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CHAPTER I 

INTRODUCTION 

Chemistry is concerned with the properties of molecules and their 

reactions. Most chemical processes occur in gas phases or condensed 

phases. Molecular dynamics simulation methods have proved to be an 

effective tool fe>r the investigation of such processes. 1,2 Simply, molecular 

dynamics is the study of the motion or movement of any kind of molecular 

species over time. This can be achieved by numerical integration of the 

classical equations of motion for the chosen system. The form of these 

equations depends upon the system potential energy and upon the choice of 

coordinate system. The quantities of interest and characteristics of the system 

can be determined from the results of the molecular dynamics simulations. 

The development of modern computer technology expands the possibilities of 

molecular dynamics simulations and allows the molecular dynamists to 

address larger and more difficult problems of chemical interest. 

Classical molecular simulations involve three main steps. First, a model 

molecular system is created. Based on this model, a potential energy surface 

which contains the information related to inter- and intramolecular interaction 

is developed. Most potential energy surfaces are usually parametrized with 

the parameters being fitted to experimental data and the results of 

semiempirical or ab initio calculations. Second, classical trajectories on this 
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potential-energy surface are performed by integration of the classical 

equations of motion for the system of interacting particles over a given period 

of time. In stochastic cases, the classical trajectory is replaced by Monte Carlo 

simulations3 where the set of molecular coordinates at a given moment 

depends only on the molecular configuration at the previous moment. The 

final step of molecular dynamics methodology is the analysis of the 

trajectories. The macroscopic properties of the system are extracted from the 

dynamic behavior of the system at the molecular level. The calculations of 

diffusion rates, intramolecular and intermolecular energy transfer rates, or 

distribution of energy over the available degrees of freedom are typical 

examples of quantities determined from trajectory analysis. 

Our studies presented in this thesis consist of three parts. The first part 

is concerned with the dynamics of intramolecular vibrational relaxation. The 

second part involves the investigation of intramolecular energy transfer and 

the power spectrum for vinyl bromide which exhibits a continuous frequency 

modulation (CFM) effect. 4 The third part is directed toward the understanding 

of diffusion dynamics of chemical species isolated in an imperfect rare-gas 

matrix. 

Format of the Thesis 

Following this brief Introduction, we present some basic concepts and 

theoretical methods in Chapter II that are used in the molecular dynamics 

simulations. Statistical and nonstatistical dynamics, Monte Carlo methods and 

classical variational transition-state theory, the calculation of mode energies 

and the CFM power spectra method are discussed. 
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Chapter Ill reports studies of intramolecular energy transfer rates 

and pathways for vinyl bromide. Following an introduction in this field, the 

projection method is described. Next, the results of IVR dynamics studies are 

discussed. Chapter IV describes the investigation of CFM effects and 

intramolecular energy transfer dynamics in the vinyl bromide system. In 

Chapter V, we present studies of molecular dynamics in matrices. The 

diffusion of hydrogen atoms in rare gas matrices at cryogenic temperatures 

are investigated. 

REFERENCE 
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(edited by B. J. Berne, Plenum Press, New York, 1977), vol. 5, p.137. 

4. P. M. Agrawal, D. C. Sorescu, R. D. Kay, D. L. Thompson, L. M. Raff, J. B. 

Conrey, and A. K. Jameson, J. Chem. Phys. (in Press). 
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CHAPTER II 

BASIC CONCEPTS AND THEORETICAL METHODS 

IN MOLECULAR DYNAMICS 

Potential-Energy Surfaces 

Using on Born-Oppenheimer approximation, 1-4 the motion of 

the electrons can be decoupled from that of the nucleL Therefore, the 

Schrodinger equation for a molecule gives two separate equations 

representing electron and nuclei motion, respectively.· In molecular dynamics 

simulations, the effort is concentrated on the motion of nuclei without explicit 

examination of the electrons. The equation describing the electronic motion 

depends only parametrically on the positions of the nuclei. The energy is a 

function of the coordinates of the nuclei alone and this energy is usually 

called the potential energy surface. The primary objective of molecular 

dynamics is the investigation of the motion of nuclei on the appropriate 

potential energy surface. 

Potential energy surfaces are essential to our understanding of 

molecular stability, vibrational spectroscopy, conformational changes, and 

reaction dynamics. The potential energy surface gives the interaction energy 

as a function of system configuration space. The construction of specific 

potential energy surfaces for individual molecular systems involves the fitting 
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of parameters to the available ~xperimental data and some semiempirical or 

ab initio computational results. 

Classical Dynamics 

The method of calculating classical trajectories is conceptually simple. 

The initial conditions for every atom in the system of interest are set and 

Hamilton's equations of motion are integrated until. some predetermined 

condition, such as a reaction occurs or a predetermined time limit is reached. 

The final coordinates of each atom of each trajectory can then be analyzed. 

These methods have been described in detail elsewhere.1, 2, 5 

The first step of classical trajectory calculations is related to the choice 

of initial conditions. In our IVR studies, we used the projection method 

developed by Raff.6, 7 The method is based on the determination of the time 

dependence of the normal mode velocities by projection of the instantaneous 

Cartesian velocities of the atoms onto the normal mode vectors. The basic 

idea is as follows: 

q(t) = LQ(t), (II. 1) 

where L is a (3N x 3N) square matrix whose columns are the normalized 

projection vectors. q(t) is a (3N x 1) column vector whose elements are the 

Cartesian velocities and Q(t) is a (3N x 1) column vector whose elements are 

the normal mode, center-of-mass, and rotation velocities. The normal mode 

velocities may therefore be obtained from 
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Q(t) = Lq(t) (II. 2) 

The corresponding total kinetic energy can be calculated from the normal 

mode velocities. For the purpose of trajectory calculations, zero-point energy 

is first inserted into the molecule. This determines the initial normal mode 

velocities from which the initial Cartesian velocities are computed from the 

equation (11.1 ). The trajectory is then integrated for a random period of time 

which is less than the period for the lowest frequency vibrational mode in the 

molecule. This integration serves to randomize the energy between potential 

and kinetic energies and thereby provides the required vibrational phase 

averaging. 

The projection method has been previously applied to the study of 

intramolecular energy flow in gas-phase 1,2-difluoroethane 6 and disilane 8. 

Decay rates and pathways of energy flow for initial excitation of each of the 18 

vibrational modes have been determined. The results obtained from the time 

variation of the normal-mode velocities were used to extract the entire first-

order mode-to-mode energy transfer rate coefficient matrix . Essentially, this 

provides a complete description of intramomolecular energy flow in the 

molecule. We have used similar methods for the study of intramolecular 

vibrational relaxation dynamics of vinyl bromide. 

Based on a given potential-energy surface and the selection of initial 

conditions, the Hamiltonian equations of motion 1,9 determine the trajectory 

dynamics. For a system of N atoms, 

aH(p,q) · =q 
ap, 

(i=1,2, ... ,3N), {II. 3) 
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_aH_(p_, q_) = -p. 
aq I 

(i=1,2, ... ,3N) (II. 4) 

where H(p,q) is the Hamiltonian of the system, and p and q are the set of 6N 

generalized coordinates. There are totally 6N-coupled differential equations 

of motion to be integrated for a given period of time. Depending on the time 

period and increment, this can be a computationally intensive calculation. The 

integration can be performed using a variety of numerical methods.1, 2 In our 

studies, a fourth-order Runge-Kutta routine1 was used. 

In the study of diffusion of hydrogen isolated in a matrix system, a 

damped trajectory method was used in which the system is allowed to relax 

toward its minimum-energy configuration. In this procedure, the kinetic energy 

of each lattice atom is set to zero and the classical Hamiltonian equations of 

motion for the lattice atoms are integrated until the total potential energy 

attains a minimum. This procedure can effectively increase the convergence 

rate of the required integrations. 

Monte Carlo Methods 

The multidimensional integrals that give the average properties of 

trajectories can be solved approximately by using Monte Carlo techniques. In 

fact, such statistical procedures are often the only practical approach to this 

problem. This is the case when one is attempting to study very rare events or 

events occurring on significantly different time scales. In general, the average 

or expectation value of a dynamical property, F, is given by 
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JF(q)P(q)dq 
(F) - -=--n -.----­

- JP(q)dq ' 
n 

(11. 5) 

where the q are the independent variables that define the state in phase 

space n , and P(q) is the probability density of the state of the system 

defined by q. For a canonical system, P(q) is the Boltzmann distribution , 

P(q) = exp(-H(q)/k8 T) , (11.6) 

where H(q) is the system Hamiltonia and ks is the Boltzmann constant. 

The simplest Monte Carlo approximant of equation (11. 5) is 

I,F(qn)P(qn) 

(F) -= .....a.,n ·=L,-P(q-n)-

n 

(11. 7) 

where n is the set of random points chosen from phase-space. If phase space 

is sampled using a Markov walk based on the normalized probability 

distribution P(q), Eq.(11.7) becomes 

(11. 8) 

However, this method has severe limitations due to the fact that a Markov walk 

based on P( q) is usually. confined to the low-energy regions of phase space. 

This results is low rate of convergence. 
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11 lmportance Sampling11 1, 10 has proven to be an effective way to 

increase the convergence rate in the Monte Carlo evaluation of the integral 

values in Eq.(11. 5). In this method, the sampling of phase space is altered so 

as to concentrate the configuration points in the regions which make the most 

important contribution to the integrals. Eq.(11. 5) can be rewritten as 

(11. 9) 

where a new weight function [w(q)] is defined by 

w(q) = N0P(q)P'(q) (11. 10) 

in which No is the normalization constant and P'(q) is the importance 

sampling distribution which depends on the system to be analyzed. If phase 

space is sampled using a Markov walk based on w(q), we have 

. L,F(qn)[P'(qn)r1 

(F) =-"-L,-[P-'(q-n)]......,..._1-

" 

(11.11) 

By choosing P'(q) so as to increase the frequency with which phase-space 

points in critical regions are sampled, the convergence rate obtained from 

(II. 11) can be significantly increased relative to that for Eq.(11. 5). 

In Metropolis sampling, a sequence of phase -space configurations are 

randomly generated to give a Markov chain. The probability that a system is in 
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a given state at the (i+ 1) step in a Markov chain is explicitly dependent only on 

the state at the (ith) step. A random walk of the system through the whole 

phase space is accomplished by moving one(or more) of the atoms at each 

step. A trial step is accepted or rejected in accordance with the probability 

w(q). It is commonly assumed, on the basis experience, that the most rapid 

convergence rate is obtained if approximately 50% of the attempted moves 

are accepted. 11 

Power Spectrum Method 

Power spectra provide a convenient way to compute the vibrational 

frequencies of a given molecule in a realistic manner. Because power spectra 

yield vibrational frequencies characteristic of the system energy, in contrast to 

normal-mode analysis which provides a correct description only at low 

energies, the method is a powerful tool in dynamical studies. 

It is known that the auto spectral density function can provide useful 

information on the intramolecular dynamics of polyatomic molecules. 

Whenever quasi periodic dynamics exist, sharp peaks corresponding to 

fundamentals, overtones and combination bands will be present in the auto 

spectral density function.12 In contrast, ergodic dynamics leads to broadened 

spectra containing many smaller peaks. Smith and Shirts 13 computed 

averaged power spectra for state-specific excitation of HCN. Their results 

show that the ensemble-averaged spectra do not exhibit the expected 

broadening and grassiness with increasing internal energy but that the 

spectra of individual trajectories do. Swell, Thompson, and Levine 14 have 

explored the power spectra obtained from classical trajectory computations to 
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study the polyatomic molecules C2H4, CH30NO, and SiF4 at the energies 

both below and above the dissociation threshold. It was observed that 

spectral mode identity is essentially retained even well above the threshold 

for dissociation and that no fully ergodic phenomena were observed. Chang 

et al . 15 have used power spectra as a diagnostic tool to identify the presence 

of statistical dynamics. This characteristic is attributed to a very high level of 

mode-mode coupling and large intramolecular vibrational redistribution rates. 

Most recently, power spectrum line shapes for oscillators undergoing a 

continuous modulation of the vibrational frequency have been investigated by 

Agrawal et al .16 The results suggest that line shape analysis can be used 

effectively as a probe of energy transfer rates. 

A power spectrum for a given coordinate, q, may be computed by 

taking the Fourier transform of either an autocorrection function, Cq( 't), or by 

transforming the coordinate itself.12 The procedure to evaluate the Fourier 

transform of the coordinate q(t) is given by 

(11. 12) 

The other procedure is to evaluate the Fourier transform of the autocorrelation 

function. The autocorrelation function is given by 

(11. 13) 

The power spectrum of Cq( i-) is obtained from 
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(11. 14) 

Both lc(m) and lq(m) are easily obtained from the results of classical trajectory 

calculations.12 

lc(m) and lq(m) are directly related in that lc(m) is the square of lq(m). 

This difference means that the two quantities emphasize the features of the 

dynamics in very different ways. Specific algorithms to evaluate either (II. 12) 

or (11. 14) can be found in Ref. (17). We have used this methodology in the 

present study to gain insight into the intramolecular energy transfer dynamics 

of vinyl bromide. 

Agrawal et al. 16 have shown that whenever an os~i,llator undergoes a 

continuous modulation ·of the vibrational frequency, the single, sharp line 

normally characteristic of such systems broadens and exhibits a wealth of fine 

structure components. The characteristic fine structure pattern is one of 

decreasing amplitude and spacing. By examination of a series of model 

oscillators that included harmonic systems with linear and exponential 

variation of the frequency without amplitude damping, a harmonic system with 

exponential damping of both the resonant frequency and the amplitude, and a 

Morse oscillator whose kinetic energy is being exponentially damped, it was 

shown that the position of the fine structure extrema depends linearly upon 

the initial oscillator frequency and the square root of the absolute value of the 

modulation rate. Since energy transfer in an anharmonic system produces a 

variation of the resonant frequency, a continuous frequency modulation(CFM) 

splitting of the power spectrum results. By assuming that the analytic result for 

a harmonic oscillator with a linear modulation is transferable to the 
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anharmonic case, Agrawal et al. 16 have obtained an expression relating the 

peak-to-peak fine structure spacing to the . Morse potential parameters, the 

initial oscillator energy and the IVR rate coefficient. The resulting equation is 

Ax~ax = -K{ (kE/3 / 41r)[ 2/ {µ(D - E)} ]1'2 } 
112

, (11. 15) 

where Ax~ax is the maximum peak-to-peak CFM splitting, D and pare the 

Morse well depth and curvature parameters, respectively, E is the initial 

oscillator, µ is the oscillator reduced mass, k is the IVR first-order rate 

coefficient and K is a proportionality constant which Agrawal et aJ.16 have 

found to be 0.667. 

Non-Statistical Effects and lntramolecular Energy Transfer 

The unimolecular decomposition of energized molecules is commonly 

treated using some form of statistical rate theory. The statistical assumptions 

of RRKM theory and classical variational transition-state theory imply that the 

molecular internal energy is randomly distributed over all the vibrational 

modes. That is, the energetically accessible phase space of the system must 

be fully explored on a time scale that is short relative to the reaction time. It 

has generally been assumed that this requirement will be fulfilled if the 

intramolecular energy transfer rate out of a given excited mode is large 

relative to the unimolecular reaction rate. If so, mode-specific chemical effects 

will not be observed. However, pronounced nonstatistical effects have been 

observed. 18 Therefore, the finding that there may exist numerous systems for 
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which such an assumption is invalid calls into serious question the use of 

statistical theoretical methods. 

Generally speaking, a statistical reaction rate is any rate computed 

using the assumption that the internal energy is randomly distributed 

throughout the molecule. ksta,is can be obtained by full minimization of the flux 

of system crossing a dividing surface per unit time. The microcanonical rate 

coefficient k(E) obtained from statistical transition state theory (EMS-TST) is 

one kind of statistical rate. 

k(E) can be expressed as an average over the microcanonical 

ensemble 19-20 

· _! 1 dro[H(r)-E] x o(qRC -qc)1q~c1 
k(E)- ~2--.,,--------- J dro[H(r) - E] ' 

(II. 16) 

where r is the complete set of position and momentum coordinates [p,q], 

H(r)is the system Hamiltonian excluding the center-of-mass motion, QRc = 
QRc(q) is the reaction coordinate, which may be a function of some or all of the 

coordinates q, and Qc is the critical value required for reaction. The integrals in 

Eq. (11. 16) are understood to be over the reactant part of phase space. 

Since the dividing surfaces employed in the EMS-TST calculations 

completely separate the reactant and product configuration space, it is 

impossible for reactants to undergo reaction without traversing the dividing 

surface. Due to trajectories that recross the dividing surface, the numerator of 

Eq. (11. 16) will therefore always tend to yield upper bounds for the 

corresponding trajectory rates. Figure 1 gives a simple illustration of this 
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point. Clearly the number of dividing surface crossings and the flux through 

the dividing surface will tend to be an upper limit to the true reaction rate. 

However, detailed comparisons of k(E) computed using EMS-TST 

18,20 and trajectory methods21 on the same potential-energy surface shows 

that in some cases ktraj>kems-tesr The only way such a result can occur is for 

the denominator of Eq.(11. 16), which sums the total phase space available to 

the reactant system, to be larger than· that which is actually available in the 

trajectory calculations. This would mean that the trajectories are not sampling 

the entire phase space that is energetically accessible. Significant 

nonstatistical effects are clearly present. This would suggest that 

intramolecular vibrational relaxation(IVR) is not complete over the entire 

phase space of the molecule on the time scale of the reaction. 

It is important to point out that the existence of very fast energy-decay 

rates out of all modes relative to the unimolecular reaction rates is not a 

sufficient condition to guarantee that the statistical assumption will hold. That 

is for a particular molecular system, it might be found that the intramolecular 

vibrational rate out of a given set of modes is fast relative to the unimolecular 

reaction rates but that the energy remains confined within a small subset of 

modes rather than becoming completely randomized over all the internal 

vibrational modes. IVR will be 11globally11 fast if and only if the mode-to-mode 

IVR rates between all modes are fast relative to the unimolecular reaction rate 

under investigation. The finding that IVR is not globally fast is sufficient to 

demonstrate that the unimolecular decomposition reactions of the molecule 

may not behave statistically. 
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Variational Phase-Space Theory Methods 

Variational Phase-Space Theory methods provide a way to estimate 

the reaction rates for statistical systems.22 Numerous detailed studies of 

diffusion and mobility on surfaces have been carried out by this methods. 23-

28 Whenever the diffusion energy barrier is low, these processes can be 

most conveniently studied using classical trajectories. For processes involving 

a high diffusion energy barrier or very low temperatures, it is more 

computationally feasible to employ variational phase-space method.23, 27 

The central idea of these methods is that a .reacting system can be described 

by the motion of a representative point in the phase space of the system. As 

illustrated in Fig.1, phase space is divided by a dividing surface into two 

regions corresponding to reactant and product space. Evaluation of the flux at 

which representative points pass through this surface in one direction will give 

an upper limit to the reaction rates provided the system behaves statistically. 

In this procedure, Monte Carlo methods are utilized to evaluate the flux across 

a dividing surface, S(p,q), in phase space.· This flux is given by 

F(T) = a-1 J,,. Jo[ S - So ]IV sle-/3H TI dqdp, , 
I 

(II. 17) 

where o[s- s0 ] is the Dirac delta function and so denotes the position of the 

dividing surface, Vs is the velocity perpendicular to the dividing surface, 

f3 = 1 / kT where k is the Boltzmann constant, H is the system Hamiltonian, and 

Q is the reactant-state partition function. In actual practice, a set of dividing 

surfaces dependent on a set of parameters is chosen. Since F(T) is an upper 
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limit to k(T), the minimum flux obtained from this set of surfaces represents the 

best approximation to the true reaction rate. 

The integrations over the momentum coordinates in Eq. (11.17) are done 

analytically so that only the configuration space integrations need to be done 

by Monte Carlo techniques. Because of the fact that the necessary condition 

for a reaction to take place corresponds to crossing the dividing surface at 

least once, we must have F(T) :::: k(T). Therefore, if F(T) is minimized with 

respect to the location and shape of the dividing surface, F(T) must approach 

k(T). If the statistical assumption holds and if the dividing surface is sufficiently 

general, we expect F(T) to be a tight upper bound to the true reaction rate 

coefficient. This is particularly true if a correction factor for surface recrossing 

is determined in the calculations.23 
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Dividing 
Surface 

Cross and 
.-..... -~ reaction 

Cross and 
~--.. _,,•·reaction 

Figure 1. Simple illustration of statistical transition state 

theory. Phase space is divided by dividing surface into 

two regions corresponding to reactant configuration 
I 

space and product configuration space. The space to the 

left of the dividing surface is the reactant configuration 

space and that to the right is product configuration space. 
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CHAPTER Ill 

INTRAMOLECULAR ENERGY RATES 

AND PATHWAYS FOR VINYL BROMIDE 

INTRODUCTION 

It is well known that the dynamics. of intramolecular vibrational 

relaxation (IVR) play an important role in unimolecular dissociation reactions. 

The statistical assumptions of unimolecular RRKM reaction rate theory and 

classical variational transition-state theory require that the molecular internal 

energy be randomly distributed over all the vibrational modes. This, in turn, 

requires that the IVR rate be large relative to the unimolecular reaction rate. It 

has previously been noted that.this is·a necessary, but not sufficient, condition 

to ensure a globally random distribution of internal energy 1. The observation 

of mode-specific effects implies that there exists an unimolecular reaction 

whose rate exceeds that needed for global intramolecular energy 

randomization. Since intramolecular energy transfer processes in most 

systems are fast2, only a few cases of mode-specific rate enhancement have 

been reported.3 

The computation of the rates and pathways of intramolecular energy 

flow for highly coupled, polyatomic systems has proven to be difficult. In 

general, classical studies of intramolecular energy transfer involve the 
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integration of the Hamiltonian equations of motion on a potential-energy 

surface. 11 Bond 11 or "mode energies" are then computed from the results. 

lntramolecular energy transfer pathways and rates are inferred from the 

calculated time variation of these quantities4. This procedure obviously 

involves an arbitrary definition of the "bond energy" which generally assumes 

a mode reparability that does not exist. Consequently, all potential and kinetic 

coupling terms involving the mode coordinates are omitted from the definition. 

As a result, one can never be certain whether a variation in "bond energy" is 

due to actual energy transfer to or from other modes or merely to changes in 

the magnitudes of the omitted coupling terms. Nor is it possible to be certain 

that the results themselves are not dependent upon the arbitrary definition 

adopted for 11 bond 11 or "mode energy1'. We have previously shown5 that these 

problems may be eliminated by analyzing the internal energy flow in a 

molecule from the envelope functions of the temporal variations of the mode 

kinetic energies computed using a coordinate system that diagonalizes the 

kinetic energy matrix. 

It has generally been assumed that a molecular system will exhibit 

statistical behavior provided the intramolecular energy transfer rates are large 

relative to the unimolecular reaction rates of the system. Since this is usually 

the case, statistical behavior is the expected norm. However, in recent years, 

both theoretical and experimental results suggest that nonstatistical behavior 

may be much more prevalent than previously suspected. Schlag and Levine6 

have noted that certain highly-excited, large molecules have been observed 

to dissociate much faster than RRK statistical theory? would predict. Newman­

Evans et aJ.Ba have reported experimental measurements of the thermal 

branching ratio of 1- and 2-phenylbicyclo[2. 1. 1 ]hex-2-enes-5-d to give 
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products differing only in the location of the deuterium atom. A 9:1 ratio of 

product isomers is observed rather than the 1: 1 ratio predicted by statistical 

theories of reaction rates. Newman-Evans et al. Ba also found that optically 

active trans-2-methyl-1-(trans-2-phenylethenyl) cyclopropanes resulting from 

the unimolecular rearrangement of enantiomeric methyl phenyl cyclopentenes 

are formed in a 5.9:1 ratio. These results are obviously nonstatistical. In a 

study of bond inversion in aziridine, Borchardt and BauerBb also noted the 

deviations between the measured rates and RRKM predictions. The 

unimolecular dissociation reactions of 1,2-difluoroethane, disilane and the 2-

chloroethyl radical have been investigated by Raff, Thompson, Sewell, and 

Schranz9-13 using both trajectory and classical variational transition-state 

theory (TST) with Efficient Microcanonical Sampling (EMS) methods. The 

calculations show the presence of significant nonstatistical effects on both the 

reaction rates and the product energy partitioning for 1,2-difluoroethane and 

disilane but not for the 2-chloroethyl radica113. Further investigations of these 

systems showed that the total IVR rate for the relaxation of a given mode is at 

least an order of magnitude greater than the reaction rates. Yet, nonstatistical 

dynamics still occurs. It was therefore suggested that the existence of a very 

fast IVR rate out of a given mode is not a sufficient condition to ensure 

statistical behavior 1, 9-12. 

Sorescu et al. 14-16 have conducted detailed theoretical studies of 

statistical effects in the skeletal inversion of bicyclo(2.1.0) pentane 14 and the 

decomposition of 2,3-diazabicyclo(2.2.1) hept-2-ene (DBH) 15, 16 using 

trajectory methods and EMS-TST statistical theory. The ring inversion is 

found to be statistical in all respects. The DBH reaction behaves statistically in 

that the distribution of energy is microcanonical and classical variational 
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transition-state theory calculations yield close upper bounds to the reaction 

rates. However, nonstatistical behavior is still found to be present because 

the system fails to explore all of the energetically accessible configuration 

space once it passes through the transition-state region. 

Most recently, both trajectory and EMS-TST calculations on the 

unimolecular dissociation reactions of vinyl bromide have been carried 

out 17, 18. The maximum reaction rate coefficient at the upper limit of internal 

energy considered {6.44 eV} is found to be 2.11 ps-1. The trajectory results 

show that the ratio of HBr to Br products is greater than unity in spite of the fact 

that the threshold for C-Br bond rupture lies below that for HBr elimination. It 

is also found that three-center H2 elimination is much more probable than 

four-center elimination even though the three-center threshold lies 0.33 eV 
.-:i 

above that for the four-center process. In view of the.se results, it was 

suggested17 that the decomposition of vinyl bromide may be nonstatistical. 

This possibility has been investigated by the computation of the reaction rates 

for C-Br bond scission, the three.,center elimination of HBr and three-center 

H2 elimination using statistical EMS-TST methods with the same potential 

hypersurface used in the trajectory calculations 17, 18. The EMS-TST results 

for C-Br bond rupture and HBr three-center elimination are found to be upper 

bounds to the rate coefficients computed from the trajectory calculations. 

These data make it possible for C-Br bond scission and HBr elimination to be 

statistical processes. In contrast, the EMS-TST rates for three-center H2 

elimination are loV"'.'er than the corresponding rates obtained from the 

trajectory studies. We have previously noted10-12 that if k{E}EMS-TST < 

k{E}trajectory on the same potential-energy surface, the system must behave 

nonstatistically. Thus, our previously drawn hypothesis 1 7 that the 
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decomposition dynamics for vinyl bromide may be nonstatistical is at least 

partially correct. 

In this chapter, the results of a detailed investigation of intramolecular 

energy transfer in vinyl bromide are reported. The primary objectives of the 

study are to determine the dynamics underlying the nonstatistical behavior of 

the three-center H2 elimination process and to determine why C-Br bond 

scission and three-center HBr elimination appear to obey the assumptions of 

statistical theory. This chapter is organized into four parts. Following the 

Introduction, we review the basis of the computational method and provide a 

brief description of the potential-energy surface. Section Ill is devoted to the 

details of intramolecular energy transfer in vinyl bromide and their relationship 

to the statistical/nonstatistical behavior of the system. Section IV summarizes 

our principal findings. 

Computational Methods and Potential Surface 

A. Computational methods 

The unimolecular dissociation dynamics of vinyl bromide have been 

investigated using standard classical trajectory and EMS-TST methods 17-19. 

The results show that three-center H2 elimination is a nonstatistical process 

whereas C-Br bond scission and three-center HBr elimination appear to 

behave statistically. In order to obtain quantitative information about the 

intramolecular energy transfer dynamics that lead to these results, we have 

employed a previously described projection methods. This method is based 

on the calculation of the temporal variation of a diagonal kinetic energy matrix. 
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The energy transfer rates and pathways are extracted from the envelope 

functions of this temporal variation. Since the potential energy is not involved 

in the analysis, all problems associated with potential coupling between the 

vibrational modes are eliminated. The basis of the method is reviewed below. 

Let Li ( i = 1,2,3, ... ,3N) represent a set of normalized (3N x 1) 

transformation vectors that project the normal mode vibrations, Qi (1 5 i 5 3N -

6), the center-of-mass translations, Qi (3N-5 5 i 5 3N-3), and the rotations 

about the molecular center-of-mass, Qi (3N-2 5 i 5 3N) onto the Cartesian 

displacements, Qj (j = 1,2,3, ... ,3N). At time t, the instantaneous Cartesian 

velocities may therefore be written as linear combinations of the elements of 

Qi: 

3N 
qi(t)= L,Qj(t)Lij 

j=l 
for i = 1,2,3, ... ,3N . 

Equation (Ill. 1) may be written in matrix form as 

. . 
q(t) = LQ(t), 

(111. 1) 

(111. 2) 

where L is a (3N x 3N) square matrix whose columns are the normalized 

projection vectors Li. q(t) is a (3N x 1) column vector whose elements are the 

Cartesian velocities and Q(t) is a (3N x 1) column vector whose elements are 

the normal mode, center-of-mass, and rotation velocities. The normal mode 

velocities are therefore given by 

Q(t) = e 1 ci<t) . (Ill. 3) 
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The kinetic energy Tat time tis: 

3N 
T(t) = 0.5Lmi q f (t) . 

i=l 

Substitution of Eq.(111. 1) yields 

3N 3N 3N 

T(t) = 0.5LmiL 2,Qj(t)Qk(t)LijLik 
i=l j=lk=l 

3N 3N 
"" "" ·2 2 = 0.5 "-mi"-Qj (t)Lij, 
i=l j=l 

(Ill. 4) 

(Ill. 5) 

since the kinetic energy is diagonal when expressed in terms of the normal 

mode velocities . Consequently, the kinetic energy may be written as 

3N 
"" ·2 T(t) = "-aj Qj (t) , 
j=l 

provided the mode constant aj is defined to be 

3N 

aj = 0.5LmiL1j . 
i=l 

(111. 6) 

(111. 7) 

Equation (Ill. 6) shows that the total molecular kinetic energy is the uncoupled 

sum of the individual mode kinetic energies, Ti{t), where 

(111. 8) 
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The total energy associated with a given mode alternates between 

potential and kinetic energy with a frequency characteristic of the mode 

fundamental. If there is no energy flow to or from the mode, the envelope of 

these oscillations will have a zero slope. A rapid energy transfer, however, 

will produce a large slope to the envelope function. Thus, the energy flow 

through the molecule may be determined directly from the temporal variation 

of the envelopes of the mode kinetic energies. 

Using the virial theorem, we may compute an approximate average 

total energy associated with a given mode i from 

i rt +.1t ·2 = 2(At)- Jt O ai Qi (t)dt, 
0 

(111. 9) 

where t is a time in the interval to ::; t ::; to+At. The time interval At is chosen to 

average out most of the fluctuations in Ti(t) due to beats and the 

interconversion of potential and kinetic energies within the same mode. 

If the initial excitation energy is inserted into mode i, the temporal 

variation of <Ei(t)> is directly related to the rate of energy flow out of this mode. 

For the present study, we have assumed that this energy flow can be 

adequately described by a first-order rate law. While this assumption is not 

rigorously correct, it will be seen that it is sufficiently accurate to permit us to 

determine in a semiquantitative fashion the nature of IVR in vinyl bromide. 

Under these conditions, the intramolecular energy transfer rate coefficient ki 

can be deduced by fitting the equation 
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<Ei(t)> = Ei(O) exp[-ki t] + (1 - exp[-ai t]) <Ei(oo)> (111. 10) 

to the data obtained from Eq.(111. 9). In Eq.(111. 10), ki, ai and <Ei(oo)> are 

parameters representing the total relaxation rate coefficient of mode i, an 

average total rate. coefficient for energy transfer into mode i and the statistical 

equilibrium value of <Ei(t)> at infinite time, respectively. 

B. Potential-energy Surface 

The potential surface used in the present studies is a global surface 

accurately fitted to all of the available structural, thermochemical, kinetic and 

spectroscopic experimental data and to the results of ab initio electronic 

structure calculations for the transition states for several decomposition 

channels 17. The ab initio calculations were carried out using 6-31 G(d,p) 

basis sets for carbon and hydrogen and H.uzinaga's (4333/433/4) basis set 

augmented with split outer s and p orbitals and an f orbital for bromine. 

Electron correlation is incorporated using Moller-Plesset fourth-order 

perturbation theory with all single, double, triple, and quadruple excitations 

included. The average absolute difference between AE values for the various 

decomposition channels obtained from the global surface and experimental 

measurement is 1. 76 kcal/mol. Predicted equilibrium geometries for reactants 

and products are in good to excellent accord with experiment. The average 

absolute difference between the fundamental vibrational frequencies 

predicted by the global surface and those obtained from Raman and IA 

spectra vary from 10.2 cm-1 for H2C=CHBr to 81.3 cm-1 for H2C=CH20. The 

results for vinyl bromide are given in Table I. The potential barriers for seven 
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decomposition channels agree with the ab initio calculations to within an 

average difference of 1.4 kcal/mol. 

c. Numerical Procedures 

The initial states for . the trajectories are prepared in the manner 

described in our previous investigation of the gas-phase, unimolecular 

decomposition of vinyl bromide 17. Initially, vinyl bromide is placed in the 

equilibrium conformation predicted by the global surface 17. Zero-point 

vibrational energy is inserted into each of the vinyl bromide normal modes 
• 

using Eq.(111. 1) with the Qi(t) fqr rotation and translation set to zero. 

Hamilton's equations of motion are then integrated for a randomly chosen 

period tp given by 

tp=~t. (Ill. 11) 

where ~ is a random number selected from a distribution that is uniform on the 

interval [O, 1] and t is the characteristic period of the lowest frequency 

vibrational mode in vinyl bromide. The numerical integrations are effected 

using a fourth-order Runge-Kutta procedure with a fixed step size of 0.01 t.u. 

(0.0001019 ps). Equation (Ill. 11) effectively averages over the vibrational 

phases of the lattice. Subsequent to the above integration, the desired 

excitation energy, Eex, is inserted into the selected mode k. This is 

accomplished by first using Eq.(111. 3) to project out the instantaneous normal 

mode velocities, Cli(tp). The velocity Clk(tp) is then altered to Glk'(tp) to reflect 

the insertion of the excitation energy Eex. The required velocity is given by 

(tll. 12) 
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where the sign is chosen randomly. The new Cartesian velocities are 

computed using Eq.(111. 1 ). In the present investigation, Eex has been taken to 

be 3.0 eV. 

The subsequent dynamical behavior of the system is followed for a 

period of 450 t.u. (4.586 ps) to determine the nature of the energy transfer. 

After every tenth integration step, Eq.(111. 3) is used to compute the 
. 

instantaneous values of the Qi(t) (i=1,2,3, ... ,3N). The mode kinetic energies 

are calculated using Eq.(111. 8). Approximate average mode energies at time t* 

are obtained from Eq.(111. 9) using At= 25 t.u. (0.255 ps) and t* =to+ At/2. Four 

significant digits of energy conservation is generally achieved. 

The classical variational transition-state theory calculations (EMS­

TST) 18 are carried out by defining a series of dividing surfaces which 

completely separate the reactant and product configuration space. A Markov 

walk with importance sampling included is carried out using efficient 

microcanonical sampling methods 11, 12. The flux across each of the dividing 

surfaces is computed from the results of the walk. If the system behaves 

statistically, the computed EMS-TST flux must be an upper bound to the rate 

calculated from the trajectory analysis since there are no corrections for 

recrossings of the dividing surface. Under these conditions, the dividing 

surface yielding the minimum flux is the best statistical approximation to the 

true trajectory rate. If we find kEMS-TST(E) < kTraj(E), the system is not 

behaving statistically. Such a result has been obtained for three-center H2 

elimination from vinyl bromide, but not for three-center HBr elimination or for 

the C-Br bond scission 18. 
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lntramolecular energy transfer near the transition states for three-center 

HBr and H2 elimination is examined by placing the system in the minimum-

energy configuration achieved during the Markov walk on one of the dividing 

surfaces. The excess energy, Etotal - Epotential, is randomly partitioned 

among the internal coordinates using Eqs.(111. 1 )-(Ill. 8). Energy transfer 

pathways from this initial configuration are then investigated using the 

procedures described above. 

Results and. Discussion 

A. Energy Transfer Rates and Pathways 

We have examined the pathways and rates of intramolecular energy 

flow out of each of the 12 vibrational modes in vinyl bromide. Figures 2a-2d 

show typical results. These figures report the temporal variation of the 

instantaneous mode kinetic energies computed from Eq.(111. 8) for the case in 

which 3.0 eV of initial excitation energy is partitioned into the C-H stretching 

mode v1 o. Some important qualitative features of the intramolecular energy 

transfer dynamics for vinyl bromide at or near its equilibrium configuration are 

immediately obvious upon inspection of Figs. 2a-2d. Figure 2a shows the 

kinetic energies in the low-frequency C-C-Br bending, CHBr wag and C-Br 

stretching modes while Fig. 2d shows the corresponding results for the high­

frequency C-H stretching modes. The kinetic energies in the various bending, 

wags, torsion and C=C stretching modes are given in Figs. 2b and 2c. 

Inspection of the kinetic energy in v10 reveals that the envelope function 

decreases to near equilibrium levels in 5-1 O t. u. (0.051 - 0.102 ps). Obviously, 

the total energy transfer out of this mode is very fast. 
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The pathways of energy flow from mode v 1 o are easily determined 

from the results given in Figs. 2a-2d. The primary transfer pathway from v1 o is 

clearly to v 12 since only v 12 has a kinetic energy amplitude that increases 

rapidly over the first 4 t.u. (0.0408 ps). Around 4 t.u., energy begins to flow into 

the third C-H stretching mode, v11. These results are not surprising in view of 

the near resonance between the C-H stretching modes. All other modes are 

at least 1400 cm-1 out of resonance with the C-H stretches. 

The secondary pathways for energy flow from the C-H stretches may 

also be identified from Fig. 2: At 1 O t. u. (0.102 ps), the kinetic energy in the 

CH2 wag, v4, begins to increase rapidly. At this point, only the C-H stretching 

modes are excited so we may safely draw the qualitative conclusion that for 

this trajectory, the CH2 wag provides the major pathway for energy transfer 

from the C-H stretches to the other vinyl bromide modes. 

Around 20 t.u. (0.204 ps), the C-Br stretch, v3, and the vs torsion begin 

to gain kinetic energy. Since the kinetic energy in these modes failed to 

increase significantly during the initial 20 t.u. (0.204 ps), it is reasonable to 

conclude that the energy flow is from the CH2 wag, not the C-H stretches. All 

other modes are essentially inactive during the primary, secondary and 

· tertiary phases of energy equilibration. 

After 60 t.u. (0.601 ps) have elapsed, the C-C-Br bend (v1 ), CHBr wag 

(v2), C-C-H5 bend (va), H-C-H bend (vs) and the C=C stretch (vg) begin to 

gain energy. These transfer processes probably involve primarily coupling of 

these modes to the C-Br stretch and torsional modes. Mode v7, the C-C-H3 

bend, is totally inactive throughout the entire process. 
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The above results demonstrate that although the total energy transfer 

rate out of v1 o is fast, it is not 11 globally11 fast. IVR will be 11globally" fast if and 

only if the mode-to-mode IVR rates between all modes are fast relative to the 

unimolecular reaction rate under investigation. If this condition exists, the 

internal energy will be distributed randomly over phase space on a time scale 

that is short relative to the characteristic lifetime of the reactant and the 

fundamental assumption of statistical theory will hold. This condition is not 

satisfied for vinyl bromide with 3.0 eV of excitation energy. Several of the 

modes remain nearly inactive for about 0.6 ps while v7 is inactive for over a 

full picosecond. This once again emphasizes the point we have previously 

made 1, a total energy transfer rate out of a given mode that is fast relative to a 

unimolecular reaction rate is a necessary condition for statistical behavior, but 

it is not a sufficient condition. If vinyl bromide were to undergo a unimolecular 

reaction at 3.0 eV excitation energy whose characteristic relaxation time were 

0.5 ps, the assumption that the energy will be distributed microcanonically on 

this time scale would obviously not be valid. 

The finding of a trajectory for which IVR is not globally fast is sufficient to 

demonstrate that the unimolecular decomposition reactions of vinyl bromide 

may not behave statistically. The internal energy will not be distributed 

microcanonically on a time scale that is short relative to the unimolecular 

reaction lifetime. Moreover, it may be inferred that the set of trajectories for 

which this is true must be very large otherwise the probability that such a 

trajectory would be found among the infinitude of possible trajectories would 

be vanishing small. 

We have demonstrated the truth of the above statement by following the 

temporal variation of the mode kinetic energies in 1 O additional trajectories 
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obtained by choosing differing values of tp in Eq.(111. 11) prior to the 3.0 eV 

excitation of v1 Q. In every case, the major energy transfer pathway is from v1 o 
to v12 or to v11 and v12. That is, the principal relaxation mechanism always 

involves transfer to the other C-H stretching modes. The secondary relaxation 

pathway for the trajectory leading to Fig. 2 is through the CH2 wag (v4). 

Examination of all of the trajectories shows that the H-C-H bend (vs) also 

provides a secondary path in some cases. In all cases, modes v1 , v2, v7 and 

vg do not begin to exhibit significant excitation until about 50 t.u. (0.510 ps) 

have elapsed. IVR in vinyl bromide is not globally fast. 

We have carried out similar calculations for all of the modes in vinyl 

bromide. That is, the temporal variations of the mode kinetic energies have 

been determined for 3.0 eV excitation of mode k fork= 1, 2, 3, ... , 12. In each 

case, a single trajectory was examined. The results are qualitatively similar to 

those given in Fig. 2. IVR is never globally fast. There are always several 

modes present which are essentially inactive during the first 0.5 psec 

subsequent to excitation of mode k. As noted above, we do not expect this 

situation to be altered by examination of a large ensemble of trajectories. 

Table 2 summarizes the principal transfer pathways determined from these 

calculations. The results for initial excitation of v1 o suggest that the major 

pathways for energy transfer will be unaltered by the computation of an 

ensemble of trajectories. However, such extensive calculations would 

probably reveal the presence of other secondary pathways. 
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B. First-order Relaxation Model 

By using Eq.(111. 9), an approximate average total energy associated 

with a given mode, <Ei>, can be calculated. The data expressed in terms of 

the temporal variation of <Ei> are easier to visualize than the envelope of the 

mode kinetic energy. Figure 3 shows typical results for v11 and vs for the 

case in which 3.0 eV is initially partitioned into these modes. The calculated 

results are shown as points on the plot. These points are connected by 

straight lines for visual clarity. It can be seen that the decay rate for v 11 is 

about a factor of two slower than the corresponding rate for vs. These energy 

transfer rates are much faster than those previously computed for the 

relaxation of various modes in 1,2-difluroethane12. 

A more quantitative measure of the total relaxation rates may be 

obtained using Eq.(111. 1 O) to fit the data obtained from Eq.(111. 9). In Eq.(111. 1 O), 

ki represents in an approximate fashion the total energy transfer rate 

coefficient from mode i. Thus, 

12 
ki = L kij I 

j=1 
0 ~:i) 

(Ill. 13) . 

where kij is the mode-to-mode energy transfer rate coefficient from mode i to 

mode j. Figure 4 shows a typical example of the degree of accuracy to be 

expected from Eq.(111. 10). In this case, 3.0 eV of excitation energy is initially 

partitioned into the C=C stretch (v9). Equation 111.9 is used to compute the 

points shown in Fig. 4. The solid curve is the result of a least squares fitting of 

Eq.(111. 1 O) to these points. It is evident that the major features of the energy 

36 



transfer are sufficiently well described by the first-order model to make it a 

useful tool for the presentation of data in succinct form. 

While it is possible to determine qualitatively the major energy transfer 

pathways and, to a lesser extent, the secondary pathways from the results of a 

few trajectories, this is generally not the case for rate coefficients. Accurate 

determination of these quantities requires averaging over a large ensemble 

sampled from appropriate distributions. Nevertheless, rate coefficients 

determined from limited subsets of trajectories generally give the correct order 

of magnitude and are often accurate to within a factor of two. This point is 

illustrated in Fig. 5 which shows the temporal variation of <E(t)> for the 

extremes of the· rates obtained from the trajectories computed for 3.0 eV 

excitation of mode v10. The average result for all trajectories is shown as the 

solid curve. The values of k1 o obtained by least-squares fitting of Eq.(111. 1 O) 
max 1 min 1 ave 1 are k10 = 24.8 ps- , k10 = 6.5 ps- and k10 = 13.3 ps- . The spread of 

the distribution gives a root-mean-square deviation from the mean of 1. 7 ps-1. 

We might therefore expect that the average deviation from the ensemble 

average of k1 o computed from any single trajectory will be ab.out 13% and the 

maximum deviation will be no more than a factor of two. 

Table 3 presents a summary of the total relaxation rates for each of the 

12 vibrational modes of vinyl bromide in the near vicinity of the equilibrium 

conformation. These rates were computed by fitting Eq.(111. 10) to the data 

obtained using Eq.(111. 9). The fastest relaxing modes are the torsion and the 

CH2 wag modes, vs and v4, respectively. The slowest modes are the C-H 

stretch for the -CHBr group, v11. and the C-C-Br bending mode, v1. It is 

perhaps not unexpected that v 11 should relax slowly. The other modes 

associated with the -CHBr moiety have very low frequencies. Hence, they 
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would be expected to be ineffective in relaxing the high-frequency C-H stretch. 

Figure 6 shows the data computed from Eq.(111. 9) and the first-order fits for the 

slowest and fastest relaxing modes in vinyl bromide. As noted above, we 

expect these rate coefficients to deviate from the ensemble average by an 

average of about ± 13% and .by no more than a factor of two. Consequently, 

they give a semiquantitative measure of the total relaxation rates of the vinyl 

bromide modes at 3.0 eV excitation energy. 

Using classical trajectory methods21, the thermal gas-phase 

decomposition dynamics of vinyl bromide on the current ground-state 

potential surface have been investigated at several energies in the range 4.0 -

6.44 eV in excess of zero-point energy 17. At each energy investigated, the 

total unimolecular reaction rate coefficient kT(E) was obtained by fitting the 

decay plot to a first-order expression. The maximum reaction rate coefficient 

at the upper limit of internal energy considered (6.44 eV) is 2.11 ps-1. This 

value is a factor of 3. 1 smaller than the total relaxation rate for the slowest of 

the 12 modes. It is a factor of 11.8 slower than the fastest relaxing mode, vs. It 

is clear that the total energy transfer rates in vinyl bromide are fast relative to 

the unimolecular decomposition rates. It is therefore possible for the system to 

exhibit statistical behavior. However, because the energy transfer is not 

globally rapid, such statistical behavior is not guaranteed1, 11, 12. 

c. IVR in the Transition-State Regions for Three-Center Elimination 

The fundamental assumption of all statistical theories of reaction rates 

is that all states or phase-space points with equal energy are sampled with 

equal probability. Thus, for a unimolecular reaction to be well-described by 
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statistical theory, the internal energy must be randomly distributed on a time 

scale that is fast relative to the reaction rate. This must be true not only for 

configurations at or near that for the reactant but also for all other 

nonequilibrium regions of configuration space such as those along the 

reaction coordinate and in the near vicinity of the transition state. 

In all of the above calculations, vinyl bromide is near the equilibrium 

configuration. The results for this configuration show that the total energy 

decay rates for all vibrational modes are large relative to the unimolecular 

decomposition rates of vinyl bromide. However, it is also found that the 

intramolecular energy transfer is not globally rapid. 

We have performed similar calculations with vinyl bromide initially in 

the minimum-energy configurations found in the EMS-TST calculations 18 on 

the dividing surfaces. for three-center H2 and HBr elimination. In these 

calculations, the total energy is 6.44 eV plus zero-point energy. The excess 

energy, Etotal - V where Vis the potential energy, is randomly distributed over 

the internal modes of the system using Eqs.(111. 1)-(111. 8). That is, the values of 

Ti(O) in Eq.(111. 8) were chosen randomly subject to the constraintthat 

12 
l:.Ti(O) = Etotal - V 
i=1 

(Ill. 14) 

Using the procedures outlined in Section II, the intramolecular energy transfer 

dynamics for these configurations have been assessed. 

Figure 7 shows the variation of the H-H and two of the C-H distances 

with time for a system that is initially in the minimum-energy configuration on a 

dividing surface near, but not quite at, the optimum surface for three-center H2 

elimination. As can be seen, this system fails to dissociate to H2 and 
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bromovinylidene. The system samples configuration points along the reaction 

coordinate for about 50 t.u. (0.510 ps) after which it reenters the reactant 

configuration space. Figures Sa - Sd show the temporal variation of the mode 

kinetic energies during this process. The results are qualitatively similar to 

those seen in Fig. 2. Initially, the C-H stretching modes, the C-C-H5 bend 

(vs), the CH2 wag (v4), the H-C-H bend (vs), the C=C stretch (vg) and the vs 

torsional mode gain a significant amount of kinetic energy as the system 

explores configurations along the reaction coordinate. The C-C-H3 bend (v7) 

and the Br modes gain only small amounts of kinetic energy. This is not 

surprising since the transition state for three-center H2 elimination found in 

the Markov walk 18 is a nonplan£:lr structure in which the H4----H5 moiety lies 

approximately perpendicular to the C=CHBr plane with its center below the 

C=C bond. Around 20 t.u. (0.204 ps), the energy in the C-H stretch (v11) and 

the CH2 wag (v4) decrease to a near zero value. This energy is transferred 

primarily to vs, vs, vs, vg and v1 o. The C-C-Br bend (v1 ), the CHBr wag (v2) 

and the C-C-H3 bend (v7) play very little role in the overall lVR dynamics. The 

kinetic energy profiles clearly show that IVR is not globally rapid. 

Obviously, some of the mode-to-mode IVR rates in configurations along 

the reaction coordinate for three-center H2 elimination are slow relative to the 

unimolecular reaction rate. This implies that some of the atom-atom coupling 

constants 13 are very small in these configurations. When coupled with the 

fact that IVR is not globally rapid for the reactant configuration, these results 

suggest that three-center H2 elimination from vinyl bromide may not be a 

statistical process. As mentioned earlier, recent EMS-TST studies 18 confirm 

this expectation. These studies give the result kEMS-TST(E) < kTraj(E) for all 

energies examined. This inequality shows the system to be nonstatistical. 
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Figures 9a - 9d report the temporal variation of the mode kinetic 

energies for a system that is initially in the minimum-energy configuration on 

the optimum dividing surface for three-center HBr elimination. This trajectory 

samples phase space points in the near vicinity of the transition state for about 

25 t.u. (0.255 ps) after which HBr dissociation occurs. These data are 

significantly different than those seen in Figs. 2 and 8. Here, all modes except 

the C-C-Br bend (v1) participate fully in the IVR dynamics. There is a near 

globally random distribution of the energy on a time scale that is fast 

compared to the unimolecular reaction rate. The atom-atom coupling 

constants 13 computed for the HBr dividing surface are, as the data in Fig. 9 

suggest, much larger than the corresponding values obtained for the optimum 

three-center H2 dividing surface 18. Such data indicate that three-center HBr 

elimination from vinyl bromide may be well-described by statistical theory. 

The EMS-TST calculations18 support this prediction in that we find that for this 

reaction kEMS-TST(E) > kTraj(E) for all energies investigated. 

Summary 

The dynamics of intramolecular energy transfer in vinyl bromide have 

been investigated using projection methods and results obtained from 

classical trajectories computed on a global potential-energy surface that has 

been fitted to thermochemical, structural, kinetic and spectroscopic data and 

the results of electronic structure calculations for the transition states 17. The 

temporal variation of the average vibrational mode energies are computed 
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from the projected mode kinetic energy profiles using the virial theorem. Total 

energy decay rates and the pathways of energy flow for initial 3.0 eV 

excitation of each of the 12 vibrational modes in the equilibrium configuration 

have been determined. We have also investigated the energy transfer 

dynamics in systems for which the initial configurations correspond to the 

minimum-energy structure found in the EMS-TST calculations 18 on one of the 

dividing surfaces for three-center H2 and HBr elimination reactions. 

The results for the equilibrium structure show that the total relaxation 

rate for each mode can be characterized with fair accuracy by a first-order rate 

law. Least-squares fitting of such a rate law to the computed data shows that 

the minimum decay rate among the 12 modes is at least 3.1 times larger than 

the decomposition rate for vinyl bromide at an internal energy of 6.44 ev17. 

Such an inequality is a necessary condition to satisfy the basic assumption of 

statistical theories. However, we also find that energy transfer is not globally 

rapid. Some modes are essentially inactive for over one picosecond. 

Consequently, it is possible that statistical theory will not adequately describe 

the decomposition processes occurring upon excitation of vinyl bromide. 

In configurations along the reaction coordinate for three-center H2 

elimination, some mode-to-mode IVR rates are slow relative to the H2 

elimination rate. This fact, coupled with the absence of an IVR rate in 

configurations near equilibrium that is globally fast, indicates that three-center 

H2 elimination from vinyl bromide may not be accurately described by 

statistical theory. 

In configurations near the minimum-energy structure on the optimum 

dividing surface for three-center HBr elimination, all mode-to-mode IVR rates, 
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except those involving the C-C-Br bend, are fast relative to the HBr elimination 

rate. This suggests that statistical theory is more likely to accurately predict 

the three-center HBr elimination rate than the rate for three-center H2 

elimination. 
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Table I 

Notation and frequencies for the 
vibrational modes of vinyl bromide. 

The atom numbering is given in the figure. 

Mode No. Description of mode va (cm-1) Expt.b (cm-1) 

-----------------------------------------------------------------------------------------------------------
V1 C-C-Br bending 345 344 

v2. CHBr wag 576 583 

v3 C-Br stretch 623 613 

v4 CH2 wag 889 902 

vs CH2-CHBr torsion 963 942 

vs C-C-H5 bending 1004 1006 

v7 C'.'C-H3 bending · 1214 1256 

vs H-,C-H bending 1377 1373 
vg C=C stretch 1606 1604 

v10 C-H stretch 3004 ·" 3027 

v11 C-H stretch 3086 3086 

v12 C-H stretch 3121 3113 

(a) Calculated by normal mode analysis on the global ground-state 

potential given in Ref. 17. 

(b) Reference 20 

3 
H 

/ 
R_ 
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Table II 

Primary and secondary relaxation 
pathways in vinyl bromide 

-------------------------------------·------------------------------------------------------------------------------------
Major relaxation Secondary relaxation 

Major pathway modes modes 

v1~v2 CHBr wag C-C-H,H-C-H bending 

v2~v1 C-C-Br bending C-C-H bending 

v3~v2,v5 CHBr wag,CH2-CHBr torsion C-C-Br bending 

v4~v9 C=C stretch C-C-H5 bending 

v5~v4,v3 CH2 wag, C-Br stretch C=C, C-H stretch 

V6~V4 ,V9,Vl 1 CH2 wag, C=C stretch, C-C-Br bending 
C-H stretch 

v7~vs, vu H-C-H bend, C-H stretch .C-H stretch 

va~v2.v10 CHBr wag, C-H stretch CH2 wag 

V9~V5,V2,V8 CH2-CHBr torsion, CHBr wag, C-H stretch 
H-C-H bend 

v10~v11,v12 C-H stretch CH2 wag 

v11~v10,v12 C-H stretch C=C stretch 

v12~v10,v11 C-H stretch CH2 wag, H-C-H bending 

--------------------------------------------------------------------------------------------------------------------------
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Table Ill 

Total IVR rates computed by least-squares fitting of Eq.(111.10) to 
the results obtained using Eq.(111. 9). In each case, 3.0 eV of 

excitation energy in excess of zero point energy is 
Initially partitioned into the Indicated vibrational mode. 

==================================· ========================== 
Mode i ki (ps-1) ai (ps-1) <Ei{O)>{eV) <Ei{oo)> (eV) 

V1 8.7 8.7 3.02025 0.289 

V2 15.9 15.9 3.03394 0.267 

V3 17.0 1.5 3.03571 
·' 

0.317 

V4 18.6 2.9 3.05512 0.315 

V5 24.8 24.8 3.05968 0.284 

Ve 14.2 14-.4 3.06219 0.328 

V7 14.2 1.6 3.07520 0.309 

Vs 17.8 8.5 3.08383 0.328 
Vg 14.2 3.7 3.09923 0.317 
V10 (a) 13.1 13.1 3.14621 0.330 

V11 6.5 6.5 3.19093 0.301 

V12 16.5 6.3 3.22701 0.352 

============================================================= 
(a) Average of 11 trajectories. All other entries are single trajectory results. 
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Figure 2{a): Temporal variation of the mode kinetic energy for v1, v2, and v3 

computed using Eq. (111. 8) for the case in which 3.0 eV of 

excitation energy in excess of zero-point energy is initially 
partitioned into the C-H stretching mode v1 o. Each successive 

curve is displaced upward by 1.50 eV to provide visual clarity. The 

abscissa unit is 1 t.u. = 0.01019 ps. In this case, vinyl bromide is 

initially in its equilibrium conformation. 
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Figure 2(b): Temporal variation of the mode kinetic energy for v4, vs, and va 

computed using Eq. (Ill. 8) for the case in which 3.0 eV of 

excitation energy in excess of zero-point energy is initially 

partitioned into the C-H stretching mode v1 o. Each successive 

curve is displaced upward by 1.50 eV to provide visual clarity. The 

abscissa unit is 1 t.u. = 0.01019 ps. In this case, vinyl bromide is 

initially in its equilibrium conformation. 
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Figure 2(c): Temporal variation of the mode kinetic energy for v7, va, and vg 

computed using Eq. (Ill. 8) for the case in which 3.0 eV of 

excitation energy in excess of zero-point energy is initially 

partitioned into the C-H stretching mode v1 o. Each successive 

curve is displaced upward by 1.50 eV to provide visual clarity. The 

abscissa unit is 1 t.u. = 0.01019 ps. In this case, vinyl bromide is 

initially in its equilibrium conformation. 
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6.0 (d) 
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Figure 2(d): Temporal variation of the mode kinetic energy for v1 o, v11, and 

v12 computed using Eq. (Ill. 8) for the case in which 3.0 eV of 

excitation energy in excess of zero-point energy is initially 
partitioned into the C-H stretching mode v10. Each successive 

curve is displaced upward by 1.50 eV to provide visual clarity. The 

abscissa unit is 1 t.u. = 0.01019 ps. In this case, vinyl bromide is 

initially in its equilibrium conformation. 
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Agure 3: Decay curves for the average mode energies for initial excitation of 

modes vs and vi 1 with 3.0 eV above zero-point energy. The 

points computed from the Eq.(111. 9) are connected with straight 

lines for visual clarity. The abscissa unit is 1 t.u. = 0.01019 ps. 
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Rgure 4: Decay curve tor the average mode energy for initial excitation of 
mode vg with 3.0 eV in excess of zero-point energy. The points 

are computed from the Eq. (111. 9). The solid line is the predicted 

first-order result obtained by least-squares fitting of Eq.(111. 10) to 

the points. The abscissa unit is 1 t.u. = 0.01019 ps. 
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Rgure 5: Decay curves for the average mode energy for initial excitation of 
mode v10 with 3.0 eV in excess of zero-point energy. The points 

computed from Eq.(111. 9) are connected with line segments to 

enhance the visual clarity. The dashed results show the 

trajectories yielding the minimum and maximum decay rates 

obtained in the ensemble of 11 trajectories examined. The solid 

line shows the ensemble average. The abscissa unit is 1 t.u. = 
0.01019 ps. 
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Rgure 6: Decay curves for the average mode energy for initial excitation of 
modes v5 and v11 with 3.0 eV in excess of zero-point energy. 

The points are computed from the Eq. (Ill. 9). The solid line is the 

predicted first-order result obtained by least-squares fitting of 
Eq.(10) to the points. (A) v5, (8) v11. The abscissa unit is 1 t.u. = 

0.01019 ps. 
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Time (t.u) 

Rgure 7: Temporal variation of two C-H distances and the H-H distance for a 

trajectory in which vinyl bromide is initially in the minimum-energy 

configuration on a dividing surface near the optimum critical 
surface for three-center H2 elimination. The total energy is 6.44 

eV plus the zero-point energy of vinyl bromide in the equilibrium 

configuration. Each successive curve is displaced upward by 2 A 
to provide visual clarity. The abscissa unit is 1 t.u. = 0.01019 ps. 
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Figure 8(a): Temporal variation of the mode kinetic energies of modes v 1. v2, 

and v3 for the trajectory illustrated in Fig. 7. Each successive 

curve is displaced upward by 2.00 eV to provide clarity. The 

abscissa unit is 1 t.u. =0.01019 ps. 
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Figure 8(b): Temporal variation of the mode kinetic energies of modes v4, vs, 
and V6 for the trajectory illustrated in Fig. 7. Each successive 

curve is displaced upward by 2.00 eV to provide clarity. The 

abscissa unit is 1 t. u. = 0.01 O 19 ps. 
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Figure B(c): Temporal variation of the mode kinetic energies of modes v7, vg, 

and v9 for the trajectory illustrated in Fig. 7. Each successive 

curve is displaced upward by 2.00 eV to provide clarity. The 

abscissa unit is 1 t.u. =0.01019 ps. 
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Rgure 8(d): Temporal variation of the mode kinetic energies of modes v10, 

v11, and v12 for the trajectory illustrated in Fig. 7. Each successive 

curve is displaced upward by 2.00 eV to provide clarity. The 

abscissa unit is 1 t.u. = 0.01019 ps. 
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Rgure 9(a): Temporal variation of the mode kinetic energies of modes v1, v2. 

and v3 with vinyl bromide initially in the minimum-energy 

configuration on the optimum dividing surface for three-center HBr 

elimination. The total energy is 6.44 eV plus the zero-point energy 

of vinyl bromide in the equilibrium configuration. Each 

successive curve is displaced upward by 1.50 eV to provide 

clarity. The abscissa unit is 1 t.u. = 0.01019 ps. 
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Figure 9(b): Temporal variation of the mode kinetic energies of modes v4, vs, 

and V6 with vinyl bromide initially in the minimum-energy 

configuration on the optimum dividing surface for three-center HBr 

elimination. The total energy is 6.44 eV plus the zero-point energy 

of vinyl bromide in the equilibrium configuration. Each 

successive curve is displaced upward by 1.50 eV to provide 

clarity. The abscissa unit is 1 t.u. = 0.01019 ps. 
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Rgure 9(c): Temporal variation of the mode kinetic energies of modes v7, vg, 

and v9 with vinyl bromide initially in the minimum-energy 

configuration on the optimum dividing surface for three-center HBr 

elimination. The total energy is 6.44 eV plus the zero-point energy 

of vinyl bromide in the equilibrium configuration. Each 

successive curve is displaced upward by 1.50 eV to provide 

clarity. The abscissa unit is 1 t.u. = 0.01019 ps. 
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Rgure 9(d): Temporal variation of the mode kinetic energies of modes v 10, 

v11, and vl2 with vinyl bromide initially in the minimum-energy 
configuration on the optimum dividing surface for three-center HBr 
elimination. The total energy is 6.44 eV plus the zero-point energy 
of vinyl bromide in the equilibrium configuration. Each 
successive curve is displaced upward by 1.50 eV to provide 
clarity. The abscissa unit is 1 t.u. = 0.01019 ps. 
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CHAPTER IV 

POWER SPECTRA OF VINYL BROMIDE UNDERGOING 

CONTINUOUS FREQUENCY MODULATION 

ANDINTRAMOLECULAR 

ENERGY TRANSFER 

Introduction 

Trajectory and Molecular Dynamics (MD) are the most frequently used 

and powerful methods for investigation of the dynamical behavior of complex 

molecular systems. These techniques have been employed to calculate 

reaction rate coefficients, cross sections, diffusion rates, product energy 

partioning, inter- and intramolecular energy rates and relaxation rates in both 

gas and condensed phases. Among them, energy transfer dynamics play a 

central role in unimolecular dissociation reactions. As described in Chapter Ill, 

we have investigated the dynamics of intramolecular energy transfer in vinyl 

bromide using projection methods and results obtained from classical 

trajectories 1. This method is based on the calculation of the temporal variation 

of a diagonal kinetic energy matrix. Energy transfer rates and pathways are 
' 

extracted from the envelope function of the temporal variations of the mode 

kinetic energies. 

Power spectra are a valuable tool which can provide a wide variety of 

information about a molecule. 2-4 At low energies, a power spectrum contains 
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sharp peaks at the fundamental frequencies of vibration of the molecule. 

Overtones and combination bands may also be present. At higher energies, 

these peaks generally shift due to anharmonic potentials. Noid , Koszykowski, 

and Marcus 5 used classical trajectories of anharmonic molecules to obtain the 

power spectrum of the dynamical variables. It was shown that in the vibrational 

quasiperiodic regime, the spectrum consists of sharp lines for fundamentals, 

overtones, and combination bands, while in the ergodic regime, the spectral 

lines are broad, with intensity spread over a wide band of frequencies. Based 

on these characteristics, power spectra can be used to qualitatively investigate 

the phase space structure of molecules. Smith and Shirts 6 computed averaged 

power spectra for state-specific excitation of HCN. Their results show that the 

ensemble-averaged spectra do not exhibit the expected broadening and 

grassiness with increasing internal energy but that the spectra of individual 

trajectories do. Dumont and Brumer 7 have pointed out that the observation of 

simple vs. complex power spectra do provide distinguishing characteristics. In 

particular, they have shown that for a simple Henon-Heiles model and for the 

three-body NaCIK system, the statistical analysis of power spectra at fixed 

energy do provide an adequate method for making the distinction between 

chaotic and quasiperiodic motions. Chang, Swell, Thompson and Raff 8 were 

able to demonstrate that the qualitative appearance of the power spectrum can 

be used as a diagnostic tool to assess the statistical character of a system. The 

presence of a diffusive spectrum exhibiting a nearly compete loss of isolated 

structures indicates that the dissociation dynamics of the molecule will be well 

described by statistical theories. If, however, the power spectrum maintains its 

discrete, isolated character, the opposite conclusion is suggested. 
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Molecular oscillators may undergo a continuous frequency 

modulation(CFM}. Recent articles by Miller 9 and by Wood and Strauss 1 O 

describe the connection between the adsorption line width, IVR rates and 

reaction rates. Following Kubo 11, both wood and Strauss 1 O and Saven and 

Skinner 12 have discussed the modulation process in terms of a dimensionless 

parameter called the Kubo parameter. For the specific case of a Gaussian 

distribution of oscillator frequencies with a zero mean displacement, these 

reviews show that the form of the absorption function is well known for extreme 

values of this parameter. However, for intermediate values of Kubo parameter, 

these studies state that complicated line shape result. 

Most recently, Agrawal et al. 13 investigated the power spectrum lines 

shapes for an oscillator undergoing a continuous linear or exponential 

modulation of the vibrational frequency. It is shown that, under these conditions, 

the single, sharp line normally characteristic of such systems broadens and 

exhibits a wealth of fine structure components. For the case of a simple 

harmonic model system undergoing a linear modulation of the frequency, it is 

possible to analytically compute the power spectra. The results demonstrate the 

nature of the power spectra expected for a continuous frequency modulated 

system. This CFM effect provides the explanation for the observations reported 

by Noid et al. 5, Simith and Shirts 6, Dumont and Brumer 7 and Chang et al .B 

Noid et al. 5 found that ergodic dynamics leads to broadened spectra 

containing many smaller peaks. Since the IVR rate in an ergodic system is 

large, we expect the internal energy present in various modes to vary rapidly. 

Since the bond potentials are anharmonic, this will lead to a continuous 

frequency variation that will produce this type of broadening and fine structure. 

The diagnostic tests proposed by Chang et al. 8 are also a direct consequence 
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of the CFM effect that produces very broad spectral bands each containing a 

wealth of fine structure. 

Investigation of a Morse oscillator 13 shows that energy transfer in an 

anharmonic system produces a CFM effect. By assuming that the analytic result 

for a harmonic oscillator with a linear modulation is transferable to the 

anharmonic case, Agrawal et a/.13 were able to obtain an expression that 

relates the peak-to-peak fine structure spacing to the Morse potential 

parameters, the initial oscillator energy and the IVR rate coefficient. This 

relationship permits the calculated band splittings to be used as a probe of IVR 

rates. Agrawal et aJ.13 applied this method to extract energy transfer rate 

coefficients for a diatomic molecule isolated in an Ar matrix at 12 Kand for total 

IVR rate coefficients for relaxation of HONO out of local stretch modes. The 

quality of the results suggested that line shapes analysis can be effectively used 

as new probe of energy transfer rates. 13 

The present work seeks to extend the CFM method to the study of IVR 

rates in six-atom molecules. We use vinyl bromide as our test system and 

investigate IVA rates out of local C-Br, C=C and C-H stretching modes. 

Methods and Calculations 

A. Potential energy surface 

The potential energy surface used in present studies is a global surface 

accurately fitted to all of the available structural, thermalchemical, kinetic and 

spectroscopic experimental data and to the results of ab initio electronic 

structure calculations for the transition state for several decomposition 
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channels. 14 It has been previously employed in the study of intramolecular 

energy transfer dynamics 1 of vinyl bromide by projection methods as reported 

in Chapter Ill. The functional form of the surface and its strengths and 

weaknesses are discussed at length elsewhere.14 Fundamental frequencies 

for the local bond modes from theoretical and experimental results are listed in 

Table IV. The theoretical results are obtained by normal mode analysis based 

on the given global potential. Predicted fundamental frequencies by the global 

surface are in good to excellent accord with Raman and IA spectra. 

B. Continuous Freguency Modulation (CFM) effect 

In molecular dynamics simulations, bonding potentials are always 

anharmonic. Frequently, Morse functions are employed to represent such 

interactions. 

(IV.1) 

where D, ~. and re are parameters which determine the potential well depth, 

curvature and potential minimum, respectively, and r is the bond length. The 

corresponding fundamental vibrational frequency for a Morse oscillator is given 

by 15 

ro = /3(20 I µ)112 [ 1-(E I D)]1'2 , (IV.2) 
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where µ is the reduced mass of oscillator and E is the oscillator energy. 

Consequently, if intra- or intermolecular vibrational energy transfer occurs, we 

see a continuous modulation of the frequency. 

Agrawal et aJ.13 have considered several simple models of the type of 

line shapes to be expected in a power spectrum of an oscillator undergoing 

continuous frequency modulation. One such model is a modified "harmonic" 

oscillator for which the displacement, f(t), is given by 

f(t) = r(t)- re= Asin[ w(t)t] for· 0 ~ t ~ T 

=O otherwise, (IV.3) 

where A is a constant and w(t) is defined by 

w(t) = 21rv0 (1-kt) = 21rv0 -2mxt, (IV.4) 

where v0 , k and T all positive. That is, the fundamental vibration frequency 

undergoes linear modulation with time. The power spectrum obtained from 

Eq.(IV.3) shows a broad band replete with fine structure components whose 

spacing first decreases and then increases as w(t) decreases. 13 An analytic 

expression for the power spectrum of this simple model can be obtained.13 The 

results show that the mth spacing between successive peak maxima is given by 

A m _ 2-r.:T 1/2 1/2 ] 
u.Vmax - - ·v <XL S2m+1 - S2m·1 • 

:= -2.f<i[ (m + 1-5/8)1/2 -(m - 5/8)112], (IV.5) 
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where a= v0k = l~:I, s1 =0.365 ... , s2=0.878 ... , s3=1.373 ... Eq. {V.5) shows that 

A vnmax is independent of the total time for the process ,T and that it scales with 

...fa. The peak-to-peak spacing is therefore a direct measure of the rate of 

change of the vibrational frequency of the oscillator. The largest fine structure 

spacing will be the easiest to extract accurately. This corresponds to Av~ax· The 

results given above show that 

{IV:6) 

If it is assumed that we may generalize the analytic result. obtained for the 

oscillator described by Eqs.{IV.3) and {IV.4), we can write 

m _ 1/2 'V2 dv dv I 1
1/2 I 11/2 

Av max - -2[ S2m+1 - S2m+1] cit = -K dt . {IV.7) 

where K is a constant characteristic of the particular type of oscillator being 

considered. 

For any anharmonic potential, the vibration frequency will be a function 

of the oscillator energy. As a result, energy transfer to or from the oscillator will 

produce a CFM effect and a complex power spectrum. To simulate internal 

energy transfer for an anharmonic potential, Agrawal et a/.13 considered the 

case of a Morse oscillator whose kinetic energy decays exponentially with 

time. For such a systems, the Hamiltonian can be written as 

H = Texp{-2kt) + V{r), {V.8) 
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where k is the IVR first-order rate coefficient and V(r) is given by Eq.(IV.1 ). 

Such an oscillator will exhibit both a CFM effect and an attenuation of 

amplitude. A useful expression for the fine structure spacing of a Morse 

oscillator can be obtained from Eq. (IV.7), 

Avm = -K1dv1112 = -Kl( dv )(dE)l112. 
max dt dE dt 

(IV.9) 

From Eq.(IV.2), we obtain 

d v = -( ..f!__ )[~]1/2 [D - Er112 . 
dE 4,r µ 

(IV.10) 

Since many IVR processes in large molecules are first order, we may write 

dE 
dt=-kE. 

Combination of Eqs.(IV.9)-(IV.11) gives 

k = (4,r/E/J)(Av1max/K)2{[µ(D-E)]/2} 112 • 

(IV.11) 

(IV.12) 

If we assume that the fine structure spacing is primarily determined by the 

maximum value of 1~;1. E may be replaced with Ea, where Ea is the initial 

energy of the oscillator. By examination of 125 cases, Agrawal et al .13 have 

found the best value of K to be 0.667. 
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C. lntramolecular Energy-transfer Dynamics 

Our previous studies 1 show that the vinyl bromide classical trajectories 

do not uniformly access 'all of the energetically available phase space of the 

system. Consequently, we may anticjpate that while some mode-to-mode IVR 

rates may be very large, the intramolecular energy transfer cannot be globally 

rapid. As we knowfrom the above section, investigation of a Morse oscillator 

shows that energy transfer in an anharmonic system produces a CFM effect. 

therefore, the CFM effect· can be used to extract the rate coefficient for energy 

transfer from a local stretching mode. 

An alternative approach that has frequently been employed to 

determine energy transfer rate out of a local stretching mode involves the 

computation of the time variation of the bond energy in a trajectory calculation. 

Such a local bond energy is usually defined by 

(IV.13) 

where µb is the reduced mass, Pb(t) is the parallel momentum along the 

direction of the bond stretch, and rb(t) is the bond length. Vb[rb(t)] is taken to be 

a Morse function with parameters chosen so that it corresponds closely to the 

variation in potential energy on the global surface. The parameters employed 

for the definition of local bond mode energies are given in Table V. Most 

classical studies of intramolecular energy transfer have involved the 

calculation of some local bond energy such as that represented by 
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Eq. (IV.13).16-20 The variation of Eb(t) with time is then used to infer IVR 

rates. 

D. Trajectory procedures 

Hamilton•s equations of motion were integrated using a fourth-order 

Runge-Kutta routine 21 with a fixed step size of 0.01 t.u. (0.0001019 ps). 

About four significant digits of energy conservation was generally achieved. 

The unimolecular energy transfer and reaction dynamics of vinyl 

bromide were studied using a two step procedure. The first step is to use the 

projection method developed by Raff 22-23 to insert energy into specified or 

randomly chosen normal modes of the molecules. With the molecule in its 

equilibrium configuration, zero-point vibrational energy is placed in the 

normal modes, and the equations of motion are integrated for a random 

period of time tp, 

(IV.14) 

where g is a random number chosen uniformly on the interval [O, 1] and -rm is 

the vibrational period for the lowest frequency mode in the molecule. Eq.(IV. 

14) effectively averages over the vibrational phases of the molecule. 

Subsequent to the above integration, the desired excitation energy, Eex, is 

inserted into the selected local stretching mode k. This is executed by 

replacing the momentum parallel to the kth bond axis, Pb1{t), with Pb(t) where 

1 

Pb(t) = [2µb {Eex + Ek(t)}]2, (IV.15) 
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In Eq. {IV. 15), Ek{t) is the instantaneous kinetic energy associated with motion 

parallel to the kth bond axis at time t and µbis the reduced mass of the bonded 

atoms. After preparation of the initial state, the trajectory is integrated for a 

time greater than 100 t.u. During the integration, instantaneous values of the 

stretching coordinate for kth mode, rk, are stored for the computation of power 

spectrum. 

A power spectrum of mode k is obtained from a direct transformation of 

00 

lq(m) = (2n,r11f rk{t)exp(imt)dtl2 (IV.16) 
0 

The calculation of lq(ro) is done using a Fast Fourier Transform(FFT) method. 

Results and Discussion 

A. Fundamental freguency and power spectra 

Table IV lists the fundamental frequencies of the five local bond modes 

both from theoretical calculations and experimental measurement. The values 

in the parentheses are in units of t.u-1, where 1 t.u. -1 =3278 cm-1. These 

frequencies should also be reflected in the power spectra of the system at low 

internal energy. Figure 1 O shows the power spectrum of C1 =C2, C2-Br, 

C 1-H4, C1-H5, and C2-H3 stretching modes obtained at a total internal 

energy 10% of the zero-point energy. The reduction of zero-point energy to 

one tenth its normal value sharpens the spectral bands by reducing 

intramolecular energy transfer and by restricting molecular motion to regions 

of phase space near the potential minimum. Table VI lists all the frequencies 
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of local stretch modes obtained from power spectra. Obviously, the 

frequencies of the three C-H stretch modes are so close that they are not 

distinguishable in the power spectrum. 

B. Isotope effect to the power spectra 

As noted above, the very close frequency match of the three C-H 

stretches produces complex power spectra for the C-H stretch local modes 

and makes the spectra lines indistinguishable. Since the objective of the 

present study is to determine IVR rates by computation of power spectrum line 

splittings, we need to have the local mode frequencies separated from one 

another by an amount that is large relative to the line splittings. This condition 

is reasonably well satisfied by the local C-Br and C=C stretching modes, but 

not the C-H modes. The near superposition of these three modes makes it 

essentially impossible to accurately extract AYmax· Such band overlap places 

a fundamental limitation on the use of the CFM effect to extract IVR rates. 

Although the CFM method cannot be used to determine IVR rates for 

the relaxation of the C-H stretching modes in vinyl bromide, it .is ideally suited 

to the investigation of such rates for deuterium substituted vinyl bromide. If 

deuterium is substituted for two hydrogen atoms whose local mode 

relaxations are not being examined, the fundamental. C-H and C-D band 

frequencies will be widely separated making it relatively easy to compute the 

CFM splittings. Tables VII, VIII, and IX give the computed fundamental 

frequencies for the three doubly-substituted vinyl bromides. In each case, the 

C-H stretch is seen to be widely separated from the two C-D local modes. 

Comparison of the C-Br and C=C stretching frequencies in Tables VI-IX 
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shows that these fundamentals are not significantly affected by deuterium 

substitution. 

C. Line spacing and energy transfer rate coefficient 

As described above, the intramolecular energy transfer rates can be 

extracted from the line spacing from the power spectra of the internal 

coordinates. The concept of a local bond mode is employed in present studies 

where a " local mode energy'' is computed by integration of the Hamilton 

equations of motion and the use of Eq.(IV.13). The initial state corresponds to a 

1.0 eV excitation of a given local mode. Typical power spectra are shown in 

Figures 11, 12, and 13. Figure 11 (A) shows the computed C-H power spectrum 

for vinyl bromide. The complexity introduced by the three overlapping 

fundamentals is obvious. Figure 11 (8) is the power spectra of the C1-H4 local 

mode with isotope replacement of H3 and H5. Compared with Figure 11 (A), it 

is clear that the complexity of the power spectrum has been sharply reduced. As 

a result, the corresponding maximum line spacing can be easily extracted as 

0.039 t.u -1. Figure 12 shows the power spectrum of C2-Br when the initial state 

corresponds to a local excitation of the C-Br bond. In this case, the maximum 

line spacing is 0.046 t.u.-1. Figure 13 shows a typical power spectrum for 

another CH stretch, C1 -Hs, with deuterium replacement of H3 and H4. The 

extracted line spacing for this mode is 0.035 t.u.-1. Using Eq. (IV.12), the 

relaxation rates can be calculated. Five to ten trajectories were executed for 

each of the local modes with an excitation energy of 1.0 eV. Table X lists the 

average line spacing for each mode and the corresponding average rate 

coefficients. 
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The data given in Table X show that the C-H local mode is the slowest 

relaxation mode in the doubly-deuterium substituted vinyl bromides. Within the 

accuracy of the calculations, there is no difference between the relaxation of the 

C-H mode in the three substitute molecules. The slow C-H relaxation rate can 

be rationalized by noting that the C-H stretching frequency is isolated from the 

remaining eleven vibrational modes by about 780 cm-1 or more. None of the 

other modes are so isolated. This large frequency mismatch is expected to lead 

to extremely slow relaxation. This is in sharp contrast to the situation in 

unsubstituted vinyl bromide where we have previously found 1 the C-H normal 

modes to relax rapidly due to the near resonance that exists between the three 

C-H normal modes. The C-Br and C=C stretching modes relax about 7 and 4 

times faster than the C-H modes, respectively. The C-Br stretch is in near 

resonance with the CHBr wag and the C=C stretch frequency is close to that for 

the H-C-H bend.14 These near frequency matches undoubtedly facilitate 

energy relaxation out of these modes. 

Since Eq.(IV.13) omits all kinetic and potential coupling terms and 

assumes a mode reparability that does not exist, variations in the bond energy 

occur that are due to changes in the magnitude of the omitted coupling terms 

rather than to actual energy transfer between modes. The variations caused by 

the omitted coupling terms often appear as high-frequency oscillations in the 

bond energy decay curve. Figure 14(A) shows the temporal variation of the 

C-Br local mode energy when the mode is excited with 1.0 eV in excess of ZPE. 

Figure 14(8) shows the corresponding kinetic energy variation with time of the 

same mode. It can be seen that envelope functions of these two curves are 

nearly the same. We can express the envelope function of the local mode decay 

exponentially as follows 
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(IV.17) 

where E1(0) is the initial mode energy of mode i, k is the total IVR rate coefficient 

out of the local bond mode, a, is an average total rate coefficient for energy 

transfer into mode i and E1(oo) is, in principle, the statistical equilibrium value of 

E1(t) at infinite time. A least-squares fit of Eq.(IV.15) to the envelope function 

yields the total decay rate coefficient k . Figure 15 shows a typical fit for the C-Br 

local mode excited by 1.0 eV of energy. The average total decay rate obtained 

by least-square fitting of the C-Br decay envelope is 0.214 t.u·1• Table XI gives 

the nonlinear fitting results for each of the 5 local bond modes. The ensemble 

average is based on 5 to 1 O trajectories. A comparison between the rate 

coefficients obtained from CFM effects and local mode energy decay fitting 

shows that the rate coefficients from CFM effects are generally smaller than 

those obtained from least-square fitting of the envelope function data. However, 

the maximum deviation of CFM rate coefficients from energy decay fitting rates 

is 43% for the C2-H3 stretch. Other deviations are C-Br relaxation (19%), C=C 

stretch (15%), C1-H4 stretch (41%) and C1-H5 mode (32%). The average 

deviation is 30%. These results are in accord with the accuracy of Eq. (IV. 12) 

(±25%) estimated by Agrawal et al. 13. The deviation of the rate coefficients 

obtained from decay data and from CFM line splittings are the combined result 

of the approximations made to obtain Eq.(IV.12), and the statistical errors 

present in the decay plots. 

D. Variation of rate coefficients with internal energy 

At very low internal energy, intermode coupling and IVR rates are small. 

As a result, the normal modes are reasonably good action variables. As the 
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internal energy rises, the vibrational motion becomes increasingly anharmonic. 

This produces a larger intermode coupling and increased IVR rates. Equation 

(IV.12) suggests that increased CFM line splittings should also be observed. 

The above point has been investigated by calculations of the power 

spectrum for the C-Br local stretch at local excitation energies between 0.2 eV 

and 1.2 eV. Averaged line spacings, (Av~ax}• are obtained from the power 

spectrum of 5 different trajectories. Figure 16 shows the variation of (Av~} with 

local C-Br excitation energy. Figure 17 gives the corresponding IVR rate 

coefficients obtained from Eq.(IV.12). Below 0.8 eV, there is very little 

dependence of the IVR rate coefficient upon internal energy. This reflects the 

nearly constant curvature of the stretching potential in this energy range. Above 

0.8 eV, however, the average line splitting, (Av~ax}• and the IVR rate coefficient 

increase rapidly due to the increased intermode coupling that results from the 

anharmonic motion. 

SUMMARY 

We have used the CFM effect to calculate the energy transfer rate 

coefficients for the local C-Br, C=C, and C-H stretching modes of vinyl bromide. 

The global potential developed by Abrash et al . 14 is used in all calculations. 

The local bond potential is a Morse function. Energy transfer rate coefficients for 

each trajectory are extracted from the fine structure spacing of the numerically 

computed power spectrum of r(t). These individual rate coefficients are 

averaged over an ensemble of 5 to 1 O trajectories for comparison with the local 

mode energy decay curves. 
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It has been shown that near overlapping resonances in the power 

spectrum make it very difficult to accurately extract CFM line splittings. This 

limitation effectively precludes the use of line splittings to investigate some IVR 

rates. For the specific case of vinyl bromide, we have demonstrated that the C­

Br and C=C stretching modes have sufficiently isolated spectral bands that IVR 

rates out of these modes can be determined from the CFM line splittings. 

However, the near superposition of the three C-H stretching fundamentals 

makes it essentially impossible to accurately extract Liv~ax and the 

corresponding IVR rates. We have therefore investigated C-H relaxation in 

doubly-deuterium substituted vinyl bromides where the C-H fundamental is well 

isolated from the C-D stretching bands. 

The IVR rate coefficients for C-Br and C=C relaxation in vinyl bromide 

and for C-H relaxation in deuterium-substituted vinyl bromide have been 

computed from CFM splittings and from the local mode energy decay curve 

envelope by least-square fitting. The difference between the two results varies 

from 15% for the C=C stretch to 43% for one of the C-H stretching modes. The 

average deviation is 30%, which is in accord with the accuracy of the method 

(±25%) previously estimated by Agrawal et aJ.13. The effect of initial local 

excitation energy on the line splittings and associated rate coefficients has also 

been investigated for the C-Br stretching mode. The results show that the line 

splitting and rate coefficients are nearly independent of excitation energy below 

0.8 eV. Above this energy, the CFM line splittings and the IVR rate coefficients 

increase rapidly. This is interpreted as being due to increased intermode 

coupling at higher energies produced by the greater vibrational anharmonicity. 
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We conclude that line shape analysis can be effectively used as a probe 

of energy transfer rates in large molecules provided the modes under 

examination have reasonably isolated bands in the power spectrum. 
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Mode No. 

V1 

V2 

V3 

V4 

V5 

Table IV 

Notation and frequencies for the stretch 
modes ·of vinyl bromide. Frequencies 

are given in cm·1 

Description of mode va Expt.b 

C-Br stretch 623 {0.190) 613 {0.187) 

C=C stretch 1606 {0.490) 1604 {0.489) 

C-H stretch 3004 {0.941) 3027 (0.916) 

C-H stretch 3086 (0.923) 3086 {0.941) 

C-H stretch 3121 (0.949) 3113 (0.949) 

(a) Calculated by the normal mode analysis on the global ground 
potential of vinyl bromide .. The decimal value in the 
parentheses is in the unit of t.u.·1, 1 t.u·1=3278 cm -1 

(b) Reference 13 
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Table V 

Parametersa employed for the definition of local bond 
mode potentials 

Local Mode D (eV) · 

C2-Br5 stretch 3.339 1.890 1.720 
C 1 =C2 stretch 4.959. 1.330 2.120 
C2:-H3 stretch 4.876 1.077 1.823 
C 1-H4 stretch 4.876 1.083 1.809 
C1-Hs stretch 4.876 1.085 1.809 

(a) Taken from Reference 1 

4- 3 

'\ /H 
~-~ 
H Br 

6~ 
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Table VI 

Frequencies of local stretch modes 
obtained from power spectra lines 

Description of mode 

C-Br stretch. 
C=C stretch 
C2-H3 stretch. 
C 1-H4 stretch_ 
C1-Hs stretch 

87 

v(t.u.-1) 

0.188 
0.492 · 
0.977 
0.992 
0.992 



Table VII 

Frequencies of C=C, C2-Br and C2-H3 stretch modes 
with Deuterium replacing of H4 and Hs 

Description of mode 

C-Br stretch 
C=C stretch 
C2-H3 stretch 
C 1-D4 stretch 
C1-D5 stretch 

88 

v(t.u. -1) 

0.176 
0.461 
0.984 
0.746 
0.746 



Table VIII 

Frequencies of C=C, C2-Br and C1 -H4 stretch modes 
with Deuterium replacing of H3 and Hs 

Description of mode 

C-Br stretch 
C=C stretch 
C2-D3 stretch 
C 1-H4 stretch 
C 1-05 stretch 

89 

0.168 
0.465 
0.715 
0.973 
0.734 



Table IX 

Frequencies of C=C, C2-Br and C1-H5 stretch modes 
with Deuterium replacing of H3 and H4 

Description of mode 

C-Br stretch 
C=C stretch 
C2-D3 stretch 
C1-D4 stretch 
C1-Hs stretch 

90 

v(t.u. -1) 

0.168 
0.469 
0.719 
0.727 
0.973 



Table X 

lntaramolecular energy transfer rate out of a 
given local mode by CFM method 

Local mode Line spacing(t.u. -1) k(t.u-1 . ) 

C-Br stretch 0.0560 0.180 
C=C stretch 0.0468 0.101 
C2-H3 stretch 0.0330 0.023 
C1-H4 stretch 0.0390 0.029 
C1-H5 stretch 0.0346 0.025 
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Table XI 
Non-linear fitting results for each local stretch mode 

Local mode k(t.u. -1} a(t.u.-1} Eco(eV} error(%} 

C-Br stretch 0.214 0.212 -4.808 3.09 
C=C stretch 0.116 0.115 -3.187 1.34 
C2-H3 stretch 0.033 0.029 -4.614 3.47 
C1-H4 stretch 0.041 . Q.039 -4.492 2.09 
C 1-H5 stretch 0.033 0.034 -4.321 5.45 
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Figure 1 O(a): Power spectrum showing the fundamental frequency peak for 
C 1-C2 when 1 /1 O ZPE is used 
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Figure 1 O(b): Power spectrum showing the fundamental frequency peak for 

C2-Br when 1 /1 O ZPE is used 
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Figure 10(c): Power spectrum showing the fundamental frequency peak for 

C 1-H4 when 1 /1 O ZPE is used 
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Figure 10(d): Power spectrum showing the fundamental frequency peak for 
C1-H5 when 1/10 ZPE is used 
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Figure 1 O(e): Power spectrum showing the fundamental frequency peak for 

C2-H3 when 1 /1 O ZPE is used 
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Figure 11. (A) Power spectrum of C1-H4 with no isotope effects, (B) Power 

spectrum of C1-H4 with deuterium replacement of H2 and H3. In 

both cases, the initial excitation of C1-H4 bond is 1.0 eV. 
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Figure 12. Power spectrum of C-Br bond with initial excitation of 1.0 eV. 
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Figure 13. Power spectrum of C1-H5 bond with initial excitation of 1.0 eV and 

deuterium replacement of H3 and H4. 
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Figure 14. (A) Total mode energy variation of C-Br with time, (8) Local mode 

kinetic energy variation of C-Br with time. In both cases, the C-Br 

bond excitation is 1.0 eV. 
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Figure 15. Non-linear fitting of envelope function of total mode energy decay of 

C-Br bond initially excited with 1.0 eV. 
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Figure 16. Fine spectra structure spacing variation of C-Br bond with initial 

excitation energy. Each point is ensemble-averaged with five 

individual trajectories. 
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energy. Each point is ensemble-averaged with five individual 

trajectories. 
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CHAPTER V 

THEORETICAL STUDIES OF HYDROGEN ATOM 

DIFFUSION RATES IN IMPERFECT 

RARE-GAS MATRICES 

Introduction 

The study of chemical systems under matrix isolation conditions at 

cryogenic temperatures has attracted much attention during the last decade 

because the use of such matrix-isolation techniques has led to a wealth of 

information related to structure, dynamics, and mechanism of many processes 

that would be difficult or impossible to investigate under the corresponding 

solution or gas-phase conditions. The low temperature, constrained 

environment of the matrix cage serves to moderate some fast reactions which 

are typically characterized by low activation energies, such as rotational 

isomerizations, radical recombination processes, and highly exothermic 

reactions, thereby increasing the half-life and permitting a variety of 

experimental measurements to be made. Mobility and diffusion often play 

critical roles in reactions occurring under matrix-isolation conditions. The 

importance of these effects becomes obvious when the matrix is used as a 

means for containing high-energy density materials. The bimolecular addition of 

F2 to ethylene is a case in point. 1 -5 The theoretical studies show that the 
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diffusion rates within the matrix cage directly affect the extent to which an atomic 

addition mechanism is involved in the reaction. 6 

So far, there are very little experimental data related to diffusion and 

mobility in matrices and even fewer theoretical treatments. Feld, Kunttu, and 

Apkarian 7 have reported measurements of fuorine atom mobilities in an 

argon matrix subsequent to photodissociation. Lawrence and Apkarian 8 

have measured the mobility of photoexcited oxygen atoms in Xe lattices. 

Theoretically, Ford et al. 9 have calculated diffusion rate coefficients for 

oxygen atoms diffusing in perfect face-centered cubic (fee) xenon matrices. 

This work was stimulated by the experimental observations of Krueger and 

Weitz. 10 Comparison of the two treatments shows that the experimental 

diffusion coefficients are several orders of magnitude greater than the 

calculated values. More recently, LaBrake a_nd Weiz have reported results for 

hydrogen atom diffusion in Xenon matrices at 40 K. 11 Correspondingly, 

theoretical work was carried out by Perry et al. 12 The results suggest that 

thermal diffusion rates of hydrogen atoms in fee xenon crystals are very slow 

with activation energy between 2 and 3 kcal/mol. At temperatures below 12 K, 

hydrogen atom tunneling is the major diffusion process. At the higher 

temperatures, tunneling is negligible. Comparison of the results with 

measured diffusion coefficients 1 2 indicates that nearly all of the 

experimentally observed diffusion coefficients is occuring along lattice defects 

such as vacancies. In fact, the matrices produced experimentally are not 

perfect fee lattices but rather have different kind of imperfections which allow 

for faster diffusion of the hydrogen atom through the matrix. The presence of 

such imperfections are also suggested by the experimental results reported 

by Krueger and Weitz. 9 The two diffusion coefficients reported by them for 
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the oxygen atom/Xe system are interpreted as representing average values 

over the low and high ends of a diffusion coefficient distribution that is 

characteristic of the number and nature of the lattice imperfections present in 

the experimental matrices. 

In this chapter, we focus attention on the effects of imperfections on the 

diffusion rates of hydrogen atoms in xenon matrices. 

Matrix Model 

In the present study, mobility and diffusion in an imperfect face­

centered-cubic rare-gas crystals are investigated. The matrix model used is 

the {5x5x5) fee lattice of 125 unit cells containing 666 lattice atoms previously 

described by Raff. 13 This model has been found to be sufficiently large to 

accurately represent the density and volume expansion upon trapping of 1,2-

difluoroethane. 13 In order to represent bulk effects upon energy transfer that 

would be present for an infinite lattice model, the velocity reset method 

developed by Riley et al. 14 is employed. To do so, the 666 lattice atoms are 

first divided into three discrete zones. This division is determined once the 

size of the lattice model has been chosen using density, volume expansion, or 

other criteria. The boundary zone {8 zone) comprises the atoms located on 

the boundary of the crystal. There are 302 such atoms in the present case. 

The positions of these lattice atoms are fixed. Their presence reduces edge 

effects and maintains the desired lattice symmetry. The secondary zone {Q 

zone) contains the 302 lattice sites within one unit cell distance of the outer 

boundary. The solution of Hamilton's equations for the motion of these atoms 

is modified by the reset functions associated with each atom in the Q zone. 
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This procedure maintains the temperature of the lattice as energy is removed 

or inserted by the chemical or physical processes that are occurring. The 

primary zone (P-zone) comprises the remaining atoms (62 in the present 

case) of the crystal. The motions of these atoms are affected only by the forces 

produced by the interaction potential. The above procedure is used for the 

perfect crystal model. The model for an imperfect latti.ce is constructed based 

on the model for the perfect lattice as described above. n lattice vacancies 

are created by randomly removing n lattice atoms in the P and Q zone. 

Potential Energy Surfaces 

The total potential, V r, for the hydrogen atom/matrix 5,ystem is assumed 

to be the separable sum 

(V.1) 

where V M is the interaction potential between lattice atoms, and V1 is the 

matrix-hydrogen interaction. The potential for the lattice interaction is 

assumed to have the form 

N 

V1 = I, v1,(r11 ), 

l<J 
l,Ji*k 

(V.2) 

where r11 is the distance between lattice atoms i and j, and N is the total 

number of the lattice atoms in the matrix model. k is the index number of 

vacancies in the crystal. V q is taken to be a Morse potential with a cutoff 

radius, r11 =Rc, given by 
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V11 = o[ exp{-2a(r 11 - r O) }-2exp{-a(r11 - r O)}] for rii ~ Rc 

V11 = o for r11 > Rc (V.3) 

The parameters for the Morse potential are taken from the data reported by 

LeRoy 15 and Barker et al. 16 The cutoff radius, Re, is selected so that Vij 

(rij=Rc) is approximately 4% of the two-body well depth, D. Table XII gives the 

values of all matrix potential parameters along with the value of Vij(Rc)/D. 

The intermolecular potential for the hydrogen-lattice interaction is 

assumed to have the pairwise form 

N 

VM = I v1H(r1H), 
1=1 
1 .. k 

(V.4) 

where nH is the distance between lattice atom i and the hydrogen atom. The 

ViH term is taken to be a Lennard-Jones(12,6) potential given by 

(V.5) 

The potential parameters required in Eq. (V.5) are obtained by fitting 

the results of ab initio calculations.12 In the first set of calculations a double-I; 

(DZ) basis set combined with the pseudopotential for the xenon core 

developed by Wadt and Hay 17 was employed. The Xe-H equilibrium 

interatomic distance and the potential-well depth relative to the separated 

atoms were computed at the Hartree-Fock(HF), M oller-Plesset second-order 

perturbation theory (MP2) and MP4 levels of theory using GAUSSIAN 92 12. 
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The resulting parameters are given in Table XII. They show that the Xe-H 

doublet is unbound at the HF level of theory. At the MP2 level, it is very weakly 

bound with a well depth of 0.000272 eV at an equilibrium Xe-H separation of 

4.5903 A. At the equilibrium separation predicated by the MP2 calculations, 

MP4 calculations with all single, double, triple and quadruple excitations 

included predicted a well depth of 0.0001888 eV. These latter results are the 

ones employed for the Xe-H interactions in the present study. 

Computational Methods 

Initially, the rare-gas atoms are arranged in the (5x5x5) fee lattice 

configuration. The hydrogen atom is placed at the most stable absorption site 

which is often the center of the innermost unit cell of the (5x5x5) matrix. 

Because of the creation of n vacancies in the crystal, the symmetry of the 

whole system is destroyed and the position of the most stable absorption site 

may be changed. The objective of the present study is to calculate the 

diffusion rate to an adjacent site, which, in a fixed fee matrix, would be located 

at the midpoint of an edge of the center unit cell. Although the existence of 

vacancies introduces deviations from the expected symmetry, we shall 

assume that such deviations may be ignored in the computation of the jump 

frequency between adsorption sites. 

The hydrogen-atom diffusion rate is calculated from the jump frequency 

or flux across a theoretical dividing surface separating the two adsorption 

sites. If the system behaves statistically, this flux must be an upper limit to the 

actual diffusion rate since all diffusion events involve crossing of the dividing 

surface but not all crossings result in diffusion. Consequently, we seek the 
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dividing surface that minimizes the flux. Several spherical and cubical 

surfaces have been examined to effect this minimization. It has previously 

been shown that cubical surfaces generally yield a higher flux. 9 

The total energy of the H/matrix system is given by 

N 

E = L[P!1 + p~ + p;, ]/2m1 + (P~ + p~ + p~ ]/2mH 
1=1 
1 .. k 

(V.6) 

where Pqi(q=x,y,z)represents the momentum of the lattice atom i in the q 

direction. The subscript runs over all lattice atoms except the vacancy 

positions, k, and 11H11 denotes the hydrogen atom. It is assumed that the system 

behaves statistically with a canonical distribution of energies. Under these 

conditions, the jump frequency is proportional to the probability of the 

hydrogen atom being on the dividing surface and to the velocity of the atom 

perpendicular to that surface. Thus, the flux, F(T), can be expressed by the 

sum of all such products averaged over the phase space of the system 

divided by the total available phase-space volume. This is, 

3N I I exp(-E/kbT)IV±lo(q-qc)Il dqdpl 
p q 1=1 

F{T) = N 1 .. k 

J J exp(-E/ kb T) IJ dqdp1 

p q 1=1 
1 .. k 

(V.7) 

where the delta function, o(q-qc), is unity when on the dividing surface and 

zero otherwise. The configuration space integrals cover the space 

corresponding to reactant conformations. The integrations over momenta in 
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Eq. (V. 7) can be done analytically for spherical or cubic dividing surfaces. 

Such integration yields 

3N 

J exp(-VT /kbT)8(q-qc)Il dq1 
q 1=1 

F(T) = (v} N 1"k 

J exp{-VT /kbT)Il dq1 
q 1=1 

1 .. k 

(V.8) 

where <V> represents the average velocity of the hydrogen atom. 

Since the potential being employed is separable into a lattice potential 

plus an hydrogen-lattice interaction, then, Eq.(V. 8) may be written in the form 

3N .. 

J exp(-VM /kbT)exp(-V1 /kbT)8(q-qc)Il dq1 
q ~ 

F(T) = (v} . N i .. k 

J exp(-VM /kbT)exp(-V1 /kbT)Il dq, 
q 1=1 

1 .. k 

(V.9) 

The complexity of the potential precludes analytical evaluation of 

Eq.(V.9). We therefore utilize the Monte Carlo method as described in the 

Chapter II to execute the required integrations. A Metropolis sampling 

procedure is employed in which the dividing surface is replaced with a 

dividing "slab" of width Aw. If Aw is sufficiently small that the integrand of 

Eq.(V.9) is constant across the width, Eq. (V.9) becomes 
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3N J exp(-V MI kb T)exp(-V1 I kb T)8{Aw)Il dq 
q 1=1 

F(T) = [{v) I Aw] N i .. k 

J exp(-VM /kbT)exp(-V1 /kb T)Il dq 
q ~ 

l¢k 

(V.10) 

where 8(Aw) is unity if a configuration point lies within the dividing slab and 

zero otherwise. In principle, Eq.(V.10) may be evaluated using a random set 

of M points in the multidimensional configuration space of the system. For 

such a randomly selected set of points, the Monte Carlo approximant for Eq. 

(V.10) is 

M 

I,[exp(-VM /kb nexp(-VI /kb T)o{Aw)]I 
F(T)::[(v)/Aw] 1 M (V.11) 

I,[exp(-VM /kbT)exp(-V1 /kbTHi 
I 

Although Eq.(V11) yields the flux across the dividing slab, its convergence 

rate will be extremely slow if totally random points are selected for all atoms 

since virtually all points selected will correspond to highly improbable 

configurations. The situation may be improved by selecting the points from a 

Markov walk weighted by the canonical distribution function exp[-Vr/kT]: In this 

case, the flux will be given by 

M 

F(T) := [(v)/Aw]I,[ 8(Aw)]1 (V.12) 
I 

The convergence rate of Eq.(V.12) will be significantly greater than that of 

Eq.(V.11 ). However, convergence will still be very slow due to the infrequency 
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of sampling in the regions of high potential. A more satisfactory convergence 

rate may be obtained by using a Markov walk weighted by the canonical 

distribution function for the lattice alone, exp[-VM/kT]. For such a selection 

method, 

M 

L[exp(-V1 /kb T)o(Aw)]1 

F(T)=0.5((v}/Aw]--'-M----­
I,[exp(-V, /kbT)]1 

I 

(V.13) 

where a factor of 0.5 is included to correct for entries into the dividing volume 

from the wrong direction. Eq.(V.13) has previously been used to compute 

silicon and hydrogen atom diffusion rates on Si(111) and Si(111 )-(7x7) 

surfaces.18 

The convergence rate by Eq.(V.13) is still very slow although it can be 

used to obtain diffusion rates on surfaces and in matrices. Typically, millions 

of Markov steps are required for surface diffusion. For matrices at cryogenic 

temperatures, convergence is even slower. A new method was proposed by 

Ford et a/.9 in recent calculations. The method is based on the assumption 

that the major contribution to F(T) in Eq.{ V.10) arises from configurations in 

the neighborhood of the minimum-energy pathway for the diffusion process. 

These configurations were conveniently located and sampled by using a 

combination of canonical Markov moves on the lattice atoms and totally 

random moves on the embedded hydrogen atom followed by a series of 

damped trajectory cycles in which the lattice is allowed to relax toward its 

minimum-energy configuration in the field .of a stationary hydrogen atom. 6, 13 

A Monte Carlo integration was observed to converge ar a much greater rate 

since all of the sampling was done in statistically important regions of 
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configuration space near the minimum-energy path. For spherical dividing 

surfaces, it is convenient to write Eq.(V.10) in the form 

3N 

J exp(-V M I kb T)exp(-V1 I kb T)o(Aw) TI dq{~dr Hsinl:JHdl:JHdt/>H 

F(T) ,= [(v)/Aw] q 3N 1=1 

f exp(-V M I kb T)exp(-V1 I kb T) TI dqr~dr Hsin l:JHd l:JHdt/>H 
q ~ 

(V. 14) 

where hydrogen atom coordinates are separated and expressed in a 

spherical system. The Monte Carlo approximant for Eq. (V .14) is similar in form 

to Eq.(V. 11 ). It is 

M 

IJexp(-VM /kbT)exp(-V, /kbT)r~8(Aw)]1 

F(T) ,= [1/(2 x 12 x Ar)](Bkb T /1tMH)12 ......... ,____,..,...M---------­
I[ exp(-V MI kb T)exp(-V1 I kb T)r~Ji 

I 

(V.15) 

where the terms under the summations are evaluated after every Markov step 

on the lattice and after every damped trajectory cycle. In Eq.(V 15), Ar is the 

width of the dividing spherical slab and MH is the hydrogen-atom mass. The 

factor of 2 corrects for surface crossings in the wrong direction. The factor of 

12 removes the degeneracy in the calculation which is present since a 

spherical dividing surface counts jumps to 12 equivalent diffusion sites. 

In practice, the Markov walk is executed by moving m randomly 

selected lattice atoms (7 ~ m ~ 20) and the hydrogen atom in each step of the 

walk. The lattice atoms are moved according to 
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q;18w = q~ld + g1Aq (i=1,2,3, ... ,m) (V. 16) 

where q;18w and q~ld are the new and old x, y, and z coordinates of the lattice 

atom i, respectively, and Aq is the Markov step size. The gi are random 

numbers selected from a uniform distribution on the interval [0.1 ]. For the 

hydrogen atom, 

(V.17) 

(V.18) 

(V.19) 

where 

(V.20) 

(V.21) 

(V.22) 

The value of m and Aq are adjusted to produce a near-unit ratio between 

accepted and rejected moves. In most cases, m=7 and Aq is 0.0866A for both 

the lattice atoms and hydrogen. The width of the dividing slab, Ar, is chosen 
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to be equal to the maximum step size to ensure that the hydrogen atom 

cannot traverse the dividing slab without entering its volume at least once. 

To increase convergence speed, subsequent to the Markov step 

described above, K damped trajectory cycles are executed holding the 

hydrogen atom stationary. 6, 13 In this procedure, the kinetic energy of each 

lattice atom is set to zero and the classical Hamiltonian equations of the 

motion for the lattice atoms are integrated until the total potential energy 

attains a minimum. This is defined to be one trajectory cycle. Subsequent 

cycles are executed by repeating the above procedure starting with the lattice 

configuration achieved in the previous cycle. The use of this technique causes 

the Markov steps to be taken in the near vicinity of the minimum-energy 

pathway. This significantly reduces the computational time required to 

achieve convergence. 

It is obvious that the system potential is independent of mass, therefore, 

the actual execution of the above procedure can be greatly facilitated by 

making use of this fact. Consequently, Hamilton•s equations may be 

integrated with the mass of all atoms set to 1.0 amu. In addition, we may 

employ a very large integration step size since we need not be concerned 

with the conservation of energy. The use of these two techniques significantly 

reduces the computational time required for convergence. 

A partial minimization of F(T) is carried out by computing the flux 

through a set of spherical dividing slabs with radii of (R=0.05jd) for 

j=1,2,3, ... ,20, where d is the total diffusion distance measured from the initial 

adsorption site. The hydrogen atom is initially placed near the most stable 

site, which is the geometric center of the innermost unit cell before the 
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vacancies are created, and the entire system is allowed to relax to the nearest 

potential minimum using a set of 100 damped trajectory cycles. The initial 

adsorption site is taken to be the point that leads to the lowest total potential. 

Because the ratio of hydrogen atoms to the number of adsorption sites 

is small, the diffusion coefficient can be related to the jump frequency by 

(V.23) 

where f is the fraction of vacant sites ( f =1 here), a is the dimensionally factor, 

which is three in the present case since diffusion within the matrix is three­

dimensional, and K(T) is the jump frequency. The variational transition-state 

theory method assumes that K(T) can be accurately replaced with Fmin(T), 

where Fmin(T) is the minimum flux obtained in the variational adjustment of the 

dividing slab. 

Results and Discussion 

Starting from a hydrogen atom in the innermost cell of the lattice, we 

consider the diffusion to other similar neighbor lattice sites. In previous 

studies 12 based on a perfect fee lattice, the destination site for diffusion has 

almost exactly the same lattice environment as the starting site. However, for 

an imperfect crystal, the system symmetry is broken. Consequently, the 

diffusion destination site is similar but not identical to the starting site. 

The Markov walk/damped trajectory procedure described in the above 

section is found to converge at a rate much faster 9, 12 than normally seen in 

the calculation of diffusion rates using classical variational transition-state 
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theory methods. 17, 19 Convergence of the diffusion rates for oxygen atoms 

in xenon matrices 9 was achieved in 5 x 1 o4 steps with the Markov/damped 

trajectory procedure. In contrast, it was not possible to obtain convergence 

with 106 Markov moves for employing classical variational transition-state 

methods alone. In the present study, the Markov walk/damped trajectory 

method is used to compute the hydrogen diffusion rates in an imperfect fee 

xenon matrix at cryogenic temperatures. In all cases, convergence is obtained 

with o. 75 - 2.0 x 1 as Markov steps. 

As described in Section Ill, the hydrogen-lattice interaction is assumed 

to be a sum of Lennard Jones(12,6} pairwise potentials. The H-Lattice 

interaction energy changes as the vacancy number changes. Figure 18 

shows the typical results. As the vacancy number increases, the system H­

Lattice potential decreases. We may therefore expect that the existence of 

vacancies will favor the fast diffusion of hydrogen atom in the lattice relative to 

the perfect system. 

The total potential of the system varies significantly as the hydrogen 

atoms moves within a cell. The variation in system potential for the straight­

line diffusion of hydrogen from one adsorption site to another with frozen 

lattice atoms and no relaxation is shown in Figure 19. Although the system 

has 15 vacancies, the potential variation curve has the same shape as that for 

a perfect fee system. As expected, the potential energy along such a path 

attains a maximum value when the hydrogen atom is located at a point 

midway between the two sites. The barrier for diffusion in this case is about 

2.855 eV. For more attractive potentials with large values of E, the potential 

barrier to diffusion in a fixed lattice becomes larger. 
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It seems impossible that thermal diffusion of hydrogen atoms at 

temperatures characteristic of matrix experiments could be observed with a 

diffusion barrier of 2.85 eV or higher. However, when the lattice is permitted to 

relax in the potential field of the hydrogen atom and the phonon modes of the 

lattice are permitted to contribute to the diffusion process, the diffusion barrier 

generally decreases by more than an order of magnitude. In our case, 

minimum-energy reaction paths have been determined for hydrogen-atom 

diffusion in a xenon lattice by recording the minimum system potential for each 

of the dividing slabs obtained from hydrogen-atom crossings observed during 

the Markov/damped trajectory walk. Typical results are shown in Figure 20 and 

Figure 21. Figure 20 shows the minimum energy reaction path for a system with 

5 vacancies, and Figure 21 shows a case with 15 vacancies. Previous results 12 

showed that the potential barrier maximum along the minimum-energy reaction 

path occurs in the neighborhood of the dividing slab located at d/2 as expected 

for a perfect fee system. However, for the case of 5 vacancies and a LJ(12,6) 

potential with E=0.000188 eV, the relaxation of the lattice reduces the energy 

barrier from 2.855 eV to 0.1146 eV. The position along the diffusion path at 

which the maximum potential occurs shifts to larger distance. The energy barrier 

for 5 vacancies is lowered 0.0064 eV relative to the perfect system. For the case 

with 15 vacancies, the minimum-energy reaction path becomes more 

complicated. Relaxation of the system reduces the energy barrier from 2.885 eV 

to 0.093 eV while the position of the barrier crest shifts to about 1 .2 A. The 

maximum potential value is lowered 0.0216 eV relative to the case of 5 

vacancies. Therefore, it can be concluded that the existence of vacancies 

lowers the energy barrier for the diffusion of hydrogen atoms and that the more 

the vacancies exist, the lower the energy barrier. 
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The calculated hydrogen atom diffusion rates in Xe matrices with 5 

vacancies and 15 vacancies are given in Table XIII and Table XIV, respectively. 

With 5 vacancies, the diffusion rate of hydrogen at 40 K is obtained by 

averaging five different calculations, each calculation is executed with a 

different set of vacancy sites. The averaged diffusion rate is a factor of 26.56 

faster than that for the perfect fee crystal, while the corresponding diffusion 

barrier is 4.63% lower. The diffusion rate of hydrogen at 40 K is several orders 

of magnitude faster than that in the perfect crystal, and the corresponding 

diffusion barrier is lowered 0.028 eV relative to the perfect fee lattice. 

Consequently, we conclude that the diffusion rates of hydrogen in xenon 

matrices increases as the number of vacancies increase. Table XIV also shows 

that the classical diffusion rates increase with temperature. It can be seen that 

the calculated diffusion rates are found to be sensitive to the potential barrier 

which is dependent on the potential parameters. In general, the diffusion rate 

decreases as the attractive interaction between the hydrogen atom and the 

lattice atom increases. Perry et al .12 proposed three sets of hydrogen lattice 

interaction potentials, and pointed out that differences in the potential can cause 

large changes in the calculated diffusion rates. Because of the small mass of 

hydrogen, tunneling processes would be expected to make an important 

contribution to diffusion. This has been previously verified. 12 

It is important to note that the calculations show that the vacancy sites are 

mobile. A typical example is shown in Figure 22 for the case of xenon lattice at 

40 K containing 5 vacancies. The figure illustrates the mobility of one of these 

vacancies during the initial 200,000 Markov steps. As can be seen, five 

translations of this vacancy occur during this period. These translations are 
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induced by the hydrogen-atom diffusion which causes the lattice to shift toward 

a thermodynamically stable configuration. 

The translation of site vacancies can significantly affect the hydrogen­

atom diffusion rate since the process alters the potential barrier to diffusion. 

Figure 23 and 24 illustrate this point. Figure 23 shows the variation of the 

system potential between the initial and final absorption sites after 200,000 

Markov steps have been executed on a xenon lattice containing 5 vacant sites. 

Comparison of these results with those given in Fig. 20 shows that the barrier to 

diffusion has completely vanished. More detailed investigation demonstrates 

that this drastic alteration of diffusion barrier is the result of vacancy site mobility. 

Figure 24 shows a similar result after 100,000 Markov steps on a xenon lattice 

containing 15 vacant sites. Our studies show that the propensity for vacant site 

mobility increases as the total number of vacancies increases. 

Qualitatively, it is clear that vacant site mobility will increase the 

hydrogen-atom diffusion rate through the lattice since the process lowers the 

diffusion barrier. Since the canonical Markov walk and damped trajectory 

calculations are thermodynamically based, we cannot determine the time scale 

for vacant site mobility from the present calculations. Consequently, it is not 

possible for us to quantitatively determine the effect of such mobility on the 

hydrogen-atom diffusion rates in imperfect xenon crystals. For this reason, the 

diffusion coefficients listed in Tables XIII and XIV should be regarded as lower 

limits for a system whose potential is described by Eq.{V.1 ). 

Figure 25 shows a semilog plot of the calculated hydrogen-atom diffusion 

coefficients in a xenon matrix as a function of the percentage of vacant sites in 
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the lattice. The excellent linearity of this plot indicates that the dependence is 

well described as exponential. A least squares fit to the data yields 

Dx1 O 15 = 0.1449 exp[ 1. 381p] cm2/s (V.19) 

where D and p are the diffusion coefficient and the percent vacancies, 

respectively. 

LaBrake and Weitz 11 have measured hydrogen-atom diffusion 

coefficients in vapor deposited xenon matrices at 40 K. They used 193 nm 

photolysis of HBr to produce hydrogen atoms whose concentration was 

monitored using laser induced emission from xenon-hydrogen exciplexes. 

When a xenon matrix vapor deposited at 1 O K, denoted Xe(1 OK), was 

maintained at 1 O K, the hydrogen-atom concentration remained unchanged 

over a five day period. Thus, the diffusion coefficient at 1 O K in Xe(1 OK) is 

effectively zero. When the temperature of the Xe(1 OK) matrix is increased to 40 

K, hydrogen diffusion is observed with an estimated diffusion coefficient of 2.6 x 

1 o-13 cm2/s. In contrast, when a Xe(28K) matrix is warmed to 40 K, a diffusion 

coefficient of 5.0 x 1 o-14 cm2/s is obtained.11 LaBrake and Weitz 11 suggested 

that this difference is due to the presence of a larger number of imperfections in 

the lattice deposited at 1 O K which are not later annealed at 40 K. This view 

implicitly assumes that the larger number of vacancies present in the Xe(1 OK) 

lattice will lead to a larger hydrogen-atom diffusion coefficient. 

The data given in Tables XIII and XIV and in Figure 25 support the 

interpretation advanced by LaBrake and Weitz. 11 Eq. (V .19) shows that the 

diffusion coefficient will indeed increase rapidly with an increase in the number 

of vacant lattice sites. The horizontal lines shown in Figure 25 are the measured 

diffusion coefficients 11 in Xe( 1 OK) and Xe(28K) lattices. The intersection of 
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these lines with the calculated curve indicates that there are 1. 76% and 1. 15% 

vacancies in Xe(1 OK) and Xe(2BK) matrices, respectively. Since the calculated 

values of Dare lower limits for the reasons discussed above, these percentages 

are upper limits for the potential surface used in the present calculations. 

Summary 

Using a two-body Xe/H interaction potential obtained from the results of 

MP4(SDTQ) calculations, thermal diffusion rates of hydrogen atoms in an 

imperfect face-centered cubic xenon lattice containing n vacancies have been 

computed using Monte Carlo variational phase-space theory. Convergence of 

the required integrals is achieved by combining importan.ce sampling and a 

damped trajectory procedure with the standard Markov walk. The variational 

flux through spherical dividing surfaces is minimized as a function of radius of 

the dividing surfaces. 

The minimum-energy diffusion paths have been determined by recording 

the minimum system potential observed upon hydrogen-atom crossing on each 

of the dividing surfaces during the damped trajectory/Markov walk. Typical 

results show that the presence of 1.1 % vacant lattice sites lowers the diffusion 

barrier by about 0.006 eV relative to the perfect fee crystal system. 

The calculations show that the lattice vacancies are mobile. This 

translation of site vacancies can significantly affect the hydrogen-atom diffusion 

rate since the process alters the potential barrier to diffusion. Our studies show 

that the propensity for vacant site mobility increases as the total number of 

lattice vacancies increases. Although it is clear that vacant site mobility will 
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increase the hydrogen-atom diffusion rate through the lattice since the process 

lowers the diffusion barrier, the present calculations do not permit the 

magnitude of this increase to be determined. This is a consequence of the fact 

that the canonical Markov walk and damped trajectory calculations are 

thermodynamically based. Therefore, we cannot determine the time scale for 

vacant site mobility from the present calculations. For this reason, the diffusion 

coefficients reported here are lower limits for a system whose potential is 

described by Eq. (V.1 ). 

The computed values of the hydrogen-atom diffusion coefficient at 40 K 

indicate that over the range of vacancies considered, the diffusion coefficients 

increase exponentially with the percentage of lattice vacancies. Comparison of 

the predicted diffusion rates with the experimental values reported by LaBrake 

and Weitz 11 in vapor deposited xenon matrices suggests that the Xe lattices 

deposited at 1 O K and 28 K have about 1.8% and 1.2% vacant sites, 

respectively. Since the calculated values of D are lower limits, these 

percentages are upper limits for the potential surface used in the present 

calculations. 
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Table XII 

Hydrogen/Lattice pairwise potential parameters 

Parameter 

D 
a 
ro 
Rcut 

D 
Aeq 
A cut 

a: taken from reference 9 
b: taken from reference 12 

xe-xea 
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Value 

0.02421405(eV) 
1.4676ooo(A-1 > 

4.36230(A) 
1.ooo(A) 

0.000188(eV) 
4.5903(A) 
1.ooo(A) 



T(K) 

Table XIII 

Classical diffusion rates for hydrogen atoms 
in perfect fee xenon matrix and in an imperfect 

fee xenon matrix with vacancy number =5 

75,000 
75,000 

Ebb(eV) 

0.1210 
0.1153 

OC(cm2/s) 

2.1sx10-1s 
5.71x10-14 

(a) Number of moves in the Moakov/damped trajectory walk 
(b) Potential barrier height 
(c) Classical diffusion rates 
(d) For perfect fee xenon matrix 
(e) For imperfect fee xenon matrix with defect number=5 
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T(K) 

12 
40 
80 

Table XIV 

Classical diffusion rates for hydrogen atoms 
in an imperfect fee xenon matrix with 

vacancy number =15 

75,000 
50,000 
40,000 

3.06x10-12 
1.45x1 o-10 
3.97x10-4 

(a) Number of moves in the Moakov/damped trajectory walk 
(b) Classical diffusion rates 
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Figure 18. Variation of the Hydrogen-Lattice interaction potential with vacancy 
number in the crystal. 
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Figure 19. Variation of system potential energy for hydrogen atom movement 

along a straight line connecting the two adsorption sites in a 

frozen lattice atoms. The system has 15 vacancies. The abscissa 

gives the radial diffusion distance covered. 
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Figure 20. Minimum-energy profile for hydrogen-atom diffusion in a xenon 

matrix with 5 vacancies. The plotted points are the minimum 

crossing potentials obtained in the Markov/damped trajectory walk 

of 75,000 moves. The abscissa gives the radial diffusion distance 

covered. 
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Figure 21. Minimum-energy profile for hydrogen-atom diffusion in a xenon 

matrix with 15 vacancies. The plotted points are the minimum 

crossing potentials obtained in the Markov/damped trajectory walk 

of 50,000 moves. The abscissa gives the radial diffusion distance 

covered. 
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Figure 22: Typical lattice atom motion occurring during the first 200,000 Markov 

steps in the Monte Carlo calculation. At time t=O, site 382 is vacant. 

The diffusion of the lattice atom as shown by the solid arrows 

produces a vacancy at site 77 so that the overall result is an 

apparent diffusion of the vacancy from site 382 -> site 539 -> site 

47 -> site 545 -> site 77. 
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Figure 23. Minimum-energy profile for hydrogen-atom diffusion in a xenon 

matrix with 5 vacancies. The plotted points are the minimum 

crossing potentials obtained in the Markov/damped trajectory walk 

of 200,000 moves. The abscissa gives the radial diffusion distance 

covered. 
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Figure 24. Minimum-energy profile for hydrogen-atom diffusion in a xenon 

matrix with 15 vacancies. The plotted points are the minimum 

crossing potentials obtained in the Markov/damped trajectory walk 

100,000 moves. The abscissa gives the radial diffusion distance 

covered. 
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Figure 25. Variation of the computed hydrogen-atom diffusion coefficient with 

percentage of vacant xenon lattice sites at 40 K. The horizontal 

dashed lines are the experimental values reported. by LaBrake 

and Weitz (Reference 11) for the matrices indicated in the figure. 
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