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I£ -by Rudyard Kipling 

If you can keep your head when all about you 
Are losing theirs and blaming it on you; 

If you can trust yourself when all men doubt you, 
But make allowance for their doubting too: 

If you can wait and not be tired by waiting, 
Or, being lied about, don't deal iri lies, 

Or being hated don't give way to hating, 
And yet don't look too good, nor talk too wise; 

If you can dream---and not make dreams your master; 
If you can think---and not make thoughts your aim, 

If you can meet with Triumph and Disaster 
And treat those two impostors just the same:. 

If you can bear to hear the truth you've spoken 
Twisted by knaves to make a trap for fools, 

Or watch the things you gave your life to, broken, 
And stoop and build'em up with worn-out tools; 
If you can make one heap of all your winnings 

And risk it on one turn of pitch-and-toss, 
And lose, and start again at your beginnings, 

And never breathe a word about your loss: 
If you can force your heart and nerve and sinew 

To serve your turn long after they are gone, 
And so hold on when there is nothing in you 
Except the Will which says to them: "Hold on!" 

If you can talk with crowds and keep your virtue, 
Or walk with Kings---nor lose the common touch, 
If neither foes nor loving friends can hurt you, 
If all men count with you, but none too much: 

If you can fill the unforgiving minute 
With sixty seconds' worth of distance run, 

Yours is the Earth and everything that's in it, 
And---which is more---you'II be a Man, my son! 
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PREFACE 

This is a study of the neurotoxic potential of lasalocid in broiler chickens. Lasalocid, 

monensin and salinomycin are commonly incorporated in broiler rations to prevent 

coccidiosis. There is currently little information concerning the neurotoxic effects of lasalocid. 

There are a few published reports and many empirical observations from poultry producers 

and veterinarians describing an ataxic syndrome labeled "duck-walking". The purpose of this 

study was to replicate a field syndrome, des.cribe the syndrome, ensure that it was neurotoxic 

and not another expression of myotoxicity and begin to elucidate some possible 

mechanisms. The first phase of these studies (Chapter II) was a large-scale feeding trial 

with increasing doses of lasalocid, monensin and salinomycin in broiler rations. I used a 

clinical ataxia scoring system, serum electrolyte and enzymes, and ATPase activities in 

various organs to describe the neurotoxicity. These studies were an attempt to replicate the 

field observations with lasalocid and determine if monensin or salinomycin could cause 

ataxia. These studies also allowed for the determination of a toxic dietary dose (TD 25) that 

would cause ataxia in 25% of birds. The next phase of these studies (Chapter Ill) refined the 

dose-response relationship between lasalocid and ataxia using a per os dosing regime. 

These studies also examined the effects of vitamin E pretreatment and water deprivation on 

the incidence of lasalocid-induced neurotoxicity as well as recovery in the affected birds. In 

these studies, the effects of lasalocid on hepatic submitochondrial respiratory chain are 

examined by measuring the activities of NADH oxidase, succinate oxidase and 
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submitochondrial ATPase. Also found in Chapter Ill is information that describes the direct 

effects of lasalocid on the sciatic nerve in vitro . 

The findings of these studies identify and characterize lasalocid-induced ataxia as a 

peripheral neuropathy in broiler chickens. Affected broilers develop dose-dependent ataxia 

with a reduced motor nerve conduction velocities, histologic and ultrastructural evidence of 

damage to the peripheral nervous system. Affected birds do not exhibit signs associated 

with myotoxicity: elevated serum enzymes (LOH, CPK, AST), electrolytes (I<) or 

histopathology (myonecrosis). These studies show that there does not seem to be a 

mechanistic role for ATPase enzymes, specific serum cations (Na+, Ca++), oxidative stress or 

water deprivation in this syndrome. 

This work is the result of my labors with the help of many individuals and the support of 

my department. I am most indebted to Dr. Sangiah, my major professor, for his guidance 

and encouragement during my thesis research. I was drawn to Sangiah because of his 

exciting classroom persona and thirst for knowledge. He is a solid, well-trained scientist but 

more importantly, he is caring, gentle man. He has cared for my family much like a father, 

during good and trying times. I would also like to thank the members of my committee, Dr. 

George Burrows, Dr. Chuck Qualls and Dr. Steven Wikel for their help, support and 

encouragement 

Much of the financial support for this study was provided by a research grant from 

Hoffam-LaRoche Fine Chemicals. I would like to thank Dr. Ken Powell for his help and 

advice in the early stages of these studies. I would like to thank the Department of 

Physiological Sciences for the support and the family-like atmosphere, especially when my 

own family needed the support. I would like to thank Dr. Larry Stein and Dr. Alastair Watson 

for affording me the opportunity to teach veterinary anatomy - an experience of a lifetime. 

owe Dr. Ownby a special thanks for her help with microscopy and her open ear as 

Department Head. Dr. Stanley Van Hooser was an excellent source of information and 
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helped me learn what little poultry histopathology I know. I would also like to thank Dr. 

James Breazile for his help with the nerve conduction studies and his support as a deacon 

when my family needed his strength. 

I would also like to thank Dr. Chun Lin Chen for his help with the ATPase study and his 

friendship during many late nights. I owe a special thanks to a very dear friend, Dr. Eric Stair 

who lent a helping hand whenever asked. He reminded me to laugh and perhaps not take 

myself too seriously. We spent many hours studying for the ABVT - that we will pass in 

Louisville. I look forward to the day when we can give them all the "pitohoui". 

My family deserves much of the credit for this work. I am fortunate that I come from a 

home where books, reading, learning and curiosity was encouraged. From my mother, 

Barbara, I learned to enjoy the process of learning, the desire to teach and the gift of gab. 

From my father, John, I learned healthy skepticism, intellectual curiosity and the honor of 

hard work. Kathy and Terry Stuck have been good friends, family and role models for my 

children. My three sons: Adam, Alexander and Andrew, are the joys of my life and always 

have a hug or kiss at just the right time. The greatest acknowledgment for this work and for 

who I am today belongs to my beautiful wife, Karen. She has made many sacrifices to allow 

me to pursue this dream and I will always remember her patience. She is truly the best 

friend I have ever had, a confidant, a cheerleader, a taskmaster and a constant, stable force 
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CHAPTER I 

INTRODUCTION AND REVIEW OF THE LITERATURE 

Introduction 

Drug-induced neurotoxicity is an environmental, therapeutic or occupational 

hazard for humans and animals. The prevalence of human disease range from rare 

and sporadic (buckthorn neuropathy caused by Karwinski humbo/dtii, a poisonous 

plant) to endemic and common (Minamata Bay disaster caused by methylmercury from 

industrial effluents). Toxicants capable of damaging the nervous systems are 

ubiquitous in an industrialized society as illustrated by peripheral neuropathy caused by 

tri-ortho-cresyl phosphate (TOCP) contaminated alcoholic beverages, "Ginger-Jake" 

paralysis, and TOCP contaminated olive oil in Morocco (Anthony & Graham, 1991). 

Additionally, many chemotherapeutics can produce neurotoxicity as an undesired side

effect: streptomycin, doxorubicin, taxol, and isoniazid. Recently, some reverse 

transcriptase inhibitors use.d in AIDS therapy have been shown to cause a therapy

limiting peripheral neuropathy (Anderson et al., 1994; Feldman et al., 1992; Anderson et 

al.,1992). 

The carboxylic acid ionophores are anticoccidial and growth promotant 

compounds extensively used in animal production in the United States. These 
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chemotherapeutics exhibit complex behaviors in biological systems, and their actions 

represent a dynamic interplay of drug, animal, nutritional and environmental factors. 

Recent evidence suggests that some of these drugs may cause neurotoxicity in 

animals. To understand the possible role of ionophore-induced neurotoxicity, it is 

necessary to review the literature of the polyether, ionophorus antibiotics (classification, 

mechanisms of action, pharmacology, toxicity) and cursorily examine the field of 

neu rotoxicity 

The lonophores: Polyether Antibiotics 

Classification 

Pressman et al. (1967) coined the term ionophore, literally "ion-bearer", as a 

descriptive and dynamic definition for antibiotics with the ability to bind and transport ions 

across biological membranes. A simplistic classification system is to place the 

ionophores into families with similar or shared properties; e.g., the valinomycin group, 

the nigericin group. A more precise method of classification is based on the mode of 

ion transport :neutral, channel-forming quasi- and carboxylic ionophores. 

Neutral lonophores. The neutral ionophores (e.g. valinomycin) mediate 

electrogenic transport of ions governed by membrane concentration gradients and 

membrane potential. At equilibrium, these ionophores will follow the Nernst equation if 

a single species is transported and the Goldman equation if several species of 

monovalent ions are being transported. 
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Channel-Forming lonophores. The channel-forming quasi-ionophores (e.g. 

gramicidin) mediate a transport characterized by periodic bursts of current representing 

very rapid turnover. These ionophores work through existing membrane channels as 

well as forming new "channels" in membranes (Pressman, 1976). 

Carboxylic lonophores. The carboxylic ionophores (e.g. monensin, lasalocid, 

salinomycin) mediate concentration-dependent, pH-sensitive transport of ions 

independent of membrane potential. These compounds act as "exchange diffusion" 

carriers, transporting a cation during both stages of the exchange cycle (Pressman, 

1976). The majority of the ionophores of veterinary importance are carboxylic acid 

ionophores and as such the remaining discussions will focus on their properties. 

History of the Carboxylic lonophores 

In 1951, several antibiotics were isolated from Streptomyces that exhibited a wide 

antibacterial spectrum (Berger et al., 1951). This discovery was followed in 1970 by the 

determination of the chemical structure of X-537 A (lasalocid) (Westley et al., 1970; 

Johnson et al., 1970) and in 1974 isolation of the fungus (Streptomyces lasa/iensis) 

responsible for producing lasalocid (Westley et al., 197 4). 

Development of the ionophores into therapeutic agents required an additional 25-

30 years of work. Monensin was approved for use as a coccidiostat in chickens (COBAN® 

) in 1971 and as a growth promoter for cattle (RUMENSIN®) in 1975. Lasalocid was 

approved for use as a coccidiostat in chickens (AVA TEC® ) in 1977 and as a growth 

promoter in cattle (BOVA TEC®) in 1982. Salinomycin (BIOCOX ®) was approved for use 

as a coccidiostat in chickens in 1983 (Novilla, 1992; Ruff, 1982). 
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Chemistry of Carboxylic Acid lonophores 

The carboxylic ionophores (nigericin, grisyxin, monensin, dianemycin, salinomycin, 

lasalocid [X-537A] and A23187) are open-chained oxygenated heterocyclic rings with a 

single terminal carboxyl group. These compounds are of moderate molecular weight (200-

2000), with the ability to form lipid-soluble transport complexes with polar cations (K\ Na\ 

Ca++ and Mg++). Figures 1-3 show the molecular structures for lasalocid, monensin and 

salinomycin, respectively. Lasalocid is an asymmetrical compound with a 

tetrahydropyran, a tetrahydrofuran ring and an aromatic ring that exists as a ring by 

head-to-tail hydrogen binding in biological membranes (Pressman, 1976). The dimerization 

of two ionophore molecules forms a highly polar cation liganding site, the oxygen atoms, 

surrounded by a nonpolar carbon skeleton of the ionophore. The three dimensional 

structure of monensin and salinomycin resemble a "doughnut'' with the "hole" as the seat for 

ion complexation. This confers a degree of cation selectivity to these ionophores. In 

contrast, lasaslocid assumes a "shell-shaped" configuration as a dimer. On the rim of the 

shell are the oxygen groups responsible for ion complexation. This open configuration may 

explain the ability of lasalocid to complex with a variety of mono- and divalent cations 

(Pressman, 1972, 1976). 
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Figure 3. The Chemical Structure of Salinomycin 

A common property of ionophores is complexation and transport of deprotonated, 

anionic cations. The transport of specific ions, Na+, K'" and Ca++, across membranes 

accounts for the pharmacologic effects of the ionophores. The ensuing transport is 

electrically neutral involving a cation-for-proton exchange. The kinetics of ion transport by 

ionophores is rapid with turnover rates in biologic membranes achieving values of several 

thousand per second (Pressman, 1976). Each ionophore has a characteristic ion affinity 

and transport capacity described by in vitro complexation and transport studies (Pressman, 

1976). 

Biologic Effects Of lonophores 

Mitochondrial Effects. The fundamental mitochondrial function is aerobic 

production of ATP by electron transport linked to oxidative phosphorylation. The 

endergonic synthesis of ATP from ADP and Pi in mitochondria is catalyzed by ATP 

synthetase (ATPase). The chemiosmotic hypothesis postulates that the "power" for 

ATPase activity is generated by an electrochemical, proton gradient between the 
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mitochondrial matrix and the intermembrane space. This reaction requires an intact 

inner mitochondrial membrane impermeable to H\ OH",K\ and er, to prevent 

discharge electrochemical gradients. 

One of the first noted properties of ionophores was the ability to alter mitochondrial 

respiration in vitro (Pressman, 1976). Recently, lasalocid-induced mitochondrial inhibition 

were shown to involve electroneutral I( for H + exchange across the inner mitochondrial 

membrane, altering pH and membrane potential in a Ca++ -dependent manner (Antonio, 

1991). A23187 inhibits mitochondrial ATPase in sperm in a Ca++ dependent manner by 

releasing membrane-bound Mg++ and uncoupling oxidative phosphorylation (Reed & Lardy, 

1972). Alternatively, lasalocid (0.05-0.01 µM) decreases mitochondrial glutamate 

oxidation by a Ca++ -independent mechanism at ionophore concentrations 2x lower than 

required for ion transport. The a4thors suggest that lasalocid complexes with 

membrane-associated Mg++ ions that ate critical in mitochondrial energy production (Lin 

& Kun, 1973). A23187 stimulates mitochondrial respiration in some cells, while in other 

studies A23187, monensin, and lasalocid decrease intracellular ATP levels (Ruff, 

1982). 

The impact of ionophores on mitochondrial function may depend on the energy 

status of cells. The utilization of ATP to drive homeostatic pumps (Na+, l<-A TPase, 

Ca++_ATPase) to maintain normal cation concentration gradients may be a homeostatic 

response to ionophore exposure. 

Effects on Golgi Apparatus. Monensin and lasalocid inhibit the function of the 

trans face of the Golgi apparatus in the areas of secretory vesicle formation, 

endocytosis, and product sorting. Vacuolation and swelling of cistemae is a common 

finding for monensin- and lasalocid-incubated cells due to ion movement across cell 
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membranes with concurrent movement of water (Emery et al., 1991; Somlyo et 

al., 1975; Mollenhauer, et al, 1990). 

Cardiac Function. Carboxylic ionophores increase myocardial contractility 

indirectly by Na+ transport, direct Ca++ transport or by neurotransmitter release (Reed, 

1982). A23187 and lasalocid increase cycle length in spontaneously beating rabbit 

sinoatrial node cells (Satoh & Uchida, 1993). In canine Purkinje fibers, A23187 

decreased while lasalocid slightly increased contractile force and both ionophores 

markedly shortened action potential duration, delayed afterpotential and 

aftercontracton, possibly due to cellular Ca++ overload (Satoh et al., 1992). 

Skeletal Muscle Effects. Carboxylic ionophores produce skeletal muscle 

contraction by Ca++_mediated processes (Statham & Duncan, 1975; Statham et al., 

1976; Cochrane & Douglas, 1975). lonophores transport Ca++ into cytoplasm from 

extracellular stores (lasalocid, A23187) or transport of Na+ into cells with subsequent 

exchange of Na+ for Ca++ (lasalocid and monensin) (Ruff, 1982). The elevated Ca++ 

binds to troponin C causing a conformational change in the troponin I, releasing 

tropomysosin inhibition leading to actin-myosin interaction and muscle contraction. 

Lasalocid reversibly increased the frequency of excitatory post-synaptic potentials in 

locust extensor tibiae nerve-muscle preparations, while prolonged ( > 60 minutes) 

exposure to lasalocid caused irreversible "giant" miniature potentials, synaptic vesicle 

depletion, mitochondrial damage, and disintegration of microtubules and 

neurofilaments in nerve terminals (Fahim, 1992). 

Effects on Membrane Potential. The carboxylic acid ionophores dissipate ionic 

gradients across membranes modifying resting potential. Lasalocid and A23187 

8 



depolarize frog skeletal muscle fibers (Cochrane & Douglas, 1975). Valinomycin 

reduces erythrocyte membrane potential via er efflux, while lasalocid, monensin, and 

nigericin have no effect (Wittenkeller et al., 1992). Monensin induces Na+-dependent 

hyperpolarization of neuroblastoma cells by activating Na+. K+-A TPase (Lichtshtein et 

al., 1979). 

Veterinary Uses Of lonophores 

The ionophores of veterinary significance (monensin, lasalocid, salinomycin) are 

used to control and treat coccidiosis, especially Eimeria sp., and as growth promotants, 

increasing the feed efficiency of ruminants. 

Anticoccidial Effects in Broilers. Coccidiosis is an economically important 

disease in the poultry industry. The short feeding period and narrow profit magins for 

broilers demand coccidial prevention rather than treatment. Commonly, coccidial 

infections are subclinical with a moderate to high morbidity, low mortality causing 

reduced profitability. Clinical signs of avian coccidiosis include diarrhea, bloody feces, 

ruffled feathers, reduced weight gains and birds huddled together for warmth. Most 

birds produce a strong, species-specific protective immunity, after survival from initial 

infection. 

The success of the ionophores as a class of anticoccidials can be attributed to 

efficacy, introduction at a time of resistance to previous anticoccidial agents and absence of 

true drug resistance against the ionophores by the coccidia (Ruff, 1982). The actions of 

ionophores on coccidia relate to the drug's ability to transport ions across biological 

membranes. Coccidia are intracellular parasites that depend upon the host cell for energy 

(ATP). lonophores mediate cation influxes that require coccidial energy to maintain ionic 
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homeostasis. The ionophores alter ionic balance within coccidia that leads to cell 

dysfunction and death. In vitro incubation of coccidia with monensin causes ultrastructural 

changes including cytoplasmic vacuoles, bulging and separation of the plasma membrane 

and pycnotic nuclei (Augustine et al., 1992). These changes are associated with a 

significant time- and dose-dependent inhibition of cellular invasion. The ultrastructural 

effects of lasalocid on Eimeria tenella showed blistering of the outer membrane, large 

surface swellings and enlarged mitochondria in first- and second-generation merozoites 

(Daszak et al., 1991). 

Efficacy studies for anticoccidial drugs usually are performed in three stages: battery 

cage studies, floor pen studies and field trials. Efficacy of an ionophores may differ 

drastically in these stages. Monensin performs poorly in battery trials but is highly 

efficacious in field trials (Ruff, 1982). A recerit report showed that lasalocid easily controlled 

monensin- and narasin- resistant strains of Eimeria, but failed to control other susceptible 

strains in battery cage studies (Weppelman et al., 1977). 

Recently, chicken embryos have been used to screen ionophorous anticoccidials 

against different stains of Eimeria (Mora et al, 1991; Xie et al., 1991). The in vitro 

determination of the minimal inhibitory concentration and minimal toxic concentration 

have been evaluated for many anticoccidials. The toxic effects of these compounds 

against the embryos and the widely divergent effective concentrations in embryos may 

limit the application of this technique as a screening tool (Xie et al., 1991). 

A recent report of in vivo and in vitro resistance to a field isolate of Eimeria tenella 

may suggest that the coccidia are developing mechanisms to circumvent the actions of 

the ionophores. In this study, birds developed clinical coccidial infections despite 

treatment with 2x recommended levels of monensin, salinomycin, and lasalocid (Zhu & 
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McDougald, 1992). In vitro incubation of the isolate with ionophores did not alter 

coccidial invasion, development (sporozoites to schizonts), or ultrastructure. This type 

of data may encourage the use of ever-increasing concentrations of the ionophores in 

rations by the poultry producer. 

lonophore Uses in Ruminants. Monensin and lasalocid improve feed efficiency 

(10-20%) in feedlot and pastured cattle by altering the ruminal microflora (Bergen & 

Bates, 1984; Van Soest, 1982; Dennis et al, 1982; Corah, 1991; Quigley et al., 1992; 

Helaszek & White, 1991). lonophores can also reduce the incidence of bloat, acidosis, 

and prevent tryptophan-induced atypical bovine pulmonary emphysema. Another 

i 

indication for ionophore use in ruminants is the prevention or treatment of coccidial 

infections (Eicher-Pruiett et al., 1992; Heinrichs & Bush, 1991; Sinks et al., 1992). 

Lasalocid can also increase carcass quality (lean protein quantity, longisssimus area, 

muscle color) of cattle (Krelowska-Kulas et aL, 1992). 

Future Therapeutic Uses of lonophores 

In addition to their continued use as effective anticoccidial agents, ionophores 

may be used to treat other diseases in the future. Lasalocid may have a role in the 

treatment of life-threatening Cryptosporidium parvum infections in immunocompromised 

patients as evidenced by recent animal studies (Lemeteil et al., 1993; Brasseur et al., 

1991; Kimata et al., 1991). Monensin may be used as an adjunct therapy for certain 

forms of cancer. Liposome delivered monensin increases the effects of immunotoxins 

(Madan & Ghosh, 1992a,b; Griffin et al., 1993; Candiani et al., 1992; Colombatti et 

al., 1990), decreases lag time (Madan & Ghosh, 1992a), potentiates ricin cytotoxicity in 

vivo (Vasandani et al., 1992) and in vitro for many tumor cells (Griffin et al., 1993). 
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lonophore Intoxication 

Overview 

The ionophores currently used in livestock production are safe and efficacious at 

prescribed use levels in intended species. The majority of the literature concerning the 

toxic effects of ionophores describes monensin, due to the earlier market entry and 

greater market share for this compound. lonophore toxicosis is well documented in 

most domestic species including horses, the most sensitive species (Osweiler et 

al., 1983; Hanson et al, 1981), cattle (Mathieson et al, 1990; Galitzer et al, 1986; 

Vanvleet & Ferrans, 1983), goats (Dalvi & Sawant, 1990) ,pigs (Vanvleet et al., 1987; 

Morgan et al., 1991) ,chickens (Horovitz et al., 1988) and quail (Sawant et al., 1990). 

Certain management situations increase the probability of intoxication due to 

overdosages (mixing errors or premix consumption), misuse in non-target species, or 

drug interactions (chloramphenicol, tiamulin) (Novilla, 1992). Diagnosis of ionophore 

toxicosis is initially tentative since clinical signs and lesions are not pathognomic. Any 

feed-related problem characterized clinically by anorexia, diarrhea, dyspnea, ataxia, 

depression, recumbency, acute mortality, and pathologically by focal degenerative 

cardiomyopathy, skeletal muscle necrosis, and congestive heart failure, warrants a 

presumptive diagnosis of ionophore toxicosis (Novilla, 1992). Confirmation requires 

consideration of differential diagnoses and laboratory assays to determine the specific 

ionophore involved. There are no specific antidotes for ionophore intoxication but 

removal of affected animals from medicated feed, administration of activated charcoal 

and saline cathartics may lessen absorption and reduce the toxic effects (Osweiler et 

al., 1983). 
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Differential Diagnosis 

The differential diagnosis for ionophore toxicosis should include other causes of 

neuropathy and myopathy. In cattle, the differential should include vitamin E I selenium 

deficiency and poisonous plant intoxication: coffee senna (Cassia occidentalis), 

coyotillo (Karwinskia humboldtiana), or white snakeroot (Eupatorium rugosum) 

(Osweiler et al., 1983; Novilla, 1992). In poultry the differential includes nutritional 

myopathy, coffee senna toxicosis, botulism, NaCl (water deprivation) intoxication, 

mycotoxicoses (moniliformin cyclopiazonic acid), round-heart disease, and downer 

syndrome (viral arthritis) (Novilla, 1992). In horses, the differential should include colic, 

blister beetle ingestion (cantheridin intoxication) and azoturia (Osweiler et al., 1983). 

Clinical Signs 

The most common clinical signs of intoxication include anorexia, hypoactivity, leg 

weakness, ataxia, dyspnea, depression and death. Of these, anorexia is most 

consistently associated with consuming toxic levels of an ionophore (Novilla, 1992; 

Osweiler et al., 1983; Simon et al., 1991; Novilla et al., 1994; Todd et al., 1984; Galitzer 

et al., 1982; Vanvleet et al.,1987). Decreased body weight is a common finding in 

poultry (VanderKop & MacNeil, 1990; Bartov, 1994; Todd et al., 1984). 

Clinical Pathologic Changes 

The clinical pathologic changes associated with ionophore-induced toxicosis are 

elevated enzyme levels of muscle origin: aspartate transaminase (AST), creatine 

phosphokinase (CPK), lactic dehydrogenase (LOH), with increased alkaline 

phosphatase (ALP), (Horovitz et al., 1988) serum urea nitrogen (SUN) and bilirubin 
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. (Osweiler et al., 1983). Serum Ca++ and K+ levels may decline to life-threatening levels 

in monensin-intoxicated ponies or horses (Novilla, 1992; Osweiler et al., 1983). 

Gross Pathologic Lesions 

The gross lesions noted with ionophore overdose relate to the musculoskeletal 

and cardiovascular systems. Common findings are pale skeletal and cardiac muscle, 

flabby myocardial tissue, dilated ventricles, or yellow-white streaks of necrosis in the 

myocardium (Osweiler et al., 1983; Novilla, 1992). Animals that die acutely may exhibit 

no gross pathologic changes (Osweiler et aL,1983). 

Histopathologic and Ultrastructural Changes 

The histologic lesions found in ionophore toxicosis include focal degeneration of 

myocytes, vacuolation, swelling and eosinophilic staining of cardiomyocytes. 

Ultrastructurally, vacuolation is caused by swelling of mitochondria with disrupted cristae, 

dense matrical granules, cristolysis, swollen sarcoplasmic reticura and disruption of 

myofibrillar architecture (Anderson et al., 1984). After ionophore-mediated damage 

occurs to cardiomyocytes injured tissue is replaced by fibrosis (Novilla, 1992). 

lonophore-lnduced Myopathy/Cardiomyopathy 

The most common manifestation of ionophore-induced intoxication is skeletal 

myopathy or cardiomyopathy, depending upon the species involved. In horses, the primary 

organ affected is the heart while in dogs and pigs lesions are restricted to skeletal muscles 

and in poultry, cattle and rodents there is an equal distribution of cardiac and skeletal 

muscle lesions (Novilla, 1992). 
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lonophore-induced myopathy is well described in poultry. Monensin-gavaged 

(~1.93 mg/kg/day) turkeys present with ataxia, rear limb paresis and paralysis. 

Histologically, birds exhibit dose-dependent, necrotizing skeletal myopathy of the leg 

muscles with intrafiber edema and myocardial vacuolation (Cardona et al., 1993). 

Lasalocid fed to broiler breeders caused leg weakness, severe myonecrosis, ataxia and 

decreased production (eggs, fertility and hatchability) (Perelman et al., 1993). 

Cardiotoxicity in monensin-intoxicated pigs presents as moderate to extensive 

myofibrillar necrosis With sarcoplasmic vacuolation and swollen mitochondria with 

disrupted cristae and dense matrical granule accumulation (Vanvleet & Ferrans, 1984). 

Holstein steers given lasalocid ormonensin per os had gross (flabby, dilated hearts 

with petecchia and ecchymosis) and histopathologic (multifocal myocyte necrosis with 

mild to marked cardiomyopathy, mononuclear cellular infiltrates and Purkinje 

degeneration) signs of cardiomyopathy (Galitzer et al., 1986). In another study, 

Holstein steers given a single oral dose of lasalocid (25 - 125 mg/kg) exhibited muscle 

tremors, increased heart and respiratory rates, followed by anorexia. Indications of 

cardiac muscle damage, elevated CPK and LOH, were noted in animals given 125 

mg/kg (Galitzer et al., 1982). The ultrastructural damage associated with monensin 

myocardial toxicosis in calves details extensive sarcoplasmic vacuolation from 

mitochondrial swelling and lipid droplet accumulation. The initial damage was followed 

by myocardial necrosis with disrupted contractile proteins, pycnotic nuclei and 

macrophage infiltration (Vanvleet & Ferrans, 1983). In vitro, lasalocid causes Golgi 

apparatus cistern swelling in rabbit sine-atrial node cell that led to dilation and 

vacuolization after the addition of Ca++ (Satoh & Uchida, 1993). 
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Drug Interactions With lonophores 

Many ionophores are incompatible with other therapeutic agents (Burch & 

Stipkovits, 1991; Umemura et al., 1984) or dietary components (Williams, 1992). 

Lasalocid is incompatible with concurrent administration of chloramphenicol (Broz & 

Frigg, 1987; Perelman et al., 1986) and T-2 fusariotoxin (Varga & Vanyi, 1992). 

Tiamulin enhances the toxicity of monensin and salinomycin in poultry (Umemura et 

al., 1984; Simon et al.,1991; Laczay et al., 1991; Mezes et al., 1992) and swine (Morgan 

et al., 1991). This interaction in pigs is minimized by concurrent administration of 

vitamin E and selenium (Vanvleet et al., 1987). In contrast, field trials indicate that 

tiamulin and salinomycin are compatible in mycoplasma-infected birds and result in 

decreased mortality with improvement , lesion scores, and feed-efficiency (Stipkovits et 

al.,1992). 

lonophore - Induced Neurotoxicity 

In certain situations, some ionophores may cause neurotoxicity. A recent report 

describes a paralytic syndrome in dogs due to lasalocid incorporation into a commercial 

dog food by a mixing-mill error. The disease was marked by generalized lower motor 

neuron deficits that were gradually reversible (Safran et al., 1993a). An experimentally

induced syndrome in broilers caused by elevated feed levels of lasalocid produced 

irreversible disinclination to stand, followed by hock sitting and a characteristic walking 

"on tip toe" after seven days of consumption which were more severe after the addition 

of chloramphenicol. Pathologic examination revealed vacuolization and demyelination 

of the spinal cord (Shlosberg et al., 1986). Neurophysiologic examination of broilers fed 

monensin and tiamulin showed reduced motor nerve conduction velocity and 

16 



lengthened relative refractory period in the sciatic nerves of 4 (Laczay et al., 1991) and 

5 week-old male broilers (Simon et al., 1991). 

In vitro evidence suggests that lasalocid causes swelling of perikarya, followed by 

neuronal death without affecting glial cells, fibroblasts or cultured rat astrocytes. 

Lasaslocid induced a Ca++ influx inhibited by MK-801 (a non-competitive NMDA 

receptor antagonist) but was not affected by voltage-sensitive Ca++ channel blockers 

(nimodipine, D-600) (Safran et al., 1993b). Nigericin and valinomycin can inhibit nerve 

growth factor (NGF)-induced neurite outgrowth in PC12 cells, while monensin and 

A23187 are without effects. This may reflect a K+-sensitive signal transduction pathway 

in the NGF-induced neuronal differentiation PC12 cells (Harada et al., 1994). In 

another study, A23187 produced a dose- and time- dependent degeneration of the 

PC12 cells with recovery upon removal of the ionophore (Michel et al., 1994). 

Ultrastructural evidence also supports the possibility of neurotoxicity induced by 

the ionophores. A23187 causes destruction of microtubules and microfilaments leading to 

myelin vesiculation in the desheathed sciatic nerve of the rat (Schlaepfer, 1977a,b). Time

course, ultrastructural studies show ionomycin-induced demyelinating in the central 

(Smith & Hall, 1994) and peripheral (Smith & Hall, 1988) nervous systems. Schwann 

cells and oligodendrocytes exhibit vesicular demyelination due to .elevated intracellular 

Ca++ levels which may activate phospholipase A2 (PLA2) or other endogenous Ca++ -

activated enzymes (Smith & Hall, 1988, 1994). In transected nerves, ultrastructural 

changes are mediated by Na+ and Ca++ concentrations in the media. Sodium in the 

media of damaged dendrites causes dilation of the Golgi cisternae and increased 

mitochondrial electron opacity similar to uninjured neurons incubated with monensin 

(Emery et al., 1991). 
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The occurrence of ionophore-induced neurotoxicity may be masked by skeletal or 

cardiac muscle damage. In broilers, concurrent administration of lasalocid and 

chloramphenicol produce decreased body weight gains, "toe walking", reluctance to 

move and complete ataxia. This syndrome is reversible in mildly affected birds after 

the removal of the medicated feed. Histopathologic and ultrastructural evaluation 

revealed a correlation between incidence of disease and muscle fiber damage and 

inconsistent demyelination of the spinal cord and sciatic nerves (Perelman et al., 1986). 

Novilla recently reported that narasin (per os or by inhalation) can cause focal degeneration 

of intramuscular nerves of dogs. In acute inhalation studies, dogs exposed to narasin for 14 

days had slight to moderate degeneration while in three-month studies the damage was 

described as mild to severe inflammatory or degenerative lesions of sciatic nerves . The 

author noted that similar lesions were induced by salinomycin (Novilla, 1994). 

Neurotoxicity 

· Neurotoxins produce a wide array of clinical manifestations. Many toxicants 

differentially affect specific regions of the brain or peripheral nervous system. Information 

from mechanistic neurotoxicologic studies provides scientists with tools to study 

neurophysiology ( tetrodotoxin, GABA). Understanding mechanism(s) of neurotoxins 

involves an appreciation of the anatomy, physiology and regenerative potential of the 

nervous system. The broad class of compounds classified as "neurotoxic" interact 

dynamically with cells of the central and peripheral nervous systems. The role of behavioral 

changes and clinical observation are still very important in screening and identification of 

neurtoxic compounds as many toxins can alter nervous system function without causing 

any morphologic changes. 
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Classification of Neurotoxic Disease 

Morphologic classification of neurotoxic diseases is a simple way of grouping 

toxicants that can also incorporates mechanistic data. In this scheme there is a primary 

assumption, that each toxicant has a primary focus of cellular damage (Spencer & 

Schaumburg, 1980). This is not true for many compounds, especially metals, but it allows 

for categorization of neurotoxicants. Another difficulty with morphologic grouping of 

neurotoxicants is that not all cause alteration to cell structure. A toxin can be so exquisitely 

potent that mortality occurs before any morphologic changes. Further, due to nervous 

system complexity, alteration of neurotransmitter release or electrical excitability could be 

the mechanism of toxicosis without concurrent pathologic changes. Currently, there are 

exhaustive lists of compounds of neurotoxins, the cell(s) involved and for some, the site of 

action. Many compounds lack an exact mechanism(s) or sub-cellular site of toxic effects. 

As more mechanistic information for various toxins is gathered, a more refined classification 

system will evolve. 

The morphologic classification system uses anatomic location of action (soma, axon, 

or myelin) to group neurotoxicants. Some systems further subdivide toxicants by subcellular 

site of action, if known. Spencer & Schaumburg (1980) describe a schema including 

neuronopathies, axonopathies, and myelinopathies. A similar neuropathologic system 

described by Gopinath (1987) focuses on individual cell types affected by the toxin(s) and 

categorizes neuronopathies, axonopathies, myelinopathies, gliopathies, vasculopathies, 

and chroid plexus vacuolation. 

Neuronopathy involves insult to the nerve cell body (Thomas, 1980) and is usually 

widely distributed and irreversible (Anthony & Graham, 1991). Neuronopathies are further 

subclassified as distal and proximal axonopathies, depending on the portion of the axon 
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affected (Thomas, 1980; Spencer & Schaumburg, 1980). Neuronopathy can lead to a rapid 

secondary breakdown of axons and dendrites by a process called Wallerian degeneration, 

and further exposure to the toxicant leads to the collapse and removal of the myelin sheath 

limiting regenerative ability the nerve (Spencer & Schaumburg, 1980). 

Myelinopathy or Demyelination 

Myelinopathy affects oligodendrocytes in the CNS and Schwann cells in the PNS. 

Myelinopathy is characterized by rapid onset, with greatest susceptibility of the longest 

intemode fibers. Remyelination can occur rapidly with full recovery of strength and 

sensation to the affected areas. 

Primary demyelination involves segmental degeneration of the myelin sheath with 

proximal and distal nerve involvement, no correlation to axonal damage and a random 

distribution of demyelinated segments (Cammer, 1980). Secondary demyelination involves 

inflammation or trauma to the myelin sheath that is characterized by focal areas of myelin 

damage and localized distribution of damage. 

Mechanisms of primary demyelination relate to effects of the toxicant on myelin 

producing cells (Schwann cells, oligodendrocytes). Primary demyelination produced by 

triethyltin, hexachlorophene, isoniazid and salicylanilides. Triethyltin, the prototype of this 

class, produces a severe, non-inflammatory edema and vacuolation of the myelin sheath of 

sciatic nerves without altering myelin composition (Cammer, 1980). Demyelination caused 

by direct damage to the myelinating cells has been described for lead, cuprizone®, ethidium 

bromide, diptheria toxin, tellurium, thiamin deficiency, and chronic cyanide or carbon 

monoxide intoxication (Cammer, 1980; Pleasure et al., 1973; Harry et al., 1989). 
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Damaged and demyelinated nerves exhibit delayed conduction velocities and 

reduced amplitude of the waves of depolarization. In the normal myelinated nerve, 

Schwann cells surround the axon and insulate the nerve membrane restricting 

depolarization to the Nodes of Ranvier. This specialization allows for a more rapid passage 

of the depolarization wave, salutatory conduction, down the nerve. The resting membrane 

potential is established by the selective transport of sodium and potassium by the Na+, l<

A TPase enzyme. At resting membrane potentials, Na+ channels are gated shut, 

impermeable to Na+. When the membrane is depolarized, Na+ channels open allowing Na+ 

influx down concentration gradients leading to further depolarization. Indications of 

demyelination include the inability to transmit trains of impulses and a lengthened refractory 

period. An increased refractory period may be a more sensitive indicator of incomplete or 

"patchy" demyelination than measurement of the conduction velocity (Rasminsky, 1980). 

Possible Mechanisms of lonophore-lnduced Toxicosis. 

Calcium-Mediated Cell Death 

Calcium levels are tightly regulated within cells due to the role of calcium as an 

intracellular signaling mechanism. The role of Ca++ in cell death is well described (Schilder 

et al., 1994; McKeage et al., 1994; Wrogemann & Pena, 1976) and ionophore-induced 

cytotoxicity may involve transport, directly or indirectly, of this cation (Osweiler et al., 1983). 

lonophore intoxication probably involves an influx of Na+ and Ca++ ions into affected 

cells with a concurrent efflux of K+ ions leading to excessive Ca++ uptake by 

mitochondria, mitochondrial damage, lack of cellular energy, elevated cytoplasmic Ca++ 

levels and ultimately muscle necrosis (Novilla, 1992). 
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In several papers, the mechanism(s) ionophore-mediated cell death suggest that 

A23187, monensin and lasalocid cause dysfunction through a multi-staged process, 

involving ionophores, Ca++, and Na+ (DuBourdieu & Shier, 1992; Shier & DuBourdieu, 

1992; Shier et al., 1991) Interestingly, the cells most sensitive to ionophore-induced 

cytotoxicity were excitable cell, cardiac muscles. Cytotoxicity, as measured by LDH and 

arachidonic acid release, occurred in cultured cardiac myocytes by two different Ca++ -

mediated steps only if they follow a Na+-dependent cell injury. The Na+-dependent step 

requires extracellular Na + ~ 75mM (half the physiologic levels) (DuBourdieu & Shier, 

1992). The first Ca++ -- mediated step required A23187, extracellular Ca++ 

concentrations in the micromolar range and is inhibited by Mn+ or Nt+. The second Ca 

++ -mediated step requires extracellular Ca++ concentrations in the millimolar range is 

not ionophore-dependent and is not inhibited by Mn++_ lonophore-induced cytotoxicity 

caused blebs in cell membranes, cellular swelling, increased permeability to trypan blue 

and holes in the plasma membrane. Monensin-induced Na + influx allows toxic levels of 

extracellular Ca++ into the cytoplasm by Na+/ Ca++ antiporter protein(s) (Shier & 

DuBourdieu, 1992). 

In mice, the lethality of monensin is potentiated by Ca++ channel blockade (verapamil, 

diltiazem), Na+ channel blockade (lidocaine), a-adrenergic blockade (tolazoline) or centrally 

acting a2 adrenergic antagonists (yohimbine) (Mitema, et al. 1988). Nimodipine protects 

against monensin- and ouabain-induced, calcium mediated cytotoxicity by maintaining 

lysozomal integrity (Danks et al., 1992). Valinomycin and beauvericin, K+ specific 

ionophores, induce apoptosis by increasing Ca++ from intracellular stores which 

activates endonucleases (Ojcius et al., 1991). Mehrotra et al recently reported that Ca++ 
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ionophores, calcimycin and lasalocid, potentiated CaCl2 -mediated mitochondrial 

swelling in vitro (Mehrotra et al., 1993). 

ATPase 

The Na+, K+-ATPase enzyme is an ubiquitous regulatory protein involved in cell 

volume regulation, release of neurotransmitters, and maintenance of ion gradients 

required for action potentials. The Na+, ~-ATPase enzyme has two subunits,a. and 13. 

The a subunit spans the cell membrane, with molecular weight of 95,000 daltons, as 

well as binding sites for ATP and ouabain. The J3 subunit is a glycoprotein with a 

molecular weight of 40,000 daltons. The a and J3 subunits of Na+, ~-ATPase catalyze 

movement of 3 Na+ ions out of and 2 K+ ions into the cell (Sweadner & Goldin, 1980). 

Decollogne et al. (1993) recently reviewed some ionic and hormonal factors 

influencing Na+, K+-ATPase, with specific reference their significance in health and 

disease. The Na+, K+-ATPase isozymes and their various subunits can be influenced 

by intracellular Ca++ and K + levels. In skeletal muscle, the a.2 subunit of Na+, K+

ATPase is half maximally inhibited by 160 nM Ca++ (the resting Ca++ level), while the 

a.1 subunit is altered by 600 µM Ca++ (McGeoch, 1990). Increased intracellular levels 

of Ca++ stimulate mRNA production for a 1 and J31 subunits in outer medullary kidney 

tubular segments (Rayson, 1990). Decreased intracellular levels of K+ decrease the 

number of functional a.2 subunits in rat skeletal muscle and brain tissue (Azuma et 

al., 1991). 

Some neurotoxic compounds alter Na+, K+-ATPase function. Interference with 

ion transport can lead to increased levels of Na+, er, and water in neural tissue causing 

edema and vacuolation. This is suggested in the pathogenesis of demyelination 
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induced by triethyltin, hexachlorophene, cuprizone® and isoniazid (Anthony & Graham, 

1991). 

Mitochondrial Oxidative Phosphorylation 

Many compounds alter intracellular levels of ATP as part of their mechanism of toxic 

effects. This can occur at any level along the electron transport chain, at A TPase itself or at 

the outer mitochondrial membrane. Since oxidation and phosphorylation are tightly 

regulated, alteration in either will reduce the generation of ATP. 

One mechanism for altering the intracellular generation of ATP is inhibition of electron 

transport. Toxicants in this group interrupt the flow of electrons along the respiratory chain 

and can be classified by the site of inhibition (Moreland, 1980). Similarly preventing proton 

transport through the stalk portion of ATPase, as exhibited by oligomycin, will also reduce 

ATP production. Intracellular ATP levels can also be lowered by uncoupling oxidation of 

substrate from the phosphorlyation of ADP without interfering with electron transport. 

Dinitrophenol acts in this manner by dissipating the trans-membrane proton gradient that 

powers ATP production via ATP synthetase. Toxicants can also disrupt regulatory 

substrate concentration within mitochondria thereby altering ATP production. 

Carboxyatractloside , from cockleburs, acts as on an ADP-ATP translocator of the external 

mitochondrial membrane. 

Some neurotoxicants produce primary demyelination by altering the oxidative 

phosphorylation capabilities of cells thereby reducing energy available for myelin 

synthesis and maintenance. Examples of compounds acting by this mechanism 

include triethyltin, lead, hexachlorophene, acetyl ethyl tetramethyl tetralin (AETT) and 

salicylanilides (Cammer, 1980; Anthony & Graham, 1991). Carbon disulfide causes 
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axonopathy by altering neuronal mitochondrial ATP generation capability (Anthony & 

Graham, 1991) uncoupling oxidative phosphorylation, decreasing the P:O ratio and 

lowering ATP-Pi exchange rate (Tarkowski & Sobczak, 1971). 

Recently, the carboxylic ionophores have been shown to alter the energy status 

of cells resulting in cellular dysfunction. Monensin induced intoxication results in K+ influx 

into cell organelles, especially mitochondria which inhibits ATP production (Osweiler et 

al.,1983). Monensin increases acetaminophen-induced hepatotoxicity by depleting ATP 

and collapsing mitochondrial membrane potential (Harman et al., 1991) or uncoupling 

oxidative phosphorylation similar to valinomycin (Albertin et al., 1994). Gramicidin- and 

Br-A23187-induced cytotoxicity is due to uncoupling oxidative phosphorylation and 

decreased ATP generation in rat hepatocytes (Nieminen et al., 1990). 

Statement of Dissertation Problem and Hypotheses 

The polyether carboxylic ionophores are commonly used in poultry production for 

the control of coccidiosis. lonophore-induced toxicosis has classically been described 

as myotoxicity involving cardiac and skeletal muscles; but, may also involve damage to 

the nervous system. 

Recent, unpublished field observations report clinical signs of neurotoxicity in 

broiler chickens consuming a ration containing lasalocid, an anticoccidial ionophore. 

Producers and poultry veterinarians have labeled this syndrome "duck-walking", 

"knockdown" or simply "down birds". The incidence of the disease can reach 5% of a 

broiler flock. This represents a significant economic loss to the producer since affected 

birds do not eat or gain weight and are usually destroyed. Clinically, the syndrome 

includes birds that are: 1) prone and ataxic with the pelvic limbs stretched out caudally, 2) 

able to walk, but waddle like ducks, or 3) reluctant to walk. These represent a spectrum of 
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toxic effects in an affected bird or flock. Some epidemiological factors associated with 

increased incidence are : gender (male), rapidly growing birds and heat stress/water 

deprivation. The widespread use of lasalocid in broilers coupled with recent published 

reports of possible neurotoxicity (Shlosberg et al., 1986; Safran et al, 1993a; Gregory et 

al, 1995) warrant further study. Little is known concerning this syndrome, except that 

lasalocid is commonly associated with ataxic birds. This is a complex interaction of the 

drug, bird genetics, nutrition, environmental and management factors that combine to 

produce clinical disease. 

The basic pharmacologic property of ionophores is to move ions down a 

concentration gradient across cell membranes. As a result, the ionophores can cause 

disruptions in the normal ionic homeostasis of many cells. Altered cation concentrations 

in cell of the nervous system may cause dysfunction and cytotoxicity leading to ataxia or 

"downer" broilers. The mechanism(s) of ionophore'-ITlediated toxicosis may involve altering 

the metabolic capability of cells by reducing intracellular ATP, interfering with the "ionic 

pumps" of cells that maintain ionic gradients, or increased oxidative stress. 

The purpose of the first part of this study is to examine the potential for ionophores 

(monensin, lasalocid, and salinomycin) to cause ataxia in dose-response studies. These 

experiments will examine the effects of feeding elevated ionophore levels to broiler chickens 

on a starter (3 weeks of age) and a grower ration (6 weeks of age). Lasalocid has been 

implicated in field cases of ataxia, but it not known that monensin or salinomycin can cause 

similar effects. Monensin and salinomycin are compared to lasalocid because of their 

documented ability for skeletal and myocardial necrosis. These studies will establish that 

lasalocid-induced ataxia does not involve overt myotoxicity. The determination of a toxic 

dose of lasalocid that will elicit a reliable percentage of ataxic birds will aid in future 

mechanistic studies. The rationale for dose-response studies is to determine if the 
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ionophore alone might cause this disease with all other variables constant. Additionally, 

interaction studies will examine the effect of changing ionophores from the starter to the 

grower ration on the incidence of disease. The hypothesis for this phase of the study is that 

lasalocid alone causes a neuropathy. 

The second phase of this study will examine some of the possible mechanisms 

involved in ionophore-induced neurotoxicity. The effects of ionophore feeding on the 

activity of the Na+, !<-A TPase of several organs is one parameter to be examined. 

Dissipation of ionic gradients across cell membranes is a possible action of the 

ionophores in vivo. To maintain homeostasis under these conditions, the activities of 

A TPase enzymes should change. Additionally, ionophores may directly inhibit A TPase 

enzymes, leading to toxicosis. The effects of the ionophores on mitochondrial 

respiration and ATP production will also be examined. The hypothesis of this phase of 

the project is that alteration of energy production and ionic homeostasis of various 

tissues mediates ionophore-induced neurotoxicity. 

The third phase of this study will identify a per os gavage dose of lasalocid that elicits 

ataxia. Using this dose, preliminary studies will be performed to examine possible 

compounds (vitamin E) or environmental situations (heat stress, water deprivation) that 

modulate the severity of toxicosis. The ability of affected birds to recover from lasalocid

induced ataxia will also be examined. The hypothesis of these studies is that environmental 

and nutritional factors interact with lasalocid to cause neurotoxicity. 

The next phase will examine the direct, in vitro effects of lasalocid on isolated sciatic 

nerve segments. Incubation of the nerve segments with lasalocid will be followed by 

analysis of any ultrastructural changes. These studies will establish if damage to the sciatic 
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nerve is possible in the absence of inflammatory cells and other in vivo mediators. The 

hypothesis of these studies is that lasalocid causes direct damage to the sciatic nerve. 

Neurotoxicity will be characterized using clinical signs, an ambulation scoring system, 

electrophysiology, light and electron microscopic changes. Additionally, several indicators 

(body weight, serum electrolytes, serum enzyme activities) of generalized toxic effects will 

further describe this syndrome. These criteria will provide information concerning the 

organs and cell types affected which will be useful for a more complete description and 

future mechanistic studies. As depicted in Figure 4, below, the expression of this disease 

syndrome is multifactorial. 

28 



Environmental 
Factors 

Heat 
Diet 

IONOPHORE 
Lasalocid 
Monensin 

Salinomycin 

1 
BIRD 

Bird 
Factors 
Genetics 

Sex 

I I ----+1 Mechanisms of Toxicity+--1 ----

1 J 

ALTERATION OF 
ATPase 

ACTIVITY 

Ca++-INDUCED 
CELL DEATH 

MITOCHONDRIAL 

TOXICITY 

Figure 4. 

NEUROTOXICITY 

CLINICAL SIGNS 
Ataxia & "Duck-Walkers" 

EXPERIMENTALLY
INDUCED ATAXIA 

Per Os Dose 
Toxic Dose 

PATHOLOGY 

ELECTROPHYSIOLOGI C 
CHANGES 

Proposed Pathogenesis of lonophore-induced Neurotoxicity in Broilers 

29 



REFERENCES 

Albertin H, Nurit F, Ravanel P, Tissut M. Uncoupling Activities of monensin in isolated 
mitochondria, chloroplasts and cells. Phytochemistry 1994;35(5):1105-10. 

Anderson TD, Van Alstine WG, Ficken MD, Miskimins DW, Carson TL, Osweiler GD. 
Acute monensin toxicosis in sheep: Light and electron microscopic changes. Am 
J Vet Res 1984;45:1142-7. 

Anderson TD, Davidovich A, Arceo R, Brosnan C, Arezzo J, Schaumburg H. Peripheral 
neuropathy induced by 2',3'-dideoxycytidine. A rabbitmodel of 2',3'
dideoxycytidine neurotoxicity. Lab Invest 1992;66(1):63-74. 

Anderson TD, Davidovich A, Feldman D, Sprinkle TJ, Arezzo J, Brosnan C, Calderon 
RO, Fossom LH, DeVries JT, DeVries GH. Mitochondrial Schwannopathy and 
peripheral myelinopathy in a rabbit model of dideoxycytidine neurotoxicity. Lab 
Invest 1994;70(5):724-39. 

Anthony DC, Graham DG. Toxic Responses of the Nervous System. In: Amdur MO, 
Doull J, Klaassen CD, eds. Casarett and Doull's Toxicology: The basic science of 
poisons. 4th ed. New York: Pergamon Press, Inc, 1991:407-29. 

Antonio RV, da-Silva LP, Vercesi AE. Alterations in mitochondrial Ca2+ flux by the 
antibiotic X-537 A (lasalocid-A). Biochim Biophys Acta 1991; 1056(3):250-8. 

Augustine PC, Watkins KL, Danforth HD. Effects of monensin on ultrastructure and 
cellular invasion by the turkey coccidia Eimeria adenoeides and Eimeria 
meleagrimitis. Poult Sci 1992;71 :970-8. 

Azuma KK, Hensley CB, Putman DS, McDonough AA. Hypokalemia decreases 
Na+/K+-ATPase a.2- but not a.1- isoform abundance in heart, muscle and brain. 
Am J Physiol 1991 ;260:C958-64. 

Bartov I. Effect of growth promoters on monensin toxicity in broiler chicks. Br Poult Sci 
1994;35(1 ): 123-33. 

Bergen WG, Bates DB. lonophores: Their effect on production efficiency and mode of 
action. J Anim Sci 1984;58(6):1465-83. 

Berger J, Rachlin Al, Sternbach LH, Goldberg MW. The isolation of three new 
crystalline antibiotics from Streptomyces. J Am Chem Soc 1951 ;73:5295-8. 

30 



Brasseur P, Lemeteil D, Ballet JJ. Anti-cryptosporidial drug activity screened with an 
immunosuppressed rat model. J Protozool 1991 ;38(6):230S-1 S. 

Broz J, Frigg M. lncompatability between lasalocid and chloramphenicol in broiler chicks 
after long-term simultaneous administration. Veterinary Research 
Communications 1987; 11: 159-72. 

Burch D, Stipkovits L. Dose-related effects of tiamulin and the incompatible ionophores 
in mycoplasma infected chicks. Acta Vet Scand Suppl 1991 ;87:278-80. 

Cammer W. Toxic demyelination: Biochemical studies and hypothetical mechanisms. 
In: Spencer PS, Schaumburg HH, eds. Experimental and Clinical 
Neurotoxicology. Baltimore MD: The Williams and Wilkins Co., 1980:239-56. 

Candiani C, Franceschi A, Chignola R, Pasti M, Anselmi C, Benoni G, Tridente G, 
Colombatti M. Blocking effect of human serum but not of cerebrospinal fluid on 
ricin A chain immunotoxin potentiation by monensin or carrier protein-monensin 
conjugates. Cancer Res 1992;52(3):623-30. 

Cardona CJ, Galey FD, Bickford AA, Charlton BR, Cooper GL. Skeletal myopathy 
produced with experimental dosing of turkeys with monensin. Avian Dis 
1993;37(1): 107-17. . 

Cochrane DE, Douglas WW. Depolarizing effects of the ionophores X-537 A and 
A23187 and the relevance to secretion. Br J Pharmacol 1975;54:400-2. 

Colombatti M, Dell'Arciprete L, Chignola R, Tridente G. Carrier protein-monensin 
conjugates: enhancement of immunotoxin cytotoxicity and potential in tumor 
treatment. Cancer Res 1990;50(5): 1385-91. 

Corah LR. Polyether ionophores--effect on rumen function in feedlot cattle. Vet Clin 
North Am Food Anim Pract 1991 ;7(1 ): 127-32. 

Dalvi RR, Sawant SG. Studies on monensin toxicity in goats. Zentralbl Veterinarmed A 
1990;37(5):352-5. 

Danks AM, Hammond DN, Wainer BH, Van-Buskirk RG, Isaacson RL. Cellular 
alterations produced by the experimental increase in intracellular calcium and the 
nature of protective effects from pretreatment with nimodipine. Brain Res Mel 
Brain Res 1992;16(1-2):168-72. 

Daszak P, Ball SJ, Pittilo RM, Norton CC. Ultrastructural studies of the effects of the 
ionophore lasalocid on Eimeria tenella in chickens. Parasite! Res 1991 ;77(3):224-
9. 

Decollogne S, Bertrand 18, Ascensio M, Drubaix I, Lelievre LG. Na+, K+-ATPase and 
Na+/Ca2+ Exchange lsoforms: Physiological and Physiopathological Relevance. 
J Cardiovasc Pharmacol 1993;22(Suppl.2):S96-8. 

31 



Dennis SM, Nagaraja TG, Bartley EE. Effect of lasalocid or monensin on lactate
producing or -using ruminal bacteria. J Anim Sci 1982;52(2):418-4261. 

DuBourdieu DJ, Shier WT. Sodium- and calcium-dependent steps in the mechanism of 
neonatal rat cardiac myocyte killing by ionophores. II. The calcium-carrying 
ionophore, A23187. Toxicol Appl Pharmacol 1992;116(1):47-56. 

Eicher-Pruiett SD, Morrill JL, Nagaraja TG, Higgins JJ, Anderson NV, Reddy PG. 
Response of young dairy calves with lasalocid delivery varied in feed sources. J 
Dairy Sci 1992;75(3):857-62. 

Emery DG, Lucas JH, Gross GW. Contributions of sodium and chloride to 
ultrastructural damage after dendrotomy. Exp Brain Res 1991 ;86(1):60-72. 

Fahim MA. Effects of ionophore X-537 A on spontaneous transmitter release and the 
ultrastructure of locust neuromuscular junctions. Cell Mel Biol 1992;38(4):385-93. 

Feldman D, Brosnan C, Anderson TD. Ultrastructure of peripheral neuropathy induced 
in rabbits by 2',3'-dideoxycytidine. Lab Invest 1992;66(1):75-85. 

Galitzer SJ, Bartley EE, Oehme FW. Preliminary ·studies on lasalocid toxicosis in cattle. 
Vet Hum Toxicol 1982;24(6):406-9. 

Galitzer SJ, Kruckenberg SM, Kidd JR. Pathologic changes associated with 
experimental lasalocid and monensin toxicosis in cattle. Am J Vet Res 
1986;47(12):2624-6. 

Gopinath C. The Nervous System. In: Atlas of Experimental Toxicological Pathology. 
Boston, MTP Press, 1987.pp 137-144. 

Gregory DG, Vanhooser SL, Stair EL. Light and electron microscopic lesions in 
peripheral nerves of broiler chickens due to roxarsone and lasalocid toxicoses. 
Avian Dis 1995;39:408-16. 

Griffin T, Rybak ME, Recht L, Singh M, Salimi A, Raso V. Potentiation of antitumor 
immunotoxins by liposomal monensin. J Natl Cancer Inst 1993;85(4):292-8. 

Hanson LJ, Eisenbeis HG, Givens SV. Toxic effects of lasalocid in horses. Am J Vet 
Res 1981;42:456-61. 

Harada H, Morita M, Suketa Y. K+ ionophores inhibit nerve growth factor-induced 
neuronal differentiation in rat adrenal pheochromocytoma PC12 cells. Biochim 
Biophys Acta 1994;1220(3):310-4. 

Harman AW, Kyle ME, Serroni A, Farber JL. The killing of cultured hepatocytes by N
acetyl-p-benzoquinone imine (NAPQI) as a model of the cytotoxicity of 
acetaminophen. Biochem Pharmacol 1991;41(8):1111-7. 

32 



Harry GJ, Goodrum JF, Bouldin TW, Wagner-Recio M, Toews AD, Morell P. Tellurium
induced neuronpathy: Metabolic alterations associated with demyelination and 
remyelination in rat sciatic nerve. J Neurochem 1989;52:938-45. 

Heinrichs AJ, Bush GJ. Evaluation of decoquinate or lasalocid against coccidiosis from 
natural exposure in neonatal dairy calves. J Dairy Sci 1991 ;74(9):3223-7. 

Helaszek CT, White BA. Cellobiose uptake and metabolism by Ruminococcus 
flavefaciens. Appl Environ Microbiol 1991;57(1):64-8. 

Horovitz CT, Avidar Y, Bogin E, Shlosberg A, Shkap I, Weisman Y, Egyed MN. Enzyme 
profile in blood and tissues .of chickens fed various levels of monensin. Zentralbl 
Veterinarmed A 1988;35:473-80. 

Johnson SM, Liu SJ, Herrin J, Paul IC. The crystal and molecular structure of the 
barium salt of an antibiotic containing high proportion of oxygen. J Am Chem Soc 
1970;92:4428-35. 

Kimata I, Uni S, lseki M. Chemotherapeutic effect of azithromycin and lasalocid on 
Cryptosporidium infection in mice. J Protozool 1991 ;38(6):232S-3S. 

Krelowska-Kuias M, Kedzior W, Roborzynski M. The quality of meat of lambs fed with 
feeds containing lasalocid. Arch Tieremahr 1992;42(2):171-7. 

Laczay P, Dobos-Kovacs M, Lehel J, Mora Z. Some biochemical, electrophysiologic 
and morphologic characteristics of the monensin-tiamulin interaction in broiler 
chicks. Acta Vet Scand Suppl 1991;87:280-1. 

Lemeteil D, Roussel F, Favennec L, Ballet JJ, Brasseur P. Assessment of candidate 
anticryptosporidial agents in an immunosuppressed rat model. J Infect Dis 
1993; 167(3):766-8. 

Lichtshtein D, Dunlop K, Kaback HR, Blume AJ. Mechanism of monensin-induced 
hyperpolarization of neuroblastoma-glioma hybrid NG-108-15. Pree Natl Acad Sci 
U S A 1979;76:2580-4. 

Lin DC, Kun E. Mode of action of the antibiotic X"'.537 A on mitochondrial glutamate 
oxidation. Biochemical and Biophysical Research Communications 
1973;50(3):820-5. 

Madan S, Ghosh PC. Enhancing potency of liposomal monensin on ricin cytotoxicity in 
mouse macrophage tumor cells. Biochem Int 1992a;28(2):287-95. 

Madan S, Ghosh PC. Monensin intercalation in liposomes: effect on cytotoxicities of 
ricin, Pseudomonas exotoxin A and diphtheria toxin in CHO cells. Biochim 
Biophys Acta 1992b;1110(1):37-44. 

Mathieson AO, Caldow GL, Anderson R. Acute cardiomyopathy in heifers [letter]. Vet 
Rec 1990;126(6):147-8. 

33 



McGeoch JEM. The a-2 isomer of the sodium pump is inhibited by calcium at 
physiological levels. Biochem Biophys Res Commun 1990;173:99-105. 

McKeage MJ, Boxall FE, Jones M, Harrap KR. Lack of neurotoxicity of oral 
bisacetatoamminedichlorocyclohexylamine-platinum(IV) in comparison to cisplatin 
and tetraplatin in the rat. Cancer Res 1994;54(3):629-31. 

Mehrotra S, Viswanathan PN, Kakkar P. Influence of some biological response 
modifiers on swelling of rat liver mitochondria in vitro. Mel Cell Biochem 
1993;124(2):101-6. 

Mezes M, Salyi G, Banhidi G, Szeberenyi S. Effect of acute salinomycin-tiamulin 
toxicity on the lipid peroxide and antioxidant status of broiler chicken. Acta Vet 
Hung 1992;40(4):251-7. ·· 

Michel PP, Vyas S, Anglade P, Ruberg M, Agid Y. Morphological and molecular 
characterization of the response of differentiated PC12 cells to calcium stress. 
Eur J Neurosci 1994;6(4):577-86. 

Mitema ES, Sangiah S, Martin T. Effects of some calcium modulators on monensin 
toxicity. Vet Hum Toxicol 1988;30(5):409-13. 

Mollenhauer HH, Morre DJ, Rowe LO. Alteration of intracellular traffic by monensin; 
mechanism, specificity and relationship to toxicity. Biochim Biophys Acta 
1990; 1031 (2):225-46. 

Mora S, Simon F, Kapp P. Toxicological modelinvestigation on chicken embryo. Acta 
Vet Scand Suppl 1991;87:197-8. 

Moreland DE. Effects of Toxicants on Oxidative Phosphorylation. In: Hodgson E, 
Guthrie FE, eds. Introduction to Biochemical Toxicology. New York: Elsvier, 
1980:245-60. 

Morgan JH, Collins P, Aitken IA, Thomas LH. An experimental study of the toxic 
. interaction between tiamulin and salinomycin in pigs. Acta Vet Scand Suppl 
1991;87:365-7. 

Nieminen AL, Dawson TL, Gores GJ, Kawanishi T, Herman B, Lemasters JJ. Protection 
by acidotic pH and fructose against lethal injury to rat hepatocytes from 
mitochondrial inhibitors, ionophores and oxidant chemicals. Biochem Biophys Res 
Commun 1990;167(2):600-6. 

Novilla MN. The veterinary importance of the toxic syndrome induced by ionophores. 
Vet Hum Toxicol 1992;34(1):66-70. 

Novilla MN, Owen NV, Todd GC. The Comparative Toxicology of Narasin in Laboratory 
Animals. Vet Hum Toxicol 1994;36(4):318-23. 

34 



Ojcius DM, Zychlinsky A, Zheng LM, Young JD. lonophore-induced apoptosis: role of 
DNA fragmentation and calcium fluxes. Exp Cell Res 1991;197(1):43-9. 

Osweiler GD, Carson TL, Buck WB, Van Gelder GA, eds. Clinical and Diagnostic 
Veterinary Toxicology. 3rd ed. Dubuque,IA: Kendall/Hunt Publishing Company, 
1983. 

Perelman B, Pirak M, Smith B. Effects of the accidental feeding of lasalocid sodium to 
broiler breeder chickens. Vet Rec 1993;132(11):271-3. 

Perelman B, Abarbanel JM, Gur-Lavie A, Meller Y, Elad T. Clinical and pathological 
changes caused by the interaction of lasalocid and chloramphenicol in broiler 
chickens. Avian Pathology 1986;15:279-88. 

Pleasure DE, Feldman B, Prockop DJ. Diptheria toxin inhibits the synthesis of myelin 
proteolipid and basic proteins by peripheral nerve in vitro. J Neurochem 
1973;20:81,-90. 

Pressman BC. Carboxylic ionophores as mobile carriers for divalent ions. In: Mehlman 
MA, Hanson RW, eds. The Role of Membranes in Metabolic Regulation. New 
York: Academic Press, 1972:149-64. 

Pressman BC. Biological applications of ionophores. Annual Review of Biochemistry 
1976:501-30. 

Pressman BC, Harris EJ, Jagger WS, Johnson JH .. Antibiotic mediated transport of 
alkali ions across lipid barriers. Pree Natl Acad Sci US A 1967;58:1949-56. 

Quigley JD, Boehms SI, Steen TM, Heitmann RN. Effects of lasalocid on selected 
ruminal and blood metabolites in young calves. J Dairy Sci 1992;75(8):2235-41. 

Rasminsky M. Physiologic Consequences of Demyelination. In: Spencer PS, 
Schaumburg HH, eds. Experimental and Clinical Neurotoxiciology. Baltimore, MD: 
The Williams & Wilkins Co., 1980:257-71. 

Rayson BM. [Ca2+]i regulates transcription rate of the Na+/K+-ATPase a1 subunit. J 
Biol Chem 1990;266:21335-8. 

Reed PW. Biochemical and Biological Effects of Carboxylic Acid ionophores. In: 
Westley JW, ed. Polyether Antibiotics: Naturally Occurring acid ionophores. v. 1. 
New York: Marcel Dekker.Inc., 1982:185-302. 

Reed PW, Lardy HA. Antibiotic A23187 as a probe for the study of calcium and 
magnesium function in biological systems. In: Mehlman MA, Hanson RW, eds. 
The Role of Membranes in Metabolic Regulation. New York: Academic Press, 
1972:111-32. 

Ruff MD. Veterinary applications. In: Westley JM, ed. Polyether Antibiotics: Naturally 
occurring acid ionophores. v. 1. New York: Marcell Dekker,lnc., 1982:303-31. 

35 



Safran N, Aizenberg I, Bark H. Paralytic syndrome attributed to lasalocid residues in a 
commercial ration fed to dogs. J Am Vet Med Assoc 1993a;202(8):1273-5. 

Safran N, Shainberg A, Haring R, Gurwitz D, Shahar A. Selective neurotoxicity induced 
by lasalocid in dissociated cerebral cultures. Toxic in vitro 1993b;7:345-52. 

Satoh H, Uchida T. Morphological and electrophysiological changes induced by calcium 
ionophores (A23187 and X-537A) in spontaneously beating rabbit sine-atrial node 
cells. Gen Pharmacol 1993;24(1):49-57. 

Satoh H, Tsuchida K, Kaneko K, Otomo S. Comparative mechanical and electrical 
actions of A23187 and X-537A in canine Purkinje fibers. Gen Pharmacol 
1992;23(6):1103-9. 

Sawant SG, Terse PS, Dalvi RR. Toxicity of dietary monensin in quail. Avian Dis 
1990;34(3):571-4. ; 

Schilder RJ, LaCreta FP, Perez RP, Johnson SW, Brennan JM, Rogatko A, Nash S, 
McAleer C, Hamilton TC, Roby D. Phase I and pharmacokinetic study of 
ormaplatin (tetraplatin, NSC 363812) administered on a day 1 and day 8 
schedule. Cancer Res 1994;54(3):709-17. 

Schlaepfer WW. Structural alterations of peripheral nerve induced by the calcium 
ionophore A23187. Brain Res 1977a;136:1-9. 

Schlaepfer WW. Vesicular disruption of myelin stimulated by exposure of nerve to 
calcium ionophore. Nature 1977b;265:734-6. 

Shier WT, DuBourdieu DJ. Sodium- and calcium-dependent steps in the mechanism of 
neonatal rat cardiac myocyte killing by ionophores. I. The sodium..;carrying 
ionophore, monensin. Toxicol Appl Pharmacol 1992;116(1):38-46. 

Shier WT, DuBourdieu DJ, Wang HH. Role of lipid metabolism in cell killing by calcium 
plus ionophoreA23187. J Biochem Toxicol 1991 ;6(1):7-17. 

Shlosberg A, Weisman Y, Klopfer U, Nobel TA, Perl S, Yakobson B. Experimental 
induced neurotoxicity in chickens caused by lasalocid, a prominent veterinary 
drug. lsr J Vet Med 1986;42:62-3. 

Simon F, Laczay P, Mora S, Lehel J. Reduction of tiamulin-monensin toxic interactions. 
Acta Vet Scand Suppl 1991 ;87:282-3. 

Sinks GD, Quigley JD , Reinemeyer CR. Effects of lasalocid on coccidial infection and 
growth in young dairy calves. J Am Vet Med Assoc 1992;200(12):1947-51. 

Smith KJ, Hall SM. Peripheral demyelination and remyelination initiated by the calcium 
selective-ionophore: in vivo observations. J Neurol Sci 1988;83:37-53. 

36 



Smith KJ, Hall SM. Central demyelination induced in vivo by the calcium ionophore 
ionomycin. Brain 1994 Dec;117(Pt 6):1351-6. 

Somlyo AP, Garfield RE, Chacko S, Somlyo AV. Golgi Organelle Response to the 
antibiotic X537 A. J Cell Biol 1975;66:425-43. 

Spencer PS, Schaumburg HH. Classification of Neurotoxic disease: a morphologic 
approach. In: Spencer PS, Schaumburg HH, eds. Experimental and Clinical 
Neurotoxiciology. Baltimore, MD: The Williams & Wilkins Co., 1980:92-9. 

Statham HE, Duncan CJ. The actions of ionophores at the frog neuromuscular junction. 
Life Sci 1975;17:1401-6. 

Statham HE, Duncan CJ, Smith JL. The effects of the ionophore A23187 on the 
ultrastructure and electrophysiological properties of frog skeletal muscle. Cell 
Tissue Res 1976; 173: 193-209. 

Stipkovits L, Csiba E, Laber G, Burch DG. Simultaneous treatment of chickens with 
salinomycin and tiamulin in feed. Avian Dis 1992;36(1):11-6. 

Sweadner KJ, Goldin SM. Active transport of sodium and potassium ions. New Engl. J. 
Med. 1980;302:777-83. 

Tarkowski S, Sobczak H. Oxidation and phosphorylation processes in brain 
mitochondria of rats exposed to carbon disulfide. J Neurochem 1971;18:177-82. 

Thomas PK. The peripheral nervous system as a target for toxic substances. In: 
Spencer PS, Schaumburg HH, eds. Experimental and Clinical Neurotoxicology. 
Baltimore MD: The Williams and Wilkins Co., 1980:34-47. 

Todd GC, Novilla MN, Howard LC. Comparative toxicity of monensin sodium in 
laboratory animals. J Anim Sci 1984;58:1512-7. 

Umemura T, Nakamura H; Goryo M, ltakura C. Histopathology of monensin-tiamulin 
myopathy in broiler chickens. Avian Pathology 1984;13:459-68. 

VanderKop PA, MacNeil JD. The effect of sodium selenite supplementation on 
monensin-induced growth inhibition and residue accumulation in broiler chicks. 
Vet Hum Toxicol 1990;32(1):1-5. 

Van Soest PJ. Rumen Microbes. In: Van Soest PJ, ed. Nutritional Ecology of the 
Ruminant. Corvallis, OR: O&B Books, Inc., 1982:152-77. 

Vanvleet JF, Ferrans VJ. Ultrastructural myocardial alterations in monensin toxicosis of 
cattle. Am J Vet Res 1983;44:1629-36. 

Vanvleet JF, Ferrans VJ. Ultrastructural alterations in the atrial myocardium of pigs with 
acute monensin toxicosis. Am J Pathol 1984;114:367-79. 

37 



Vanvleet JF, Runnels LJ, Cook J JR, Scheidt AB. Monensin toxicosis in swine: 
Potentiation of tiamulin administration and ameliorative effect of treatment with 
selenium and/or vitamin E. Am J Vet Res 1987;48(10):1520-4. 

Varga I, Vanyi A. Interaction of T-2 fusariotoxin with anticoccidial efficacy of lasalocid in 
chickens. Int J Parasitol 1992;22(4):523-5. 

Vasandani VM, Madan S, Ghosh PC. In vivo potentiation of ricin toxicity by monensin 
delivered through liposomes. Biochim Biophys Acta 1992;1116(3):315-23. 

Weppelman RM, Olson G, Smith DA, Tamas T, Van lderstine A. Comparison of 
anticoccidial efficacy, resistance and tolerance of narasin, monensin and 
lasalocid in chicken battery trials. Poult Sci 1977;56:1550-9. 

Westley JW, Evans RH, Williams T, Stempel A. Structure of antibiotic X-537-A. Chem 
Commun 1970;1970:71-2. 

Westley JW, Benz W, Donahue J, Evans RH, Scott CG, Stempel A, Berger J. 
Biosynthesis of lasalocid. Ill. Isolation and structural determination of four 
homologs of lasalocid A. J Antibiot 197 4;27:7 44-53. 

Williams RB. Differences between the anticoccidial potencies of monensin in maize
based or wheat-based chicken diets. Vet Res Commun 1992;16(2):147-52. 

Wittenkeller L, Mota-de-Freitas D, Ramasamy R. lonophore-induced Cl- transport in 
human erythrocyte·suspensions: a multinuclear magnetic resonance study. 
Biochem Biophys Res Commun 1992;184(2):915-21. 

Wrogemann K, Pena SDJ. Mitochondrial calcium overload: A general mechanism for 
cell-necrosis in muscle diseases. Lancet 1976:672-4. 

Xie MQ, Fukata T, Gilbert JM, McDougald LR. Evaluation of anticoccidial drugs in 
chicken embryos. Parasitol Res 1991 ;77(7):595-9. 

Zhu G, McDougald LR. Characterization in vitro and in vivo of resistance to ionophores 
in a strain of Eimeria tenella. J Parasitol 1992;78(6):1067-73. 

38 



CHAPTER II 

THE INFLUENCE OF VARIOUS DIETARY LEVELS OF IONOPHORES ON 

NEUROPATHY IN BROILERCHICKENS 

Abstract 

Previous studies and field reports suggest that lasalocid may cause neurotoxicity 

in broiler chickens. It is currently unclear if the syndrome is due to the drug alone or in 

combination with other environmental, dietary or management factors. Lasalocid at 

ration concentrations greater than 90 ppm causes a dose-dependent ataxia that mimics 

the field syndrome in 3 and 6 week old, n,ale, Cobb-cross broiler chickens. Two other 

ionophores, monensin and salinomycin, did not cause ataxia at the concentrations fed 

(up to Bx the recommended dose). Lasalocid-induced neurotoxicity primarily involves 

the sciatic nerve as described by clinical signs, neurologic examination, motor nerve 

conduction velocity, light and electron microscopy. Using a clinical scoring system the 

severity and incidence of lasalocid-induced ataxia were markedly increased at ration 

concentrations greater than 180 ppm, twice the recommended dose, and up to 360 

ppm, the highest dose tested. The ration concentration of lasalocid that causes ataxia 

in 25% of the flock was determined to be 220 and 242 ppm for the 3 and 6 week old 

birds, respectively. Birds fed 270 ppm lasalocid for 10 days had significantly reduced 

superficial peroneal motor nerve conduction velocity (14.5 M/sec) as compared to birds 

fed no drug (35.5 M/sec). In vitro, lasalocid produced a dose-dependent inhibition of 

renal Na+. K + -ATPase with an IC soof 46.58 - 50.96 µM. Light and electron 
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microscopic evaluation of the sciatic nerves indicate specific damage to the myelin 

(vacuoles and degeneration). Serum electrolyte changes did not correspond with the 

incidence of ataxia. There were no elevations in lactate dehydrogenase(LDH), 

creatinine phosphokinase (CPK), or aspartate transaminase (AST) activity indicating 

that ataxia was not related to myotoxicity. Elevated dietary levels of lasalocid (90 and 

360 ppm) did not affect ATPase function of kidney, small and large intestinal mucosa in 

vivo.. These studies support the hypothesis that lasalocid, alone, can cause a 

peripheral neuropathy in broiler chickens. 

Introduction 

The ionophores (monensin, lasalocid and salinomycin) are carboxylic acid antibiotics 

produced by fungal fermentation (Novilla, 1992; Galitzer & Oehme, 1984; Pressman, 1976) 

with a wide range of antibacterial activities (Reed, 1982). In animal production systems, 

these compounds are safe and efficacious anticoccidial agents. However, there are 

numerous reports of acute ionophore toxicosis due to accidental ingestion by non-target 

species or overdose in target species (Novilla, 1992; Vanvleet et al., 1987; Galitzer & 

Oehme, 1984; Shlosberg et al., 1992; Mezes et al., 1992). The toxic effects associated with 

these compounds is described as a cardiac or skeletal myopathy (Novilla, 1992). Recent 

reports suggest that neurotoxicity is a possible consequence of lasalocid toxicosis (Safran 

et al, 1993; Perelman et al, 1993; Shlosberg et al., 1986; Gregory et al, 1995). Unpublished 

field observations note an association with lasalocid in the ration and ataxia in broilers 

typically in male, rapidly growing birds within one week of changing to a ration containing 

the ionophore. The incidence and severity of disease is worse in the summer months. 

Poultry producers and field veterinarians have designated this syndrome "downer" or 
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"knockdown birds". It is currently unknown if this syndrome is associated with ionophore 

exposure or other environmental or management factors. 

The clinical pathologic changes associated with ionophore intoxication relate to 

skeletal or cardiac muscle damage: elevated serum levels of aspartate aminotransaminase 

(AST), creatinine phosphokinase (CPK), lactate dehydrogenase (LOH). Additional 

indicators include elevated ALP, (Horovitz et al., 1988) SUN and bilirubin (Osweiler et 

al., 1983). Elevated serum enzyme activities can also occur at the recommended use levels. 

Elevate serum ~ is commonly present with ionophore-induced myonecrosis due to release 

of intracellular stores from damaged muscle cells. Additionally, serum Ca++ and ~ levels 

may decline to life-threatening levels in monensin-intoxicated ponies or horses (Novilla, 

1992; Osweiler et al., 1983). 

The most common clinical signs of ionophore intoxication are decreased feed intake 

and body weight gains, with anorexia most commonly associated in sublethal intoxications 

(Novilla, 1992; Osweiler et al., 1983; Simon et al., 1991 ;Novilla et al, 1994; Todd et al, 1984; 

Galitzer et al, 1982; Vanvleet et al., 1987). This is consistent with the use of decreased 

body weight as a sensitive index of an adverse effect of a toxic substance (Gad & Weil, 

1989b). Body weight gains are closely monitored by producers and can indicate possible 

ionophore intoxication (VanderKop & MacNeil, 1990; Bartov, 1994; Todd et al., 1984). 

Clinical observation and the use of ataxia scoring systems have been used by other 

researchers to evaluate the toxic effects of the organophosphates that produce delayed 

neuropathy (OPIDN)(Abou-Donia & Graham, 1978; Abeu-Donia, 1977; Abeu-Donia et 

al., 1980; Dyer et al., 1992; el-Fawal et al, 1990a,b). Establishing a dose-response 

relationship with an ionophore and the incidence of neurotoxicity would support the causal 

relationship of lasalocid to the syndrome. 
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The fundamental hypothesis of these studies is that carboxylic ionophores (especially 

lasalocid) cause a dose-dependent neurotoxicity in broiler chickens. By maintaining other 

factors (environmental, dietary) constant, the capability of these compounds to cause this 

syndrome will be determined. These dose-response studies will use increasing dietary 

concentrations of ionophores in an attempt to reproduce the clinical syndrome previously 

described and seen in the field. The parameters to be measured include the incidence of 

neurotoxicity (ataxia), body weight, mortality, histologic examination, ultrastructural changes 

and serum electrolytes or enzyme activities will be used to evaluate the hypothesis that 

lasalocid can cause a peripheral neuropathy. The effects of elevated dietary ionophore 

concentration on the activity of the Na+, K+ -A TPase in several vital organs and in vitro will 

be examined as a possible mechanism for ionophore-induced neurotoxicity. Another 

objective is to determine a specific dose (a toxic dose) that will cause ataxia in 25 % of a 

flock of birds. 

Materials and Methods 

Animals 

Three thousand-three hundred, male, Cobb-cross broHers were used in these studies. 

One-day-old chicks were purchased from a commercial source (Tyson Hatchery, 

Springdale, AR). Birds in the starter studies (1-21 days of age) were housed in battery 

cages at a density of 10 animals to a cage. Temperature was maintained between 24° - 27° 

C with constant tungsten filament lighting. Birds used in grower studies (1-42 days of 

age) were housed in floor pens, bedded on fresh rice hulls. Supplemental heat was 

provided by 2-3 lamps per pen, to maintain the temperature at floor level near 30° C, during 

the first 2 weeks of the study. The birds were also exposed to constant tungsten filament 
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lighting. Birds in the grower studies were fed a basal ration (no ionophore) for days 1-21. 

Feed and water were provided ad libitum. , 

Diet and Drugs 

The birds were fed a com-soy basal ration as outlined in Appendix A. lonophores 

were purchased as feed grade additives: lasalocid (AVATEC®), monensin (RUMENSIN®), 

and salinomycin (BIOCOX®). Lasalocid was added to the diet at 1x, 2x, 3x and 4x the 

recommended levels ( 90 ppm, 180 ppm, 270 ppm, and 360 ppm). Monensin and 

salinomycin were added to the ration at 1x, 2x, 4x, and 8x the recommended levels (100 

ppm, 200 ppm, 400 ppm, and 800 ppm for monensin and 60 ppm, 120 ppm, 240 ppm, 

and 480 ppm for salinomycin). lonophores were weighed and incorporated into 100 

pounds of feed and mixed completely in a hopper-type mixer. The medicated feed was 

then added to 900 pounds of the basal diet in a large mixer and mixed for 35-45 

minutes. This allowed for uniform distribution of the ionophore which is a common 

practice to reduce the incidence of "hot spots" where high concentrations of medicated 

feed are found in the diet. 

Experimental Protocols: Starter, Grower and Interaction Studies 

Starter and Grower Studies. 100 birds were randomly assigned to each treatment 

groups at 1 day (starter study) or 21 days (grower study) of age. The dietary treatment 

groups used in these studies are outlined in the previous section. Twice each day, 

birds were observed for mortality and clinical signs of neurotoxicity using an ataxia 

scoring system. The ataxia scoring system was used initially on the birds at rest, and 
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then following a brief (2 min) exercise period as described below. At the end of the trial 

birds were euthanitized by cervical dislocation or CO 2 overdose. 

Interaction Study. The interaction study examined the effects of previous 

administration of other ionophores on the incidence of lasalocid neurotoxicity in the 

grower ration. Birds were fed a corn-soybean meal ration (Appendix A) with the 

addition of ionophores as described in Table I. Assessment of ataxia, mortality, sample 

collection and methods of euthanasia were as previously described. 

TABLE I 

TREATMENT GROUPS FOR AN IONOPHORE INTERACTION STUDY 

Treatment · Diet from Days 1 - 20 Diet from Days 21 - 42 Number 
Group of Birds 

1. controls no drug no drug 100 

2. 121 ppm monensin no drug 100 

3. 66 ppm salinomycin no drug 100 

4. 121 ppm monensin 121 ppm lasalocid 100 

5. 121 ppm monensin 220 ppm lasalocid 100 

6. 66 ppm salinomycin 121 ppm lasalocid 100 

7. 66 ppm salinomycin 220 ppm lasalocid 100 

8. no drug 220 ppm lasalocid 100 
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Clinical Assessment Of Neurotoxicity 

All birds were assessed twice each day for clinical signs of ataxia. Initial 

observation of undisturbed birds allowed for identification of paralyzed or severely 

ataxic birds. All birds were forced to walk around the battery cage or floor pen for 

several minutes during each examination period. Any bird showing signs of ataxia or 

reluctance to walk was categorized by the clinical ataxia scoring system (Table II). 

Forced ambulation allowed detection of slightly ataxic birds and to determine if ataxia 

worsened after exercise. This scoring system evaluates the gait characteristics and the 

attitude of the bird, with scores ranging from normal birds to those that are paralyzed 

and depressed. 

Further evaluation of toxic effects in lesioned birds was accomplished by a clinical 

neurologic examination using cranial nerve function and spinal reflexes (Appendix B). 

This checklist permits the localization of lesion(s) to the central or peripheral nervous 

system and region of the body affected. Each lesioned bird was evaluated at two 

different time periods to accurately measure any alteration in reflexes. 

TABLE II 

CLINICAL SCORING SYSTEM FOR IONOPHORE-INDUCED ATAXIA 

Score Description 

0 Normal bird 

1 Slight Ataxia after exercise 

2 Slight Ataxia, Ataxia worsens after exercise 

3 "Duck Walkers", Ataxic, Waddling-type gait 

4 Non-ambulatory (down), alert, aware of surroundings 

5 Non-ambulatory (down), not alert, depressed 

45 



Determination of Toxic Dose 

The dose of lasalocid that produced ataxia in 25% of a group of birds (Toxic Dose 

25 or TD2s) was determined for the starter (1 - 21 days) and grower (21 - 42 days) 

studies. The raw data (percent neurotoxicity vs. concentration of ionophore) were 

transformed into a probit vs. log concentration. The percent response data was 

expressed by a probit scale while the concentration of ionophore in the ration was 

expressed by a logarithmic scale using the method previously described by Gad and 

Weil (1989a). The log-probit transformed data was analyzed by linear regression to 

determine the specific TD2s for starter and grower studies 

Serum Electrolytes and Chemistries 

Blood was drawn via cardiac puncture from 10 birds in each treatment group and 

analyzed for serum electrolytes (Na\ K\ Mg++, Ca++, and er) and enzymes ( LOH, 

AST, CPK) using a Cobas Mira wet chemistry analyzer (Roche Diagnostic Systems 

Inc., Montclair, NJ 07042-5199). Na+ and K+ were measured with a selective electrode 

module of the Cobas Mira system (No. 44498). Other electrolytes and enzyme 

activities were determined using Roche kits (Hoffman-LaRoche, Nutley, NJ 07042) for 

er (No. 44029), Mg++ (No. 44169), Ca++ (No. 44903), LOH (No. 43623), AST (No. 

44645). CPK was assayed using Sigma kit (No. 520 ) 

Body Weights and Mortality 

In each treatment group, 25 randomly selected birds were weighed on day 20 

(starter trial) and day 40 (grower and interaction trial). During the daily examination 
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periods, the number of dead birds were counted and recorded. Total mortality for each 

treatment group were determined end of the feeding trial. 

Microscopic and Ultrastructural Examination 

Light Microscopy. At necropsy, sciatic nerves (from an area caudal to the crest of 

the tibia to the lateral condyle of the femur) and portions of liver, skeletal and cardiac 

muscle were removed from 10 birds in each ionophore treatment group. Tissues were 

fixed in a phosphate buffered, 10% formaldehyde solution and kept cool until 

processing. Following fixation, the tissues were processed in a series of alcohol 

dehydration steps and embedded in paraffin. Tissues in paraffin blocks were sectioned 

into 4 - 6µm slices, placed on glass slides and stained with hematoxylin and eosin in a 

Fisher's automatic stainer. Sciatic nerve tissue was sectioned longitudinally and 

transversely for microscopic examination. All tissues were evaluated by a veterinary 

pathologist blinded to the specific treatment of each slide. 

Electron Microscopic Evaluation. At necropsy, the sciatic nerves from normally 

gaited birds fed no ionophore (control) and 2 ataxic birds (clinical score 2) fed 270 ppm 

lasalocid were removed and fixed in buffered gluteraldehyde-sodium cacodylate 

solution for 2 hours. Post-fixation, the tissues were placed in a 1 :1 solution of 2% 

osmium and 0.27 M cacodylate buffer for 2 hours. Segments of sciatic nerve were 

washed in a 1 M sodium cacodylate solution. After rinsing, tissues were dehydrated 

with a series of ethanol and propylene oxide rinses. The tissues were embedded in 

Polybed® and placed in an oven. 
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Blocks of resin containing sciatic nerve segments were thick sectioned with a 

glass knife to approximately 0.550 nm. Areas of each block containing nerve tissue 

were then chosen for thin sectioning, mounted on 200 mesh copper grids and stained 

with uranyl acetate and lead citrate. Grids were examined using a JEOL 100 CX 

transmission electron microscope at 80 KV. Areas of normal and abnormal appearing 

tissue were photographed for more detailed analysis. 

Motor Nerve Conduction Velocity Studies 

The motor nerve conduction velocities (MNCV) of normal and ataxic birds was 

determined using clinical electrophysiology. A total of seven birds, 40 days old, were 

evaluated for the MNCV of the superficial peroneal nerve. Three control (no drug) and 

four ataxic birds (clinical score3) were fed 270 ppm lasalocid for 10 days. Birds were 

anesthetized with a combination of xylazine (5 mg/kg) and ketamine (15 mg/kg), i.m., 

and placed in lateral recumbency. The peroneal nerve was identified by digital 

palpation and instrumented with transcutaneous needle-type electrodes at a the level of 

the lateral condyle on the femur (stimulating electrode) and distolateral to the 

tarsometatarsal joint (reco·rding electrode). The nerve was stimulated with 

supramaximal, square-wave pulses of 1.0 millisecond duration at a rate of 1/second. 

The evoked action potential was recorded from the lateral digital extensor. The right 

and left pelvic limb of each birds was instrumented and evaluated. 

ATPase Activity 

Experimental protocol. In the A TPase studies, two different experiments were 

performed. First the activity of these enzymes was assayed from various organs from 
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birds fed different levels of ionophore. Additional tissues (kidney) were taken from 

control birds to examine the inhibitory effects of lasalocid incubation on A TPase 

activity, in vitro. The procedures for enzyme isolation are as follows. 

Enzyme Isolation. ATPase enzymes from kidney, small and large intestinal 

mucosa were prepared following the method of Chen (Chen et al., 1994), a 

modification of an earlier procedure (Akera et al., 1969). Tissues were rapidly removed 

after sacrificing the bird and washed several times with ice-cooled isotonic solution 

containing 0.25 M sucrose, 5.0 mM L-histidine, 5.0 mM ethylene diamine tetraacetate 

(EDTA><Na2) and 0.15% sodium deoxycholate, pH 6.8 with Trizma® base. 

Approximately 5 g of kidney, small intestinal mucosa and all of the large intestinal 

mucosa (usually about 2-3 grams) was minced and homogenized in a polytron 

homogenizer (Polytron® Model #PT 10/35, Brinkman Instruments, Switzerland) twice 

for 45 seconds duration in 6 volumes of above ice-cooled isotonic sucrose solution. 

The homogenate was centrifuged for 30 minutes at 12,000 x g. Following 

centrifugation of the supernatant for 60 minutes at 100,000 x g, the sediment was 

suspended in 30 ml of a suspension solution containing 0.25 M sucrose, 5.0 mM L

Histidine, and 1 mM ethylene diamine tetraacetic acid, with pH 7.0 with Trizma® base. 

The suspension was centrifuged again at the same speed for the same time. The 

pellet was resuspended in 20 ml of the above suspension solution. The same volume 

of LiBr solution (2.0 M) was added, and the new solution was stirred gently for 1 hour. 

The mixture was centrifuged for 60 minutes at 100,000 x g. The sediment was 

resuspended in the same suspension solution and recentrifuged. A final suspension 

was filtered through four-layers of gauze. All above procedures were carried out at 2 

oc. 
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Determination of Enzyme Activity. ATPase activity was determined by using a 

slight modification of previously reported procedures (Broekhuysen et al., 1972; (Akera 

& Brody, 1971). A final volume of 1ml reaction medium containing 50 mM Tris HCI 

buffer (pH 7.5) with 5 mM MgC'2, 15 mM KCI, 100 mM NaCl, and 0.1 ml of enzyme 

preparation was used in all experiments. The reaction medium was preincubated at 

37°C for 5 minutes. The reaction was started by adding 2 mM of Tris xA TP (Sigma 

Chemical Co., St. Louis) and continued for 20 min. at 37 °C and was terminated with 1 

ml of ice-cooled 15% trichloroacetic acid. After centrifugation, the inorganic phosphate 

liberated in a 1 :0 ml aliquot of supernatant was measured with 3 ml of 6 N 

H2S04:water:2.5% ammonium molybdate:10% L-ascorbic acid (1:2:1:1) by a modified 

method of Fisk and SubbaRow (Fisk & SubbaRow, 1925). Absorbance was measured 

at 660 nm after 20 minutes at 37 °C. The Mg2+ -dependent A TPase activity was 

assessed in the absence of ~ and Na+. The Na+, K+ -A TPase activity was calculated by 

subtracting Mg2+-activated ATPase activity from total ATPase activity. Protein content 

of enzyme preparations was determined by bicinchoninic acid protein assay (Smith et 

al., 1985) with bovine serum albumin as the standard. 

Data Analysis 

All data were initially examined by analysis of variance (ANOVA) with a general 

linear model (GLM) using SAS (SAS Institute, Carey, NC). Mean± standard deviation 

of serum electrolytes and enzyme activity for each group were calculated and 

compared to appropriate controls using Dunnett's test. Ataxia, as evaluated by the 

clinical scoring system, was transformed by a probit (response) by logarithmic dose 

scale. Birds were grouped in the ataxic group if they had a clinical score of 3,4 or 5. 
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The toxic dose 25% (TD25) , the concentration of lasalocid in the ration causing ataxia 

in 25% of the birds was determined by linear regression of transformed data. 

Results 

Dose-Dependent Ataxia in Starter and Grower studies 

There is a dose-response relationship between lasalocid and neurotoxicity. As 

the levels of lasalocid increased in the ration, a greater percentage of birds were ataxic. 

In the starter study, 1 - 21 days of age, the incidence of ataxia noted with the 

corresponding concentration of lasalocid was 1 % at 90 ppm, 9% at 180 ppm , 36% at 

270 ppm and 69 % at 360 ppm. In the grower study, day 21 - 42 of age, the incidence 

of ataxia noted with the corresponding concentration of lasalocid was 1 % at 90 ppm, 

13.4% at 180 ppm, 27.6% at 270 ppm and 50.6% at 360 ppm. At concentrations 

greater than 180 ppm in the ration, lasalocid-induced ataxia increased exponentially 

(Figure 1). In these studies, no monensin or salinomycin treatment group had an 

incidence of ataxia greater than 5% (data not shown). 

The onset and progression of lasalocid-induced ataxia is similar to field case 

reports. The onset of overt ataxia (clinical score 3- 5) in the 90 and 180 ppm groups 

began 5 - 7 days after introduction of the ionophore. The 270 and 360 ppm lasalocid 

treatment groups had a more rapid onset of ataxia, usually occurring within 3-5 days. 

In all lasalocid groups, there is a progression of ataxia severity with time. An individual 

bird may exhibit a clinical ataxia score of 3 on day 7 of the feeding trial and progress to 

a clinical score of 4 or 5 by day 12 or 14. 
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The affected birds present with a flaccid, floppy paresis/paralysis of the pelvic 

limbs with upper motor neuron signs with a generalized reduction in muscle mass of 

affected birds. Extensor muscle function was preferentially affected that leads to 

collapse of the stifle and tibiotarsal joints when bearing weight in the later stages of the 

syndrome. Birds with an ataxia score of 2 have a clinical presentation that mimics 

myasthenia gravis. Following a brief period of exercise, birds collapse and after 30 - 60 

seconds of rest they stand again. The "duck walking" birds with an ataxia score of 3, 

ambulate primarily by abducting and adducting the hip without extending the stifle or 

tibiotarsal-tarsometatarsal joint. This gives the chicken a "waddling" type of gait that 

somewhat resembles a duck. Birds with an ataxia score of 4 or 5 are non-ambulatory, 

even with vigorous encouragement; differing in their attitude and desire to eat and 

drink. 

Evaluation of the thoracic limbs (wings) did not provide consistent, reproducible 

findings indicative of altered function. Subjectively, birds with clinical ataxia scores of 1 

or 2 could flapped their wings stronger than non-ambulatory birds. 

Birds with ataxia scores of 2-4 had normal cranial nerve function, as measured by 

the visual menace, pupillary light reflex, mandibular tone, palpebral reflex, hearing, 

vestibular reflexes, and gag reflex (swallowing). Lesioned birds with an ataxia score of 

5 were too depressed to assess most cranial nerve function. These birds did maintain 

the ability to swallow until approximately 12 hours before death. 

The spinal reflexes of the birds with ataxia scores of 2 were essentially the same 

as control, no ionophore in diet, birds. They were able to right themselves when placed 

in dorsal recumbency and had superficial and deep pain responses and 

proprioreceptive placing responses. Birds with an ataxia score of 3 were able to right 

themselves with greater difficulty and had normal pain responses. These "duck-
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walking" birds had diminished proprioreceptive responses. Most birds with a score of 4 

were unable to right themselves, but still attempted, while birds with a score of 5 would 

make feeble attempts. Birds with a score of 4 had varied pain responses, while birds 

with a score of 5 usually did not respond to painful stimuli. 
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Figure 1. Dose Dependent Ataxia in Cobb-cross Broiler Chickens (20 or 40 days of 
age) fed Increasing Dietary Concentrations of Lasalocid . 
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Toxic Dose of Lasalocid Causing 25% Ataxia (TD2s) 

Transformation of the percentage ataxia verses linear dose data to a probit 

response versus log dose produced a linear, dose-response curve. These lines allow 

for more precise predictions using linear regression analysis. The ration dose of 

lasalocid eliciting 25% ataxia in these birds is 220 ppm and 242 ppm for the starter and 

grower ration, respectively (Figure 2 & 3). 
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Transformation in Cobb-cross Broiler Chickens (20 days old) fed 
Increasing Dietary Levels of Lasalocid. 
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Figure 3. Toxic Dose 25% as Determined by Linear Regression of a Log-Probit 
Transformation in Cobb-cross Broiler Chickens (40 days old) fed 
Increasing Dietary Levels of Lasalocid. 

Ataxia in the Interaction study 

3 

The interaction study was conducted using the toxic dose of lasalocid that would 

produce ataxia in 25% of the birds (220 ppm). These results show no significant 

increase in the incidence of ataxia for birds fed monensin or salinomycin at 
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recommended levels and then switched to 121 ppm lasalocid (highest recommended 

dose). The increase in incidence of ataxia is most notable in the birds fed 220 ppm 

lasalocid in the grower ration. All three groups have an incidence statistically different 

from the negative control (no drug) group but not different from the positive control 

group (no drug in the starter ration and 220 ppm lasalocid in the grower ration) (Figure 

4). 

The time to onset and severity of lasalocid-induced ataxia was similar to the 

results observed in the grower study. The birds fed 220 ppm lasalocid in the interaction 

trial began to exhibit clinical signs (scores 3,4 or 5) of ataxia within 5 - 7 days. Some of 

these birds progressed in severity from a clinical score of 3 to a clinical score of 5. 

Serum Electrolytes and Chemistries 

Serum sodium concentrations are reduced in all lasalocid dietary treatments, 

statistically significant at 90, 180 and 270 ppm treatments in the starter study. 

Conversely, in the monensin and salinomycin treatments, the general trend was for an 

elevated serum sodium. There were no statistically significant changes in serum 

calcium for any of the tested ionophores at any dietary level. Serum potassium was 

elevated in birds consuming greater than recommended concentrations of monensin 

and salinomycin. Lasalocid-treated birds had serum potassium levels lower than the 

controls, especially at concentrations greater than approved levels (Table II & Ill). 

Reduced serum potassium was the most significant cation tren~ noted in the interaction 

studies. In the positive control group (no drug starter: 220 ppm lasalocid in grower) the 

serum potassium was significantly reduced (Table IV). Serum magnesium 
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concentrations are reduced in all lasalocid treatments in starter and grower rations, 

although not statistically significant. In contrast, birds fed diets containing monensin or 

salinomycin had elevated serum magnesium concentrations. Reduced serum 

magnesium is seen in the positive control group (no drug starter: 220 ppm lasalocid in 

grower). Serum chloride was elevated in all monensin treatments in the starter study. 

Broilers fed lasalocid had lowered serum concentrations chloride. 

In lasalocid-treated birds serum AST, LOH or CPK activity were similar to controls. 

Monensin- or salinomycin- treated birds had markedly elevated serum activities of these 

enzymes, especially CPK. These increases are most notable at greater than 400 ppm 

monensin and greater than 120 ppm salinomycin ( Figures 9 - 11). In the interaction 

study, AST was the only serum enzyme in the positive control group statistically 

different from the control (data not shown). 
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Legend for Treatments in Interaction Trial: 

B = (No drug in starter or grower rations) 

M + B = 121 ppm Monensin in Starter: No drug in Grower 

S + B = 66 ppm Salinomycin in Starter: No drug in Grower 

M + 1 = 121 ppm Monensin in Starter: 121 Lasalocid in Grower 

S + 1 = 66 ppm Salinomycin in Starter: 121 Lasalocid in Grower 

S+2 

B + 2 = (Positive Control) No drug starter: 220 ppm Lasalocid in Grower 

M + 2 = 121 ppm Monensin in Starter: 220 ppm Lasalocid in Grower 

S + 2 = 66 ppm Salinomycin in Starter: 220 ppm Lasalocid in Grower 

Figure 4. Percent Ataxia (as Measured by a Clinical Ataxia Scoring System) for 
Broilers (40 days of age) in an lonophore Interaction Study. 
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TABLE II. 

ELECTROLYTE CONCENTRATIONS (MEAN± S.D.) OF SERUM FROM COBB
CROSS BROILER CHICKENS (20 DAYS OLD) FED INCREASING DOSES OF 

IONOPHORES. * = DIFFERENT FROM CONTROL (P<0.05) 

Treatment Group Na+ Ca ++ K+ Mg++ Cl-
(mEq/L) (mEq/dl (mEq/L) (mEq/L) (mEq/L) 

) 

Control (no drug) 157.70 ± 7.16 ± 5.54 ± 1.90 ± 114.56 ± 
5.11 0.41 0.35 0.09 2.39 

90 ppm Lasalocid 136.50 ± 7.54 ± 4.98 ± 1.55 ± 110.70 ± 
4.13 * 0.28 0.35 0.04 3.46 

180 ppm Lasalocid 143.00 ± 7.08 ± 4.73 ± 1.65 ± 114.60 ± 
1.27 * 0.25 0.30 0.05 0.94 

270 ppm Lasalocid 140.50 ± 6.91 ± 5.32 ± 1.73 ± 114.10± 
2.94 * 0.27 0.26 0.06 1.97 

360 ppm Lasalocid 146.60 ± 7.39 ± 5.37 ± 1.77 ± 117.40 ± 
2.14 0.30 0.26 0.04 1.74 

100 ppm Monensin 191.88 ± 9.41 ± 6.76 ± 3.04 ± 154.88 ± 
2.42 * 0.79 * 0.33 0.08 * 2.84 * 

200 ppm Monensin 156.60 ± 7.31 ± 6.84 ± 2.33 ± 140.60 ± 
2.69 0.69 0.36 * 0.15 * 4.22 * 

400 ppm Monensin 177.70 ± 4.77 ± 5.87 ± 1.98 ± 124.60 ± 
2.20* 0.43* 0.26 0.13 1.48 * 

800 ppm Monensin 163.80 ± 6.76 ± 6.24 ± 1.88 ± 133.40 ± 
5.27 0.27 0.30 0.11 5.88* 

60 ppm Salinomycin 166.88 ± 5.72 ± 6.32 ± 2.38 ± 119.38 ± 
1.75 0.45 0.28 0.20 * 1.71 

120 ppm Salinomycin 172.70 ± 8.27 ± 6.91 ± 2.37 ± 152.20 ± 
5.91* 0.41 0.47* 0.08* 3.54* 

240 ppm Salinomycin 161.80 ± 5.96 ± 4.04 ± 1.87 ± 116.90 ± 
0.09 0.27 0.23* 0.06 1.72 

480 ppm Salinomycin 173.10 ± 6.44 ± 4.85 ± 1.82 ± 128.80 ± 
2.55* 0.55 0.31 0.10 1.16 
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TABLE Ill. 

ELECTROLYTE CONCENTRATIONS (MEAN± S.D.) OF SERUM FROM COBB
CROSS BROILER CHICKENS (40 DAYS OLD) FED INCREASING DOSES OF 

IONOPHORES. * = DIFFERENT FROM CONTROL (P<0.05) 

Treatment Group Na + Ca ++ K+ Mg++ Cl-
(mEq/L) (mEq/dl) (mEq/L) (mEq/L) (mEq/L) 

Control (no drug) 153.33 ± 8.73 ± 6.55 ± 2.05 ± 116.61 ± 
4.50 0.60 0.27 0.13 15.56 

90 ppm Lasalocid 141.60 ± 7.77 ± 5.59 ± 1.61 ± 103.70 ± 
2.95 0.20 0.21 0.04* 6.67 

180 ppm Lasalocid 150.60 ± 7.99 ± 5.14 ± 1.82 ± 112.10 ± 
5.48 0.35 0.38* 0.10 13.44 

270 ppm Lasalocid 147.60 ± 8.44 ± 5.16 ± 1.84 ± 111.50 ± 
6.27 0.38 0.33* 0.11 15.70 

360 ppm Lasalocid 147.44 ± 7.68 ± 4.38 ± 1.70 ± 109.00 ± 
5.11 0.35 0.22* 0.08 11.48 

100 ppm Monensin 165.44 ± 7.03 ± 6.48 ± 2.48 ± 128.89 ± 
1.46 0.58 0.26 0.12 5.84 

200 ppm Monensin 164.67 ± 9.92 ± 6.15 ± 2.71 ± 115.00 ± 
2.04 0.64 0.33 0.22* 18.69 

400 ppm Monensin 162.40 ± 7.59 ± 6.18 ± 2.09 ± 123.90 ± 
1.18 0.62 0.31 0.04 4.59 

·. 

800 ppm Monensin 154.28 ± 10.40 ± 4.92 ± 2.28 ± 127.40 ± 
1.71 0.97 0.24* 0.09 5.01 

60 ppm Salinomycin 159.28 ± 6.20 ± 5.53 ± 2.03 ± 123.00 ± 
1.71 0.63 0.42 0.11 5.89 

120 ppm Salinomycin 160.22 ± 8.39 ± 4.89 ± 2.51 ± 122.22 ± 
1.42 0.58 0.39* 0.11* 5.26 

240 ppm Salinomycin 157.10± 10.19 ± 4.65 ± 2.54 ± 131.50 ± 
1.06 0.84 0.25* 0.11* 3.95 

480 ppm Salinomycin 162.88 ± 10.41 ± 5.05 ± 2.29 ± 126.50 ± 
2.05 0.74 0.29* 0.17 6.85 
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TABLE IV. 

ELECTROLYTE CONCENTRATIONS (MEAN± S.D.) OF SERUM FROM COBB
CROSS BROILER CHICKENS (40 DAYS OLD) FED OF IONOPHORES.IN AN 

INTERACTION STUDY * = DIFFERENT FROM CONTROL (P<0.05) 

Treatment Na+ Ca++ K+ Mg++ Cl-
Group (mEq/L) (mEq/dl) (mEq/L) (mEq/L) (mEq/L) 

Control 153.33 ± 8.73 ± 6.55 ± 2.05 ± 116.61 ± 
(no drug) 4.50 0.60 0.27 · 0.13 3.67 

M1 151.18 ± 7.93 ± 4.76 ± 1.73 ± 113.09 ± 
3.90 0.36 0.16* 0.07 3.13 

M2 136.10 ± 6.50 ± 5.11 ± 1.55 ± 100.60 ± 
7.93 0.41* 0.37* 0.10* 5.89 

S1 133.60 ± 6.74 ± 4.59 ± 1.53 ± 99.00 ± 
7.76* 0.40* 0.30* · 0.11* 5.79* 

S2 152.30 ± 7.92 ± · 6.39 ± 1.74 ± 112.40 ± 
6.35 0.35 0.42 0.09 5.05 

PC 142.50 ± 7.27 ±. 5.01 ± 1.55 ± 103.80 ± 
8.46 0.55 0.34* 0.12* 6.45 

Legend for Treatments in Interaction Trial: 

Control = No drug in starter or grower rations 

M1 = 121 ppm Monensin in Starter: 121 Lasalocid in Grower 

M2 = 121 ppm Monensin in Starter: 220 ppm Lasalocid in Grower 

· S1 = 66 ppm Salinomycin in Starter: 121 Lasalocid in Grower 

S2 = 66 ppm Salinomycin in Starter: 220 ppm Lasalocid in Grower 

PC = (Positive Control) No drug starter: 220 ppm Lasalocid in Grower 
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Figure 5. Serum Aspartate Transaminase (ASn activity of Cobb-cross broilers (20 or 
40 days of age) in a Starter or Grower Study fed Various Levels of 
lonophores (L = Lasalocid, M = Monensin, S= Salinomycin). (* = 
Statistically Significant, P < 0.05). 
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Figure 6. Serum Lactate Dehydrogenase (LOH) Activity of Cobb-cross Broilers in a 
Starter or Grower Study fed Various Levels of lonophores (L = Lasalocid, 
M = Monensin, S= Salinomycin). (* = Statistically Significant, P < 0.05). 
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Figure 7. Serum Creatinine Phosphokinase (CPK) Activity of Cobb-cross Broilers in a 
Starter or Grower Study fed Various Levels of lonophores (L = Lasalocid, 
M = Monensin, S= Salinomycin). (* = Statistically Significant, P < 0.05). 
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Body Weights 

Increased dietary concentrations of ionophores caused a dose-dependent 

decrease in body weight. The body weights of broilers (3 or 6 weeks) fed 270 and 360 

ppm lasalocid are significantly (p<0.05) reduced from controls. The birds (3 or 6 weeks 

old) fed 800 ppm monensin, 240 or 480 ppm salinomycin were significantly lower than 

controls (Figure 8) . In the interaction study, the body weight was reduced in the groups 

fed the higher levels of lasalocid, 220 ppm. The groups of birds fed 60 ppm 

salinomycin in the starter ration and switched 220 ppm lasalocid had significantly 

reduced body weights as compared to controls (Figure 8). 
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Figure 8. Body Weights of Cobb-cross Broiler Chickens (3 or 6 Weeks of age) Fed 
Increasing Dietary Concentrations of lonophores (L = lasalocid, M = 
monensin, S = salinomycin). ( * = P < 0.05). 
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Figure 9. Body Weights of Cobb-cross Broiler Chickens (40 Days of age) Fed 
Increasing Dietary Concentrations of lonophores in an Interaction Study. 
(* = P < 0.05). 

Mortality in the Starter and Grower Rations 

There was minimal mortality (< 6%) in the groups fed higher concentrations of 

monensin or salinomycin. This may have been due to feed refusal exhibited by these 

66 



birds (data not presented). The mortality data for birds (3 or 6 weeks old) fed lasalocid 

showed low mortality at ration concentrations below 270 ppm. Broilers (3 or 6 weeks of 

age) fed 360 ppm lasalocid had a significantly higher rate of mortality than did the 

controls (Figure 10). 
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Figure 10. Mortality in Cobb-cross Broiler Chickens (20 or 40 Days Old) Fed Increasing 
Dietary Concentrations Of Lasalocid in a Starter (day 1-21) or Grower 
(day 21-42) Study. ( * = P < 0.05). 
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Light Microscopic Evaluation of Sciatic Nerves 

The results of light microscopic evaluation of tissues from lasalocid - fed birds, at 

all dose levels, failed to detect any significant skeletal or cardiac muscle necrosis. The 

only lesions consistently noted in these birds were degenerative changes in the sciatic 

nerve. These changes were noted in ataxic birds fed any level of lasalocid or more 

commonly in birds fed greater than 180 ppm lasalocid. Areas of myelin disruption, 

foamy myelin, axonal swelling and rupture were common findings (Figure 11). No 

lesions were detected by light microscopy in, the spinal cord or brains of lasalocid-fed 

broilers. Monensin or salinomycin produced dose-dependent cardiac and skeletal 

muscle necrosis with no lesions in the sciatic nerve. 

Electron Microscopic Evaluation of Sciatic Nerves 

Ultrastructural changes observed in. lasalocid fed, ataxic broilers were localized in 

the sciatic nerve. In these tissues, edema and separation of myelin lamella, 

vacuolation and degeneration of myelin and vacuoles within the cytoplasm of the 

Schwann cells were common findings (Figures 12 & 13). In most of the sections 

examined, the neurofilaments and microtubules of the axonal cytoplasm were intact 

and homogenous. Often the axon was compressed and deformed, but this was 

primarily due to the disruption and degradation of the myelin. 
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Figure 11. Light Micrograph of a Sciatic Nerve from an Ataxic, Male, Cobb-Cross 

Broiler Chicken fed 220 ppm Lasalocid. A) * Foamy Myelin; + Degrading 

Myelin With Axonal Fragment; 0 Swollen Axon. B) * Multiple Areas of 
Myelin Vacuolation. 
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Figure 12. Electron Micrograph of a Sciatic Nerve from a Cobb-cross Broiler Chicken 
(40 days old) fed 90 ppm Lasalocid. Note the Concentric Lamella of 
Myelin and Intact Axon (a) Schwann cell (s), (m) Myelin Debris. 
(Magnification 7200) 
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Figure 13. E!ectron Micrograph of a Sciatic Nerve from an Ataxic, Male Cobb-cross 
Broiler Chicken fed 220 ppm Lasalocid for 10 days. Note lntramyelinic 
Edema, Myelin Fragments (m), Extensive Vacuolation (v) of the Myelin 
and Compression of the Axon (a). (Magnification 4800) 
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Motor Nerve Conduction Velocity 

Control birds (no drug) had an average MNCV of 35 ± 2 and 34 ± 1.5 M/sec for 

the right and left peroneal nerves, respectively. Ataxic birds with a clinical score of 3 

(fed 270 ppm lasalocid) had a significantly reduced average MNCV of 15.2 ± 5.3 and 

13.9 ± 4.6 M/sec for the right and left superficial peroneal nerves, respectively. The 

average percent reduction in the MNCV for the ataxic birds was 47 ± 15 and 59 ± 13 

for the right and left nerves, respectively (Table IV) 

TABLE IV. 

MOTOR NERVE CONDUCTION VELOCITIES (M/SEC) OF THE SUPERFICIAL 
PERONEAL NERVES FROM MALE, COBB-ROSS BROILER CHICKENS (40 DAYS 
OF AGE) FED NO DRUG (CONTROL) OR 270 PPM LASALOCID (ATAXIC) FOR 10 

DAYS. (* = P < 0.05) 

Treatment Velocity of % Velocity of % 
Group Left Nerve Reduction Right Nerve Reduction 

(M/s) (M/s) 
Control (n=3) 35±2 -- 34 ± 1.5 ---
Ataxic (n = 4) 15.3 ± 5.3* 47 ± 15 13.9 ± 4.6* 59 ± 13 

A TPase Activity 

The results for A TPase activity from selected organs of broilers fed increased 

levels lasalocid showed no significant differences from control (no drug) in the starter 

and grower studies (Tables VI and VII, respectively). The specific ATPase activity from 

selected organs of broilers fed increasing levels of monensin and salinomycin similarly 

show no significant differences from control (no drug) in the starter and grower studies 
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(Table VIII & IX, respectively). In vitro incubation of ATPase with lasalocid, 10 - 100 

µM, produced a dose-dependent inhibition of activity. The Na +. K + - A TPase IC 50 of 

lasalocid was 46.6 µM for the Sigma (95% purity) product and 51 µM for the biomass 

product (88% purity). The inhibitory effects of lasalocid on Mg ++_ATPase was less than 

50 % with the concentrations examined (Figures 14 & 15 ). There is little difference 

between the biomass product (Roche, 88% purity ) and the more purified preparation 

(Sigma Chemical Co., 95 % purity). 

TABLE VI 

SPECIFIC ACTIVITY OF ATPASE ENZYMES FROM ORGANS OF BROIILER 
CHICKENS FED LASALOCID IN A STARTER RATION (DAY 1 - 21). ( * = P < 0.05) 

Organ Dose Na+, K+-ATPase Mg++-ATPase Total ATPase 
(Lasalocid) 

Brain O ppm 5748.16 ± 1195.84 906.91 ± 232.53 6655.07 ± 1323.45 
Heart o ppm 1332.68 ± 484.00 517.74 ± 179.49 1850.42 ± 428.41 
Kidney O ppm 4470.84 ± 2026.99 1398.64 ± 601.11 5869.47 ± 1746.16 
LI Mucosa O ppm 1656.13 ± 676.45 2683.48 ± 489.29 4339.61 ± 787.92 
SI Mucosa O ppm 4355.71 ± 584.18 3614.35 ± 1917.21 7970.06 ± 2275.64 
Brain 90 ppm 4841.26 ± 2107.87 901.90 ± 393. 77 5743.16 ±2440.88 
Heart 90 ppm 1009.99 ± 383.56 472.24 ± 151.86 1482.24 ± 513.86 
Kidney 90 ppm 4571.84 ± 785.61 1090.14 ± 160.70 5661.98 ± 920.82 
LI Mucosa 90 ppm 1079.64 ± 148.88 2617.43 ± 1249.44 3697.07 ± 1390.76 
SI Mucosa 90 ppm 2498.94 ± 2175.61 * 3404.11 ± 1178.88 5903.05 ± 3107.79 

Brain 360 ppm 5391.12 ± 1306.47 932.12 ± 195.72 6323.24 ± 1448.83 
Heart 360 ppm 1379.00 ± 607.23 487.63 ± 214.57 1866.64 ± 732.67 
Kidney 360 ppm 5146.67 ± 1089.02 1073.86 ± 184.04 6220.53 ± 1212.61 
LI Mucosa 360 ppm 1635.65 ± 664.70 1872.60 ± 404.39 * 3508.25 ± 457.06* 
SI Mucosa 360 ppm 2992.47 ± 1992.85 2346.86 ± 1483.28 5339.33 ± 3446.64 
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TABLE VII 

SPECIFIC ACTIVITY OF ATPASE ENZYMES FROM ORGANS OF BROILERS FED 
LASALOCID IN A GROWER RATION (DAY 21 -42 OF AGE) 

Organ Dose Na+, K+-ATPase Mg++ - ATPase Total -ATPase 
(Lasalocid) 

Kidney O ppm 2470.64 ± 600.91 702.96 ± 41.89 3173.59 ± 630.62 
SI Mucosa o ppm 1489.93 ± 165.46 1430.96 ± 412.81 2920.88 ± 524.34 
LI Mucosa o ppm 884.53 ± 79.49 1869.05 ± 309.29 2753.58 ± 347.14 
Kidney 360 ppm 3001.12 ± 1179.97 758.96 ± 208.15 3760.08 ± 1329.45 
SI Mucosa 360 ppm 1445.15 ± 144.57 1329.54 ± 482.00 2774.69 ± 600.71 
LI Mucosa 360 ppm 1113.05 ± 478.34 1750.08 ± 1261.90 2863.13 ± 1567.15 

TABLE VIII 

SPECIFIC ATPASE ACTIVITY FROM ORGANS OF BROILER CHICKENS FED 
MONENSIN (M) OR SALINOMYCIN (S) IN STARTER RATION (DAY 1-21 OF AGE) 

Organ Dose Na+, K+, ATPase Mg++ATPase Total ATPase 
(lonophore ) 

Kidney O ppm 1156.35 ± 512.44 724.67 ± 86.64 1881.02 ± 578.49 
LI Mucosa o ppm 1348.37 ± 586.17 1029.95 ± 326.94 2378.32 ± 596.40 
SI Mucosa O ppm 1673.57 ± 571.22 1234.53 ± 266.27 2908.10 ±600.78 
Kidney M 100 ppm 1452.63 ± 861.16 320.69 ± 178.87 1773.32 ± 990.48 
LI Mucosa M 100 ppm 1849.55 ± 584.39 1039.35 ± 241.98 2888.90 ± 1973.33 
SI Mucosa M 100 ppm 1938.51 ± 1107.62 920.16 ± 315.51 2858.67 ± 1046.46 
Kidney M 400 ppm 675.44 ± 392.85 1210.86 ± 1011.51 1886.30 ± 1144.29 
LI Mucosa M 400 ppm 1697 .65 ± 1754.35 756.69 ± 644.67 2454.34 ± 2376.89 
SI Mucosa M 400 ppm 939.39 ± 650. 75 1201.01 ±758.14 2140.40 ± 177.06 
Kidney s 60 ppm 1324.67 ± 686.61 850.35 ± 472.00 2175.02 ± 1096.33 
LI Mucosa s 60 ppm 1150.14 ± 547.29 872.30 ± 450.80 2022.44 ± 715.75 
SI Mucosa S 60 ppm 2397.66 ± 1357.89 1530.56 ± 811.62 3928.22 ± 2098.54 
Kidney s 240 ppm 1718.63 ± 930.51 777.85 ± 761.76 2496.47 ± 943.35 
LI Mucosa S 240 ppm 1193.12 ± 492.88 543.42 ± 226.54 1736.54 ± 418.72 
SI Mucosa s 240 ppm 2425.01 ± 1858.60 959.36 ± 429.60 3384.37 ± 1650.75 
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TABLE IX. 

SPECIFIC ATPASE ACTIVITY FROM ORGANS OF BROILER CHICKENS FED 
MONENSIN (M) OR SALINOMYCIN (S) IN A GROWER RATION (DAY 21- 42 OF 

AGE) 

Organ Dose Na+, K+, ATPase Mg++ATPase Total ATPase 
( lonophore) 

Kidney O ppm 2390.78 ± 987.43 353.12 ± 113.08 2743.90 ± 1009.76 

LI Mucosa O ppm 1835.13 ±306.10 866.38 ± 259.87 2701.50 ± 412.19 

SI Mucosa O ppm 2355.33 ± 1067.22 530.97 ± 265.63 2886.30 ± 1312.99 

Kidney M 100 ppm 2134.94 ± 516.42 357.14 ± 131.62 2492.08 ± 558.09 

LI Mucosa M 100 ppm 2641.14 ± 1178.51 588.64 ± 139.82 3229.78 ± 1300.70 

SI Mucosa M 100 ppm 2945.00 ± 947.09 776.50 ± 364.87 3721.50 ± 1230.40 

Kidney M 400 ppm 1645.69 ± 505.14 246.17 ± 89.29 1891.87 ± 565.42 

LI Mucosa M 400 ppm 2186.38 ± 1027.47 420.90 ± 233.72 2607.27 ± 1249.67 

SI Mucosa M 400 ppm 2841.76 ± 1939.35 709.50 ± 511.05 3551.27 ± 2445.57 

Kidney S 60 ppm 2053.57 ± 1185.88 374.34 ± 166.24 2427.91 ± 1334.88 

LI Mucosa S 60 ppm 2760.95 ± 1447.49 727.19±191.13 3488.13 ± 1519.73 

SI Mucosa S 60 ppm 2611.57 ± 1028.09 742.76 ± 292.43 3354.33 ± 1311.26 

Kidney S 240 ppm 2186.56 ± 1475.86 549.71 ± 271.72 2736.27 ± 1742.27 

LI Mucosa S 240 ppm 2437.67 ± 1048.99 704.80 ± 268.80 3142.47 ± 1298.31 

SI Mucosa S 240 ppm 2849.91 ± 1234.06 646.56 ± 199.15 3496.46 ± 1291.68 
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Figure 14. In Vitro Dose-Dependent ATPase Inhibition from Cobb-cross Broiler 
Chicken Kidneys by Lasalocid (Sigma Co. 95 % Purity). ( * = P < 0.05) 
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Figure 15. In Vitro Dose-Dependent ATPase Inhibition from Cobb-cross Broiler 
Chicken Kidneys by Lasalocid (Roche 88% Purity). ( * = P < 0.05) 
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Discussion 

The data presented provide evidence that lasalocid can cause peripheral 

neuropathy in Cobb-cross broiler chickens. This dose-dependent, experimentally

induced toxicosis is described by a clinical ataxia scoring system and mimics field 

cases in description, time of onset and severity. Increased incidence of ataxia is noted 

in 3 and 6 week old Cobb-cross broilers with increased dietary levels of lasalocid. A 

dietary dose that cause 25% ataxia in a group of birds was determined to be 220 ppm 

and 242 ppm for 3 and 6 week old broilers, respectively. The neurotoxic effects of 

lasalocid are characterized by a markedly reduced superficial peroneal MNCV and 

pathologic findings in the sciatic nerve that included: myelin vacuoles, intramyelinic 

edema and secondary axonal degeneration. 

The ataxia scoring system used in these studies is similar to the procedures used 

by others ( Abou-Donia & Graham,1978; Abou-Donia, 1977; Abou-Donia et al.,1980; Dyer 

et al., 1992; el-Fawal et al, 1990a,b). Using this clinical scoring system, lasalocid produced a 

dose-dependent ataxia in 3 and 6 week old broiler chickens. Ataxia dramatically increased 

at dietary concentration greater than 180 ppm. These levels could occur in a 

production system by an accidental overdose of the ionophore. In contrast, rations 

containing monensin or salinomycin produced sporadic, less than 2%, ataxia. 

Affected birds in the earlier stages (Clinical Scores 1 or 2) are alert, able to eat 

and drink until the severity increases to 3 or 4 when birds become increasingly ataxic 

and are unable to walk to feed and water. In the last stage (Clinical Severity Score 5), 

the birds are depressed and lethargic, refuse to eat and frequently die. The onset of 
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ataxia is usually 5 - 7 days after introduction of lasalocid-containing feed, which is 

similar to field reports. 

Assessment of neurotoxic effects with neurologic examinations suggest that the 

syndrome is due to peripheral nervous system damage (Anon., 1986). Central nervous 

system function of the vestibular system, vision, hearing and the limbic systems are 

normal in affected birds. 

Incidence of ataxia was linear following a logarithmic-probit transformation. 

Linear regression analysis of the transformed data demonstrated similar TD 25 for the 3 

week (220 ppm) and 6 week (242 ppm) broilers suggesting that the neuropathy is not 

age-dependent up to 6 weeks. These toxic doses are approximately twice the 

recommended use levels of lasalocid and could be used to increase the number of 

ataxic birds for future studies. Increased numbers of affected birds would be beneficial 

in examining potential neurotoxic mechanisms or to evaluate the efficacy of possible 

therapies for lasalocid-induced neuropathy. 

The motor nerve conduction velocities in the control, no drug, birds are similar to 

previous reports in broiler chickens (Konegay et al, 1983; Robertson et al, 1986). The 

marked reduction in conduction velocity in ataxic broilers fed 270 ppm lasalocid for 1 O 

days indicate specific damage to the peripheral nervous system. This is similar to the 

reduced nerve conduction velocities caused by phenyl saligenin phosphate, an 

organophosphate capable of producing OPIDN, in chickens (Lidsky et al, 1990) and 

ddC, a reverse transcriptase inhibitor, in rabbits (Anderson et al, 1990). The marked 

decrease of the MNCV in lasalocid-fed birds was associated with gait abnormalities 

and an ataxia score of 3. 

The light and electron microscopic findings in lasalocid-induced ataxia are 

specific to the peripheral nervous system. The more prominent findings include 
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degenerative changes in the sciatic nerve with separation of myelin lamella, myelin 

vacuolation, myelin degeneration, intramyelinic edema, axonal swelling and rupture. 

These results are similar to a previous report (Gregory et al, 1995; ). Myelin pathology 

may be the primary change with lasalocid-induced ataxia with subsequent compression 

on the axon. This is demonstrated by the numerous fibers with severe intramyelinic 

edema without concurrent axonal damage. Ultrastructurally, axons with damaged 

myelin had normal appearing neurofilaments and microtubules of the axonal cytoplasm. 

No lesions were detected by light microscopy in the spinal cord or brains of lasalocid

fed broilers. Broilers fed monensin and salinomycin did not exhibit any lesions in 

sciatic nerves. The specificity of lasalocid-induced damage to peripheral nervous 

system is not known. A possible explanation could relate to the different tissues levels 

of lasalocid in the PNS as compared to the CNS. Another possible reason for the 

differential response may be different responses of central and peripheral myelin to 

lasalocid. 

Reduced body weights of birds fed increased concentrations of all three 

ionophore indicate generalized toxic effects. This agrees with a previous reports 

(Keshavarz & McDougald, 1982; Horovitz et al., 1988; Owawoye & Krueger, 1986; 

Bartov, 1994) of feeding elevated levels of ionophore. In the current studies, lasalocid

induced depression of body weight and greater variability in weights may be due to a 

lack of ability to obtain feed, generalized malaise or cachexia of disease. In previous 

reports, hens affected with OPIDN had reduced body weights that was most prominent 

after the birds became ataxic, lost their appetites and exhibited poor eating habits 

(Abeu-Donia et al., 1980; Abeu-Donia & Graham, 1978). This effect was more 

pronounced in the more severely ataxic birds with respiratory and swallowing disorders. 

In the current study, the greater variability in body weights could indicate to producers 
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that there is increased risk for lasalocid-induced ataxia. This would most likely occur at 

lasalocid concentrations in excess of 220 ppm in the ration, as shown by the current 

studies and would be very marked at 270 and 360 ppm. 

The serum electrolyte and chemistry results for 3 & 6 week controls are similar to 

previously reported values (Ross et al., 1978). Serum sodium concentrations are 

significantly reduced in the 90, 180 and 270 ppm lasalocid treatments of the starter 

study. The reduced serum sodium in lasalocid-fed broilers may provide a clue to the 

role of this cation in the syndrome. As noted earlier, ataxia is more prevalent during the 

summer and on farms that have water with a high salinity. In these situations, elevated 

serum sodium may be shuttled into the cell by lasalocid and cause cell dysfunction and 

death as previously described (Shier & Dui3ourdieu, 1992; Shier et al, 1991). 

Monensin and salinomycin at greater than recommended levels increased serum 

concentrations of potassium and AST, LOH and CPK indicating myotoxicity as 

previously reported (Horovitz et al., 1988; Galitzer et al, 1982; Duncan & Prasse, 1986). 

Of these enzymes, CPK is the most specific and sensitive indicator of muscle damage. 

Monensin and salinomycin cause myonecrosis with a resulting hyperkalemia due to the 

higher concentration of intracellular potassium in the myocytes (Duncan & Prasse, 

1986). Lasalocid-treated birds from any age group did not have elevated enzyme 

activities. 

The results of the A TPase studies indicate that in vivo there is not significant 

alteration in the activity of these enzymes. The results of in vitro incubation of lasalocid 

with ATPase enzymes demonstrated a dose-dependent inhibition. These results might 

be explained by different enzyme isoforms or upregulation of the proteins. There are 

Na+,K+-ATPase isoform differences between these cell types with cx.2 more prevalent in 
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glial cells and a.3 more commonly found in neurons. Additionally, there are species 

(dog, rat, human) differences in the abundance and importance of these isoforms of 

Na+,K+-ATPase (Decollogne et al., 1993). The current studies did not measure the 

activities of various isoforms of Na+,K+-ATPase. The ionophores may impact the 

function of one or more different isoform, in vivo leading to alterations in ionic 

homeostasis. Another possible explanation for these results involve the complex 

intracellular regulation of ATPase activity in vivo. Inside the cell, Na+,K+-ATPase is 

subject to complex, highly regulated control mechanisms. Ionic regulation, in vivo, 

exerts a powerful control over these enzymes (McGeoch, 1990; Azuma et al., 1991; 

Rayson, 1990) . Increased intracellular levels of calcium drastically increase the 

function of the Na+,K+-ATPase. Elevated calcium increases ATPase mRNA, enzyme 

synthetic rates and releases enzyme inhibition (Decollogne et al., 1993). This would 

help offset the ionophore-induced degradation of the ionic gradients, to maintain 

homeostasis in the long term. This may also explain differential effects on the A TPase 

enzyme in vivo and in vitro. Alternatively, lasalocid may have only an indirect effect on 

the function of the activity of the Na+,K+-ATPase. The ionophore may alter critical 

membrane-bound cations (Mg++) that regulate the structure or activity of the enzyme 

(Antonio et al, 1991). 

In summary, lasalocid incorporated in the feed produced a dose-dependent 

ataxia in male, Cobb-cross broilers similar to field cases. The incidence and severity of 

ataxia is described by a clinical scoring system. Lasalocid neuropathy is characterized 

by a marked reduction of superficial peroneal MNCV and pathologic findings in the 

sciatic nerve that include: myelin vacuoles, intramyelinic edema and secondary a:xonal 

degeneration. This is the first report of the dose-dependent nature of lasalocid-induced 
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neuropathy. The use of 220 - 242 ppm lasalocid in the ration of broiler chickens could 

provide a non-mammalian, acute model of chemically-induced peripheral neuropathy. 
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CHAPTER Ill 

LASALOCID-INDUCED ATAXIA IN BROILERS: ELUCIDATION OF POSSIBLE 

MECHANISMS 

Abstract 

Previous studies suggest that increased dietary concentrations of lasalocid are 

associated with a peripheral neuropathy in broiler chickens that manifests clinically as 

ataxia. Determination of a precise oral dose capable of causing ataxia similar to field cases 

is essential for mechanistic and therapeutic studies. This study characterized the oral doses 

of lasalocid necessary to cause ataxia within 48 hours. Lasalocid caused a dose

dependent neurotoxicty in 4-6 week old, male, Cobb-cross broiler chickens at 

concentrations greater than 11.25 mg/kg, t.i.d. given orally. As measured by a clinical 

ataxia scoring system, the severity and incidence of neurotoxicity are dose related. 

Recovery from lasalocid-induced ataxia occurs 10 days after removal of the drug. Vitamin 

E ( 100 I U) pretreatment and 12 hour water deprivation do not appear to play a major role in 

the pathogenesis of this syndrome. Lasalocid administration (33.75 mg/kg, t.i.d.) did not 

influence sciatic nerve A TPase activity from ataxic broilers. In vitro, 1 - 8 µM lasalocid 

inhibited submitochondrial NADH oxidase activity in a dose-dependent manner. Additionally, 

submitochondrial A TPase activity was inhibited by 25 - 200 µM lasalocid. Sciatic nerves 
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exposed to lasalocid (100 µM), in vitro, demonstrate time- and calcium-dependent 

ultrastructural changes (intramyelinic edema and myelin vacuolation). The results of these 

studies suggest that lasalocid may elicit peripheral neuropathy in broilers indirectly by 

reducing intracellular ATP levels causing deregulation of ionic homeostasis or directly by 

activating calcium-mediated catabolic enzymes. The oral doses of lasalocid used in these 

studies provide a useful model of chemically-induced, acute peripheral neuropathy. 

Introduction 

The ionophores (monensin, lasal.ocid and salinomycin) are carboxylic acid antibiotics 

produced by fungal (Streptomyces) fermentation (Novilla, 1992; Galitzer & Oehme, 1984; 

Pressman, 1976), with a wide range of antibacterial activities (Reed, 1982). The ionophores 

are commonly used anticoccidial agents added to poultry diets. There are numerous 

reports of acute toxicoses in domestic livestock species due to ingestion (accidental or 

overdose) of these compounds (Novilla, 1992; Vanvleet et al., 1987; Galitzer & Oehme, 

1984; Shlosberg et al., 1992; Mezes et al., 1992). The toxic effects due to these compounds 

have traditionally been described as a skeletal or cardiac myopathy (Novilla, 1992). 

Recently, intoxication with lasalocid produced neurologic clinical signs (Safran et al, 1993; 

Perelman et al, 1993; Shlosberg et al., 1986; Gregory et al, 1995). Unpublished field 

observations indicate an association with lasalocid in the ration and ataxic broilers. Ataxia is 

most commonly seen in male, rapidly growing broilers one week after changing to a ration 

containing lasalocid. The incidence and severity of this syndrome is worse in the summer 

months. Poultry producers and field veterinarians have designated this syndrome "downer'' 

or "knockdown birds". It is currently unknown if this effect is directly related to lasalocid 

exposure or lasalocid and a combination of environmental or management factors. 
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We have recently described a feed concentration of lasalocid (220 - 242 ppm) 

that produced ataxia in broiler chickens (Roder et al, 1996). This dose-dependent 

neuropathy is specific for the peripheral nervous system as evidenced by light and electron 

microscopic findings. The onset and severity of the neurotoxicity is similar to field cases 

with clinical signs beginning 7 days after introduction of lasalocid. 

The dose-response relationship is fundamental to toxicology and understanding the 

mechanisms of toxic agents (Klaassen & Eaton, 1991). Accurate measurement of a toxin

induced response depends on a quantifiable, repeatable method of measurement 

(Klaassen & Eaton, 1991). Clinical observation and the use of ataxia scoring systems have 

been used by other researchers to evaluate organophosphate-induced delayed neuropathy 

(OPIDN) (Abeu-Donia & Graham, 1978; Abeu-Donia, 1977; Abeu-Donia et al., 1980; Dyer et 

al., 1992; el-Fawal et al, 1990a,b). Refinement of a precise oral dose that reliably produces 

ataxic birds will allow for mechanistic and therapeutic studies. 

Some possible pathophysiologic mechanisms involved in lasalocid-induced 

peripheral neuropathy may include: water deprivation/heat stress (as noted in the field), 

depletion of intracellular antioxidant systems, alteration of neuronal ATPase activity, 

alteration of oxidative phosphorylation or direct damage to peripheral nerves via a calcium

mediated process. 

The increased incidence of lasalocid-induced ataxia in the summer months and field 

observations of increased severity on farms with increased water salinity suggest a role for 

hypernatremia and the incidence of lasalocid-induced ataxia. The combination of water 

deprivation/heat stress would increase the osmolality of serum possibly potentiating 

toxicosis. Antioxidants, especially vitamin E, protect neurons and myocytes from damage 

and cytotoxicity caused by different agents including ionophores (Horvath et al, 1992; 
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Schubert et al, 1992; Behl et al., 1992; Vanvleet et al., 1987). Oxidative stress and the 

resulting cellular damage may play a role in the neurotoxicity caused by lasalocid. 

Inhibition or reduction of peripheral nerve A TPase activity has been associated with 

diabetes-associated neuronopathy (Lo Pach in et al., 1993; Brismar & Sima, 1981; Llewelyn 

& Thomas, 1987; Greene et al, 1987). The diminished activity of this constitutive enzyme 

would alter the ionic homeostasis of the cells and reduce the electrical excitability of the 

nerve. It is possible that lasalocid produces ataxia due in part to inhibition of sciatic nerve 

ATPases. 

Many compounds can alter the function of the mitochondrial respiratory chain and 

reduce the production of ATP. Without this source of energy, the membrane bound 

"pumps", Na+-K+-ATPase and Ca++ ATPase, can not adequately regulate the intracellular 

concentrations of sodium and calcium. This can lead to increases in intracellular calcium 

and cell death. 

Calcium-mediated cell death is well established in vitro and in vivo (Trump & 

Berezesky, 1995; Nicotera et al, 1992; Iacopino et al., 1992; Pollardet al., 1994). Increased 

intracellular calcium can activate a myriad of processes, calcium-dependent endonucleases, 

phospholipases, destabilization of the cytoskeleton (microtubules), condensation of 

mitochondria, expression of immediate-early genes (c-fos, c-jun, c-myc) and apoptosis 

(Trump & Berezesky, 1995; Nicotera et al, 1992), that lead to dysfunction and death. Some 

degenerative changes in axons and neuronal cell lines have been shown to calcium

dependent (Fane et al., 1993) as have the degenerative changes of transected neurites 

(Schlaepfer, 197 4; Schlaepfer & Bunge, 1973), which can be prevented by chelation of 

extracellular calcium. 
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Carboxylic ionophores can increase the intracellular concentrations of calcium either 

directly (lasalocid, A23187) or indirectly (monensin, salinomycin) and serve as a model for 

studying the process of cell death (DuBourdieu & Shier, 1992; Shier & DuBourdieu, 1992; 

Shier et al, 1991). lonophores can also increase calcium flux across neuronal cell 

membranes causing ultrastructural damage in vitro (Schlaepfer, 1977b,a) and in vivo (Smith 

& Hall, 1988). It is possible that lasalocid causes direct neuronal cell damage in vitro though 

a calcium-mediated process. 

The objectives for the in vivo studies are: identification of oral dose(s) of lasalocid that 

would reliably produce dose-dependent ataxia in broilers, determine if affected birds can 

recover from lasalocid-induced ataxia and to examine the roles of Vitamin E ( oxidative 

stress), ATPase (ionic homeostasis) and water deprivation/mild heat stress on the 

pathogenesis of this syndrom~. The objectives for the in vitro studies are to examine the 

effect of lasalocid on mitochondrial respiratory chain function, explore the ultrastructural 

changes associated with direct exposure to lasalocid and to determine the role of calcium in 

these ultrastructural changes. 

Materials and Methods 

Animals 

Male, Cobb broilers were used in these studies. One-day-old chicks were purchased 

from a commercial source (Tyson Hatchery, Springdale, AR) and were housed in floor pens, 

bedded on fresh rice hulls. Supplemental heat was provided by 2-3 lamps per pen, to 

maintain the temperature at floor level near 30° C, during the first 2 weeks of the study. 

Birds were exposed to constant tungsten filament lighting. At 4 weeks of age, the birds 

were randomly assigned to treatment groups and housed in individual stainless steel cages 
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in an environmental chamber (1 bird per cage). The broilers were fed a basal ration (no 

drugs) throughout the study. The composition of the com-soy basal ration is detailed in 

Appendix A. Feed and water, from automatic waterers, were provided ad libiditum. 

Drugs 

Lasalocid as a semi-purified (88%), biomass product was provided as a gift from 

Roche Fine Chemicals. The drug was weighed and placed into gelatin capsules 

(UPJOHN®). An injectable Vitamin E product (VITAL ETM..300; Schering-Plough Animal 

Health, Kenilworth, NJ) was purchased for use. All other chemicals used in the oxidative

phosphorylation, ATPase studies and sciatic nerve exposure, in vitro (EGTA, Tris HCI, 

Trizma® base, MgCl2 , KCI, CaCl2, NaCl, Tris-ATP, TCA, lasalocid, DMSO, phenol red, ) 

were purchased from Sigma Chemical Company (St. Louis, MO). 

Experiment One: Characterization of Oral Dose Response 

In these studies, 4-6 week old, male, Cobb-cross broiler chickens were acclimatized 

for 3 days and randomly assigned to 6 treatment groups. The treatment groups were: 

control, no lasalocid, (n =10), 11.25 mg/kg lasalocid, t.i.d. (n =1 O); 22.5 mg/kg lasalocid, t.i.d. 

(n = 10); 30 mg/kg lasalocid, t.i.d. (n = 10); 33.75 mg/kg lasalocid, t.i.d. (n = 10); 50 mg/kg 

lasalocid, t.i.d. (n = 7). Lasalocid, biomass product, was weighed and placed into gelatin 

capsules. Gelatin capsules were given orally to each bird in the treatment group. Ataxia 

was scored 48 hours after the initial dose using a clinical ataxia scoring system. 

All birds were assessed twice each day for clinical signs of ataxia. Initial visual 

observation examined the character and attitude of undisturbed animals. Any 
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paralyzed or severely ataxic birds were noted by this unobtrusive observation. All birds 

were then forced to walk around their cages for several minutes. Birds were 

categorized by the clinical ataxia scoring system presented in Table I. Forcing 

ambulation allows detection of slightly ataxic birds or observe if ataxia worsens after 

exercise. This scoring system evaluates the gait characteristics and the attitude of the 

bird and ranges from normal to paralyzed and depressed birds. 

Further evaluation of intoxication in lesioned birds was accomplished by a clinical 

neurologic examination of cranial nerve function and spinal reflexes, Appendix B. This 

permits localization of lesion(s) to the central or peripheral nervous system and region 

of the body affected. Each lesioned bird was evaluated at two different time periods to 

accurately measure any alteration in the reflexes. 

TABLE I 

CLINICAL SCORING SYSTEM FOR LASALOCID-INDUCED ATAXIA 

Score Description 

0 Normal bird 

1 Slight Ataxia after exercise 

2 Slight Ataxia, Ataxia worsens after exercise 

3 "Duck Walkers", Ataxic, Waddling-type gait 

4 Non-ambulatory (down), alert, aware of surroundings 

5 Non-ambulatory (down), not alert, depressed 
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Experiment Two: Evaluation of Recovery From Lasalocid-induced Ataxia 

In the recovery studies, 4 - 6 week old, male, Cobb-cross broilers were randomly 

assigned to three treatment groups with 10 birds each. The lasalocid doses used were 

11.25 mg/kg, t.i.d., 22.5 mg/kg, t.i.d., or 33.75 mg/kg, t.i.d. Birds were given lasalocid, 

biomass product, in gelatin capsules orally for 2 days after which they were evaluated and 

scored using a clinical ataxia scoring system. Birds with clinically observable ataxia (scores 

2,3 or 4) were selected for use in the recovery portion of these studies. The number of 

ataxic birds used for each treatment group : 11,25 mg/kg (n=2), 22.5 mg/kg (n=6), 33. 75 

mg/kg (n=7). Ataxic birds were maintained on a drug-free diet for 1 O days. Ataxia was re

evaluated 3, 5 and 10 days following the last dose of lasalocid, using a clinical ataxia 

scoring system as described in experiment one. 

Experiment Three: Determination of the Influence of Water Deprivation 

This experiment was designed to examine the role of water restriction and mild heat 

stress on the incidence of lasalocid-induced ataxia. In these studies, 5 week-old, male 

Cobb-cross broilers were divided into three groups of 5 birds each. The treatment groups 

were: no drug (control); 33.75 mg/kg lasalocid, t.i.d, + ad lib water; 33.75 mg/kg lasalocid, 

t.i.d. + 12 hour water restriction. Birds were housed in an environmental chamber where the 

ambient temperature cycled daily from a low of 25 ± 1 °c (0700 hrs) to a high of 33.5 ± 1 °C 

(1800 hrs) with a relative humidity maintained at 55 ± 5 %. Water was restricted for 12 

hours (0800 - 2000) during the times the birds were exposed to elevated environmental 

temperatures. These environmental conditions mimic a mild, non-lethal heat stress typical 
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of a summer day in poultry producing areas of the country. After 2 days, the severity of 

ataxia was evaluated using the clinical ataxia scoring system. 

Experiment Four: The Role of Vitamin E on Lasalocid-induced Ataxia. 

Five week-old, male Cobb-cross broilers were divided into three groups of 5 birds 

each. The treatment groups were: no drug (control); 33.75 mg/kg lasalocid, t.i.d; and 33.75 

mg/kg lasalocid, t.i.d. with Vitamin E (100 IU/kg). The Vitamin E was administered 45- 60 

minutes prior to dosing the bird with lasalocid. Ataxia was evaluated and severity was 

determined after 2 days. After neurotoxic assessment, birds were euthanitized and the 

sciatic nerves were removed to examine A TPase activity. 

A TPase Isolation A TPase enzymes from sciatic nerves of broilers at the 

completion of the study prepared following the method of Hermenegildo 

(Hermenegildo et al., 1992). The sciatic nerves were rapidly removed after sacrificing 

the bird and washed several times with ice-cooled isotonic solution containing 0.25 M 

sucrose, 1.25 mM EGTA, 10 mM Tris hydrochloride, pH 7.5 with Trizma® base. A 

portion of the nerve was homogenized in 20 volumes of ice-cooled solution in a 

polytron homogenizer (Polytron® Model#PT 10/35, Brinkman Instruments, Switzerland) 

twice for 45 seconds. Aliquots of the homogenates were used immediately while 

replicates were frozen (- 80 °C) for later use. All above procedures were carried out at 

2 °C. 

Measurement of ATPase Activity ATPase activity was determined using the 

method of Chen (Chen et al, 1995) which is a slight modification of previous methods 

(Broekhuysen et al., 1972; Akera & Brody, 1971). The activity was measured in 
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triplicate for each bird in each treatment group. After the A TPase assay was stopped 

with TCA, the liberated inorganic phosphate in the supernatant was measured by 

adding 3 ml of 6 N H2S04:water:2.5% ammonium molybdate: 10% L-ascorbic acid 

(1:2:1:1) by the modified method of Fiske and SubbaRow (Fisk & SubbaRow, 1925). 

Absorbance was measured at 660 nm after 20 minutes at 37 °C. The Mg2+-dependent 

ATPase activity was assessed in the absence of K+ and Na+. The Na+,K+-ATPase · 

activity was calculated by subtracting Mg2+-activated ATPase activity from total ATPase 

activity. Protein content of the enzyme was determined by bicinchoninic acid protein 

assay (Smith et al., 1985) in microplate with bovine serum albumin as the standard. 

Experiment Five: The Effects of Lasalocid on Mitochondrial Respiration In Vitro 

Liver mitochondria and submitochondria were isolated from fasted, 4-5 week old, 

male, Cobb-cross broilers following a previous method (Chen et al., 1988). The birds 

were decapitated by guillotine and the livers were immediately removed. The tissue 

was washed with ice-cooled 0.25 M sucrose- I mM Tris-I mM EDTA, pH 7.4. The livers 

were minced with scissors, and homogenized in 4 volumes of the above solution using 

a polytron homogenizer (Model PT 10/35, Brinkmann Instruments, Switzerland) for 30 

seconds. The homogenate was centrifuged at 1,000 x g for 10 minutes. The 

supernatant was centrifuged at 15,000 x g for 15 minutes. Then the pellets were 

suspended in 0.25 M sucrose-5 mM Tris (pH 7.4) and centrifuged at 15,000 x g, for 15 

minutes. The pellets were resuspended in the above solution and subjected to 

ultrasonification for 3 minutes (treated for 1 minute followed by a 2 minute pause for 

cooling down). The solution was centrifuged at 15,000 x g for 15 minutes to remove 
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unbroken mitochondria. The supernatant was centrifuged at 105,000 x g for I hr to 

obtain submitochondrial particles. The submitochondrial particles are stored at -60 °C 

until analysis. All procedures were carried out at below 4 °C. 

Following isolation, the submitochondria were exposed to lasalocid and the 

activities of NADH oxidase, succinate oxidase and A TPase enzymes were determined 

in vitro. Lasalocid was dissolved and mixed in ethanol at concentrations of 1 -400 µM. 

Control reactions, that contained the same volume of ethanol, were performed concurrently 

experimental groups. 

Protein content of the submitochondria was determined by bicinchoninic acid 

protein assay (Smith et al., 1985) with bovine serum albumin as the standard. 

NADP Oxidase Activity. The activity of NADH oxidase was measured via a 

polarographic technique with a Clark electrode using the following reaction medium 

(1.0ml total volume): 50 mM KH 2 P04 -NaOH buffer (pH 7.4); 100 µg cytochrome c; and 

0.1-0.3 mg submitochondri.al particles. The doses of lasalocid used in these studies 

were 0, 1, 2, 4, 6, 8 µM. The medium was incubated at room temperature (25± 1°C) 

for 5 minutes. Then the reaction was started by the addition of 1 mM NADH. 

Succinate Oxidase Activity. The activity of succinate oxidase was measured via a 

polarographic technique with a Clark electrode using the following reaction medium (1.0 

ml total volume): 50 mM KH 2 P04 -NaOH buffer (pH 7.4); 200 µg cytochrome c; and 

0.1-0.3 mg submitochondrial particles. The doses of lasalocid used in these studies 

were O, 50, 100, 200, 300, and 400 µM. The reaction was started by the addition of 30 

mM sodium succinate. 
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Submitochondrial ATPase Activity. A TPase activity was measured using the following 

medium (1ml total volume): 10 mM Tris-HCI (pH 7.8); 2 mM MgC!i; and 50- 100 µg 

submitochondrial protein. The doses of lasalocid used in these studies were 0, 25, 50, 100, 

150 200 µM. After incubation at 37 °C for 5 minutes, the reaction was started with the 

addition of 3mM ATP. The reaction proceeded for 10 minutes at 37 °C and terminated with 

1 ml 15% trichloroacetic acid. After centrifugation, the liberated inorganic phosphate was 

measured using a previous method (Chen et al, 1992). 

Experiment Six: Direct Effects of Lasalocid on the Sciatic Nerve In Vitro 

Two, 5 week-old, male, Cobb-cross broilers were euthanitized by decapitation after a 

1 week acclimatization period. The right and left sciatic nerves were rapidly removed from 

2-5 mm distal to the greater trochanter of the femur to 2-5 mm proximal to the stifle joint. 

The nerves were cut into 3 section, approximately 15 mm long, 2 mm wide and 1 mm thick. 

The segments were randomly assigned to an incubation treatment group. 

The nerve segments were incubated at varying time periods (30, 60 or 120 min.) at 

37° C in an oxygenated (95% 0 2: 5% CO2 ), complete ringer's solution with or without the 

addition of 100 µM lasalocid. Additional treatment groups used a calcium-free ringer's 

solution with EGTA (to chelate Ca++) with or without the ionophore. Lasalocid was dissolved 

and mixed in 100% DMSO to make a 2mM stock solution. This stock solution was added to 

the complete or calcium-free ringer's solution immediately before the incubation to give a 

final concentration of 100 µM lasalocid. Any solution that appeared milky or cloudy was 

discarded. The greatest volume of DMSO that was added to any ringer's solution was 5%. 

All control incubations contained 5% DMSO to exclude a DMSO effect. The complete 
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ringer's solution contained: NaCl (860 mg/100 ml), KCI (30 mg/100 ml) and CaCI 2 (33 

mg/100 ml). The calcium-free ringer's contained the same concentrations of NaCl and KCI 

without any CaCI 2, additionally, 1 mM EGTA was added to chelate any residual calcium. All 

incubation solutions contained phenol red (1 :2000) to assess any pH changes that might 

occur during the incubation period. Any solution that turned yellow (indicating an acidic pH) 

during the incubation period was discarded. 

There were 12 different treatment groups: 1) complete ringer's, 30 min., 2) complete 

ringer's+ lasalocid, 30 min., 3) calcium-free ringer's, 30 min., 4) calcium-free ringer's+ 

lasalocid, 30 min., 5) complete ringer's, 60 min., 6) complete ringer's+ lasalocid, 60 min., 7) 

calcium-free ringer's, 60 min., 8) calcium-free ringer's+ lasalocid, 60 min., 9) complete 

ringer's, 120 min., 10) complete ringer's+ lasalocid, 120 min., 11) calcium-free ringer's, 120 

min., 12) calcium-free ringer's+ lasalocid, 120 min. After incubation for the prescribed 

times, the nerve segments were fixed and processed for electron microscopy. 

Electron Microscopy Following incubation, nerve segments were immediately 

removed and fixed in buffered gluteraldehyde-sodium cacodylate solution for 2 hours. 

Post-fixation, the tissues were placed in a 1: 1 solution of 2% osmium and 0.27 M 

cacodylate buffer for 2 hours. Segments of sciatic nerve were washed in a 1 M sodium 

cacodylate solution. After rinsing, tissues were dehydrated with a series of ethanol and 

propylene oxide rinses. The tissues were embedded in Polybed® and placed in an 

oven. 

Blocks of resin containing sciatic nerve segments were thick sectioned with a 

glass knife to approximately 550 microns. Areas of each block containing nerve tissue 

were then chosen for thin sectioning. Thin sections were mounted on 200 mesh 

copper grids and stained with uranyl acetate and lead citrate. Grids were examined 
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using a JEOL 100 CX transmission electron microscope at 80 KV. Areas of normal and 

abnormal appearing tissue were photographed for more detailed analysis. 

Statistical Analysis of the Data 

All data was initially examined by analysis of variance (ANOVA) with a general 

linear model (GLM) using SASS. Mean ± standard deviation for A TPase activity were 

calculated for each group and compared to controls using a Dunnett's test. Using a 

clinical scoring system to describe ataxia gives ordinal discrete data. These data are 

nonparametric and as such can be described by frequency distributions, median or 

rank transformations. Parametric test (mean+/- s.d.) are not appropriate for this data. 

Median ataxia score are presented for these studies with rank tests (Kruskal-Wallis or 

median test) used to measure differences between groups at the P < 0.05 level. For 

the frequency graphs, birds were classified as overtly ataxic if they had a clinical score 

of 3,4 or 5. 

Results 

Oral Dose-Response Characteristics 

Preliminary studies using 2.5 to 10 mg/kg lasalocid, p.a., t.i.d. failed to produce 

any consistent, dose-dependent ataxia (data not shown). Dose-dependent neurotoxic 

effects were consistently noted with doses ranging from 11.25 to 50 mg/kg produced 

ataxia. The incidence of overt ataxia, with a clinical ataxia score greater than 3, was 

10% at 11.25 mg/kg, 30 % at 22.5 mg/kg, 73% at 33. 75 mg/kg and 100% at 50 mg/kg 

(Figure 1 ). The severity of ataxia was also dose related as the median ataxia score 
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increased with higher doses of lasalocid. The median ataxia score was O for 11.25 

mg/kg, 1.0 for 22.5 mg/kg, 3.0 for 33.75 mg/kg and 4.0 for 50 mg/kg (Figure 3). 

The neurotoxic effects of lasalocid noted in these studies are ataxia, flaccid or 

floppy paresis/paralysis of the pelvic limbs. Extensor function is more severely affected 

as the joints of the pelvic limbs collapse as the syndrome worsens. The "duck walking" 

birds, clinical score 3, -ambulate by abducting and adducting the hip without extending 

the stifle or tibiotarsal-tarsometatarsal joint giving the broiler a "waddling" gait. Birds 

with a clinical score of 4 or 5 are non-ambulatory, even with vigorous encouragement. 

The onset of overt ataxia (clinical score 3- 5) in birds dosed with greater than 22.5 

mg/kg lasalocid, t.i.d. occurs within 48 hours. This is more rapid than field reports and 

feeding trials (Roder et al, 1996), but these doses exceed the daily intake for a bird 

consuming a ration containing 220 ppm lasalocid. 

The clinical neurologic examination results of these studies mirror the findings of 

the feeding trial (Roder et al, 1996), indicating a lesion in the peripheral nervous 

system. Birds with a clinical ataxia score of 2-4 had normal visual menace, pupillary 

light reflex, mandibular tone, palpebral reflex, hearing, vestibular reflexes, and gag 

reflex (swallowing). Lesioned birds with an ataxia score of 5 were too depressed to 

assess function of most cranial nerves, yet the birds maintained the ability to swallow 

until approximately 12 hours before death. The spinal reflexes (righting reflex, 

proprioreceptive placing, superficial and deep pain) of birds with ataxia scores of 1 or 2 

were the identical to controls (no drug). At a clinical score of 3, the birds were still able 

to right themselves, but with greater difficulty and still had normal responses to deep 

and superficial pain. These "duck-walking" birds also had diminished proprioreceptive 

responses. When the birds reached a clinical score of 4, most were unable to right 

themselves, but still attempted, while the birds with a score of 5 would make only feeble 
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attempts. Birds with a clinical score of 4 had varied responses to deep and superficial 

pain, while the birds with a score of 5 usually did not respond to painful stimuli. 

There was no mortality in birds receiving 33.75 mg/kg or less, t.i.d. for the 2 day 

experiments. Birds dosed with 50 mg/kg lasalocid, t.i.d. had a significantly higher 

(30%) mortality during the 2 day dosing period (data not presented). This may 

represent the upper level of the range of doses that can elicit neurotoxicity in this acute 

exposure model. 

Recovery Studies 

The recovery studies show that over a period of 1 O days, ataxic birds given 

11.25, 22.5 or 33.75 mg/~g exhibit clinical recovery. Birds dosed with 11.25 mg/kg had 

an initial median ataxia score of 2.5 while birds given 33.75 mg/kg had a median score 

of 3.0. Seven days after the last dose of lasalocid, the median ataxia score was the 

same (2.5) in the 11.25 mg/kg group and lower (1.0) for the 22.5 and 33. 75 mg/kg 

groups. After 10 days the median ataxia scores were 1.5 (11.25 mg/kg) and 1.0 (22.5 

and 33.75 mg/kg) indicating recovery (Figure 4). 
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Figure 1. Dose-Dependent Ataxia in 5 Week, Male, Cobb-cross Broiler Chickens Given 
Various Oral Doses of Lasalocid, t.i. d. for 2 Days. 
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Effects of Water Deprivation on Lasalocid-induced Ataxia 

Birds given 33.75 mg/kg lasalocid, t.i.d. , for 2 days had a median ataxia score of 

2.5. A 12 hour/day water deprivation+ lasalocid 33.75 mg/kg, p.a., t.i.d. resulted in a 

median ataxia score of 2.5 which is not statistically different from birds with ad lib 

exposure to water (Figure 5). The most notable difference between the treatment 

groups in this experiment was onset of clinical signs . Birds deprived of water attained 

their final ataxia scores by 24 hours while birds with ad lib exposure water attained their 

final ataxia score between 40 and 48 hours. 
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Figure 5. Median Ataxia Score for 5 Week, Male, Cobb-cross Broilers Given: no Drug, 
Lasalocid ( 33.75 mg/kg, t.i.d.) + Water, or Lasalocid ( 33.75 mg/kg, 
t.i.d.) + 12 Hour Water Deprivation. Score is Median of 5 birds 

Effects of Vitamin E Pretreatment on Lasalocid-lnduced Ataxia 

Pretreatment with 100 IU Vitamin E had no effect on the median ataxia score of 

lasalocid dosed broilers. Birds given 33. 75 mg/kg lasalocid orally had a median ataxia 
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score of 3.0 as did broilers given 100 IU Vitamin E /kg+ 33.75 mg/kg lasalocid (Figure 

6) . The ATPase activity of sciatic nerve homogenates showed a similar trend . The 

specific Na +. K +-ATPase activity (mean ± s.d.) for nerve homogenates was 61.4 ± 35.2 

(no drug), 40.9 ± 27.8 (33.75 mg/kg lasalocid) , 84.3 ± 23.7 (33.75 mg/kg lasalocid + 

Vitamin E). The specific Mg ++-ATPase activity (mean± s.d.) for nerve homogenates 

was 339.1 ± 115.7 (no drug), 271 .1 ± 58.1 (33.75 mg/kg lasalocid) , 282.9 ± 14.7 

(33.75 mg/kg lasalocid + Vitamin E). The specific Total -ATPase activity (mean ± s.d .) 

for nerve homogenates was 280.2 ± 62.2 (no drug) , 282.5 ± 15.9 (33.75 mg/kg 

lasalocid), 313.3 ± 81.3 (33.75 mg/kg lasalocid + Vitamin E) (Table II) . Replication of 

the measurement of A TPase activity using frozen aliquots of sciatic nerve 

homogenates gave similar results (data not shown) . 
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Figure 6. Median Ataxia Score for 5 Week, Male, Cobb-cross Broilers Given: no Drug , 
Lasalocid ( 33.75 mg/kg, t.i.d.), or Lasalocid ( 33.75 mg/kg, t.i. d.) + 
Vitamin E (100 IU/kg). Score is the Median of 5 Birds. 
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TABLE II 

SCIATIC NERVE HOMOGENATE ATPASE ACTIVITY FROM 5 WEEK, MALE COBB
CROSS BROILER CHICKENS GIVEN NO DRUG, LASALOCID ( 33.75 MG/KG, T.I.D.) 

OR LASALOCID + VITAMIN E (100 IU/KG) PRETREATMENT. 

Specific ATPase Activity (mM Pi/mg protein/min) 
Mean +/- s.d. 

Treatment Na+, K +-A TPase Mg++-A TPase Total ATPase 
Control (no drugs) 61.4 (35.2) 339.1 (115.7) 280.2 (62.2) 
Lasalocid 40.9 (27.8) 271.1 (58.1) 282.5 (15.9) 
Lasalocid + Vitamin E 84.3 (23.7) 282.9 (14.7) 313.3 (81.3) 

Effect of Lasalocid on Submitochondrial Enzymes 

Lasalocid shows a dose-dependent inhibition of hepatic submitochondrial NADH 

Oxidase specific activity from 5 week old broilers. The IC 50 for lasalocid on NADH 

oxidase activity in vitro was 2.90 µM. The doses of lasalocid used with the resulting 

percent inhibition (mean± s.d.) were: 1µM (9 ± 12 %); 2 µM (43 ± 3 %); 4µM (53 ± 12 

%); 6 µM (57 ± 9 %); and 8 µM (58 ± 12 %) (Figure 7). 

Lasalocid exhibited a dose-related inhibition of submitochondrial A TPase activity 

in vitro. The concentration of lasalocid and the percentage inhibition of A TPase were : 

25 µM:7.1 ± 12.6%; 50 µM: 14.2 ± 8.1; 100 µM: 12.0 ± 16.9 %; 150 µM: 28.4 ± 6.15; 

200 µM: 26.5 ± 0.64 (Figure 8). 

Lasalocid did not show any dose-related inhibition of hepatic submitochondrial 

succinate oxidase activity. At 50 µM, lasalocid stimulated ( 10%) enzyme activity, while 
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100 µM, 200 µM and 300 µM were essentially the same as control (no drug). At a 

concentration of 400 µM succinate oxidase activity was inhibited 33% (Table Ill). 
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Figure 7. Effect of Lasalocid (µM) on Submitochondrial NADH Oxidase Activity of Livers 
from Cobb-cross Broiler Chickens 
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TABLE Ill 

EFFECTS OF LASALOCID (µM) ON HEPATIC SUBMITOCHONDRIAL SUCCINATE 
OXIDASE ACTIVITY 

Dose of Lasalocid (µM) Percent Inhibition 
0 

50 -10 
100 3 
200 0 
300 3 
400 32 

Effects of Direct Lasalocid Exposure on the Sciatic Nerve In Vitro 

Examination of the control nerve fragments that were incubated in complete Ringer's 

solution without ionophore at the earliest time period (30 minutes) showed little or no 
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damage to the ultrastructure of the axon, myelin or Schwann cell (Figure 9). The 

neurofilaments and microtubules in the axon were homogeneous with a granular 

appearance. In most of the sections observed the axolemma was adhered to the Schwann 

cell membranes. The Schwann cells had normal ultrastructure and the lamella of myelin 

were concentric and compact. Segments incubated in complete media with lasalocid for 30 

minutes were very similar to controls (Figure 10). 

Nerve segments exposed to 1 OOµM lasalocid and calcium-containing Ringer's for 60 

minutes had more extensive damage to the myelin and Schwann cells. Many axons had 

early and reversible, indications of cell damage. Media with calcium and lasalocid had more 

pronounced changes, swelling of Schwann cells, some areas intramyelinic edema with 

resulting compression of the axolemma (Figures 11 & 12). Membrane-lined vacuoles are 

noted within Schwann cells. 

Nerve segments incubated for 120 minutes in calcium-containing Ringer's solution 

without the addition of lasalocid had only slight ultrastructural changes. There is some mild 

intramyelinic edema and vacuoles in the Schwann cell cytoplasm (Figure 13). In sections of 

nerve incubated with lasalocid (100 µM) and calcium for 120 minutes there was marked 

ultrastructural changes, especially to the Schwann cell cytoplasm and myelin. These 

sections exhibit severe disruptions of the myelin, intramyelinic edema resulting in 

compression of axonal cytoplasm (Figure 14). The neurofilaments of some axons were 

dispersed and unorganized in the ionophore and calcium -treated nerve segments, while 

others appeared normal. 

An interesting observation was made during tissue processing. The electron 

microscopist, blinded to treatments, noted that segments incubated for 120 minutes with 

lasalocid and calcium were very difficult to section. The ultrastructure of the nerves from 

these blocks was difficult to interpret , especially the longitudinal sections. Transverse 

sections of these tissues had many artifacts, tears and rips in the Polybed®. 
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Figure 9. Electron Micrograph of a Sciatic Nerve Incubated In vitro in Complete 
Ringer's Solution for 30 Minutes. Note the Intact Myelin Sheath (M) with 
Concentric and Compressed Laminae with a Normal Appearing Axon (A). 
There is an Artifact (*) in the Myelin. (Magnification 7200) 
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Figure 10. Electron Micrograph of a Sciatic Nerve Incubated In vitro in Complete 
Ringer's Solution with Lasalocid (100 µM) for 30 Minutes. Note the Early 
Damage to the Myelin as Evidenced by lntramyelinic Edema (E) and 
Vesiculation at the Myelin - Schwann Cell Interface (*) . The Axons 
Appear Normal. (Magnification 3600) 
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Figure 11. Electron Micrograph of a Sciatic Nerve Incubated In vitro in Complete 
Ringer's Solution with Lasalocid (100 µM) for 60 Minutes. Note the 
Severe Damage to the Myelin, lntramyelinic Edema (E), Vacuolation (V) 
of the Schwann Cell Cytoplasm, Degredation of the Myelin and 
Compression of Axons. (Magnification 2900) 
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Figure 12. Electron Micrograph of a Sciatic Nerve Incubated In vitro in Complete 
Ringer's Solution with Lasalocid (100 µM) for 60 Minutes. Note the 
Severe Damage to the Myelin , lntramyelinic Edema (*), and Vacuolation 
of the Schwann cell Cytoplasm. Note the Collection of Non-myelinated 
Nerves (N) not Affected by Treatment. ( +) is a tear in the Polybed. 
(Magnification 1900) 
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Figure 13. Electron Micrograph of a Sciatic Nerve Incubated In vitro in Complete 
Ringer's Solution without Lasalocid for 120 Minutes. Note the Mild 
Changes in the Myelin with Some Early Edema, Vacuoles and Vesicles (*) 
and Swollen Mitochondria in the Cytoplasm of Schwann Cells. The 
Axons (A) are Not Compressed. (Magnification 2900) 
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Figure 14. Electron Micrograph of a Sciatic Nerve Incubated In vitro in Complete 
Ringer's Solution with Lasalocid (1 00 µM) for 120Minutes. Note Severe 
Damage to the Myelin, Extensive lntramyelinic Edema (E), Vacuolation 
and Degredation of the Myelin with Compression of Axons (A). 
(Magnification 2900) 
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Discussion 

Oral administration of lasalocid at doses ranging from 11.25 - 50 mg/kg, t.i.d. 

cause a dose-dependent neurotoxicity in broiler chickens. The neurotoxicity primarily 

affects the peripheral nervous system and is adequately assessed by means of a 

clinical ataxia scoring system. The experimentally-induced toxicity in these studies 

mimics the field case reports and the previous feeding trials (Roder et al., 1996) in 

clinical description, time of onset and severity. These studies show that providing 

lasalocid per os by means of gelatin capsules can serve as a reliable model of 

chemically-induced peripheral neuropathy. The short treatment period (2 days), high 

incidence (>95 % at doses exceeding 30 mg/kg) and low mortality (<5%) provide 

sufficient number of affected animals for use in studies examining the possible 

pathophysiologic mechanisms. This experimental paradigm is much easier to execute, 

more cost-effective and less laborious than feeding trials. 

The ataxia scoring system used in these studies is similar to other investigators 

(Abou-Donia et al., 1978; Abeu-Donia, 1977; Abou-Donia et al., 1980; Dyer et al., 1992; el

Fawal et al, 1990a,b) and effectively describes lasalocid-induced neurotoxicity by peros 

dosing. The scoring system is sensitive enough to follow the progression and recovery of 

an affected bird. Similar tothe scoring system used by Abeu-Donia et al for OPIDN, this 

system forces the birds to walk to increase the probability of detecting gait abnormalities. 

This is essential in detecting the birds that have less severe lesions that are more prominent 

upon .exercise with many affected birds appearing normal· at rest. 
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The assessment of neurotoxicity by means of clinical signs and neurologic 

examinations suggests damage to the peripheral nervous system. The central nervous 

system functions seem to remain intact in the lesioned birds. Affected birds proceed 

through a progression of clinical signs that preclude the "duck-walking" and the 

"downer" birds. 

Affected birds in the earlier stages (Clinical Severity Scores 1 or 2) are alert, able 

to eat and drink. As the neurotoxicity progresses and the clinical severity score 

increases to 3 or 4 the birds become increasingly ataxic and are unable to walk to feed 

and water. In the last stage of intoxication (Clinical Severity Score 5), birds are 

depressed and lethargic, refuse to eat and frequently die 

The effects of withholding water for 12 hours on the incidence and severity of 

lasalocid-induced neurotoxicity were subtle. There is no statistically significant 

difference in the median severity score of ad lib and water withheld birds at the 48 hour 

ataxia assessment period. Empirical observations suggest that the onset of ataxia may 

be more rapid in the birds deprived of water for 12 hours/day during the treatment 

period. The birds in this group reached their final ataxia score by 24 hours, while those 

that had access to water did not develop ataxia until 36-48 hours into the treatment 

period. Birds exposed to water deprivation and heat stress usually have 

hypernatremia. These birds may exhibit signs of ataxia more rapidly than broilers 

under more ideal management conditions. 

These experiments suggest that oxidative stress and protection by Vitamin E is 

not involved in the pathogenesis of lasalocid-induced ataxia. This is different from the 

studies by VanVleet that describe a protective role for Vitamin E in the pathogenesis of 

monensin-induced myopathy in pigs (Vanvleet et al, 1987). The addition of Vitamin E 

(100 IU/kg/day) also had no effect on sciatic homogenate ATPase activity. 
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Alternatively, the dose of Vitamin E (100 IU) or the frequency of administration may not 

be adequate to protect against lasalocid-mediated damage. 

Inhibition or reduction of sciatic nerve A TPase does not appear to be involved in 

the pathogenesis of lasalocid-induced ataxia. These results agree with findings in 

streptozocin-treated diabetic Sprague-Dawley rats (LoPachin et al., 1993) and diabetic 

mutant C57BI/Ks mice (Bianchi et al., 1987). In these studies peripheral neuropathy 

and axonal ionic changes (LoPachin et al., 1993) we·re not explained by changes in 

ATPase function. In contrast, the influence of lasalocid on sciatic nerve ATPase 

differs with previous reports of diabetes-induced peripheral neuropathy (Brismar & 

Sima, 1981; Llewelyn & Thomas, 1987; Greene et al, 1987; Hermenegildo et al.,1992). 

The findings of the current study might be explained by the different cell types affected 

in these syndromes. Diabetic neuropathy primarily affects the axon while lasalocid 

seems to first affect the myelin. There are Na+,K+-ATPase isoform differences 

between these cell types with a.2 more prevalent ih glial cells and a.3 more commonly 

found in neurons. Additionally, there are species (dog, rat, human) differences in the 

abundance and importance of these isoforms of Na+,K+-ATPase (Decollogne et 

al., 1993). Another possible explanation for these results surround the complexity of 

intracellular regulation of A TPase activity in vivo. In vitro , lasalocid causes a dose

dependent inhibition of ATPase activity (Roder et al, 1996). In the intracellular 

environment Na+,K+-ATPase is subject to complex, highly regulated control 

mechanisms. Ionic regulation, in vivo, exerts a powerful control over these enzymes 

(McGeoch, 1990; Azuma et al., 1991; Rayson, 1990). Increased intracellular levels of 

calcium drastically increase the function of the Na+,K+-ATPase, an expected result of 

introducing lasalocid into the biologic system. The elevated calcium increases ATPase 
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mRNA, enzyme synthetic rates and releases enzyme inhibition (Decollogne et 

al., 1993). This would help offset the ionophore-induced degradation of the ionic 

gradients, to maintain homeostasis. This may also explain differential effects on the 

A TPase enzyme in vivo and in vitro. Alternatively, lasalocid may have only an indirect 

effect on the function of the activity of the Na+,K+-ATPase. The ionophore may alter 

critical membrane-bound cations (Mg++) that regulate the structure or activity of the 

enzyme (Antonio et al, 1991). 

The inhibition of NADH oxidase and submitochondrial A TPase activity by 

lasalocid in chicken liver mitochondria suggest that the ionophore may alter intracellular 

energetics that may play a role in ataxia. Previous studies have shown lasalocid can 

inhibit mitochondrial energy coupled processes, even below the concentration 

necessary for cation transport (Lin et al, 1973). Lasalocid may depress the 

mitochondrial respiratory chain leading to decreased ATP production. The lowered 

intracellular ATP concentration would affect the higher metabolic tissues (nervous 

system) and diminish a myriad of intracellular functions. Previously, cisplatin 

nephrotoxicity has been shown to mediated by an early mitochondrial injury, causing 

depressed ATP, which precedes inhibition of Na+,K(+)-ATPase activity (Brady et, 

1993). A similar process may be occurring in lasalocid-induced neurotoxicity in broilers. 

' 

Direct lasalocid exposure can produce time- and calcium- dependent ultrastructural 

damage similar to that found in ataxic birds fed the ionophore (Roder et al, 1996, Gregory 

et al, 1995). The electron micrographs indicate that these changes primarily affect the 

myelin and secondarily the axon. The changes noted in these studies are similar to 

those reported earlier with lasalocid (Gregory et al, 1995) , A23187 (Schlaepfer, 

1977b,a), ionomycin (Smith & Hall, 1988) and the results of ataxic birds fed 270 ppm 
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lasalocid (Roder et al, 1996). The ability of lasalocid to complex with and transport calcium 

ions across cell membranes is the most plausible mechanism for these changes. The 

elevated intracellular concentrations of calcium probably interact with a calcium-reactive site 

within the myelin or activate some calcium-dependent enzymes within the Schwann cells. 

The lack of direct axonal effects with lasalocid incubation with a calcium containing is an 

interesting observation to this study. This may relate to tissue composition and the selective 

affinity for the ionophore. The hydrophobic nature of lasalocid may cause it to be found at 

greater concentrations in lipid-rich tissues such as myelinated nerves. 

In summary, the results of these studies demonstrate the ability of lasalocid to directly 

cause a dose-dependent neurotoxicity with specific ultrastructural changes in the sciatic 

nerve. This experimental model mimics field cases of "duck walking" broilers. The 

determination of a range of per os doses that can reliably reproduce this ataxia is a useful 

tool for further mechanistic studies. Recovery from lasalocid-induced ataxia is possible by 

removing the drug and providing good supportive care. Water deprivation and Vitamin E do 

not appear to have a significant role in the pathogenesis of this syndrome. Alteration of 

mitochondrial respiratory chain function, especially NADH oxidase and A TPase, may be an 

important subcellular site of action for lasalocid. Calcium-mediated ultrastructural changes 

may involve activation a calcium-dependent enzyme within the myelin sheath that leads to 

breakdown or a calcium mediated alterations of cellular energetics. Additionally, lasalocid 

may bypass the normal, intracellular regulatory mechanisms and activate calcium-mediated 

cell death in the sciatic nerve. 
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CHAPTER IV 

SUMMARY AND CONCLUSIONS 

The results of all of the previous studies indicate that lasalocid causes a peripheral 

neurotoxicity in broiler chickens. In the feeding trials (Chapter II), the incidence of ataxia 

was low at normal use levels (90 ppm) but increased exponentially at greater than 2x 

normal use levels (180 ppm). In these studies, lasalocid exhibited a dose-dependent ataxia 

in broilers of 3 weeks and 6 weeks of age. Transforming the percentage neurotoxicty data 

with a log dose by probit response produced a straight line that could be further analyzed by 

linear regression. The toxic ration concentration of lasalocid that would cause ataxia in 25% 

of the flock, was approximately 220 ppm for both age groups. 

The feeding trials also established the ability of the clinical ataxia scoring system to 

screen large numbers of birds for evidence of neurotoxicity. The scoring system can also 

be used on an individual, following the animal through the different stages of disease. The 

scoring system is organized such that the classifications indicating overt neurotoxicty 

(Scores 3,4,5) would be detected by untrained individuals. The clinical score 3also 

represents a threshold of gross observable ataxia. The simplicity of the tool allows it to be 

used by several different individuals concurrently. 

Clinical neurologic evaluation of lesioned birds indicate that the peripheral nervous 

system is primarily involved. The significantly reduced nerve conduction velocities of ataxic 
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birds support the neurotoxicity of lasalocid. Serum electrolytes, enzymes (CPK, AST, LOH) 

and gross necropsy findings confirm that lasalocid does not cause any significant muscle 

damage which is further evidence that lasalocid-induced ataxia is not due to myonecrosis 

Histologically and ultrastructurally, the myelin of the sciatic nerve is most commonly 

affected. Damage to the myelin include: myelin splitting, intramyelinic edema, myelin 

vacuolation and Schwann cell degeneration and appear to precede any axonal damage. In 

many sections, the myelin would have significant damage and the microtubules and 

neurofilaments looked normal. 

These studies also showed that monensin and salinomycin do not elicit ataxia at 

concentrations up to Bx the recommended use levels. Gross pathologic lesions, 

histopathology, serum electrolytes and enzymes (CP, LOH, AST) reconfirmed the myotoxic 

nature of salinomycin and monensin. 

The per os dosing studies (Chapter Ill) further refined the dose and time interval 

necessary to cause ataxia tn broiler chickens. A dose between 33.75 and 50 mg/kg, t.i.d., 

will produce greater than 90 % ataxic birds with less than 5 % mortality. These per os 

doses (30 and 50 mg/kg, t.i.d.) correspond to .ration levels of 990 ppm and 1500 ppm, 

respectively. These calculations assume that the birds consume 10% of their body weight 

in feed per day. The clinical ataxia scoring system is a useful, reliable toxicologic endpoint 

that can screen large numbers of animals. The scoring system also has merit for examining 

time to onset of ataxia or recovery from the syndrome. The results of the clinical ataxia 

scoring system were validated by histopathology, electrophysiology and serum chemistries. 

The per os dose is reliable and should prove useful in prophylactic, therapeutic or 

mechanistic studies. The results of the water deprivation (12 hours/day) study did not show 

a difference in the severity of ataxia after 48 hours of lasalocid (33.75 mg/kg) treatment. 
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The water deprived birds exhibited a more rapid onset of ataxia as compared to birds 

provided water ad lib. Although in the current experiments, vitamin E did not provide any 

protection at 100 IU/kg, there is potential for performing small scale preliminary studies to 

examine several possible therapies before attempting larger scale studies. To accomplish 

similar results using the recommended dose of lasalocid in a feeding trial would require 

between 300 - 500 birds. 

The effects of lasalocid on the mitochondrial function are also presented in Chapter 

Ill. The NADH oxidase inhibition indicate that lasalocid can reduce the amount of ATP 

generated in hepatic mitochondria. This can result in a decrease in the function of the 

various cation "pumps" in cells responsible for iohic homeostasis. This may be a subcellular 

site of action for lasalocid-induced ataxia. 

The direct effect of lasalocid (100µM) on the sciatic nerve of broilers in vitro was 

described in Chapter Ill. There are similar ultrastructural changes (primarily to the myelin) in 

vitro as compared to the feeding trials. The severity of these changes seem to be related to 

calcium levels in the incubation media. Nerves incubated for 120 minutes with lasalocid and 

calcium had serve intramyelinic edema with resulting compression of the axolemma. 

Sciatic nerve segments incubated in calcium-containing media for 120 minutes had little 

ultrastructural change. These results suggest that some calcium-sensitive mechanisms, 

perhaps a calcium-sensitive Phospholipase A2, are involved in the pathogenesis of 

lasalocid-induced neurotoxicity. 

These studies failed to find a relationship between alteration of A TPase activity and 

neurotoxicity The A TPase activity from various organs of birds in the feeding trials was not 

significant different from controls while in vitro, lasalocid caused a dose-dependent 

reduction in ATPase activity. The in vitro results are probably due to the ionophore's actions 
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on a magnesium- or calcium- sensitive of the enzyme. Lasalocid administration had no 

detrimental effects on sciatic nerve A TPase activity in the per os gavage studies (Chapter 

Ill). Sciatic nerve ATPase activity has been implicated in the pathogenesis of diabetes

induced neuropathy. The differences between the in vitro studies and the whole animal 

studies may be due the fact that in vivo, there are adaptations (upregulation, production of 

new enzyme, removal of inhibitory factors) by cells to increase overall A TPase function 

and ensure ionic homeostasis. 

Lasalocid causes a dose-dependent peripheral neurotoxicity in broiler chickens. 

These studies show that the ataxia caused by lasalocid is not due to muscle necrosis , as 

evaluated by serum chemistries, gross pathology and histopathology. The use of a clinical 

ataxia scoring system is a useful tool in measuring the incidence and severity of the 

neurotoxicity. The sciatic nerve myelin is the primary tissue damaged in this disease as 

shown by reduced MNCV, rapid recovery, histologic and ultrastructural damage. Lasalocid 

can also directly damage the sciatic nerve after in vitro exposure and evaluated by electron 

microscopy. 

Lasalocid-induced neurotoxicty may provide a useful, non-mammalian , acute model 

of drug-induced peripheral neuropathy. Additional mechanistic data must be determined 

before this model will be of practical use. 
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APPENDIX A 

RATION COMPOSITION FOR FEEDING TRIALS 
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Ingredients 

Corn 
Soybean meal 
Fat 
Dicalcium phosphate 
Calcium carbonate 
Salt 
Vitamin mix1 

Trace elements2 

DL-methionine 

Calculated Analysis: 

ME Kcal/Kg 
Crude Protein (%) 
Calcium(%) 
Phosphorus(% ave) 

Starter Diet(%) 

47.18 
42.00 
6.30 
2.35 
1.20 
0.40 
0.20 
0.10 
0.25 

3165 
24.79 

1.00 
0.53 

Grower Diet(%) 

52.74 
36.50 

7.00 
1.61 
1.23 
0.40 
0.20 
0.10 
0.20 

3282 
22.56 

0.92 
0.45 

1 Mix supplies the following per kilogram of diet. Vitamin A (14,109 I.U.), Vitamin 
03 (5,291 I.U.), vitamin E ( 47.63 1.U.), vitamin 812 (0.014 mg), Niacin (26.5 mg), 
riboflavin (3.6 mg), Choline (705.5 mg), Menadione (1.16 mg), FolicAcid (1.76 
mg), Pyridoxine (3.52 mg), Thiamine (3.52 mg), d-Biotin (0.167 mg). 

2 Mix supplies the following per kilogram of diet. Manganese (120 mg), zinc (80 
mg), copper (10 mg), iodine (1 mg), calcium (180 mg), selenium (0.15 mg), iron (75 
ma). 
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APPENDIX 8 

CLINICAL NEUROLOGIC EVALUATION CHECKLIST 
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Area Evaluated 

Head 

Neck and Forelimbs 

Pelvic Limbs 

Reflexes Examined 

Visual menace test 

Pupillary light reflex 

Mandibular tone 

Palpebral reflex 

Hearing , Vestibular reflexes 

Gag reflex (Swallowing) 

Righting Reflex 

Pain (Superficial and Deep) 

Righting Reflex 

Pain (Superficial and Deep) 

Proprioceptive positioning 

136 

Specific Nerve(s) Tested 

CN II (optic),CN VII (Facial) 

CN II, CN Ill (Oculomotor) 

CN V (Trigeminal) 

CN V, CN VII 

CN VIII (Vestibulocochlear) 

CN IX (Glossopharyngeal), 

CN X (Vagus), 

CN XII (Hypoglossal) 
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