6)	C3'-C3-C4	119.6(4)
C9-C10	1.379 (8)	C3-C3'-O3'	124.4(4)
C10-C11	1.365 (9)	C3-C3'-O3"	112.0(5)
C11-C12	1.369 (6)	03'-C3'-O3"	123.5(4)
C11-N2	1.469 (8)	C3'-O3"-C3"	116.4(4)
N2-01	1.220 (8)	C3-C4-C5	117.6(3)
N2-02	1.225 (10)	C3-C4-C7	121.0(4)
C5'-O5'	1.194 (7)	C5-C4-C7	121.3(4)
N1-C6	1.338 (7)	C4-C5-C5'	119.2(3)
C2-C2'	1.497 (7)	C4-C5-C6	119.5(4)
C2-C3	1.395 (6)	C5'-C5-C6	121.0(4)
C3-C3'	1.498 (6)	C5-C5'-O5'	123.7(4)
C3-C4	1.397 (6)	C5-C5'-O5"	112.9(5)
C3'-O3'	1.187 (7)	05'-C5'-O5"	123.5(5)
C3'-O3"	1.331 (6)	C5'-O 5"- C5"	116.4(4)
C3"-O3"	1.452 (6)	N1-C6-C5	121.4(4)
C4-C5	1.394 (6)	N1-C6-C6'	116.4(4)
C4-C7	1.482 (5)	C5-C6-C6'	122.1(4)
C5-C5'	1.485 (7)	C4-C7-C8	121.3(4)
C5-C6	1.408 (5)	C4-C7-C12	119.9(4)
		C8-C7-C12	118.8(4)
		C7-C8-C9	120.9(4)
	•	C8-C9-C10	120.8(5)
		C9-C10-C11	117.5(4)
		C10-C11-C12	2 123.2(5)
		C10-C11-N2	119.0(5)
		C12-C11-N2	117.8(5)
		C7-C12-C11	118.8(5)
		C11-N2-O1	118.3(7)
		C11-N2-O2	117.3(5)
		01-N2-02	124.4(6)

TORSION ANGLES (°) FOR

Dimethyl 2,6-dimethyl-4-(3-nitrophenyl)-pyridine-3,5-dicarboxylate (IV)

C6-N1-C2-C2'	-177.1(0.5)	C10-C11-C12-C7	0.3(0.9)
C6-N1-C2-C3	2.5(0.8)	N2-C11-C12-C7	-179.6(0.5)
C2-N1-C6-C5	0.7(0.8)	C10-C11-N2-O1	-23.5(0.9)
C2-N1-C6-C6'	178.9(0.5)	C10-C11-N2-O2	158.2(0.6)
N1-C2-C3-C3'	173.0(0.5)	C12-C11-N2-O1	156.5(0.6)
N1-C2-C3-C4	-2.9(0.8)	C12-C11-N2-O2	-21.9(0.8)
C2'-C2-C3-C3'	-7.4(0.8)	C7-C8-C9-C10	0.9(0.9)
C2'-C2-C3-C4	176.7(0.5)	C8-C9-C10-C11	-1.3(0.9)
C2-C3-C3'-O3'	-106.3(0.6)	C9-C10-C11-C12	0.6(0.9)
C2-C3-C3'-O3"	74.3(0.6)	C9-C10-C11-N2	-179.4(0.6)
C4-C3-C3'-O3'	69.5(0.7)		
C4-C3-C3'-O3"	-109.8(0.5)		
C2-C3-C4-C5	0.0(0.7)		
C2-C3-C4-C7	-177.8(0.5)		
C3'-C3-C4-C5	-175.9(0.5)		
C3'-C3-C4-C7	6.3(0.7)		
C3-C3'-O3"-C3"	-179.7(0.4)		
O3'-C3'-O3"-C3"	1.0(0.7)		
C3-C4-C5-C5'	-170.5(0.5)		
C3-C4-C5-C6	3.0(0.7)		
C7-C4-C5-C5'	7.3(0.7)		
C7-C4-C5-C6	-179.1(0.5)		
C3-C4-C7-C8	-123.8(0.5)		
C3-C4-C7-C12	56.9(0.7)		
C5-C4-C7-C8	58.4(0.7)		
C5-C4-C7-C12	-120.9(0.5)		
C4-C5-C5'-O5'	59.2(0.7)		
C4-C5-C5'-O5"	-121.9(0.5)		
C6-C5-C5'-O5'	-114.2(0.5)		
C6-C5-C5'-O5"	64.7(0.6)		
C4-C5-C6-N1	-3.5(0.8)		
C4-C5-C6-C6'	178.4(0.5)		
C5'-C5-C6-N1	169.9(0.5)		
C5'-C5-C6-C6'	-8.2(0.8)		
C5-C5'-O5"-C5"	-176.2(0.4)		
05'-C5'-O5"-C5"	. 2.7(0.6)		
C4-C7-C8-C9	-179.2(0.5)		
C12-C7-C8-C9	0.1(0.8)		
C4-C7-C12-C11	178.6(0.5)		
C8-C7-C12-C11	-0.7(0.8)		

Figure 35: Projection view of Ethyl 2,6-dimethyl-3,5-dicarboxylate-4-(3-nitrophenyl)-1,4-dihydropyridine(V)

CRYSTAL DATA FOR

Diethyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine3,5-dicarboxylate (V)

Formula	C ₁₉ H ₂₂ N ₂ O ₆
M. W.	374.4 g mole ⁻¹
	14.328(4) Å
b	15.292(3) Å
<u>c</u>	8.673(2) Å
α	90.0 °
β	90.0 °
γ	90.0 °
V	1900.5(8) Å ³
F(000)	792
μΜοΚα	11.28 cm ⁻¹
λΜοΚα	0.71069 Å
D _{caic}	1.308 Mg/m ³
Ζ	4
Meas refl	3024
Obs refl	1238
R	4.82 %
Rw	5.37 %
G. O. F.	1.16
Space Group	Pna21
Octants meas	-1 ≤ h ≤ 18, -1 ≤ k ≤19, -1 ≤ l ≤ 11

POSITIONAL PARAMETERS FOR

Ethyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine3,5-dicarboxylate (V)

N1 0.2054(3) 0.2890(3) 0.6351(10)	
C2 0.1452(4) 0.2315(3) 0.7052(10)	
C2' 0.1939(4) 0.1541(4) 0.7764(11)	
C3 0.0533(4) 0.2483(4) 0.7042(10)	
C3' -0.0203(4) 0.1948(3) 0.7732(10)	
C3" -0.0609(4) 0.0644(4) 0.9072(10)	
C3"' -0.0092(5) -0.0056(5) 0.9918(13)	
O3' -0.1022(3) 0.2123(3) 0.7656(9)	
O3" 0.0094(3) 0.1224(2) 0.8472(9)	
C4 0.0131(3) 0.3279(3) 0.6182(?)	
C5 0.0899(4) 0.3945(3) 0.5828(10)	
C5' 0.0615(4) 0.4840(4) 0.5437(12)	
C5" -0.0678(6) 0.5800(4) 0.5274(15)	
C5"' -0.1642(6) 0.5832(5) 0.5566(17)	
O5' 0.1102(3) 0.5418(3) 0.4970(12)	
O5" -0.0301(3) 0.4963(2) 0.5635(9)	
C6 0.1802(4) 0.3717(4) 0.5864(10)	
C6' 0.2612(4) 0.4276(4) 0.5359(11)	
C7 -0.0344(3) 0.3006(3) 0.4685(10)	
C8 0.0098(4) 0.2474(4) 0.3629(10)	
C9 -0.0327(4) 0.2266(4) 0.2253(11)	
C10 -0.1207(4) 0.2572(4) 0.1882(10)	
C11 -0.1637(4) 0.3099(4) 0.2939(10)	
C12 -0.1224(4) 0.3324(3) 0.4332(10)	
N2 -0.2567(4) 0.3435(4) 0.2612(11)	
O1 -0.2986(3) 0.3143(4) 0.1489(10)	
O2 -0.2914(4) 0.3974(3) 0.3482(11)	
H1A 0.2707 0.2721 0.6635	
H2'A 0.1483 0.1169 0.8243	
H2'B 0.2259 0.1222 0.6971	
H2'C 0.2380 0.1734 0.8524	
H3"A -0.0969 0.0397 0.8246	
H3"B -0.1020 0.0952 0.9757	
H3"C -0.0523 -0.0470 0.10349	
H3"D 0.0319 -0.0351 0.9214	
H3"E 0.0267 0.0205 0.10730	
H4A -0.0327 0.3548 0.6836	
H5"A -0.0531 0.5970 0.4237	

*******				***********
H5"B	-0.0402	0.6216	0.5966	
H5"C	-0.1892	0.6403	0.5365	
H5"D	-0.1914	0.5418	0.4866	
H5"E	-0.1784	0.5665	0.6607	
H6'A	0.2391	0.4839	0.5035	
H6'B	0.3034	0.4346	0.6209	
H6'C	0.2930	0.3997	0.4518	
H8A	0.0707	0.2253	0.3871	
H9A	0.0002	0.1901	0.1534	
H10A	-0.1506	0.2432	0.0923	
H12A	-0.1546	0.3702	0.5039	

•

ANISOTROPIC THERMAL PARAMETERS FOR

ΑΤΟΜ	U11	U22	U33	U12	U13	U23
N1 C2	27(2) 34(3)	54(3) 44(3)	64(4) 42(4)	-2(2) -5(3)	2(3) -5(3)	-1(3) 3(3)
C2'	39(3)	59(4)	60(4)	5(3)	-10(3)	4(4)
C3	36(3)	37(3)	40(3)	-7(3)	-3(3)	-1(3)
C3'	37(3)	39(3)	38(4)	5(3)	-10(3)	-5(3)
C3"	50(4)	50(4)	51(4)	-8(3)	10(3)	5(4)
03	00(D) 25(D)	64(4) 51(2)	101(7)	6(4) 2(2)	-0(0)	30(5)
03"	35(2)	13(2)	75(3)	2(2)	1(2)	12(2)
C4	39(3)	28(3)	41(4)	3(3)	0(2)	-1(3)
C5	44(3)	36(3)	49(4)	-6(3)	-5(3)	1(4)
C5'	56(4)	48(4)	75(5)	-14(4)	-6(4)	6(4)
C5"	99 (6)	44 (4)	137(9)	5(¥)	-1Ò(Ź)	22(5)
C5"	114(7)	73(5)	177(12)	37(5)	16(8)	17(7)
O5'	82(3)	55(3)	213(8)	-11(3)	24(5)	41(5)
05"	65(3)	34(2)	89(4)	3(2)	-9(3)	3(3)
C6	42(3)	51(4)	41(4)	-14(3)	-4(3)	-3(4)
C6'	43(3)	78(4)	83(6)	-29(3)	-9(4)	17(5)
	41(3)	34(3)	34(3)	-16(3)	-2(3)	4(3)
	42(3) 52(1)	51(3) 64(4)	33(4) 48(4)	1(3)	-5(4)	-7(4)
C10	58(4)	59(4)	40(4)	-5(4)	-4(4) -4(4)	-15(4)
C11	33(3)	40(3)	52(4)	-3(3)	-7(3)	9(3)
Č12	32(3)	40(3)	44(4)	-5(3)	-1(3)	3(3)
N2	44(3)	75(4)	68(4)	-1(3)	-16(4)	22(4)
01	55 (3)	12 8 (5)	82 (4)	2(3)	-29(3)	13(4)
02	72(3)	95(4)	102(5)	40(3)	-17(4)	-20(4)

Diethyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine3,5-dicarboxylate (V)

The anisotropic displacement exponent takes the form: $-2\pi^2(h^2a^{*2}U_{11} + ... + 2hka^{*}b^{*}U_{12})$

BOND DISTANCES (Å) AND BOND ANGLES (°) FOR

Diethyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine3,5-dicarboxylate (V)

N1-C2 N1-C6 C2-C2' C(2)-C3 C3-C3' C3'-C3" C3'-O3" C3'-C3"' C3"-C3"' C3"-C3"' C3"-C3"' C4-C5 C4-C7 C5-C5' C5-C6 C5'-O5' C5'-C5" C5'-C5]	1.374 (8) 1.382 (8) 1.507 (9) 1.341 (7) 1.463 (9) 1.539 (8) 1.205 (7) 1.349 (8) 1.494 (11) 1.439 (8) 1.531 (7) 1.524 (8) 1.340 (8) 1.340 (8) 1.340 (8) 1.340 (8) 1.337 (7) 1.405 (12) 1.424 (8) 1.506 (9) 1.386 (8) 1.378 (10) 1.389 (11) 1.367 (10) 1.456 (8) 1.377 (12) 1.228 (11) 1.223 (10)	$\begin{array}{c} C2-N1-C6\\ N1-C2-C2'\\ N1-C2-C3\\ C2'-C2-C3\\ C2'-C2-C3\\ C2-C3-C4\\ C3'-C3-C4\\ C3'-C3'-O3'\\ C3-C3'-O3''\\ C3'-C3'-O3''\\ C3''-C3''-O3''\\ C3''-C3''-O3''\\ C3''-C3''-O3''\\ C3'-C3''-C3''\\ C3'-C4-C5\\ C3-C4-C7\\ C5-C4-C7\\ C4-C5-C5'\\ C4-C5-C5'\\ C4-C5-C6\\ C5'-C5-C6\\ C5'-C5'-O5''\\ C5'-C5'-O5''\\ C5''-C5''-O5''\\ C5''-C5''-C5''\\ N1-C6-C6'\\ C5-C6-C6'\\ C4-C7-C12\\ C4-C7-C8\\ C12-C7-C8\\ C12-C7\\ C12-C$	123.8(5) 113.1(5) 119.4(6) 127.4(6) 126.7(6) 121.5(6) 111.7(4) 123.8(6) 115.2(5) 121.0(6) 105.8(5) 117.2(4) 110.7(4) 117.2(4) 110.7(4) 117.9(5) 121.1(5) 121.0(5) 127.3(6) 111.9(5) 120.8(6) 111.4(7) 118.1(5) 120.8(6) 111.4(7) 118.1(5) 126.1(6) 119.8(5) 114.0(5) 126.1(6) 119.9(6) 121.5(5) 118.5(7) 119.5(6) 122.5(6) 118.2(6) 119.3(7) 117.0(7)
		C7-C12-C11 C12-C11-C10 C12-C11-N2 C10-C11-N2	119.5(6) 122.5(6) 118.2(6) 119.3(7)
		C11-C10-C9 C10-C9-C8 C7-C8-C9 C9-N2-O1	117.0(7) 121.7(7 <u>)</u> 120.6(6) 118.2(7)
		C9-N2-O2 O1-N2-O2	119.3(7) 122.4(6)

TORSION ANGLES (°) FOR

Diethyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine3,5-dicarboxylate (V)

C6-N1-C2-C2'	-167.9(0.8)	C12-C11-C10-C9	-0.2(1.0)
C6-N1-C2-C3	12.1(1.3)	N2-C11-C10-C9	-179.7(0.6)
C2-N1-C6-C5	-11.2(1.3)	C12-C11-N2-O1	-170.1(0.7)
C2-N1-C6-C6'	170.9(0.8)	C12-C11-N2-O2	7.7(1.0)
N1-C2-C3-C3'	-179.8(0.8)	C10-C11-N2-O1	9.4(1.0)
N1-C2-C3-C4	3.6(1.2)	C10-C11-N2-O2	-172.8(0.7)
C2'-C2-C3-C3'	0.2(1.4)	C11-C10-C9-C8	0.6(1.0)
C2'-C2-C3-C4	-176.4(0.7)	C10-C9-C8-C7	0.6(1.0)
C2-C3-C3'-O3'	-178.3(0.8)	C4-C7-C8-C9	-177.1(0.6)
C2-C3-C3'-O3"	1.4(1.2)	C12-C7-C8-C9	0.2(1.0)
C4-C3-C3'-O3'	-1.4(1.1)	C7-C12-C11-C10	-0.2(1.0)
C4-C3-C3'-O3"	178.3(0.6)	C7-C12-C11-N2	179.3(0.6)
C2-C3-C4-C5	-17.3(0.9)	C5"'-C5"-O5"-C5'	-179.0(1.0)
C2-C3-C4-C7	104.7(0.8)	C4-C7-C12-C11	177.6(0.5)
C3'-C3-C4-C5	165.6(0.6)	C8-C7-C12-C11	0.2(0.9)
C3'-C3-C4-C7	-72.4(0.7)	05'-C5'-O5"-C5"	0.1(1.5)
C3-C3'-O3"-C3"	-175.6(0.7)		
03'-C3'-O3"-C3"	4.1(1.1)		
C3"'-C3"-O3"-C3'	-176.1(0.7)		
C3-C4-C5-C5'	-162.3(0.7)		
C3-C4-C5-C6	18.2(0.9)		
C7-C4-C5-C5'	74.6(0.8)	•	
C7-C4-C5-C6	-104.9(0.8)		
C3-C4-C7-C12	132.3(0.6)		
C3-C4-C7-C8	-50.4(0.7)		
C5-C4-C7-C12	-105.0(0.6)		
C5-C4-C7-C8	72.3(0.7)		
C4-C5-C5'-O5'	-171.3(0.9)		
C4-C5-C5'-O5"	7.7(1.1)		
C6-C5-C5'-O5'	8.2(1.6)		
C6-C5-C5'-O5"	-172.8(0.8)		
C4-C5-C6-N1	-5.5(1.2)		
C4-C5-C6-C6'	172.2(0.7)		
C5'-C5-C6-N1	175.0(0.8)		
C5'-C5-C6-C6'	-7.3(1.4)		
C5-C5'-O5"-C5"	-179.0(0.9)		

•

Figure 36: Projection view of Ethyl 2,6-dimethyl-3,5-dicarboxylate-4-(3-nitrophenyl)-pyridine(VI)

.

--

CRYSTAL DATA FOR

Diethyl 2,6-dimethyl-4-(3-nitrophenyl)-pyridine-3,5-dicarboxylate (VI)

	Formula	C ₁₉ H ₂₀ N ₂ O ₆
	M. W.	372.37 g mole ⁻¹
	<u>a</u>	12.0180(10)Å
	Þ	19.517(2) Å
	<u>C</u>	8.6060(10) Å
	α	90.00 °
	β	109.920(10) °
	γ	90.00 °
	V	1897.8(3)Å ³
	F(000)	784
	μΜοΚα	11.28 cm ⁻¹
	λΜοΚα	0.71069 Å
	Dcalc	1.303 g/cm ³
	Z	4
•	Meas refl	2402
	Obs refl	890
	R	5.8%
	Rw	14.52%
	G. O. F.	0.970
	Space Group	P21/c
	Octants meas	$-11 \le h \le 11, -18 \le k \le 1, -1 \le l \le 8$

155

POSITIONAL PARAMETERS FOR

Diethyl 2,6-dimethyl-4-(3-nitrophenyl)-pyridine-3,5-dicarboxylate (VI)

ΑΤΟΜ	X(SIG(X))	Y(SIG(Y))	Z(SIG(Z))	
N1	0.8611(6)	0.4858(3)	0.1636(8)	
H1A	0.8039(6)	0.5156(3)	0.1631(8)	
C2	0.8301(6)	0.4265(5)	0.0794(9)	
C2'	0.6999(5)	0.4178(4)	-0.0093(8)	
H2'A	0.6577(5)	0.4567(4)	0.0104(8)	
H2'B	0.6855(5)	0.4136(4)	-0.1257(8)	
H2'C	0.6734(5)	0.3771(4)	0.0300(8)	
C3	0.9168(6)	0.3799(4)	0.0775(8)	
C3'	0.8852(6)	0.3182(4)	-0.0293(9)	
C3"	0.7720(6)	0.2170(4)	-0.0896(10)	
H3"A	0.7411(6)	0.2281(4)	-0.2051(10)	
H3"B	0.8403(6)	0.1884(4)	-0.0711(10)	
C3'"	0.6838(7)	0.1807(4)	-0.0432(10)	
H3'A	0.6624(7)	0.1397(4)	-0.1079(10)	
H3'B	0.7150(7)	0.1690(4)	0.0720(10)	
H3'C	0.6150(7)	0.2091(4)	-0.0632(10)	
03'	0.9289(4)	0.3041(2)	-0.1301(6)	
O3"	0.8055(4)	0.2795(2)	0.0063(5)	
C4	1.0358(6)	0.3953(4)	0.1657(8)	
C5	1.0624(6)	0.4570(4)	0.2519(8)	
C5'	1.1870(6)	0.4758(4)	0.3504(9)	
C5"	1.3485(6)	0.4491(4)	0.5981(10)	
H5"A	1.3624(6)	0.4976(4)	0.6078(10)	
H5"B	1.3557(6)	0.4314(4)	0.7051(10)	
C5"	1.4337(7)	0.4160(4)	0.5364(11)	
H5"C	1.5123(7)	0.4246(4)	0.6116(11)	
H5"D	1.4193(7)	0.3676(4)	0.5275(11)	
H5"E	1.4260(7)	0.4343(4)	0.4296(11)	
05"	1.2294(4)	0.4347(3)	0.4785(6)	
05'	1.2399(4)	0.5232(2)	0.3211(6)	
C6	0.9733(7)	0.5018(4)	0.2481(9)	
	0.9968(6)	0.5685(3)	0.3428(9)	
HGA	0.9241(6)	0.5930(3)	0.3249(9)	
HOB	1.0334(6)	0.5590(3)	0.4585(9)	
HGC	1.0492(6)	0.5959(3)	0.3056(9)	
U/	1.1307(5)	0.3458(4)	0.1698(8)	
C8	1.1272(6)	0.2780(4)	0.2207(8)	

TABLE 33 (Continued)

H8A	1.0624(6)	0.2632(4)	0.2537(8)	********
C9	1.2155(8)	0.2323(4)	0.2240(10)	
H9A	1.2109(8)	0.1858(4)	0.2577(10)	
C10	1.3093(7)	0.2527(5)	0.1802(10)	
H10A	1.3714(7)	0.2212(5)	0.1834(10)	
C11	1.3113(6)	0.3186(5)	0.1319(9)	
C12	1.2243(6)	0.3654(3)	0.1221(7)	
H12A	1.2281(6)	0.4109(3)	0.0821(7)	
N2	1.4115(6)	0.3410(4)	0.0798(9)	
01	1.4221(6)	0.4009(4)	0.0577(11)	
02	1.4805(5)	0.2976(3)	0.0704(8)	
H6'D*	0.9364	0.5811	0.4164	
H6'E'	0.9680	0.6013	0.2058	
H6'F	1.1137	0.5811	0.4209	

^{*}Disorder of methyl hydrogens on C6'

.

ANISOTROPIC THERMAL PARAMETERS FOR

ΑΤΟΜ	U11	U22	U33	U23	U13	U12
N1 N1 C2 C2' C3' C3'' C3'' C3'' C3'' C3'' C3'	$\begin{array}{c} 38(3)\\ 60(5)\\ 51(5)\\ 52(5)\\ 39(5)\\ 35(4)\\ 79(6)\\ 110(7)\\ 73(4)\\ 63(3)\\ 45(5)\\ 38(5)\\ 60(6)\\ 63(6)\\ 111(7)\\ 45(3)\\ 69(3)\\ 41(5)\\ 85(5)\\ 30(4)\\ 55(5)\\ 85(6)\\ 52(6)\\ 37(5)\\ 46(4)\\ 54(5)\end{array}$	68(4) 62(5) 65(6) 82(6) 49(5) 69(6) 92(7) 86(7) 83(4) 63(3) 51(5) 57(5) 50(5) 131(8) 102(7) 93(4) 63(4) 72(6) 51(5) 53(5) 67(6) 48(5) 77(8) 71(6) 45(5) 98(6)	78(4) 86(5) 60(5) 92(6) 58(5) 56(6) 80(6) 106(7) 64(4) 58(3) 40(4) 49(5) 41(5) 102(7) 129(8) 69(4) 100(5) 59(5) 90(6) 52(5) 63(6) 98(7) 88(7) 71(6) 50(5) 95(6)	-9(4) 14(4) 4(5) 18(5) 12(4) 1(5) -14(6) -22(6) -5(3) -8(3) 8(4) 5(5) 5(5) 6(6) 23(7) 15(4) 13(3) 18(5) -10(5) -6(4) 8(5) 11(5) -6(5) 0(4) -6(5)	-4(3) 48(4) 29(4) 22(5) 29(4) 20(4) 26(5) 24(6) 40(3) 23(3) 26(4) 13(4) 22(5) 31(6) 13(7) 6(3) 22(3) 23(5) 53(5) 15(4) 20(4) 15(6) 23(4) 13(4) 24(4)	-1(3) 22(4) -7(5) 10(4) -1(4) -12(4) -34(5) -24(6) -15(3) -22(3) -5(4) -4(4) 6(5) 9(6) -38(6) -13(3) -22(3) 9(5) 4(4) 1(4) -9(5) 10(6) 18(5) -4(5) 7(4) 21(5)
01 02	99(5) 65(4)	126(6) 146(6)	276(10) 159(6)	63(7) -27(5)	127(6) 58(4)	25(5) 8(4)

Diethyl 2,6-dimethyl-4-(3-nitrophenyl)-pyridine-3,5-dicarboxylate (VI)

The anisotropic displacement exponent takes the form: $-2\pi^2(h^2a^{*2}U_{11} + ... + 2hka^{*}b^{*}U_{12})$

BOND DISTANCES (Å) AND BOND ANGLES (°) FOR

Diethyl 2,6-dimethyl-4-(3-nitrophenyl)-pyridine-3,5-dicarboxylate (VI)

N1-C6	1.333(7)	C6-N1-C2	122.5(6)
N1-C2	1.348(8)	N1-C2-C3	119.9(6)
C2-C3	1.388(8)	N1-C2-C2'	114.9(7)
C2-C2'	1.498(8)	C3-C2-C2'	125.3(8)
C3-C4	1.405(8)	C2-C3-C4	118.9(7)
C3-C3'	1.484(9)	C2-C3-C3'	120.3(7)
C3'-O3'	1.190(7)	C4-C3-C3'	120.5(6)
C3'-O3"	1.335(7)	O3'-C3'-O3"	124.6(8)
C3"-C3'"	1.441(8)	O3'-C3'-C3	123.8(7)
C3"-O3"	1.451(7)	O3"-C3'-C3	111.6(6)
C4-C5	1.393(8)	C3'"-C3"-O3"	110.1(6)
C4-C7	1.486(8)	C3'-O3 "- C3"	115.2(6)
C5-C6	1.375(8)	C5-C4-C3	118.7(6)
C5-C5'	1.493(8)	C5-C4-C7	121.0(6)
C5'-O5'	1.197(7)	C3-C4-C7	120.3(6)
C5'-O5"	1.318(7)	C6-C5-C4	120.1(6)
C5"-C5"	1.456(9)	C6-C5-C5'	118.7(7)
C5"-O5"	1.478(8)	C4-C5-C5'	121.2(6)
C6-C6'	1.510(8)	O5'-C5'-O5"	124.4(7)
C7-C12	1.376(7)	05'-C5'-C5	124.9(7)
C7-C8	1.400(8)	05"-C5'-C5	110.6(6)
C8-C9	1.378(9)	C5"'-C5"-O5"	107.2(7)
C9-C10	1.364(9)	C5'-O5"-C5"	118.2(6)
C10-C11	1.355(8)	N1-C6-C5	119.9(7)
C11-C12	1.369(8)	N1-C6-C6'	117.7(7)
C11-N2	1.486(9)	C5-C6-C6'	122.3(7)
N2-01	1.197(7)	C12-C7-C8	118.1(6)
N2-O2	1.208(7)	C12-C7-C4	120.7(6)
		C8-C7-C4	121.2(6)
		C9-C8-C7	120.8(7)
		C10-C9-C8	120.6(7)
		C11-C10-C9	117.6(7)
		C10-C11-C12	124.0(7)
		C10-C11-N2	118.2(8)
		C12-C11-N2	117.8(8)
		C11-C12-C7	118.8(6)
		01-N2-02	124.1(9)
		U1-N2-C11	118.4(8)
		02-N2-C11	117.4(8)

TORSION-ANGLES-(°)-FOR

Diethyl 2,6-dimethyl-4-(3-nitrophenyl)-pyridine-3,5-dicarboxylate (VI)

C6-N1-C2-C3	-0.6(10)	C7-C8-C9-C10		1.0(12)
C6-N1-C2-C2'	-179.5(6)	C8-C9-C10-C11		-0.8(12)
N1-C2-C3-C4	0.7(9)	C9-C10-C11-C12		-1.1(12)
C2'-C2-C3-C4	179.4(6)	C9-C10-C11-N2		-178.5(6)
N1-C2-C3-C3'	-173.2(6)	C10-C11-C12-C7		2.6(11)
C2'-C2-C3-C3'	5.5(10)	N2-C11-C12-C7		-180.0(6)
C2-C3-C3'-O3'	123.8(8)	C8-C7-C12-C11		-2.2(9)
C4-C3-C3'-O3'	-50.0(10)	C4-C7-C12-C11		178.3(6)
C2-C3-C3'-O3"	-58.6(8)	C10-C11-N2-O1		-170.5(9)
C4-C3-C3'-O3"	127.6(6)	C12-C11-N2-O1		12.0(11)
O3'-C3'-O3"-C3"	-0.8(10)	C10-C11-N2-O2		6.0(11)
C3-C3'-O3"-C3"	-178.4(5)	C12-C11-N2-O2	•	-171.6(7)
C3'"-C3"-O3"-C3'	-178.6(6)			
C2-C3-C4-C5	0.0(9)			
C3'-C3-C4-C5	173.9(6)			
C2-C3-C4-C7	178.5(6)			
C3'-C3-C4-C7	-7.6(9)			
C3-C4-C5-C6	-0.8(9)			
C7-C4-C5-C6	-179.3(6)			
C3-C4-C5-C5'	178.9(6)			
C7-C4-C5-C5'	0.5(9)			
C6-C5-C5'-O5'	-64.8(9)			
C4-C5-C5'-O5'	115.5(8)			
C6-C5-C5'-O5"	112.5(7)			
C4-C5-C5'-O5"	-67.2(8)			
05'-C5'-O5"-C5"	2.3(10)			
C5-C5'-O5"-C5"	-175.0(6)		•	
C5"'-C5"-O5"-C5'	-86.2(8)			
C2-N1-C6-C5	-0.2(10)			
C2-N1-C6-C6'	-177.7(6)			
C4-C5-C6-N1	0.9(10)			
C5'-C5-C6-N1	-178.8(6)			
C4-C5-C6-C6'	178.4(6)			
C5'-C5-C6-C6'	-1.4(10)			
C5-C4-C7-C12	-56.6(8)			
C3-C4-C7-C12	125.0(6)	κ.		
C5-C4-C7-C8	124.0(7)			
C3-C4-C7-C8	-54.4(8)			
C12-C7-C8-C9	0.5(10)			
C4-C7-C8-C9	179.9(7)			

.

CRYSTAL DATA FOR

Dipropyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate(VII)

	Formula	C ₂₁ H ₂₆ N ₂ O ₆
	M. W.	402.4 g mole ⁻¹
	<u>a</u>	9.452(1) Å
	b	10.718(1) Å
	Q	12.081(2) Å
	α	103.36(1) °
	β	96.10(1) °
	γ	104.53(1) °
	V	1054.6(2) Å ³
	F(000)	428
	μΜοΚα	11.28 cm ⁻¹
	λΜοΚα	0.71069 Å
	Dcaic	1.267 g/cm ³
2	Ζ	2
	Meas refl	4398
	Obs refl	1390
	R	6.05 %
	Rw	7.36 %
	G. O. F.	1.50
	Space Group	P-1
	Octants meas	-1≤h ≤11, -12 ≤ k≤ 11, -14 ≤ l ≤ 14
	# = = = = = = = = = = = = = = = = = = =	

POSITIONAL PARAMETERS FOR

Dipropyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (VII)

АТОМ	X(SIG(X))	Y(SIG(Y))	Z(SIG(Z))	
N1	0.3377(6)	-0.3553(5)	0.2676(5)	
C2'	0.3041(7)	-0.3739(6)	0 1061(5)	
C3	0.4029(6)	-0.1429(5)	0.2183(4)	
C3'	0.3615(8)	-0.0593(6)	0.1494(5)	
O3'	0.2415(6)	-0.1015(5)	0.0773(4)	
O3"	0.4790(4)	0.0744(4)	0.1781(3)	
C4	0.5582(6)	-0.0663(5)	0.3077(4)	
C5	0.5567(6)	-0.1490(6)	0.3968(4)	
C5'	0.6791(7)	-0.0758(6)	0.5056(5)	
05'	0.6900(6)	-0.1210(5)	0.58/2(4)	
05	0.7000(3)	0.0031(4)	0.2002(3)	
C6'	0.4499(7) 0.4425(8)	-0.2875(0)	0.4435(6)	
C7	0.6989(6)	-0.0452(5)	0 2496(4)	
C8	0.7232(7)	-0.1605(6)	0.1918(4)	
C9	0.8483(7)	-0.1431(6)	0.1384(4)	
C10	0.9556(7)	-0.0068(6)	0.1413(5)	
C11	0.9326(6)	0.1069(6)	0.1972(5)	
C12	0.8072(6)	0.0905(5)	0.2523(4)	
C13	0.4554(9)	0.1703(7)	0.1200(6)	
C14	0.5932(9)	0.3120(7)	0.1649(7)	
C15	0.5777(11)	0.4210(8)	0.1147(8)	
	0.9218(9) 0.10422(7)	0.1284(8)	0.0043(0)	
02	0.10433(7) 0.11482(6)	0.2525(0)	0.2017(5)	
01	0.10258(7)	0.3535(5)	0.2546(5)	
C17	0.10452(14)	0.2556(11)	0.5725(10)	
C18	0.10125(15)	0.3521(10)	0.5723(11)	
H1A	0.2838	-0.4521	0.2437	
H2'A	0.1324	-0.3171	0.0608	
H2'B	0.1597	-0.4527	0.0559	
H2'C	0.0631	-0.4106	0.1425	
H4A	0.5710	0.0270	0.3492	
	0.5238	-0.3321	0.5145	
	0.3394	-0.4212		
	U.4001	-v.4043 	V.4VI/	
H8A	0.6483	-0.2557	0.1888	
------	--------	---------	--------	--
H9A	0.8596	-0.2259	0.0986	
H10A	1.0452	0.0085	0.1059	
H12A	0.7951	0.1731	0.2912	
H13A	0.3609	0.1787	0.1332	
H13B	0.4435	0.1330	0.0375	
H14A	0.6864	0.3029	0.1489	
H14B	0.6075	0.3456	0.2481	
H15A	0.6703	0.5129	0.1463	
H15B	0.5644	0.3873	0.0316	
H15C	0.4849	0.4304	0.1315	
H16A	0.9620	0.0650	0.6224	
H16B	0.8918	0.1697	0.6715	
H17A	1.0512	0.2178	0.4939	
H17B	1.1490	0.2964	0.6232	
H18A	1.0839	0.4306	0.5490	
H18B	0.9082	0.3085	0.5217	
H18C	1.0063	0.3873	0.6514	

•

•

TABLE 38 (Continued)

ANISOTROPIC THERMAL PARAMETERS FOR

Dipropyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (VII)

U11	U22	U33	U12	U13	U23
54(3) 42(4) 60(4) 32(3) 48(4) 63(3) 52(3) 32(3) 43(3) 47(4) 108(4) 62(3) 50(4) 84(5) 34(3) 50(4) 61(4) 49(4) 32(3) 46(4) 102(6) 145(8) 80(6) 68(4) 79(3) 121(5) 125(10)	43(3) 58(4) 57(4) 45(3) 56(4) 90(3) 61(3) 39(3) 54(4) 75(4) 106(4) 73(3) 62(4) 92(5) 37(3) 43(3) 56(4) 72(4) 43(3) 38(3) 97(6) 73(5) 85(5) 89(5) 61(4) 85(3) 40(3)	97(4) 70(4) 85(4) 60(4) 69(4) 100(3) 97(3) 51(3) 48(3) 63(4) 71(3) 52(2) 78(5) 123(6) 39(3) 56(4) 51(4) 57(4) 56(4) 55(4) 132(6) 167(8) 181(8) 81(5) 98(5) 156(5) 202(6)	3(3) 13(3) -1(3) 17(3) 27(3) 32(2) 23(2) 10(2) 15(3) 26(3) 28(3) 10(2) 15(4) 15(4) 13(3) 21(3) 30(3) 33(4) 7(3) 11(3) 62(5) 25(5) 46(6) -1(5) 12(3) 23(3) 8(3) 20(2)	-4(3) 2(3) -11(4) 13(3) 13(3) -16(3) 12(2) 7(3) 7(3) 23(3) 5(3) -5(2) 8(4) 1(5) 2(2) 10(3) 15(3) 15(3) 15(3) 11(3) 8(3) 21(5) 13(6) 31(7) -21(5) 36(3) 74(4) 89(4) 415(2)	$\begin{array}{c} 31(3)\\ 25(3)\\ 17(3)\\ 24(3)\\ 24(3)\\ 42(3)\\ 49(2)\\ 18(3)\\ 26(3)\\ 35(4)\\ 52(3)\\ 16(2)\\ 43(3)\\ 78(5)\\ 15(2)\\ 18(3)\\ 15(2)\\ 18(3)\\ 15(3)\\ 29(3)\\ 17(3)\\ 17(3)\\ 79(5)\\ 81(5)\\ 68(6)\\ 16(4)\\ 33(4)\\ 55(3)\\ 27$
215(15)	98(9)	203(13)	21(9)	-7(11)	-12(9)
	U11 54(3) 42(4) 60(4) 32(3) 48(4) 63(3) 52(3) 32(3) 43(3) 47(4) 108(4) 62(3) 50(4) 84(5) 34(3) 50(4) 61(4) 49(4) 32(3) 46(4) 103(6) 102(6) 145(8) 80(6) 68(4) 79(3) 121(5) 185(12) 215(15)	U11U22 $54(3)$ $43(3)$ $42(4)$ $58(4)$ $60(4)$ $57(4)$ $32(3)$ $45(3)$ $48(4)$ $56(4)$ $63(3)$ $90(3)$ $52(3)$ $61(3)$ $32(3)$ $39(3)$ $43(3)$ $54(4)$ $47(4)$ $75(4)$ $108(4)$ $106(4)$ $62(3)$ $73(3)$ $50(4)$ $62(4)$ $84(5)$ $92(5)$ $34(3)$ $37(3)$ $50(4)$ $43(3)$ $61(4)$ $56(4)$ $49(4)$ $72(4)$ $32(3)$ $43(3)$ $61(4)$ $56(4)$ $49(4)$ $72(4)$ $32(3)$ $43(3)$ $103(6)$ $97(6)$ $102(6)$ $73(5)$ $145(8)$ $85(5)$ $80(6)$ $89(5)$ $68(4)$ $61(4)$ $79(3)$ $85(3)$ $121(5)$ $40(3)$ $185(12)$ $98(9)$	U11U22U33 $54(3)$ $43(3)$ $97(4)$ $42(4)$ $58(4)$ $70(4)$ $60(4)$ $57(4)$ $85(4)$ $32(3)$ $45(3)$ $60(4)$ $48(4)$ $56(4)$ $69(4)$ $63(3)$ $90(3)$ $100(3)$ $52(3)$ $61(3)$ $97(3)$ $32(3)$ $39(3)$ $51(3)$ $43(3)$ $54(4)$ $48(3)$ $47(4)$ $75(4)$ $63(4)$ $108(4)$ $106(4)$ $71(3)$ $62(3)$ $73(3)$ $52(2)$ $50(4)$ $62(4)$ $78(5)$ $84(5)$ $92(5)$ $123(6)$ $34(3)$ $37(3)$ $39(3)$ $50(4)$ $43(3)$ $56(4)$ $61(4)$ $56(4)$ $51(4)$ $49(4)$ $72(4)$ $57(4)$ $32(3)$ $43(3)$ $56(4)$ $46(4)$ $38(3)$ $55(4)$ $103(6)$ $97(6)$ $132(6)$ $102(6)$ $73(5)$ $167(8)$ $145(8)$ $85(5)$ $181(8)$ $80(6)$ $89(5)$ $81(5)$ $79(3)$ $85(3)$ $156(5)$ $121(5)$ $40(3)$ $202(6)$ $185(12)$ $98(8)$ $159(10)$ $215(15)$ $98(9)$ $203(13)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

The anisotropic displacement exponent takes the form: $-2\pi^2(h^2a^{*2}U_{11} + ... + 2hka^{*b^*}U_{12})$

BOND DISTANCES (Å) AND BOND ANGLES (°) FOR

Dipropyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (VII)

N1-C2 N1-C6	1.371 (10) 1.370 (7)	C2-N1-C6 N1-C2-C2'	122.9(5)
C2-C2'	1.505 (7)	N1-C2-C3	119.3(5)
C2-C3	1.337 (7)	C2'-C2-C3	127.6(6)
C3-C3'	1.488 (10)	C2-C3-C3'	119.9(5)
C3-C4	1.499 (6)	C2-C3-C4	122.3(6)
C3'-O3'	1.196 (8)	$C3^{-}C3^{-}C4$	117.9(4)
$03^{-}03^{-}$	1.333 (0)	$C_{3}^{-}C_{3}^{-}C_{3}^{-}$	120.9(5)
C4-C5	1 541 (9)	03'-03'-03"	122 5(7)
C4-C7	1.528 (8)	C3'-O3"-C13	117.3(5)
C5-C5'	1.460 (7)	C3-C4-C5	110.5(4)
C5-C6	1.340 (7)	C3-C4-C7	111.0(4)
C5'-O5'	1.207 (9)	C5-C4-C7	110.8(5)
C5'-O5"	1.329 (7)	C4-C5-C5'	118.6(4)
O5"-C16	1.436 (7)	C4-C5-C6	120.1(5)
C6-C6'	1.499 (11)	C5'-C5-C6	121.1(6)
C7-C8 C7 C12	1.393 (9)		127.3(5)
	1.370 (7)	05-05-05	121 1/5)
C9-C10	1.379 (8)	C5'-O5"-C16	116 2(5)
C10-C11	1.364 (9)	N1-C6-C5	120.4(6)
C11-C12	1.389 (8)	N1-C6-C6'	113.1(5)
C11-N2	1.456 (8)	C5-C6-C6'	126.4(5)
C13-C14	1.457 (8)	C4-C7-C8	122.0(4)
C14-C15	1.485 (14)	C4-C7-C12	120.7(5)
C16-C17A	1.544 (13)	C8-C7-C12	117.3(5)
N2-O2	1.203 (9)	C7-C8-C9	122.6(5)
N2-01)	1.210 (9)	C8-C9-C10	119.6(6)
G17A)-G18A	1.196 (20)	C_{10}	10.4(0)
		C10-C11-N2	122.5(5)
		C12-C11-N2	117 7(6)
		C7-C12-C11	119.7(5)
		O3"-C13-C14	109.5(6)
		C13-C14-C15	113.8(7)
		O5"-C16-C17A	106.5(7)
		C11-N2-O2	118.8(6)
		C11-N2-O1	119.7(6)
		02-N2-01	121.4(6)
		U10-U1/A-U18A	115.8(12)

TORSION ANGLES (°) FOR

Dipropyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (VII)

C6-N1-C2-C2'	-165.3(0.6)	C9-C10-C11-C12	0.9(0.9)
C6-N1-C2-C3	13.1(1.0)	C9-C10-C11-N2	-179.8(0.6)
C2-N1-C6-C5	-14.8(1.1)	C10-C11-C12-C7	-1.1(0.9)
C2-N1-C6-C6'	168.2(0.6)	N2-C11-C12-C7	179.5(0.5)
N1-C2-C3-C3'	-175.2(0.6)	C10-C11-N2-O2	4.3(0.9)
N1-C2-C3-C4	6.1(0.9)	C8-C9-C10-C11	-0.3(0.9)
C2'-C2-C3-C3'	2.9(1.0)	C7-C8-C9-C10	0.1(0.9)
C2'-C2-C3-C4	-175.8(0.6)	C10-C11-N2- O1	-177.6(0.6)
C2-C3-C3'-O3'	3.5(1.1)	 C12-C11-N2-O2	-176.3(0.6)
C2-C3-C3'-O3"	-176.4(0.6)	C12-C11-N2-O1	1.7(0.9)
C4-C3-C3'-O3'	-177.8(0.7)	O3"-C13-C14-C15	-177.3(0.7)
C4-C3-C3'-O3"	2.4(0.8)	O5"-C16-C17A-C18A	71.9(1.1)
C2-C3-C4-C5	-20.2(0.8)	C8-C7-C12-C11	0.8(0.8)
C2-C3-C4-C7	103.2(0.7)		
C3'-C3-C4-C5	161.0(0.5)		
C3'-C3-C4-C7	-75.6(0.7)		
C3-C3'-O3"-C13	-178.8(0.6)		
03'-C3'-O3"-C13	1.3(1.0)		
C3'-O3"-C13-C14	178.3(0.7)		
C3-C4-C5-C5'	-165.3(0.6)		
C3-C4-C5-C6	18.2(0.8)		
C7-C4-C5-C5'	71.2(0.6)		
C7-C4-C5-C6	-105.3(0.6)		
C3-C4-C7-C8	-67.6(0.7)		
C3-C4-C7-C12	112.2(0.5)		
C5-C4-C7-C8	55.7(0.6)		
C5-C4-C7-C12	-124.6(0.5)		
C4-C5-C5'-O5'	175.3(0.7)		
C4-C5-C5'-O5"	-5.8(0.9)		
C6-C5-C5'-O5'	-8.3(1.2)		
C6-C5-C5'-O5"	170.7(0.7)		
C4-C5-C6-N1	-2.4(1.0)		
C4-C5-C6-C6'	174.2(0.7)	•	
C5'-C5-C6-N1	-178.8(0.6)		
C5'-C5-C6-C6'	-2.1(1.2)		
C5-C5'-O5"-C16	-173.7(0.6)		
05'-C5'-O5"-C16	5.3(1.0) ´		
C5'-O5"-C16-C17A	167.4(0.8)		
C4-C7-C8-C9	179.4(0.5)		
C12-C7-C8-C9	-0.3(0.8)		
C4-C7-C12-C11	-178.9(0.5)		

Figure 37: Projection view of Propyl 2,6-dimethyl-3,5-dicarboxylate-4-(3-nitrophenyl)-1,4-dihydropyridine(VII)

CRYSTAL DATA FOR

Di-isopropyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (VIII)

Formula	C ₂₁ H ₂₆ N ₂ O ₆
M. W.	402.4 g mole ⁻¹
<u>a</u>	7.612(2) Å
Þ	11.441(2) Å
C	12.938(2) Å
α	75.83(1) °
β	89.61(1) °
γ	73.18(2) °
V	1043.3(4) Å ³
F(000)	428
μΜοΚα	11.28 cm ⁻¹
λΜοΚα	0.71069 Å
D _{caic}	1.281 g/cm ³
Z	2
Meas refl	4521
Obs refl	1380
R	4.94 %
Rw	5.43 %
G. O. F.	1.06
Space Group	P-1
 Octants meas	-1 ≤ h ≤ 8, -12 ≤ k≤ 13,-15 ≤ l ≤ 15

POSITIONAL PARAMETERS FOR

Di-isopropyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (VIII)

АТОМ	X(SIG(X))	Y(SIG(Y))	Z(SIG(Z))	
N1	0.5182(6)	1.0668(4)	0.3075(3)	
C2	0.4243(7)	0.9790(5)	0.3322(3)	
C2'	0.5495(7)	0.8480(5)	0.3832(4)	
C3	0.2405(7)	1.0170(4)	0.3092(3)	
C3'	0.1198(8)	0.9375(5)	0.3407(4)	
O3'	-0.0454(5)	0.9753(3)	0.3172(3)	
O3"	0.2043(4)	0.8202(3)	0.3992(3)	
C4	0.1463(6)	1.1482(4)	0.2403(3)	
C5	0.2505(7)	1.2392(5)	0.2502(4)	
C5'	0.1516(9)	1.3760(5)	0.2222(4)	
O5'	0.2126(6)	1.4589(4)	0.2295(3)	
05"	-0.213(5)	1.3950(3)	0.1857(3)	
C6	0.4310(8)	1.1974(5)	0.2798(4)	
C6'	0.5594(8)	1.2728(5)	0.2873(4)	
C7	0.1229(7)	1.1461(4)	0.1237(3)	
C8	0.2/14(/)	1.1208(4)	0.0621(4)	
C9	0.2513(7)	1.11//(5)	-0.0425(4)	
C10	0.0791(8)	1.1423(4)	-0.0895(4)	
	-0.0684(7)	1.1688(4)	-0.0300(4)	
	-0.0512(7)	1.1/06(4)	0.0764(4)	
C13	0.0997(7)	0.7312(3)	0.4238(4)	
014	0.2367(9)		0.4342(5)	
015	0.0071(7)	0.7414(5)	0.5249(4)	
010	-0.1352(0)	1.5250(5)	0.1409(0)	
017	-0.2042(9)	1.5239(5)	0.0009(3)	
NO	-0.2344(9)	1.5701(5)	0.2373(4)	
01	-0.2340(7)	1.1902(4)	-0.0791(4)	
\bigcirc	-0.2720(0)	1.2001(4)	-0.1720(3)	
	0.6418	1.2034(4)	-0.0210(3)	
H2'A	0.0470	0 7003	0.3032	
H2'B	0.6406	0.7303	0.3352	
H2'C	0.6092	0.8486	0.4481	
H4A	0.0264	1 1775	0.2652	
H6'A	0 4920	1.3609	0.2675	
H6'B	0.6121	1 2502	0.2073	
	0.0121	I.2002	0.0030	

H6'C	0.6557	1.2562	0.2398	
H8A	0.3921	1.1044	0.0945	
H9A	0.3578	1,1006	-0.0829	
H10A	0.0623	1.1394	-0.1622	
H12A	-0.1579	1.1878	0.1167	
H13A	0.0098	0.7480	0.3662	
H14A	0.2938	0.6005	0.3676	
H14B	0.3321	0.5908	0.4888	
H14C	0.1794	0.5386	0.4536	
H15A	0.0807	0.8235	0.5139	
H15B	-0.0547	0.6779	0.5454	
H15C	0.0980	0.7302	0.5805	
H16A	-0.0605	1.5785	0.1169	
H17A	-0.1946	1.4970	0.0043	
H17B	-0.3307	1.4653	0.0907	
H17C	-0.3493	1.6063	0.0331	
H18A	-0.1448	1.5711	0.2886	
H18B	-0.3190	1.6533	0.2124	
H18C	-0.3004	1.5123	0.2700	
H2'D*	0.5024	0.8432	0.4589	
H2'E	0.6774	0.8555	0.3787	
H2'F	0.5027	0.7868	0.3334	
H6'D	0.5291	1.3528	0.2017	
H6'E '	0.5139	1.3451	0.3668	
H6'F'	0.7305	1.1994	0.3161	

÷

TABLE 43 (Continued)

Disorder of methyl hydrogens on C2' and C6'

ANISOTROPIC THERMAL PARAMETERS FOR

АТОМ	U11	U22	U33	U23	U13	U12
 N1	 38(3)	63(3)		-19(3)	7(2)	-15(3)
C2	42(4)	45(4)	37(3)	-17(3)	6(3)	-12(3)
C2'	38(4)	68(4)	84(4)	-7(3)	-6(3)	0(3)
C3	29(3)	41(3)	35(3)	-8(3)	-1(2)	-8(2)
C3'	44(4)	42(3)	31(3)	-13(3)	1(3)	-13(2)
O3'	32(2)	49(2)	59(2)	-10(2)	-4(2)	-4(2)
O3"	41(2)	43(2)	53(2)	-10(2)	-2(2)	1(2)
C4	27(3)	40(3)	42(3)	-7(3)	4(2)	-14(2)
C5	35(3)	54(4)	41(3)	-16(3)	5(3)	-17(3)
C5'	64(4)	49(4)	54(4)	-22(4)	8(3)	-18(3)
O5'	101(4)	54(3)	111(4)	-37(3)	0(3)	-30(2)
O5"	55(3)	33(2)	71(3)	-5(2)	8(2)	-11(2)
C6	66(4)	55(4)	37(3)	-30(3)	10(3)	-18(3)
C6'	62(4)	82(5)	80(4)	-40(4)	8(3)	-28(3)
C7	40(3)	26(3)	36(3)	-6(2)	1(3)	-7(2)
C8	35(3)	48(3)	42(3)	-7(3)	2(3)	-6(3)
C9	37(4)	61(4)	48(4)	-3(3)	9(3)	-18(3)
C10	63(4)	44(3)	37(3)	-18(3)	-1(3)	-10(3)
C11	32(3)	37(3)	46(3)	-8(2)	0(3)	-8(3)໌
C12	36(3)	40(3)	42(3)	-9(3)	3(3)	-8(2)
C13	56(4)	54(4)	46(3)	-25(3)	0(3)	-5(3)
C14	111(6)	55(4)	94(5)	-22(4)	11(4)	-19(3)
C15	65(4)	82(5)	48(4)	-31(4)	4(3)	-4(3)໌
C16	68(5)	32(4)	77(4)	-5(3)	17(4)	-7(3)
C17	110(6)	54(4)	71(4)	10(4)	-5(4) ´	2(3)
C18	105(5)	46(4)	84(4)	3(4)	16(4)	-16(3)
N2	50(4̀)	66(3)	70 (4)	-17(3)	-3(3)	-22(3)
01	83(3)	125(4)	58 ໄ ິ3)	-14(3)	-24(2)	-33(3)
02	39(3)	141(4)	86 (3)	-24(̀3)́	-7(3̀) ́	-33(3)

Di-isopropyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyndine-3,5-dicarboxylate (VIII)

The anisotropic displacement exponent takes the form: $-2\pi^2(h^2a^{*2}U_{11} + ... + 2hka^{*b^*}U_{12})$

BOND DISTANCES (Å) AND BOND ANGLES (°) FOR

Di-isopropyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (VIII)

N1-C2	1.370 (8)	C2-N1-C6	123.2(4)
N1-C6	1.404 (7)	N1-C2-C2'	112.3(4)
C2-C2'	1.512 (6)	N1-C2-C3	118.7(4)
C2-C3	1.352 (7)	C2'-C2-C3	128.9(5)
C3-C3'	1.461 (8)	C2-C3-C3'	124.9(4)
C3-C4	1.514 (6)	C2-C3-C4	120.2(5)
C3'-O3'	1.219 (6)	C3'-C3-C4	114.8(4)
C3'-O3"	1.340 (5)	C3-C3'-O3'	122.8(4)
O3"-C13	1.442 (7)	C3-C3'-O3"	114.8(4)
C4-C5	1.507 (8)	O3'-C3'-O3"	122.5(5)
C4-C7	1.526 (7)	C3'-O3"-C13	118.4(4)
C5-C5'	1.481 (7)	C3-C4-C5	111.1(4)
C5-C6	1.342 (8)	C3-C4-C7	110.9(4)
C5'-O5'	1.194 (9)	C5-C4-C7	110.7(4)
C5'-O5"	1.340 (8)	C4-C5-C5'	118.7(5)
O5"-C16	1.458 (5)	C4-C5-C6	120.7(5)
C6-C6'	1.496 (10)	C5'-C5-C6	120.6(6)
C7-C8	1.382 (7)	C5-C5'-O5'	126.7(6)
C7-C12	1.386 (7)	C5-C5'-O5"	109.6(6)
C8-C9	1.373 (7)	05'-C5'-O5"	123.7(5)
C9-C10	1.371 (8)	C5'-O5"-C16	117.0(5)
C10-C11	1.360 (8)	N1-C6-C5	118.6(6)
C11-C12	1.389 (7)	N1-C6-C6'	112.9(5)
C11-N2	1.469 (8)	C5-C6-C6'	128.5(5)
C13-C14	1.510 (7)	C4-C7-C8	121.9(4)
C13-C15	1.495 (7)	C4-C7-C12	120.2(4)
C16-C17	1.496 (9)	C8-C7-C12	117.9(4)
C16-C18	1.501 (9)	C7-C8-C9	122.2(5)
N2-O1	1.207 (7)	C8-C9-C10	119.9(5)
N2-O2	1.213 (7)	C9-C10-C11	118.4(5)
		C10-C11-C12	122.7(5)
		C10-C11-N2	119.2(5)
		C12-C11-N2	118.1(5)
		C7-C12-C11	118.9(4)
		O3"-C13-C14	105.1(5)
		O3"-C13-C15	109.3(5)
		C14-C13-C15	112.4(4)
		O5"-C16-C17	105.1(5)
		O5"-C16-C18	109.6(4)

C17-C16-C18	112.4(5)
C11-N2-O1	119.0(5)
 C11-N2-O2	117.5(5)
01-N2-02	123.5(5)

.

TORSION ANGLES (°) FOR

Di-isopropyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (VIII)

C6-N1-C2-C2'	-166.8(0.5)	C8-C7-C12-C11	-0.1(0.7)
C6-N1-C2-C3	13.4(0.7)	C7-C8-C9-C10	1.1(0.8)
C2-N1-C6-C5	-17.0(0.7)	C8-C9-C10-C11	-0.3(0.8)
C2-N1-C6-C6'	163.3(0.5)	C9-C10-C11-C12	-0.6(0.8)
N1-C2-C3-C3'	-173.2(0.5)	C9-C10-C11-N2	179.6(0.5)
N1-C2-C3-C4	10.7(0.7)	C10-C11-C12-C7	0.9(0.7)
C2'-C2-C3-C3'	7.0(0.9)	N2-C11-C12-C7	-179.4(0.4)
C2'-C2-C3-C4	-169.1(0.5)	C10-C11-N2-O1	-3.2(0.7)
C2-C3-C3'-O3'	-179.2(0.5)	C10-C11-N2-O2	174.2(0.5)
C2-C3-C3'-O3"	1.9(0.7)	C12-C11-N2-O1	177.1(0.5)
C4-C3-C3'-O3'	-2.9(0.7)	C12-C11-N2-O2	-5.5(0.7)
C4-C3-C3'-O3"	178.2(0.4)	C12-C7-C8-C9	-0.9(0.7)
C2-C3-C4-C5	-28.0(0.6)	C4-C7-C12-C11	179.6(0.4)
C2-C3-C4-C7	95.6(0.6)	C4-C7-C8-C9	179.4(0.4)
C3'-C3-C4-C5	155.6(0.4)		• •
C3'-C3-C4-C7	-80.9(0.5)		
C3-C3'-O3"-C13	-173.3(0.4)		
O3'-C3'-O3"-C13	7.8(0.7)		
C3'-O3"-C13-C14	150.7(0.4)	· · · · ·	
C3'-O3"-C13-C15	-88.4(0.5)		
C3-C4-C5-C5'	-158.3(0.4)		
C3-C4-C5-C6	24.3(0.6)		
C7-C4-C5-C5'	78.1(0.5)		
C7-C4-C5-C6	-99.4(0.5)		
C3-C4-C7-C8	-68.4(0.6)		
C3-C4-C7-C12	111.9(0.5)		
C5-C4-C7-C8	55.4(0.5)		
C5-C4-C7-C12	-124.3(0.5)		
C4-C5-C5'-O5'	177.1(Ò.5)		
C4-C5-C5'-O5"	3.3(0.6)		
C6-C5-C5'-O5'	-5.5(0.8)		
C6-C5-C5'-O5"	174.1(0.5)		
C4-C5-C6-N1	-3.8(0.7)		
C4-C5-C6-C6'	175.7(0.5)		
C5'-C5-C6-N1	178.8(0.4)		
C5'-C5-C6-C6'	-1.6(0.8)		
C5-C5'-O5"-C16	-175.6(0.4)		
O5'-C5'-O5"-C16	3.9(0.8)		
C5'-O5"-C16-C17	149.0(0.5)		
C5'-O5"-C16-C18	-90.0(0.6)		
	/		\

Figure 39: Projection view of Butyl 2,6-dimethyl-3,5-dicarboxylate-4-(3-nitrophenyl)-1,4-dihydropyridine(VIV)

CRYSTAL DATA FOR

Dibutyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-Dihydropyridine-3,5-dicarboxylate (VIV)

	Formula	$C_{23}H_{30}N_2O_6$
	M. W.	430.5 g mole ⁻¹
•	<u>a</u>	11.358(4) Å
	<u>b</u>	16.352(6) Å
	C	12.999(5) Å
	α	90.0 °
	β	101.56(1) °
	γ	90.0 °
	V	2364.9(15) Å ³
	F(000)	920
	μΜοΚα	11.28 cm ⁻¹
	λΜοΚα	0.71069 Å
	D _{calc}	1.209 g/cm ³
	Z	4
	Meas refl	5197
	Obs refl	1458
	R	5.6 %
	Rw	6.12 %
	G. O. F.	1.13
	Space Group	P21/c
	Octants meas	-1≤ h ≤13, -1 ≤ k ≤ 19, -15 ≤ l ≤ 15

POSITIONAL PARAMETERS FOR

Dibutyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-Dihydropyridine-3,5-dicarboxylate (IX)

ΑΤΟΜ	X(SIG(X))	Y(SIG(Y))	Z(SIG(Z))
N1	0.8738(4)	0.1670(3)	0.3466(3)
N2	1.0175(5)	0.0910(4)	-0.1728(4)
01	0.9788(4)	0.0460(3)	-0.2493(4)
02	1.1108(5)	0.1320(3)	-0.1632(3)
C2	0.8040(4)	0.2257(4)	0.2851(4)
C2'	0.6925(4)	0.2491(3)	0.32//(4)
C3	0.8420(4)	0.2573(3)	0.2001(4)
C3'	0.7863(4)	0.3253(3)	0.1353(4)
03	0.8149(3)	0.3487(2)	0.0536(3)
03"	0.6984(3)	0.3675(2)	0.1/24(3)
C4	0.9526(4)	0.2196(3)	0.1650(4)
C5	1.03/6(4)	0.1813(3)	0.2584(4)
C5'	1.1678(6)	0.1/13(4)	0.2552(5)
05'	1.2451(4)	0.1392(3)	0.3204(4)
05"	1.1933(3)	0.2067(3)	0.1678(3)
C6	0.9943(5)	0.1510(3)	0.3422(4)
07	1.0610(5)	0.1039(4)	0.4347(4)
07	0.9177(4)	0.1577(3)	0.0747(3)
08	0.9775(4)	0.1547(3)	-0.0105(4)
010	0.9469(5)	0.0949(4)	-0.0870(4)
C10	0.8570(5)	0.0368(4)	-0.0860(4)
011	0.7992(5)	0.0403(4)	-0.008(5)
012	0.8293(5)	0.0991(4)	0.0781(4)
013	0.6497(5)	0.4405(4)	0.1144(5)
014	0.5579(6)	0.4803(5)	0.1673(6)
015	0.4467(7)	0.4379(5)	0.1638(7)
	0.34/3(7)	0.4826(5)	0.2065(8)
	1.3171(5)	0.2006(5)	0.1532(6)
C18	1.3232(9)	0.2269(11)	0.0427(9)
C18A	1.3411(28)	0.1750(36)	0.0783(28)
	1.4400(10)	0.2184(10)	0.0134(11)
C19A	1.4021(21)	0.1093(20)	0.0010(20)
	1.4020(3)	0.1439(0)	-0.0100(10)
	0.0303	0.1370	0.3303
12M	0.0400	0.2905	0.2030
	0.0430	0.2014	0.3207
	0.7149	0.2093	0.3902

H2'D*	0.7005	0.3069	0.3822
H2'E	0.6921	0.2059	0.4221
H2'F	0.6277	0.2434	0.2880
H4A	0.9958	0.2632	0.1397
H6'A	1.1425	0.0954	0.4273
H6'B	1.0602	0.1338	0. 4981
H6'C	1.0224	0.0520	0.4377
H6'D'	1.0904	0.0427	0.4381
H6'E	1.1398	0.1391	0.4969
H6'F	1.0146	0.0861	0. 5138
H8A	1.0390	0.1939	-0.0154
H10A	0.8364	-0.0022	-0.1420
H11A	0.7387	0.0003	0.0040
H12A	0.7884	0.0994	0.1359
H13A	0.6104	0.4253	0.0446
H13B	0.7133	0.4781	0.1097
H14A	0.5384	0.5343	0.1399
H14B	0.5941	0.4854	0.2403
H15A	0.4637	0.3867	0.2000
H15B	0.4155	0.4266	0.0910
H16A	0.2749	0.4511	0.1995
H16B	0.3786	0.4933	0.2795
H16C	0.3302	0.5335	0.1697
H17A	1.3460	0.1461	0.1706
H17B	1.3667	0.2383	0.1992
H18A	1.2930	0.2813	0.0275
H18B	1.2697	0.1900	-0.0014
H18C	1.2898	0.1973	0.0169
H18D	1.3184	0.1187	0.0825
H19A	1.5055	0.2294	0.0752
H19B	1.4520	0.2601	-0.0372
H19C	1.4902	0.2248	0.0665
H19D	1.5123	0.1391	0.1168
H20A	1.5611	0.1450	-0.0323
H20B	1.4781	0.1018	0.0341
H20C	1.4240	0.1329	-0.0796

*Disorder of methyl hydrogens on C2' and C6'

•

ANISOTROPIC THERMAL PARAMETERS FOR

АТОМ	U11	· U22	U33	U23	U13	U12
N1	61(3)	67(3)	55(3)	-7(3)	27(2)	4(3)
N2	91(4)	79(4)	50(3)	31(4)	22(3)	-3(3)
01	133(4)	129(4)	64(3)	23(3)	26(3)	-27(3)
02	108(3)	100(4)	82(3)	5(3)	58(3)	-12(3)
C2	56(3)	59(4)	40(3)	-2(3)	16(3)	-3(3)
C2'	53(3)	91(5)	6 <u>2(</u> 3)	2(3)	30(3)	-1(3)
C3	51(3)	50(4)	41(3)	1(3)	20(2)	-6(3)
C3.	56(3)	61(4)	43(3)	1(3)	22(3)	-13(3)
03	89(3)	87(3)	48(2)	19(2)	32(2)	11(2)
03"	68(2)	76(3)	67(2)	13(2)	32(2)	6(2)
	55(3)	53(4)	48(3)	0(3)	25(3)	-9(3)
	52(3)	52(4)	47(3)	-2(3)	14(3)	-9(3)
C5 ⁻	59(4)	61(4)	80(4)	-3(4)	21(4)	-6(4)
05	64(3)	140(5)	106(4)	16(3)	19(3)	28(3)
05"	52(2)	121(4)	78(3)	-3(2)	29(2)	1(3)
	54(4) 84(4)	58(4) 70(4)	51(3)	-1(3)	15(3)	-9(3)
	84(4) 50(2)	70(4)	00(4) 40(2)	11(4) 6(2)	18(4)	D(4)
	59(3) 60(2)	43(4)	42(3)	0(3)	17(3)	-2(3)
	60(3)	04(4) 70(4)	45(3)	b(3)	22(3)	-2(3)
	07(4) 75(4)	12(4)	30(3) 57(4)	20(4)	14(3)	-3(4)
	75(4)	04(0)	37(4) 70(4)	D(4)	3(3)	-10(4)
	73(4)	01(3) 67(4)	/9(4)	-7(4)	20(4)	0(4) 7(4)
012	70(4)	07(4)	47(3)	-2(4)	22(3)	· -/(4)
C13	70(4)	91(5) 107(6)	00(4) 120(6)	13(4)	23(4)	14(4)
014	00(3) 129(7)	107(0)	142(0)	23(5)	19(4) 50(6)	1(5)
C15 C16	120(7)	192(0)	208(10)	-1(0)	$\frac{50(6)}{74(7)}$	2(0) 15(8)
C10 C17	57(4)	162(9)	200(10)	- 55(6) - 6(5)	74(7)	45(6)
C18	62(5)	145(13)	86(8)	-0(3)	31(5)	10/01
C184	62(5)	145(13)	86(8)	-9(8)	31(5)	10(0)
C19	79(6)	157(14)	80(9)	5(8)	40(7)	Q/8)
C194	79(6)	157(14)	80(9)	5(8)	40(7)	9(9)
C20	125(8)	344(20)	282(16)	-33(11)	134(10)	-76/14
	120(0)	JTT(20)	202(10)	-55(11)	104(10)	-70(14)

Dibutyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-Dihydropyridine-3,5-dicarboxylate (IX)

The anisotropic displacement exponent takes the form: $-2\pi^2(h^2a^{*2}U_{11} + ... + 2hka^{*b^*}U_{12})$

. '

BOND DISTANCES (Å) AND BOND ANGLES (°) FOR

Dibutyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-Dihydropyridine-3,5-dicarboxylate (IX)

N1-C2	1.391 (7)	C2-N1-C6	123.5(5)
N1-C6	1.406 (7)	O1-N2-O2	123.9(6)
N2-O1	1.244 (7)	O1-N2-C9	117.7(6)
N2-O2	1.238 (8)	O2-N2-C9	118.4(5)
N2-C9	1.499 (8)	N1-C2-C2'	112.5(4)
C2-C2'	1.528 (8)	N1-C2-C3	119.3(5)
C2-C3	1.366 (7)	C2'-C2-C3	128.1(5)
C3-C3'	1.461 (7)	C2-C3-C3'	125.7(5)
C3-C4	1.548 (7)	C2-C3-C4	119.6(4)
C3'-O3'	1.232 (7)	C3'-C3-C4	114.6(4)
C3'-O3"	1.378 (7)	C3-C3'-O3'	125.1(5)
O3"-C13	1.460 (7)	C3-C3'-O3"	116.1(5)
C4-C5	1.526 (6)	03'-C3'-O3"	118.8(5)
C4-C7	1.540 (7)	C3'-O3"-C13	117.0(4)
C5-C5'	1.496 (8)	C3-C4-C5	110.5(4)
C5-C6	1.375 (8)	C3-C4-C7	112.7(4)
C5'-O5'	1.211 (8)	C5-C4-C7	111.2(4)
C5'-O5"	1.357 (8)	C4-C5-C5'	119.6(5)
O5"-C17	1.459 (7)	C4-C5-C6	120.5(5)
C6-C6'	1.499 (7)	C5'-C5-C6	119.7(5)
C7-C12	1.395 (8)	C5-C5'-O5'	127.6(6)
C7-C8	1.411 (7)	C5-C5'-O5"	110.8(5)
C12-C11	1.396 (8)	05'-C5'-O5"	121.6(6)
C11-C10	1.398 (9)	C5'-O5"-C17	116.9(5)
C10-C9	1.397 (9)	N1-C6-C5	118.1(4)
C9-C8	1.388 (8)	N1-C6-C6'	113.8(5)
C13-C14	1.506 (10)	C5-C6-C6'	128.1(5)
C14-C15	1.434 (11)	C4-C7-C12	120.3(5)
C15-C16	1.539 (13)	C4-C7-C8	122.0(4)
C17-C18	1.514 (15)	C12-C7-C8	117.6(5)
C17-C18A	1.142 (43)	C7-C12-C11	121.5(5)
C18-C19	1.519 (17)	C12-C11-C10	121.7(6)
C19-C20	1.369 (20)	C11-C10-C9	116.1(5)
C20-C19A	1.160 (38)	N2-C9-C10	118.6(5)
C18A-C19A	1.438 (47)	N2-C9-C8	117.9(5)
-		C10-C9-C8	123.4(5)
		C7-C8-C9	119.7(5)
		O3"-C13-C14	110.1(5)
		C13-C14-C15	117.5(7)
		C14-C15-C16	117.6(7)

IADLE SU	(Continued)		
 	O5"-C17-C18 O5"-C17-C18A C17-C18-C19 C18-C19-C20 C17-C18A-C19A C20-C19A-C18A	109.4(6) 122.4(17) 115.5(9) 119.8(13) 123.5(31) 121.0(28)	
		121.0(20)	

.

TORSION ANGLES (°) FOR

Dibutyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-Dihydropyridine-3,5-dicarboxylate (IX)

C6-N1-C2-C2'	-162.3(0.5)	C8-C7-C12-C11	-1.1(0.8)
C6-N1-C2-C3	15.2(0.7)	C4-C7-C8-C9	176.6(0.5)
C2-N1-C6-C5	-14.7(0.7)	C12-C7-C8-C9	0.2(0.7)
C2-N1-C6-C6'	163.4(0.5)	C7-C12-C11-C10	0.8(0.9)
O1-N2-C9-C10	12.9(0.8)	C12-C11-C10-C9	0.4(0.8)
O1-N2-C9-C8	-169.4(0.5)	C11-C10-C9-N2	176.2(0.5)
O2-N2-C9-C10	-166.6(0.5)	C11-C10-C9-C8	-1.4(0.8)
O2-N2-C9-C8	11.1(0.8)	N2-C9-C8-C7	-176.5(0.5)
N1-C2-C3-C3'	-172.7(0.5)	C10-C9-C8-C7	1.1(0.8)
N1-C2-C3-C4	8.0(0.7)	O3"-C13-C14-C15	-69.0(0.7)
C2'-C2-C3-C3'	4.4(0.8)	C13-C14-C15-C16	-173.2(0.7)
C2'-C2-C3-C4	-174.9(0.5)	O5"-C17-C18-C19	-176.1(1.1)
C2-C3-C3'-O3'	-173.4(0.5)	O5"-C17-C18A-C19A	179.2(3.4)
C2-C3-C3'-O3"	9.3(0.7)	C17-C18-C19-C20	81.0(1.6)
C4-C3-C3'-O3'	5.9(0.7)	O5'-C5'-O5"-C17	3.0(0.9)
C4-C3-C3'-O3"	-171.4(0.4)	C5'-O5"-C17-C18	168.1(0.9)
C2-C3-C4-C5	-27.9(0.6)	C5'-O5"-C17-C18A	126.0(3.3)
C2-C3-C4-C7	97.3(Ò.5)	C4-C7-C12-C11	-177.5(0.5)
C3'-C3-C4-C5	152.8(0.4)		· · ·
C3'-C3-C4-C7	-82.0(0.5)		
C3-C3'-O3"-C13	174.2(0.4)		
O3'-C3'-O3"-C13	-3.3(0.7)		
C3'-O3"-C13-C14	-178.3(0.4)		
C3-C4-C5-C5'	-155.8(0.5)		
C3-C4-C5-C6	28.5(0.6)		
C7-C4-C5-C5'	78.2(0.6)		
C7-C4-C5-C6	-97.6(0.6)		
C3-C4-C7-C12	-45.2(0.6)		
C3-C4-C7-C8	138.6(0.5)		
C5-C4-C7-C12	79.6(0.6)		
C5-C4-C7-C8	-96.6(0.6)		
C4-C5-C5'-O5'	-176.6(0.6)		
C4-C5-C5'-O5"	5.6(0.7)		
C6-C5-C5'-O5'	-0.8(0.9)		
C6-C5-C5'-O5"	-178.6(0.5)		
C4-C5-C6-N1	-9.1(0.7)		
C4-C5-C6-C6'	173.0(0.5)		
C5'-C5-C6-N1	175.2(0.5)		
C5'-C5-C6-C6'	-2.7(0.8)		
C5-C5'-O5"-C17	-179.0(0.5)		
	*========		******

Figure 40: Projection view of Isobutyl 2,6-dimethyl-3,5-dicarboxylate-4-(3-nitrophenyl)-1,4-dihydropyridine(X)

CRYSTAL DATA FOR

Di-isobutyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate(X)

Formula	C ₂₃ H ₃₀ N ₂ O ₆
M. W.	430.49 g mole ⁻¹
a	9.7150(10) Å
b	10.9320(10) Å
C	12.5010(10) Å
α	99.290(10) °
β	97.270(10) °
γ	116.350(10) °
V	1144.2(2) Å ³
F(000)	460
μΜοΚα	11.28 cm ⁻¹
λΜοΚα	0.71069 Å
D _{calc}	1.249 g/cm ³
Z	2
Meas refl	2623
Obs refl	1557
R	5.7%
R _W	15.95%
G. O. F.	1.13
Space Group	P-1
Octants meas	-1≤ h ≤ 9, -10 ≤ k ≤ 9, -12 ≤ l ≤ 12

POSITIONAL PARAMETERS FOR

Di-isobutyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (X)

АТОМ	X(SIG(X))	Y(SIG(Y))	Z(SIG(Z))
N1	0.1571(4)	1.3679(3)	0.7555(3)
C2	0.0591(4)	1.3042(4)	0.6512(3)
C2'	0.0753(5)	1.4042(4)	0.5777(4)
C3	-0.0388(4)	1.1638(4)	0.6240(3)
C3'	-0.1340(5)	1.0906(5)	0.5124(4)
C3"	-0.3525(6)	0.8808(5)	0.4012(4)
O3'	-0.1169(4)	1.1333(4)	0.4300(3)
O3"	-0.2489(3)	0.9624(3)	0.5082(2)
C4	-0.0529(4)	1.0797(4)	0.7123(3)
C5	0.0995(4)	1.1536(4)	0.8032(3)
C5'	0.1406(5)	1.0687(4)	0.8656(3)
C5"	0.0532(5)	0.8416(4)	0.9004(4)
O5'	0.2639(4)	1.1076(3)	0.9309(3)
O5"	0.0256(3)	0.9368(3)	0.8438(2)
C6	0.1930(4)	1.2933(4)	0.8231(3)
C6'	0.3382(5)	1.3819(4)	0.9120(4)
C7	-0.1957(4)	1.0546(4)	0.7612(3)
C8	-0.2262(5)	1.1634(4)	0.8022(3)
C9	-0.3535(5)	1.1411(4)	0.8491(3)
C10	-0.4573(5)	1.0072(5)	0.8554(3)
C11	-0.4266(4)	0.9001(4)	0.8146(3)
C12	-0.2981(4)	0.9218(4)	0.7678(3)
C13	-0.4830(6)	0.7517(5)	0.4119(4)
C14	-0.5874(6)	0.7760(6)	0.4794(5)
C15	-0.4303(9)	0.6617(8)	0.4486(7)
C16	-0.0779(6)	0.6970(4)	0.8513(4)
C17	-0.0544(7)	0.5961(5)	0.9142(4) 0
C18	-0.0631(29)	0.6610(36)	0.7342(35)
C18A	-0.1395(29)	0.6372(34)	0.7297(32)
01	-0.6409(5)	0.7386(4)	0.8662(4)
02	-0.5118(5)	0.6613(4)	0.7774(4)
N2	-0.5339(5)	0.7577(5)	0.8197(4)
H1A	0.2307(4)	1.4611(3)	0.7608(3)
H2'A	0.0048(5)	1.3544(4)	0.5062(4)
H2'B	0.0507(5)	1.4746(4)	0.6125(4)
H2'C	0.1819(5)	1.4484(4)	0.5687(4)

H2'D'	0.1146	1.3748	0.5039.
H2'E	-0.0311	1.3951	0.5468
H2'F	0.1323	1.4942	0.6276
H3"A	-0.2939(6)	0.8570(5)	0.3531(4)
H3"B	-0.3927(6)	0.9357(5)	0.3690(4)
H4A	-0.0656(4)	0.9895(4)	0.6768(3)
H5"A	0.0596(5)	0.8691(4)	0.9785(4)
H5"B	0.1505(5)	0.8437(4)	0.8903(4)
H6'A	0.3558(5)	1.3237(4)	0.9560(4)
H6'B	0.4268(5)	1.4253(4)	0.8794(4)
H6'C	0.3256(5)	1.4535(4)	0.9585(4)
H8A	-0.1558(5)	1.2564(4)	0.7969(3)
H9A	-0.3688(5)	1.2199(4)	0.8781(3)
H10A	-0.5470(5)	0.9898(5)	0.8875(3)
H12A	-0.2802(4)	0.8440(4)	0.7408(3)
H13A	-0.5468(6)	0.7037(5)	0.3381(4)
H14A	-0.6697(6)	0.6879(6)	0.4847(5)
H14B	-0.5259(6)	0.8315(6)	0.5526(5)
H14C	-0.6331(6)	0.8259(6)	0.4450(5)
H15A	-0.5190(9)	0.5790(8)	0.4556(7)
H15B	-0.3784(9)	0.6351(8)	0.3960(7)
H15C	-0.3578(9)	0.7094(8)	0.5196(7)
H16A	-0.1730(6)	0.6980(4)	0.8636(4)
H17A	-0.0203(7)	0.6477(5)	1.0042(4)
H17B	-0.1197(7)	0.5209(5)	0.9002(4)
H17C	0.0626(7)	0.6111(5)	0.9137(4)
H18A	-0.0773(29)	0.7220(36)	0.6918(35)
H18B	0.0336(29)	0.6595(36)	0.7276(35)
H18C	-0.1497(29)	0.5675(36)	0.7064(35)
H18D	-0.1500(29)	0.7088(34)	0.6996(32)
H18E	-0.0608(29)	0.6195(34)	0.7017(32)
H18F	-0.2386(29)	0.5523(34)	0.7082(32)

TABLE 53 Continued

*Disorder of methyl hydrogens on C2'

ANISOTROPIC THERMAL PARAMETERS FOR

Di-isobut	tyl 2,6-dimethy	l-4-(3-nitropi	henyl)-1,4-dih (X)	ydropyridine	e-3,5-dicart	ooxylate
АТОМ	U11	U22	U33	U23	U13	U12
N1 C2 C2' C3 C3' C3' C3' C3' C4 C5 C5' C5' C5' C5' C5' C5' C5' C5' C5'	53(2) 47(2) 77(3) 39(2) 49(3) 68(3) 97(3) 57(2) 39(2) 34(2) 34(2) 36(3) 76(3) 66(2) 51(2) 38(2) 63(3) 34(2) 44(3) 61(3) 55(3) 39(3) 40(2) 75(4) 69(4) 93(4) 124(5) 159(27) 119(19) 52(3) 81(3)	30(2) 44(3) 54(3) 39(2) 63(3) 83(3) 98(2) 54(2) 35(2) 39(2) 55(3) 59(3) 71(2) 42(2) 43(3) 55(3) 32(2) 42(2) 53(3) 73(3) 43(3) 35(2) 62(3) 112(4) 051(3) 54(3) 66(15) 49(10) 68(3) 98(3)	66(2) 54(3) 81(3) 49(3) 51(3) 58(3) 55(2) 47(2) 51(2) 49(2) 57(3) 90(3) 112(3) 78(2) 53(2) 80(3) 40(2) 61(3) 69(3) 63(3) 59(3) 56(2) 85(4) 116(5) 71(3) 110(4) 104(17) 85(12) 114(3) 201(4)	17(2) 22(2) 36(2) 15(2) 24(2) -8(3) 33(2) 55(13) 15(2) 17(2) 35(3) 39(2) 288(14) 12(2) 16(2) 11(2) 17(2) 31(2) 25(2) 15(2) -14(3) 11(4) 27(2) 38(3) 35(12) 10(8) 45(3) 81(3)	6(2) 14(2) 15(3) 10(2) 14(2) 7(3) 9(2) 38(14) 9(2) 6(2) 0(2) 6(3) -12(2) 39(14) 2(2) -6(3) 3(2) 9(2) 17(2) 21(2) 11(2) 9(2) 1(3) 14(3) 14(3) 14(4) 66(24) 16(15) 31(2) 83(3)	5(2) 17(2) 23(2) 13(2) 20(3) 13(3) 10(2) 7(2) 15(2) 11(2) 18(2) 35(3) 21(2) 18(2) 8(2) 6(2) 11(2) 14(2) 29(2) 34(3) 7(2) 11(2) 19(3) 28(3) 31(3) 39(3) 52(21) 33(13) 17(2) 22(2)
O2 C15	117(3) 109(5)	47(2) 119(5)	174(4) 177(7)	36(2) 13(5)	81(3) 22(5)	14(2) 43(5)

The anisotropic displacement exponent takes the form: $-2\pi^2(h^2a^{*2}U_{11} + ... + 2hka^{*b^*}U_{12})$

BOND DISTANCES (Å) AND BOND ANGLES (°) FOR

Di-isobutyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (X)

N1-C2	1.376(5)	C2-N1-C6	122.5(3)
N1-C6	1.379(5)	C3-C2-N1	119.5(3)
C2-C3	1.353(5)	C3-C2-C2'	126.6(4)
C2-C2'	1.507(5)	N1-C2-C2'	113.9(3)
C3-C3'	1.448(5)	C2-C3-C3'	121.3(3)
C3-C4	1.529(5)	C2-C3-C4	120.0(3)
C3'-O3'	1.199(5)	C3'-C3-C4	118.7(3)
C3'-O3"	1.336(5)	03'-C3'-O3"	121.0(4)
C3"-O3"	1.440(5)	O3'-C3'-C3	126.9(4)
C3"-C13	1.460(6)	O3"-C3'-C3	112.2(3)
C4-C7	1.519(5)	O3"-C3"-C13	110.6(4)
C4-C5	1.534(5)	C3'-O3"-C3"	116.9(3)
C5-C6	1.344(5)	C7-C4-C3	112.2(3)
C5-C5'	1.453(5)	C7-C4-C5	111.4(3)
C5'-O5'	1.213(4)	C3-C4-C5	110.0(3)
C5'-O5"	1.330(5)	C6-C5-C5'	121.3(3)
C5"-O5"	1.446(5)	C6-C5-C4	120.4(3)
C5"-C16	1.483(6)	C5'-C5-C4	118.4(3)
C6-C6'	1.485(6)	O5'-C5'-O5"	121.0(4)
C7-C12	1.372(5)	05'-C5'-C5	126.5(4)
C7-C8	1.385(5)	O5"-C5'-C5	112.5(3)
C12-C11	1.387(5)	O5"-C5"-C16	108.5(3)
C11-C10	1.370(6)	C5'-O5"-C5"	117.7(3)
C11-N2	1.457(5)	C5-C6-N1	119.3(3)
C10-C9	1.383(5)	C5-C6-C6'	127.2(4)
C9-C8	1.376(6)	N1-C6-C6'	113.5(3)
C13-C15	1.405(8)	C12-C7-C8	117.7(3)
C13-C14	1.481(7)	C12-C7-C4	120.3(3)
C16-C18A	1.48(4)	C8-C7-C4	121.9(3)
C16-C18	1.50(4)	C7-C12-C11	120.0(3)
C16-C17	1.531(6)	C10-C11-C12	122.6(3)
N2-O2	1.220(5)	C10-C11-N2	118.7(4)
N2-O1	1.209(5)	C12-C11-N2	118.7(4)
		C11-C10-C9	117.2(4)
		C10-C9-C8	120.6(4)
		C9-C8-C7	121.9(3)
		C15-C13-C3"	111.7(5)
8		C15-C13-C14	112.0(6)
		C3"-C13-C14	113.9(4)
		C5"-C16-C18A	122.9(13)

TABLE 55	(Continued)

C5"-C16-C18 C5"-C16-C17	105.1(12) 109.1(4)
C18A-C16-C17	114.0(15)
C18-C16-C17	109.3(16)
O1-N2-O2	122.0(4)
O1-N2-C11	119.4(5)
O2-N2-C11	118.6(4)

TORSION ANGLES (°) FOR

Di-isobutyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (X)

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
C6-N1-C2-C3	18.24(0.55)	C12-C7-C8-C9	0.55(0.55)
C6-N1-C2-C2'	-161.46(0.37)	C4-C7-C8-C9	-178.27(0.33)
N1-C2-C3-C3'	-174.70(0.35)	O3"-C3"-C13-C15	-64.70(0.62)
C2'-C2-C3-C3'	4.96(0.62)	O3"-C3"-C13-C14	63.44(0.64)
N1-C2-C3-C4	6.58(0.54)	O5"-C5"-C16-C18A	45.34(1.53)
C2'-C2-C3-C4	-173.76(0.37)	O5"-C5"-C16-C18	65.62(1.61)
C2-C3-C3'-O3'	16.18(0.68)	O5"-C5"-C16-C17	-177.29(0.39)
C4-C3-C3'-O3'	-165.08(0.44)	C10-C11-N2-O1	-4.85(0.63)
C2-C3-C3'-O3"	-164.72(0.34)	C12-C11-N2-O1	175.58(0.40)
C4-C3-C3'-O3"	14.03(0.50)	C10-C11-N2-O2	175.68(0.43)
03'-C3'-O3"-C3"	-1.71(0.60)	C12-C11-N2-O2	-3.89(0.63)
C3-C3'-O3"-C3"	179.13(0.36)	C12-C11-C10-C9	-0.35(0.59)
C13-C3"-O3"-C3'	-172.79(0.40)	C7-C12-C11-N2	179.56(0.33)
C2-C3-C4-C7	98.10(0.39)	N2-C11-C10-C9	-179.90(0.35)
C3'-C3-C4-C7	-80.66(0.41)	C11-C10-C9-C8	0.79(0.60)
C2-C3-C4-C5	-26.44(0.47)	C10-C9-C8-C7	-0.92(0.61)
C3'-C3-C4-C5	154.80(0.33)	C7-C12-C11-C10	0.00(0.57)
C7-C4-C5-C6	-99.36(0.39)	C4-C7-C12-C11	178.75(0.31)
C3-C4-C5-C6	25.68(0.47)		. ,
C7-C4-C5-C5'	81.52(0.39)		
C3-C4-C5-C5'	-153.44(0.33)		
C6-C5-C5'-O5'	-7.79(0.65)		
C4-C5-C5'-O5'	171.33(0.39)		
C6-C5-C5'-O5"	172.43(0.33)		
C4-C5-C5'-O5"	-8.46(0.48)		
05'-C5'-O5"-C5"	-0.24(0.57)		
C5-C5'-O5"-C5"	179.56(0.34)	•	
C16-C5"-O5"-C5'	-171.23(0.36)		
C5'-C5-C6-N1	174.16(Ò.34)		
C4-C5-C6-N1	-4.93(0.54)		
C5'-C5-C6-C6'	-5.02(0.65)		
C4-C5-C6-C6'	175.88(0.39)		
C2-N1-C6-C5	-19.10(0.55)		
C2-N1-C6-C6'	160.19(0.38)		
C3-C4-C7-C12	130.09(0.35)		
C5-C4-C7-C12	-106.15(0.36)		
C3-C4-C7-C8	-51.12(0.44)		
C5-C4-C7-C8	72.64(0.41)		
C8-C7-C12-C11	-0.09(0.52)		

CRYSTAL DATA FOR

Di-isobutyl 2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate (XI)

	±= = = = = = = = = = = = = = = = = = =
Formula	C ₂₃ H ₃₄ N ₂ O ₆
M. W.	434.52 g mole ⁻¹
<u>a</u>	20.059(9) Å
<u>b</u>	6.340(3) Å
2	21.722(10) Å
α	90.00°
β	115.91(1)°
γ	90.00°
V	2484.8(20) Å ³
F(000)	936
μΜοΚα	11.28 cm ⁻¹
λΜοΚα	0.71069 Å
Dcalc	1.162 g/cm ³
Z	4
Meas refl	5608
Obs refl	896
R	11.79%
Rw	21.54%
G. O. F.	1.009
Space Group	P21/c
Octants meas	$-1 \le h \le 23$, $-1 \le k \le 7$, $-25 \le l \le 23$

POSITIONAL PARAMETERS FOR

Di-isobutyl 2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate (XI)

АТОМ	X(SIG(X))	Y(SIG(Y))	Z(SIG(Z))
N1	0.5318(5)	0.0171(19)	0.8990(5)
C2	0.5854(7)	-0.1245(23)	0.9401(6)
C2'	0.5561(6)	-0.2643(21)	0.9789(6)
H2'A	0.5041(6)	-0.2407(21)	0.9644(6)
H2'B	0.5640(6)	-0.4082(21)	0.9701(6)
H2'C	0.5825(6)	-0.2360(21)	1.0270(6)
C3	0.6569(6)	-0.1169(21)	0.9466(5)
C3'	0,7161(9)	-0.2756(24)	0.9980(7)
O3'	0.7064(5)	-0.4570(15)	0.9979(4)
O3"	0.7747(5)	-0.1547(13)	1.0388(4)
C4	0.6745(6)	0.0168(21)	0.9058(5)
C5	0.6220(6)	0.1638(20)	0.8612(5)
C5'	0.6367(7)	0.3162(29)	0.8150(7)
05'	0.6390(6)	0.5062(16)	0.8208(4)
05"	0.6480(4)	0.2078(13)	0.7676(4)
C6	0.5502(7)	0.1581(21)	0.8624(6)
C6'	0.4896(6)	0.3097(17)	0.8152(5)
H6'A	0.4459(6)	0.2882(17)	0.8221(5)
H6'B	0.5064(6)	0.4525(17)	0.8268(5)
H6'C	0.4783(6)	0.2836(17)	0.7682(5)
C7	0.7529(7)	0.0229(22)	0.9091(5)
C8	0.8007(7)	0.2005(21)	0.9405(5)
H8A	0.7807(7)	0.3164(21)	0.9555(5)
C9'	0.8713(9)	0.2146(37)	0.9442(9)
C10	0.8980(8)	0.0476(40)	0.9204(9)
H10A	0.9451(8)	0.0620(40)	0.9193(9)
C11	0.8507(8)	-0.1270(34)	0.8877(7)
C12	0.7784(6)	-0.1402(23)	0.8841(6)
H12A	0.7461(6)	-0.2561(23)	0.8617(6)
C13	0.8373(8)	-0.2788(23)	1.0879(7)
H13A	0.8475(8)	-0.4000(23)	1.0670(7)
H13B	0.8274(8)	-0.3219(23)	1.1255(7)
C14	0.9019(10)	-0.1501(35)	1.1205(9)
H14A	0.9146(10)	-0.1091 (35)	1.0844(9)
C15	0.8994(10)	0.0679(31)	1.1408(9)
H15A	0.8624(10)	0.1557(31)	1.0975(9)
H15B	0.8831(10)	0.0100(31)	1.1616(9)

H15C	0.9451(10)	0.1372(31)	1.1523(9)
C16	0.9667(8)	-0.2706(27)	1.1699(8)
H16A	1.0118(8)	-0.1911(27)	1.1906(8)
H16B	0.9502(8)	-0.3057(27)	1.2040(8)
H16C	0.9752(8)	-0.3977(27)	1.1504(8)
C17	0.6638(6)	0.3300(22)	0.7195(7)
H17A	0.7091(6)	0.4070(22)	0.7431(7)
H17B	0.6243(6)	0.4278(22)	0.6954(7)
C18	0.6725(9)	0.2007(28)	0.6663(8)
H18A	0.6280(9)	0.1186(28)	0.6447(8)
C19	0.6813(8)	0.3295(23)	0.6130(6)
H19A	0.6864(8)	0.2545(23)	0.5769(6)
H19B	0.6376(8)	0.4156(23)	0.5940(6)
H19C	0.7240(8)	0.4173(23)	0.6365(6)
C20	0.7250(11)	0.0447(32)	0.6937(8)
H20A	0.7280(11)	-0.0751(32)	0.6608(8)
H20B	0.7681(11)	0.1104(32)	0.7111(8)
H20C	0.7179(11)	-0.0463(32)	0.7279(8)
N2	0.8780(18)	-0.2672(87)	0.8576(22)
N3	0.9313(18)	0.3322(96)	0.9718(20)
01	0.8417(20)	-0.4076(63)	0.8266(15)
02	0.9408(15)	-0.2465(33)	0.8602(13)
O3	0.9927(14)	0.3328(45)	0.9714(12)
04	0.9086(20)	0.5026(97)	0.9895(15)

ANISOTROPIC THERMAL PARAMETERS FOR

Di-isobutyl 2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate (XI)

АТОМ	U11	U22	U33	U23	U13	U12
N1	60(7)	91 (8)	71(6)	3(6)	31(6)	-8(7)
C2	61(8)	116(12)	66(7)	0(8)	42(7)	-13(9)
C2'	84(9)	186(15)	98(9)	7(10)	55(8)	6(10)
C3	75(9)	93(11)	54(7)	-10(8)	39(7)	-18(8)
C3'	111(12)	68(10)	66(9)	3(9)	66(9)	0(11)
03'	98(6)	70(6)	112(7)	7(6)	33(5)	-7(7)
03"	78(5)	71(6)	77(5)	6(5)	3(4)	3(6)
C4	40(7)	87(10)	59(7)	-5(8)	20(6)	2(7)
05	64(8)	75(10)	50(7)	-19(8)	11(6)	3(8)
05	72(8)	130(15)	48(8)	15(11)	20(7)	-/(11)
05	143(8)	79(7)	94(6)	-15(6)	50(6)	-19(8)
05	99(6)	99(7)	72(5)	8(5)	50(5) 5(7)	-9(5)
	00(9) 70(9)	70(10)	30(7) 106(0)	-10(8)	⊃(/) ⊃1/7)	12(9)
C0	79(0)	65(10)	100(9) 59(7)	15(7)	31(7)	5(0) 5(0)
	77(9)	76(10)	50(7) 80(8)	-15(7) -2(9)	29(7)	-5(9)
C.9'	50(11)	154(20)	122(12)	2(0)	21(7)	1/(12)
C10	45(10)	178(21)	140(14)	48(14)	29(10)	-5(1A)
C11	65(10)	160(18)	85(10)	22(11)	20(10)	28/17)
C12	55(8)	102(12)	95(9)	2(9)	27(7)	-13(0)
C13	97(10)	128(14)	92(9)	15(11)	26(8)	5(12)
C14	121(15)	159(19)	127(14)	15(16)	-33(12)	0(18)
C15	132(15)	166(19)	214(20)	44(18)	-47(14)	-50(17)
C16	125(13)	243(23)	171(15)	35(16)	-30(12)	13(16)
C17	75(9)	143(14)	104(10)	33(12)	40(8)	9(9)
C18	143(15)	143(17)	111(12)	14(13)	81(11)	-6(12)
C19	216(17)	172(17)	104(10)	16(11)	110(11)	-10(14)
C20	332(28)	294(28)	203(20)	135(20)	212(21)	186(26)
N2	45(19)	162(41)	173(31)	2(28)	71(20)	-23(22)
N3	45(25)	128(44)	168(29)	16(29)	2(17)	-34(22)
01	75(19)	142(28)	193(21)	-21(18)	74(17)	4(18)
02	179(25)	152(21)	386(34)	-86(21)	176(22)	-28(18)
03	51(18)	244(33)	227(28)	-1(23)	67(17)	-54(19)
04	126(23)	147(41)	171(22)	4(23)	48(18)	-37(25)

The anisotropic displacement exponent takes the form: - $2\pi^2(h^2a^{*2}U_{11} + ... + 2hka^{*}b^{*}U_{12})$

•

BOND DISTANCES (Å) AND BOND ANGLES (°) FOR

Di-isobutyl 2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate (XI)

N1-C6	1.349(13)	C6-N1-C2	118.3(10)
N1-C2	1.386(13)	N1-C2-C3	121.5(12)
C2-C3	1.378(13)	N1-C2-C2'	111.0(10)
C2-C2'	1.509(14)	C3-C2-C2'	127.3(13)
C3-C4	1.380(13)	C2-C3-C4	120,1(12)
C3-C3'	1.58(2)	C2-C3-C3'	118.4(13)
C3'-O3'	1,166(13)	C4-C3-C3'	121.3(10)
C3'-O3"	1.357(14)	03'-C3'-03"	130.9(14)
03"-C13	1.471(13)	03'-C3'-C3	123.5(15)
C4-C5	1.423(14)	03"-C3'-C3	105.6(11)
C4-C7	1.544(14)	C3'-O3"-C13	1131(10)
C5-C6	1 454(15)	C3-C4-C5	121 3(11)
C5-C5'	1 51(2)	C_{3} - C_{4} - C_{7}	121 9(11)
C5'-O5'	1 210(15)	C5-C4-C7	116 8(12)
C5'-O5"	1.336(15)	C4-C5-C6	114 6(12)
05"-C17	1 443(13)	C4-C5-C5'	124 7(12)
C6-C6'	1 537(13)	C6-C5-C5'	120 7(12)
C7-C12	1 366(14)	05'-05'-05"	125.6(14)
C7-C8	1 443(14)	05'-05'-05	125 1(15)
C8-C9'	1 39(2)	05-05-05	109 3(14)
C9'-N3	1 32(4)	C5'-O5"-C17	116 5(11)
C9'-C10	1 38(2)	N1-C6-C5	123 7(12)
C10-C11	1 43(2)	N1-C6-C6'	117 8(12)
C11-N2	1.45(2)	C5-C6-C6'	118 3(12)
$C11_{-}C12$	1.33(3)	C12-C7-C8	110.5(13)
C12-C14	1.42(2)	C12 - C7 - C0	120 0(12)
C14-C16	1.43(2)	CB-C7-C4	1106(12)
C14-C15	1.46(2)	C0-C7-C4	121 0(12)
C17-C19	1.40(2)	N2-C0'-C10	100 2(25)
C19-C20	1.45(2)		140 4(29)
C19 C10	1.30(2)		140.4(30)
	1.49(2)		110.7(19)
	1.10(3)		115.0(10)
04-IN3 02.N2	1.29(3)	N2-011-010	1027(27)
02-INZ 02 N2	1.24(3)	N2-011-012	120.0(16)
03-113	1.23(4)	07 010 011	110 0(15)
		014 012 02	110.9(10)
		014-013-03	110.0(12)
			112.4(17)
		013-014-015	123.1(10)
			113.0(10)
		05-017-018	113.8(12)

TABLE	60 (Continued)	
	C20-C18-C17 C20-C18-C19 C17-C18-C19 O1-N2-O2 O1-N2-C11	112.8(15) 113.7(15) 113.3(14) 118.2(48) 120.0(26)
	O2-N2-C11 O3-N3-O4 O3-N3-C9' O4-N3-C9'	121.7(50) 118.7(43) 135.6(63) 103.8(38)

s.

•

TORSION ANGLES (°) FOR

Di-isobutyl 2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate (XI)

C6-N1-C2-C3	3.16(1.60)	C9'-C10-C11-N2	170.95(1.80)
C6-N1-C2-C2'	178.00(0.94)	C9'-C10-C11-C12	-5.26(2.17)
N1-C2-C3-C4	-7.78(1.70)	C8-C7-C12-C11	-2.15(1.62)
C2'-C2-C3-C4	178.29(1.07)	C4-C7-C12-C11	179.49(1.03)
N1-C2-C3-C3'	176.42(0.98)	N2-C11-C12-C7	-172.16(1.80)
C2'-C2-C3-C3'	2.48(1.80)	C10-C11-C12-C7	3.72(1.84)
C2-C3-C3'-O3'	50.91(1.66)	C3'-O3"-C13-C14	169.17(1.23)
C4-C3-C3'-O3'	-124.84(1.41)	O3"-C13-C14-C16	-179.23(1.33)
C2-C3-C3'-O3"	-128.19(1.09)	O3"-C13-C14-C15	38.46(2.34)
C4-C3-C3'-O3"	56.05(1.25)	C5'-O5"-C17-C18	-177.46(1.11)
O3'-C3'-O3"-C13	3.95(1.90)	O5"-C17-C18-C20	-54.63(1.80)
C3-C3'-O3"-C13	-177.04(0.88)	O5"-C17-C18-C19	174.33(1.07)
C2-C3-C4-C5	6.24(1.63)	C10-C11-N2-O1	-175.79(2.65)
C3'-C3-C4-C5	-178.08(0.98)	C12-C11-N2-O1	0.30(4.17)
C2-C3-C4-C7	-177.10(1.12)	C10-C11-N2-O2	1.66(3.69)
C3'-C3-C4-C7	-1.42(1.64)	C8-C9'-C10-C11	5.11(2.24)
C3-C4-C5-C6	-0.45(1.46)	C12-C11-N2-O2	177.74(2.33)
C7-C4-C5-C6	-177.27(0.99)	C10-C9'-N3-O3	10.86(4.54)
C3-C4-C5-C5'	179.79(1.15)	C8-C9'-N3-O3	-179.00(2.90)
C7-C4-C5-C5'	2.97(1.61)	C10-C9'-N3-O4	174.00(2.61)
C4-C5-C5'-O5'	-113.65(1.61)	C8-C9'-N3-O4	-15.85(4.50)
C6-C5-C5'-O5'	66.60(1.81)	C7-C8-C9'-C10	-3.65(1.97)
C4-C5-C5'-O5"	65.29 <u>(</u> 1.36)	N3-C9'-C10-C11	177.96(1.76)
C6-C5-C5'-O5"	-114.45(1.17)	C7-C8-C9'-N3	-172.57(2.60)
05'-C5'-O5"-C17	-0.41(1.89)	C4-C7-C8-C9'	-179.45(1.10)
C5-C5'-O5"-C17	-179.35(0.89)		
C2-N1-C6-C5	2.98(1.57)		
C2-N1-C6-C6'	178.09(0.88)		
C4-C5-C6-N1	-4.26(1.52)		
C5'-C5-C6-N1	175.51(1.10)		
C4-C5-C6-C6'	-179.36(0.85)		
C5'-C5-C6-C6'	0.42(1.60)		
C3-C4-C7-C12	71.17(1.37)		
C5-C4-C7-C12	-112.03(1.25)		
C3-C4-C7-C8	-107.19(1.30)		
C5-C4-C7-C8	69.61(1.22)		
C12-C7-C8-C9'	2.17(1.67)		

•

Figure 42: Projection view of Tertiary-butyl 2,6-dimethyl-3,5-dicarboxylate-4-(3-nitrophenyl)-1,4-dihydropyridine(XII)

CRYSTAL DATA FOR

Di-*tert*-butyl 2,6-Dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (XII)

Formula	C23 H30 N2 O6
M. W.	430.49 g mole ⁻¹
a	11.1420(10) Å
b	16.803(2) Å
<u>C</u>	13.3840(10) Å
α	90.00 °
β	109.900(10) °
γ	90.00 °
V	2356.1(4) Å ³
F(000)	920
μΜοΚα	11.28 cm ⁻¹
λΜοΚα	0.71069 Å
D _{calc}	1.214 g/cm ³
Ζ	4
Meas refl	2898
Obs refl	. 1383
R	5.42%
Rw	12.09%
G. O. F.	1.123
Space Group	P21/n
Octants meas	-1≤ h ≤ 10, -1 ≤ k≤ 16, -12 ≤ l ≤ 12

.

POSITIONAL PARAMETERS FOR

Di-*tert*-butyl 2,6-Dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (XII)

АТОМ	X(SIG(X))	Y(SIG(Y))	Z(SIG(Z))
N1	0.2005(3)	0.2790(2)	0.2687(3)
C2	0.1253(5)	0.3456(3)	0.2626(4)
C2'	0.1766(5)	0.4011(3)	0.3560(4)
C3	0.0222(4)	0.3576(3)	0.1770(3)
C3'	-0.0543(4)	0.4308(3)	0.1659(4)
C3"	-0.2107(5)	0.5140(3)	0.0333(4)
O3'	-0.0569(3)	0.4730(2)	0.2389(3)
03"	-0.1237(3)	0.4454(2)	0.0645(3)
C4	-0.0235(4)	0.2945(3)	0.0902(3)
C5	0.0825(4)	0.2369(3)	0.0938(3)
C5'	0.0597(5)	0.1938(3)	-0.0061(4)
C5"	0.1547(5)	0.1038(3)	-0.1047(4)
O5'	-0.0373(3)	0.2026(2)	-0.0818(3)
05"	0.1557(3)	0.1459(2)	-0.0080(2)
C6	0.1864(4)	0.2291(3)	0.1830(4)
C6'	0.2957(4)	0.1705(3)	0.2042(4)
07	-0.1419(4)	0.2523(3)	0.0980(3)
C8	-0.1328(5)	0.1909(3)	0.1/01(4)
C9	-0.2408(6)	0.1568(3)	0.1/95(5)
C10	-0.3596(5)	0.1851(4)	0.1233(5)
	-0.3679(5)	0.2456(3)	0.0524(4)
012	-0.2622(5)	0.2790(3)	0.0382(4)
	-0.2619(6)	0.5080(4)	
014	-0.31/3(5)	0.5039(3)	0.0776(5)
	-0.1387(5)	0.5911(3)	0.0685(5)
	0.1405(6)	0.1618(4)	-0.1936(4)
	0.0510(0)	0.0420(4)	-0.1351(5)
	0.2001(0)	0.0002(3)	-0.0093(5)
01	*0.4927(3) 0 5927(4)	0.2700(3)	-0.0007(5)
$\mathbf{O}^{\mathbf{I}}$	-0.5057(4)	0.2092(0)	0.0167(4)
	-0.3019(4) 0.2048(2)	0.3233(3)	-0.0779(4) 0.3243(3)
	0.2340(3)	0.2002(2)	0.3243(3)
	0.1214(0)	0.4403(3)	0.0400(4)
	0.1020(5)	0.0700(0)	0.7133(4)
	0.2000(3)	0.4107(3)	0.0000(4)
	0.1001	0.3330	0.4012

H2'E'	0.2037	0.4652	0.3614	
H2'F	0.2576	0.3640	0.3986	
H4A	-0.0582(4)	0.3239(3)	0.0043(3)	
H6'A	0.2815(4)	0.1367(3)	0.1434(4)	
H6'B	0.3738(4)	0.1996(3)	0.2172(4)	
H6'C	0.3017(4)	0.1386(3)	0.2652(4)	
H6'D*	0.3295	0.1842	0.1387	
H6'E'	0.2444	0.1123	0.1786	
H6'F	0.3523	0.1819	0.2787	
H8A	-0.0496(5)	0.1731(3)	0.2139(4)	
H9A	-0.2324(6)	0.1123(3)	0.2264(5)	
H10A	-0.4349(5)	0.1634(4)	0.1326(5)	
H12A	-0.2726(5)	0.3211(3)	-0.0124(4)	
H13A	-0.3085(6)	0.4590(4)	-0.1050(4)	
H13B	-0.3172(6)	0.5519(4)	-0.1170(4)	
H13C	-0.1914(6)	0.5076(4)	-0.1119(4)	
H14A	-0.3612(5)	0.4550(3)	0.0512(5)	
H14B	-0.2814(5)	0.5017(3)	0.1537(5)	
H14C	-0.3764(5)	0.5475(3)	0.0569(5)	
H15A	-0.0734(5)	0.5952(3)	0.0370(5)	
H15B	-0.1950(5)	0.6360(3)	0.0477(5)	
H15C	-0.1001(5)	0.5902(3)	0.1445(5)	
H16A	0.0567(6)	0.1849(4)	-0.2161(4)	
H16B	0.2032(6)	0.2030(4)	-0.1679(4)	
H16C	0.1536(6)	0.1353(4)	-0.2526(4)	
H17A	-0.0298(6)	0.0688(4)	-0.1578(5)	
H17B	0.0588(6)	0.0104(4)	-0.1920(5)	
H17C	0.0590(6)	0.0096(4)	-0.0748(5)	
H18A	0.2917(5)	0.0277(3)	-0.0135(5)	
H18B	0.2987(5)	0.0383(3)	-0.1278(5)	
H18C	0.3483(5)	0.1060(3)	-0.0431(5)	

TABLE 63 (Continued)

*Disorder of methyl hydrogens on C2' and C6'

ANISOTROPIC THERMAL PARAMETERS FOR

Di-*tert*-butyl 2,6-Dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (XII)

				***************		*********
АТОМ	U11	U22	U33	U23	U13	U12
N1 C2	42(2) 53(3)	63(3) 46(3)	39(3) 46(3)	-3(2) 0(3)	0(2) 16(3)	3(2) 4(3)
C2'	67(4) 42(2)	57(3) 25(2)	59(3)	-18(3)	12(3)	0(3)
C3'	42(3)	61(4)	43(3) 47(4)	7(3) 5(3)	14(3)	4(3) -2(3)
C3"	58(3)	50(4)	71(4)	11(3)	26(3)	11(3)
03'	97(3)	75(3)	59(2)	-14(2)	22(2)	25(2)
03"	51(2)	48(2) 50(3)	55(2) 33(3)	5(2) -2(2)	1/(2) 7(2)	15(2)
C5	38(3)	42(3)	39(3)	1(2)	10(3)	0(2)
C5'	44(3)	49(3)	45(3)	2(3)	16(3)	2(3)
C5"	73(4)	55(3)	45(3)	-8(3)	19(3)	11(3)
05"	49(2)	82(3) 67(2)	43(2)	-13(2)	-5(2) 15(2)	13(2)
Č6	45(3)	48(3)	42(3)	1(3)	12(3)	-1(3)
C6'	55(3)	78(4)	49(3)	-4(3)	0(3)	22(3)
C7	38(3)	42(3) 58(4)	39(3) 58(3)	-6(3) 0(3)	10(3)	5(3)
C9	77(4)	62(4)	93(4)	13(3)	45(4)	-4(4)
C10	55(4)	72(4)	93(4)	-17(4)	37(4)	-9(3)
C11	39(4)	54(4)	67(4)	-10(3)	18(3)	1(3)
C12 C13	46(3)	45(3) 98(5)	48(3) 79(5)	-9(2) 26(4)	14(3) 26(4)	-2(3) 49(4)
C14	59(3)	62(4)	119(5)	-4(4)	27(4)	13(3)
C15	86(4)	51(4)	122(5)	20(4)	45(4)	8(4)
C16 C17	142(6) 114(5)	101(5)	69(4) 116(5)	15(4) -38(4)	59(4) 53(4)	42(5)
C18	107(5)	78(4)	83(4)	-2(4)	48(4)	26(4)
N2	48(4)	84(4)	106(5)	-11(3)	19(4)	1(3)
O1 O2	49(3) 62(3)	147(5) 128(4)	203(6) 102(3)	33(4) 6(3)	43(3) 4(3)	0(3) 23(3)
					• •	• • •

The anisotropic displacement exponent takes the form:- $2\pi^2(h^2a^{*2}U_{11} + ... + 2hka^{*}b^{*}U_{12})$

BOND DISTANCES (Å) AND BOND ANGLES (°) FOR

Di-*tert*-butyl 2,6-Dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (XII)

N1-C2	1.384(6)	C2-N1-C6	123.0(4)
N1-C6	1.385(5)	C3-C2-N1	120.0(4)
C2-C3	1.333(6)	C3-C2-C2'	126.3(5)
C2-C2'	1.508(6)	N1-C2-C2'	113.6(4)
C3-C3'	1.475(7)	C2-C3-C3'	120.8(4)
C3-C4	1.526(6)	C2-C3-C4	121.1(4)
C3'-O3'	1.216(5)	C3'-C3-C4	118.1(4)
C3'-O3"	1.336(5)	O3'-C3'-O3"	123.0(5)
C3"-O3"	1.472(5)	O3'-C3'-C3	125.2(5)
C3"-C13	1.506(7)	O3"-C3'-C3	111.7(5)
C3"-C14	1.507(7)	O3"-C3"-C13	102.9(4)
C3"-C15	1.511(7)	O3"-C3"-C14	109.3(4)
C4-C5	1.516(6)	C13-C3"-C14	110.2(5)
C4-C7	1.532(6)	O3"-C3"-C15	110.8(4)
C5-C6	1.357(6)	C13-C3"-C15	111.0(5)
C5-C5'	1.464(6)	C14-C3"-C15	112.3(4)
C5'-O5'	1.213(5)	C3'-O3"-C3"	122.0(4)
C5'-O5"	1.345(5)	C5-C4-C3	111.4(3)
C5"-O5"	1.473(5)	C5-C4-C7	112.5(4)
C5"-C17	1.491(7)	C3-C4-C7	109.9(3)
C5"-C16	1.505(7)	C6-C5-C5'	125.9(4)
C5"-C18	1.512(6)	C6-C5-C4	120.8(4)
C6-C6'	1.515(6)	C5'-C5-C4	113.3(4)
C7-C12	1.381(6)	O5'-C5'-O5"	123.0(4)
C7-C8	1.393(6)	05'-C5'-C5	122.1(5)
C12-C11	1.375(6)	O5"-C5'-C5	114.9(4)
C11-C10	1.372(7)	O5"-C5"-C17	110.2(4)
C11-N2	1.452(7)	O5"-C5"-C16	110.5(4)
C10-C9	1.366(7)	C17-C5"-C16	111.5(5)
C9-C12	1.377(6)	O5"-C5"-C18	102.2(4)
N2-01	1.215(6)	C17-C5"-C18	111.0(5)
N2-O2	1.218(6)	C16-C5"-C18	110.9(5)
		C5'-O5"-C5"	122.4(4)
		C5-C6-N1	119.5(4)
		C5-C6-C6'	128.1(4)
		N1-C6-C6'	112.4(4)
		C12-C7-C8	118.0(4)
		C12-C7-C4	119.9(4)
		C8-C7-C4	121.9(4)

C11-C12-C7	119.7(5)
C10-C11-C1 C10-C11-N2	122.6(5) 118.7(5)
C12-C11-N2 C9-C10-C11	118.6(5) 117.6(5)
C10-C9-C8	121.2(5)
01-N2-O2	122.2(6)
01-N2-C11 02-N2-C11	119.0(6) 118.7(6)

TABLE 65 (Continued)

TORSION ANGLES (°) FOR

Di-*tert*-butyl 2,6-Dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (XII)

C6-N1-C2-C3	10.37(0.66)	N2-C11-C10-C9	-178.67(0.47)
C6-N1-C2-C2'	-166.31(0.40)	C11-C10-C9-C8	3.80(0.79)
N1-C2-C3-C3'	-175.94(0.40)	C10-C9-C8-C7	-3.80(0.80)
C2'-C2-C3-C3'	0.28(0.72)	C12-C7-C8-C9	1.28(0.68)
N1-C2-C3-C4	6.89(0.66)	C4-C7-C8-C9	176.50(0.44)
C2'-C2-C3-C4	-176.89(0.41)	C12-C11-C10-C9	-1.44(0.75)
C2-C3-C3'-O3'	-22.40(0.72)	C10-C11-N2-O1	10.56(0.77)
C4-C3-C3'-O3'	154.85(0.46)	C12-C11-N2-O1	-166.78(0.52)
C2-C3-C3'-O3"	158.57(0.41)	C10-C11-N2-O2	-172.00(0.51)
C4-C3-C3'-O3"	-24.18(0.54)	C12-C11-N2-O2	10.65(0.74)
03'-C3'-O3"-C3"	-0.70(0.68)	C8-C7-C12-C11	1.04(0.62)
C3-C3'-O3"-C3"	178.35(0.36)	C4-C7-C12-C11	-174.28(0.39)
C13-C3"-O3"-C3'	177.57(0.42)	C7-C12-C11-C10	-0.97(0.69)
C14-C3"-O3"-C3'	-65.36(0.54)	C7-C12-C11-N1	176.27(0.43)
C15-C3"-O3"-C3'	58.94(0.55)	C3-C4-C7-C8	-81.41(0.51)
C2-C3-C4-C5	-20.62(0.57)	C5-C4-C7-C8	43.33(0.56)
C3'-C3-C4-C5	162.14(0.38)	C5-C4-C7-C12	-141.54(0.40)
C2-C3-C4-C7	104.75(0.48)	C3-C4-C7-C12	93.71(0.47)
C3'-C3-C4-C7	-72.49(0.49)	C2-N1-C6-C6'	168.84(0.41)
C3-C4-C5-C6	19.66(0.57)	C2-N1-C6-C5	-11.20(0.65)
C7-C4-C5-C6	-104.27(0.47)		
C3-C4-C5-C5'	-159.91(0.36)		
C7-C4-C5-C5'	76.16(0.46)		
C6-C5-C5'-O5'	178.16(0.46)		
C4-C5-C5'-O5'	-2.30(0.62)		
C6-C5-C5'-O5"	-3.62(0.65)		
C4-C5-C5'-O5"	175.92(0.36)		
05'-C5'-O5"-C5"	4.01(0.68)		
C5-C5'-O5"-C5"	-174,19(0,39)		
C17-C5"-O5"-C5'	-66.84(0.56)	• · · · ·	
C16-C5"-O5"-C5'	56.93(0.60)		
C18-C5"-O5"-C5'	175.04(0.40)		
C5'-C5-C6-N1	174.26(0.40)		
C4-C5-C6-N1	-5.25(0.65)		
C5'-C5-C6-C6'	-5.78(0.76)		
C4-C5-C6-C6'	174.71(0.43)		
**********	\ - · · - /		

CRYSTAL DATA FOR

Dipentyl2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (XIII)

Formula	C ₂₅ H ₃₄ N ₂ O ₆
M. W.	458.54 g mole ⁻¹
<u>a</u>	12.626(2) Å
b	14.079(3) Å
C	16.098(3) Å
α	90.0°
β	110.28(0)°
γ	90.0°
V	2684.2(8) Å ³
F(000)	980
μΜοΚα	11.28 cm ⁻¹
λΜοΚα	0.71069 Å
Dcalc	1.152 g/cm ³
Z	4
Meas refl	5878
Obs refl	1393
R	9.76 %
Rw	10.38 %
G. O. F.	1.75
Space Group	P21/c
Octants meas	-1 ≤h ≤15 , -1 ≤ k ≤16, -19 ≤ l ≤ 18

.

POSITIONAL PARAMETERS FOR

Dipentyl2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (XIII)

. .

АТОМ	X(SIG(X))	Y(SIG(Y))	Z(SIG(Z))
N1	-0.3721(7)	0.3346(8)	0.2570(7)
C2'	-0.3430(11)	0.4203(9)	0.2730(0)
C3	-0.2393(11)	0.4512(5) 0.4550(7)	0.3000(8)
C3'	-0.2091(12)	0.5523(10)	0.3247(9)
O3'	-0.2666(9)	0.6196(6)	0.3292(8)
O3"	-0.0964(8)	0.5640(5)	0.3516(6)
C4	-0.1463(8)	0.3875(7)	0.3000(7)
C5	-0.1840(9)	0.2854(7)	0.3070(7)
C5'	-0.0982(11)	0.2113(9)	0.3381 (8)
05'	-0.1119(6)	0.1287(5)	0.3498(6)
05"	0.0068(6)	0.2473(5)	0.3570(5)
C6	-0.2925(10)	0.2627(8)	0.2812(8)
C6'	-0.3448(9)	0.1659(8)	0.2766(8)
C7	-0.1111(10)	0.3998(6)	0.2191(8)
C8	-0.1923(10)	0.4016(7)	0.1348(8)
C9	-0.1616(10)	0.4083(7)	0.0610(8)
C10	-0.0509(12)	0.4164(8)	0.0683(9)
010	0.0256(10)	0.4148(7)	0.1514(10)
012	0.0016(9)	0.4089(7)	0.2290(8)
	-0.0461(22)	0.6540(20)	0.36/2(41)
CI3A C14	-0.0000(20)	0.0040(22)	0.4109(46)
	0.0001(27)	0.0441(21)	0.2807(28)
C15	0.0730(29) 0.1420(24)	0.0070(22)	0.3007(20)
C15A	0.1429(34)	0.0100(20)	0.4002(20)
C16	0.2768/31	0.000(25)	0.45940(21)
C17	0.3130(31)	0.5378(28)	0.4608(23)
C18	0.0975(9)	0.1812(8)	0.3869(9)
C19	0.2057(10)	0.2339(10)	0.4018(10)
C20	0.3075(11)	0.1700(11)	0.4337(11)
C21	0.4138(13)	0.2154(15)	0.4501(13)
C22	0.5097(13)	0.1536(16)	0.4813(13)
N2	0.1498(10)	0.4230(7)	0.1653(8)
01	0.2181(7)	0.4238(7)	0.2404(7)
O2	0.1744(7)	0.4231(6)	0.0991(6)
03	0.3896(6)	0.2862(6)	0.1960(8)

H1A	-0.4448	0.3183	0.2295
H2'A	-0.4237	0.5557	0.2763
H2'B	-0.4983	0.4872	0.2024
H2'C	-0.4873	0.4710	0.3014
НЗА	0.3412	0.2437	0.2246
H3B	0.2624	0.3465	0.1839
H4A	-0.0813	0.4004	0.3515
H6'A	-0.2855	0.1195	0.2930
H6'B	-0.3862	0.1622	0.3165
H6'C	-0.3948	0.1538	0.2173
H8A	-0.2704	0.3971	0.1292
H9A	-0.2195	0.4112	0.0037
H10A	-0.0275	0.4204	0.0177
H12A	0.0593	0.4111	0.2865
H18A	0.0908	0.1343	0.3421
H18B	0.0983	0.1501	0.4402
H19A	0.2138	0.2784	0.4488
H19B	0.2016	0.2683	0.3493
H20A	0.3005	0.1265	0.3861
H20B	0.3103	0.1343	0.4852
H21A	0.4193	0.2613	0.4955
H21B	0.4141	0.2479	0.3977
H22A	0.5807	0.1858	0.4951
H22B	0.5069	0.1215	0.5331
H22C	0.5017	0.1081	0.4351

TABLE 68 (Continued)

ANISOTROPIC THERMAL PARAMETERS FOR

Dipentyl2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarb	oxylate (XIII)

АТОМ			1133	1112	U13	
N1	40(7)	67(7)	122(10)	-1(7)	31(6)	-6(7)
C2	58(10)	53(9)	101(11)	12(8)	29(8)	1(8)
C2'	62(9)	83(10)	184(16)	20(9)	40(10)	11(11)
C3	63(9)	20(6)	85(10)	-2(7)	31(7)	1(6)
C3'	59(10)	77(11)	83(10)	-10(9)	27(8)	-16(9)
O3'	125(10)	65(6)	203(12)	25(6)	56(8)	-35(7)
O3"	98(7)	38(5)	133(9)	-18(5)	41(7)	-32(5)
C4	42(7)	38(7)	51(8)	7(6)	5(6)	5(6)
C5	42(8)	39(7)	73(9)	-12(7)	29(7)	-5(7)
C5'	65(9)	45(7)	57(9)	7(8)	35(7)	19(7)
05'	57(6)	44(5)	130(8)	8(5)	29(5)	29(6)
05"	42(5)	56(5)	99(7)	9(4)	16(5)	24(5)
C6	44(8)	47(8)	72(9)	8(7)	22(7)	8(7)
C6'	40(8)	67(9)	148(14)	3(7)	22(8)	24(9)
C7	66(9)	22(6)	55(9)	13(6)	25(7)	14(6)
C8	63(8)	48(7)	53(9)	-2(7)	19(8)	21(7)
C9	57(9)	56(8)	57(10)	-1/(/)	-3(7)	6(7)
C10	83(10)	45(8)	59(10)	-22(8)	14(9)	6(7)
C11	39(8)	24(6)	107(12)	-6(6)	41(9)	-9(8)
C12	38(8)	38(7)	81(11)	-4(6)	21(7)	-14(7)
C18	54(8)	66(9)	126(12)	22(8)	16(8)	44(9)
C19	48(9)	105(12)	161(15)	25(9)	25(10)	4/(11)
C20	51(9)	153(16)	1/2(1/)	-11(12)	24(10)	43(13)
021	73(12)	260(28)	234(25)	31(17)	15(15)	69(20)
U22	94(15)	433(42)	199(23)	41(23)	10(15)	16(24)
N2	98(10)	49(6)	59(8)	18(7)	59(8)	15(7)
	()()	121(8)	82(7)	13(6)	32(6)	18(7)
02	09(7) 45(5)	102(7)	92(7) 270(12)	10(5)	58(6) 57(7)	4(b) 22/9\
	+5(5)	JI(/)	213(13)	(3)	57(7)	33(0)

The anisotropic displacement exponent takes the form:- $2\pi^2(h^2a^{*2}U_{11} + ... + 2hka^{*}b^{*}U_{12})$

•

.

BOND DISTANCES (Å) AND BOND ANGLES (°) FOR

Dipentyl2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (XIII)

N1-C2	1.367 (17)	C2-N1-C6	123.1(9)
N1-C6	1.384 (15)	N1-C2-C2'	113.6(11)
C2-C2'	1.523 (18)	N1-C2-C3	119.1(12)
C2-C3	1.319 (19)	C2'-C2-C3	127.2(11)
C3-C3'	1.440 (17)	C2-C3-C3'	119.9(12)
C3-C4	1.511 (17)	C2-C3-C4	122.1(10)
C3'-O3'	1.211 (18)	C3'-C3-C4	117.9(11)
C3'-O3"	1.346 (17)	C3-C3'-O3'	130.8(14)
O3"-C13	1.529 (29)	C3-C3'-O3"	110.8(12)
O3"-C13A	1.580 (43)	O3'-C3'-O3"	118.3(12)
C4-C5	1.530 (15)	C3'-O3"-C13	119.9(13)
C4-C7	1.526 (19)	C3'-O3"-C13A	114.7(16)
C5-C5'	1.461 (16)	C3-C4-C5	109.3(10)
C5-C6	1.326 (16)	C3-C4-C7	112.6(9)
C5'-O5'	1.200 (14)	C5-C4-C7	111.1(9)
C5'-O5"	1.352 (15)	C4-C5-C5'	118.9(10)
O5"-C18	1.423 (13)	C4-C5-C6	121.1(9)
C6-C6'	1.505 (16)	C5'-C5-C6	119.9(10)
C7-C8	1.389 (15)	C5-C5'-O5'	128.0(12)
C7-C12	1.382 (17)	C5-C5'-O5"	111.2(10)
C8-C9	1.375 (21)	O5'-C5'-O5"	120.7(11)
C9-C10	1.365 (21)	C5'-O5"-C18	116.3(9)
C10-C11	1.352 (18)	N1-C6-C5	118.9(10)
C11-C12	1.386 (23)	N1-C6-C6'	112.7(10)
C11-N2	1.510 (18)	C5-C6-C6'	128.4(10)
C18-C19	1.499 (17)	C4-C7-C8	120.1(11)
C19-C20	1.506 (18)	C4-C7-C12	120.4(10)
C20-C21	1.425 (22)	C8-C7-C12	119.6(13)
C21-C22	1.433 (25)	C7-C8-C9	120.7(12)
N2-O1	1.218 (14)	C8-C9-C10	121.2(10)
N2-O2	1.209 (18)	C9-C10-C11	116.3(14)
C13-C14	1.589 (49)	C10-C11-C12	126.0(13)
C13A-C14	1.416 (44)	C10-C11-N2	119.6(15)
C13A-C14A	1.789 (68)	C12-C11-N2	114.3(11)
C14-C15	1.455 (66)	C7-C12-C11	116.1(10)
C14A-C15A	1.624 (46)	O5"-C18-C19	108.3(9)
C15-C16	1.634 (50)	C18-C19-C20	112.5(11)
C15A-C16	1.716 (54)	C19-C20-C21	115.7(14)
C16-C17	1.048 (53)	C20-C21-C22	114.8(17)
		C11-N2-O1	119.2(13)
		C11-N2-O2	116.1(10)

	TABLE 70	(Continued)

01-N2-02	124.5(12)
O3"-C13-C14	100.3(23)
O3"-C13A-C14A	91.5(32)
C13-C14-C15	101.6(36)
C13A-C14A-C15A	94.6(31)
C14-C15-C16	116.7(31)
C14A-C15A-C16	99.7(26)
C15-C16-C17	116.7(34)
C15A-C16-C17	03.8(36)

-

TORSION ANGLES (°) FOR

Dipentyl2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (XIII)

C6-N1-C2-C2'	-166.1(1.2)	C14A-C15A-C16-C17	-136.9(3.3)
C6-N1-C2-C3	15.3(2.0)	C14-C15-C16-C17	119.4(4.6)
C2-N1-C6-C5	-14.4(2.0)	C13A-C14A-C15A-C16	-160.7(2.5)
C2-N1-C6-C6'	163.9(1.2)	C13-C14-C15-C16	170.4(2.8)
N1-C2-C3-C3'	-176.4(1.2)	O3"-C13A-C14A-C15A	-83.8(2.7)
N1-C2-C3-C4	5.7(2.0)	O3"-C13-C14-C15	85.9(3.6)
C2'-C2-C3-C3'	5.2(2.2)	C19-C20-C21-C22	179.3(1.7)
C2'-C2-C3-C4	-172.7(1.2)	C18-C19-C20-C21	-179.5(1.6)
C2-C3-C3'-O3'	1.3(2.4)	O5"-C18-C19-C20	-180.0(1.2)
C2-C3-C3'-O3"	176.9(1.2)	C12-C11-N2-O2	176.1(0.9)
C4-C3-C3'-O3'	179.3(1.5)	C12-C11-N2-O1	0.1(1.4)
C4-C3-C3'-O3"	-5.2(1.7)	C10-C11-N2-O2	-5.7(1.4)
C2-C3-C4-C5	-23.4(1.6)	C10-C11-N2-O1	178.3(1.0)
C2-C3-C4-C7	100.6(1.4)	N2-C11-C12-C7	-179.0(0.8)
C3'-C3-C4-C5	158.7(1.1)	C10-C11-C12-C7	2.9(1.5)
C3'-C3-C4-C7	-77.3(1.3)	C9-C10-C11-N2	179.7(0.9)
C3-C3'-O3"-C13	170.4(3.0)	C9-C10-C11-C12	-2.3(1.6)
C3-C3'-O3"-C13A	-159.3(2.8)	C8-C9-C10-C11	1.8(1.6)
O3'-C3'-O3"-C13	-13.4(3.4)	C7-C8-C9-C10	-2.2(1.6)
O3'-C3'-O3"-C13A	16.9(3.1)	C8-C7-C12-C11	-2.9(1.4)
C3'-O3"-C13-C14	146.4(2.3)	C5'-O5"-C18-C19	178.4(1.1)
C3'-O3"-C13A-C14A	-156.0(1.6)	C4-C7-C8-C9	-177.0(0.9)
C3-C4-C5-C5'	-159.4(1.0)	C12-C7-C8-C9	2.7(1.5)
C3-C4-C5-C6	24.0(1.5)	C4-C7-C12-C11	176.8(0.8)
C7-C4-C5-C5'	75.8(1.2)		
C7-C4-C5-C6	-100.8(1.3)		
C3-C4-C7-C8	-49.9(1.2)		
C3-C4-C7-C12	130.4(0.9)		
C5-C4-C7-C8	73.1(1.1)		
C5-C4-C7-C12	-106.6(1.0)		
C4-C5-C5'-O5'	177.9(1.2)		
C4-C5-C5'-O5"	0.2(1.6)		
C6-C5-C5'-O5'	-5.4(2.1)		
C6-C5-C5'-O5"	176.8(1.1)	· · · · · ·	
C4-C5-C6-N1	-7.2(1.9)		
C4-C5-C6-C6'	174.8(1.2)		
C5'-C5-C6-N1	176.2(1.1)		
C5'-C5-C6-C6'	-1.8(2.1)		
C5-C5'-O5"-C18	-179.2(1.1)		
O5'-C5'-O5"-C18	2.9(1.7)		
######################################	*******		

Figure 44: Projection view of Isopentyl 2,6-dimethyl-3,5-dicarboxylate-4-(3-nitrophenyl)-1,4-dihydropyridine(XIV)

216

CRYSTAL DATA FOR

Di-isopentyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (XIV)

Formula		C17H17N2O6
M. W.		345.33 g mole ⁻¹
<u>a</u>		10.744(1) Å
b		10.887(1) Å
ç		12.223(1) Å
α		103.07(1) °
β		97.39(1) °
γ		109.51(1) °
V		1279.9(2) Å ³
F(000)		492
μΜοΚα		11.28 cm ⁻¹
λΜοΚα		0.71069 Å
Dcalc		1.190 g/cm ³
Z		2
Meas refl		5249
Obs refl	ана. Аларана Аларана (1996)	N/A(refinement on F ²)
R		5.8 %
Rw		12.42 %
G. O. F.		0.796
Space Group		P-1
Octants meas		-1≤h ≤12, -12 ≤ k ≤11,-14 ≤ l ≤ 14

POSITIONAL PARAMETERS FOR

Di-isopentyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (XIV)

ΑΤΟΜ	X(SIG(X))	Y(SIG(Y))	Z(SIG(Z))
N1	0.3382(4)	-0.0013(3)	0.1233(3)
H1A	0.3415(4)	-0.0774(3)	0.0781(3)
C2	0.2131(4)	0.0012(3)	0.1326(3)
C2'	0.0996(4)	-0.1378(3)	0.0914(4)
H2'A	0.0154(4)	-0.1288(3)	0.1005(4)
H2'B	0.0938(4)	-0.1786(3)	0.0117(4)
H2'C	0.1181(4)	-0.1942(3)	0.1362(4)
H2'D	0.0365	-0.1050	0.0079
H2'E	0.1591	-0.2055	0.0731
H2'F	0.0808	-0.1554	0.1633
C3	0.2015(4)	0.1211(3)	0.1737(3)
C3'	0.0725(4)	0.1280(4)	0.1960(3)
03'	-0.0363(3)	0.0371(3)	0.1731(3)
O3"	0.0892(2)	0.2574(2)	0.2489(2)
C4	0.3223(3)	0.2527(3)	0.1976(3)
H4A	0.3176(3)	0.3150(3)	0.2650(3)
C5	0.4532(4)	0.2303(3)	0.2240(3)
C5'	0.5738(5)	0.3436(4)	0.2981(4)
O5'	0.6635(69)	0.3248(64)	0.3362(52)
05'A	0.6922(48)	0.3512(44)	0.3222(27)
05"	0.5450(3)	0.4552(3)	0.3331(2)
C6	0.4596(4)	0.1067(4)	0.1796(3)
C6'	0.5787(4)	0.0680(4)	0.1874(4)
H6'A	0.6584(4)	0.1471(4)	0.2271(4)
H6'B	0.5668(4)	0.0018(4)	0.2293(4)
H6°C	0.5886(4)	0.0300(4)	0.1116(4)
H6'D	0.6284	0.1042	0.2805
H6'E	0.5125	-0.06/3	0.1275
	0.6444	0.1192	0.1440
C7	0.3197(3)	0.3164(3)	0.0998(3)
	0.2917(4)	0.2407(4)	-0.0145(3)
HBA	0.2/54(4)	0.1456(4)	-0.0305(3)
	0.2000(4)	0.2993(4)	-0.1030(4)
П9А С10	0.2002(4)	0.2430(4)	-0.1000(4)
	0.3103(4)	0.4309(4)	-0.0814(4)
	0.3107(4)	0.4780(4)	-0.1425(4)

TABLE 73 (Continued)

C11	0.3361(4)	0.5090(4)	0.0316(4)
C12	0.3420(4)	0.4541(3)	0.1220(3)
H12A	0.3614(4)	0.5104(3)	0.1997(3)
C13	-0.0281(4)	0.2799(4)	0.2778(4)
H13A	-0.0720(4)	0.2171(4)	0.3177(4)
H13B	-0.0908(4)	0.2674(4)	0.2090(4)
C14	0.0191(4)	0.4251(4)	0.3498(4)
H14A	0.0782(4)	0.4340(4)	0.4195(4)
H14B	-0.0564(4)	0.4459(4)	0.3701(4)
C15	0.0980(5)	0.5304(4)	0.2988(5)
H15A	0.1797(5)	0.5159(4)	0.2887(5)
C16	0.0236(6)	0.5164(5)	0.1810(5)
H16A	0.0767(6)	0.5827(5)	0.1483(5)
H16B	0.0027(6)	0.4267(5)	0.1314(5)
H16C	-0.0589(6)	0.5300(5)	0.1890(5)
C17	0.1364(6)	0.6712(5)	0.3747(5)
H17A	0.1846(6)	0.7380(5)	0.3400(5)
H17B	0.0562(6)	0.6856(5)	0.3903(5)
H17C	0.1932(6)	0.6794(5)	0.4454(5)
C18	0.6528(4)	0.5755(4)	0.4104(4)
H18A	0.7335(4)	0.5970(4)	0.3808(4)
H18B	0.6721(4)	0.5613(4)	0.4844(4)
C19	0.6014(5)	0.6887(4)	0.4201(4)
H19A	0.5167(5)	0.6609(4)	0.4433(4)
H19B	0.5850(5)	0.7022(4)	0.3454(4)
C20	0.6922(6)	0.8192(5)	0.5049(4)
H20A	0.7103(6)	0.8013(5)	0.5774(4)
C21	0.6249(7)	0.9199(5)	0.5227(5)
H21A	0.6805(7)	1.0067(5)	0.5763(5)
H21B	0.5977(7)	0.9320(5)	0.4492(5)
H21C	0.5460(7)	0.8792(5)	0.5505(5)
C22	0.8233(7)	0.8795(6)	0.4806(6)
H22A	0.8655(7)	0.8139(6)	0.4750(6)
H22B	0.8075(7)	0.8965(6)	0.4073(6)
H22C	0.8816(7)	0.9627(6)	0.5375(6)
N2	0.3571(4)	0.6553(4)	0.0594(5)
01	0.3452(4)	0.7036(3)	-0.0192(3)
O2	0.3850(4)	0.7207(3)	0.1593(4)

*Disorder of methyl hydrogens on C2' and C6'

ANISOTROPIC THERMAL PARAMETERS FOR

Di-isopentyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (XIV)

ATOM	U11	U22	U33	U23	U13	U12
N1 C2 C2' C3 C3' C4 C5 C5' C5' C5' C6 C7 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C21 C22 N2 O2 N2 O2 N2 O2 N2 O2 N2 O2 N2 O2 N2 C2 N3 C3 N3 C4 C5 C5 S' C5 C5 S' C5 S' C5 S' C5 S' C5 S' C5 S' C5 S' C5 S' C5 S' C5 S' C5 S' C5 S' C5 S' C5 S' C5 S' C5 S' C5 S' C10 C11 C12 C12 C12 C12 C12 C12 C12 C12 C12	$\begin{array}{c} 71(2)\\ 63(3)\\ 89(3)\\ 54(2)\\ 60(3)\\ 61(2)\\ 50(2)\\ 48(2)\\ 60(3)\\ 24(15)\\ 43(10)\\ 56(2)\\ 60(3)\\ 71(3)\\ 44(2)\\ 65(3)\\ 88(3)\\ 65(3)\\ 53(2)\\ 60(3)\\ 70(3)\\ 88(3)\\ 53(2)\\ 60(3)\\ 70(3)\\ 88(3)\\ 53(2)\\ 60(3)\\ 70(3)\\ 88(3)\\ 53(2)\\ 60(3)\\ 70(3)\\ 88(3)\\ 53(2)\\ 60(3)\\ 70(3)\\ 88(3)\\ 53(2)\\ 60(3)\\ 70(3)\\ 88(3)\\ 53(2)\\ 60(3)\\ 70(3)\\ 88(3)\\ 53(2)\\ 60(3)\\ 70(3)\\ 88(3)\\ 161(6)\\ 182(7)\\ 67(3)\\ 87(4)\\ 147(5)\\ 207(8)\\ 173(7)\\ 86(3)\\ 133(3)\\ 182(4) \end{array}$	$\begin{array}{c} 43(2)\\ 43(2)\\ 41(2)\\ 37(2)\\ 52(3)\\ 61(2)\\ 57(2)\\ 41(2)\\ 46(2)\\ 61(3)\\ 56(16)\\ 89(9)\\ 53(2)\\ 53(2)\\ 53(2)\\ 68(3)\\ 38(2)\\ 47(2)\\ 69(3)\\ 83(3)\\ 50(2)\\ 43(2)\\ 76(3)\\ 93(3)\\ 50(2)\\ 43(2)\\ 76(3)\\ 93(3)\\ 74(3)\\ 105(4)\\ 84(4)\\ 74(3)\\ 64(3)\\ 63(3)\\ 82(4)\\ 96(5)\\ 58(3)\\ 88(2)\\ 53(2)\\ \end{array}$	86(2) 64(3) 99(3) 60(2) 72(3) 134(3) 108(2) 54(2) 56(2) 75(3) 109(25) 170(10) 97(2) 81(3) 111(4) 67(3) 68(3) 69(3) 88(3) 93(3) 73(3) 115(4) 106(4) 119(4) 192(7) 177(6) 88(3) 87(3) 98(4) 139(5) 225(8) 129(4) 162(3) 145(3)	8(2) 15(2) 14(2) 14(2) 13(2) 3(2) 7(2) 9(2) 13(2) 17(2) -24(16) 7(9) 1(2) 24(2) 23(2) 11(2) 22(2) 44(3) 30(2) 11(2) 22(3) 17(3) 13(3) 59(5) -8(4) -3(3) 2(2) 5(3) 6(4) -24(5) 45(3) 78(2) 28(2)	$\begin{array}{c} 23(2)\\ 12(2)\\ 11(3)\\ 10(2)\\ 18(2)\\ 29(2)\\ 27(2)\\ 12(2)\\ 8(2)\\ 13(3)\\ -2(11)\\ 0(7)\\ -2(2)\\ 26(2)\\ 25(3)\\ 16(2)\\ 14(2)\\ 17(3)\\ 27(3)\\ 26(2)\\ 20(2)\\ 35(3)\\ 37(3)\\ 26(2)\\ 20(2)\\ 35(3)\\ 37(3)\\ 26(3)\\ 29(6)\\ 55(5)\\ 0(3)\\ 6(3)\\ 14(4)\\ 25(5)\\ 67(6)\\ 41(3)\\ 41(3)\\ 51(3)\\ \end{array}$	22(2) 14(2) 11(2) 9(2) 15(2) 1(2) 19(1) 16(2) 12(2) 24(3) -9(14) 21(8) 8(1) 22(2) 32(2) 14(2) 20(2) 25(3) 28(2) 25(2) 15(2) 24(2) 38(3) 37(3) 48(4) 19(4) 5(3) 8(3) 7(4) 25(5) -46(5) 33(2) 50(2) 51(2)

The anisotropic displacement exponent takes the form:- $2\pi^2(h^2a^{*2}U_{11} + ... + 2hka^{*b}U_{12})$

BOND DISTANCES (Å) AND BOND ANGLES (°) FOR

Di-isopentyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (XIV)

N1-C2	1.372(5)	C2-N1-C6	123.8(3)
N1-C6	1.391(4)	C3-C2-N1	119.2(3)
C2-C3	1.342(5)	C3-C2-C2'	126.8(4)
C2-C2'	1.515(5)	N1-C2-C2'	114.0(3)
C3-C3'	1.470(5)	C2-C3-C3'	121.2(3)
C3-C4	1.514(4)	C2-C3-C4	120.2(4)
C3'-O3'	1.201(4)	C3'-C3-C4	118.7(3)
C3'-O3"	1.350(4)	O3'-C3'-O3"	121.2(4)
O3"-C13	1.434(4)	O3'- C3'-C3	128.4(4)
C4-C5	1.512(5)	O3"-C3'-C3	110.4(3)
C4-C7	1.514(4)	C3'-O3"-C13	116.8(3)
C5-C6	1.361(5)	C5-C4-C7	111.0(3)
C5-C5'	1.465(5)	C5-C4-C3	110.7(3)
C5'-O5'	1.12(7)	C7-C4-C3	112.1(3)
C5'-O5'A	1.24(4)	C6-C5-C5'	120.0(4)
C5'-O5"	1.344(5)	C6-C5-C4	120.7(3)
O5"-C18	1.447(4)	C5'-C5-C4	119.3(3)
C6-C6'	1.473(5)	O5'-C5'-O5"	127(2)
C7-C8	1.388(5)	O5'-C5'-C5	121(3)
C7-C12	1.392(4)	O5'A-C5'-C5	129.9(13)
C8-C9	1.376(5)	05"-C5'-C5	110.3(4)
C9-C10	1.382(5)	C5'-O5"-C18	117.2(4)
C10-C11	1.369(5)	C5-C6-N1	117.3(4)
C11-C12	1.374(5)	C5-C6-C6'	128.7(4)
C11-N2	1.483(5)	N1-C6-C6'	113.9(3)
C13-C14	1.501(5)	C8-C7-C12	117.5(4)
C14-C15	1.493(6)	C8-C7-C4	122.0(3)
C15-C17	1.489(5)	C12-C7-C4	120.5(3)
C15-C16	1.503(6)	C9-C8-C7	121.7(4)
C18-C19	1.497(6)	C8-C9-C10	121.1(4)
C19-C20	1.481(5)	C11-C10-C9	116.7(4)
C20-C22	1.443(7)	C10-C11-C12	123.7(4)
C20-C21	1.494(7)	C10-C11-N2	118.9(4)
N2-O2	1.207(4)	C12-C11-N2	117.4(4)
N2-01	1.207(4)	C11-C12-C7	119.4(4)
		O3"-C13-C14	107.0(3)
		C15-C14-C13	116.3(4)
		C17-C15-C14	112.3(4)
		C17-C15-C16	110.0(5)
			\ /

·	
4-C15-C16 11	1.9(4)
"-C18-C19 10)6.1(4)
0-C19-C18 11	4.7(4)
2-C20-C19 11	5.1(5)
2-C20-C21 11	0.3(5)
9-C20-C21 11	1.4(5)
-N2-O1 12	23.0(4)
-N2-C11 11	8.7(4)
-N2-C11 11	8.3(5)
	4-C15-C16 11 *-C18-C19 10 0-C19-C18 11 2-C20-C19 11 2-C20-C21 11 9-C20-C21 11 -N2-O1 12 -N2-C11 11 -N2-C11 11

.

•

TABLE 75 (Continued)

.

TORSION ANGLES (°) FOR

Di-isopentyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (XIV)

C6-N1-C2-C3	17.01(0.56)	C8-C7-C12-C11	-0.24(0.51)
C6-N1-C2-C2'	-164.11(0.34)	C4-C7-C12-C11	-178.55(0.33)
N1-C2-C3-C3'	-173.87(0.34)	C3'-O3"-C13-C14	172.04(0.34)
C2'-C2-C3-C3'	7.41(0.59)	O3"-C13-C14-C15	54.37(0.54)
N1-C2-C3-C4	6.27(0.53)	C13-C14-C15-C17	178.11(0.43)
C2'-C2-C3-C4	-172.45(0.34)	C13-C14-C15-C16	53.83(0.58)
C2-C3-C3'-O3'	-7.21(0.65)	C5'-O5"-C18-C19	171.10(0.36)
C4-C3-C3'-O3'	172.65(0.39)	O5"-C18-C19-C20	174.38(0.38)
C2-C3-C3'-O3"	173.04(0.32)	C18-C19-C20-C22	62.29(0.69)
C4-C3-C3'-O3"	-7.10(0.47)	C18-C19-C20-C21	-171.20(0.45)
03'-C3'-O3"-C13	1.12(0.57)	C10-C11-N2-O2	-177.13(0.43)
C3-C3'-O3"-C13	-179.11(0.33)	C12-C11-N2-O2	3.72(0.60)
C2-C3-C4-C5	-26.61(0.46)	C10-C11-N2-O1	2.94(0.58)
C3'-C3-C4-C5	153.53(0.32)	C12-C11-N2-O1	-176.21(0.39)
C2-C3-C4-C7	97.91(0.39)	C8-C9-C10-C11	0.55(0.61)
C3'-C3-C4-C7	-81.95(0.39)	C9-C10-C11-C12	0.48(0.61)
C7-C4-C5-C6	-97.24(0.38)	C9-C10-C11-N2	-178.61(0.36)
C3-C4-C5-C6	27.87(0.46)	C10-C11-C12-C7	-0.63(0.58)
C7-C4-C5-C5'	82.68(0.39)	N2-C11-C12-C7	178.47(0.33)
C3-C4-C5-C5'	-152.21(0.33)	C7-C8-C9-C10	-1.44(0.62)
C6-C5-C5'-O5'	-15.04(4.96)	C12-C7-C8-C9	1.25(0.55)
C4-C5-C5'-O5'	165.04(4.93)	C4-C7-C8-C9	179.53(0.34)
C6-C5-C5'-O5'A	6.99(3.61)	C3-C4-C7-C12	132.19(0.35)
C4-C5-C5'-O5'A	-172.93(3.56)	C5-C4-C7-C12	-103.50(0.36)
C6-C5-C5'-O5"	-179.48(0.33)		
C4-C5-C5'-O5"	0.60(0.49)		
05'-C5'-O5"-C18	14.78(5.85)		
C5-C5'-O5"-C18	177.99(0.32)		
C5'-C5-C6-N1	171.40(0.33)		
C4-C5-C6-N1	-8.68(0.52)		
C5'-C5-C6-C6'	-5.41(0.62)		
C4-C5-C6-C6'	174.51(0.36)		
C2-N1-C6-C5	-15.65(0.55)		
C2-N1-C6-C6'	161.62(0.35)		
C5-C4-C7-C8	78.27(0.41)		
C3-C4-C7-C8	-46.05(0.45)		
	· · ·		

Figure 45: Projection view of Isopentyl 2,6-dimethyl-3,5-dicarboxylate-4-(3-nitrophenyl)-pyridine(XV)

224

CRYSTAL DATA FOR

Di-isopentyl 2,6-dimethyl-4-(3-nitrophenyl)-pyridine-3,5-dicarboxylate(XV)

Formula	3	C ₂₅ H ₃₂ N ₂ O ₆
M. W.		456.53 g mole ⁻¹
a		13.329(2) Å
Þ		13.331(3) Å
C		14.493(4) Å
α	an a	90.00 °
β		90.00 °
γ		90.00 °
v		2575.2(10) Å ³
F(000)		976
μΜοΚα		11.28 cm ⁻¹
λΜοΚα		0.71069 Å
Dcalc		1.18 g/cm ³
Z		4
Meas re	əfi	3293
Obs ref	1	1469
R		6.95 %
Rw		13.38 %
G. O. F	•	0.947
Space	Group	P212121
Octants	s meas	-1 ≤ h ≤15 , -1 ≤ k ≤15 , -17 ≤ l ≤ 1

POSITIONAL PARAMETERS FOR

Di-isopentyl 2,6-dimethyl-4-(3-nitrophenyl)-pyridine-3,5-dicarboxylate (XV)

ΑΤΟΜ	X(SIG(X))	Y(SIG(Y))	Z(SIG(Z))
	0 0700/ <i>1</i>)	0.2769/4)	0 9740/ <i>A</i>)
	0.0720(4)	0.3700(4)	0.0745(4)
C2 C2	0.0000(0)	0.2094(0)	0.0321(4)
U2 H2'A	0.7555(5)	0.2700(0)	0.7070(0)
	0.7107(5)	0.3301(0)	0.8161(6)
	0.7645(5)	0.2200(0)	0.7231(6)
C3	0.7045(5)	0.2020(0)	0.8332(4)
C3'	0.9270(5)	0.1162(6)	0 7883/5)
03'	0.8884(6)	0.102(0)	0.7075(3)
03"	0.9029(4)	0.0410(3)	0.8480(3)
C4	1 0199(5)	0.2294(5)	0.8754(4)
C5	1.0361(5)	0.3216(5)	0.9178(4)
C5'	1,1335(6)	0.3440(5)	0.9624(5)
05'	1.1456(4)	0.3609(6)	1.0427(3)
05"	1.2081(3)	0.3459(4)	0.9025(3)
C6	0.9599(5)	0.3944(5)	0.9167(4)
C6'	0.9726(6)	0.4947(5)	0.9623(6)
H6'A	0.9117(6)	0.5327(5)	0.9562(6)
H6'B	1.0267(6)	0.5304(5)	0.9334(6)
H6'C	0.9874(6)	0.4853(5)	1.0265(6)
C7	1.0982(5)	0.1496(5)	0.8763(5)
C8	1.1463(6)	0.1212(8)	0.7968(6)
H8A	1.1257(6)	0.1506(8)	0.7418(6)
C9	1.2203(9)	0.0546(12)	0.7932(12)
C10	1.2426(10)	0.0056(11)	0.8738(18)
H10A	1.2936(10)	-0.0420(11)	0.8733(18)
C11	1.1887(11)	0.0253(8)	0.9628(11)
C12	1.1234(8)	0.1018(6)	0.9573(7)
H12A	1.0934(8)	0.1239(6)	1.0115(7)
C13	0.8847(8)	-0.0579(6)	0.8134(5)
H13A	0.9457(8)	-0.0858(6)	0.7875(5)
H13B	0.8339(8)	-0.0562(6)	0.7656(5)
C14	0.8494(11)	-0.1205(8)	0.8942(7)
H14A	0.8317(11)	-0.1862(8)	0.8704(7)
H14B	0.7881(11)	-0.0904(8)	0.9172(7)
C15	0.9154(10)	-0.1355(7)	0.9721(7)
H15A	0.9371(10)	-0.0691(7)	0.9933(7)

TABLE /8 (Continu	ued)	
-------------------	------	--

C16	1.0098(12)	-0.1947(11)	0.9451(11)
H16A	1.0431(12)	-0.1613(11)	0.8950(11)
H16B	0.9911(12)	-0.2611(11)	0.9262(11)
H16C	1.0543(12)	-0.1986(11)	0.9970(11)
C17	0.8701(15)	-0.1874(10)	1.0516(8)
H17A	0.8117(15)	-0.1514(10)	1.0716(8)
H17B	0.9179(15)	-0.1904(10)	1.1012(8)
H17C	0.8514(15)	-0.2542(10)	1.0339(8)
C18	1.3082(6)	0.3631(9)	0.9374(5)
H18A	1.3369(6)	0.3011(9)	0.9605(5)
H18B	1.3069(6)	0.4117(9)	0.9872(5)
C19	1.3688(7)	0.4025(11)	0.8570(8)
H19A	1.3358(7)	0.4618(11)	0.8330(8)
H19B	1.4342(7)	0.4228(11)	0.8796(8)
C20	1.3839(6)	0.3286(10)	0.7780(6)
H20A	1.3175(6)	0.3078(10)	0.7561(6)
C21	1.4397(11)	0.2374(12)	0.8047(11)
H21A	1.4472(11)	0.1946(12)	0.7520(11)
H21B	1.4033(11)	0.2025(12)	0.8521(11)
H21C	1.5047(11)	0.2560(12)	0.8276(11)
C22	1.4353(10)	0.3828(16)	0.7005(9)
H22A	1.4458(10)	0.3373(16)	0.6500(9)
H22B	1.4988(10)	0.4079(16)	0.7215(9)
H22C	1.3942(10)	0.4377(16)	0.6804(9)
N2	1.2797(10)	0.0681(12)	0.6803(12)
N2A	1.1807(10)	-0.0289(10)	1.0679(11)
01	1.2500(12)	0.1134(15)	0.6121(10)
01A	1.1330(17)	0.0045(18)	1.1348(11)
02	1.3527(21)	0.0123(21)	0.6773(16)
O2A	1.2371(18)	-0.1005(20)	1.0662(11)

ANISOTROPIC THERMAL PARAMETERS FOR

Di-isopentyl 2,6-dimethyl-4-(3-nitrophenyl)-pyridine-3,5-dicarboxylate (XV)

АТОМ	U11	U22	U33	U23	U13	U12
N1	59(3)	75(4)	79(3)	6(3)	3(3)	0(3)
C2	59(4)	79(4)	54(3)	10(4)	6(3)	-7(4)
C2'	70(4)	90(5)	97(5)	6(5)	-16(4)	1(4)
C3	62(4)	70(4)	48(3)	3(3)	5(3)	-1(4)
C3'	80(5)	92(5)	53(4)	-10(4)	6(4)	-4(4)
O3'	195(6)	109(4)	59(3)	-10(3)	-19(4)	-14(5)
O3"	126(4)	68(3)	52(2)	0(2)	-19(3)	-16(3)
C4	70(4)	83(4)	41(3)	-2(3)	0(3)	6(4)
C5	66(4)	76(4)	46(3)	6(3)	4(3)	3(4)
C5'	83(5)	88(5)	55(4)	-2(4)	-7(4)	4(5)
O5'	99(4)	199(6)	59(3)	-18(4)	-6(3)	-18(5)
05"	63(3)	132(4)	56(3)	-18(3)	-2(2)	-12(3)
C6	74(4)	67(4)	57(4)	12(3)	14(4)	0(4)
C6'	83(5)	81(5)	98(6)	-18(4)	8(4)	3(4)
C7	68(4)	73(4)	88(4)	-21(4)	-19(4)	22(4)
C8	83(5)	150(8)	113(6)	-74(6)	-10(5)	31(6)
C9	107(8)	251(16)	238(16)	-64(14)	-91(10)	102(10)
C10	139(10)	167(12)	402(25)	-182(15)	-172(15)	111(9)
C11	192(13)	92(7)	219(15)	-59(9)	-134(12)	59(8)
C12	139(7)	80(5)	112(6)	-14(5)	-71(6)	25(6)
C13	171(9)	89(6)	69(5)	-23(4)	-18(6)	-35(6)
C14	275(15)	92(6)	111(7)	11(6)	-49(10)	-52(9)
C15	214(12)	72(5)	95(6)	-6(5)	-33(7)	9(7)
C16	245(17)	161(11)	208(15)	-28(12)	-9(15)	11(13)
C17	411(26)	156(10)	107(8)	41(8),	-20(13)	-77(15)
C18	75(5)	184(9)	69(4)	-16(6)	-12(4)	-21(6)
C19	76(5)	260(14)	136(8)	-40(10)	-3(6)	-31(8)
C20	71(5)	210(11)	081(5)	-40(7)	-4(5)	9(7)
C21	149(11)	256(18)	215(16)	13(15)	-31(12)	34(12)
C22	149(10)	384(24)	137(10)	23(15)	37(9)	-62(15)
02	111(12)	118(12)	150(20)	-38(16)	12(16)	40(10)
01	92(9)	110(11)	061(8)	31(10)	2(8)	30(8)
N2	/0(8)	105(10)	114(12)	-29(10)	15(9)	33(8)
N2A	66(7)	57(7)	9/(11)	6(8)	-21(8)	11(6)
	91(11)	112(13)	/1(10)	19(9)	24(10)	14(10)
U2A	131(13)	131(13)	82(11)	0(13)	-22(12)	-11(12)

The anisotropic displacement exponent takes the form:- $2\pi^2(h^2a^{*2}U_{11} + ... + 2hka^{*b}U_{12})$

BOND DISTANCES (Å) AND BOND ANGLES (°) FOR

Di-isopentyl 2,6-dimethyl-4-(3-nitrophenyl)-pyridine-3,5-dicarboxylate (XV)

C2'-C2	1.488(9)	C2-C3-C4	120.6(6)
C3-C2	1.394(9)	C2-C3-C3'	118.8(6)
C3-C4	1.390(9)	C4-C3-C3'	120.6(6)
C3-C3'	1.488(10)	O3'-C3'-O3"	122.0(7)
C3'-O3'	1.201(7)	03'-C3'-C3	125.8(7)
C3'-O3"	1.324(8)	O3"-C3'-C3	112.3(5)
O3"-C13	1.431(9)	C3'-O3"-C13	118.1(5)
C4-C5	1.390(9)	C5-C4-C3	117.7(6)
C4-C7	1.491(8)	C5-C4-C7	121.2(6)
C5-C6	1.406(9)	C3-C4-C7	121.1(6)
C5-C5'	1.481(9)	C4-C5-C6	119.5(6)
C5'-O5'	1.196(8)	C4-C5-C5'	120.5(6)
C5'-O5"	1.321(8)	C6-C5-C5'	119.9(6)
O5"-C18	1.445(8)	O5'-C5'-O5"	122.4(7)
C6-N1	1.330(8)	O5'-C5'-C5	125.5(7)
C6-C6'	1.501(10)	05"-C5'-C5	112.1(5)
C7-C8	1.372(11)	C5'-O5"-C18	117.9(5)
C7-C12	1.377(11)	N1-C6-C5	120.9(6)
C8-C9	1.328(14)	N1-C6-C6'	117.1(6)
C9-C10	1.37(3)	C5-C6-C6'	121.9(6)
C9-N2	1.83(2)	C8-C7-C12	118.3(7)
C10-C11	1.50(2)	C8-C7-C4	121.1(7)
C11-C12	1.342(13)	C12-C7-C4	120.6(7)
C11-N2A	1.69(2)	C9-C8-C7	124.4(11)
C13-C14	1.513(12)	C10-C9-C8	116.5(13)
C14-C15	1.446(14)	C10-C9-N2	135.7(12)
C15-C17	1.473(15)	C8-C9-N2	106.9(14)
C15-C16	1.54(2)	C9-C10-C11	123.0(9)
C18-C19	1.513(13)	C10-C11-C12	113.1(12)
C19-C20	1.524(14)	C10-C11-N2A	136.9(12)
C20-C21	1.48(2)	C12-C11-N2A	109.7(14)
C20-C22	1.500(15)	C11-C12-C7	124.1(11)
N1-C2	1.341(8)	O3"-C13-C14	106.9(7)
O2-N2	1.23(3)	C13-C14-C15	119.4(11)
O1-N2	1.22(2)	C17-C15-C16	107.1(11)
N2A-01A	1.24(3)	C17-C15-C14	115.3(12)
N2A-O2A	1.22(3)	C16-C15-C14	111.7(10)
		O5"-C18-C19	106.1(6)
		C20-C19-C18	115.2(11)
		C19-C20-C21	113.6(10)
		C19-C20-C22	108.2(12)

TABLE 80 (Continued)

<pre>fitfeitfeitfetfetfetfetfetfetfetfetfetfetfetfetfet</pre>		
	C21-C20-C22	111.3(11)
	C6-N1-C2	121.1(6)
	N1-C2-C3	120.1(6)
··· .	N1-C2-C2'	117.4(6)
	C3-C2-C2'	122.4(6)
	01-N2-02	121.8(17)
	O1-N2-C9	129.2(13)
	O2-N2-C9	108.5(19)
	01A-N2A-02A	127.8(16)
	O1A-N2A-C11	125.7(15)
	O2A-N2A-C11	106.2(16)

TORSION ANGLES FOR (°)

Di-isopentyl 2,6-dimethyl-4-(3-nitrophenyl)-pyridine-3,5-dicarboxylate (XV)

C2-C3-C3'-O3'	63.89(1.03)	C5'-O5"-C18-C19	-157.81(0.82)
C4-C3-C3'-O3'	-116.02(0.92)	O5"-C18-C19-C20	-65.36(1.15)
C2-C3-C3'-O3"	-116.60(0.64)	C18-C19-C20-C21	-61.98(1.20)
C4-C3-C3'-O3"	63.49(0.79)	C18-C19-C20-C22	173.94(0.91)
O3'-C3'-O3"-C13	1.68(1.15)	C5-C6-N1-C2	-0.50(0.90)
C3-C3'-O3"-C13	-177.85(0.71)	C6'-C6-N1-C2	179.67(0.57)
C2-C3-C4-C5	1.45(0.88)	C6-N1-C2-C3	2.08(0.90)
C3'-C3-C4-C5	-178.65(0.55)	C6-N1-C2-C2'	179.72(0.57)
C2-C3-C4-C7	-179.46(0.60)	C4-C3-C2-N1	-2.58(0.88)
C3'-C3-C4-C7	0.45(0.91)	C3'-C3-C2-N1	177.52(0.56)
C3-C4-C5-C6	0.11(0.87)	C4-C3-C2-C2'	179.90(0.63)
C7-C4-C5-C6	-178.99(0.60)	C3'-C3-C2-C2'	0.00(0.89)
C3-C4-C5-C5'	-178.83(0.55)	C10-C9-N2-O1	178.22(1.91)
C7-C4-C5-C5'	2.08(0.92)	C8-C9-N2-O1	-13.20(2.13)
C4-C5-C5'-O5'	-117.37(0.90)	C10-C9-N2-O2	6.87(2.49)
C6-C5-C5'-O5'	63.70(1.04)	C8-C9-N2-O2	175.46(1.62)
C4-C5-C5'-O5"	64.23(0.83 <u>)</u>	C10-C11-N2A-O1A	176.35(1.81)
C6-C5-C5'-O5"	-114.70(0.66)	C12-C11-N2A-O1A -	9.57(1.97)
O5'-C5'-O5"-C18	3.95(1.16)	C10-C11-N2A-O2A	2.10(2.11)
C5-C5'-O5"-C18	-177.59(0.73)	C12-C11-N2A-O2A	176.18(1.36)
C4-C5-C6-N1	-0.61(0.88)	C4-C7-C12-C11	175.91(0.89)
C5'-C5-C6-N1	178.33(0.57)	C3'-O3"-C13-C14	-159.44(0.83)
C4-C5-C6-C6'	179.21(0.62)	O3"-C13-C14-C15	-61.92(1.31)
C5'-C5-C6-C6'	-1.85(0.91)	C13-C14-C15-C17	173.19(1.03)
C5-C4-C7-C8	-112.02(0.80)	C13-C14-C15-C16	-64.34(1.29)
C3-C4-C7-C8	68.92(0.94)		
C5-C4-C7-C12	68.52(0.93)		
C3-C4-C7-C12	-110.55(0.79)		
C12-C7-C8-C9	-4.22(1.41)		
C4-C7-C8-C9	176.30(0.99)		
C7-C8-C9-C10	5.94(1.83)		
C7-C8-C9-N2	-165.18(0.88)	×	
C8-C9-C10-C11	-0.68(2.14)		
N2-C9-C10-C11	167.10(1.25)		
C9-C10-C11-C12	-5.89(1.95)		
C9-C10-C11-N2A	168.05(1.31)		
C10-C11-C12-C7	7.91(1.52)		
N2A-C11-C12-C7	-167.70(0.84)		
C8-C7-C12-C11	-3.57(1.35)		
.			

Figure 46: Projection view of Neopentyl 2,6-dimethyl-3,5-dicarboxylate-4-(3-nitrophenyl)-pyridine(XVI)

CRYSTAL DATA FOR

Dineopentyl 2,6-dimethyl-4-(3-nitrophenyl)-pyridine-3,5-dicarboxylate (XVI)

Formula		C ₂₅ H ₃₂ N ₂ O ₆
M. W.		456.50 g mole ⁻¹
<u>a</u>		17.736(3) Å
Þ		6.139(1) Å
<u>c</u>		24.756(4) Å
α		90.0 °
β		108.460(0) °
γ	••	90.0 °
V		2556.38(9) Å ³
F(000)		976
μΜοΚα		11.28 cm ⁻¹
λΜοΚα	· · · ·	0.71069 Å
D _{calc}		1.186 g/cm ³
Z		4
Meas refl		5973
Obs refl		1495
R		5.86 %
Rw		6.67 %
G. O. F.		1.29
Space Group		P21/c
Octants meas		$-1 \le h \le 21, -1 \le k \le 7, -29 \le l \le 28$

POSITIONAL PARAMETERS FOR

Dineopentyl 2,6-dimethyl-4-(3-nitrophenyl)-pyridine-3,5-dicarboxylate (XVI)

АТОМ	X(SIG(X))	Y(SIG(Y))	Z(SIG(Z))
N1	-0.4538(3)	-0.7465(10)	-0.0410(2)
C2	-0.4123(4)	-0.6527(13)	0.0085(3)
C2'	-0.4280(4)	-0.7496(12)	0.0606(2)
C3	-0.3556(3)	-0.4933(12)	0.0126(2)
C3'	-0.3080(4)	-0.4039(12)	0.0695(2)
O3'	-0.3347(3)	-0.3027(11)	0.1000(2)
O3"	-0.2318(2)	-0.4534(8)	0.0816(2)
C4	-0.3413(3)	-0.4193(12)	-0.0376(2)
C5	-0.3865(3)	-0.5164(12)	-0.0886(2)
C5'	-0.3776(4)	-0.4328(15)	-0.1436(3)
05'	-0.4000(3)	-0.2602(10)	-0.1633(2)
05"	-0.3409(2)	-0.5788(8)	-0.1658(2)
C6	-0.4412(3)	-0.6751(13)	-0.0889(2)
C6'	-0.4923(3)	-0.7860(12)	-0.1428(2)
C7	-0.2803(3)	-0.2548(13)	-0.0354(2)
C8	-0.2791(4)	-0.0551(14)	-0.0097(3)
C9	-0.2209(4)	0.0976(14)	-0.0072(3)
C10	-0.1619(4)	0.0540(14)	-0.0309(3)
C11	-0.1651(4)	-0.1434(15)	-0.0574(3)
C12	-0.2208(4)	-0.3004(12)	-0.0600(2)
C13	-0.1794(3)	-0.3571(13)	0.1334(3)
C14	-0.0952(4)	-0.4319(16)	0.1419(3)
C15	-0.0709(4)	-0.3628(16)	0.0907(3)
C16	-0.0086(4)	-0.6705(16)	0.1479(3)
C17	-0.0427(4)	-0.3180(16)	0.1950(3)
C18	-0.3221(4)	-0.5040(13)	-0.2165(3)
C19	-0.2935(4)	-0.6969(15)	-0.2421(3)
C20	-0.3604(5)	-0.8531(16)	-0.2662(3)
C21	-0.2261(5)	-0.8108(16)	-0.2000(3)
C22	-0.2661(5)	-0.6024(14)	-0.2908(3)
N2	-0.021(5)	-0.1910(18)	-0.0836(4)
01	-0.0500(4)	-0.0654(13)	-0.0779(3)
02	-0.1134(4)	-0.3444(16)	-0.1145(4)
H2'A	-0.4690	-0.8577	0.0483
H2'B	-0.3805	-0.8158	0.0851
H2'C	-0.4451	-0.6366	0.0809
H2'D	-0.4997	-0.7354	0.0506

H2'E'	-0.4155	-0.9369	0.0586	
H2'F	-0.3937	-0.6399	0.0986	
H6'A	-0.5262	-0.8936	-0.1345	
H6'B	-0.5241	-0.6776	-0.1677	
H6'C	-0.4581	-0.8546	-0.1611	
H6'D*	-0.4758	-0.6699	-0.1795	
H6'E'	-0.4703	-0.9905	-0.1438	
H6'F	-0.5564	-0.7791	-0.1445	
H8A	-0.3196	-0.0237	0.0073	
H9A	-0.2210	0.2339	0.0118	
H10A	-0.1211	0.1575	-0.0303	
H12A	-0.2198	-0.4371	-0.0786	
H13A	-0.1954	-0.4015	0.1653	
H13B	-0.1820	-0.2011	0.1306	
H15A	-0.1022	-0.4360	0.0567	
H15B	-0.0793	-0.2085	0.0861	
H15C	-0.0157	-0.3947	0.0975	
H16A	-0.1209	-0.7388	0.1134	
H16B	-0.0343	-0.7159	0.1558	
H16C	-0.1072	-0.7123	0.1788	
H17A	-0.0578	-0.3661	0.2271	
H17B	0.0125	-0.3500	0.2016	
H17C	-0.0511	-0.1638	0.1902	
H18A	-0.2813	-0.3948	-0.2060	
H18B	-0.3685	-0.4430	-0.2438	
H20A	-0.3769	-0.9158	-0.2362 ^{~~}	
H20B	-0.4038	-0.7739	-0.2917	
H20C	-0.3441	-0.9669	-0.2867	
H21A	-0.2437	-0.8707	-0.1702	
H21B	-0.2065	-0.9257	-0.2182	
H21C	-0.1844	-0.7073	-0.1841	
H22A	-0.2223	-0.5047	-0.2752	
H22B	-0.2501	-0.7169	-0.3112	
H22C	-0.3099	-0.5240	-0.3162	

*Disorder of methyl hydrogens on C2' and C6'
ANISOTROPIC THERMAL PARAMETERS FOR

U22 ATOM **U11 U33** U23 **U13 U12 N1** 36(3) 81(5) 41(3) -3(3) 9(3) -1(3)C2 32(3) 75(6) 13(3) -1(4)42(4) 8(4) 90(7) C2' 64(4) 46(4) 4(5) 23(3) 11(4) C3 34(4) 71(6) 37(4) 10(4) 9(3) -1(4) C3' 45(4) 77(6) 36(4) 15(3) -9(4) 9(4) **O3'** 60(3) 164(6) 52(3) 23(4) 15(2) -36(3)**O3**" 37(2) 88(4) 41(2) 13(3) 0(2) -16(3) 17(3) 60(6) C4 38(4) 46(4) -3(4) -1(4) C5 37(4) 62(6) 30(4) 0(4) 7(3) -2(4)C5' 52(4) 65(6) 12(5) 43(4) 9(3) 0(5) O5' 116(5) 87(5) 40(3) 66(3) 30(4) 24(4) 73(3) O5" 7(3) 74(4) 40(2) 15(3) 31(2) C6 36(4) 74(6) 38(4) 4(4) 4(3) 2(4) 45(4) C6' 58(4) -18(5) 91(7) 12(3) -16(4)**C7** 43(4) 52(6) 35(3) 4(4) 9(3) 1(4) **C8** 54(4) 64(6) 53(4) 9(5) 15(3) 1(4) C9 76(5) 58(7) 64(5) -1(5) 18(4) -7(4) C10 53(5) 65(7) 74(5) -8(5) 14(4) 2(5) C11 50(4) 68(7) 64(5) -6(5) 26(4) -8(5) C12 49(4) 62(6) 50(4) 2(5) 19(3) -6(4) 57(5) 73(6) C13 1(5) 56(4) -6(4) -17(4) 74(7) C14 58(5) 60(5) -2(5) -7(4) 5(5) 44(5) 175(12) C15 -3(6) 130(7) 3(5) 39(8) C16 63(5) 110(9) 78(5) 17(6) 4(4) 10(6) C17 122(9) 89(6) 124(7) -3(7) -45(5) -20(7)C18 88(5) 78(7) 49(4) 10(5) 37(4) 14(4) 1(5) C19 76(5) 78(7) 42(4) 23(4) 1(4) C20 152(9) 129(9) 75(5) -14(8)64(6) -15(6) C21 124(7) 161(10) 81(5) 64(8) 49(6) 23(6) C22 126(7) 145(10) 65(5) 6(7) 58(5) -1(6) N2 78(6) 83(6) 126(9) 159(8) -36(6) -42(6) 117(5) 01 164(8) 231(8) 120(6) -69(6) -54(6) 02 126(6) 185(9) 240(9) -48(6) 133(6) -97(7)

Dineopentyl 2,6-dimethyl-4-(3-nitrophenyl)-pyridine-3,5-dicarboxylate (XVI)

The anisotropic displacement exponent takes the form:

 $-2\pi^2(h^2a^{*2}U_{11} + ... + 2hka^{*b}U_{12})$

BOND DISTANCES (Å) AND BOND ANGLES (°) FOR

Dineopentyl 2,6-dimethyl-4-(3-nitrophenyl)-pyridine-3,5-dicarboxylate (XVI)

N1-C2	1.342 (8)	C2-N1-C6	117.8(6)
N1-C6	1.348 (9)	N1-C2-C2'	114.1(6)
C2-C2'	1.525 (10)	N1-C2-C3	123.2(6)
C2-C3	1.384 (10)	C2'-C2-C3	122.5(5)
C3-C3'	1.498 (8)	C2-C3-C3'	120. 6 (6)
C3-C4	1.419 (9)	C2-C3-C4	119.2(5)
C3'-O3'	1.184 (9)	C3'-C3-C4	120.2(6)
C3'-O3"	1.324 (8)	C3-C3'-O3'	124.8(6)
O3"-C13	1.450 (7)	C3-C3'-O3"	111.0(6)
C4-C5	1.398 (8)	03'-C3'-O3"	124.2(5)
C4-C7	1.468 (10)	C3'-O3"-C13	115.4(5)
C5-C5'	1.510 (10)	C3-C4-C5	116 4(6)
C5-C6	1.374 (10)	C3-C4-C7	121 4(5)
C5'-O5'	1 181 (11)	C5-C4-C7	122 1(6)
C5'-O5"	1.325 (10)	C4-C5-C5'	118 5(6)
05"-C18	1 469 (8)	C4-C5-C6	120 6(6)
C6-C6'	1 517 (8)	C5'-C5-C6	120.8(5)
C7-C8	1 378 (11)	C5-C5'-O5'	123 9(8)
C7 - C12	1.070 (11)	05-05-05"	110 5(7)
C8-C9	1 380 (11)	05-05-05	125 6(7)
C_{0}	1 380 (12)	C5'-O5"-C18	114 6(6)
C_{10}	1.300 (12)	N1-C6-C5	122 7(5)
C11_C12	1.367 (12)	N1-C6-C6'	114 2(6)
	1.307 (11)		1221(6)
C12 C14	1.407 (13)		123.1(0)
C13-C14 C14 C15	1.513 (10)		122.2(0)
014-015	1.322 (12)		119.0(7)
	1.4/4 (14)		118.2(7)
	1.521 (10)		121.9(7)
018-019	1.506 (12)	08-09-010	120.4(8)
C19-C20	1.495 (12)	C9-C10-C11	117.0(7)
C19-C21	1.488 (10)	C10-C11-C12	124.4(7)
C19-C22	1.547 (12)	C10-C11-N2	117.4(8)
N2-01	1.178 (12)	C12-C11-N2	118.2(8)
N2-02	1.189 (14)	C7-C12-C11	118.1(7)
		O3"-C13-C14	109.1(6)
		C13-C14-C15	109.1(6)
		C13-C14-C16	111.0(7)
		C15-C14-C16	109.1(7)
		C13-C14-C17	106.7(7)
		C15-C14-C17	109.6(7)
		C16-C14-C17	111.3(6)

TABLE 85	(Continued)
----------	-------------

 O5"-C18-C19	108.2(6)	
C18-C19-C20	109.9(7)	
C18-C19-C21	112.2(6)	
C20-C19-C21	109.7(7)	
C18-C19-C22	105.3(7)	
C20-C19-C22	109.6(6)	
C21-C19-C22	110.0(7)	
C11-N2-O1	119.2(10)	
C11-N2-O2	116.0(9)	
01-N2-02	124.21(1)	

,

TORSION ANGLES (°) FOR

Dineopentyl 2,6-dimethyl-4-(3-nitrophenyl)-pyridine-3,5-dicarboxylate (XVI)

C6-N1-C2-C2'	-177.8(0.6)	C10-C11-C12-C7	2.0(0.9)
C6-N1-C2-C3	-2.5(1.Ò)	N2-C11-C12-C7	-179.8(0.6)
C2-N1-C6-C5	1.9(1.0)	C10-C11-N2-O1	4.3(1.1)
C2-N1-C6-C6'	-178.5(0.6)	C10-C11-N2-O2	-167.5(0.8)
N1-C2-C3-C3'	-176.6(0.6)	C12-C11-N2-O1	-174.0(0.8)
N1-C2-C3-C4	1.7(1.1)	C12-C11-N2-O2	14.2(1.2)
C2'-C2-C3-C3'	-1.6(1.1)	O3"-C13-C14-C15	59.1(0.9)
C2'-C2-C3-C4	176.6(0.6)	O3"-C13-C14-C16	-61.1(0.7)
C2-C3-C3'-O3'	-64.9(1.1)	O3"-C13-C14-C17	177.4(0.6)
C2-C3-C3'-O3"	114.9(0.7)	O5"-C18-C19-C20	68.1(0.6)
C4-C3-C3'-O3'	116.8(0.8)	O5"-C18-C19-C21	-54.3(0.8)
C4-C3-C3'-O3"	-63.3(0.8)	O5"-C18-C19-C22	-173.9(0.5)
C2-C3-C4-C5	-0.3(1.0)	C8-C7-C12-C11	-0.4(0.8)
C2-C3-C4-C7	-178.3(0.6)	C7-C8-C9-C10	0.3(1.0)
C3'-C3-C4-C5	178.0(Ò.6)	C8-C9-C10-C11	1.1(0.9)
C3'-C3-C4-C7	-0.1(1.0)	C9-C10-C11-C12	-2.4(1.0)
C3-C3'-O3"-C13	174.5(0.6)	C9-C10-C11-N2	179.4(0.6)
O3'-C3'-O3"-C13	-5.6(1.0)	·	
C3'-O3"-C13-C14	178.9(0.6)		
C3-C4-C5-C5'	175.9(0.6)		
C3-C4-C5-C6	-0.3(1.0)		
C7-C4-C5-C5'	-6.0(1.0)		
C7-C4-C5-C6	177.8(0.6)		
C3-C4-C7-C8	-54.8(0.9)		
C3-C4-C7-C12	125.0(0.7)		
C5-C4-C7-C8	127.2(0.7)		
C5-C4-C7-C12	-52.9(Ò.9)		
C4-C5-C5'-O5'	-69.5(0.9)		
C4-C5-C5'-O5"	109.8(0.7)		
C6-C5-C5'-O5'	106.6(0.9)		
C6-C5-C5'-O5"	-74.0(0.8)		
C4-C5-C6-N1	-0.6(1.1)		
C4-C5-C6-C6'	179.8(0.6)		
C5'-C5-C6-N1	-176.7(0.7)		
C5'-C5-C6-C6'	3.7(1.1)		
C5-C5'-O5"-C18	-174.1(0.5)		
O5'-C5'-O5"-C18	5.3(0.9)		
C5'-O5"-C18-C19	-170.7(0.5)		
C4-C7-C8-C9	179.1(0.6)		
C12-C7-C8-C9	-0.7(0.9)		
C4-C7-C12-C11	179.8(0.5)		
- · · · · · · · · · · · · · · · · · · ·			

CRYSTAL DATA FOR

Dihexyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (XVII)

 Formula	C ₂₇ H ₃₉ N ₂ O ₆
M. W.	487.6 g mole ⁻¹
a	13.782(5) Å
b	16.259(6) Å
C	13.027(5) Å
α	90.0 °
β	104.48(1) °
γ	90.0 °
V	2826(2) Å ³
F(000)	1052
μΜοΚα	11.28 cm ⁻¹
λΜοΚα	0.71069 Å
Dcalc	1.146 g/cm ³
Z	4
Meas refl	6130
Obs refl	1656
R	6.81 %
Rw	7.88 %
G. O. F.	1.59
Space Group	P2 ₁ /c
 Octants meas	-16 ≤ h ≤ 16, -19 ≤ k ≤1, -1 ≤ l ≤15

.

POSITIONAL PARAMETERS FOR

Dihexyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (XVII)

АТОМ	X(SIG(X))	Y(SIG(Y))	Z(SIG(Z))
N1	0.3912(4)	0.3320(3)	0.3390(4)
N2	0.5137(6)	0.4095(5)	-0.1720(6)
01	0.4821(5)	0.4535(4)	-0.2494(5)
02	0.5923(5)	0.3688(4)	-0.1555(5)
C2	0.4908(5)	0.3471(4)	0.3401(5)
C2'	0.5464(5)	0.3941(4)	0.4362(6)
C3	0.5277(5)	0.3183(4)	0.2594(5)
C3'	0.6368(6)	0.3261(5)	0.2635(8)
O3'	0.7006(4)	0.3586(4)	0.3333(5)
03"	0.6584(3)	0.2921(3)	0.1773(4)
C4	0.4571(5)	0.2788(4)	0.1607(5)
C5	0.3646(4)	0.2416(4)	0.1899(5)
C5'	0.3180(5)	0.1726(4)	0.1226(6)
05'	0.3418(3)	0.1506(3)	0.0426(4)
O5"	0.2464(3)	0.1313(3)	0.1583(3)
C6	0.3335(5)	0.2732(4)	0. 2734(5)
C6'	0.2390(5)	0.2514(4)	0.3097(5)
C7	0.4286(5)	0.3426(4)	0.0705(5)
C8	0.3536(5)	0.4017(4)	0.0675(6)
C9	0.3305(5)	0.4612(4)	-0.0125(6)
C10	0.3807(6)	0.4631(5)	-0.0923(6)
C11	0.4557(6)	0.4058(5)	-0.0878(6)
C12	0.4809(5)	0.3449(4)	-0.0100(5)
C13	0.7645(10)	0.3028(13)	0.1769(13)
C13A	0.7491(35)	0.2494(44)	0.1592(47)
C14	0.7799(6)	0.2905(7)	0.0769(8)
C15	0.8894(7)	0.2912(7)	0.0663(9)
C16	0.9135(9)	0.3150(14)	-0.0167(12)
C17	1.0185(15)	0.2800(11)	-0.0405(16)
C17A	1.0253(43)	0.3847(38)	-0.0053(44)
C18	1.0763(12)	0.3381(40)	-0.0067(23)
C18A	1.2709(358)	0.3344(821)	0.0877(722)
C19	0.2051(5)	0.0569(5)	0.0968(6)
020	0.1331(6)	0.0156(5)	0.1520(7)
021	0.0406(6)	0.0597(5)	0.1508(7)
022	-0.0355(7)	0.0113(5)	0.1982(8)
C23	-0.1332(8)	0.0551(6)	0.1890(9)

C24	-0.2085(7)	0.0126(6)	0.2298(10)
H1A	0.3595	0.3447	0.3988
H2'A	0.6144	0.4023	0.4325
H2'B	0.5148	0.4466	0.4380
H2'C	0.5456	0.3637	0.4991
H2'D'	0.5781	0.4441	0.4030
H2'E	0.5004	0.4057	0.4913
H4A	0.4936	0.2255	0.1309
H6'A	0.2015	0.2111	0.2621
H6'B	0.2583	0.2290	0.3801
H6'C	0.1983	0.2994	0.3095
H6'D'	0.2604	0.2013	0.3286
H6'E	0.1776	0.2600	0.2399
H6'F'	0.2149	0.2831	0.3794
H8A	0.3187	0.4008	0.1226
H9A	0.2790	0.5010	-0.0127
H10A	0.3651	0.5022	-0.1494
H12A	0.5320	0.3051	-0.0112
H13A	0.7999	0.2584	0.2185
H13B	0.7936	0.3538	0.2070
H13C	0.7812	0.2041	0.2016
H13D	0.7739	0.3010	0.1908
H14A	0.7473	0.3366	0.0365
H14B	0.7469	0.2412	0.0459
H15A	0.9243	0.2484	0.1115
H15B	0.9211	0.3426	0.0910
H16A	0.8585	0.3431	-0.0633
H16B	0.9036	0.2572	-0.0307
H17A	0.10123	0.2908	-0.1143
H17B	0.10392	0.2239	-0.0261
H17C	0.10334	0.4232	-0.0584
H17D	0.10316	0.3312	-0.0341
H18A	0.11837	0.3143	-0.0007
H18B	0.10979	0.3801	-0.0225
H18C	0.11229	0.3306	0.0841
H18D	0.11135	0.3248	-0.0006
H18E	0.10077	0.3518	-0.0685
H18F	0.10314	0.3541	0.0556
H19A	0.2588	0.0203	0.0930
H19B	0.1696	0.0719	0.0261
H20A	0.1678	0.0088	0.2252
H20B	0.1151	-0.0381	0.1227
H21A	0.0078	0.0713	0.0782
H21B	0.0564	0.1109	0.1880
H22A	-0.0049	0.0029	0.2722

TABLE 88 (Continued)

.

H22B	-0.0478	-0.0414	0.1642	
H23A	-0.1626	0.0638	0.1148	
H23B	-0.1199	0.1079	0.2226	
H24A	-0.2698	0.0430	0.2205	
H24B	-0.2222	-0.0399	0.1955	
H24C	-0.1791	0.0046	0.3041	

TABLE 88 (Continued)

*Disorder of methyl hydrogens on C2' and C6'

ANISOTROPIC THERMAL PARAMETERS FOR

АТОМ	U11	U22	U33	U23	U13	U12
N1	61(4)	61(4)	63(4) 74(6)	-4(3) 42(5)	36(3)	-2(3)
NZ 01	90(0) 153(6)	00(0) 146(6)	74(0) 76(4)	-43(5)	20(0) 33(4)	2(2) 20(1)
02	127(5)	101(5)	90(4)	-16(4)	64(4)	7(4)
C2	65(5)	45(4)	61(5)	2(4)	17(4)	-1(4)
Č2'	86(5)	75(5)	85(6)	-8(4)	45(5)	-1(5)
C3	54(5)	47(́4)	64(5)	6(4)	28(4)	15(4)
C3'	67(6)	69(6)	91(7)	6(5)	36(5)	14(5)
O3')	64(4)	152(6)	133(6)	-15(4)	31(4)	-34(5)
03"	59(3)	135(5)	96(4)	16(3)	42(3)	7(4)
C4	68(5)	49(4)	61(5)	3(4)	37(4)	2(4)
C5	52(4)	52(4)	44(4)	1(4)	20(4)	-1(4)
C5'	58(5)	66(5)	54(5)	6(4) 10(0)	25(4)	6(4)
05	100(4)	84(4)	65(3)	-10(3)	48(3)	-7(3)
05	DD(3)	73(3)	73(3)	-13(3)	32(3)	-14(3)
	55(4) 62(5)	54(5) 95(6)	52(5) 77(5)	-3(4)	17(4)	4(4)
C7	55(4)	57(5)	54(5)	-3(4)	22(4)	-5(4)
C8	73(5)	64(5)	69(5)	4(4)	33(4)	7(5)
C9	75(5)	61(5)	77(6)	7(4)	18(5)	3(5)
C10	81(6)	61(5)	66(6)	-11(5)	5(5)	19(4)
C11	76(5)	66(6)	63(5)	-26(5)	28(5)	-5(5)
C12	68(5)	46(4)	62(5)	-7(4)	23(4)	0(4)
C13	65(8)	105(13)	144(11)	-3(9)	43(̈́7)́	-24(11)
C13A	65(8)	105(13)	144(11)	-3(9)	43(7)	-24(11)
C14	86(7)	186(10)	156(10)	9(7)	76(7)	38(8)
C15	123(9)	165(9)	170(11)	13(7)	92(8)	44(8)
C16	98(10)	880(59)	332(24)	68(20)	87(14)	333(32)
C17	114(15)	204(15)	173(15)	-18(12)	51(12)	58(15)
C17A	114(15)	204(15)	1/3(15)	-18(12)	51(12)	58(15)
	72(12)	767(63)	398(29)	9(27)	47(15)	-100(36)
C10A	72(12)	707(03)	398(29)	9(27)	4/(15)	-100(36)
C20	79(0) 81(6)	04(0) 01/6)	04(0) 122(7)	-17(3)	20(0) 26(5)	-30(3)
C21	105(7)	92(6)	135(8)	-14(6)	20(0) 47(6)	-20(0)
C22	112(7)	116(8)	137(8)	-37(7)	50(6)	-18(7)

Dihexyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (XVII)

		TABLE 89	(Continu	ed)		
			•			
C23	113(7)	119(8)	186(10)	-31(7)	73(8)	-26(8)
C24	133(8)	153(10)	286(15)	-37(8)	126(10)	-37(10)

The anisotropic displacement exponent takes the form:- $2\pi^2(h^2a^{*2}U_{11} + ... + 2hka^{*b}U_{12})$

•

.

.

BOND DISTANCES (Å) AND BOND ANGLES (°) FOR

Dihexyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (XVII)

N1-C2	1.392 (9)	C2-N1-C6	122.6(6)
N1-C6	1.391 (8)	O1-N2-O2	124.7(9)
N2-01	1.225 (10)	O1-N2-C11	118.6(8)
N2-O2	1.242 (11)	O2-N2-C11	116.7(7)
N2-C11	1.510 (13)	N1-C2-C2'	113.3(6)
C2-C2'	1.502 (9)	N1-C2-C3	119.3(6)
C2-C3	1.360 (11)	C2'-C2-C3	127.4(6)
C3-C3'	1.497 (11)	C2-C3-C3'	120.7(6)
C3-C4	1.545 (9)	C2-C3-C4	120.5(6)
C3'-O3'	1.216 (10)	C3'-C3-C4	118.9(7)
C3'-O3"	1.350 (12)	C3-C3'-O3'	126.5(9)
O3"-C13	1.474 (15)	C3-C3'-O3"	111.3(6)
O3"-C13A	1.499 (59)	03'-C3'-O3"	122.2(8)
C4-C5	1.543 (10)	C3'-O3"-C13	112.2(8)
C4-C7	1.543 (9)	C3'-O3"-C13A	133.3(21)
C5-C5'	1.470 (9)	C3-C4-C5	110.2(6)
C5-C6	1.366 (10)	C3-C4-C7	110.0(5)
C5'-O5'	1.222 (9)	C5-C4-C7	112.5(5)
C5'-O5"	1.366 (9)	C4-C5-C5'	114.7(6)
O5"-C19	1.483 (9)	C4-C5-C6	119.5(6)
C6-C6'	1.533 (10)	C5'-C5-C6	125.8(6)
C7-C8	1.404 (10)	C5-C5'-O5'	124.2(7)
C7-C12	1.413 (10)	C5-C5'-O5"	114.6(6)
C8-C9	1.399 (10)	05'-C5'-O5"	121.1(6)
C9-C10	1.386 (12)	C5'-O5"-C19	115.4(6)
C10-C11	1.383 (12)	N1-C6-C5	120.1(6)
C11-C12	1.397 (10)	N1-C6-C6'	111.6(6)
C13-C14	1.387 (21)	C5-C6-C6'	128.2(6)
C13A-C14	1.416 (67)	C4-C7-C8	121.8(6)
C14-C15	1.549 (14)	C4-C7-C12	120.2(6)
C15-C16	1.268 (21)	C8-C7-C12	118.0(6)
C16-C17	1.655 (27)	C7-C8-C9	121.5(7)
C16-C17A	1.889 (62)	C8-C9-C10	120.7(7)
C17-C18	1.243 (53)	C9-C10-C11	117.5(7)
C17A-C18	1.037 (79)	N2-C11-C10	117.9(7)
C19-C20	1.520 (12)	N2-C11-C12	118.4(7)
C20-C21	1.461 (12)	C10-C11-C12	123.7(8)
C21-C22	1.557 (14)	C7-C12-C11	118.5(6)
C22-C23	1.502 (14)	O3"-C13-C14	111.8(10)
C23-C24	1.453 (16)	O3"-C13A-C14	108.7(41)

.

TABLE 90 (Continued)

	C13-C14-C15	117.7(9)	
	C13A-C14-C15	123.7(21)	
	C14-C15-C16	123.2(10)	
-	C15-C16-C17	118.9(14)	
	C15-C16-C17A	119.9(20)	
	C16-C17-C18	100.6(23)	
	C16-C17A-C18	95.9(48)	
	O5"-C19-C20	108. 2(6)	
	C19-C20-C21	116.7(7)	
	C20-C21-C22	114. 8(7)	
	C21-C22-C23	114.0(8)	
	C22-C23-C24	116.9(8)	

TORSION ANGLES (°) FOR

Dihexyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (XVII)

C6-N1-C2-C2'	-163.5(0.6)	C5'-C5-C6-C6'	-6.7(1.1)
C6-N1-C2-C3	15.4(0.9)	C4-C7-C12-C11	-177.3(0.6)
C2-N1-C6-C5	-15.6(0.9)	C8-C7-C12-C11	0.2(0.9)
C2-N1-C6-C6'	163.5(0.6)	C7-C8-C9-C10	0.6(1.0)
Ö1-N2-C11-C10	-11.5(1.1)	C8-C9-C10-C11	-1.9(1.0)
O1-N2-C11-C12	168.4(0.7)	C9-C10-C11-N2	-177.6(0.7)
O2-N2-C11-C10	166.5(0.7)	C9-C10-C11-C12	2.4(1.1)
O2-N2-C11-C12	-13.5(1.0)	N2-C11-C12-C7	178.4(0.6)
N1-C2-C3-C3'	-173.8(0.6)	C10-C11-C12-C7	-1.6(1.0)
N1-C2-C3-C4	7.6(0.9)	O3"-C13-C14-C15	-174.0(1.1)
C2'-C2-C3-C3'	4.9(1.0)	O3"-C13A-C14-C15	152.9(1.8)
C2'-C2-C3-C4	-173.7(0.6)	C13-C14-C15-C16	-149.4(1.8)
C2-C3-C3'-O3'	-1.8(1.2)	C13A-C14-C15-C16	166.8(3.6)
C2-C3-C3'-O3"	178.5(0.6)	C14-C15-C16-C17	-155.4(1.2)
C4-C3-C3'-O3'	176.8(0.7)	C14-C15-C16-C17A	135.6(2.4)
C4-C3-C3'-O3"	-2.9(0.9)	C15-C16-C17-C18	-98.1(2.6)
C2-C3-C4-C5	-26.7(0.8)	O5"-C19-C20-C21	67.9(0.8)
C2-C3-C4-C7	97.9(0.7)	C19-C20-C21-C22	174.1(0.7)
C3'-C3-C4-C5	154.6(0.6)	C20-C21-C22-C23	-175.7(0.8)
C3'-C3-C4-C7	-80.8(0.7)	C21-C22-C23-C24	178.9(0.9)
C3-C3'-O3"-C13	177.0(1.0)	C12-C7-C8-C9	0.2(0.9)
C3-C3'-O3"-C13A	-148.2(3.7)	C5'-C5-C6-N1	172.1(0.6)
O3'-C3'-O3"-C13	-2.7(1.3)	C5-C5'-O5"-C19	-174.7(0.5)
O3'-C3'-O3"-C13A	32.1(3.8)	O5'-C5'-O5"-C19	3.2(0.8)
C3'-O3"-C13-C14	-162.1(1.2)	C5'-O5"-C19-C20	175.7(0.5)
C3'-O3"-C13A C14	-124.0(2.8)	C4-C7-C8-C9	177.7(0.6)
C3-C4-C5-C5'	-153.1(0.5)	· · ·	•
C3-C4-C5-C6	26.4(0.8)		
C7-C4-C5-C5'	83.7(0.7)		
C7-C4-C5-C6	-96.7(0.7)		
C3-C4-C7-C8	-80.2(0.8)		
C3-C4-C7-C12	97.2(0.7)	1	
C5-C4-C7-C8	43.1(0.8)		
C5-C4-C7-C12	-139.5(0.6)		
C4-C5-C5'-O5'	· -7.7(0.9)		
C4-C5-C5'-O5"	170.2(0.5)		
C6-C5-C5'-O5'	172.9(0.6)	,	
C6-C5-C5'-O5"	-9.3(0.9)		
C4-C5-C6-N1	-7.4(0.9)		
C4-C5-C6-C6'	173.8(0.6)	•	
	• •		

Figure 48: Projection view of Hexyl 2,6-dimethyl-3,5-dicarboxylate-4-(3-nitrophenyl)-pyridine(XVIII)

CRYSTAL DATA FOR

Dihexyl 2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate (XVIII)

Formula	C ₂₇ H ₃₆ N ₂ O ₆
M. W.	484.58 g mole ⁻¹
a	8.089(2) Å
Þ	11.495(2) Å
2	15.707(5) Å
α	69.29(2) °
β	88.12(2) °
γ	87.03(2) °
V · · · · ·	1364.2(6) Å ³
F(000)	520
μΜοΚα	11.28 cm ⁻¹
λΜοΚα	0.71069 Å
Dcalc	1.18 g/cm ³
Ζ	2
Meas refl	9318
Obs refl	769
R	6.05 %
Rw	13.12 %
G. O. F.	0.537
Space Group	P-1
Octants meas	-1≤ h ≤11, -15 ≤ k≤ 15, -20 ≤l ≤22

POSITIONAL PARAMETERS FOR

Dihexyl 2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate (XVIII)

ATOM $X(SIG(X))$ $Y(SIG(Y))$ $Z(SIG(Z))$ N10.7484(12)0.5015(13)0.5650(7)H1A0.7463(12)0.5115(13)0.6168(7)C20.6967(14)0.5977(12)0.4903(10)C2'0.6446(14)0.7115(9)0.5105(8)H2'A0.6470(14)0.6933(9)0.5750(8)H2'B0.5343(14)0.7765(9)0.4804(8)C30.7104(11)0.5848(10)0.4081(8)C3'0.6557(17)0.6938(11)0.3270(10)O3'0.7552(12)0.7562(8)0.3242(7)O3''0.7690(10)0.7202(6)0.2606(5)C40.7652(11)0.4739(10)0.3972(7)C50.8111(11)0.3737(9)0.4788(8)C5'0.8696(16)0.2503(11)0.4752(8)O5''0.9867(11)0.1929(7)0.5131(6)O5''0.9867(14)0.2216(11)0.6490(6)H6'A0.8506(14)0.2216(11)0.6490(6)H6'A0.851(14)0.2261(11)0.6490(6)H6'A0.853(14)0.22216(11)0.6599(6)C70.776(719)0.4586(8)0.3088(6)C80.6331(19)0.4744(9)0.2893(10)C90.6314(26)0.4395(14)0.1464(12)H10A0.808(36)0.4359(14)0.1464(12)H10A0.808(36)0.4359(14)0.1464(12)H13A0.7428(19)0.911(11)0.1824(9)H13A0.7428(19)0.9011(11)0.1824(9)H13A0.7428(19) </th <th></th> <th></th> <th></th> <th></th> <th>************</th>					************
N1 $0.7484(12)$ $0.5015(13)$ $0.5650(7)$ H1A $0.7463(12)$ $0.5115(13)$ $0.6168(7)$ C2 $0.6967(14)$ $0.5977(12)$ $0.4903(10)$ C2' $0.6446(14)$ $0.7115(9)$ $0.5105(8)$ H2A $0.6470(14)$ $0.6933(9)$ $0.5750(8)$ H2B $0.5343(14)$ $0.7381(9)$ $0.4804(8)$ C3 $0.7104(11)$ $0.5848(10)$ $0.4804(8)$ C3 $0.7104(11)$ $0.5848(10)$ $0.4804(8)$ C3' $0.6557(17)$ $0.6938(11)$ $0.3270(10)$ O3' $0.5320(12)$ $0.7562(8)$ $0.3242(7)$ O3'' $0.7690(10)$ $0.7202(6)$ $0.2606(5)$ C4 $0.7652(11)$ $0.4739(10)$ $0.3972(7)$ C5 $0.8167(11)$ $0.3737(9)$ $0.4788(8)$ C5' $0.8696(16)$ $0.2503(11)$ $0.4752(8)$ O5'' $0.9887(11)$ $0.1929(7)$ $0.5131(6)$ O5'' $0.9887(11)$ $0.1929(7)$ $0.5131(6)$ O5'' $0.9887(11)$ $0.3920(12)$ $0.5608(8)$ C6' $0.8025(14)$ $0.3231(11)$ $0.6490(6)$ H6'A $0.8351(14)$ $0.3231(11)$ $0.6499(6)$ H6'A $0.8351(14)$ $0.2216(11)$ $0.6459(6)$ C7 $0.7767(19)$ $0.4586(8)$ $0.3088(6)$ C8 $0.6391(19)$ $0.4744(9)$ $0.2893(10)$ C9 $0.6314(26)$ $0.4398(14)$ $0.1446(12)$ H10A $0.808(36)$ $0.4359(14)$ $0.1857(13)$ C12 $0.9303(18)$ $0.4446(8)$ <	ATOM	X(SIG(X))	Y(SIG(Y))	Z(SIG(Z))	
H1A $0.7463(12)$ $0.5115(13)$ $0.6168(7)$ C2 $0.6967(14)$ $0.5977(12)$ $0.4903(10)$ C2' $0.6446(14)$ $0.7115(9)$ $0.5105(8)$ H2'A $0.6470(14)$ $0.6933(9)$ $0.5750(8)$ H2'B $0.5343(14)$ $0.7381(9)$ $0.4891(8)$ H2'C $0.7190(14)$ $0.7765(9)$ $0.4804(8)$ C3 $0.7104(11)$ $0.5848(10)$ $0.4088(8)$ C3' $0.6557(17)$ $0.6938(11)$ $0.3270(10)$ O3' $0.5320(12)$ $0.7562(8)$ $0.3242(7)$ O3'' $0.7690(10)$ $0.7202(6)$ $0.2606(5)$ C4 $0.7652(11)$ $0.4739(10)$ $0.3972(7)$ C5 $0.8111(11)$ $0.3737(9)$ $0.4788(8)$ C5' $0.8696(16)$ $0.2503(11)$ $0.4752(8)$ O5' $0.9887(11)$ $0.1929(7)$ $0.5131(6)$ O5' $0.9887(11)$ $0.1929(7)$ $0.5131(6)$ O5'' $0.9887(11)$ $0.3920(12)$ $0.5608(8)$ C6' $0.8025(14)$ $0.3920(12)$ $0.5608(8)$ C6' $0.8056(14)$ $0.2216(11)$ $0.6499(6)$ H6'B $0.9648(14)$ $0.2661(11)$ $0.6499(6)$ H6'B $0.9648(14)$ $0.2661(11)$ $0.6499(6)$ C7 $0.7767(19)$ $0.4586(8)$ $0.3088(8)$ C8 $0.6391(19)$ $0.4744(9)$ $0.2893(10)$ C9 $0.6314(26)$ $0.4398(14)$ $0.1446(12)$ H10A $0.808(36)$ $0.4398(14)$ $0.1446(12)$ H10A $0.808(36)$ $0.4398(14$	N1	0.7484(12)	0.5015(13)	0.5650(7)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	HIA 1	0.7463(12)	0.5115(13)		
$\begin{array}{llllllllllllllllllllllllllllllllllll$		0.0907(14)	0.5977(12) 0.7115(0)	0.4903(10)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	U2 H2'∆	0.6470(14)	0.6933(9)	0.5750(8)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H2'B	0.5343(14)	0.7381(9)	0.4891(8)	
C3 $0.7104(11)$ $0.5848(10)$ $0.4088(8)$ C3' $0.6557(17)$ $0.6938(11)$ $0.3270(10)$ O3' $0.5320(12)$ $0.7562(8)$ $0.3242(7)$ O3'' $0.7690(10)$ $0.7202(6)$ $0.2606(5)$ C4 $0.7652(11)$ $0.4739(10)$ $0.3972(7)$ C5 $0.8111(11)$ $0.3737(9)$ $0.4788(8)$ C5' $0.8696(16)$ $0.2503(11)$ $0.4752(8)$ O5' $0.9887(11)$ $0.1929(7)$ $0.5131(6)$ O5'' $0.7643(9)$ $0.2077(6)$ $0.4308(4)$ C6 $0.8025(14)$ $0.3920(12)$ $0.5608(8)$ C6' $0.8506(14)$ $0.2916(11)$ $0.64790(6)$ H6'A $0.8351(14)$ $0.3231(11)$ $0.6979(6)$ H6'B $0.9648(14)$ $0.2216(11)$ $0.6456(6)$ H6'C $0.7767(19)$ $0.4586(8)$ $0.3088(8)$ C8 $0.6391(19)$ $0.4744(9)$ $0.22893(10)$ C9 $0.6314(26)$ $0.4398(14)$ $0.1446(12)$ H10A $0.8088(36)$ $0.4359(14)$ $0.3018(9)$ C11 $0.9473(23)$ $0.4346(12)$ $0.857(13)$ C12 $0.9303(18)$ $0.4446(8)$ $0.2693(9)$ H13A $0.7428(19)$ $0.9011(11)$ $0.1824(9)$ H13A $0.7428(19)$ $0.9011(11)$ $0.1626(9)$ H13A $0.6087(19)$ $0.8189(11)$ $0.1636(9)$ C13 $0.1725(13)$ $0.00459(10)$ C14 $0.8328(28)$ $0.8038(15)$ $0.1024(10)$ H14B $0.8015(28)$ $0.8028(16)$	H2'C	0.7190(14)	0.7765(9)	0.4804(8)	
C3' $0.6557(17)$ $0.6938(11)$ $0.3270(10)$ O3' $0.5320(12)$ $0.7562(8)$ $0.3242(7)$ O3" $0.7690(10)$ $0.7202(6)$ $0.2606(5)$ C4 $0.7652(11)$ $0.4739(10)$ $0.3972(7)$ C5 $0.8111(11)$ $0.3737(9)$ $0.4788(8)$ C5' $0.8696(16)$ $0.2503(11)$ $0.4752(8)$ O5' $0.9887(11)$ $0.1929(7)$ $0.5131(6)$ O5' $0.7643(9)$ $0.2077(6)$ $0.4308(4)$ C6 $0.8025(14)$ $0.3920(12)$ $0.5608(8)$ C6' $0.8506(14)$ $0.2916(11)$ $0.6490(6)$ H6'A $0.8351(14)$ $0.3231(11)$ $0.6979(6)$ H6'B $0.9648(14)$ $0.2261(11)$ $0.6599(6)$ C7 $0.7767(19)$ $0.4586(8)$ $0.3088(8)$ C8 $0.6391(19)$ $0.4744(9)$ $0.22893(10)$ C9 $0.6314(26)$ $0.4398(14)$ $0.1446(12)$ H10A $0.8088(36)$ $0.4359(14)$ $0.3018(9)$ C11 $0.9473(23)$ $0.4346(12)$ $0.1857(13)$ C12 $0.9303(18)$ $0.4446(8)$ $0.2693(9)$ H12A $1.0255(18)$ $0.4419(8)$ $0.3018(9)$ C13 $0.7245(19)$ $0.8214(11)$ $0.1626(9)$ H13A $0.7428(19)$ $0.9011(11)$ $0.1824(9)$ H13B $0.6087(19)$ $0.808(15)$ $0.1024(10)$ H14B $0.8015(28)$ $0.8028(16)$ $0.1091(12)$	C3	0.7104(11)	0.5848(10)	0.4088(8)	
O3' $0.5320(12)$ $0.7562(8)$ $0.3242(7)$ $O3''$ $0.7690(10)$ $0.7202(6)$ $0.2606(5)$ $C4$ $0.7652(11)$ $0.4739(10)$ $0.3972(7)$ $C5$ $0.8111(11)$ $0.3737(9)$ $0.4788(8)$ $C5'$ $0.8696(16)$ $0.2503(11)$ $0.4752(8)$ $O5'$ $0.9887(11)$ $0.1929(7)$ $0.5131(6)$ $O5''$ $0.7643(9)$ $0.2077(6)$ $0.4308(4)$ $C6$ $0.8025(14)$ $0.3920(12)$ $0.5608(8)$ $C6'$ $0.8506(14)$ $0.2916(11)$ $0.6490(6)$ $H6'A$ $0.8351(14)$ $0.2216(11)$ $0.6456(6)$ $H6'B$ $0.9648(14)$ $0.2216(11)$ $0.6456(6)$ $C7$ $0.7767(19)$ $0.4586(8)$ $0.3088(8)$ $C8$ $0.6391(19)$ $0.4724(9)$ $0.2893(10)$ $C9$ $0.6314(26)$ $0.4398(14)$ $0.1725(13)$ $C10$ $0.7980(36)$ $0.4398(14)$ $0.1446(12)$ $H10A$ $0.808(36)$ $0.4398(14)$ $0.1465(12)$ $C11$ $0.9473(23)$ $0.4346(12)$ $0.1857(13)$ $C12$ $0.9303(18)$ $0.4449(8)$ $0.3018(9)$ $C13$ $0.7245(19)$ $0.8189(11)$ $0.1636(9)$ $C14$ $0.8328(28)$ $0.8038(15)$ $0.1024(10)$ $H14B$ $0.8015(28)$ $0.7257(15)$ $0.0968(10)$ $H14B$ $0.8015(28)$ $0.7257(15)$ $0.0459(10)$ $C7$ $0.77428(19)$ $0.828(16)$ $0.1091(12)$	C3'	0.6557(17)	0.6938(11)	0.3270(10)	
O3" $0.7690(10)$ $0.7202(6)$ $0.2606(5)$ $C4$ $0.7652(11)$ $0.4739(10)$ $0.3972(7)$ $C5$ $0.8111(11)$ $0.3737(9)$ $0.4788(8)$ $C5'$ $0.8696(16)$ $0.2503(11)$ $0.4752(8)$ $O5'$ $0.9887(11)$ $0.1929(7)$ $0.5131(6)$ $O5"$ $0.7643(9)$ $0.2077(6)$ $0.4308(4)$ $C6$ $0.8025(14)$ $0.3920(12)$ $0.5608(8)$ $C6'$ $0.8506(14)$ $0.2916(11)$ $0.6490(6)$ $H6'A$ $0.8351(14)$ $0.3231(11)$ $0.6979(6)$ $H6'B$ $0.9648(14)$ $0.22661(11)$ $0.6456(6)$ $H6'C$ $0.7827(14)$ $0.2216(11)$ $0.6599(6)$ $C7$ $0.7767(19)$ $0.4586(8)$ $0.3088(8)$ $C8$ $0.6391(19)$ $0.4744(9)$ $0.2893(10)$ $C9$ $0.6314(26)$ $0.44398(14)$ $0.1725(13)$ $C10$ $0.7980(36)$ $0.4338(14)$ $0.1446(12)$ $H10A$ $0.8088(36)$ $0.4339(14)$ $0.1857(13)$ $C12$ $0.9303(18)$ $0.4446(8)$ $0.2693(9)$ $H12A$ $1.0255(18)$ $0.4419(8)$ $0.3018(9)$ $C13$ $0.7245(19)$ $0.8189(11)$ $0.1636(9)$ $C14$ $0.8328(28)$ $0.8038(5)$ $0.1024(10)$ $H14B$ $0.8015(28)$ $0.8693(15)$ $0.0459(10)$ $C15$ $1.0117(27)$ $0.8028(16)$ $0.1091(12)$	O3'	0.5320(12)	0.7562(8)	0.3242(7)	
C4 $0.7652(11)$ $0.4739(10)$ $0.3972(7)$ C5 $0.8111(11)$ $0.3737(9)$ $0.4788(8)$ C5' $0.8696(16)$ $0.2503(11)$ $0.4752(8)$ O5' $0.9887(11)$ $0.1929(7)$ $0.5131(6)$ O5" $0.7643(9)$ $0.2077(6)$ $0.4308(4)$ C6 $0.8025(14)$ $0.3920(12)$ $0.5608(8)$ C6' $0.8506(14)$ $0.2916(11)$ $0.6490(6)$ H6'A $0.8351(14)$ $0.2216(11)$ $0.6490(6)$ H6'B $0.9648(14)$ $0.2216(11)$ $0.6456(6)$ H6'C $0.7827(14)$ $0.2216(11)$ $0.6599(6)$ C7 $0.7767(19)$ $0.4586(8)$ $0.3088(8)$ C8 $0.6391(19)$ $0.4744(9)$ $0.2893(10)$ C9 $0.6314(26)$ $0.4398(14)$ $0.1426(12)$ H10A $0.8088(36)$ $0.4359(14)$ $0.1857(13)$ C12 $0.9303(18)$ $0.4446(8)$ $0.2693(9)$ H12A $1.0255(18)$ $0.4419(8)$ $0.3018(9)$ C13 $0.7245(19)$ $0.8214(11)$ $0.1724(9)$ H13A $0.7428(19)$ $0.9011(11)$ $0.1824(9)$ H13B $0.6087(19)$ $0.8189(11)$ $0.1636(9)$ C14 $0.8328(28)$ $0.8038(5)$ $0.1024(10)$ H14B $0.8015(28)$ $0.7257(15)$ $0.0968(10)$ H14B $0.8015(28)$ $0.8028(16)$ $0.1091(12)$	03"	0.7690(10)	0.7202(6)	0.2606(5)	
C5 $0.8111(11)$ $0.3737(9)$ $0.4788(8)$ C5' $0.8696(16)$ $0.2503(11)$ $0.4752(8)$ O5' $0.9887(11)$ $0.1929(7)$ $0.5131(6)$ O5" $0.7643(9)$ $0.2077(6)$ $0.4308(4)$ C6 $0.8025(14)$ $0.3920(12)$ $0.5608(8)$ C6' $0.8506(14)$ $0.2916(11)$ $0.6490(6)$ H6'A $0.8351(14)$ $0.3231(11)$ $0.6979(6)$ H6'B $0.9648(14)$ $0.22661(11)$ $0.6599(6)$ C7 $0.7767(19)$ $0.4586(8)$ $0.3088(8)$ C8 $0.6391(19)$ $0.4724(9)$ $0.2893(10)$ C9 $0.6314(26)$ $0.4499(13)$ $0.1725(13)$ C10 $0.7980(36)$ $0.4398(14)$ $0.1446(12)$ H10A $0.8088(36)$ $0.4359(14)$ $0.865(12)$ C11 $0.9473(23)$ $0.4346(12)$ $0.1857(13)$ C12 $0.9303(18)$ $0.4419(8)$ $0.3018(9)$ C13 $0.7245(19)$ $0.8214(11)$ $0.1768(9)$ H13B $0.6087(19)$ $0.8189(11)$ $0.1636(9)$ C14 $0.828(28)$ $0.8038(15)$ $0.1024(10)$ H14B $0.8015(28)$ $0.7257(15)$ $0.0968(10)$ H14B $0.8015(28)$ $0.8028(16)$ $0.1091(12)$	C4	0.7652(11)	0.4739(10)	0.3972(7)	
C5 $0.3059(16)$ $0.2503(11)$ $0.4752(6)$ O5' $0.9887(11)$ $0.1929(7)$ $0.5131(6)$ O5" $0.7643(9)$ $0.2077(6)$ $0.4308(4)$ C6 $0.8025(14)$ $0.3920(12)$ $0.5608(8)$ C6' $0.8506(14)$ $0.2916(11)$ $0.6490(6)$ H6'A $0.8351(14)$ $0.3231(11)$ $0.6979(6)$ H6'B $0.9648(14)$ $0.22661(11)$ $0.6599(6)$ C7 $0.7767(19)$ $0.4586(8)$ $0.3088(8)$ C8 $0.6391(19)$ $0.4625(9)$ $0.2622(10)$ H8A $0.5389(19)$ $0.4744(9)$ $0.2893(10)$ C9 $0.6314(26)$ $0.4398(14)$ $0.1446(12)$ H10A $0.8088(36)$ $0.4359(14)$ $0.0865(12)$ C11 $0.9473(23)$ $0.4346(12)$ $0.1857(13)$ C12 $0.9303(18)$ $0.4419(8)$ $0.3018(9)$ C13 $0.7245(19)$ $0.8214(11)$ $0.1636(9)$ H13B $0.6087(19)$ $0.8189(11)$ $0.1636(9)$ C14 $0.828(28)$ $0.8038(15)$ $0.1024(10)$ H14B $0.8015(28)$ $0.7257(15)$ $0.0968(10)$ H14B $0.8015(28)$ $0.8028(16)$ $0.1091(12)$	C5	0.8111(11)	0.3/3/(9)	0.4788(8)	
$O5^{\circ}$ $0.3687(11)$ $0.1929(1)$ $0.313(6)$ $O5^{\circ}$ $0.7643(9)$ $0.2077(6)$ $0.4308(4)$ $C6$ $0.8025(14)$ $0.3920(12)$ $0.5608(8)$ $C6^{\circ}$ $0.8506(14)$ $0.2916(11)$ $0.6490(6)$ $H6'A$ $0.8351(14)$ $0.3231(11)$ $0.6979(6)$ $H6'B$ $0.9648(14)$ $0.2661(11)$ $0.6599(6)$ $C7$ $0.7767(19)$ $0.4586(8)$ $0.3088(8)$ $C8$ $0.6391(19)$ $0.4625(9)$ $0.2622(10)$ $H8A$ $0.5389(19)$ $0.4744(9)$ $0.2893(10)$ $C9$ $0.6314(26)$ $0.4398(14)$ $0.1446(12)$ $H10A$ $0.8088(36)$ $0.4359(14)$ $0.865(12)$ $C11$ $0.9473(23)$ $0.4346(12)$ $0.1857(13)$ $C12$ $0.9303(18)$ $0.4446(8)$ $0.2693(9)$ $H12A$ $1.0255(18)$ $0.4419(8)$ $0.3018(9)$ $C13$ $0.7245(19)$ $0.8214(11)$ $0.1768(9)$ $H13B$ $0.6087(19)$ $0.8189(11)$ $0.1636(9)$ $C14$ $0.8328(28)$ $0.8038(15)$ $0.1024(10)$ $H14B$ $0.8015(28)$ $0.7257(15)$ $0.0968(10)$ $H14B$ $0.8015(28)$ $0.8028(16)$ $0.1091(12)$	05'	0.0090(10)	0.2003(11)	0.4/02(0)	
C5 $0.7040(5)$ $0.2077(5)$ $0.7600(4)$ C6 $0.8025(14)$ $0.3920(12)$ $0.5608(8)$ C6' $0.8506(14)$ $0.2916(11)$ $0.6490(6)$ H6'A $0.8351(14)$ $0.3231(11)$ $0.6979(6)$ H6'B $0.9648(14)$ $0.2661(11)$ $0.6456(6)$ H6'C $0.7827(14)$ $0.2216(11)$ $0.6599(6)$ C7 $0.7767(19)$ $0.4586(8)$ $0.3088(8)$ C8 $0.6391(19)$ $0.4625(9)$ $0.2622(10)$ H8A $0.5389(19)$ $0.47744(9)$ $0.2893(10)$ C9 $0.6314(26)$ $0.4499(13)$ $0.1725(13)$ C10 $0.7980(36)$ $0.4398(14)$ $0.1446(12)$ H10A $0.8088(36)$ $0.4359(14)$ $0.8685(12)$ C11 $0.9473(23)$ $0.4346(12)$ $0.1857(13)$ C12 $0.9303(18)$ $0.4446(8)$ $0.2693(9)$ H12A $1.0255(18)$ $0.4419(8)$ $0.3018(9)$ C13 $0.7245(19)$ $0.8214(11)$ $0.1768(9)$ H13B $0.6087(19)$ $0.8189(11)$ $0.1636(9)$ C14 $0.8328(28)$ $0.8038(15)$ $0.1024(10)$ H14B $0.8015(28)$ $0.7257(15)$ $0.0968(10)$ H14B $0.8015(28)$ $0.8028(16)$ $0.1091(12)$	05	0.9007(11)	0.1929(7)	0.3131(0)	
C6' $0.8506(14)$ $0.2916(11)$ $0.6490(6)$ H6'A $0.8351(14)$ $0.3231(11)$ $0.6979(6)$ H6'B $0.9648(14)$ $0.2661(11)$ $0.6456(6)$ H6'C $0.7827(14)$ $0.2216(11)$ $0.6599(6)$ C7 $0.7767(19)$ $0.4586(8)$ $0.3088(8)$ C8 $0.6391(19)$ $0.4625(9)$ $0.2622(10)$ H8A $0.5389(19)$ $0.4744(9)$ $0.2893(10)$ C9 $0.6314(26)$ $0.4499(13)$ $0.1725(13)$ C10 $0.7980(36)$ $0.4398(14)$ $0.1446(12)$ H10A $0.8088(36)$ $0.4359(14)$ $0.0865(12)$ C11 $0.9473(23)$ $0.4346(12)$ $0.1857(13)$ C12 $0.9303(18)$ $0.4419(8)$ $0.3018(9)$ C13 $0.7245(19)$ $0.8214(11)$ $0.1768(9)$ H13A $0.7428(19)$ $0.9011(11)$ $0.1636(9)$ C14 $0.8328(28)$ $0.8038(15)$ $0.1024(10)$ H14B $0.8015(28)$ $0.8028(16)$ $0.1091(12)$	C6	0.8025(14)	0.3920(12)	0.5608(8)	
H6'A0.8351(14)0.3231(11)0.6979(6)H6'B0.9648(14)0.2661(11)0.6456(6)H6'C0.7827(14)0.2216(11)0.6599(6)C70.7767(19)0.4586(8)0.3088(8)C80.6391(19)0.4625(9)0.2622(10)H8A0.5389(19)0.4744(9)0.2893(10)C90.6314(26)0.4499(13)0.1725(13)C100.7980(36)0.4359(14)0.1446(12)H10A0.8088(36)0.4359(14)0.0865(12)C110.9473(23)0.4346(12)0.1857(13)C120.9303(18)0.4446(8)0.2693(9)H12A1.0255(18)0.4419(8)0.3018(9)C130.7245(19)0.8214(11)0.1636(9)H13B0.6087(19)0.8189(11)0.1636(9)C140.8328(28)0.8038(15)0.1024(10)H14B0.8015(28)0.8693(15)0.0459(10)C151.0117(27)0.8028(16)0.1091(12)	C6'	0.8506(14)	0.2916(11)	0.6490(6)	
H6'B $0.9648(14)$ $0.2661(11)$ $0.6456(6)$ H6'C $0.7827(14)$ $0.2216(11)$ $0.6599(6)$ C7 $0.7767(19)$ $0.4586(8)$ $0.3088(8)$ C8 $0.6391(19)$ $0.4625(9)$ $0.2622(10)$ H8A $0.5389(19)$ $0.4744(9)$ $0.2893(10)$ C9 $0.6314(26)$ $0.4499(13)$ $0.1725(13)$ C10 $0.7980(36)$ $0.4398(14)$ $0.1446(12)$ H10A $0.8088(36)$ $0.4359(14)$ $0.0865(12)$ C11 $0.9473(23)$ $0.4346(12)$ $0.1857(13)$ C12 $0.9303(18)$ $0.4446(8)$ $0.2693(9)$ H12A $1.0255(18)$ $0.4419(8)$ $0.3018(9)$ C13 $0.7245(19)$ $0.8214(11)$ $0.1768(9)$ H13A $0.7428(19)$ $0.9011(11)$ $0.1824(9)$ H13B $0.6087(19)$ $0.8189(11)$ $0.1636(9)$ C14 $0.8328(28)$ $0.8038(15)$ $0.1024(10)$ H14B $0.8015(28)$ $0.7257(15)$ $0.0968(10)$ H14B $0.8015(28)$ $0.8693(15)$ $0.1091(12)$	H6'A	0.8351(14)	0.3231(11)	0.6979(6)	
H6'C $0.7827(14)$ $0.2216(11)$ $0.6599(6)$ C7 $0.7767(19)$ $0.4586(8)$ $0.3088(8)$ C8 $0.6391(19)$ $0.4625(9)$ $0.2622(10)$ H8A $0.5389(19)$ $0.4744(9)$ $0.2893(10)$ C9 $0.6314(26)$ $0.4499(13)$ $0.1725(13)$ C10 $0.7980(36)$ $0.4398(14)$ $0.1446(12)$ H10A $0.8088(36)$ $0.4359(14)$ $0.0865(12)$ C11 $0.9473(23)$ $0.4346(12)$ $0.1857(13)$ C12 $0.9303(18)$ $0.4449(8)$ $0.2693(9)$ H12A $1.0255(18)$ $0.4419(8)$ $0.3018(9)$ C13 $0.7245(19)$ $0.8214(11)$ $0.1768(9)$ H13A $0.7428(19)$ $0.9011(11)$ $0.1636(9)$ C14 $0.8328(28)$ $0.8038(15)$ $0.1024(10)$ H14B $0.8015(28)$ $0.7257(15)$ $0.0968(10)$ H14B $0.8015(28)$ $0.8028(16)$ $0.1091(12)$	H6'B	0.9648(14)	0.2661(11)	0.6456(6)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H6'C	0.7827(14)	0.2216(11)	0.6599(6)	
C8 $0.6391(19)$ $0.4625(9)$ $0.2622(10)$ H8A $0.5389(19)$ $0.4744(9)$ $0.2893(10)$ C9 $0.6314(26)$ $0.4499(13)$ $0.1725(13)$ C10 $0.7980(36)$ $0.4398(14)$ $0.1446(12)$ H10A $0.8088(36)$ $0.4359(14)$ $0.0865(12)$ C11 $0.9473(23)$ $0.4346(12)$ $0.1857(13)$ C12 $0.9303(18)$ $0.4446(8)$ $0.2693(9)$ H12A $1.0255(18)$ $0.4419(8)$ $0.3018(9)$ C13 $0.7245(19)$ $0.8214(11)$ $0.1768(9)$ H13A $0.7428(19)$ $0.9011(11)$ $0.1824(9)$ H13B $0.6087(19)$ $0.8189(11)$ $0.1636(9)$ C14 $0.8328(28)$ $0.8038(15)$ $0.1024(10)$ H14A $0.8056(28)$ $0.7257(15)$ $0.0968(10)$ H14B $0.8015(28)$ $0.8693(15)$ $0.1091(12)$	C7	0.7767(19)	0.4586(8)	0.3088(8)	
H8A $0.5389(19)$ $0.4744(9)$ $0.2893(10)$ C9 $0.6314(26)$ $0.4499(13)$ $0.1725(13)$ C10 $0.7980(36)$ $0.4398(14)$ $0.1446(12)$ H10A $0.8088(36)$ $0.4359(14)$ $0.0865(12)$ C11 $0.9473(23)$ $0.4346(12)$ $0.1857(13)$ C12 $0.9303(18)$ $0.4446(8)$ $0.2693(9)$ H12A $1.0255(18)$ $0.4419(8)$ $0.3018(9)$ C13 $0.7245(19)$ $0.8214(11)$ $0.1768(9)$ H13A $0.7428(19)$ $0.9011(11)$ $0.1824(9)$ H13B $0.6087(19)$ $0.8189(11)$ $0.1636(9)$ C14 $0.8328(28)$ $0.8038(15)$ $0.1024(10)$ H14B $0.8015(28)$ $0.8693(15)$ $0.0459(10)$ C15 $1.0117(27)$ $0.8028(16)$ $0.1091(12)$	C8	0.6391(19)	0.4625(9)	0.2622(10)	
C9 $0.6314(26)$ $0.4499(13)$ $0.1725(13)$ C10 $0.7980(36)$ $0.4398(14)$ $0.1446(12)$ H10A $0.8088(36)$ $0.4359(14)$ $0.0865(12)$ C11 $0.9473(23)$ $0.4346(12)$ $0.1857(13)$ C12 $0.9303(18)$ $0.4446(8)$ $0.2693(9)$ H12A $1.0255(18)$ $0.4419(8)$ $0.3018(9)$ C13 $0.7245(19)$ $0.8214(11)$ $0.1768(9)$ H13A $0.7428(19)$ $0.9011(11)$ $0.1824(9)$ H13B $0.6087(19)$ $0.8189(11)$ $0.1636(9)$ C14 $0.8328(28)$ $0.8038(15)$ $0.1024(10)$ H14A $0.8056(28)$ $0.7257(15)$ $0.0968(10)$ H14B $0.8015(28)$ $0.8693(15)$ $0.1091(12)$	H8A	0.5389(19)	0.4744(9)	0.2893(10)	
C10 $0.7980(36)$ $0.4398(14)$ $0.1446(12)$ H10A $0.8088(36)$ $0.4359(14)$ $0.0865(12)$ C11 $0.9473(23)$ $0.4346(12)$ $0.1857(13)$ C12 $0.9303(18)$ $0.4446(8)$ $0.2693(9)$ H12A $1.0255(18)$ $0.4449(8)$ $0.3018(9)$ C13 $0.7245(19)$ $0.8214(11)$ $0.1768(9)$ H13A $0.7428(19)$ $0.9011(11)$ $0.1824(9)$ H13B $0.6087(19)$ $0.8189(11)$ $0.1636(9)$ C14 $0.8328(28)$ $0.8038(15)$ $0.1024(10)$ H14A $0.8056(28)$ $0.7257(15)$ $0.0968(10)$ H14B $0.8015(28)$ $0.8028(16)$ $0.1091(12)$	C9	0.6314(26)	0.4499(13)	0.1725(13)	
110A $0.8068(36)$ $0.4359(14)$ $0.0865(12)$ $C11$ $0.9473(23)$ $0.4346(12)$ $0.1857(13)$ $C12$ $0.9303(18)$ $0.4446(8)$ $0.2693(9)$ $H12A$ $1.0255(18)$ $0.4419(8)$ $0.3018(9)$ $C13$ $0.7245(19)$ $0.8214(11)$ $0.1768(9)$ $H13A$ $0.7428(19)$ $0.9011(11)$ $0.1824(9)$ $H13B$ $0.6087(19)$ $0.8189(11)$ $0.1636(9)$ $C14$ $0.8328(28)$ $0.8038(15)$ $0.1024(10)$ $H14A$ $0.8056(28)$ $0.7257(15)$ $0.0968(10)$ $H14B$ $0.8015(28)$ $0.8028(16)$ $0.1091(12)$		0.7980(36)	0.4398(14)	0.1440(12)	
C11 $0.9473(23)$ $0.4340(12)$ $0.1037(13)$ $C12$ $0.9303(18)$ $0.4446(8)$ $0.2693(9)$ $H12A$ $1.0255(18)$ $0.4419(8)$ $0.3018(9)$ $C13$ $0.7245(19)$ $0.8214(11)$ $0.1768(9)$ $H13A$ $0.7428(19)$ $0.9011(11)$ $0.1824(9)$ $H13B$ $0.6087(19)$ $0.8189(11)$ $0.1636(9)$ $C14$ $0.8328(28)$ $0.8038(15)$ $0.1024(10)$ $H14A$ $0.8056(28)$ $0.7257(15)$ $0.0968(10)$ $H14B$ $0.8015(28)$ $0.8693(15)$ $0.0459(10)$ $C15$ $1.0117(27)$ $0.8028(16)$ $0.1091(12)$		0.0000(30)	0.4359(14)	0.0000(12)	
H12A $1.0255(18)$ $0.4419(8)$ $0.3018(9)$ $C13$ $0.7245(19)$ $0.8214(11)$ $0.1768(9)$ $H13A$ $0.7428(19)$ $0.9011(11)$ $0.1824(9)$ $H13B$ $0.6087(19)$ $0.8189(11)$ $0.1636(9)$ $C14$ $0.8328(28)$ $0.8038(15)$ $0.1024(10)$ $H14A$ $0.8056(28)$ $0.7257(15)$ $0.0968(10)$ $H14B$ $0.8015(28)$ $0.8028(16)$ $0.1091(12)$	C12	0.9473(23)	0.4346(12)	0.1037(13)	
C130.7245(19)0.8214(11)0.1768(9)H13A0.7428(19)0.9011(11)0.1824(9)H13B0.6087(19)0.8189(11)0.1636(9)C140.8328(28)0.8038(15)0.1024(10)H14A0.8056(28)0.7257(15)0.0968(10)H14B0.8015(28)0.8693(15)0.0459(10)C151.0117(27)0.8028(16)0.1091(12)	H12A	1.0255(18)	0.4419(8)	0.3018(9)	
H13A0.7428(19)0.9011(11)0.1824(9)H13B0.6087(19)0.8189(11)0.1636(9)C140.8328(28)0.8038(15)0.1024(10)H14A0.8056(28)0.7257(15)0.0968(10)H14B0.8015(28)0.8693(15)0.0459(10)C151.0117(27)0.8028(16)0.1091(12)	C13	0.7245(19)	0.8214(11)	0.1768(9)	
H13B0.6087(19)0.8189(11)0.1636(9)C140.8328(28)0.8038(15)0.1024(10)H14A0.8056(28)0.7257(15)0.0968(10)H14B0.8015(28)0.8693(15)0.0459(10)C151.0117(27)0.8028(16)0.1091(12)	H13A	0.7428(19)	0.9011(11)	0.1824(9)	
C140.8328(28)0.8038(15)0.1024(10)H14A0.8056(28)0.7257(15)0.0968(10)H14B0.8015(28)0.8693(15)0.0459(10)C151.0117(27)0.8028(16)0.1091(12)	H13B	0.6087(19)	0.8189(11)	0.1636(9)	
H14A0.8056(28)0.7257(15)0.0968(10)H14B0.8015(28)0.8693(15)0.0459(10)C151.0117(27)0.8028(16)0.1091(12)	C14	0.8328(28)	0.8038(15)	0.1024(10)	
H14B 0.8015(28) 0.8693(15) 0.0459(10) C15 1.0117(27) 0.8028(16) 0.1091(12)	H14A	0.8056(28)	0.7257(15)	0.0968(10)	
C15 1.0117(27) 0.8028(16) 0.1091(12)	H14B	0.8015(28)	0.8693(15)	0.0459(10)	
	015	1.0117(27)	0.8028(16)	0.1091(12)	

H15A	1.0442(27)	0.7331(16)	0.1630(12)
H15B	1.0385(27)	0.8780(16)	0.1195(12)
C16	1.1174(30)	0.7948(15)	0.0316(11)
H16A	1.0939(30)	0.7196(15)	0.0205(11)
H16B	1.0897(30)	0.8653(15)	-0.0227(11)
C17	1.2934(33)	0.7937(19)	0.0490(13)
H17A	1.3124(33)	0.8640(19)	0.0674(13)
H17B	1.3210(33)	0.7188(19)	0.1002(13)
C18	1.4016(25)	0.7984(19)	-0.0216(13)
H18A	1.5133(25)	0.7967(19)	-0.0021(13)
H18B	1.3796(25)	0.8738(19)	-0.0723(13)
H18C	1.3874(25)	0.7281(19)	-0.0397(13)
C19	0.8121(15)	0.0922(10)	0.4162(8)
H19A	0.7900(15)	0.0215(10)	0.4708(8)
H19B	0.9296(15)	0.0900(10)	0.4020(8)
C20	0.7153(20)	0.0859(10)	0.3396(8)
H20A	0.7519(20)	0.0115(10)	0.3274(8)
H20B	0.7402(20)	0.1570(10)	0.2857(8)
C21	0.5314(20)	0.0842(11)	0.3543(9)
H21A	0.4946(20)	0.1553(11)	0.3706(9)
H21B	0.5046(20)	0.0095(11)	0.4049(9)
C22	0.4370(21)	0.0878(10)	0.2699(9)
H22A	0.4637(21)	0.1623(10)	0.2191(9)
H22B	0.4728(21)	0.0164(10)	0.2537(9)
C23	0.2550(20)	0.0867(12)	0.2858(9)
H23A	0.2184(20)	0.1599(12)	0.2995(9)
H23B	0.2285(20)	0.0139(12)	0.3380(9)
C24	0.1632(19)	0.0850(14)	0.2031(9)
H24A	0.0463(19)	0.0840(14)	0.2157(9)
H24B	0.1982(19)	0.0121(14)	0.1899(9)
H24C	0.1873(19)	0.1580(14)	0.1517(9)
N2A	1.1227(20)	0.4275(14)	0.1546(12)
01A	1.1507(16)	0.4143(11)	0.0816(9)
O2A	1.2480(22)	0.4196(15)	0.1996(10)
N2B	0.4541(27)	0.4631(28)	0.1454(25)
O1B	0.3962(35)	0.4535(24)	0.0753(20)
02B	0 2869(44)	0 4728(31)	0 1852(21)
~	0.2000(44)	0 20(01)	

.

ANISOTROPIC THERMAL PARAMETERS FOR

Dihexyl 2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate (XVIII)

ATOM	U11	U22	U33	U23	U13	U12
N1	95(8)	148(10)	92(8)	-79(8)	28(7)	
C2	87(9)	85(10)	95(10)	-49(8)	1 8(9)	-20(8)
C2'	117(10)	88(9)	186(12)	-85(9)	46(9)	-26(8)
C3	53(7)	64(8)	78(8)	-20(7)	7(6)	-4(6)
C3'	71(10)	62(8)	139(12)	-16(9)	18(10)	6(7)
03'	118(8)	92(7)	255(11)	13(6)	37(8)	40(6)
03"	98(7)	72(5)	97(6)	-1(5)	-8(5)	10(5)
C4	43(6)	/2(/)	64(7)	-25(6)	-/(6)	-1(6)
C5	59(7)	56(7)	/1(8)	-19(6)	-4(6)	-6(6)
05	50(8)	72(9)	100(10	-3(7)	2(7)	-3(7)
05	94(7)	92(6)	230(10)	-32(6)	-55(7)	23(5)
05"	81(6)	62(5)	101(6)	-32(4)	-/(4)	20(4)
	68(8)	87(9)	86(10)	-33(8)	-8(7)	-19(7)
C6	129(12)	141(11) 59(0)	77(8)	5(8)	-12(8)	-31(9)
	124(11)	52(0) 71 (9)	57(8)	-15(5)	4(9)	20(7)
	1/3(13)	71(0)	03(10)	-10(7)	-59(10)	
C9 C10	143(21)	01(9) 72(10)	100(10)	10(9)	-05(14)	-10(13)
C10	200(29)		10(13)	-12(0)	-52(17)	-24(17)
C12	134(10)	69(9) 69(9)	122(13)	-40(9)	12(13)	-24(11)
C12	179(14)	104(0)	09(9)	-22(0)	40(9)	
C14	232(22)	104(9)	90(9)	23(9)	-12(11)	17(15)
C15	170(20)	133(14)	00(11)	16(11)	-30(13)	-17(15)
C16	204(23)	170(14)	95(12)	22(10)	-33(10)	-20(15)
C17	218(25)	256(22)	120/17	-20(15)	10(10)	-39(10)
C18	220(24)	318(20)	106(10)	=29(13) =52(10)	70(19)	-51(21)
C19	112(11)	68(8)	131(10)	-36(7)	14(0)	-09(20) 24/7)
C20	156(15)	79(8)	104(10)	-30(7)	14(9)	24(7) 2(0)
C21	132(13)	104(10)	134(12)	-71(8)	31(11)	-15(0)
C22	173(16)	90(9)	113(11)	-54(8)	24(11)	-20/10
C23	136(15)	140(12)	143(13)	-75(10)	39(12)	-25(10)
C24	170(16)	256(19)	157(13)	-103(13)	-40/12)	-23/13)
		200(10)	10/(10)	100(10)	70(12)	20(10)

The anisotropic displacement exponent takes the form: $-2\pi^2(h^2a^{*2}U_{11} + ... + 2hka^{*}b^{*}U_{12})$

BOND DISTANCES (Å) AND BOND ANGLES (°) FOR

Dihexyl 2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate (XVIII)

N1-C6	1.335(12)	C6-N1-C2	122.2(11)
N1-C2	1.357(12)	C3-C2-N1	118.8(11)
C2-C3	1.340(12)	C3-C2-C2'	127.9(13)
C2-C2'	1 489(13)	N1-C2-C2'	113.0(12)
C3-C4	1.397(11)	C2-C3-C4	123.3(10)
C3-C3'	1.503(14)	C2-C3-C3'	117.6(12)
C3'-O3'	1 193(11)	C4-C3-C3'	119 0(11)
C3'-O3"	1 327(11)	03'-03'-03"	123 4(12)
03"-013	1.627(11)	03'-C3'-C3	124 4(13)
C4-C5	1 432(11)	03"-03'-03	111.9(11)
C4-C7	1 459(12)	C3'-O3"-C13	
C5-C6	1.375(12)	C3-C4-C5	115 5(9)
C5-C5'	1 491(13)	C_{3} - C_{4} - C_{7}	123 5(10)
C5'-O5'	1 189(11)	C5-C4-C7	121 0(10)
05-05	1 332(12)	C6-C5-C4	119 6(10)
05"-019	1.352(12)	C6-C5-C5'	119 0/11)
	1.400(10)	C4-C5-C5'	120 4(10)
C7-C8	1.304(12)	05'-05'-05"	120.4(10)
C7 - C12	1.342(14)	05-05-05	124.0(12)
	1.350(14)	05-05-05	111 7(10)
C_{0}	(1.47(2))	C5'-C5"-C10	117 5/9)
CO-N2R	1.42(2)	N1-C6-C5	120 5/11
C10 C11	1.494(0)		120.3(11)
	1.30(2)		110.9(13)
	1.300(13)		122.0(12)
012 014	1.493(5)		
013-014	1.50(2)		120.3(13)
014-015	1.45(2)	07.00.00	121.1(13)
C15-C16	1.49(2)	C7-C8-C9	126.4(15)
C16-C17	1.46(2)	C10-C9-C8	105.6(17)
C17-C18	1.38(2)	C10-C9-N2B	145.8(26)
C19-C20	1.482(13)	C8-C9-N2B	108.3(23)
C20-C21	1.498(15)	C9-C10-C11	133.2(20)
C21-C22	1.538(14)	C12-C11-C10	113.0(15)
C22-C23	1.485(15)	C12-C11-N2A	114.2(19)
C23-C24	1.523(14)	C10-C11-N2A	132.8(20)
O2A-N2A	1.24(2)	C11-C12-C7	123.1(13)
U1A-N2A	1.221(15)	U3"-C13-C14	106.8(11)
U1B-N2B	1.25(3)	C15-C14-C13	119.5(18)
N2B-02B	1.49(4)	C14-C15-C16	119.0(19)
		C17-C16-C15	112.4(19)
		C18-C17-C16	117.0(22)

TABLE 95 (Continued)

	O5"-C19-C20	108.5(9)	
	C19-C20-C21	115.3(12)	
	C20-C21-C22	112.9(12)	
	C23-C22-C21	112.0(12)	
	C22-C23-C24	111.6(13)	
	01A-N2A-02A	113.8(17)	
	O1A-N2A-C11	119.0(17)	
	O2A-N2A-C11	126.7(20)	
	O1B-N2B-O2B	92.8(24)	
:	O1B-N2B-C9	127.6(31)	
	O2B-N2B-C9	139.1(33)	

TORSION-ANGLES-(°)-FOR

Dihexyl 2,6-dimethyl-4-(3-nitrophenyl)pyndine-3,5-dicarboxylate (XVIII)

C6-N1-C2-C3	-4.4(17)	N2B-C9-C10-C11	175.8(26)
C6-N1-C2-C2'	-179.0(10)	C9-C10-C11-C12	-2.1(27)
N1-C2-C3-C4	4.5(16)	C9-C10-C11-N2A	-178.0(17)
C2'-C2-C3-C4	178.1(10)	C10-C11-C12-C7	0.0(17)
N1-C2-C3-C3'	-178.6(10)	N2A-C11-C12-C7	176.8(11)
C2'-C2-C3-C3'	-5.0(17)	C8-C7-C12-C11	0.0(15)
C2-C3-C3'-O3'	-43.3(18)	C4-C7-C12-C11	-177.5(10)
C4-C3-C3'-O3'	133.7(13)	C3'-O3"-C13-C14	-158.5(12)
C2-C3-C3'-O3"	130.7(11)	O3"-C13-C14-C15	-59.2(19)
C4-C3-C3'-O3"	-52.3(13)	C13-C14-C15-C16	-175.5(12)
O3'-C3'-O3"-C13	-8.3(18)	C14-C15-C16-C17	-179.5(17)
C3-C3'-O3"-C13	177.6(10)	C15-C16-C17-C18	-174.0(17)
C2-C3-C4-C5	-1.6(14)	C5'-O5"-C19-C20	-159.2(10)
C3'-C3-C4-C5	-178.5(9)	O5"-C19-C20-C21	-61.6(13)
C2-C3-C4-C7	178.5(11)	C19-C20-C21-C22	175.6(9)
C3'-C3-C4-C7	1.7(15)	C20-C21-C22-C23	-179.7(10)
C3-C4-C5-C6	-1.3(13)	C21-C22-C23-C24	-177.7(9)
C7-C4-C5-C6	178.5(11)	C12-C11-N2A-O1A	177.7(13)
C3-C4-C5-C5'	179.2(9)	C10-C11-N2A-O1A	-6.4(26)
C7-C4-C5-C5'	-0.9(15)	C12-C11-N2A-O2A	6.3(24)
C6-C5-C5'-O5'	-46.1(16)	C10-C11-N2A-O2A	-177.7(19)
C4-C5-C5'-O5'	133.3(12)	C10-C9-N2B-O1B	10.4(56)
C6-C5-C5'-O5"	128.6(10)	C8-C9-N2B-O1B	-177.2(30)
C4-C5-C5'-O5"	-52.0(12)	C8-C9-N2B-O2B	-7.6(46)
O5'-C5'-O5"C19	-9.9(16)	C10-C9-N2B-O2B	-179.9(33)
C5-C5'-O5"-C19	175.5(8)		()
C2-N1-C6-C5	1.5(17)		
C2-N1-C6-C6'	-177.9(10)		
C4-C5-C6-N1	1.4(15)		
C5'-C5-C6-N1	-179.2(10)		
C4-C5-C6-C6'	-179.2(10)		
C5'-C5-C6-C6'	0.2(15)		
C3-C4-C7-C8	-66.4(14)		
C5-C4-C7-C8	113.8(11)		
C3-C4-C7-C12	111.1(11)		
C5-C4-C7-C12	-68.8(13)		
C12-C7-C8-C9	1.9(17)		
C4-C7-C8-C9	179.4(10)		
C7-C8-C9-C10	-3.1(19)		
C7-C8-C9-N2B	-178.6(16)		
C8-C9-C10-C11	3.4(26)		

Figure 49: Projection view of [Heptyl 2,6-dimethyl-3,5-dicarboxylate-4-(3-nitrophenyl)-1,4-dihydropyridine] • CH₃CN (XVIV)

CRYSTAL DATA FOR

1992

Diheptyl 2,6-Dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (XIX)

Formula	C31H45N3O6
M. W.	555.7 g mole ⁻¹
<u>a</u>	9.632(2) Å
b	12.361(1) Å
<u>C</u>	15.127(2) Å
α	105.96(1) °
β	99.75(1) °
γ	103.07(1) °
V	1634.3(4) Å ³
F(000)	600
μΜοΚα	11.28 cm ⁻¹
λΜοΚα	0.71069 Å
Dcalc	Mg/m ³
Ζ	2
Meas refl	5642
Obs refl	1347
R	7.41 %
Rw	8.65 %
G. O. F.	1.84
Space Group	P-1
Octants meas	-1≤_h ≤ 11,-13 ≤ k ≤13, -17≤ i ≤17

POSITIONAL PARAMETERS FOR

Diheptyl 2,6-Dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (XIX)

АТОМ	X(SIG(X))	Y(SIG(Y))	Z(SIG(Z))
N1	0.3482(10)	0.7545(9)	0.1059(5)
C2	0.4595(13)	0.8577(11)	0.1514(9)
C2'	0.4805(12)	0.9388(9)	0.938(7)
C3	0.5311(11)	0.8797(8)	0.2406(7)
C3'	0.6408(12)	0.9930(10)	0.2982(9)
03'	0.6869(9)	1.0736(7)	0.2704(5)
03"	0.6909(8)	0.9951(6)	0.3849(6)
C4	0.5062(10)	0.7854(7)	0.2892(6)
05	0.3570(10)	0.6931(7)	0.2390(6)
05	0.2951(12)	0.6238(9)	0.2954(7)
05	0.1784(8)	0.5479(6)	0.2004(4)
05"	0.3799(6)	0.0009(0)	
	0.2902(11)	0.6800(9)	0.1503(0)
	0.488(10)	0.5905(8)	0.0921(0)
	0.0290(11)	0.7290(9)	0.2930(9)
	0.0721(14)	0.0002(10)	0.2111(5)
C3	0.7031(10)	0.0201(11)	0.2130(3)
C10	0.0000(12)	0.0203(10)	0.2575(12)
C12	0.0142(13)	0.0000(10)	0.3766/7)
C12	0.7030(12)	1 0005/11)	0.3700(7)
C14	0.7541(10)	1.0555(11)	0.5547(19)
C15	0.0545(15)	1.0557(10)	0.5711(15)
C16	0.8157(39)	1.0054(25)	0.5711(13)
C17	0.0137(35)	1.0105(20)	0.7396/18)
C18	0.0040(00)	1.0506(29)	0.8372(17)
C19	1 0336(33)	1.0594(30)	0.8946(17)
C20	0.3317(11)	0.6007(9)	0.4485(7)
C21	0.4488(12)	0.6629(10)	0.5406(8)
C22	0 4184(13)	0.6219(11)	0.6167(10)
Č23	0.5364(16)	0.6863(12)	0.7088(9)
C24	0.5258(18)	0.6429(15)	0.7864(12)
C25	0.6359(23)	0.6907(17)	0.8695(11)
C26	0.6164(20)	0.6411(14)	0.9418(11)
N2	0.8853(11)	0.6586(10)	0.4672(8)
N3	0.1781(11)	0.7110(9)	-0.0961(6)
		•••••••••••••••••••••••••••••••••••••••	

C91	0.1230(12)	0.7053(9)	-0.1686(7)	
C92	0.0542(12)	0.6969(9)	-0.2631(7)	
02	0.8468(10)	0.7022(8)	0.5383(6)	
01	0.9811(10)	0.6114(8)	0.4696(7)	

TABLE 98 (Continued)

ANISOTROPIC THERMAL PARAMETERS FOR

Diheptyl 2,6-Dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (XIX)

ΑΤΟΜ	U11	U22	U33	U23	U13	U12
N1	75(7)	102(8)	55(6)	7(6)	-11(6)	34(6)
C2	69(9)	90(10)	95(10)	24(8)	11(7)	48(9)
C2'	125(11)	109(10)	116(10)	13(9)	-7(9)	67(9)
C3	72(8)	66(7)	72(8)	5(6)	18(7)	41(7)
C3'	64(8)	68(8 <u>)</u>	107(11)	5(7)	13(8)	43(8)
O3'	150(8)	89(6)	117(7)	-22(6)	-3(6)	62(6)
O3"	78(6)	66(5)	91(6)	-17(5)	-12(5)	24(5)
C4	46(7)	49(7)	51(7)	23(6)	6(5)	9(6)
C5	49(7)	49(6)	40(6)	-7(6)	6(5)	9(5)
C5'	43(7)	67(8)	59(8)	9(6)	6(6)	25(6)
05'	66(5)	89(5)	80(5)	-16(5)	-5(4)	26(4)
05"	51(4)	86(5)	60(5)	8(4)	5(4)	37(4)
C6	55(8)	71(8)	67(8)	8(6)	7(7)	24(7)
C6'	75(9)	104(9)	72(8)	3(7)	-11(6)	29(7)
C7	47(8)	51(7)	67(8)	1(6)	16(7)	21(7)
C8	66(10)	75(9)	92(12)	17(7)	19(8)	34(8)
C9	88(11)	112(11)	64(10)	35(9)	35(8)	16(8)
C10	56(9)	75(9)	116(12	12(7)	17(10)	29(10)
C11	4/(8)	54(8)	79(10)	13(6)	11(7)	33(7)
C12	42(7)	48(7)	66(9)	3(6)	6(6)	16(6)
C13	85(11)	68(9)	166(15)	-2(9)	-18(10)	21(11)
C14	58(15)	115(15)	460(53)	-3(11)	6(20)	-109(20)
015	137(22)	591(59)	169(24)	132(28)	-54(18)	-289(35)
C16	709(94)	312(39)	309(49)	-151(45)	430(61)	-190(37)
C17	3/1(39)	251(34)	177(31)	-23(30)	156(32)	-91(27)
018	388(45)	480(45)	134(24)	232(40)	114(33)	63(30)
C19 C20	646(98)	901(98)	284(52)	215(80)	111(51)	334(63)
C20	69(8) 70(0)	113(9)	81(9)	30(7)	28(8)	62(8)
021	73(9)	154(12)	106(10)	2(8)	8(8)	100(10)
022	00(11)	149(13)	142(13)	37(10)	37(10)	67(12)
C23	100(10)	147(14)	84(12)	35(12)	15(12)	21(11)
024	1/5(10)	223(20)	116(15)	33(16)	18(15)	21(16)
C25	202(20)	209(23)	/1(13)	46(20)	42(16)	51(15)
V20	204(23)	241(22)	153(18)	106(19)	52(17)	-2(17)

N2	46(8)	92(9)	100(10)	10(6)	-6(8)	47(8)
N3	156(10)	214(11)	76(7)	65(9)	-10(7)	56(7)
01	83(7)	155(9)	167(9)	48(6)	11(6)	86(7)
02	103(7)	142(8)	83(7)	45(6)	-1(6)	49(6)
C92	110(10)	99(9)	103(10)	12(8)	15(8)	52(8)
C91	105(10)	109(9)	68(8)	12(8)	-6(7)	47(7)

TABLE 99 (Continued)

The anisotropic displacement exponent takes the form:- $2\pi^2(h^2a^{*2}U_{11} + ... + 2hka^{*}b^{*}U_{12})$

BOND DISTANCES (Å) AND BOND ANGLES (°) FOR

Diheptyl 2,6-Dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (XIX)

N1-C2	1.378 (13)	C2-N1-C6	124.0(9)
N1-C6	1.358 (16)	N1-C2-C2'	114.2(10)
C2-C2'	1.501 (19)	N1-C2-C3	119.4(13)
C2-C3	1.330 (17)	C2'-C2-C3	126.4(9)
C3-C4	1.537 (16)	C2-C3-C4	121.0(8)
C3-C3'	1.478 (12)	C2-C3-C3'	123.1(12)
C4-C5	1.534 (11)	C4-C3-C3'	115.9(9)
C4-C7	1.502 (16)	C3-C4-C5	110.1(8)
C5-C6	1.335 (15)	C3-C4-C7	111.5(9)
C5-C5'	1.470 (16)	C5-C4-C7	111.5(7)
C6-C6'	1.494 (12)	C4-C5-C6	120.7(9)
C7-C8	1.396 (19)	C4-C5-C5'	115.6(8)
C7-C12	1.391 (17)	C6-C5-C5'	123.7(8)
C8-C9	1.384 (21)	N1-C6-C5	120.1(8)
C9-C10	1.369 (22)	N1-C6-C6'	113.8(9)
C10-C11	1.351 (21)	C5-C6-C6'	126.0(10)
C11-C12	1.360 (18)	C4-C7-C8	121.2(11)
C11-N2	1.477 (19)	C4-C7-C12	122.8(11)
N2-01	1.199 (16)	C8-C7-C12	116.0(11)
N2-O2	1.221 (15)	C7-C8-C9	121.5(13)
N3-C91	1.111 (14)	C8-C9-C10	121.1(13)
C92-C91	1.436 (15)	C9-C10-C11	117.1(13)
C13-C14	1.849 (33)	C10-C11-C12	123.7(13)
C13-C15	2.036 (30)	C10-C11-N2	118.9(12)
C13-O3"	1.418 (12)	C12-C11-N2	117.4(12)
C14-C15	0.942 (33)	C7-C12-C11	120.7(11)
C15-C16	1.890 (44)	C11-N2-O1	119.3(12)
C16-C17	1.070 (38)	C11-N2-O2	118.6(12)
C17-C18	1.493 (40)	01-N2-02	122.1(12)
C18-C19	1.041 (40)	N3-C91-C92	178.8(13)
C3'-O3'	1.209 (16)	C14-C13-C15	27.5(10)
C3'-O3"	1.309 (16)	C14-C13-O3"	103.7(10)
C5'-O5'	1.212 (11)	C15-C13-O3"	97.3(10)
C5'-O5"	1.324 (12)	C13-C14-C15	87.3(24)
O5"-C20	1.443 (14)	C13-C15-C14	65.1(23)
C20-C21	1.513 (13)	C13-C15-C16	155.5(19)
C21-C22	1.426 (21)	C14-C15-C16	90.42(8)
C22-C23	1.520 (16)	C15-C16-C17	130.4(30)
C23-C24	1.428 (26)	C16-C17-C18	140.8(34)
	· ·		· /

C24-C25	1.382 (21)	C17-C18-C19	149.4(36)
C25-C26	1.412 (28)	C3-C3'-O3'	_ 126.0(12)
	、 <i>,</i>	C3-C3'-O3"	111.6(11)
		O3'-C3'-O3"	122.2(9)
		C13-O3"-C3'	118.4(10)
		C5-C5'-O5'	125.3(9)
		C5-C5'-O5"	112.2(8)
		05'-C5'-O5"	122.5(11)
		C5'-O5"-C20	119.4(7)
		O5"-C20-C21	105.2(8)
		C20-C21-C22	113.69)
		C21-C22-C23	112.8(11)
	•	C22-C23-C24	117.3(12)
		C23-C24-C25	120.4(15)
		C24-C25-C26	116.2(17)

TABLE 100 (Continued)

TORSION ANGLES (°) FOR

Diheptyl 2,6-Dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (XIX)

C6-N1-C2-C2'	-166.0(1.1)	O3"-C13-C14-C15	-79.4(1.9)
C6-N1-C2-C3	10.4(2.0)	C14-C13-C15-C16	-5.8(2.9)
C2-N1-C6-C5	-12.1(1.9)	O3"-C13-C15-C14	105.7(1.8)
C2-N1-C6-C6'	166.0(1.1)	O3"-C13-C15-C16	100.0(3.6)
N1-C2-C3-C4	8.3(1.9)	C14-C13-O3"-C3'	-171.6(1.1)
N1-C2-C3-C3'	-173.4(1.2)	C15-C13-O3"-C3'	161.1(1.2)
C2'-C2-C3-C4	-175.8(1.1)	C13-C14-C15-C16	177.6(1.2)
C2'-C2-C3-C3'	2.5(2.1)	C13-C15-C16-C17	70.3(5.8)
C2-C3-C4-C5	-22.0(1.5)	C14-C15-C16-C17	65.1(4.7)
C2-C3-C4-C7	102.3(1.2)	C15-C16-C17-C18	164.2(3.9)
C3'-C3-C4-C5	159.6(0.9)	C16-C17-C18-C19	148.4(7.2)
C3'-C3-C4-C7	-76.1(1.1)	C3-C3'-O3"-C13	-178.1(1.1)
C2-C3-C3'-O3'	-6.3(2.1)	O3'-C3'-O3"-C13	5.1(1.8)
C2-C3-C3'-O3*	177.1(1.2)	C5-C5'-O5"-C20	176.9(0.9)
C4-C3-C3'-O3'	172.1(1.2)	O5'-C5'-O5 " -C20	-1.2(1.6)
C4-C3-C3'-O3"	-4.5(1.5)	C5'-O5"-C20-C21	-176.6(0.9)
C3-C4-C5-C6	20.3(1.3)	O5"-C20-C21-C22	178.5(1.0)
C3-C4-C5-C5'	-158.9(0.9)	C21-C22-C23-C24	-172.7(1.4)
C7-C4-C5-C6	-104.0(1.2)	C22-C23-C24-C25	174.4(1.7)
C7-C4-C5-C5'	76.8(1.2)	C23-C24-C25-C26	-179.3(1.8)
C3-C4-C7-C8	-54.1(1.1)	C10-C11-N2-O1	1.8(1.6)
C3-C4-C7-C12	127.6(1.0)	C10-C11-N2-O2	179.8(1.0)
C5-C4-C7-C8	69.4(1.3)	C12-C11-N2-O1	179.7(1.0)
C5-C4-C7-C12	-108.9(1.0)	C12-C11-N2-O2	-2.3(1.5)
C4-C5-C6-N1	-5.1(1.6)	N2-C11-C12-C7	-177.5(0.9)
C4-C5-C6-C6'	177.1(1.0)	C10-C11-C12-C7	0.3(1.7)
C5'-C5-C6-N1	. 174.1(1.1)		
C5'-C5-C6-C6'	-3.7(1.8)		
C4-C5-C5'-O5'	179.3(1.1)		
C4-C5-C5'-O5"	1.3(1.3)		
C6-C5-C5'-O5'	0.1(1.9)		
C6-C5-C5'-O5"	-177.9(1.0)		
C4-C7-C8-C9	-178.2(1.0)		
C12-C7-C8-C9	0.2(1.6)		
C4-C7-C12-C11	178.4(0.9)		
C8-C7-C12-C11	0.0(1.5)		
C7-C8-C9-C10	-0.7(1.8)		
C8-C9-C10-C11	1.0(1.7)		
C9-C10-C11-C12	-0.8(1.7)		
C9-C10-C11-N2	177.0(1.0)		

Figure 50: Projection view of Octyl 2,6-dimethyl-3,5-dicarboxylate-4-(3-nitrophenyl)-1,4-dihydropyridine(XX)

267

CRYSTAL DATA FOR

Dioctyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (XX)

Formula	C31H46N2O6
M. W.	542.7 g mole ⁻¹
a	15.983(2) Å
<u>b</u>	15.916(2) Å
<u>C</u>	12.856(3) Å
α	90.0 °
β	106.32(1) °
γ	90.0 °
V	3139.1(9) Å ³
F(000)	1176
μΜοΚα	11.28 cm ⁻¹
λΜοΚα	0.71069 Å
D _{calc}	1.13 g/cm ³
Ζ	4
Meas refl	6810
Obs refl	1027
R	7.53 %
Rw	7.85 %
G. O. F.	1.50
Space Group	P21/c
Octants meas	-19 ≤ h ≤18, -18 ≤ k ≤ 1, -1 ≤ l ≤15

POSITIONAL PARAMETERS FOR

Dioctyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (XX)

ΑΤΟΜ	X(SIG(X))	Y(SIG(Y))	Z(SIG(Z))
N1	0.967(8)	0.3309(8)	0.1690(9)
C2	0.91(11)	0.3445(10)	0.1637(11)
C2'	-0.0365(8)	0.3958(8)	0.0662(11)
C3	-0.0201(8)	0.31/8(8)	0.2438(13)
C3 ⁻	-0.1160(10)	0.3250(11)	0.2339(15)
03	-0.1700(7)	0.3569(8)	
03.	-0.1342(6)	0.2885(8)	0.3166(9)
C4	0.0391(8)	0.2774(9)	0.3444(12)
C5	0.1163(9)	0.2387(8)	0.3171(10)
C5'	0.1582(10)	0.1718(8)	0.3866(11)
05'	0.1406(6)	0.1489(6)	0.4678(7)
05"	0.2190(7)	0.1287(7)	0.3532(7)
C6	0.1462(9)	0.2703(9)	0.2370(12)
C6 ⁻	0.2262(7)	0.2491(8)	0.2019(10)
07	0.0615(10)	0.3413(10)	0.4363(12)
	0.1277(9)	0.3993(10)	0.4422(12)
C9	0.1450(10)	0.4607(10)	0.5200(13)
C10	0.1021(11)	0.4630(9)	0.5991(12)
C11	0.0360(9)	0.4063(10)	0.5921(11)
C12	0.0179(8)	0.3460(8)	0.5140(11)
C13	-0.2227(10)	0.2919(15)	0.31/0(15)
C14	-0.2407(11)	0.2811(14)	0.4104(16)
C15	-0.3332(17)	0.2816(17)	0.4168(21)
C16	-0.3596(18)	0.3020(24)	0.4854(24)
C17	-0.45/3(31)	0.3045(33)	0.4970(33)
C18	-0.4886(37)	0.2755(30)	0.5404(42)
C19	-0.5744(26)	0.2916(34)	0.5478(41)
C20	-0.6248(25)	0.3167(25)	0.5313(26)
C21	0.2549(10)	0.0563(11)	0.4160(13)
C22	0.3128(12)	0.0103(11)	0.3606(15)
C23	0.3912(12)	0.0542(10)	0.3625(13)
C24	0.4531(12)	0.0038(12)	0.3105(14)
025	0.53/1(14)	0.0431(12)	0.3148(16)
026	0.59/2(13)	-0.0022(16)	0.2661(21)
027	0.6820(19)	0.0459(16)	0.2835(20)
028	0.7353(16)	0.0100(13)	0.2345(22)

TABLE 103 (Continued)

N2 O1 O2	-0.0153(10) 0.0147(8)	0.04094(11) 0.4525(9) 0.3701(8)	0.6719(14) 0.7528(9) 0.6503(11)	
02	-0.0010(9)	0.3701(0)	0.0503(11)	

ANISOTROPIC THERMAL PARAMETERS FOR

Dioctyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (XX)

ATOM	U11	U22	U33	U23	U13	U12
N1	61(9)	65(10)	64(9)	-27(8)	44(8)	0(8)
C2	83(14)	65(13)	38(11)	-36(11)	19(11)	0(10)
C2'	93(12)	68(12)	81(13)	-4(10)	54(11)	-14(11)
C3	53(10)	17(9)	63(10)	11(8)	32(10)	-7(9)
C3'	62(13)	75(15)	60(14)	14(11)	23(12)	10(12)
O3'	67(9)	137(12)	119(12)	21(8)	22(8)	37(10)
O3"	54(8)	134(11)	83(9)	-19(8)	34(7)	-25
C4	42(10)	59(11)	51(11)	7(1Ò)	25(10)	8(11)
C5	61(10)	45(11)	51(9)	-5(8)	40(9)	-1(9)
C5'	72(13)	35(11)	38(10)	6(9)	1(10)	-4(9)
O5'	101(9)	75(8)	31(6)	3(7)	27(6)	8(6)
05"	70(8)	73(9)	68(8)	3Ò(6)	29(7)	21(7)
C6	51(11)	30(10)	51(11)	-7(9)	7(10)	5(9)
C6'	54(9)	72(12)	84(12)	-3(9)	46(9)	8(9)
C7	49(11)	51(11)	50(11)	-3(9)	17(10)	-22(10)
C8	55(12)	64(12)	56(12)	22(10)	15(10)	-23(11)
C9	85(13)	62(14)	62(12)	3(10) ໌	28(11)	-6(11)
C10	86(14)	37(12)	43(11)	8(10)	1(11)	-2Ò(9́)
C11	53(11)	31(9)	43(10)	25(9)	-1(9)	-18(9)
C12	61(10)	33(10)	48(10)	32(9)	29(9)	6(9)
C13	62(15)	248(28)	177(26)	-26(18)	70(16)	25(21)
C14	84(17)	216(24)	188(26)	-9(18)	98(19)́	5(20)
C15	175(29)	207(27)	209(34)	3(23)	119(25)	-45(23)
C16	152(30)	560(63)	301(50)	-22(37)	77(31) -	-278(47)
C17	248(55)	711(109	274(46)	-74(65)	168(45)	-1(54)
C18	257(73)	214(43)	957(179	33(44)	50(99)	-89(70)
C19	127(61)	939(154	559(90)	-36(60)	16(48) -5	557(110)
C20	108(42)	890(127	239(38)	-53(51)	90(34)	-97(54)
C21	58(13)	97(1 [°] 6)	86(14)	32(11)	15(11)	10(13)
C22	79(14)	87(17)	133(18)	-25(14)	11(14)	8(15)
C23	109(18)	75(16)	102(16)	20(14)	23(15)	9(12)
		· · /	· /	· · /	- · · · · /	- ()
C24	87(14)	139(18)	97(15)	29(16)	26(13)	19(14)
-----	----------	----------	---------	---------	---------	--------
C25	86(17)	182(25)	178(22)	41(19)	52(17)	58(19)
C26	88(19)	189(31)	251(32)	23(20)	60(21)	35(26)
C27	246(36)	181 (34)	168(24)	78(29)	79(27)	14(23)
C28	361 (44)	79(22)	511(58)	-32(24)	318(43)	-3(26)
N2	84(14)	90(16)	65(11)	39(12)	20(13)	7(11)
01	152(12)	141(12)	68(8)	22(9)	35(9)	-32(9)
02	127(12)	105(12)	85(10)	15(10)	71(11)	3(8)

TABLE 104 (Continue	d)
---------------------	----

The anisotropic displacement exponent takes the form:- $2\pi^2(h^2a^{*2}U_{11} + ... + 2hka^{*b}U_{12})$

BOND DISTANCES (Å) AND BOND ANGLES (°) FOR

Dioctyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (XX)

N1-C2	1.399 (22)	C2-N1-C6	121.5(13)
N1-C6	1.390 (18)	N1-C2-C2'	111.7(14)
C2-C2'	1.503 (19)	N1-C2-C3	118.9(12)
C2-C3	1.316 (24)	C2'-C2-C3	129.2(15)
C3-C4	1.514 (19)	C2-C3-C4	122.1(13)
C3-C3'	1.506 (22)	C2-C3-C3'	119.0(14)
C4-C5	1.506 (21)	C4-C3-C3'	118.9(14)
C4-C7	1.524 (21)	C3-C4-C5	109.3(13)
C5-C6	1.347 (22)	C3-C4-C7	109.5(11)
C5-C5'	1.430 (18)	C5-C4-C7	115.1(11)
C6-C6'	1.509 (21)	C4-C5-C6	121.0(12)
C7-C8	1.390 (22)	C4-C5-C5'	115.4(13)
C7-C12	1.372 (23)	C6-C5-C5'	123.4(14)
C8-C9	1.370 (22)	N1-C6-C5	118.6(14)
C9-C10	1.377 (25)	N1-C6-C6'	110.3(13)
C10-C11	1.373 (22)	C5-C6-C6'	131.1(12)
C11-C12	1.360 (20)	C4-C7-C8	119.6(15)
C11-N2	1.484 (25)	C4-C7-C12	123.0(13)
C13-C14	1.322 (30)	C8-C7-C12	117.4(13)
C13-O3"	1.416 (21)	C7-C8-C9	120.4(16)
C14-C15	1.505 (35)	C8-C9-C10	121.2(15)
C15-C16	1.127 (45)	C9-C10-C11	117.9(13)
C16-C17	1.611 (60)	C10-C11-C12	120.8(15)
C3'-O3'	1.183 (19)	C10-C11-N2	119.9(14)
C3'-O3"	1.318 (23)	C12-C11-N2	119.3(14)
C5'-O5'	1.212 (19)	C7-C12-C11	122.0(13)
C5'-O5"	1.353 (20)	C14-C13-O3"	118.1(14)
O5"-C21	1.432 (19)	C13-C14-C15	121.1(17)
C17-C18	0.965 (80)	C14-C15-C16	129.3(24)
C18-C19	1.424 (77)	C15-C16-C17	131.6(28)
C19-C20	0.871 (59)	C3-C3'-O3'	127.1(18)
C21-C22	1.506 (27)	C3-C3'-O3"	110.2(13)
C22-C23	1.430 (27)	03'-C3'-O3"	122.7(16)
C23-C24	1.562 (28)	C13-O3"-C3'	115.7(13)
C24-C25	1.468 (29)	C5-C5'-O5'	125.5(15)
C25-C26	1.474 (35)	C5-C5'-O5"	115.6(13)
C26-C27	1.518 (36)	O5'-C5'-O5"	118.8(12)
C27-C28	1.323 (42)	C5'-O5"-C21	116.1(12)
N2-01	1.227 (20)	C16-C17-C18	135.7(51)
N2-O2	1.196 (21)	C17-C18-C19	128.1(56)
		C18-C19-C20	155.5(65)

	و خو د خو د خو خو هو من و مو و مو و مو و مو و مو و مو و	
	O5"-C21-C22	109.1(14)
	C21-C22-C23	114.0(15)
	C22-C23-C24	113.6(14)
	C23-C24-C25	116.6(16)
	C24-C25-C26	118.3(17)
	C25-C26-C27	110 6(21)
	C26-C27-C28	112.4(22)
	C11-N2-O1	116 4(15)
	C11-N2-O2	116 7(15)
	01-N2-O2	126.9(19)
÷		

TABLE 105 (Continued)

TORSION ANGLES (°) FOR

Dioctyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (XX)

C6-N1-C2-C2'	-165.3(1.2)	O3"-C13-C14-C15	-178.3(2.0)
C6-N1-C2-C3	19.5(2.0)	C14-C13-O3"-C3'	-158.7(2.0)
C2-N1-C6-C5	-16.2(2.0)	C13-C14-C15-C16	-149.5(3.6)
C2-N1-C6-C6'	161.6(1.2)	C14-C15-C16-C17	179.7(3.5)
N1-C2-C3-C4	3.6(2.1)	C15-C16-C17-C18	113.4(7.5)
N1-C2-C3-C3'	-174.8(1.3)	C3-C3'-O3"-C13	179.6(1.4)
C2'-C2-C3-C4	-170.7(1.3)	O3'-C3'-O3"-C13	-2.9(2.5)
C2'-C2-C3-C3'	10.9(2.3)	C5-C5'-O5"-C21	-173.8(1.1)
C2-C3-C4-C5	-25.6(1.8)	05'-C5'-O5"-C21	2.5(1.8)
C2-C3-C4-C7	101.3(1.7)	C5'-O5"-C21-C22	173.3(1.2)
C3'-C3-C4-C5	152.8(1.2)	C16-C17-C18-C19	173.1(4.9)
C3'-C3-C4-C7	-80.3(1.6)	C17-C18-C19-C20	3.7(***)
C2-C3-C3'-O3'	-3.3(2.5)	O5"-C21-C22-C23	69.2(1.6)
C2-C3-C3'-O3"	174.0(1.4)	C21-C22-C23-C24	176.8(1.3)
C4-C3-C3'-O3'	178.2(1.6)	C22-C23-C24-C25	-176.8(1.5)
C4-C3-C3'-O3"	-4.5(1.9)	C23-C24-C25-C26	-179.6(1.7)
C3-C4-C5-C6	28.6(1.6)	C24-C25-C26-C27	-177.1(1.8)
C3-C4-C5-C5'	-155.9(1.1)	C25-C26-C27-C28	-175.7(2.1)
C7-C4-C5-C6	-95.1(1.5)	C12-C11-N2-O2	-15.2(2.1)
C7-C4-C5-C5'	80.4(1.5)	N2-C11-C12-C7	178.2(1.3)
C3-C4-C7-C8	-81.8(1.6)	C10-C11-N2-O1	-13.5(2.1)
C3-C4-C7-C12	96.7(1.6)	C10-C11-N2-O2	166.0(1.5)
C5-C4-C7-C8	41.8(1.8)	C12-C11-N2-O1	165.3(1.4)
C5-C4-C7-C12	-139.6(1.4)		. ,
C4-C5-C6-N1	-9.7(1.9)		
C4-C5-C6-C6'	173.0(1.3)		
C5'-C5-C6-N1	175.2(1.2)		
C5'-C5-C6-C6'	-2.1(2.3)		
C4-C5-C5'-O5'	-5.5(1.9)		
C4-C5-C5'-O5"	170.5(1.1)		
C6-C5-C5'-O5'	169.8(1.3)		
C6-C5-C5'-O5"	-14.1(1.9)		
C4-C7-C8-C9	175.7(1.3)		
C12-C7-C8-C9	-3.0(2.1)		
C4-C7-C12-C11	-176.6(1.2)		
C8-C7-C12-C11	2.0(2.0)		
C7-C8-C9-C10	4.9(2.2)		
C8-C9-C10-C11	-5.7(2.1)		
C9-C10-C11-C12	4.7(2.1) [´]		
C9-C10-C11-N2	-176.6(1.3)		
C10-C11-C12-C7	-3.0(2.1)		
	· · /		

CRYSTAL DATA FOR

Di-(2-methoxyethyl)-2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5dicarboxylate (XXI)

Formula	C ₂₁ H ₂₆ N ₂ O ₈
M. W.	434.2g mole ⁻¹
a	15.3210(10) Å
b	51.520(4) Å
C	10.8740(10) Å
α	90.0 °
β	90.0 °
γ	90.0 °
V A A	8582.9(12) Å ³
F(000)	3680
μΜοΚα	11.28 cm ⁻¹
λΜοΚα	0.71069 Å
Dcalc	1.345 g/cm ³
Ζ	20
Meas refl	2036
Obs refl	1403
R	5.75%
Rw	5.71%
G. O. F.	1.02
Space Group	Fdd2
Octants meas	-1 ≤ h≤ 17, -1 ≤ k ≤ 49, -1 ≤ i ≤ 12

POSITIONAL PARAMETERS FOR

Di-(2-methoxyethyl)-2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5dicarboxylate (XXI)

H6'A	-0.1455	0.2809	0.7096	0.080	
H6'B	-0.0822	0.2709	0.6067	0.080	
H6'C	-0.1790	0.2611	0.6106	0.080	
H8A	0.0905	0.2317	0.8441	0.080	
H9A	0.2418	0.2265	0.8345	0.080	
H10A	0.3026	0.1868	0.7714	0.080	
H12A	0.0578	0.1589	0.7092	0.080	
H13A	-0.0649	0.1 354	1.0848	0.080	
H13B	0.0277	0.1476	1.1027	0.080	
H14A	0.0537	0.1075	1.0188	0.080	
H14B	0.0 667	0.1276	0.9137	0.080	
H16A	-0.0606	0.0817	0.7747	0.080	
H16B	0.0267	0.0973	0.7616	0.080	
H16C	0.0177	0.0760	0.8635	0.080	
H17A	-0.0296	0.1989	0.3620	0.080	
H17B	-0.0629	0.1707	0.3862	0.080	
H18A	0.0823	0.1687	0.3168	0.080	
H18B	0.0805	0.1612	0.4559	0.080	
H20A	0.02505	0.2051	0.4351	0.080	
H20B	0.2278	0.1766	0.4734	0.080	
H20C	0.2276	0.1845	0.3342	0.080	

TABLE 108 (Continued)

.

.

ANISOTROPIC THERMAL PARAMETERS FOR

Di-(2-methoxyethyl)-2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5dicarboxylate (XXI)

ΑΤΟΜ	U 11	U22	U33	U12	U13	U23
N1	38(3)	68(4)	78(4)	-9(4)	-4(3)	-1(3)
N1	54(4)	43(3)	51(4)	-4(3)	14(3)	-3(3)
C2	39(4)	45(4)	33(4)	-4(3)	8(3)	2(3)
C2'	64(5)	36(4)	61(5)	-2(3)	-3(4)	-13(4)
C3	28(3)	43(4)	46(4)	5(3)	9(3)	-1(3)
C3'	41(4)	52(5)	34(4)	-8(3)	8(3)	11(4)
O3'	131(5)	59(4)	40(3)	13(3)	7(3)	-4(3)
O3"	78(3)	40(2)	38(3)	7(2)	6(3)	4(2)
C4	38(4)	38(4)	42(4)	1(3)	9(3)	-3(3)
C5	30(4)	39(4)	43(4)	1(3)	-1(3)	3(3)
C5'	50(4)	40(4)	41(4)	-4(3)	-7(4)	-1(4)
O5'	160(6)	61(3)	44(3)	38(4)	-26(4)	-5(3)
05"	55(3)	50(3)	43(3)	13(2)	0(2)	-1(2)
C6	34(4)	41(4)	50(5)	-1(3)	-1(3)	0(3)
C6'	73(5)	52(4)	61(5)	8(4)	7(4)	- 5(4)
C7	33(4)	44(4)	34(4)	7(3)	2(3)	11(3)
C8	38(4)	56(4)	47(4)	3(3)	2(4)	1(4)
C9	46(4)	63(5)	60(5)	-8(4)	-3(4)	21(4)
C10	43(4)	74(5)	83(6)	8(4)	4(5)	39(5)
C11	58(5)	53(5)	51(5)	22(4)	7(4)	21(4)
C12	50(5)	56(4)	44(4)	-1(4)	11(4)	8(4)
C13	84(5)	36(4)	44(5)	4(3)	-2(4)	7(4)
C14	75(6)	38(4)	79(6)	10(4)	2(5)	17(5)
O15	77(4)	73(4)	79(4)	9(3)	3(4)	-17(3)
C16	141(8)	78(5)	79(7)	7(6)	4(7)	-37(6)
C17	58(5)	61(5)	41(4)	-10(4)	-1(4)	-13(4)
C18	60(4)	36(4)	47(4)	9(4)	3(4)	3(3)໌
019	43(3)	54(3)	81(4)	-2(2)	0(3)	0(3)
C20	52(5)	108(7)	80(6)	5(4)	-7(5)	0(6)
01	146(7)	87(5)	315(15)	33(5)	-15(9)	-94(8)
02	96(6)	101(5)	471(20)	47(4)́	102(10)	37(9)
N2	84(6)	69(5)	118(7)	39(5)	50(6)	20(5)

The anisotropic displacement exponent takes the form:- $2\pi^2(h^2a^{*2}U_{11} + ... + 2hka^{*}b^{*}U_{12})$

BOND DISTANCES (Å) AND BOND ANGLES (°) FOR

$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1-C2	1.397 (11)	C2-N1-C6	123.5(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1-C6	1.356 (13)	N1-C2-C2'	113.3(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2-C2'	1.522 (13)	N1-C2-C3	119.2(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2-C3	1.352 (9)	C2'-C2-C3	127.4(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3-C3'	1.475 (11)	C2-C3-C3'	120.4(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3-C4	1.531 (8)	C2-C3-C4	121.5(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3'-O3'	1.214 (13)	C3'-C3-C4	117.8(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3'-O3"	1.339 (9)	C3-C3'-O3'	126.7(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3"-C13	1.440 (10)	C3-C3'-O3"	112.5(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4-C5	1.518 (9)	03'-C3'-O3"	120.7(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4-C7	1.529 (8)	C3'-O3"-C13	117.7(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5-C5'	1.433 (13)	C3-C4-C5	111.7(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5-C6	1.378 (9)	C3-C4-C7	108.6(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5'-O5'	1.214 (11)	C5-C4-C7	113.2(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5'-O5"	1.342 (8)	C4-C5-C5'	119.8(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O5"-C17	1.460 (12)	C4-C5-C6	119.7(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6-C6'	1.500 (11)	C5'-C5-C6	120.4(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7-C8	1.376 (9)	C5-C5'-O5'	127.8(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7-C12	1.398 (9)	C5-C5'-O5"	111.5(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8-C9	1.385 (9)	05'-C5'-05"	120.7(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9-C10	1.369 (11)	C5'-O5"-C17	119.0(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10-C11	1.374 (11)	N1-C6-C5	121.2(7)
C11-N2 1.479 (11) C5-C6-C6' 126.8(8) C13-C14 1.489 (11) C5-C6-C6' 126.8(8) C14-O15 1.404 (11) C5-C6-C6' 126.8(8) O15-C16 1.397 (13) C5-C6-C6' 126.8(8) C17-C18 1.498 (9) C4-C7-C12 119.6(5) C18-O19 1.430 (8) C8-C7-C12 118.8(6) O19-C20 1.408 (8) C7-C8-C9 121.1(6) O1-N2 1.184 (12) C8-C9-C10 121.1(7) O2-N2 1.157 (12) C9-C10-C11 117.1(7) C10-C11-N2 119.3(7) C12-C11-N2 116.9(7) C7-C12-C11 118.2(6) O3"-C13-C14 107.5(8) C13-C14-O15 108.9(6) C14-O15-C16 113.8(6) O5"-C17-C18 109.7(7) 05"-C17-C18 109.7(7)	C11-C12	1.377 (10)	N1-C6-C6'	112.0(6)
C13-C14 1.489 (11) C5-C6-C6' 126.8(8) C14-O15 1.404 (11) C5-C6-C6' 126.8(8) O15-C16 1.397 (13) C5-C6-C6' 126.8(8) C17-C18 1.498 (9) C4-C7-C12 119.6(5) C18-O19 1.430 (8) C8-C7-C12 118.8(6) O19-C20 1.408 (8) C7-C8-C9 121.1(6) O1-N2 1.184 (12) C8-C9-C10 121.1(7) O2-N2 1.157 (12) C9-C10-C11 117.1(7) C10-C11-N2 119.3(7) C10-C11-N2 119.3(7) C13-C14-O15 108.9(6) C13-C14-O15 108.9(6) C13-C14-O15 108.9(6) C14-O15-C16 113.8(6) O5"-C17-C18 109.7(7) O5"-C17-C18 109.7(7)	C11-N2	1.479 (11)	C5-C6-C6'	126.8(8)
C14-O15 1.404 (11) C5-C6-C6' 126.8(8) O15-C16 1.397 (13) C5-C6-C6' 126.8(8) C17-C18 1.498 (9) C4-C7-C12 119.6(5) C18-O19 1.430 (8) C8-C7-C12 118.8(6) O19-C20 1.408 (8) C7-C8-C9 121.1(6) O1-N2 1.184 (12) C8-C9-C10 121.1(7) O2-N2 1.157 (12) C9-C10-C11 117.1(7) C10-C11-N2 119.3(7) C10-C11-N2 119.3(7) C12-C11-N2 116.9(7) C7-C12-C11 118.2(6) O3"-C13-C14 107.5(8) C13-C14-O15 108.9(6) C14-O15-C16 113.8(6) O5"-C17-C18 109.7(7)	C13-C14	1.489 (11)	C5-C6-C6'	126.8(8)
O15-C16 1.397 (13) C5-C6-C6' 126.8(8) C17-C18 1.498 (9) C4-C7-C12 119.6(5) C18-O19 1.430 (8) C8-C7-C12 118.8(6) O19-C20 1.408 (8) C7-C8-C9 121.1(6) O1-N2 1.184 (12) C8-C9-C10 121.1(7) O2-N2 1.157 (12) C9-C10-C11 117.1(7) C10-C11-N2 119.3(7) C10-C11-N2 119.3(7) C12-C11-N2 116.9(7) C7-C12-C11 118.2(6) O3"-C13-C14 107.5(8) C13-C14-O15 108.9(6) C14-O15-C16 113.8(6) O5"-C17-C18 109.7(7)	C14-O15	1.404 (11)	C5-C6-C6'	126.8(8)
C17-C18 1.498 (9) C4-C7-C12 119.6(5) C18-O19 1.430 (8) C8-C7-C12 118.8(6) O19-C20 1.408 (8) C7-C8-C9 121.1(6) O1-N2 1.184 (12) C8-C9-C10 121.1(7) O2-N2 1.157 (12) C9-C10-C11 117.1(7) C10-C11-C12 123.8(7) C10-C11-N2 119.3(7) C12-C11-N2 116.9(7) C7-C12-C11 118.2(6) O3"-C13-C14 107.5(8) C13-C14-O15 108.9(6) C14-O15-C16 113.8(6) O5"-C17-C18 109.7(7)	015-C16	1 397 (13)	C5-C6-C6'	126 8(8)
C18-O19 1.430 (8) C8-C7-C12 118.8(6) O19-C20 1.408 (8) C7-C8-C9 121.1(6) O1-N2 1.184 (12) C8-C9-C10 121.1(7) O2-N2 1.157 (12) C9-C10-C11 117.1(7) C10-C11-C12 123.8(7) C10-C11-N2 119.3(7) C12-C11-N2 116.9(7) C7-C12-C11 118.2(6) O3"-C13-C14 107.5(8) C13-C14-O15 108.9(6) C14-O15-C16 113.8(6) O5"-C17-C18 109.7(7)	C17-C18	1 498 (9)	C4-C7-C12	119.6(5)
019-C20 1.408 (8) C7-C8-C9 121.1(6) 01-N2 1.184 (12) C8-C9-C10 121.1(7) 02-N2 1.157 (12) C9-C10-C11 117.1(7) C10-C11-N2 119.3(7) C10-C11-N2 116.9(7) C7-C12-C11 118.2(6) 03"-C13-C14 107.5(8) C13-C14-O15 108.9(6) C14-O15-C16 113.8(6) 05"-C17-C18 109.7(7) 05"-C17-C18 109.7(7)	C18-O19	1 430 (8)	C8-C7-C12	118 8(6)
O1-N2 1.184 (12) C8-C9-C10 121.1(7) O2-N2 1.157 (12) C9-C10-C11 117.1(7) C10-C11-C12 123.8(7) C10-C11-N2 119.3(7) C12-C11-N2 116.9(7) C7-C12-C11 118.2(6) O3"-C13-C14 107.5(8) C13-C14-O15 108.9(6) C14-O15-C16 113.8(6) O5"-C17-C18 109.7(7)	019-C20	1 408 (8)	C7-C8-C9	121 1(6)
O2-N2 1.157 (12) C9-C10-C11 117.1(7) C10-C11-C12 123.8(7) C10-C11-N2 119.3(7) C12-C11-N2 116.9(7) C7-C12-C11 118.2(6) O3"-C13-C14 107.5(8) C13-C14-O15 108.9(6) C14-O15-C16 113.8(6) O5"-C17-C18 109.7(7)	01-N2	1 184 (12)	C8-C9-C10	121 1(7)
C10-C11-C12 123.8(7) C10-C11-N2 119.3(7) C12-C11-N2 116.9(7) C7-C12-C11 118.2(6) O3"-C13-C14 107.5(8) C13-C14-O15 108.9(6) C14-O15-C16 113.8(6) O5"-C17-C18 109.7(7)	02-N2	1 157 (12)	C9-C10-C11	117 1(7)
C10-C11-N2 119.3(7) C10-C11-N2 116.9(7) C12-C11-N2 116.9(7) C7-C12-C11 118.2(6) O3"-C13-C14 107.5(8) C13-C14-O15 108.9(6) C14-O15-C16 113.8(6) O5"-C17-C18 109.7(7)			C10-C11-C12	123 8(7)
C12-C11-N2 116.9(7) C12-C11-N2 116.9(7) C7-C12-C11 118.2(6) O3"-C13-C14 107.5(8) C13-C14-O15 108.9(6) C14-O15-C16 113.8(6) O5"-C17-C18 109.7(7)			C10-C11-N2	119 3(7)
C7-C12-C11 118.2(6) O3"-C13-C14 107.5(8) C13-C14-O15 108.9(6) C14-O15-C16 113.8(6) O5"-C17-C18 109.7(7)			C12-C11-N2	116 9(7)
O3"-C13-C14 107.5(8) C13-C14-O15 108.9(6) C14-O15-C16 113.8(6) O5"-C17-C18 109.7(7)			C7-C12-C11	118 2(6)
C13-C14-O15 108.9(6) C14-O15-C16 113.8(6) O5"-C17-C18 109.7(7)			03"-C13-C14	107 5(8)
C14-O15-C16 113.8(6) O5"-C17-C18 109.7(7)			C13-C14-O15	108 9(6)
O5"-C17-C18 109.7(7)			C14-O15-C16	113 8(6)
			05"-017-018	109 7/7)

Di-(2-methoxyethyl)-2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5dicarboxylate (XXI)

	C17-C18-O19	107.8(5)
	C18-O19-C20	112.4(5)
	C11-N2-O1	121.0(8)
	C11-N2-O2	119.1(8)
	01-N2-O2	119.8(9)
ش ۵ م م م م م م م م م م م م م م م م م م	******	

ì

TORSION ANGLES (°) FOR

Di-(2-methoxyethyl)-2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5dicarboxylate (XXI)

C6-N1-C2-C2'	-169.3(0.5)	C10-C11-C12-C7	-0.2(1.5)
C6-N1-C2-C3	6.8(0.9)	N2-C11-C12-C7	178.9(0.9)
C2-N1-C6-C5	-7.5(0.9)	C10-C11-N2-O1	-175.2(1.2)
C2-N1-C6-C6'	171.0(0.5)	C10-C11-N2-O2	5.2(1.7)
N1-C2-C3-C3	-178.3(0.5)	C12-C11-N2-O1	5.7(1.6)
N1-C2-C3-C4	7.8(0.9	C12-C11-N2-O2	-173.9(1.2)
C2'-C2-C3-C3'	-2.8(1.0)	O3"-C13-C14-O15	-73.9(0.8)
C2'-C2-C3-C4	-176.7(0.6)	C13-C14-O15-C16	174.2(0.8)
C2-C3-C3'-O3'	-6.9(1.0)	O5"-C17-C18-O19	-64.3(0.8)
C2-C3-C3'-O3"	176.4(0.5)	C17-C18-O19-C20	178.5(0.8)
C4-C3-C3'-O3'	167.2(0.6)	C8-C7-C12-C11	-0.4(1.3)
C4-C3-C3'-O3"	-9.5(0.8)	C7-C8-C9-C10	-1.5(1.5)
C2-C3-C4-C5	-19.3(0.8)	C8-C9-C10-C11	0.9(1.5)
C2-C3-C4-C7	106.2(0.6)	C9-C10-C11-C12	-0.1(1.5)
C3'-C3-C4-C5	166.6(0.5)	C9-C10-C11-N2	-179.1(0.9)
C3'-C3-C4-C7	-67.8(0.7)	C4-C7-C12-C11	-178.2(0.7)
C3-C3'-O3"-C13	174.7(0.5)	and the second	
O3'-C3'-O3"-C13	-2.2(0.9)		
C3'-O3"-C13-C14	-167.7(0.6)		
C3-C4-C5-C5'	-165.4(0.5)		
C3-C4-C5-C6	18.4(0.8)		
C7-C4-C5-C5'	71.6(0.7)		
C7-C4-C5-C6	-104.6(0.6)		
C3-C4-C7-C8	-56.4(0.9)		
C3-C4-C7-C12	121.3(0.8)		
C5-C4-C7-C8	68.3(0.9)		
C5-C4-C7-C12	-114.0(0.8)		
C4-C5-C5'-O5'	177.3(0.7)		
C4-C5-C5'-O5"	-3.8(0.8)		
C6-C5-C5'-O5'	-6.5(1.1)		
C6-C5-C5'-O5"	172.4(0.5)	· .	
C4-C5-C6-N1	-6.4(0.9)		
C4-C5-C6-C6'	175.3(0.6)		
C5'-C5-C6-N1	177.4(0.6)		
C5'-C5-C6-C6'	-0.9(1.0)		
C5-C5'-O5"-C17	-171.1(0.5)		
05'-C5'-O5"-C17	7.9(0.9)		
C5'-O5"-C17-C18	129.5(0.6)		
C4-C7-C8-C9	178.9(0.8)		
C12-C7-C8-C9	1.2(1.4)		
	· •		

Figure 52: Projection view of (Benzyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate) • 0.5 CH3CN (XXII) 284

CRYSTAL DATA FOR

(Dibenzyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate) • 0.5 CH3CN (XXII)

Formula	C ₃₁ H ₂₉ N ₂ O ₆
M. W.	519.0 g mole ⁻¹
<u>a</u>	9.499(1) Å
<u>b</u>	10.804(1) Å
C	13.174(2) Å
а	80.48(1) °
b	88.53(1) °
g	82.19(1) °
V	1320.2(3) Å ³
F(000)	544.5
μΜοΚα	11.28 cm ⁻¹
λΜοΚα	0.71069 Å
D _{calc}	1.306 Mg/m ³
Ζ	2
Meas refl	4209
Obs refl	2241
R	5.19 %
Rw	6.06 %
G. O. F.	1.26
Space Group	P-1
Octants meas	-1≤ h≤10,-11 ≤ k ≤ 11, -14 ≤ l ≤ 14

--

POSITIONAL PARAMETERS FOR

(Dibenzyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate) • 0.5 CH3CN (XXII)

АТОМ	X(SIG(X))	Y(SIG(Y))	Z(SIG(Z))	
N1	0.1177(3)	0.4354(3)	0.1929(2)	
N2 N2	0.1450(4)	-0.2248(3)	0.1232(4)	
N3	0.54/6	0.0709	0.0000	
	0.1000(4)	-0.2744(3)	0.2072(3)	
C2	0.1021(4) 0.2110(4)	-0.2040(3)	0.0349(3)	
C2'	0.3344(4)	0.3337(3)	0.2000(3)	
C3	0.1832(3)	0.2359(3)	0.2009(3)	
C3'	0.2744(4)	0.1507(3)	0.3706(3)	
C3"	0.3221(4)	-0.0594(3)	0.4601(3)	
O3'	0.3757(3)	0.1739(2)	0.4131(2)	
O3"	0.2333(2)	0.337(2)	0.3889(2)	
C4	0.0583(3)	0.1870(3)	0.2506(3)	
C5	-0.0555(4)	0.2973(3)	0.2111(2)	
C5'	-0.2031(4)	0.2757(3)	0.2091(3)	
C5"	-0.3641(4)	0.1242(3)	0.2369(3)	
O5'	-0.3063(3)	0.3558(2)	0.1920(2)	
O5"	-0.2186(2)	0.1507(2)	0.2307(2)	
C6	-0.199(4)	0.4131(3)	0.1783(3)	
C6'	-0.1118(5)	0.5282(3)	0.1231(3)	
C7	0.1066(3)	0.1095(3)	0.1662(3)	
C8	0.1036(3)	-0.0205(3)	0.1821(3)	
C9	0.1485(4)	-0.0871(3)	0.1045(3)	
C10	0.1960(4)	-0.0320(3)	0.0113(3)	
C11	0.2003(4)	0.0963(4)	-0.0039(3)	
C12	0.1563(4)	0.1651(3)	0.0730(3)	
C13	-0.3662(4)	-0.0155(4)	0.2476(3)	
C14	-0.4796(4)	-0.0586(4)	0.2092(4)	
C15	-0.4887(5)	-0.1854(5)	0.2207(5)	
	-0.3857(6)	-0.2/16(5)	0.2697(4)	
	-0.2718(6)	-0.2305(4)	0.3065(3)	
C10	-0.2010(4)	-0.1035(4)	0.2963(3)	
C20	0.23/3(4)	-0.1/92(3)	0.4804(3)	
C21	0.1130(3)	-0.1021(4)	0.4814(3)	
C22	0.0004(0)	-U.2302(4)	0.5000(3)	
~~~	0.1704(7)	-0.4000(4)	0.3303(4)	

4

INDLE I 13 (COMUNUAU
----------------------

	0.2014/6)	-0 4041/4	0.5202/4)	
C23	0.2314(0)	-0.4041(4)	0.5252(4) 0.5041(2)	
024	0.3457(5)	-0.2920(3)	0.5041(3)	
025	0.4434	0.44/4	0.0262	
C26	0.5156	0.4427	0.0000	
C27	0.5177	0.5752	0.0014	
C28	0.5000	0.5000	0.0000	

#### ANISOTROPIC THERMAL PARAMETERS FOR

(Dibenzyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate) • 0.5 CH3CN (XXII)

***********						
C22	127(5)	50(3)	96(4)	-33(3)	-19(3)	12(2)
C23	96(4)	45(3)	131(5)	-4(3)	-36(4)	0(3)
C24	69(3)	45(2)	89(3)	0(2)	-23(2)	1(2)

## TABLE 114 (Continued)

The anisotropic displacement exponent takes the form:- $2\pi^2(h^2a^{*2}U_{11} + ... + 2hka^{*b^*}U_{12})$ 

.

## BOND DISTANCES (Å) AND BOND ANGLES (°) FOR

# (Dibenzyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate) • 0.5 CH₃CN (XXII)

N1-C2	1.379 (4)	C2-N1-C6	123.1(3)
N1-C6	1.385 (5)	01-N2-O2	122.4(3)
N2-01	1.219 (6)	O1-N2-C9	118.7(4)
N2-O2	1.212 (6)	O2-N2-C9	118. <b>9</b> (4)
N2-C9	1.472 (5)	N3-C27-C28	176.5(1)
N3-C27	1.168 (1)	N3-C27-C26	166.7(1)
C26-C27	1.439 (1)	N1-C2-C2'	113.6(3)
C2-C2'	1.502 (6)	N1-C2-C3	118.6(3)
C2-C3	1.355 (4)	C2'-C2-C3	127.8(3)
C3-C3'	1.465 (4)	C2-C3-C3'	120.4(3)
C3-C4	1.520 (5)	C2-C3-C4	120.7(3)
C3'-O3'	1.200 (5)	C3'-C3-C4	118.9(3)
C3'-O3"	1.355 (4)	C3-C3'-O3'	127.6(3)
C3"-O3"	1.449 (4)	C3-C3'-O3"	111.1(3)
C3"-C19	1.489 (5)	O3'-C3'-O3"	121.2(3)
C4-C5	1.527 (4)	O3"-C3"-C19	109.3(3)
C4-C7	1.525 (5)	C3'-O3"-C3"	115.2(3)
C5-C5'	1.454 (5)	C3-C4-C5	110.2(3)
C5-C6	1.339 (5)	C3-C4-C7	111.1(3)
C5'-O5'	1.215 (4)	C5-C4-C7	111.1(3)
C5'-O5"	1.361 (4)	C4-C5-C5'	119.5(3)
C5"-O5"	1.447 (4)	C4-C5-C6	120.4(3)
C5"-C13	1.495 (6)	C5'-C5-C6	120.1(3)
C6-C6'	1.509 (5)	C5-C5'-O5'	126.8(3)
C7-C8	1.390 (4)	C5-C5'-O5"	112.6(3)
C7-C12	1.376 (5)	05'-C5'-O5"	120.6(4)
C8-C9	1.372 (5)	O5"-C5"-C13	109.5(3)
C9-C10	1.366 (5)	C5'-O5"-C5"	114.9(3)
C10-C11	1.373 (5)	N1-C6-C5	119.1(3)
C11-C12	1.378 (6)	N1-C6-C6'	112.7(3)
C13-C14	1.370 (6)	C5-C6-C6'	128.1(4)
C13-C18	1.368 (5)	C4-C7-C8	120.7(3)
C14-C15	1.368 (8)	C4-C7-C12	121.4(3)
C15-C16	1.351 (7)	C8-C7-C12	117.9(3)
C16-C17	1.354 (8)	C7-C8-C9	118.9(3)
C17-C18	1.373 (6)	N2-C9-C8	117.9(3)
C19-C20	1.375 (6)	N2-C9-C10	118.7(4)
C19-C24	1.378 (5)	C8-C9-C10	123.3(3)
C20-C21	1.388 (6)	C9-C10-C11	117.7(4)

## TABLE 115 (Continued)

C21-C22 C22-C23 C23-C24 C25-C27	1.362 (6) 1.361 (9) 1.368 (6) 1.617 (1)	C10-C11-C12 C7-C12-C11 C5"-C13-C14 C14-C13-C18 C14-C15-C16 C15-C16-C17 C16-C17-C18 C3"-C19-C20 C13-C14-C15 C13-C18-C17 C3"-C19-C24 C20-C19-C24 C20-C19-C24 C19-C20-C21 C20-C21-C22 C21-C22-C23 C22-C23-C24	120.0(4) 122.0(3) 118.8(3) 117.8(4) 121.0(5) 118.8(5) 120.8(4) 123.1(3) 120.8(4) 120.7(4) 118.5(4) 118.5(4) 118.4(4) 120.5(3) 119.7(5) 120.2(5) 120.3(4)	• • • • • • • • • • • • • • • • • • •
		C20-C21-C22 C21-C22-C23 C22-C23-C24	119.7(5) 120.2(5) 120.3(4)	
· .	• 4	C19-C24-C23 C5"-C13-C18 N3-C27-C25	120.9(4) 123.4(4) 163.9(1)	
			\ / ####################################	

## TORSION ANGLES (°) FOR

# (Dibenzyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate) • 0.5 CH3CN (XXII)

C6-N1-C2-C2'	-161.7(0.3)	O5"-C5"-C13-C14	-150.5(0.4)
C6-N1-C2-C3	18.3(0.5)	O5"-C5"-C13-C18	31.2(0.5)
C2-N1-C6-C5	-16.4(0.5)	C4-C7-C8-C9	-179.7(0.3)
C2-N1-C6-C6'	164.7(0.3)	C12-C7-C8-C9	-0.7(0.5)
O1-N2-C9-C8	-1.8(0.6)	C4-C7-C12-C11	180.0(0.3)
O1-N2-C9-C10	178.2(0.4)	C8-C7-C12-C11	1.0(0.5)
O2-N2-C9-C8	178.8(0.4)	C7-C8-C9-N2	179.8(0.3)
O2-N2-C9-C10	-1.1(0.6)	C7-C8-C9-C10	-0.2(0.5)
N1-C2-C3-C3'	-176.0(0.3)	N2-C9-C10-C11	-179.1(0.4)
N1-C2-C3-C4	4.6(0.5)	C8-C9-C10-C11	0.9(0.6)
C2'-C2-C3-C3'	4.0(0.6)	C9-C10-C11-C12	-0.6(0.6)
C2'-C2-C3-C4	-175.4(0.3)	C10-C11-C12-C7	-0.3(0.6)
C2-C3-C3'-O3'	1.5(0.6)	C5"-C13-C14-C15	-177.4(0.4)
C2-C3-C3'-O3"	-176.7(0.3)	C18-C13-C14-C15	1.0(0.7)
C4-C3-C3'-O3'	-179.1(0.3)	C5"-C13-C18-C17	177.9(0.4)
C4-C3-C3'-O3"	2.7(0.4)	C14-C13-C18-C17	-0.4(0.6)
C2-C3-C4-C5	-25.1(0.4)	C13-C14-C15-C16	-0.5(0.8)
C2-C3-C4-C7	98.4(0.3)	C14-C15-C16-C17	-0.6(0.8)
C3'-C3-C4-C5	155.5(0.3)	C15-C16-C17-C18	1.2(0.8)
C3'-C3-C4-C7	-81.0(0.4)	C16-C17-C18-C13	-0.7(0.7)
C3-C3'-O3"-C3"	176.8(0.3)	C3"-C19-C20-C21	-176.7(0.4)
03'-C3'-O3"-C3"	-1.5(0.5)	C24-C19-C20-C21	0.1(0.6)
C19-C3"-O3"-C3'	174.7(0.3)	C3"-C19-C24-C23	176.2(0.4)
O3"-C3"-C19-C20	-32.6(0.5)	C20-C19-C24-C23	-0.8(0.6)
O3"-C3"-C19-C24	150.6(0.3)	C19-C20-C21-C22	0.6(Ò.6)
C3-C4-C5-C5'	-153.0(0.3)	C20-C21-C22-C23	-0.8(0.7)
C3-C4-C5-C6	27.0(0.4)	C21-C22-C23-C24	0.2(0.7)
C7-C4-C5-C5'	83.5(0.4)	C22-C23-C24-C19	0.6(0.7)
C7-C4-C5-C6	-96.5(0.4)	C13-C5"-O5"-C5'	172.9(0.3)
C3-C4-C7-C8	110.9(0.3)	C5-C5'-O5"-C5"	175.9(0.3)
C3-C4-C7-C12	-68.0(0.4)	O5'-C5'-O5"-C5"	-3.4(0.5)
C5-C4-C7-C8	-126.1(0.3)	C5'-C5-C6-C6'	-9.5(0.6)
C5-C4-C7-C12	55.0(0.4)		
C4-C5-C5'-O5'	170.4(0.4)		
C4-C5-C5'-O5"	-8.8(0.4)		
C6-C5-C5'-O5'	-9.7(0.6)		
C6-C5-C5'-O5"	171.1(0.3)		
C4-C5-C6-N1	-8.2(0.5)		
C4-C5-C6-C6'	170.4(0.4)		
C5'-C5-C6-N1	171.8(0.3)		
	•		



Figure 53: Projection view of [Methyl ethyl 2,6-dimethyl-3,5-dicarboxylate-4-(3-nitrophenyl)-pyridine] • NO₃ (XXIII)

## **CRYSTAL DATA FOR**

Ethyl methyl 2,6-dimethyl-4-(3-nitrophenyl)-pyridine-3,5-dicarboxylate • NO3 (XXIII)

-

	· · · · · · · · · · · · · · · · · · ·
 Formula	C ₁₇ H ₁₇ N ₂ O ₆
M. W.	345.33 g mole ⁻¹
<u>a</u>	9.034(1) Å
Þ	10.228(1) Å
C	12.392(2) Å
α	78.71(1) °
β	71.05(1) °
γ	69.40(1) °
V	1009.4(2) Å ³
F(000)	362
μΜοΚα	11.28 cm ⁻¹
λΜοΚα	0.71069 Å
D _{calc}	1.136 g/cm ³
Ζ	2
Meas refl	4289
Obs refi	Refined on F ²
R	6.6 %
Rw	16.47 %
G. O. F.	0.914
Space Group	P-1
Octants meas	-1 ≤h ≤10, -11≤ k≤ 12, -14 ≤ l ≤ 14

## POSITIONAL PARAMETERS FOR

Ethyl methyl 2,6-dimethyl-4-(3-nitrophenyl)-pyridine-3,5-dicarboxylate • NO3 (XXIII)

ATOM	X(SIG(X))	Y(SIG(Y))	Z(SIG(Z))	
 N1	0.1657(5)	0.1143(5)	0.0479(3)	
C2	0.1314(6)	0.1959(5)	0.1302(4)	
C2'	0.0295(7)	0.3465(6)	0.1135(4)	
C3	0.1957(6)	0.1393(5)	0.2227(4)	
C3'	0.1615(8)	0.2338(5)	0.3133(4)	
C3"	-0.0328(11)	0.3571(8)	0.4616(7)	
C3'''	-0.2006(22)	0.4151(14)	0.4934(10)	
03'	0.2637(5)	0.2740(4)	0.3253(4)	
O3"	0.0067(5)	0.2638(4)	0.3756(3)	
C4	0.2971(6)	0.0010(5)	0.2274(4)	
C5	0.3330(6)	-0.0795(5)	0.1381(4)	
C5'	0.4437(8)	-0.2275(6)	0.1329(5)	
C5"	0.4904(14)	-0.4641(8)	0.2156(8)	
O5'	0.5687(6)	-0.2626(5)	0.0581(4)	
05"	0.3850(5)	-0.3110(4)	0.2181(3)	
C6	0.2647(7)	-0.0212(6)	0.0469(4)	
C6'	0.2920(8)	-0.0979(7)	-0.0531(5)	
C7	0.3623(6)	-0.0605(5)	0.3301(4)	
C8	0.5291(6)	-0.1316(5)	0.3155(4)	
C9	0.5896(7)	-0.1870(6)	0.4103(5)	
C10	0.4825(7)	-0.1737(5)	0.5195(5)	
C11	0.3175(7)	-0.1024(5)	0.5315(4)	
C12	0.2543(6)	-0.0444(5)	0.4386(4)	
N2	0.2030(8)	-0.0838(6)	0.6458(4)	
N3	-0.0051(9)	0.3072(7)	0.8267(5)	
01	0.2439(6)	-0.1623(6)	0.7259(3)	
02	0.0712(7)	0.0101(6)	0.6566(3)	
O3	0.0936(17)	0.2047(15)	0.8494(10)	
04	-0.1377(11)	0.3603(9)	0.9046(9)	
05	0.0014(27)	0.3695(19)	0.7311(13)	
O6	0.1292(22)	0.3174(27)	0.8269(18)	
07	-0.0129(159)	0.2016(76)	0.8934(56)	
07'	-0.0749(96)	0.2650(119)	0.9072(52)	
08	-0.0550(62)	0.3663(59)	0.7592(37)	

#### ANISOTROPIC THERMAL PARAMETERS FOR

Ethyl methyl 2,6-dimethyl-4-(3-nitrophenyl)-pyridine-3,5-dicarboxylate • NO3 (XXIII)

АТОМ	U11	U22	U33	U23	U13	U12
N1	70(3)	72(3)	50(2)	3(2)	-24(2)	-29(2)
C2	63(3)	63(3)	52(3)	3(2)	-24(2)	-25(3)
	90(4)	· / I (4) · · · · · · · · · · · · · · · · · · ·	13(3)	11(3)	-47(3)	-7(3)
C3'	70( <i>A</i> )	56(3)	47(2)	4(2)	-27(2)	-18(3)
C3"	114(6)	117(6)	104(5)	-66(4)	-35(5)	0(5)
C3'''	228(16)	203(11)	182(9)	-80(8)	-50(0)	-112(12)
03'	111(3)	75(2)	113(3)	1(2)	-77(3)	-39(2)
O3"	87(3)	72(2)	70(2)	-26(2)	-28(2)	-17(2)
C4	54(3)	59(3)	49(2)	4(2)	-21(2)	-22(2)
C5	62(3)	62(3)	46(3)	0(2)	-12(2)	-26(2)
C5'	82(4)	71(3)	63(3)	-11(3)	-16(3)	-23(3)
C5"	211(10)	62(5)	153(7)	2(4)	-6(7)	-21(6)
O5'	94(3)	97(3)	98(3)	-24(3)	7(3)	-8(3)໌
O5"	110(3)	59(2)	90(3)	2(2)	-18(2)	-19(2)
C6	73(3)	80(4)	45(3)	-1(2)	-17(2)	-39(3)
C6'	120(5)	105(4)	56(3)	-15(3)	-29(3)	-44(4)
C7	63(3)	55(3)	54(3)	4(2)	-27(2)	-22(2)
C8	63(3)	62(3)	77(3)	7(2)	-38(3)	-16(3)
C9	70(3)	76(3)	85(4)	5(3)	-37(3)	-21(3)
C10	89(4)	66(3)	88(4)	16(3)	-59(3)	-35(3)
C11	76(4)	67(3)	54(3)	5(2)	-34(3)	-33(3)
C12	67(3)	64(3)	47(3)	3(2)	-25(2)	-32(2)
N2	102(4)	108(4)	53(3)	-2(3)	-33(3)	-57(3)
N3	97(5)	98(4)	68(4)	4(3)	-41(4)	-34(5)
01	158(4)	164(4)	55(2)	22(3)	-54(3)	-80(3)
02	101(3)	120(4)	71(3)	-22(2)	-15(2)	-47(3)
03	121(8)	109(9)	62(7)	-4(6)	-45(6)	17(9)
04	80(5)	122(7)	98(6)	-26(5)	-29(5)	-11(5)
05	158(14)	120(9)	52(6)	26(5)	-26(7)	-39(8)
	00(11) 405(15C)	148(17)	151(16)	-55(14)	-18(10)	-25(11)
07'	403(130) 270/66\	711/126	71(34)	03(31) 54(57)	-134(02)	-100(79)
O8	242(35)	275(38)	185(39)	107(29)	-184(34)	-433(76) -98(26)

The anisotropic displacement exponent takes the form:- $2\pi^2(h^2a^*^2U_{11} + ... + 2hka^*b^*U_{12})$ 

--

## BOND DISTANCES (Å) AND BOND ANGLES (°) FOR

# Ethyl methyl 2,6-dimethyl-4-(3-nitrophenyl)-pyridine-3,5-dicarboxylate • NO3 (XXIII)

N1-C2	1.333(6)	C2-N1-C6	124.0(4)
N1-C6	1.360(6)	N1-C2-C3	118.7(4)
C2-C3	1.387(6)	N1-C2-C2'	117.0(4)
C2-C2'	1.505(7)	C3-C2-C2'	124.2(4)
C3-C4	1.391(6)	C4-C3-C2	120.2(4)
C3-C3'	1.510(7)	C4-C3-C3'	121.3(4)
C3'-O3'	1.193(6)	C2-C3-C3'	118.4(4)
C3'-O3"	1.317(6)	O3'-C3'-O3"	125.8(5)
C3"-C3'"	1.37(2)	O3'-C3'-C3	123.2(6)
C3"-O3"	1.444(7)	O3"-C3'-C3	111.0(4)
C4-C5	1.394(6)	C3'"-C3"-O3"	106.8(8)
C4-C7	1.508(6)	C3'-O3"-C3"	112.9(5)
C5-C6	1.394(6)	C3-C4-C5	119.2(4)
C5-C5'	1.492(7)	C3-C4-C7	119.6(4)
C5'-O5'	1.195(6)	C5-C4-C7	121.2(4)
C5'-O5"	1.315(7)	C6-C5-C4	119.7(4)
C5"-O5"	1.520(9)	C6-C5-C5'	116.7(4)
C6-C6'	1.503(7)	C4-C5-C5'	123.6(4)
C7-C12	1.382(6)	05'-C5'-O5"	125.7(5)
C7-C8	1.391(7)	O5'-C5'-C5	122.5(5)
C8-C9	1.392(7)	05"-C5'-C5	111.8(5)
C9-C10	1.383(8)	C5'-O5"-C5"	114.2(5)
C10-C11	1.382(7)	N1-C6-C5	118.2(4)
C11-C12	1.386(6)	N1-C6-C6'	117.2(4)
C11-N2	1.458(7)	C5-C6-C6'	124.6(5)
N2-01	1.219(6)	C12-C7-C8	120.6(4)
N2-O2	1.225(6)	C12-C7-C4	119.1(4)
N3-08	1.06(4)	C8-C7-C4	120.3(4)
N3-07'	1.09(5)	C9-C8-C7	120.3(5)
N3-O3	1.168(11)	C10-C9-C8	119.8(5)
N3-O5	1.22(2)	C11-C10-C9	118.7(4)
N3-07	1.23(5)	C10-C11-C12	122.7(5)
N3-06	1.25(2)	C10-C11-N2	119.7(5)
N3-O4	1.287(10)	C12-C11-N2	117.6(5)
		C7-C12-C11	117.9(4)
		01-N2-02	123.3(6)
		O1-N2-C11	118.2(6)
		O2-N2-C11	118.5(5)
		08-N3-07'	124.9(52)
			\- /

	O8-N3-O3	143.4(31)	
	07'-N3-O3	77.7(58)	
	<b>O8-N3-O5</b>	25.2(36)	
	07'-N3-05	150.0(43)	
	03-N3-05	125.5(12)	
	08-N3-07	138.8(48)	
	07'-N3-07	34.3(85)	
	03-N3-07	46.4(59)	
	05-N3-07	150 4(27)	
	08-N3-06	116 4(32)	
	07-N3-06	116 1(36)	
	03-N3-06	62 5(11)	
	05-N3-06	93 1(17)	
	07-N3-06	101 8(49)	
	07 NO 00		
	07'-N3-04	45 7(61)	
	03-N3-04	120 0(0)	
	05-N3-04	114 A(11)	
	07-112-04	70 0(57)	
	OF N2 04		
· · · · · · · · · · · · · · · · · · ·	00-N3-04	120.0(10)	

## TORSION ANGLES (°) FOR

# Ethyl methyl 2,6-dimethyl-4-(3-nitrophenyl)-pyridine-3,5-dicarboxylate • NO3 (XXIII)

C6-N1-C2-C3	-2.22(0.61)		C9-C10-C11-C12	1.12(0.66)
C6-N1-C2-C2'	175.72(0.41)	4	C9-C10-C11-N2	-177.72(0.42)
N1-C2-C3-C4	1.0(0.59)		C8-C7-C12-C11	-0.73(0.59)
C2'-C2-C3-C4	-176.77(0.42)		C4-C7-C12-C11	179.57(0.36)
N1-C2-C3-C3'	178.30(Ò.38)		C10-C11-C12-C7	0.30(0.63)
C2'-C2-C3-C3'	0.53(0.66)		N2-C11-C12-C7	179.15(0.37)
C2-C3-C3'-O3'	-108.30(0.48)		C10-C11-N2-O1	-20.07(0.62)
C4-C3-C3'-O3'	68.97(0.55)		C12-C11-N2-O1	161.04(0.42)
C2-C3-C3'-O3"	71.91(0.47)		C10-C11-N2-O2	159.4 (Ò.42)
C4-C3-C3'-O3"	-110.81(0.42)		C12-C11-N2-O2	-19.45(0.61)
03'-C3'-O3"-C3"	2.22(0.62)	2	C8-C9-C10-C11	-2.09(0.68)
C3-C3'-O3"-C3"	-178.00(0.39)			· · ·
C3'"-C3"-O3"-C3'	161.56(0.75)			
C2-C3-C4-C5	0.77(0.58)			
C3'-C3-C4-C5	-176.45(0.39)			
C2-C3-C4-C7	-178.15(0.37)			
C3'-C3-C4-C7	4.63(0.59)	- No		
C3-C4-C5-C6	-1.47(0.58)			
C7-C4-C5-C6	177.43(0.38)			
C3-C4-C5-C5'	177.79(0.40)			
C7-C4-C5-C5'	-3.32(0.61)			
C4-C5-C5'-O5'	-117.23(0.54)			
C6-C5-C5'-O5'	62.05(0.65)			
C4-C5-C5'-O5"	63.00(0.57)			
C6-C5-C5'-O5"	-117.73(0.46)			
05'-C5'-O5"-C5"	-1.46(0.88)			
C5-C5'-O5"-C5"	178.30(0.57)			
C2-N1-C6-C5	1.52(0.62)			
C2-N1-C6-C6'	-179.47(0.42)			
C4-C5-C6-N1	0.40(0.59)			
C5'-C5-C6-N1	-178.90(0.38)			
C4-C5-C6-C6'	-178.53(0.44)			
C5'-C5-C6-C6'	2.16(0.66)			
C3-C4-C7-C12	49.82 0.54)			
C5-C4-C7-C12	-129.07(0.43)			
C3-C4-C7-C8	-129.88(0.42)			
C5-C4-C7-C8	51.23(0.56)			
C12-C7-C8-C9	-0.25(0.63)			
C4-C7-C8-C9	179.45(0.41)			
C7-C8-C9-C10	1.69(0.69)			

#### BIBLIOGRAPHY

- (1) Janis, R. A.; Silver, P.; Triggle, D. J. In *Advances in Drug Research*;
   Academic Press Limited, Harcourt Brace Jovanovich: 1987; Vol. 16; pp 309-591.
- (2) Hosey, M. M.; C., C. F.; O'Callahan, C. M.; Ptasienski, J. Ann. N. Y. Acad. Sci. 1989, 560, 27-38.
- (3) Triggle, D. J.; Langs, D. A.; Janis, R. A. Med. Res. Rev. 1989, 9, 123-180.
- (4) Partridge, D. L. In *Calcium Channels: Their Properties, Functions, Regulation, and Clinical Relevance*; I. Hurwitz, D. L. Partridge and J. K. Leach, Eds.; CRC press, Inc.: 1991; pp 3-8.
- (5) Triggle, D. J. Chirality 1994, 6, 56-62.
- (6) Catterall, W. A.; Seagar, M. J.; Takahashi, M. J. Bio. Chem. 1988, 263, 3535-3538.
- (7) Tanabe, T.; Takeshima, H.; Mikami, A.; Flockerzi, V.; Takahashi, H.;
  Kangawa, K.; Kojima, M.; Matsou, H.; Hirose, T.; Numa, S. *Nature* 1987, *328*, 313-318.
- (8) Janis, R. A.; Triggle, D. J. In *Calcium Channels: Their Properties, Functions, Regulation, and Clinical Relevance*; I. Hurwitz, D. L. Partridge and J. K. Leach, Eds.; CRC Press, Inc.: 1991; pp 197-249.
- (9) Hess, P.; Lansman, J. B.; Tsien, R. W. Nature 1984, 311, 538-544.
- (10) Hofmann, F.; Nastainczyk, W.; Röhrkasten, A.; Schneider, T.; Seiber, M. *Trends Pharmacol. Sci.* **1987**, *8*, 393-398.
- (11) Catterall, W. A.; Seagar, M. J.; Takahashi, M.; Kazuo, N. Annals N. Y. Acad. Sci. 1989, 560, 1-14.

- (12) Silver, P. J.; Stull, J. T. In *Calcium Blockers: Mechanisms of Action and Clinical Implications*; S. F. Flaim and R. Zelis, Eds.; Urban & Schwarzenberg: 1982; pp 37-52.
- (13) Wray, D. W.; Norman, R. I.; Hess, P. In *Calcium Channels: Structure and Function*; New York Academy of Science: 1989; Vol. 560; pp xiii-xiv.
- (14) Mikami, A.; Imoto, K.; Tanabe, T.; Niidome, T.; Mori, Y.; Takeshima, H.; Narumiya, S.; Numa, S. *Nature* **1989**, *340*, 230-236.
- (15) Catterall, W. A. Science 1988, 242, 50-61.
- (16) Takahashi, M.; Seagar, M. J.; Jones, J. F.; Reber, B. F. X.; Catterall, W. A. *Proc. Natl. Acad. Sci. USA* 1987, *84*, 5478-5482.
- (17) Guy, H. R.; Seetharmulu, P. Proc. Natl. Acad. Sci. USA 1986, 83, 508-512.
- (18) Grove, A.; Tomich, J. M.; Iwamoto, T.; Montal, M. *Protein Sci.* **1993**, *2*, 1918-1930.
- (19) Lakshminarayanaiah, N. In Calcium Channels: Their Properties, Functions, Regulation, and Clinical Relevance; I. Hurwitz, D. L. Partridge and J. K. Leach, Eds.; CRC Press, Inc.: 1991; pp 163-194.
- (20) Solaro, R. J. In Calcium Blockers: Mechanisms of Action and Clinical Implications; S. F. Flaim and R. Zelis, Eds.; Urban & Schwarzenberg: 1982; pp 21-36.
- (21) Fossheim, R.; Svarteng, K.; Mostad, A.; Romming, C.; Shefter, E.; Triggle,
   D. J. J. Med. Chem. 1982, 25, 126-131.
- (22) Loev, B.; Goodman, M., M.; Snader, K., M.; Tedeschi, R.; Macko, E. J. Med. *Chem.* **1974**, *17*, 956-965.
- (23) Rodenkirchen, R.; Bayer, R.; Steiner, R.; Bossert, F.; Meyer, H.; Moeller, E. Naunyn-Schiedeberg's Arch. Pharmacol. 1979, 310, 69-78.
- (24) Bossert, V. F.; Horstmann, H.; Meyer, H.; Vater, W. Arz. Forsch./Drug Res.
   1979, 29, 226-229.

- (25) Triggle, A. M.; Schefter, E.; Triggle, D. J. J. Med. Chem. 1980, 23, 1442-1445.
- (26) Meyer, V. H.; Bossert, F.; Wehinger, E.; Steopel, K.; Vater, W. Arzneim.-Forsch. / Drug Res. 1981, 31 (II), 407-409.
- (27) Fossheim, R.; Joslyn, A.; Solo, A. J.; Luchowski, E.; Rutledge, A.; Triggle, D.
   J. J. Med. Chem. 1988, 31, 300-305.
- (28) Langs, D. A.; Strong, P. D.; Triggle, D. J. J. Comp.-Aided Mol. Des. 1990, 4, 215-230.
- (29) Coburn, R. A.; Wierzba, M.; Suto, M. J.; Solo, A. J.; Triggle, A. M.; Triggle,
   D. J. J. Med Chem. 1988, 31, 2103-2107.
- (30) Alker, D.; Cambell, S. F.; Cross, P. E.; Burges, R. A.; Carter, A. J.; Gardiner,
   D. G. J. Med. Chem. 1990, 33, 585-591.
- (31) Alker, D.; Cambell, S. F.; Cross, P. E. J. Med. Chem. 1991, 34, 19-24.
- (32) Bikker, J. A.; Weaver, D. F. Can. J. Chem. 1992, 70, 2449-2460.
- (33) Hwang, S.; Kim, H. Korean J. Med. Chem. 1992, 2, 103-106.
- (34) Mahmoudian, M.; Richards, W. G. J. Sci. R. Iran 1990, 1, 261-263.
- (35) Suzuki, K.; Nagura, J.; Shiratori, K.; Murayama, B.; Harada, N.; Miyano, T.;Takeya, K. J. Pharmacobio.-Dyn. 1989, 12, 293-298.
- (36) Wolowyk, M. W.; Li-kwong-ken, M. C.; Dagnino, L.; Knaus, W. H.; Knaus, E. Proc. West. Pharmacol. Soc. 1987, 30, 97-100.
- (37) Rovnyak, G.; Anderson, N.; Gougoutas, J.; Hedberg, A.; Kimball, S. D.;
  Malley, M.; Moreland, S.; Porubcan, M.; Pudzianowski, A. J. Med Chem.
  1991, 34, 2521-2524.
- (38) Bolger, D. T.; Gengo, P.; Klockowski, R.; Luchowski, E.; Siegel, H.; Janis, R.
  A.; Triggle, D. J.; Triggle, A. M. *J. Pharmacol. Exp. Ther.* **1983**, *225*, 291-301.
- (39) Arrowsmith, J. E.; Campbell, S. F.; Cross, P. E.; Stubbs, J. K.; Burges, R. A.;

302

Gardiner, D. G.; Blackburn, K. J. J. Med. Chem. 1986, 29, 1696-1702.

- (40) Goldmann, S.; Stoltefuss, J.; Born, L. J. Med. Chem. 1992, 35, 3341-3344.
- (41) Tacke, R.; Bentlage, A.; Sheldrick, W. S.; Ernst, L., Towart, R.; Stoepel, K. :. *Z. Naturforsch.* **1982**, *37b*, 443-450.
- (42) Fossheim, R. Acta Chem. Scan. Series B 1985, 39, 785-790.
- (43) Langs, D. A.; Triggle, D. J. Mol. Pharm. 1985, 27, 544-548.
- (44) Wang, S. D.; Herbitte, L. G.; Rhodes, D. G. *Acta Cryst.* **1989**, *C45*, 1748-1751.
- (45) Lamm, B.; Simonsson, R. Tet. Lett. 1989, 30, 6423-6426.
- (46) Mehdi, S.; Ravikumar, K. Acta Cryst. 1992, C48, 1627-1630.
- (47) Ogawa, T.; Matsumoto, K.; Hatayama, K.; Kitamura, K. Acta Cryst. 1993, *C49*, 993-996.
- (48) Alajarin, R.; Alverez-Builla, J.; Vaquero, J. J.; Sunkel, C.; Casa-Juana, M.; Snaz-Aparicio, J. *Tet: Asymm.* **1993**, *4*, 617-620.
- (49) Fossheim, R. Acta Chem. Scan. 1986, B40, 776-778.
- (50) Fossheim, R. J. Med. Chem. 1986, 29, 305-307.
- (51) Miyamae, A.; Koda, S.; Morimoto, Y. Chem. Pharm. Bull. 1986, 34, 3071-3078.
- (52) Tamazawa, K.; Arima, H.; Kojima, T.; Isomura, Y.; Okada, M.; Fujita, S.;
  Furuya, T.; Takenaka, T.; Inagaki, O.; Terai, M. *J. Med. Chem.* 1986, *29*, 2504-2511.
- (53) Fonseca, I.; Martinez-Carrera, S.; Garcia-Blanco, S. *Acta Cryst.* **1986**, *C42*, 1792-1794.
- (54) Langs, D. A.; Strong, P. D.; Triggle, D. J. Acta Cryst. C 1987, 43, 707.
- (55) Rovnyak, G.; Anderson, N.; Gougoutas, J.; Hedberg, A.; Kimball, S. D.;
  Malley, M.; Moreland, S.; Porubcan, M.; Pudzianowski, A. J. Med Chem.
  1988, 31, 936-944.

- (56) Ogawa, T.; Matsumoto, K.; Yokoo, C.; K., H.; Kitamura, K. J. Chem. Soc. Perkin Trans. / 1993, 525-528.
- (57) Goldmann, S.; Born, L.; S., K.; Pittel, B.; Schramm, M. J. Med. Chem. 1990, 33, 1413-1418.
- (58) Hempel, A.; Gupta, M. P. Acta Cryst. 1978, B34, 3815-3817.
- (59) Hirayama, N.; Shimizu, E. Acta Cryst. 1991, C47, 458-459.
- (60) Baldwin, J. J.; Claremon, D. A.; Lumma, P. K.; McClure, D. E.; Rosenthal, S. A.; Winquist, R. J.; Faison, E. P.; Kaczorowski, G. J.; Trumble, M. J.; Smith, G. M. J. Med. Chem. 1987, 30, 690-695.
- (61) Goldmann, S.; Geiger, W. Angew. Chem. Int. Ed. Engl. 1984, 23, 301.
- (62) Greenblatt, R. E.; Blatt, Y.; Montal, M. FEBS Letters 1985, 193, 125-134.
- (63) Nuñez-vergara, L. J.; Sunkel, C.; Squella, J. A. *J. Pharm. Sci.* **1994**, *83*, 502-507.
- (64) Sadana, G. S.; Ghogare, A. B. J. Ind. Chem. Soc. 1991, 68, 237-239.
- (65) Hayase, N.; Itagaki, Y.; Ogawa, S.; Akutsu, S.; Inagaki, S.; Abiko, Y. J. *Pharm. Sci.* **1994**, *83*, 532-538.
- (66) Squella, J. A.; Borges, Y.; Celedon, C.; Peredo, P.; Nuñez-Vergara, L. J. Electroanalysis 1991, 3, 221-225.
- (67) Shibanuma, T.; Iwanami, M.; Fujimoto, M.; Takenaka, T.; Murakami, M. *Chem. Pharm. Bull* **1980**, *28*, 2609-2613.
- (68) Squella, J. A.; Zanocco, A.; Perna, S.; Nuñez-Vergara, L. J. *J. Pharm. Biomed. Anal.* **1990**, *3*, 43-47.
- (69) Woolfson, M. M. An Introduction to X-Ray Crystallography; Cambridge University Press: England, 1970.
- (70) De Ranter, C. J. In X-Ray crystallography and drug action; A. S. Horn and C. J. De Ranter, Eds.; Oxford University Press: New York, 1984; pp 1-22.
- (71) Stout, G. H. X-Ray Structure Determination: A Practical Guide; John Wiley

#### Kristin R. Rowan

#### Candidate for the Degree of

#### Doctor of Philosophy

Thesis: The Synthesis and Structure-Activity Relationships of Dialkyl 2,6dimethyl-3,5-dicarboxylate-4-(3-nitrophenyl)-1,4-dihydropyridines using Single Crystal X-ray Diffraction and Molecular Modeling Methods

Major Field: Chemistry

Biographical:

Education:

Received a Bachelor of Science degree in chemistry from the University of Kentucky in May 1992; completed requirements for the Degree of Doctor of Philosophy with a major in chemistry at Oklahoma State University in May 1996.

Professional Experience:

Graduate Teaching Assistant, Department of Chemistry, Oklahoma State University, 1992-1996

and Sons, Inc.: 1989.

- (72) Biosym Insight software, version2.9/3.1 January 1993
- (73) Hantzsch, A. Justus Liebigs Ann. Chem. 1882, 215, 1-81.
- (74) Siemens In Siemens Analytical X-Ray Instruments, Inc.,: Madison, WI, 1990
- (75) Sheldrick, G. M. In University of Cambridge: England, 1976; pp .
- (76) Sheldrick, G. M. In University of Gottingen: Gottingen, 1986; pp.
- (77) Sheidrick, G. M. Acta Cryst. 1990, 467-473.
- (78) Sheldrick, G. M. J. Appl. Cryst. 1993,
- (79) Guadio, A. C.; Korolkovas, A.; Takahata, Y. *J. Mol. Struct.* **1994**, *303*, 255-263.
- (80) Mahmoudian, M.; Richards, W. G. *J. Chem. Soc., Chem Commun.* **1986**, 739-741.
- (81) Kokubun, S., Reuter, H. Proc. Natl. Acad. Sci. USA 1984, 81, 4824-27.
- (82) Scandola, M.; Tarzia, G.; Gaviraghi, G. Annali di Chimica 1992, 82, 193-201.
- (83) Towart, R.; Wehinger, E.; Meyer, H. Naunyn-Schmiedeberg's Arch. Pharmacol. 1981, 317, 183-185.
- (84) Squella, J. A.; Ordenes, M.; Nocera, F.; Sunkel, C.; Nunez-Vergara, L. J. Anal. Letters 1992, 25, 2225-2237.
- (85) Ogawa, T.; Matsumoto, K.; Hatayama, K.; Kitamura, K. Acta Cryst. 1993, *C49*, 1700-1702.
- (86) Tolman, C. A. Chem. Rev. 1977, 3, 313-348.

· ·

