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Chapter 1 
Introduction 

When testing any statistical hypothesis the researcher has two concerns 

regarding the technical merits of the test employed: the test's significance level 

and its power. Both ideas are part of every introductory statistics course. 

The significance level, traditionally denoted a, is the expected probability of 

a Type I error. That is, it is the probability a null hypothesis will be rejected 

when it is, in fact, true. Sometimes called the size of a test (especially in older 

literature), a Type I error is in a manner of speaking a false alarm--the chance 

something of significance will be discovered when it doesn't really exist. The 

significance level, then, tells the Type I error rate expected by the researcher. 

The actual Type I error rate, T, may under certain conditions deviate from the 

expected or nominal Type I error rate, a. A smaller deviation is, of course, 

preferable to a larger one. A technically sound test is one in which T is controlled 

so as to not deviate greatly from a. Tests in which TS are within allowable 

tolerances are termed robust. Studies that examine the Type I error rates of 

statistical tests, particularly under assumption violations, are called robustness 

studies. Such studies may be either analytic or empirical in nature. 

The power of an omnibus hypothesis test is the test's ability to detect 

population differences that actually exist. Thus power, or sensitivity, is the 

probability that a false null hypothesis is rejected and, hence, a true difference is 

identified. High power is desirable. Power is traditionally denoted 1 - /3, since it 

is the probability of the complement of a Type II error, the error of failing to 

reject a false null hypothesis, traditionally denoted /3. Statistical studies that 

examine the power of hypothesis tests are called power analyses. Unlike 

robustness studies, power analyses are further complicated by the nature of the 

alternative to the null hypothesis. If the null hypothesis, H0, is not true, 

something else must be true. Effect is a measure of the degree to which the 
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alternative hypothesis differs from the null hypothesis. Both the size and form of 

the effect (or difference) are important. The power of a statistical test is a 

function of three factors: the significance level, the sample size, and the effect. 

Robustness studies and power analyses are best done in concert, since the 

two ideas are inherently related. The concept of power is conditional upon a 

given significance level (Budescu & Appelbaum, 1981). So, power studies that do 

not first equate tests using significance level, are making comparisons on an 

unlevel playing field (Lee & Gurland, 1975). 

Various conditions affect the ability of a statistical test to adequately 

control actual Type I error rate while maintaining sufficiently high power. The 

most evident are violations of the assumptions upon which the test is based. 

Common assumptions deal with relationships among samples (independent or 

dependent), distributions of underlying populations, and patterns of variability. 

The Problem 

2 

One of the classic statistical tests is the comparison of the means of two 

populations. When random samples are independent and populations are normal 

in distribution and equal in variance, the solution has historically been the 

independent samples i test. According to Wang (1971), Behrens (1929) was the 

first to suggest a solution when the assumption of equal variances, or 

homoscedasticity, cannot be made, either because the variances are unknown or 

are known to differ. Fisher (1939) extended Behrens's solution, showing it to be 

the correct fiducial solution based on Fisher's theory of inference. The problem of 

testing the null hypothesis H0: µ1 = µ2 under possibly heteroscedastic conditions 

became known as the Behrens-Fisher problem. Numerous parametric solutions to 

the Behrens-Fisher problem have been offered, including those by Welch (1947), 

Aspin (1948, 1949), Cochran and Cox (1950), Wald (1955), Yuen (1974), Lee and 
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Gurland (1975), and Wilcox (1992). 

The analysis of variance (ANOVA) F test is a generalization of the 

independent samples .t. test to k samples. As in the two-sample case, 

independence of random samples, normality of distributions, and homoscedasticity 

( ay = a~ = ... = ai ) are assumed. Proposed solutions in the absence of the 

homogeneity-of-variance (homoscedasticity) assumption are numerous. Among 

those that are parametric are the Welch approximate degrees of freedom (APDF) 

test (Welch, 1951), the James series tests (James, 1951), and the Brown-Forsythe 

test (Brown & Forsythe, 1974). Other parametric solutions to the k-sample 

Behrens-Fisher problem have been suggested by Marascuilo (1971), Rubin (1982), 

Wilcox (1988, 1989, 1993), and Alexander and Govern (1994). 

Extending the independent samples .t. test to the multivariate case, Hotelling 

(1951) derived a test for the equality of two mean vectors, the case in which the 

null hypothesis is H0: µ1 = µ2. The assumptions are multivariate analogs of 

those of the univariate test. Samples are assumed independent; populations are 

assumed multivariate normal; and population covariance matrices ( also called 

dispersion matrices or variance-covariance matrices), I:1 and I:2, are assumed 

equal. Generalizations of univariate tests led to proposed solutions to the 

multivariate two-sample Behrens-Fisher problem by James (1954), Yao (1965), 

Johansen (1980), Nel and van der Merwe (1986), and Kim (1992). 

Multivariate analysis of variance (MANOVA) is the extension of analysis of 

variance (ANOVA) to more than one dependent variable. It is also the extension 

of Hotelling's two-sample test to the k-sample case. Four classic MANOVA tests 

are based upon the works of Wilks (1932), Lawley (1938), Bartlett (1939), Roy 

(1945), Hotelling (1951), and Pillai (1955). Each tests for the equality of k 

population mean vectors (H0: µ1 = µ2 = ... = µk) under the assumption that k 
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independent samples are randomly selected from k identically distributed 

multivariate normal populations. Specifically, all k covariance matrices are equal. 

Solutions suitable for use when covariance conditions are not known to be equal 

have been suggested by James (1954) who extended the work of James (1951) and 

Johansen (1980) who extended the work of Welch (1951). Coombs and Algina (in 

press) extended the Brown-Forsythe univariate test (Brown & Forsythe, 1974) to 

five tests that parallel the classic MANOVA procedures (two extensions of one 

test and one of each of the remaining three tests). 

Purpose of the Study 

The purpose of this study is to compare--under various experimental 

conditions--the Type I error rates and power levels of selected alternatives to the 

classic MANOV A procedures. The Pillai-Bartlett (Bartlett, 1939; Pillai, 1955) 

test, Johansen (1980) test, and four Coombs-Algina (in press) tests (one is omitted 

because of lack of a convenient F transformation) will be used to test H0: µ1 = µ2 

= ... = µk under varying distributions, numbers of groups, numbers of 

dependent variables, sample size ratio forms, ratios of smallest sample size to 

number of dependent variables, degrees of heteroscedasticity, and relationships 

between covariance matrices and sample sizes. Type I error rates will be 

computed and compared for the test statistics. To assess power two alternatives 

to the null hypothesis will be modeled in terms of effect size and form. Power will 

be computed and compared for those test statistics competitive in terms of Type I 

error control. Recommendations will be offered both on the basis of control of 

Type I error rate and power for competing tests. 

Three questions have emerged to guide the research in this study. 

Research Question 1. Does Type I error rate vary as a function of 

distribution type, number of groups, number of dependent variables, sample size 



ratio form, ratio of smallest sample size to number of dependent variables, degree 

of heteroscedasticity, or relationship between sample sizes and covariance 

matrices? 

Research Question 2. Does power level vary as a function of distribution 

type, number of groups, number of dependent variables, sample size ratio form, 

ratio of smallest sample size to number of dependent variables, degree of 

heteroscedasticity, relationship between samples sizes and covariance matrices, or 

form of deviation from the null hypothesis? 

Research Question 3. Under what conditions does each test maintain 

adequate control of Type I error rate and have suitable power? 

Significance of the Study 

5 

The importance of the significance level of a hypothesis test has long been 

recognized. Tversky and Kahneman (1971) characterize statistical tests as 

protecting the scientific community by policing its members against overly hasty 

rejections of null hypotheses, in other words, against making Type I errors. More 

recently researchers have begun to include power as an important criterion upon 

which to base test selection and interpretation. Olson (1974) takes the view that 

a very high Type I error rate makes a test dangerous and that low power makes it 

useless. Stevens (1980) offers two reasons why power in inferential studies 

deserves a centerpiece roll: 

1. High power (a priori) gives the researcher a reasonable chance of finding 

a difference if one exists. Surely if time, money, and resources are invested, 

one should demand a high chance of performing a successful inquiry, i. e., 

one that uncovers true differences. 

2. A knowledge of power (post hoc) enhances the researcher's ability to 

correctly interpret nonsignificant results. Was a difference not discovered or 



does it not exist? High power argues in favor of its nonexistence. 

Researchers have been admonished periodically to pay more attention to 

power and less to statistical significance (Rossi, 1990). Further, attempts have 

been made to reduce power calculations to usable forms (Cohen, 1988, 1992; 

Koele, 1982). However, studies of the literature indicate that power of statistical 

tests has shown no notable increase in the last quarter century ( Cohen, 1992; 

Freiman, Chalmers, Smith, & Kuebler, 1978; Moher, Dulberg, & Wells, 1994; 

Pulver, Bartha, & McGrath, 1988; Rossi, 1990). According to Cohen {1992) the 

absence of attention to power in the literature by both researchers and editors is 

inexplicable. 

6 

Multivariate tests are enjoying a dramatic increase in use in education and 

the behavioral sciences (Coombs, 1993). One reason may be their ability to 

provide greater power for rejecting a global null hypothesis than a collection of 

univariate tests, even when the multivariate tests are providing more stringent 

control over Type I error rate (Ramsey, 1982). Another reason is that educational 

research is inherently multivariate in nature, its outcomes seldom being measured 

against a single criterion variable (Stevens, 1972). 

Hence, the goal of selecting a multivariate procedure that controls Type I 

error rate, while at the same time maintaining adequate power, is one of merit. 

Realization of this goal is seriously jeopardized when the assumptions upon which 

multivariate tests are based fail. Under inequality of population covariance 

matrices significance level is seriously affected for unequal sample sizes (Ito & 

Schull, 1964). Violations affect power adversely for both equal- and unequal-sized 

samples (Ito & Schull, 1964; Olson, 1974). Power is also negatively affected by 

numerous types of violations of multivariate normality, most notably kurtosis 

(Olson, 1974). The occurrence of non-normality in real-world data is common 
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(Cressie & Whitford, 1986; Micceri, 1989; Tiku, 1980). This sensitivity of the 

classic multivariate procedures to assumption violations, especially heteroscedastic 

conditions, in terms of both Type I error rate and power, (Korin, 1972; Olson, 

1974; Pillai & Sudjana, 1975; Stevens, 1992), suggests that investigations of 

alternatives lacking such sensitivity are warranted. The James (1954) second

order test, Johansen (1980) test, and Coombs-Algina R*, Ui, U2, L *, and V* (in 

press) tests are just such alternatives. Researchers and practitioners alike will 

benefit from an illumination of the technical qualities of these alternatives to 

classic multivariate procedures. 

This study examines only parametric tests. Although nonparametric 

alternatives are satisfactory answers to normality violations in the univariate case 

(Blair 1981, Zimmerman & Zumbo, 1993), they are sensitive to unequal variances 

just as parametric tests are (Zimmerman & Zumbo, 1993). Tomarken and Serlin 

(1986) found parametric approximations generally superior to nonparametric 

approaches in all but a few cases of nonnormality. Pratt (1964) and Tomarken 

and Serlin (1986) discourage their use as alternatives to the independent samples i 

test when variances differ. Blair (1981) favors nonparametric alternatives to the 

ANOVA F test based on their superior power when normality is violated, but 

argues against their use under heteroscedastic conditions because of the effect on 

Type I error properties. In the multivariate case, nonparametric tests are difficult 

to use owing to the complex and often enormous amount of computations required 

(Nath & Duran, 1983). Hence, the advantage of simple calculations present in the 

univariate case is lost in the multivariate case. 



Independent Samples t Test 

Chapter 2 
Review of Literature 

The independent" samples i test is. used to test the null hypothesis that two 

populations have the same mean under the assumptions that random samples are 

independent, both populations are normal in distribution, and both populations 

have equal variances. The operative test statistic 

is distributed i with n1 + n2 -2 degrees of freedom. 

Many investigators have examined the independent samples 1 test both for 

Type I error rate robustness to assumption violations and for power. Early 

studies presented evidence showing the test to be nearly immune to assumption 

violations other than independence, which was explored by Daniels (1938). These 

studies concluded that neither departures from normality (Box & Andersen, 1955; 

Bartlett, 1935; Cochran, 1947; David & Johnson, 1951; Gayen, 1950; Neave & 
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Granger, 1968; Pearson, 1931) nor departures from homoscedastic conditions (Box, 

1954; Horsnell, 1953; Welch, 1938) caused the actual Type I error rater to differ 

greatly from the nominal rate a, unless the departures were so severe as to be 

readily apparent upon a mere inspection of the data (Lindquist, 1953). 

Boneau (1960) and Havlicek and Peterson (1974) extended these studies and 

found the effect of unequal variances upon Type I error rate to be related to 

sample size. Under direct pairing, when the larger sample comes from the 

population with the larger variance (the positive condition), the 1 test is 

conservative; that is, r < a. On the other hand the test is liberal, r > a, in the 
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negative condition, when the larger sample comes from the population with the 

smaller variance. Pratt (1964) examined the behavior of T mathematically for the 

case in which the sample size ratio is 3:2. The variance ratio B was allowed to 

vary across its entire range (0, oo) yielding Type I error rates that varied from 

.016 to .109 for a = .05. 

Ramsey (1980) applied Hsu's (1938a) equations to demonstrate that even 

when sample sizes are the same, the 1 test is not always robust to violations of 

homoscedasticity. Using Bradley's liberal criterion for robustness (Bradley, 1978) 

and Cochran's limits for robustness (Cochran, 1954), Ramsey offered equal

sample-size guidelines for .t. test robustness at various levels of significance. 

Ramsey concluded by suggesting the use of alternative statistics when these 

guidelines cannot be followed, especially when sample sizes are not equal. 

When the assumptions are satisfied, the 1 test is uniformly the most 

powerful among the unbiased size a tests for the significance of the difference 

between two means (Best & Rayner, 1987; Blair, 1981). While 1 does retain its 

power under some assumption violations (David & Johnson, 1951), often the 

power of the test is affected by departures from normality. Power tends to 

increase ( though actual Type I error rate does not) when both populations are 

skewed in the same direction. When the populations are skewed in opposite 

directions, the power function is markedly distorted (Young & Veldman, 1963). If 

both populations are symmetric and samples equal, nonnormality has little effect 

on either Type I error control or power (Tan, 1982). The effect of kurtosis on 

power is greater than that of skewness, but equal sample sizes tend to diminish 

the effects of the lack of normality on power (Pearson, 1929; Tan, 1982). 

Violations of the assumption of homogeneity of variance have little influence on 

the power of the i test (Young & V eldman, 1963). 



10 

Neave and Granger (1968) compared the!. test and seven nonparametric 

alternatives for power under the following conditions: (a) samples were selected 

from both normal and nonsymmetric, bimodal distributions, (b) the variance ratio 

8 = {2° or 1, and (c) n1 = n2 = 20 or n1 = 20 and n2 = 40. Power was calculated 

for mean differences of! and 1. The authors found power levels to improve with 

increasing sample size, being higher for sample sizes of 20 and 40 than for equal 

sample sizes of 20. In the Neave and Granger study power levels tended to be 

slightly lower under heteroscedastic conditions, but on balance estimated power 

levels agreed quite well with theoretical levels. Departures from normality in the 

form of nonsymmetric bimodality did not appreciably affect power. 

Donaldson (1968) examined the effect of heteroscedasticity on the power of 

the i test under the following conditions: (a) samples were selected from normal, 

exponential, and lognormal distributions, (b) the variance ratio 8 = 1, 1.56, 2.25, 

or 12.25, and ( c) Ill = Il2 = 16. Effect size expressed as 

2 2 
16E (µ·-71) 

i=1 1 

whereµ and cr2 are the average mean and variance, ranged from .44 to 1.94. 

Donaldson found that when effect size was very small, the test performed using 

samples selected from normal distributions displayed slight power advantages over 

the test performed using samples from either the exponential or lognormal 

distributions. The situation quickly reversed as effect size increased. For both 

the exponential and lognormal distributions, tests performed under heteroscedastic 

conditions showed smaller differences in power for small effects and larger 

differences in power for large effects when compared to the same tests performed 

under homoscedasticity. Under normality only slight differences, attributable to 



sampling error, occurred between the unequal- and equal-variance cases. 

Donaldson concluded that under normality, there is a close correspondence 

between actual and nominal power levels. 

Alternatives to the Independent Samples t Test 

11 

Wang (1971) reported that the first exact solution to the problem of testing 

for the difference between the means of two populations with unknown variances 

was supplied by Behrens (1929) and extended by Fisher (1939) as the correct 

fiducial solution. Fisher (1935), Sukhatme (1938), and Fisher and Healy (1956) 

calculated tables for the distribution of the Behrens-Fisher statistic. 

Welch (1938) identified two statistics used to test for equality of means in 

the absence of equal variances, which he called Y. and y. When sample sizes are 

equal, Y. and y are equal. Several studies (Fenstad, 1983; Gron.ow, 1951; Welch, 

1938) established the superiority of the Welch y. The statistic, which is often 

denoted 1v, is 

Several tests have been proposed using the Welch :y: statistic or 1v· Since the 

statistic does not yield an exact test (Welch, 1938), all solutions fall into one of 

two categories: (a) approximate degrees of freedom (APDF) solutions and (b) 

series solutions. The APDF tests are derived by approximating degrees of 

freedom which define the sampling distribution (in this case a 1 distribution with 

y degrees of freedom). Series solutions are derived by utilizing a series expansion 

to determine the critical value for the rejection region. 

Welch (1947) showed that iv follows a 1 distribution with degrees of freedom 
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The value off is not necessarily an integer. The test using this estimator is 

known as the Welch APDF test. 

Welch (1947) developed a series expression for the critical value of iv as a 

function of the significance level, sample sizes, and sample variances. The critical 

values for the zero-, first-, and second-order series solutions appear in Table 1. 

Aspin (1948) calculated third- and fourth-order solutions. 

Yuen (1974) suggested a two-sample test based on trimmed means and 

Winsorized variances whose critical value is a percentile of the Student's i 

distribution. The test was developed from the work of Yuen and Dixon (1973) 

and is commonly referred to as Yuen's trimmed means test or Yuen's trimmed i 

test. 

Wilcox (1989) proposed a modification of the zero-order 'Welch series 

solution using the statistic 

Q= 

where 
2xin- n--1 

£. = i + i x-
i nJni + 1) nJni + 1) 1 • 

Wilcox's statistic is approximately normal in distribution. The estimators :x:1 and 

:x:2 for µ1 and µ2 are biased for the purpose of reducing the difference between the 

actual and nominal Type I error rates. 
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Table 1 

Critical Values for Welch's {194 7) Zero-, First-, and Second-Order Series Solutions 

Order 

Zero 

One 

Two 

Critical Value 

z 

2 

2 (~J 2 

z(l +~ &i ~)j 
4 ( 2 si_'\ 2 I: nJ 

i=l 

2 ( sf )2 
( 1 ~ ~ n--1 z _ +4 z- ..:....i=-=l __ z __ 

( 2 sf) 2 I: n· 
i=l z 

2 

+ 3 + sz2 + z4 
3 

t ( (~i~ 3) 2 
i=l nz 1 

15 + 32z2 + 9z4 
32 

( 2 sf, 3 
I: nJ 
i=l 

2 
(Si) 2 

2 ( ni ) 2 ~ n--1 )1 z=l z 2 

( 2 sf) 4 I: n· 
i=l z 

Note: £ is a percentile of the standard normal distribution. 



14 

Wilcox (1992) suggested a statistic based on one-step M-estimators of 

location: 

In HM, &:mi is the one-step M-estimator in the ith group and .§mi is the estimated 

standard error of the ith estimator. The test using this statistic employs 

bootstrap methods to calculate the critical value. This Wilcox test and the Yuen 

trimmed means test were developed as ways to deal with heavy tails and outliers 

(Wilcox, 1992) which have substantial effects on power (Hampel, Ronchetti, 

Rousseeuw, & Stahel, 1986; Yuen, 1974). 

Various other statistics have been proposed to replace the independent 

samples i test when variances differ. One such test is based on modified 

maximum likelihood estimators of location and scale parameters of symmetric 

distributions (Tiku and Singh, 1981; Tiku, 1980, 1982). Wald (1955), Cochran 

and Cox (1950), and Lee and Gurland (1975) have proposed others. 

The literature suggests the following regarding the independent samples i 

test; Welch APDF test; the Welch zero-, first-, and second-order series tests; the 

Aspin third- and fourth-order tests; the Yuen trimmed means test; the Wilcox .Q 

test; and the Wilcox HM test in terms of the control of Type I error rate under 

heteroscedasticity: (a) the Welch APDF and James second-order tests are 

superior to the James first-order test which is superior to the independent samples 

i test, (b) both the Wilcox and the Welch second-order series tests are superior to 

the Welch APDF test, ( c) the Aspin test is only slightly superior to the Welch 

APDF test, (d) the Welch APDF test is adequate under normality, and (e) the 

James second-order and Wilcox HM tests best control Type I error rate under the 



widest range of conditions. In terms of power the literature suggests: (a) the 

Welch APDF test is more powerful in the positive condition and (b) the Welch

Aspin series and Welch APDF tests are comparable in power, (c) little power is 

lost using the Welch APDF test in place of the independent samples i test, even 

when assumptions are satisfied, (d) the Welch second-order series test is slightly 

more powerful than the Wilcox Q test, and ( e) the Wilcox HM test is more 

powerful than either the Welch APDF test or the Yuen trimmed means test. 
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Gronow (1951) studied the Welch APDF test in terms of power when 

variances are unequal. Heteroscedasticity somewhat reduced power for n1 = n2 = 

10. For unequal sample sizes, power was found to be higher in the positive 

condition. Actual Type I error rate, however, sometimes varied greatly from the 

nominal rate. 

Scheffe (1970) considered six solutions to the Behrens-Fisher problem and 

provided mathematical approximations of power for those he preferred, among 

them the Welch APDF test and the Welch-Aspin series solutions. Scheffe found 

the Welch-Aspin series tests to be more powerful than the Behrens-Fisher test and 

superior in Type I error control. He also found the power of the Welch-Aspin 

series tests to be well approximated by the power of the Welch APDF test. His 

comparisons lead to the conclusion that Welch's APDF test is a practical solution 

to the Behrens-Fisher problem, despite a slight disadvantage in Type I error rate, 

because it requires only the "ubiquitous" i tables. 

Wang (1971) compared the Behrens-Fisher test, Welch APDF test, and 

Aspin series tests. She found that differences between actual and nominal Type I 

error rates were small for the Welch APDF test under heteroscedastic conditions, 

the largest deviation being .0035 with samples of sizes 5 and 21 at a= .01. The 

Aspin series tests had slightly smaller deviations. The Behrens-Fisher test was 
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found to be quite conservative, while the Welch APDF test was found to be 

slightly liberal. All things considered, especially the lack of availability of Aspin 

series values and the tedious nature of the computations for the series tests, Wang 

(as Scheffe) recommended the Welch APDF test. 

Yuen (1974) compared the Yuen trimmed means and Welch APDF tests 

under normality and long-tailedness in a Monte Carlo experiment using both 

equal and unequal sample sizes selected from populations with different variances. 

She found both tests to be conservative under long-tailedness, the Welch APDF 

test more so. The trimmed means test was found to be generally superior in 

terms of power, with the level of superiority depending on degree of long

tailedness, sample sizes, and level of mean trimming. Under normality the Yuen 

test had lower power levels than the independent samples 1 test, although the 

power loss was small when the amount of trimming was small. 

Hampel, Ronchetti, Rousseeuw, and Stahel (1986) reported that both the 

independent samples 1 test and the Welch APDF test are considered in most cases 

to be robust to assumption violations in terms of Type I error rate, but not in 

terms of power. 

Acknowledging that there is no uniformly most powerful unbiased size a 

test for the Behrens-Fisher problem for all sample sizes, Best and Rayner (1987) 

recommended the routine use of the Welch APDF test, regardless of whether 

assumptions are satisfied or not. They based this recommendation on the results 

of simulations under the following conditions: (a) samples were taken from normal 

distributions, (b) the variance ratio () = !, !, 1, 2, or 4, ( c) (n1, n2) = ( 4, 8), (5, 

15), (10, 10), (15, 45), (30, 30), (25, 75). Power comparisons were made for effect 

sizes in which the population mean differences were 1, 2, 3, or 4 standard errors. 

Best and Rayner found the Welch APDF test to perform well in terms of power in 
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all conditions. The effect of heteroscedasticity diminished with increased sample 

sizes. Even when the variance ratio()= 1, the loss in power of the Welch APDF 

test compared to the independent samples 1 test was of no practical importance 

for degrees of freedom of at least 5. 

Wilcox (1989) found James's second-order series test, which reduces to 

Welch's second-order series test when k = 2, to control Type I error rate almost 

as well as the Wilcox test and to have slightly more power. For k = 2 the 

advantage of the Wilcox test over the Welch APDF test was very slight when 

both populations were normal. 

Wilcox (1990) studied five tests under departures from both normality and 

homoscedasticity, among them the Wilcox Q. and Welch APDF tests. Monte 

Carlo conditions included: (a) sampling from two populations, the first of which 

was usually normal and the second of which came from a distribution with one of 

five levels of skewness or one of five levels of kurtosis, (b) variance ratio()= 1, 2, 

or 4, (c) g 1 = 12, 20, 30, 40, 60, or 80 and rr2 = 12 or 20. Power was studied by 

adding a constant to every observation in the second group. Wilcox found the 

Welch APDF test to be robust in terms of Type I error rate to both violations 

when g 1 = rr2. When sample sizes differed, it was sometimes too liberal. The 

Wilcox test was affected least by departures from normality and it, too, was found 

to be liberal in some conditions. The power of both tests was affected by 

departures from normality. When samples sizes were equal, Wilcox found the 

Welch APDF test to be superior to the Wilcox Q. test in terms of both control of 

Type I error rate and power. When sample sizes differed, the Wilcox test was 

superior to the Welch APDF test in both control of Type I error rate and power. 

Under assumption violations, Wilcox recommended using the Welch APDF test 

when sample sizes were the same and the Wilcox Q. test when they differed. 
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Wilcox (1992) compared the Wilcox HM test with the Yuen trimmed mean 

and Welch APDF tests. His simulation study found the HM test to have stable 

Type I error control ( .031 ~ r ~ .055) for tests of noncontaminated identically 

shaped distributions in which the variance ratio was 4:1 or less. Good control was 

also exhibited when population shapes differed. Five distribution types were 

included in the study: normal, i with 5 degrees of freedom, exponential, moderate 

skewness, and extreme nonnormality. In terms of power HM was found to be 

substantially more powerful than the trimmed means test which in turn 

outperformed the Welch APDF test as contamination increased. 

Zimmerman and Zumbo (1993) examined the independent samples i test, 

Welch APDF test, and two nonparametric tests under simulated conditions in 

which: ( a) random samples were selected from normal populations, (b) the 

variance ratio 8 = 1 or 16, and ( c) sample sizes were 6, 12, or 18. For equal-sized 

samples and variance ratios 8 = 1 the powers of the i test and the Welch APDF 

test were similar. The Welch APDF test, however, exhibited power superior to 

that of the i test when n1 = g_2 = 18 and the variance ratio 8 = 16. 

In summary, the independent samples i test is generally acceptable in 

controlling Type I error rate and is the uniformly most powerful unbiased size a 

test when all assumptions are met. Under heteroscedastic conditions, it remains 

acceptable for sufficiently large equal-sized random samples. However, when 

variances differ, superior alternatives exist that do not require equality of 

variances. The Welch APDF test seems to be the most practical solution, given 

its control of Type I error rate, acceptable power, and reliance on the easily 

accessible i distribution. Somewhat superior series solutions are available in the 

James second-order and the Wilcox HM tests, but they are either computationally 

intense or unavailable in standard computer packages. 



Analysis of Variance 

The ANOV A F statistic tests for differences among the means of k 

independent samples randomly selected from k normally distributed populations 

with equal variances. The statistic 

p = __ k_-_1 __ 

't (n--1)s2 
i=l z z 

N-k 

k 
is distributed F with (k-1) and (N -k) degrees of freedom where N = I: Il.i· In 

i=l 
the two-sample case the F statistic reduces to the square of the .t. statistic. 
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Numerous studies have concluded that violations of the assumption of equal 

variances affect the Type I error rate in the one-way analysis of variance. Early 

works by Box (1954) and Horsnell (1953) demonstrated mathematically that the 

ANOVA F test is robust to heteroscedasticity as long as sample sizes are equal. 

But these early studies considered primarily conditions in which 8, the ratio of the 

largest to smallest population variance was small, equal to '13. Box found one case 

that was a distortion of the idea that equal sample sizes eliminate the effects of 
) 

unequal variances: an actual Type I error rater= .12 with a nominal rate a= 

.05, 8 = fl, and equal sample sizes of 3. Later studies extended Box's work in the 

direction of this "distortion" by considering conditions in which 8 > '13. These 

studies showed that for sufficiently large 8, the ANOVA F test is not robust to 

equal variance violations, even for equal sample sizes (Brown & Forsythe, 1974; 

Clinch & Keselman, 1982; Harwell, Rubinstein, Hayes, & Olds, 1992; Rogan & 

Keselman, 1977). Further, Fenstad (1983) and Wilcox (1987) have demonstrated 

that values of 8 as large as 4 are not unusual in the literature. 
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When sample sizes are not equal, the ANOVA F test is conservative in the 

positive condition and liberal in the negative condition (Clinch & Keselman, 1982; 

Tomarken & Serlin, 1986). Because the ANOVA F test is more sensitive to 

unequal variances than previously thought and no test exists with adequate power 

to identify cases of heterogeneity, some investigators have suggested that 

researchers abandon the analysis of variance F test (Wilcox, 1987; Wilcox, 

Charlin, & Thompson, 1986). 

The power of the ANOVA F test, both unde,r assumptions and in the face of 

violations, has been studied extensively. McFatter and Gollab (1986) chronicled a 

short list of investigators. According to Glass, Peckham, and Sanders (1972) 

Horsnell (1953) produced the first published investigation of the F test under 

heteroscedastic conditions. Scheffe (1959) noted that as late as 1959 most of what 

was known regarding the effect of unequal variances on the power of the F test 

could be traced to the Horsnell study. Donaldson's (1968) empirical study, unlike 

Horsnell's analytic one, was restricted to equal sample sizes. Both concluded, 

however, that under normality a close correspondence exists between empirical or 

actual power and theoretical power calculated using a mean variance for the 

common variance required in theory to compute power. 

Budescu (1982) conducted an empirical test of the power of the ANOVA F 

test under the following conditions: (a) samples were selected from normal 

distributions, (b) k = 4, ( c) samples were both equal and unequal in size, and ( d) 

variances were proportional to means. Powers were calculated using three 

noncentrality parameters which described the amount of difference among the 

means. In addition, two forms of noncentrality, concentrated (µ 1 = µ2 = µ3 < 

µ4) and diffuse (µ 1 - 32: ::::; µ2 - 22: ::::; µ3 - 2: < µ4), described mean 

configuration. Budescu concluded that the power of the ANOVA F test under 
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normality with variances proportional to means can be well approximated by the 

normal power function using an estimated noncentrality parameter. 

A number of investigators have discussed the power of the ANOVA F test 

under normality violations (Boneau, 1960; Donaldson, 1968; Games & Lucas, 1966; 

Srivastava, 1959; Tan, 1982; Tiku, 1971). Srivastava (1959) provided tables of 

powers for various values of skewness and kurtosis for various effect sizes and 

mean arrangements and demonstrated that increasing sample size decreases the 

effect of kurtosis on the power curve. Boneau (1960) showed that platykurtosis 

reduces power and leptokurtosis causes it to increase. 

Games and Lucas (1966) conducted a Monte Carlo power analysis using 

three populations, samples of size 3 or 6, and nine distributions, eight of which 

were not normal. They found that for non-normal populati,ons theoretical normal

theory power calculations were remarkably well approximated by the empirical 

power values in their simulations. However, while moderate departures from 

normality had little practical effect on power, extreme skewness and moderate 

leptokurtosis did produce great effects in power values. 

Tiku (1971) also found moderate departures from normality to have little 

effect on the power of the F test. He noted that as sample size increases, kurtosis 

has a greater effect on power than skewness. 

Tan (1982) summarized what is known about the effect of non-normality on 

the power of the F test. For moderate departures and equal sample sizes F is 

quite robust with respect to power. Severe departures ( exponential and 

lognormal) exert considerable effects which become more pronounced as sample 

size differences increase. Kurtosis has a more dominant role than skewness in 

determining power. 
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Alternatives to the Analysis of Variance 

Several alternatives to the ANOV A F statistic have been derived to test the 

null hypothesis of the equality of k means when the assumption of 

homoscedasticity does not hold; that is, when O'i =f:. uj for at least one pair of i 

andj. 

Welch (1951) extended the Welch (1947) APDF solution which yielded the 

statistic 

where 

S2 
W• = (...i..)-1 

i ni ' 

Fv= ~~-1=-__,11,--'-=-k~-~1'--~~~~ 
1 + 2,k- 2; f, _1_ (1- wi'\2 

d! 1 . 1 n. - 1 w) Ii:"'- i= i 

The Welch APDF statistic F vis approximately distributed as F with 

k-1 and .(-3- .t ( 1 _ j.)2)-1 
llf-1 i=l 

degrees of freedom. 

Marascuilo (1971) suggested a variation of the Welch APDF test that yields 

slightly larger values of the test statistic. 

James (1951) proposed generalizations of the Welch (1947) series solutions. 

James's statistic is 

k 
J = E w-(x--x}2 . l i i 

i= 



where 

s~ 
W· = (....!..)-1 

i ni , and 
k 

w = "w L., i . 
i=1 
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The statistic J. is asymptotically x2 in distribution with k-1 degrees of freedom. 

However, the chi-square approximation is not satisfactory if sample sizes are small 

or even moderately large. James offered two methods for adjusting critical values 

in such cases, yielding what are known as the James first- and second-order 

solutions. In the first-order test, if all population means are equal, 

2 ( 3xk-1;a + k + 1 k 1 ( wt,2) 
P [J > Xk-1·a 1 + {, 2 ) .E !- 1-w) ]= 0 · 

I 2 k - 1 1=1 1 

The James second-order method also yields approximate critical values, but is 

computationally challenging as observed by James. 

Brown-Forsythe (1974) offered for consideration the test statistic 

k 2 
.E n/xi . - x . .) 

F* = ....;;z_=...::,1 ____ _ t (1- n~'\ s~ 
i=1 NJ I 

F* is approximately distributed as F with k - 1 and f degrees of freedom, where 



Both the Welch (1951) APDF test and the Brown-Forsythe test reduce to the 

Welch (1947) APDF test when k = 2. 

Rubin (1982) modified the Brown-Forsythe test by utilizing the same test 

statistic, but substituting g1 for the numerator degrees of freedom, where 

The denominator degrees of freedom g? equals that of the Brown-Forsythe 

statistic which is a percentile of the F distribution with g1 and g2 degrees of 

freedom. 

Wilcox (1988) proposed the statistic 

{:, (w--w) 2 
i=l 1 H=....;:.....=---~-

k s2 
rr,ax (ni.) 
i=l 1 

followed (1989) with a modified statistic 

where 

s~ 
W· = (_i\-1 

1 nv 1 

2xin- n--1 k W·X· 
X · - 1 + 1 x · and X = ~ - 2- 2 

i - nJni + 1} nJni + 1) i' i=l w . 
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Both H and Hm are approximately distributed as x2 with k-1 degrees of freedom. 

Wilcox (1993) proposed yet another statistic by generalizing his HM test to 



the case of k groups: 

1 k -
Z = N E n-(x ·-xmJ . 1 t mt 

t= 

where 

and 
k 

N = E ni. 
i=l 

The critical value for Z. is calculated using bootstrap methods as with the two-

sample case. 

Alexander and Govern (1994) derived the test statistic 

where 

and 

k 
A= E ~ 

i=l t 

zi = C + /1 t Sc 4c7 + 33c5 + 240c3 + 855c 
1 Ob2 + Bbc1 + 1 OOOb 

x--1f 
t• = t S· z z 

b = 4Ba2 

k 
x+ = E W·X· 

i=l t i 

t2 1 
c = [ a Zn ( 1 + n. ~ 1))2 

z 

1 
s~ z 

The Alexander-Govern statistic A is distributed approximately as x2 with k-1 

degrees of freedom. 
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The literature includes a number of conclusions regarding the control of 

Type I error rate and power for the ANOVA F, Welch APDF F v, James first

order J., James second-order J., Brown-Forsythe F*, Wilcox H, Wilcox Hm, Wilcox 

Z, and Alexander-Govern A tests under violations of homoscedasticity. Regarding 

Type I error control, conclusions suggest: (a) each of the alternatives is superior 

to the ANOVA F, (b) both the Welch APDF and Brown-Forsythe tests 

outperform the James first-order test, (c) the Welch APDF and Brown-Forsythe 

tests are generally competitive with the Welch test enjoying a slight edge under 

normality, (d) the Rubin test is competitive with the Welch APDF test and 

outperforms the Brown-Forsythe test, and (e) the James second-order, Wilcox Z., 

and Alexander-Govern A tests outperform all contenders. 

Generally, it can be concluded regarding power that (a) the ANOVA Fis 

the most powerful when variances are equal, (b) heteroscedasticity has a negligible 

effect on the AN OVA F test, ( c) little power is lost when using the Welch APDF, 

Brown-Forsythe, James second-order, or Wilcox Hm tests, (d) the Wilcox H test 

has inferior power levels when compared to any of the other tests, (e) the Wilcox 

Hm test has slightly less power than the James second-order test, and (f) the 

Alexander-Govern A test and the James second-order tests have comparable 

power levels. In nearly all studies power comparisons were made only for tests 

showing adequate control of Type I error rates. The concept of power is 

conditional upon a given probability of Type I error. It must be shown that two 

tests operate at the same a level before power comparisons can be meaningful 

(Budescu & Appelbaum, 1981). 

Brown and Forsythe (1974) examined the ANOVA F, Brown-Forsythe F*, 

Welch APDF F v, and James first-order test via Monte Carlo experiments under 

the following conditions: ( a) samples were selected from normal distributions, (b) 
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k = 4, 6, or 10, ( c) the ratio of the largest to smallest population variance () = 1 or 

3, (d) the ratio of the largest to smallest sample size .llr = 1, 1.9, or 3, and (e) 16 
k 

~ N ~ 200 where N = ~ .lli is total sample size. For power analyses three 
i=l 

noncentrality structures were used with each of three variance configurations at 

both the .01 and .05 significance levels. Brown and Forsythe concluded that for 

both the Welch APDF and Brown-Forsythe tests, actual Type I error rate T 

closely approximated the nominal rate a, while T fluctuated greatly for the 

ANOVA F. For small samples the critical value in the Welch APDF test was a 

better approximation to the true value than was the James first-order 

approximation. For that reason, the James test was omitted from power 

comparisons. The Welch APDF test was more powerful than the Brown-Forsythe 

test when extreme means were paired with small variances. When extreme means 

were paired with large variances, the Brown-Forsythe test was more powerful. 

Both the Welch F v and the Brown-Forsythe F* tests were only slightly less 

powerful than the ANOVA F, even when homoscedasticity held. 

Kohr and Games (1974) studied the ANOVA F test, Box test, and Welch 

APDF test under the following conditions: (a) samples were selected from normal 

distributions, (b) k = 4, ( c) largest to smallest population variance ratio () = 1, '12, 

fl, M, or {13, ( d) largest to smallest sample size ratio .llr = 1, 1.5, or 2.8, ( e) N = 

32 or 36. Power analyses were made for 4 7 of 81 possible combinations of 9 

variance conditions, 3 noncentrality structures, and 3 sample size conditions using 

a = .05. Kohr and Games concluded that the Welch APDF test exhibited better 

control of Type I error rates under heteroscedasticity than either the ANOVA F 

test or the Box test, although the superiority was more pronounced when 

compared to the ANOVA F test. Of the three tests the Box procedure was never 

the most powerful. For equal or unequal sample sizes and homogeneous variances 



the ANOVA F test was more powerful than the Welch APDF test. Under 

heteroscedasticity and equal sample sizes the ANOVA F test was more powerful 

when extreme means were paired with larger variances. However, under these 

conditions the ANOVA F test did not adequately control Type I error rates, so 

the comparison lacked validity. The Welch APDF test was most powerful when 

sample sizes and variances varied. 

Levy (1978b) compared empirically the ANOV A F test, the Welch APDF 
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F v test, and the Marascuilo variation of the Welch APDF test, examining both 

Type I error control and power. Conditions studied in the robustness test 

included: (a) samples were selected from uniform, double exponential, x2 (5 

degrees of freedom), and exponential distributions, (b) k = 3 or 6, (c) largest to 

smallest sample size ratio !!r = 1, 3, or 5 fork= 3 and nr = 1, 3, 1.7, and 2.5 fork 

= 6, and ( cl) largest to smallest population variance ratio 8 = 1 or 50. Power was 

studied only under homogeneity of variances. The ANOVA F and Welch APDF 

tests were comparable in controlling Type I error rate under equal variances. The 

Marascuilo test was liberal except when all sample sizes were at least 15. Under 

heteroscedasticity and equal-sample-size conditions, F was liberal, F v was 

adequate, and the Marascuilo statistic was somewhat liberal. In the positive 

condition the ANOV A F was conservative, while actual and nominal Type I error 

rates were approximately equal (r ~ a) for the other two tests. In the negative 

condition F was liberal, while the other two tests were again satisfactory. In 

terms of Type I error control, the Welch APDF test was the best of the three 

studied under heteroscedasticity and was comparable to the ANOVA F under 

homoscedasticity. The Marascuilo test is inherently more powerful than the 

Welch APDF test, since it always yields slightly larger values of the test statistic. 

Levy's simulation showed the ANOVA F to be slightly more powerful than the 
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Welch APDF test. It was also generally more powerful than the Marascuilo test 

except for two sample-size instances (k = 3 and Ili = 5; k = 6 and ni ::; 15). All 

tests were robust to nonnormality with F showing the highest degree of robustness 

followed by the Welch APDF and Marascuilo tests in that order. In a separate 

study Levy (1978a) showed that the non-normal distribution of the Welch APDF 

statistic can be approximated by an approximate noncentral F distribution and 

demonstrated the closeness of the approximation using Monte Carlo simulations 

with conditions similar to those in the Levy (1978b) study. 

Dijkstra and Werter (1981) considered the Welch APDF test, Brown

Forsythe test, and James second-order test empirically under the following 

conditions: (a) samples were drawn from normal populations, (b) k = 3, 4, or 6, 

( c) largest to smallest population variance ratio B = 1 or 3, ( d) largest to smallest 

sample size ratio Ilr = 1, 2, 2.5, or 3.5, and (e) 12 ::; N ::; 90. Power analyses 

were conducted using four noncentrality structures, two variance configurations, 

and two sample-size conditions at significance levels of .01, .05, and .10. The 

James second-order test gave better protection against unequal variance effects on 

Type I error rates than either the Brown-Forsythe or the Welch APDF tests, 

which were comparable. None of the three tests was uniformly more powerful 

than the other two. The Brown-Forsythe test was more powerful when extreme 

means coincided with larger variances, while the Welch APDF test and James 

second-order test had power advantages when extreme means coincided with small 

variances. 

Clinch and Keselman (1982) compared the ANOVA F test, the Welch 

APDF test, and the Brown-Forsythe F* test under the following conditions: (a) 

samples were taken from distributions that were normal, x2 with 2 degrees of 

freedom, or :!i. with 5 degrees of freedom, (b) k = 4, ( c) largest to smallest 
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population variance ratio 8 = 1, 1.32, 1.82, 3.04, or 4.22, ( d) largest to smallest 

sample size J!r = 1 or 3, and (e) N = 48 or 144. Two alternative distributions of 

means were examined for power comparisons using the .05 significance level and 

three sample size-variance pairings ( equal sample sizes, direct pairing, and inverse 

pairing). When sampling was from symmetric distributions, the Welch APDF 

and Brown-Forsythe tests exhibited adequate Type I error control, both tests 

withstanding the combined effects of unequal group sizes and variance 

heterogeneity. The ANOVA F test did not, being conservative when sample sizes 

and variances were directly paired and liberal when the pairing was inverse. 

When sampling was from skewed distributions, only the Brown-Forsythe test was 

robust to violations of homogeneity of variance. The ANOVA F test and the 

Welch APDF test were especially prone to inflated Type I error rates when 

unequal variances were inversely paired with unequal sample sizes. All three tests 

shared similar power rates when sample sizes were equal and when unequal 

samples sizes were directly paired with population variances. Clinch and 

Keselman did not make power comparisons in the case of indirect pairings because 

only the Brown-Forsythe test adequately controlled Type I error rates. 

Tomarken and Serlin (1986) investigated five tests - the ANOV A F , the 

Welch APDF, the Brown-Forsythe, and two nonparametric tests -under the 

following conditions: ( a) samples were obtained from normal distributions, (b) k 

= 3 or 4, ( c) largest to smallest population variance ratio 8 = 1, 6, or 12, ( d) 

largest to smallest sample size ratio Ilr = 1 or 3, and (e) 36 < N < 80. Four 

configurations of mean, sample size, and variance were used to assess power, using 

the .01 and .05 levels of significance. Tomarken and Serlin found all three tests to 

perform acceptably under homoscedastic conditions. When both population 

variances and sample sizes were equal, the ANOVA F was liberal, but for the 



Brown-Forsythe and Welch APDF tests actual and nominal Type I error rates 

closely agreed, the agreement being slightly better for the Welch test. In the 

positive condition the ANOVA F test was extremely conservative, the Brown-

Forsythe test was slightly liberal, though tolerable, and the Welch APDF test 

showed good control over Type I error rate. In the negative condition the 
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ANOVA F test was extremely liberal, while the Brown-Forsythe and Welch 

APDF tests were slightly liberal. When variances were equal, the ANOVA F test 

was the most powerful, followed closely by the Brown-Forsythe test. Under 

horrioscedasticity power level differences were slight. Only the Brown-Forsythe 
,, 

and Welch APDF were compared for power. The Welch APDF test was optimal 

when means were equally spaced, when one extreme mean was paired with the 

smallest variance, and when two equal means were halfway between two extreme 

means. The Brown-Forsythe was optimal only when one extreme mean was 

paired with the largest variance. 

Wilcox, Charlin, and Thompson (1986) observed the behavior of the 

ANOVA F, Welch APDF, and Brown-Forsythe tests under conditions that 

extended those of the Brown and Forsythe (1974) study: (a) sampled populations 

were normal, (b) k = 2, 4, or 6, ( c) largest to smallest population variance ratio B 

= 1 or 4, (d) largest to smallest sample size !lr = 1, 1.9, 3, 3.3, or 4.2, (e) 22 ~ N 

~ 200. To assess power the first mean in each group of means was set equal to 

1.2; the others were zero. Wilcox, Charlin, and Thompson concluded that the F 

test was even more sensitive to violations of homoscedasticity than had been 

previously thought. Even for equal samples of size 50 each the test was not robust 

for B = 4 and k = 4. The authors agreed with the findings of Brown and Forsythe 

for the cases they considered (B = 3), but discovered that neither the Brown

Forsythe test nor the Welch APDF test was robust to heteroscedasticity when 
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sample sizes were unequal and the ratio of the largest to smallest variance was 

four. They found little loss in power when either the Brown-Forsythe test or the 

Welch APDF test was used in place of the ANOVA F test when variances were 

not equal. Under heteroscedasticity the Brown-Forsythe test and the Welch 

APDF test differed drastically in power. The Welch APDF test was usually more 

powerful, but the reverse was sometimes true. Wilcox, Charlin, and Thompson 

recommended abandoning the ANOVA F test and using the Brown-Forsythe test 

when variances are homogeneous, especially if sample sizes differ. They 

recommended using the Welch APDF test 'when variances differ, but sample sizes 

do not. None of the tests studied were recommended when sample sizes differ and 

heterogeneity is extreme (8 ~ 4). 

Wilcox (1988) compared his newly proposed H statistic with the Welch Ev, 

the Brown-Forsythe F*, and the James second-order statistic. Conditions 

reported included: (a) samples were derived from populations that were normal, 

light-tailed, symmetric, medium-tailed, asymmetric, or exponential-like, (b) k = 

4, 6, or 10, (c) largest to smallest population variance ratio f) = 1, 4, 5, 6, or 9, (d) 

largest to smallest sample size ratio TI.r = 1, 5, 2.5, 3.3, or 1.8, and ( e) 44 ~ N . 

~ 106. For power comparisons the mean of the first group was set to 1.2, 0.4, or 

2.4, and the groups were tested under 17 variance and sample size conditions. 

Wilcox found his proposed H test to compare favorably with the James second

order method, giving excellent results with equal sample sizes and revealing a 

slight liberal tendency when sample sizes differed. Both tests outperformed 

competitors F v and F*. Deviations from normality had little effect on either the 

Wilcox Hor the James second-order test. One exception was noted. The Wilcox 

H test was conservative and the James second-order test was liberal under 

extreme non-normality with moderately small sample sizes. The James second-



order test was slightly less powerful than the Welch APDF test and generally 

more powerful than the Wilcox H test except when the largest mean was paired 

with the smallest variance and smallest sample size. In that case the James 

second-order test was considerably more powerful. 
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Wilcox recommended the James second-order test over the H test, but 

proposed a modified H statistics, Hm, designed to compare more favorably in 

power with the James second-order test (Wilcox, 1989). A new study to compare 

the James second-order method with the modified Wilcox statistic used: (a) 

samples from normal populations, (b) k = 4 or 6, (c) largest to smallest 

population variance ratio (} = 1, 4, or 6, ( d) largest to smallest sample size ratio !lr 

= 1, 2.5, 2.7, or 5, and (e) 44 ~ N ~ 121. For power assessment three 

alternatives were used; the first mean was increased by 1, 2, or 3. Wilcox's results 

showed the James second-order test to be slightly liberal, while the Wilcox Hm 

test was slightly conservative. The James second-order test was more powerful, 

but not substantially so. The Hm statistic was a clear improvement over H, but it 

deteriorated under the same conditions that caused the earlier version to be 

unsatisfactory - small sample sizes, large numbers of groups, and increased 

variance ratios. 

Hsiung, Olejnik, and Huberty (1994) studied the Wilcox Hm test under a 

wider range of conditions and found the test to be invalid under small, but 

reasonable, unequal sample sizes and a common population mean different from 

zero. They further showed the test not invariant to the distribution location 

parameter, thus, effectively ruling out the test for consideration with interval 

data, which comprises a large bulk of the data in psychology and education. 

Oshima and Algina (1992) included the Welch APDF test, Brown-Forsythe 

test, James second-order method, and two Wilcox tests (H and Hm) in a Monte 
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Carlo study that crossed the 31 Wilcox (1988) study conditions with 5 

distributions - normal, uniform, i with 5 degrees of freedom, beta with parameters 

1.5 and 8.5, and exponential. Oshima and Algina did not make power 

comparisons. They found no single test to be uniformly superior in controlling 

Type I error rate. In general, the James second-order test was superior to both 

the Welch APDF test and the Brown-Forsythe test. The modified Wilcox test 

was superior to the Brown-Forsythe test. The Hm test was conservative with 

normal distributions or long-tailed symmetry; the James second-order test was 

not. For short-tailed symmetry the James second-order test tended to be more 

liberal than the Wilcox Hm test. Both tests were liberal with asymmetry, the 

Wilcox test less so. Oshima and Algina conjectured based on these findings that 

the James second-order test has a power advantage over the modified Wilcox test. 

They recommended the James second-order test when data are symmetric in 

distribution and Wilcox Hm test with moderate skewness. 

A meta-analysis conducted by Harwell, Rubinstein, Hayes, and Olds (1992) 

summarized the ANOVA F and Welch APDF Fv tests in terms of both Type I 

error control and power under assumption violations. When sample sizes are 

equal, heteroscedasticity has a modest inflationary effect on Type I error rate for 

F that increases as the variance ratio () increases. The effect on Type I error rate 

for the Welch F v remains modest for variance ratios as high as 8:1. The effect on 

power for both tests is negligible. When sample sizes differ, the Type I error rate 

for the AN OVA Fis seriously affected by heteroscedasticity, while the Welch F v 

shows only a slight liberal tendency. The effect on the power of the F test is 

negligible, while F v experiences a slight inflationary trend. 

Wilcox (1993) designed a Monte Carlo experiment to assess his Z. test, a 

generalization of the Wilcox (1992) HM test. Both were developed to 
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accommodate heavy-tailed distributions which affect power (Yuen, 1974) and have 

been shown to be common (Micceri, 1989). Wilcox examined Z. under the 

following conditions: (a) samples were selected from normal, exponential, 

uniform, i with 5 degrees of freedom, and moderately skewed distributions, (b) k 

= 4, ( c) largest to smallest population variance ratio B = 1 or 4, ( d) samples sizes 

were 21 or 41, yielding a ratio of largest to smallest sample size !!r = 1 or 1.95, 

and ( e) 105 < N :::; 125. Results showed that Z. can be unsatisfactory at the .01 

significance level in controlling Type I error rate. At a= .05 and .10 control was 

adequate except when Z. was used with the relatively light-tailed exponential 

distribution. 

Alexander and Govern (1994) compared the Alexander-Govern A statistic 

with the ANOVA F and James second-order statistics. A large range of 

conditions that threaten control of Type I error rate (large numbers of groups and 

small sample sizes) were considered in the robustness phase of the study. The 

power phase examined nine conditions, a result of crossing three effect sizes with 

three mean patterns. Effect size was defined as range of means and was set at 0.5, 

1.0, or 1.5. The three mean patterns used were those of Cohen (1988): maximum 

variation (half the means at each extreme of the range), minimum variation ( one 

mean at each extreme and the others at the median), and intermediate variation 

( equally spaced means). In terms of control of Type I error, A was found tci be 

similar to the James second-order statistic across all conditions, deviating less 

than .007 at a = .05 and less than .005 at a = .01. The power study showed that 

conditions that inflated Type I error rate for the ANOVA F resulted in its power's 

being lower than that of either A or the James statistic. The reverse was also 

true. The A statistic had power levels comparable to those of the James second

order statistic. 



On balance, the alternatives to the ANOVA F test offer improved control 

over Type I error rate under heteroscedastic conditions in normal distributions. 

The James second-order method and the Govern-Alexander A test offer the best 

control, especially as heteroscedasticity increases. The two tests have similar 

powers. Despite its difficult computations, the James second-order solution 

appears to be a statistic of choice, along with that of Alexander and Govern, for 

testing for mean differences under heteroscedastic conditions now that computer 

code has been written for the test (Oshima & Algina, 1992). 

Hotelling's T2 Test 

Hotelling's (1931) T2 test is used to test two population mean vectors of 

order 12. x 1 for equality under the assumptions that independent samples of sizes 

n.1 and n.2 are randomly selected from two multivariate normal populations with 

equal covariance matrices, E1 and E2. The test statistic is 

where 

S _ _ ( n_1_-_1_) S_2_+_(---'n2--,_...1_}_S 2 
- n1 + n2-2 

S1 and S2 are the sample covariance matrices. Hotelling used 

_n_1 _+_n_2_-_P_-~1 T2 
{n1 + n2 -2}p 
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to transform the distribution of T2 to an F distribution with 12. and n.1 + n.2 -12. -1 

degrees of freedom. Hsu (1938b) developed the power function of T 2 and 

discussed its optimum properties, showing T 2 to be the most powerful statistic in 



its class according to the Neyman-Pearson theory of testing of statistical 

hypotheses. 
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The behavior of T2 when the assumptions of multivariate normality and 

homoscedasticity are violated have been well documented in the literature. Both 

analytic (Ito & Schull, 1964; Mardia, 1971; Pillai & Sudjana, 1975) and empirical 

(Algina & Oshima, 1990; Everitt, 1979; Hakstian, Roed, & Lind, 1979; Holloway 

& Dunn, 1967; Hopkins & Clay, 1963; Mardia, 1971) studies have been performed. 

Hopkins and Clay (1963) studied Hotelling's T2 test using Monte Carlo 

experiments when (a) samples were from bivariate (ll = 2) normal or bivariate 

symmetric leptokurtic distributions and (b) sample sizes (n1, n2) were (5, 5), (5, 

10), (10, 5), (10, 10), (10, 20), (20, 10), or (20, 20). Heteroscedasticity was 

simulated in the bivariate populations with covariance matrices ~i = a}I (i = 1, 

2) where O"fO"l = 1, 1.6, or 3.2. The bivariate symmetrical leptokurtic 

populations were distributed with zero means, equal variances, and /32 - 3 = 3.2 

or 6.0. Hopkins and Clay found Hotelling's T2 test to be rather robust in terms of 

Type I error control to violations of the equal covariance matrices assumption for 

n1 = n2 > 10. For unequal sample sizes the authors reported the test to be 

conservative in the positive condition ( T = .01, a= .05, O"fO"l = 3.2, n1 = 10, n2 

= 20) and extremely liberal in the negative condition ( T = .214, a= .05, O"fO"l = 

3.2, n1 = 20, n2 = 10). The obtained values of T agreed with those obtained from 

Hsu's (1938a) analytically deduced formulas ( T = .05 and .23 for the same 

conditions). Finally, this study suggested that for ni ~ 10 (i = 1, 2) 

leptokurtosis exerted little effect on actual Type I error rate. 

Ito and Schull (1964) examined analytically both control of Type I error rate 

and power of the Hotelling's T2 test for large samples, unequal covariance 

matrices, and ll = 1, 2, 3, or 4. They found T2 to be well behaved in terms of 
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both control of Type I error rate and power in the face of even large differences in 

covariance matrices for equal-sized and very large random samples. For samples 

nearly equal in size T 2 retained robustness under moderate heteroscedasticity. 

Markedly different sample sizes, however, led to pronounced effects on both actual 

Type I error rater and power by even moderate differences in E1 and~- For 

fixed values of !!r = n1: n2 and equal eigenvalues of E1E2-1, actual Type I error 

rate exceeded the nominal rate (r > a) when the eigenvalues were less than 1, 

and the actual rate was exceeded by the nominal rate ( r < a) when the 

eigenvalues exceeded 1. This tendency for the test to be liberal for !!r > 1 and 

equal eigenvalues less than 1 (the negative condition) and conservative for !!r > 1 

and equal eigenvalues greater than 1 ( the positive condition) increased with both 

!!r and :Q_. The power of Hotelling's T 2 test under heteroscedastic conditions 

exceeded that of the test when assumptions were satisfied for !!r > 1 and equal 

eigenvalues less than one. The opposite result occurred for !!r > 1 and equal 

eigenvalues greater than one. No tendencies in the behavior of the power function 

were found as a function of :Q_. 

Holloway and Dunn (1967) examined Hotelling's T2 test for both Type I 

error rate and power in a Monte Carlo study in which (a) samples were selected 

from multivariate normal distributions, (b) the number of dependent variables :Q. 

= 1, 2, 3, 5, 7, or 10, ( c) 10 · :s; N :s; 200 where total sample size N = n1 + n2, 

n . 
(d) "rJ = .3, .4, .5, .6, or .7, and (e) the eigenvalues of E1~-l equaled 3 or 10. 

The study confirmed that Hotelling's T 2 test ( as well as the independent samples 

i test) is robust to violations of equal covariance matrices (homoscedasticity) in 

terms of controlling for Type I error rate provided samples are of equal size. For 

fixed heteroscedasticity Hotelling's T 2 test was found to be conservative in the 

positive condition and liberal in the negative condition. Actual Type I error rate 
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r tended to increase as I! or ~ increased or as N decreased. In terms of power 

Holloway and Dunn discovered that under heteroscedastic conditions for fixed N, 

moving the sample sizes closer to one another reduced not only Ir - al, the 

difference between actual and nominal Type I error rate, but also power. The 

effect size required for reasonable power declined as N increased. Power was 

found to be related to I!· For :E1 = :E2 power declined as I! increased. Under 

heteroscedasticity power declined as I! increased when the ratio between first 

sample size and total sample size (~) was sufficiently small. For larger values of 

~, increasing I! increased r, resulting in higher than expected power for small 

effects and lower than expected power for large effects. The authors concluded 

that when :E1 =f. ~' r may differ greatly from a, and if r is too large, power for 

small effects will be too high, while power for large effects will be too small. 

These tendencies increased with I! and with the degree of heteroscedasticity, but 

decreased with N. Equal samples sizes were shown to maintain significance level, 

but were of little or no help in maintaining power under unequal covariance 

matrices. Hakstian, Roed, and Lind (1979) criticized the Holloway-Dunn study 

for having unrealistically different covariance matrices (variances in the second 

population were as much as 10 or 100 times as large as those in the first 

population) and unequal sample sizes that were not disparate enough (15:35 < 

!!( !!2 :5 35:15 when !!i + !!2 = 50). 

Pillai and Sudjana (1975) explored mathematically the behavior of four 

multivariate statistics that reduce to Hotelling's T2 test in the two-sample case. 

Using equal-sized samples of 5, 15, and 40, Pillai and Sudjana reported modest 

departures from a for even minor heteroscedasticity, departures that became more 

pronounced as the degree of heteroscedasticity increased. 

Everitt (1979), Ito (1969), and Mardia (1971, 1975), all considered 
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Hotelling's T 2 test in terms of Type I error control under departures from 

multivariate normality. In analytic studies Ito (1969) found the test to be robust 

for very large samples; Mardia (1971) obtained similar results in an empirical 

study using moderately large samples. Mardia also concluded that for small 

samples T 2 is generally robust to non-normality, but shows some sensitivity to 

skewness when sample sizes differ. Everitt (1979) employed empirical techniques 

to examine both one- and two-sample T 2 tests. He examined tests applied to 

bivariate normal, uniform, exponential, gamma, and lognormal distributions. In 

the one-sample case highly skewed distributions were not well approximated by 

T 2. In the two-sample case Hotelling's T 2 test was judged fairly robust to non

normality, although departures due to skewness led to moderately, or in some 

cases extremely, conservative tests. The number of variates 12 and equality of 

sample sizes appeared to have little effect on actual Type I error rate. Mardia 

(1975) used a test of multivariate normality based on measures of skewness and 

kurtosis to interpret Monte Carlo results of various studies. 

Hakstian, Roed, and Lind (1979) designed a Monte Carlo study to examine 

simultaneously all individual variables relative to robustness using conditions that 

represent real-world behavioral data. Those conditions included: ( a) samples 

selected randomly from multivariate normal populations, (b) 12 = 2, 6, or 10, (c) 

average number of subjects per variable equal to 3 or 10, ( d) sample size ratios n.1: 

n.2 = 1, 2, or 5. Heteroscedasticity was modeled using covariance matrices of the 

form I and D where D equaled I, _d2I, or diag{l, 1, ... , 1, _d2, _d2, ... , _d2} (.d = 

1, 1.2, or 1.5). Both positive and negative conditions were considered. Hakstian, 

Roed, and Lind found Hotelling's T 2 test to be robust to unequal covariance 

matrices when n.1 = n.2 even for~ as small as 3. The robustness did not extend to 

unequal sample sizes, yielding conservative tests in the positive condition and 
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liberal tests in the negative condition. The authors concluded that HoteHing's T2 

test is not robust in terms of Type I error control in the face of even mild 

departures from equal covariance matrices when sample sizes differ. The 

difference between actual and nominal rate Ir - al increased as !1 departed from 1 
-2 

or as n increased, but was independent of total sample size N. 

Algina and Oshima (1990) extended previous studies examining the ability 

of Hotelling's T 2 to control Type I error rate in the face of unequal covariance 

matrices by considering small sample size ratios. Their investigation was 

performed under the following conditions: (a) samples were obtained from 

multivariate normal distributions, (b) n = 2, 6, or 10, (c) g 1: g 2 = 1:1.25, 1.25:1, 

1:1.1, 1.1:1, or approximately 1:1, (d) ~ = 6, 10, or 20, and (e) for most conditions 

E2 = d2E1 (d = 1.5, 2.0, 2.5, or 3.0). Algina and Oshima found Hotelling's T2 

test to be seriously nonrobust in terms of controlling Type I error rate when E1 

=J :E2, even for equal sample sizes, especially if the ratio of total sample size to 

number of variables was small. They recommended using T2 in the positive 

condition, but suggested that alternatives not sensitive to differences in covariance 

matrices be considered for the negative condition. 

In summary Hotelling's T2 test is the most powerful in its class according to 

Neyman-Pearson theory (Hsu, 1938b). In terms of Type I error control it is fairly 

robust to non-normality except departures owing to skewness. In that case the 

test is conservative. The test is robust to unequal covariance matrices as long as 

sample sizes are equal and the number of subjects per variable (~) is large. This 

robustness, however, fails when the~ ratio becomes small and does not extend to 

unequal sample sizes. In the positive condition, when the larger sample is selected 

from the population with the larger dispersion, Hotelling's T2 test is conservative; 

in the negative condition, when the larger sample is selected from the population 



with the smaller dispersion, the test is liberal. Therefore, numerous situations 

arise in which alternative to Hotelling's T 2 test merit consideration. 

Alternatives to the Hotelling's I.2 Test 
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Various tests have been devised to test the equality of two mean vectors in 

the presence of assumption violations. Tiku, Gill, and Balakrishnan (1989) and 

Nath and Duran (1983) proposed tests to operate when the assumption of 

multivariate normality may be untenable. Tiku, Gill, and Balakrishnan extended 

their univariate test based on modified maximum likelihood estimators. Nath and 

Duran proposed applying Hotelling's T 2 to the rankings of data rather than to the 

data themselves. While technically not a parametric test, this easy-to-use 

alternative does, at best, occupy a position that serves as a bridge between 

parametric and nonparametric procedures. As with univariate data, 

nonparametric tests have been proposed to handle departures from normal 

conditions. But multivariate nonparametric techniques, unlike their univariate 

counterparts, involve computationally complex techniques and their null 

distributions often require enormous calculations (Nath & Duran, 1983). 

Bennett (1951), Andersen (1958), and Ito (1969) extended the work of 

Scheffe (1943), which in the univariate case produces a technique to deal with the 

Behrens-Fisher problem that yields the shortest confidence interval using the t 

distribution (Anderson, 1958). The Scheffe technique of randomization 

necessitates randomized pairings of observations in different groups and the 

discarding of data when sample sizes differ (Algina & Tang, 1988). 

At least five solutions to the two-sample multivariate Behrens-Fisher 

problem are based on the same statistic and differ only in their critical values. 

These five tests which do not assume the two population covariance matrices are 

equal are the Yao (1965) test, James (1954) first- and second-order tests, Johansen 
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(1980) test, and a test developed by Nel and van der Merwe (1986). Their test 

statistic is 

where~ and Si are, respectively, the sample mean vector and sample covariance 

matrix for the ith sample (i = 1, 2). This test statistic is a multivariate extension 

of the Welch APDF (1947) statistic. Kim (1993) proposed a test based on the 

same statistic with A-1 substituted for(:~ + :~), where 

and 

The literature suggests the following regarding the Hotelling T2, Bennett, 

Yao, Kim, James first- and second-order, and Johansen tests: (a) the alternatives 

to Hotelling's T2 test are superior to it in control of Type I error rate when the 

normality assumption is satisfied, but homoscedasticity is not, (b) the Yao, Kim, 

James second-order, and Johansen tests are superior to the James first-order test 

in controlling Type I error rate, ( c) all the alternatives to Hotelling's T 2 test are 

sensitive to skewness in the sampled population, and (d) the James first-order, 

Kim, and Yao tests have similar powers. 

Yao (1965) compared the James first-order test with Yao's test under the 

following conditions: (a) samples were taken from multivariate normal 



44 

distributions, (b) n. = 2, ( c) ~ = 9 or 12 when n1 -::f. n2 (n1 = 6, n2 = 12 or 18) 

and~= 13 when n1 = n2 = 13, and (d) :E1 =f. ~- Yao found the actual Type I 

error rate r approximately equal to the nominal rate o,for both tests with Yao's 

test being slightly superior to James's first-order test. 

Subrahmaniam and Subrahmaniam (1973) examined empirically the Yao, 

Bennett, and James first-order tests using: (a) samples from multivariate normal 

distributions, (b) n. -:- 2, 4, 5, or 10, ( c) ~ ranging from 3 (n1 = n2 = 15 and n. = 

10) to 12 (n1 = 6, n2 = 18, p = 2), and (d) unequal covariance matrices. They 

found the Yao test to be more conservative than the James first-order test, the 

James first-order test to be notably inferior in the negative condition, and the 

J arries first-order test to deteriorate in Type I error control as n. increased. 

Neither test provided the sought-after control. Bennett's test controls Type I 

error rate exactly, so was not included in the significance level results. In terms of 

power the James first-order test was found superior, followed closely by the Yao 

test. The high power levels of these two tests, however, were a reflection of high 

rates of Type I errors. Bennett's test had poor power. The power levels of all 

three tests declined as the number or dependent variables increased. 

Algina and Tang (1988) conducted Monte Carlo experiments extending 

Yao's study which considered only the behavior of bivariate data. Algina and 

Tang's work included the following conditions: (a) samples were drawn from 

multivariate normal populations, (b) n. = 2, 6, or 10, (c) g 1: g 2 = 1:5, 1:4, 1:3, 1:2, 

1:1.5, 1:1.25, 1, 1.25, 2, 3, 4, or 5, (e) covariance matrices were of the form I and 

D where D = g,?I (.d = 1.5, 2.0, 2.5, or 3.0) or of the form I and D where D was 

diag{3, 1, 1, ... 1}, diag{3, 3, ... ,3, 1, 1, ... , 1}, diag{l, 3, 3, ... , 3}, or 

diagg, !, .. · 1, 3, 3, ... , 3}. Algina and Tang confirmed the superiority of the Yao 

test over the James first-order test and the James first-order test over Hotelling's 
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T 2 test in all studied conditions. Noting their conclusions were limited by the 

range of values studied for R, 4, n.1: n.2, ~' and the degree of difference between 

the covariance matrices, Algina and Tang judged Yao's test safe as far as 

controlling Type I error rate for equal sample sizes when 10 ~ ~ ~ 20. The test 

became liberal for n.1 = n.2 when~ = 6, p ~ 10, and d ~ 3. 0. For differing 

sample sizes, Algina and Tang concluded that Y ao's test can be safely used 

provided R ~ 10, ~ ~ 10, and the ratio of the larger to smaller sample size is 2:1 

or smaller. If~ exceeds 20, Yao's test can be safely used for R = 2 and a sample 

size ratio of 5 or less, 2. = 6 and a sample size ratio of 3 or less, and R = 10 and a 

sample size ratio of 4 or less. 

Algina, Oshima, and Tang (1991) studied the Yao, James first- and second-

order, and Johansen tests under various combinations of heteroscedastic 

conditions and departures from normality. Sampled distributions were normal, 

uniform, Laplace, t with 5 degrees of freedom, beta (5, 1.5), exponential, and 

lognormal. The conditions considered were those recommended as safe for Y ao's 

test under multivariate normality by Algina and Tang (1988). Tests were studied 

in both the positive and negative conditions. For all alternatives to Hotelling's T2 

test considered, actual Type I error rate r was in the interval [.025, .075], 

Bradley's (1978) liberal ·criterion for robustness at the .05 significance level. 

Asymmetry resulted in elevated significance levels, the degree of elevation 

depending on the degree of asymmetry, the degree and pattern of 

heteroscedasticity, the ratio of the largest to smallest sample size, and the number 

of dependent variables. For moderate asymmetry (beta distribution), r tended to 

be in the robust interval even for large departures from homoscedasticity and 

large sample size ratios. For small degrees of heteroscedasticity and a sample 

ratio of n.1: n.2 = 1.5:1, the tests were robust even for the extremely asymmetric 



lognormal distribution. The James first-order test was slightly inferior to the 

other three alternatives, none of which had a clear advantage in terms of 

significance level. 

46 

Kim (1992) compared the Kim and Yao tests for both Type I error control 

and power under the following conditions: (a) samples were selected from 

multivariate normal populations, (b) :Q. = 2 or 5, ( c) ~ ranged from 3.6 (!!.1 = 6, n2 

= 12, :Q. = 5) to 16 (n1 = 8, n2 = 24, :Q. = 2), ( d) covariance matrices were of the 

form diag{!, !}, diag{9, 9}, diag{!, 9}, diag{5, 9}, diag{!, !, !, !, !}, diag{9, 9, 9, 

9, 9}, diag{!, }, 1, 5, 9}, and diag{5, 6, 7, 8, 9}. The Yao and Kim tests were 

found to be very similar in both Type I error control and power, although Yao's 

test did have inflated rates as high as .172 in the negative condition. Yao's test 

showed slight power advantages in the positive condition; whereas, Kim's test had 

better power in the negative condition. 

In summary, all of the alternatives considered to Hotelling's T 2 test perform 

well under heteroscedastic conditions. James first-order test is inferior to the 

Kim, Yao, James second-order, and Johansen tests. All have larger than nominal 

Type I error rates when sampling is from skewed distributions. Since the Yao, 

Kim, James second-order, and Johansen tests are comparable in terms of 

significance level, distinctions must be· made based on practical considerations 

such as ease of use, availability of computer code, and power. At present 

Johansen's test enjoys a slight advantage. 

Classic Multivariate Analysis of Variance 

Four classic criteria are used to test for the equality of k population mean 

vectors when independent samples are selected from populations distributed 

multivariate normally (g dependent variables) with equal covariance matrices. 

These four multivariate analysis of variance (MANOVA) criteria are all defined in 



terms of the eigenvalues of H~1 where -

k 
H= E n-(x·-x)(x--x)' 

i=l i z i 

and 
k 

E = E (n, -1)S. 
i=J I I 

The matrix H is the hypothesis sum of squares and cross products matrix, and E 

is the error sum of squares and cross products matrix. If \ is the ith eigenvalue 

of ~l (i = 1, 2, ... ~),where~= min(R, k-1), the four criteria are: 

1. Roy's (1945) largest root criterion 

>.1 
R=1+>. 

1 

2. Hotelling-Lawley trace criterion (Hotelling, 1951; Lawley, 1938) 

U = trace{HE1) = E >.i 
i=l 

3. Wilks's (1932) likelihood ratio criterion 

L - I~ - IT 1 
- IH + ~ - i=l 1 + >.i 

4. Pillai-Bartlett trace criterion (Bartlett, 1939; Pillai, 1955) 
1 s >.. 

V = trace{H(H + EJ- } = E 1 

i=l 1 + \ 
The statistics U, 1, and V are asymptotically equivalent in very large 
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samples. Olson (1976) noted that many multivariate tests reported in the 

literature fail to identify the criterion used regardless of sample size. He 

recommended not only reporting the statistic, but also specifying the 

approximation, if any, used. Numerous approximations and transformations have 

been derived for the MANOVA criteria. Pillai (1956) provided tables for an 

approximate distribution of Roy's largest root criterion. Ito (1960), Hughes and 



Saw (1972), and Pillai and Samson (1959) approximated the Hotelling-Lawley 

criterion. McKeon (1974) improved upon the latter two approximations. 
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Rao (1948), Posten and Bargmann (1964), and Sugiura and Fujikoski (1969) 

proposed asymptotic formulae for the Wilks likelihood ratio statistic. Lee (1972) 

examined 1 in both its exact and asymptotic forms. An asymptotic formula for 

the Pillai-Bartlett trace criterion was suggested by Lee (1971). According to 

Olson (1976), Pillai's (1960) F approximation to V is a good one. 

Elliott and Barcikowski (1994) examined F approximations for U and Vin 

canned computer packages when assumptions are met. They concluded that with 

small numbers of subjects (15 or fewer per group) SAS(GLM) and 

SPSS(MANOVA) are conservative for V and liberal for U. BMDP4V was found 

to be accurate for both. All three programs were accurate for 1 and R. The 

power of the U and V criteria using F approximations was very near that 

computed using critical values found through Monte Carlo techniques. 

Robustness tests for the MANOVA criteria have been both analytic (Ito & 

Schull, 1964; Pillai & Sudjana, 1975) and empirical (Korin, 1972; Olson, 1974). 

Ito and Schull (1964) limited their analytic study to the behavior of U, the 

Hotelling-Lawley likelihood ratio criterion, under conditions of unequal covariance 

matrices. They concluded that if samples are of equal size, moderate inequality in 

covariance matrices does not affect Type I error rate seriously as long as samples 

are very large. For unequal samples of any size, however, quite large effects were 

observed in the significance level under heteroscedastic conditions. 

Korin (1972) conducted a Monte Carlo experiment examining Roy's largest 

root criterion R, the Hotelling-Lawley trace criterion 1, and the Wilks likelihood 

ratio criterion 1 under the following conditions: (a) samples were selected from 

normal populations, (b) samples selected were both equal and unequal in size, ( c) 
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k = 3 or 6, (d) p_ = 2 or 4, (e) ~ = 8.25, 9, 12, 15.5, 18, or 33, and (f) covariance 

matrices were {I, I, 41} or {I, 41, 241} fork= 3 and {I, I, I, I, I, di} or {I, I, I, I, 

41, 241} fork= 6 (4 = 1.5 or 10). Korin found no great differences among R, U, 

and L., although L was found to be liberal, U even more so, and R the most 

liberal. Small heteroscedasticity led to mild departures from nominal Type I error 

rates, large heteroscedasticity to larger departures. 

Pillai and Sudjana (1975) studied all four criteria, but limited their study 

and, hence, its generalizability to two populations (k = 2). Results suggested the 

degree of departure from a increases with the degree of heteroscedasticity, results 

agreeing with both the Ito and Schull (1964) and the Korin (1972) studies. 

Olson (1974) compared the robustness of six multivariate tests based on the 

eigenvalues of HE"1, including the four classic MANOV A criteria. Conditions 

were: (a) samples were selected from normal or kurtotic populations, (b) samples 

were of equal sizes 5, 10, or 50, ( c) k = 2, 3, 6, or 10, ( d) p_ = 2, 3, 6, or 10, ( e) 

covariance matrices were of the form I or D, and (f) either high degree of 

contamination or low degree of contamination was present. High contamination 

was modeled with D = diag{rui - p_ + 1, 1, 1, 1, ... 1} and low contamination 

was modeled with D = 41 (4 = 1, 4, 9, or 36). To study and assess power Olson 

used either a concentrated or a diffuse noncentrality structure. In a concentrated 

noncentrality structure one group differs from all other groups on just one variable 

or on all variables, but no other differences exist. In a diffuse structure each 

group differs from all other groups on just one variable, but no other differences 

exist. Olson's results reinforced those of earlier investigators by showing increased 

departures from nominal Type I error rates ( conservative results became more 

conservative and liberal results became more liberal) as 4, and hence, 

heteroscedasticity increased. The Pillai-Bartlett trace criterion V responded least 
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to dispersion differences. Whereas R, U, and .L. experienced increased exceedance 

rates with increases in the number of dependent variables under low concentration 

of contamination, V did not. Increases in the number of dependent variables 

under high concentration of contamination resulted in no consistent effects. For 

protection against kurtosis, V was also found to be superior to R, U, and .L. in 

terms of controlling Type I error rate. Olson recommended the Pillai-Bartlett 

trace criterion for general protection against heteroscedasticity and non-normality 

even though the Hotelling-Lawley trace criterion and the Wilks likelihood ratio 

criterion are sometimes more powerful. Elliott and Barcikowski (1994) replicated 

Olson's conditions and agreed with his conclusions that Vis the most robust of 

the four classic MANOVA criteria and that it possess suitable power. 

Olson (1976) repeated his recommendation to choose the Pillai-Bartlett 

trace statistic V for general protection against both non-normality and unequal 

covariance matrices. He cited numerous studies (Ito, 1969; Ito & Schull, 1964; 

Korin, 1972; Mardia, 1971; Olson, 1974) showing that positive kurtosis has mild 

effects on all four criteria in the conservative direction, the least affected being V, 

followed by 1, U, and R, in that order. He reiterated his earlier findings that 

under heterogeneity of covariance matrices, R has excessively high Type I error 

rates with U and .L. close behind. The least severe increases in Type I error rate 

are reflected in the Pillai-Bartlett trace criterion. 

Stevens (1979) took issue with Olson's (1976) recommending V for general 

use. Stevens argued that Olson's claim of V's superiority holds only for extreme 

subgroup violations, which are rare in practice. He agreed that V is best for 

diffuse noncentrality structures, but contended that U or .L. should be used in 

concentrated noncentrality, since they are slightly more powerful. Olson (1979) 

responded that noncentrality is a population property and, hence, unknown to the 



researcher. Since the Pillai-Bartlett trace statistic V is consistently more robust 

and sometimes more powerful, it is the clear choice when centrality structure is 

unknown or unclear. 
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While much has been contributed to the literature in the area of power of 

multivariate tests when assumptions are met, the subject has not been fully 

illuminated owing to the vast number of possible conditions and alternatives. No 

invariant test has the property of uniformly greatest power (Anderson, 1958). 

Different tests are most powerful in different situations, depending on the nature 

of the departure from the null hypothesis. Hsu (1940) showed analytically that 

for large sample sizes the powers of the Hotelling-Lawley trace criterion U and the 

Wilks likelihood ratio criterion 1. are equal against all alternatives. Ito (1960) 

described analytically certain properties of the Hotelling-Lawley trace criterion 

that help determine power for moderately large samples. Ito (1962) extended the 

power theory of U and 1. to samples of moderate size, finding little distinction in 

power. Gnanadesikan, Lauh, Snyder, and Yao (1965) considered five MANOV A 

criteria, including three of the classic ones. The nonclassic criteria were found to 

have power advantages in Monte Carlo studies. 

Pillai and Dotson (1969) considered individual roots as test criteria. They 

concluded the largest, Roy's criteria R, is generally more powerful than other 

individual root criteria. The authors provided extensive power function tables for 

two and three dependent variables. Pillai and Jayachandran (1967) considered 

the four classic criteria in an analytic study with two dependent variables (!l = 2), 

when MANOVA assumptions are satisfied. They found V to be most powerful for 

small deviations from the null hypothesis. The power of Roy's largest root 

criterion R was less than the powers of the other three criteria. Lee (1971) agreed 

with the conclusions of Pillai and Jayachandran for Q = 2, but extended their 
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study to more dependent variables. They discovered that for moderately large 

samples and small to moderate deviations from the null hypothesis, no single test 

of V, L, and U is superior to the other two in terms of power under all 

alternatives. Stevens (1980) reported that all MANOVA criteria have power 

problems with small group sizes even for moderate effects. Lauter (1978) created 

tables that provide the minimum equal sample sizes required for specified powers 

(.7, .8, .9, and.95) when using the Hotelling-Lawley trace criterion for one of two 

values of a (.05 or .01), various numbers of dependent variables 12., and three 

specified alternatives. Cohen (1988) includes tables and examples for determining 

minimum sample sizes for other MANOVA criteria. 

Schatzoff (1966) conducted a Monte Carlo experiment for the purpose of 

providing data based on ESL ( expected significance level, which is equal to 

1-power) that may be used as a basis for choosing among the competing criteria 

R, U, 1, and V. Conditions were (a) samples selected from normal distributions, 

(b) equal-sized samples, (c) hypothesis degrees of freedom of 2, 4, or 6, (d) 12. = 

2, 4, or 6, and ( e) diffuse or concentrated noncentrality structures. Schatzoff 

found the relative power ranking of the four tests was not affected by changes in 

12., the number of dependent variables, or k, the number of groups. Roy's largest 

root criterion test, however, became increasingly poor relative to the others in 

terms of power as dimensionality (12. and/ or k) increased. As sample sizes 

increased, power increased for all criteria. The powers of U, 1, and V bunched 

together as sample sizes became very large, not surprising since the three criteria 

are asymptotically equivalent. Schatzoff found no effect on the ordering of the 

powers of the classic criteria as the departure from the null hypothesis increased. 

However, changes in the the noncentrality structure had a large effect on the 

power rankings. The power of Roy's largest root increased as noncentrality 
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became more concentrated, while the powers of the other criteria eroded. Roy's 

largest root criterion R was the least powerful except when the noncentrality 

structure was concentrated. Under diffuse noncentrality structures the power 

rankings were: power(V) > power(1) > power(U) > power(R). The magnitudes 

of the differences varied inversely with sample size. Schatzoff recommended 

avoiding Roy's largest root criterion R and using either the Hotelling-Lawley trace 

criterion U or the Wilks likelihood ration criterion 1, since both appear to provide 

good protection against a wide spectrum of alternatives. He argued further 

against the use of the Pillai-Bartlett trace criterion V with small samples and 

large numbers of dependent variables (D.) or groups (k), since V has low power in 

situations of concentrated noncentrality, a recommendation in agreement with 

Stevens (1979), but counter to the suggestion of Olson (1974, 1976, 1979). 

To summarize power findings of MANOVA when assumptions are met, U, 

1, and V are asymptotically equivalent as sample size increases without bound. 

Under a concentrated noncentrality structure the power ranking of the four classic 

criteria is R, U, 1, and Vin order from highest to lowest. When noncentrality 

structure is diffuse, the power ranking is in the inverse order. 

Little has been written about power of the MANOVA criteria under 

assumption violations. Ito and Schull (1964) concluded that in the case of k 

samples, if the samples are of equal size, moderate inequalities of covariance 

matrices do not affect the Hotelling-Lawley U test as long as samples are very 

large. But when samples are unequal in size, large effects occur in the test's 

power. Ito and Schull found no tendency for the power of the test to behave as a 

function of the number of dependent variables :g_. Pillai and Sudjana (1975) 

studied the four criteria under small levels of heteroscedasticity and found all four 

to exhibit only modest changes. 
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Olson (1974) studied the effects of departures from normality and 

homoscedasticity, which he called contaminations. He found that contamination 

decreased power, but that these effects were mitigated if there was noncentrality 

in a group or dependent variable which was contamination free. This was the 

critical feature to maintain power levels under contamination: the noncentrality 

had to occur in a noncontaminated group or variable. The power of all four 

classic tests suffered under kurtosis with the greatest effect occurring for R in a 

diffuse noncentrality structure. Heteroscedasticity caused all power curves to be 

rather flat. 

To summarize the power of the MANOVA criteria under assumption 

violations, both kurtosis and heteroscedasticity attenuate power. The effect is 

important even for small departures and equal sample sizes, and especially when 

violations occur in contaminated groups or variables. So it is not surprising that 

alternatives have been sought. 

Alternatives to Classic Multivariate Analysis of Variance 

Various statistical tests have been devised to address problems encountered 

with the classic MANOVA procedures when the assumption of equal covariance 

matrices is untenable. James (1954) generalized the James (1951) series solution 

to extend to the testing of k mean vectors yielding the statistic 

k 
J = E (x--x)'W-(x--x)' 

i=J 2 Z I 

where 

w. = (si,-1 
1, n;J I 
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Zero-, first-, and second-order solutions proposed by James (1954) are analogous to 

those proposed by James (1951). 

Johansen (1980) generalized the Welch (1951) test to the multivariate case 

resulting in the test statistic 

k 
E tx· - x}' w.tz. - x)' . 1 i i i 

C= i= . 

p(k-1) + 2A- p(k-61; + 2 

where 

A= t trace{I- W 1WJ2 + trace2(I- W 1WJ 
i=1 2{ni-1) 

and W, ~' and x are as defined in the James (1954) statistic. Johansen's statistic 

follows an F distribution with 

p(k-1) and 

degrees of freedom. 

Coombs (1993) noted that past researchers (Clinch & Keselman, 1982) had 

recommended uniform use of the Brown-Forsythe (1974) statistic over the Welch 

(1951) APDF statistic in the univariate case because of its superior protection 

against lack of normality. Since the Brown-Forsythe test does not require equal 

variances, Coombs and Algina (in press) suggested that a multivariate extension 

of the Brown-Forsythe criterion might produce a test superior to that of Johansen 

(1980), which is a multivariate generalization of the Welch (1951) test. Coombs 

and Algina (in press) extended the Brown-Forsythe test by constructing test 

statistics analogous to the four classic MANOVA criteria and determined 

approximate degrees of freedom needed to compute critical values using a 

technique generalized by Nel and van der Merwe (1986) from Satterthwaite's 



(1946) univariate method. The resulting four test statistics are 

* R* - >.1 

and 

where 

and 

- 1 + >.j 

U* = trace(HM-1) = t >.f 
i=l 

s >. '!' 
V* = trace{H(H + Mt1J = L z 

i=l 1 + >.f 

k 
H = E n-{x--x){x--x)' 

i=l z z z 

Here, f is the number of degrees of freedom for Mand ti is the ith eigenvalue of 

HM-1. Transformations to the F distribution were accomplished using 

56 

adaptations of the Hughes and Saw (1972) and McKeon (1974) transformations for 

U, the the Rao (1952) transformation for 1, and the Pillai (1960) transformation 

for V. Because no simple F approximation exists for R, R* was not transformed. 

Including the two transformations for U*, five tests resulted. They are called the 

Coombs-Algina R*, the Coombs-Algina U!, the Coombs-Algina u;, the Coombs

Algina 1 *, and the Coombs-Algina V* tests. 

Because the Coombs-Algina tests are all generalizations of the Brown

Forsythe test and because the statistics in those tests are all functions of the same 

matrix, namely HM-1, similarities in their behaviors under identical experimental 
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conditions should be anticipated. Further, U, .L., and V (the analogs of Ui, U2, .L.*, 

and V*) are asymptotically equivalent, which should also lead to expectations of 

similar behaviors in Ui, U2, .L.*, and V*. And the similarities might be expected 

to increase with total sample size given the asymptotic natures of their analogs. 

However the Coombs-Algina statistics are not equivalent. While all are functions 

of HM-1, they are not the same function of HM-1. So, one might emerge as 

superior under certain conditions, just as the Pillai-Bartlett test has been shown 

to outperform its competitors, the Wilk's likelihood ratio test and the Hotelling

Lawley trace criterion test, in given experimental situations. 

One other attempt to reduce the difference between actual and nominal 

Type I error rates resulting from heteroscedasticity merits mention. Gabriel 

(1968) proposed and Bird and Hadzi-Pavlovic (1983) extended simultaneous test 

procedures (STPs), which are follow-up tests derived from any of the classic 

MANOV A procedures. The goal was to use power advantages, especially of the 

STP based upon Roy's largest root test, while at the same time bringing the 

actual Type I error rater near to the nominal Type I error rate a. Tang and 

Algina (1993) presented a case to show that STPs as alternatives to the Johansen 

(1980) and James (1954) tests require much more investigation before 

recommendations regarding their usefulness can be made. 

The literature suggests the following in regard to control of Type I error rate 

when the assumption of equal covariance matrices is violated: (a) of the four 

classic MANOVA criteria, the Pillai-Bartlett trace criterion V is the most robust, 

(b) even for equal sample sizes, V can be liberal, ( c) the Johansen test is usually 

the most robust when sample sizes are equal, (d) the James second-order and 

Johansen tests are superior to the James zero- and first-order tests and all classic 

MANOVA criteria when sample sizes differ, (e) when samples are large, 
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Johansen's test is usually most robust, and (f) when samples are small, the James 

second-order test or the Coombs-Algina U* tests are usually most robust. 

In an analytic study, Ito (1969) found the James zero-order test to be 

liberal. Actual Type I error rate increased with sample size, number of dependent 

variables, and degree of heteroscedasticity. 

Tang and Algina (1993) examined the Pillai-Bartlett trace criterion V, the 

Johansen test, and the James first- and second-order tests under the following 

conditions: (a) samples were selected from normal distributions, (b) k = 3, (c) 12. 

= 3 or 6, ( d) the ratio of the largest to the smallest sample size nr = 1, 1.3, or 2, 

(e) ~ = 10, 15, or 20, and (f) covariance matrices were of the form I or D where D 

= dl or diag{l, £l2, 42} or diag{J2 , 42, 42} for three dependent variables and D = 

I or diag{l, 1, 1, 42, 42, 42} or diag{J2 ,J2 ,J2 , 42, 42, 42} for six dependent 

variables (4 = ITT or 3). The authors found that no test studied performed 

uniformly well. For equal sample sizes, of the tests studied Johansen's test was 

the most robust in the most conditions to heteroscedasticity. The James first-

order solution was liberal and the James second-order solution was conservative. 

When sample sizes differed, the James second-order and Johansen tests were 

judged best, although the James second-order test tended to be conservative, 

while the Johansen test tended to be liberal. James's second-order test was 

preferred when the ratio of total sample size to number of dependent variables 

was small. 

Coombs and Algina (in press) compared four Coombs-Algina tests, U!, u;, 
I/, and V* with the Johansen test under heteroscedastic conditions using unequal 

sample sizes; specifically: ( a) samples were selected from normal or exponential 

(skewed and kurtotic) distributions, (b) k = 3 or 6, (c) 12. = 3 or 6, (d) the ratio of 

largest to smallest sample size nr = 1.3 or 2, (e) ~ = 10 or 20, (f) covariance 
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matrices were of the form I or D with D = diag{l, 42, 42} or diag{l, 1, 42, 42, 42, 

42} (4 = ..J2 or 3), and (g) both the positive and negative conditions were 

explored. All four Coombs-Algina tests outperformed the Johansen test in 

controlling Type I error rate under the range of conditions considered. Under 

normality all four Coombs-Algina tests were liberal when 4 = 3 and the condition 

was positive; otherwise, all were conservative. The 1 * test was judged most 

effective except when~ was small and k was large, in which case ur provided the 

best protection against unequal covariance matrices. The Coombs-Algina tests 

tended to be less sensitive to skewness and kurtosis than the Johansen test. 

Coombs and Algina (1994) recommended the use of Ui with small samples and 

the use of the Johansen test with large samples when normality holds. 

In summary, use of the four classic MANOVA criteria should be avoided 

when heteroscedasticity is suspected even if sample sizes are equal. Since the 

prudent researcher always suspects dispersion in the covariance matrices unless 

there is evidence to the contrary, an argument can be made for the routine use of 

alternatives not requiring homoscedasticity if they can be shown to maintain Type 

I error rates and sufficient power levels under a broad range of experimental 

conditions. Under normality the Coombs-Algina Ui test or the James second

order test are most promising for small samples and the Johansen test appears to 

be the best choice when samples are large. When normality is violated, the 

Coombs-Algina tests may have advantages. Further investigation involving 

expanded conditions and power analyses is needed for further illumination. 

Summary 

Extensive research has examined the Behrens-Fisher problem in the 

univariate case, both for two populations and k populations. Likewise numerous 

investigations have dealt with the two-population multivariate case. From these 
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studies have emerged some general themes pointing to the inadequacies of 

classical tests based on the assumptions of homoscedasticity and normality. 

Alternative tests not requiring one or both of these assumptions have been 

developed that have proven effective under a reasonably wide range of conditions 

in the univariate and two-population multivariate cases. Type I error rate ( or 

robustness) studies have been extensive; power studies have been somewhat 

limited. 

Less has been accomplished in the most general category of two or more 

multivariate populations. A few landmark studies, most notably Olson (1974), 

have described the classic MANOVA criteria under assumption violations. Until 

recently only two alternative tests, not premised on the traditional normality and 

homoscedasticity assumptions, have been proposed-the James series and 

Johansen procedures. Only a few researchers have examined the Type I error 

rates of these tests and no comprehensive power studies have been completed. 

The proposal of the Coombs-Algina criteria and the results of initial robustness 

studies suggest that these tests may offer practitioners viable choices in research 

areas in which heretofore little has been available. But the technical merits of all 

the MANOVA alternatives have yet to be established. Extensive studies of the 

James procedures will probably not be undertaken until computer code has been 

written for the criteria. Technology now makes it possible, however, to delve 

deeply into the behaviors of both the Johansen and Coombs-Algina criteria. 

Examinations of complex interactions that provide insight into both Type I error 

rate and power level are now possible, and the tools by which to accomplish such 

examinations are readily available. 
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This chapter describes the study design and simulation procedure. A Monte 

Carlo experiment was performed in two phases. The first phase involved the 

computation of actual Type I error rates for all criteria considered over a range of 

experimental conditions. Samples were selected from simulated multivariate 

populations exhibiting violations of underlying test assumptions in which the null 

hypothesis of equal mean vectors was true. The percentage of time the null 

hypothesis was rejected ( the actual Type I error rate) was computed for each test 

statistic considered in this study. 

In the second phase samples from multivariate populations with the same 

assumption violations as those used in the first phase were used. The population 

mean vectors, however, differed. The percentage of time the null hypothesis was 

rejected (power of the test) was computed for each test statistic considered. 

The following sections define the factors that were varied to create 

assumption violations and other factors that may interact with them. 

Design Factors for Robustness Study 

The first problem in any robustness study is to choose from the theoretically 

infinite number of ways in which the assumptions can be violated. This study 

builds upon and refines the conditions studied by numerous researchers, including 

Coombs (1993), Tang and Algina (1993), and Olson (1974). Seven factors were 

varied for the purpose of assessing the robustness of the tests considered to 

assumption violations in terms of Type I error rate. 

Distribution type (12.I). Two types of distributions - the normal and 

exponential - were included in this study. For the normal distribution the 

coefficients of skewness ( ! ) and kurtosis ti- 3) are 0.00 and 0.00, 

respectively. For the exponential distribution the coefficients of skewness and 
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kurtosis are 2.00 and 6.00, respectively. 

A study conducted by Micceri (1989) supports the use of the proposed 

distributions as reasonable representations of the types of distributions most often 

encountered in real-world educational and psychological research. Of the 440 

distributions examined by Micceri, 60% were the result of published research and 

33% came from state, district, or university scoring programs. The results showed 

that 15.2% of the distributions had both tail weights at or about normality, 18% 

were less than normality, 17.7 % were moderately higher than that of normality, 

and 49.1 % extremely exceeded normal curve tail weights. Of the 440 

distributions, 28.4% were relatively symmetric, 40. 7% were moderately 

asymmetric, and 30.9% were extremely skewed. Of the 30.9% showing extreme 

skewness, 11.4% were included in a category with skewness coefficients of 2.00 or 

more. 

Number of groups (k). Either 3 or 6 populations were sampled in this 

study. These are the same numbers of populations examined by Korin (1972), 

Tang (1989), and Coombs (1993). Dijkstra and Werter (1981) used k = 3, 4, or 6 

and Olson (1974) used simulations involving 2, 3, 6, or 10 groups. Other 

researchers incorporating either 3 or 6 populations include Brown and Forsythe 

(1974), Kohr and Games (1974), Clinch and Keselman (1982), Tomarken and 

Serlin (1986), Wilcox, Charlin, and Thompson (1986), and Wilcox (1988, 1989). 

The selection of k = 3 or 6 appears to be consistent with the literature. 

Number of dependent variables (:p.). Data were generated to simulate 

experiments with a dimensionality of Il = 3 or 6. The selection of 3 or 6 

dependent variables reflects the common range of usage in educational inquiry 

(Algina & Oshima, 1990; Algina & Tang, 1988; Coombs & Algina, in press; 

Hakstian, Roed, & Lind, 1979). 
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Sample size ratio form CE). Sample size ratio form was modeled after the 

pattern of Coombs and Algina (in press). As in that study only samples with 

unequal sizes were selected. The forms of ratios of n1: n2: n3 for k = 3 and those 

of n1: n2: n3: !4: n5: !!(> for k = 6 are shown in Table 2. Type I error rate and 

sample size ratio are positively correlated (Algina & Oshima, 1990). So, if a test 

performs well with large ratios, it should perform at least equally well with 

smaller ratios, including equal sample sizes whose ratio is 1. Thus, in the present 

study sample size ratios considered are as extreme as n1g: !!sm = 2:1, where Iltg is 

the largest and Il.sm is the smallest sample size. 

Table 2 

Sample Size Ratio Forrris 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1.5 

2 

1 

1 

1.5 

2 

1 

1 

1.5 

2 

1.5 

2 

1.5 

2 

1.5 

2 

1.5 

2 

1.5 

2 

1.5 

2 



Ratio of smallest sample size to number of dependent variables (r = ~). 

The ratios chosen for simulation were r = 2, r = 4, and r = 6. These ratios 

coupled with the restrictions for number of groups, number of dependent 

variables, and sample size ratio yield a total sample size ranging between 21 and 

360. In addition, it leads to a ratio between total sample size and number of 

dependent variables, N: ll, that varies between 7 and 60. Many current studies 

report this ratio (e.g., Coombs & Algina, in press; Algina & Tang, 1988). 
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Degree of heteroscedasticity (.d.). A population in which the assumption of 

equal covariance matrices, homoscedasticity, holds is called uncontaminated. 

Such a population was simulated with a covariance matrix equal to all x ll 

identity matrix, I. A population in which the assumption of homoscedasticity is 

not met is called contaminated. The simulation of such violations was 

accomplished with all x ll diagonal population covariance matrix, D, with at 

least one diagonal element not equal to 1. In this study D was obtained by 

multiplying selected diagonal elements of the identity matrix by the square of the 

constant g_. The specific elements selected identified the dependent variables 

exhibiting heteroscedasticity (first, second, third, fourth, fifth, or sixth), while the 

value of .d. determined strength. The result was a diagonal matrix with ll 

diagonals, some equal to 1 and the others equal to d. 

Shown in Table 3 are the covariance matrix forms used in the present study. 

Two levels of d, d = 1.5 and .d. = 3.0 were used to simulate the degree of 

heteroscedasticity. These levels are similar to those used by Algina and Coombs 

(in press), .d. = ..J2 and d = 3. Olson (1974) employed .d. = 2.0, 3.0, and 6.0. 

Algina and Tang (1988) chose d = 1.5, 2.0, 2.5, and 3.0. Tang and Algina (1993) 

selected ..JT.5 and 3.0 ford, while Algina and Oshima (1990) used 1.5 and 3.0. In 

this study, as in those cited, the smaller value simulates a low degree of 
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heteroscedasticity, while the larger simulates a higher degree. 

Table 3 

Forms of Covariance Matrices 

Matrix :Q. = 3 :Q. = 6 

D Diag(l, .d.2, .d.2) Diag(l, 1, .d.2, .d.2, .d.2, .d.2) 

I Diag(l, 1, 1) Diag(l, 1, 1, 1, 1, 1) 

Relationship between sample sizes and covariance matrices (§.). This study 

incorporated investigations into both positive and negative relationships between 

sample sizes and covariance matrices (the positive and negative conditions). In 

the positive condition ( denoted §. = 0) the larger sample size was paired with D, 

the smaller with I. In the negative condition ( denoted §. = 1) the pairings were 

reversed, with the smaller samples paired with D and the larger with I. Shown in 

Table 4 is a summary of the relationship between sample sizes and covariance 

matrices. 

Design Layout for Robustness Study 

The sample sizes were determined by the levels of k, :Q., r, the sample size 

ratio F, and the relationship among the sample sizes. These sample sizes are 

summarized in Table 5 and Table 6. The range of sample sizes is broad enough to 

address theoretical issues, since it both overlaps with and extends the ranges of 

values used in previous studies addressing such issues. It is also braod enough to 

be useful to practitioners, since it was generated using values of variables (factors) 

that represent common ranges of usage. The 48 condition combinations in these 

tables were crossed with two distributions,. two levels of heteroscedasticity, and 

two relationships between sample sizes and covariance matrices, resulting in 384 



Table 4 

Relationship between Sample Sizes and Covariance Matrices 

k=3 

Sample Size Ratios Relationship 

n.1 n.2 ll.3 Positive Negative 

1 1 1.5 IID DDI 

1 1 2 IID DDI 

1 1.5 1.5 IDD DII 

1 2 2 IDD DII 

k=6 

Sample Size Ratios Relationship 

n.1 n.2 ll.3 ll..4 ll.5 n.6 Positive Negative 

1 1 1 1 1.5 1.5 IIIIDD DDDDII 

1 1 1 1 2 2 IIIIDD DDDDII 

1 1 1.5 1.5 1.5 1.5 IIDDDD DDIIII 

1 1 2 2 2 2 IIDDDD DDIIII 

experimental conditions upon which to base comparisons of Type I error rate for 

competing test criteria. 

Simulation Procedure for the Robustness Study 
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The simulation was conducted as 384 separate runs, one for each 

combination of conditions described in the robustness study design layout, with 

exactly 20,000 replications per condition. For each condition, the performance of 

the Pillai-Bartlett V, Johansen .J., Coombs-Algina ut, Coombs-Algina U2, 
Coombs- Algina 1. *, and Coombs-Algina V* tests were evaluated using the 

generated data. 



67 

Table 5 

Sample Sizes for k = 3 

Q I Il1 Il2 Ik3 

3 2 6 6 9 
6 6 12 
6 9 9 
6 12 12 

4 12 12 18 
12 12 24 
12 18 18 
12 24 24 

6 18 18 27 
18 18 36 
18 27 27 
18 36 36 

6 2 12 12 18 
12 12 24 
12 18 18 
12 24 24 

4 24 24 36 
24 24 48 
24 36 36 
24 48 48 

6 36 36 54 
36 36 72 
36 54 54 
36 72 72 

For the ith sample, an n.i X Q (i = 1, 2, 3, ... k) matrix of uncorrelated 

pseudo-random observations was generated (using PROC IML in SAS) by 

selecting numbers from the target distribution, normal or exponential. When the 

target distribution was an 

exponential, the random observations on each of the Q variates were standardized 

using the population expected value and standard deviation. Hence, within each 

uncontaminated population, all the p_ variates were identically distributed with 

mean equal to zero, variance equal to one, and all covariances among the p_ 

variates equal to zero. 



Table 6 

Sample Sizes for k = 6 

l! !. !!1 !!2 !!a !!4 !!.5 !16 

3 2 6 6 6 6 9 9 
6 6 6 6 12 12 
6 6 9 9 9 9 
6 6 12 12 12 12 

4 12 12 12 12 18 18 
12 12 12 12 24 24 
12 12 18 18 18 18 
12 12 24 24 24 24 

6 18 18 18 18 27 27 
18 18 18 18 36 36 
18 18 27 27 27 27 
18 18 36 36 36 36 

6 2 12 12 12 12 18 18 
12 12 12 12 24 24 
12 12 18 18 18 18 
12 12 24 24 24 24 

4 24 24 24 24 36 36 
24 24 24 24 48 48 
24 24 36 36 36 36 
24 24 48 48 48 48 

6 36 36 36 36 54 54 
36 36 36 36 72 72 
36 36 54 54 54 54 
36 36 72 72 72 72 

Each !!i x l! matrix of observations corresponding to a contaminated 

population was post multiplied by an appropriate D to simulate dispersion 

heteroscedasticity. 

For each replication the data were analyzed using the Pillai-Bartlett V, 

Johansen J, Coombs-Algina U!, Coombs-Algina U2, Coombs-Algina 1.*, and 

Coombs-Algina V* tests. The proportion of the 20,000 replications that yielded 

significant results at a = .01, a = .05, and a = .10 were recorded. These 

proportions served as estimates for the actual Type I error rates for the 

experimental runs. 
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Design Factors for Power Analysis 

In addition to the seven factors incorporated into the design to investigate 

robustness of tests regarding Type I error rate, an additional factor was used to 

examine power. This factor was borrowed from Olson (1974) and is called 

noncentrality structure. Noncentrality structure is closely associated with the 

idea of noncentrality parameter. 

The noncentrality parameter is a standardized measure of the differences 

present among population mean vectors. As such it is a measure of effect size. 

Schatzoff (1966) defined the noncentrality function as the trace of matrix G, 

tr(G), where 

G = HV1. 

V is the population covariance matrix and 

k I H= En-(µ--µ)(µ--µ) . . l z z z 
1= 

In the formula for H, µi is the population mean vector for the ith group, µ is the 

grand mean vector, and !li is the sample size in the ith group. The matrix G is 

the multivariate extension of expressing mean difference in terms of standard 
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deviations. Olson (1974) argues for substituting I for V, the population covariance 

matrix. Doing so allows for a test's ability to detect a given group-mean 

difference without assumption violations to be compared with its ability to detect 

the same difference when assumptions are violated. 

In practice the noncentrality parameter tr( G) can be estimated by (N - k) 

times the Hotelling-Lawley trace. Olson (1974) used three levels in his study: 10, 

40, and 90. However, in his analysis he cut these levels back to only one, 40. He 

observed that the problem of condensing results into a comprehensible package 
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· was complicated by the large number of factor combinations, and that it was 

urgent to cut back factors that were straightforward in their effect to one or two 

levels. Since an increase in the non.centrality parameter clearly increases power, 

comparisons between tests is best facilitated by using few levels of this factor. 

Olson cited a parameter of tr(G) = 40 as being well removed from the null case 

and yet not so high as to mask the effects. This study uses 40 as the value of the 

non.centrality parameter. 

Non.centrality structure refers to the allocation of mean differences among 

various populations and among the various dependent variables. Two 

non.centrality structures were used in the present study, two of the three 

structures described by Olson (1974). One is a concentrated structure, whereas 

the second is a diffuse structure. 

In the concentrated structure one group differs from the other (k - 1) groups 

on a single variate. This structure was simulated by setting the mean vector of 

the first population equal to (kc, 0, 0) and all other mean vectors equal to (0, 0, 0) 

for :g_ = 3. For :g_ = 6 the first mean vector was (kc, 0, 0, 0, 0, 0), while all others 

were (0, 0, 0, 0, 0, 0). The value off was determined by setting the non.centrality 

parameter tr(G) equal to the sum of the eigenvalues, nk(k-1)£2 (Olson, 1974). 

The diffuse non.centrality structure is one in which each group differs from 

the others on a single dimension. This structure is simulated by setting all 

elements in each population mean vector equal to zero except the ith element 

which is set equal to kc for all values of i from 1 to min(:g_, k). For k = 6 

populations and :g_ = 3 dependent variables, the six population mean vectors are 

(kc, 0, 0), (0, kc, 0), (0, 0, kc), (0, 0., 0), (0, 0, 0), and (0, 0, 0). Fork= 3 groups 

and :g_ = 6 dependent variables, the population mean vectors are (8, 0, 0, 0, 0, 0), 

(0, 8, 0, 0, 0, 0), and (0, 0, 8, 0, 0, 0). The value off was found by setting the 



noncentrality parameter equal to (n. -1 )nk2~2 + nk(k - n,)~2 when k > n, and 

(k- l)nk2~2 when k ~ n, (Olson, 1974). 

Design Layout for Power Analysis 
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Each of the 384 experimental conditions generated for the comparisons of 

Type I error rate was crossed with two noncentrality structures for the purpose of 

evaluating power, yielding 768 experimental conditions upon which to compare 

the competing statistical tests. 

Simulation Procedure for the Power Analysis 

A simulation was conducted as 768 separate runs, one for each of the 

condition combinations described in the power analysis design layout, with 20,000 

replications per condition combination. Distributions and heteroscedasticity were 

simulated using PROC IML in SAS as in the robustness study. 

For each replication, the data were analyzed using the Pillai-Bartlett V, 

Johansen .J., Coombs-Algina Ui, Coombs-Algina u;, Coombs-Algina 1.*, and 

Coombs-Algina V* tests. The proportion of the 20,000 replications yielding 

significant results at o: = .01, o: = .05, and o: = .10 were recorded. These 

proportions served as estimates of the power of the test for the various condition 

combinations under the specified noncentrality parameter and structure. 

Summary 

Two distribution types (DT = normal or exponential), two levels of 

populations sampled (k = 3 or 6), two levels of dependent variables (n. = 3 or 6), 

three levels of the ratio between smallest sample size and number of dependent 

variables (r = 2, 4, or 6), four levels of the sample size ratio, two levels of degree 

of heteroscedasticity (.d = 1.5 or 3.0), and two levels of the relationship between 

sample sizes and covariance matrices (positive and negative) combine to give 384 

experimental conditions upon which to base conclusions regarding control of Type 



I error rate. For each condition, one noncentrality parameter ( 40) and two 

noncentrality structures ( concentrated and diffuse) combine to produce 768 

conditions in which to compare the powers of tests. The Pillai-Bartlett V, 

Johansen J., Coombs-Algina Ui, Coombs-Algina U2, Coombs-Algina 1.*, and 

Coombs-Algina V* tests were applied to each of these experimental conditions. 

Generalizations of the behavior of these tests will be based upon the collective 

results of the experimental conditions. 
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Chapter 4 
Results 
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In this chapter estimated Type I error rates and power levels under various 

condition combinations are presented and discussed for tests performed at the .05 

level of significance. 

Type I Error Rate Results 

Figures 1-6 depict the distributions of the estimated Type I error rates for 

the Pillai-Bartlett, Johansen, Coombs-Algina Ui, Coombs-Algina Ui, Coombs

Algina 1 *, and Coombs-Algina V* tests. Table 7 further describes these 

distributions by reporting five percentiles for each of the tests. Five percentils are 

provided for each test statitic. The third entry in the first row, for example, 

reports that 50% (percentile = 50) of the estimated Type I error rates equal .0546 

or less. In terms of controlling Type I error rates, these results indicate ( a) the 

Pillai-Bartlett and Johansen tests are similar in performance with the Pillai-

Table 7 

Percentiles for Estimated Type I Error Rate 

Test Criterion Percentile 

0 25 50 75 100 

Pillai-Bartlett .0092 .0306 .0546 .1052 .3455 

Johansen .0457 .0601 .0816 .1235 .4469 

Coombs-Algina ur .0287 .0496 .0544 .0614 .1004 

Coombs-Algina u; .0222 .0451 .0511 .0578 .0940 

Coombs-Algina 1 * .0193 .0440 .0504 .0558 .0904 

Coombs-Algina V* .0084 .0363 .0458 .0512 .0802 
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Figure 1. Frequency histogram of estimated Type I error rates 

for the Pillai-Bartlett test. 
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Figure 2. Frequency histogram of estimated Type I error rates 

for the Johansen test. 
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Figure 3. Frequency histogram of estimated Type I error rates 

for the Coombs-Algina U1 * test. 
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Figure 4. Frequency histogram of estimated Type I error rates 

for ·the Coombs-Algina U2 * test. 
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Figure 5. Frequency histogram of estimated Type I error rates 

for the Coombs-Algina L * test. 
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Figure 6. Frequency histogram of estimated Type I error rates 

for the Coombs-Algina V* test. 
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Bartlett's having somewhat lower levels, (b) the four Coombs-Algina tests are 

similar, and ( c) the performance of each of the four Coom bs-Algina tests is 

superior to that of either the Pillai-Bartlett test or the Johansen test. 

Examination of the histograms indicates the order of the estimated Type I error 

rates for the four Coombs-Algina tests from smallest to largest to be: V*, 1. *, u;, 
Ui. These differences, however, appear to be slight based on examination of 

either the histograms or percentiles. This is a result that was expected, given that 

the four statistics are all functions of the same matrix, HM-1. 

The Pillai-Bartlett test satisfies Bradley's (1978) liberal criterion ( .5a < f-

< 1.5a) in only about 58% of the conditions studied. Only about 44% of the 

estimated Type I error rates for the Johansen test fall in Bradley's interval. The 

failure of these tests to achieve nominal levels in such a large percentage of cases 

alone justifies eliminating them from consideration under the conditions 

considered in this study. On the other hand, all four Coombs-Algina tests have 

estimated Type I error rates that fall in Bradley's interval in nearly 90% of all 

cases. More specifically, the success rates are approximately 88% for U!, 86% for 

u;, 91% for L.*, and 88% for V*. 

Type I error rate was further analyzed using a split-plot analysis of variance 

model. Seven between factors ( distribution type, number of groups sampled, 

number of dependent variables, sample size ratio form, ratio of smallest sample 

size to number of dependent variables, degree of heteroscedasticity, and the 

relationship between sample sizes and covariance matrices) and one within factor 

(test criterion) were included in the model. All main effects and two-way through 

seven-way interactions were considered. Because no replications were made for 

each combination of conditions in generating the data, the error term for both the 

between and within analyses was the mean squared error for the highest order 
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interaction for that analysis. That is, the error term for the between analysis was 

the mean squared error for the effect DT x k x n. x F x r x .d x §.. For the within 

analysis the error term was the mean squared error for the interaction of those 

same factors with test criterion (T). 

Because the extremely large sample sizes resulted in a large number of 

statistically significant effects, practical significance was estimated using omega

squared (w2), which reports the proportion of total variance accounted for by an 

effect. 

A2 
w = A2 

:Eh" effect + MS between + MS within 

A2 
8 effect 

where 
A 2 dfeffect(MSeffect - MSbetweerJ 
8 effect = 2304 

The constant 2304 is the total number of conditions considered in the study ( that 

is, the product of the levels of all factors examined). 

Nineteen effects accounted for 90.3190% of the total variance. Fourteen of 

these were within factors that accounted for 78.991 % and five were between 

factors that accounted for the remaining 11.328%. These effects and their w2 

values appear in Table 8 and include all effects that accounted for at least 1 % of 

the total variance. (More precisely, all w2 values that rounded to at least .009 

were included.) Only one variable, n_ = number of dependent variables, failed to 

appear in at least one statistically and practically significant effect. All others 

were involved in one of the four effects that subsumed all others: 

TxFxsxd 

Txsxr 



Txkxr 

Tx kx DT. 

The four-way interaction T x F x §. x 4 and the ten significant (statistically 

and practically) effects it subsumes account for 62.938% of the total variance. 

The effect T x r x §. and the four significant effects it subsumes account for 

Table 8 

Proportion of Variance in Estimated Type I Error Rate Accounted for by 

Statistically and Practically Significant Effects 

Within 

Between 

Proportion of Total Variance 

.00912 

.00923 

.00924 

.01099 

.01991 

.02217 

.02568 

.02642 

.03853 

.03926 

.04898 

.12506 

.19113 

.21419 

.78991 

.008745 

.009939 

.017433 

.034541 

.042622 

.113280 

58.212% of the total variance. The effect T x k x r and the three effects it 

subsumes account for 29.657% of the total variance. And the effect T x k x DT 

and the four significant effects it subsumes account for 28.887% of the total 
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variance. The sum of these percentages exceeds the 90.3190% accounted for by 

the statistically and practically significant effects since some effects such as test 

criterion (T) are subsumed more than once. These percentages are organized in 

Table 9. 

Table 9 
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Proportion of Variance in Estimated Type I Error Rate Accounted for by Various 

Effects by Group 

Group Effect Proportion of Total Variance 

TxFX§.X!! TxFx§.x.d .01099 
TxFx.d .00923 
TxFx§. .02217 
TX§.X!! .04898 
F X§. .00994 
TxF .01991 
Tx.d .02568 
TX§. .19113 
.d .03454 
.§. .04262 
T .21419 

.62938 

Txrx§. Txrx§. .00912 
Txr .12506 
TX§. .19113 
§. .04262 
T .21419 

.58212 

Txkxr Txkxr .02642 
Txk .03853 
k .01743 
T .21419 

.29657 

TxkxDT TxkxDT .00924 
TxDT .03926 
DT .00875 
k .01743 
T .21419 

.28887 



Because test criterion was included in all four effects that subsumed all 

statistically and 'practically significant effects, the effects of the other variables 

and their interactions must be considered test by test. 
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Effects of Sample Size Ratio Form, Relationship Between Sample Sizes and 

Covariance Matrices, and Degree of Heteroscedasticity (E., §., and .d.). The 

T x F x §. x .d. interaction was examined by constructing all mean plots involving all 

combinations of sample size ratio form (F), relationship between sample sizes and 

covariance matrices (§.), and degree of heteroscedasticity (.d.) for each test. The 

plots appear in Figures 7-12. Figure 13 includes them all for ease of comparison. 

The Johansen test is on the average always liberal with mean values off 

ranging from .0791 (§. = 0, .d. = 1.5, F = 5) to .1567 (§. = 1, .d. = 3, F = 3). The 

Pillai-Bartlett test is liberal in the negative condition (§. = 1) and conservative in 

the positive condition (§. = 0) for all combinations of sample size ratio form and 

degree of heteroscedasticity. For both the Pillai-Bartlett and Johansen tests, 

estimated mean Type I error rate is larger in the negative condition (§. = 1) than 

in the positive condition (§. = 0). The result is reversed for the Coombs-Algina V* 

test with mean fs being larger is the positive condition than in the negative 

condition. For the other three Coombs-Algina tests the plots of the positive and 

negative conditions are disordinal indicating that the relative sizes of mean f- in 

the positive and negative conditions change with the degree of heteroscedasticity 

and with sample size ratio form. All means for all Coombs-Algina tests fall within 

or nearly within Bradley's (1978) liberal criterion interval, which for the .05 level 

of significance is between .025 and .075. 

For the Coombs-Algina ut and U2 tests the patterns are the same. 

Estimated mean Type I error rate is larger in the positive condition for forms 2 

and 3 (1:1:1.5, l:1:1:1:1.5:l.5, 1:1:2, or 1:1:1:1:2:2). The tests are slightly liberal 
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when Q = 3 and§. = 0 (positive condition), but are near nominal in all other cases 

of forms 2 and 3. For forms 4 and 5 (1:1.5:1.5, 1:1:1.5:1.5:l.5:l.5, 1:2:2, or 

1:1:2:2:2:2) U! and U2 tend to yield higher estimated mean Type I error rates for 

the negative condition for both Q = 3 and Q = 1.5. The rates are higher when g = 

3 than when Q = 1.5 for forms 4 and 5. 

Mean Type I error rate estimates obtained in the Coombs-Algina 1 * test are 

larger in the positive condition for forms 2 and 3. For those forms mean f- is in 

the upper range of Bradley's (1978) interval when Q = 3 and §. = 0 (positive 

condition) and near nominal in all other conditions. For forms 4 and 5 estimated 

mean Type I error rate for the Coombs-Algina 1 * test is higher when Q = 3 than 

when Q = 1.5. 

For all six tests Q = 1.5 yields a much flatter plot than does Q = 3.0, 

indicating that Type I error rate varies more as the degree of covariance matrix 

inequality increases. This tendency is especially true for the Coombs-Algina tests. 

The Coombs-Algina tests show smaller differences in estimated mean Type I 

error rates between the positive and negative conditions for forms 4 and 5 than do 

either the Pillai-Bartlett test or Johansen test. 

Effects of Relationship Between Sample Sizes and Covariance Matrices and 

Ratio Between Smallest Sample Size and Number of Dependent Variables 

fa and r). Cell mean plots of combinations of the relationship between sample 

sizes and covariance matrices (§.) and ratio of smallest sample size to the number 

of dependent variables (r) appear separately in Figures 14-19 and as a group in 

Figure 20. They reveal the Pillai-Bartlett test to be liberal in the negative 

condition(§.= 1) and near the low end of Bradley's (1978) interval in the positive 

condition (§. = 0). The value of I has little, if any, effect on Type I error rate for 

the Pillai-Bartlett test. Under the conditions considered the Johansen test is 
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liberal in the negative condition and when I < 4. Estimated mean Type I error 

rate in the negative condition is larger t.han in the positive condition. It decreases 

as I increases from 2 to 4 to 6, becoming adequate in the positive condition (.§. = 

0) when r ~ 4. The differences between mean estimated Type I error rates for 

the positive and negative conditions decrease as I increases from 2 to 4 to 6. 

Estimated mean Type I error rate for the Johansen test never falls below .065, its 

value in the positive condition when the ratio between smallest sample size and 

number of dependent variables is 6. 

Plots of all four Coombs-Algina tests have the same interaction pattern for.§. 

and r., which is not unexpected given that all are defined in terms of the same 

matrix and are generalizations of the same univariate test. The positive condition 

shows higher estimated mean Type I error rates with differences declining as r. 

increases from 2 to 6. Further mean f- increases with r. with larger increases from 

2 to 4 than from 4 to 6. All four Coombs-Algina tests show approximately 

nominal rates with mean f- varying from .0619 (Coombs-Algina Ui, .§. = 0, r. = 6) 

to .0274 (Coombs-Algina V*, .§. = 1, r. = 2). 

Effects of Number of Groups and Ratio Between Smallest Sample Size and 

Number of Dependent Variables (k and r). Figures 21-26 contain the mean plots 

of the combinations of number of groups sampled (k) and ratio between smallest 

sample size and number of dependent variables (r.) for the six criteria individually. 

Figure 27 includes them all to facilitate comparison. 

The Pillai-Bartlett test is liberal with mean f- varying from .0876 (k = 6, r. 

= 6) to .0763 (k = 3, r. = 2). The estimated mean Type I error rate tends to 

increase very slightly with r. and is higher fork = 6 than fork = 3. 

In the Johansen test mean f- decreases as r. increases from 2 to 4 to 6 and 

increases ask increases from 3 to 6. The differences between mean Type I error 
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Figure 25. Estimated Type I error rates for combinations of ratesof 

smallest sample size to number of dependent variables (I) and 
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rates fork= 6 and k = 3 decreases as I increases from 2 to 4 to 6. The Johansen 

test is considerably more liberal than the Pillai-Bartlett test with mean f- varying 

from .0630 (k = 3, I= 6) to .2135 (k = 3, I= 2). It adequately controls Type I 

error rate when k < 6 and I 2'.. 4. 

Estimated mean Type I error rates for the four Coombs-Algina tests are 

close to nominal, varying from .0637 (Ui, k = 6, I = 6) to .0318 (V*, k = 3, I = 

2). In all four tests mean f- increases as I increases from 2 to 4 to 6. Also in all 

four tests mean f- increases as k increases from 3 to 6 with differences increasing 

slightly as I increases. These similar results for the Coombs-Algina tests are again 

expected, given the nature of the criteria's definitions ( all in terms of functions of 

the same matrix). 

For all six tests mean f- was higher for k = 6 than for k = 3. 

Effect of Number of Groups and Distribution Type (k and fil). The mean 

plots involving the combinations of number of groups sampled and distribution 

type appear individually in Figures 28-33 and collectively in Figure 34. They 

show the Pillai-Bartlett and Johansen tests to be liberal in all cases, the Johansen 

test more so except when sampling from a small (k = 3) number of normal 

distributions. All four Coombs-Algina tests had estimated mean Type I error 

rates close to nominal levels. 

The Pillai-Bartlett test and the four Coombs-Algina tests all had higher 

estimated mean Type I error rates for the normal distribution when k = 6 and for 

the exponential distribution when k = 3. In the Johansen test, mean f- was higher 

in the exponential distribution than in the normal distribution for both k = 3 and 

k = 6, although more pronounced fork= 6. 

The Coombs-Algina V* test was slightly conservative in all combinations; 

ur was slightly liberal in all combinations; and u; and 1. * were slightly liberal 
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except when k = 3 and distribution type was normal. 

Effect of Number of Dependent Variables (12.). The factor 12., number of 

dependent variables, was the only factor that did not account for a practically 

significant proportion of variance as either a main effect or in combination with 

any other factor or factors. As a main effect, it accounted for only .3611 % of total 

var1ance. 

Power Results 

Figures 35-40 depict the distributions of the estimated power levels for the 

Pillai-Bartlett, Johansen, Coombs-Algina Ui, Coombs-Algina U2, Coombs

Algina 1.*, and Coombs-Algina V* tests. Table 10 reports percentiles for each of 

these six tests. It shows that half the powers of the Pillai-Bartlett, Johansen, 

Coombs-Algina Ui, Coombs-Algina U2, Coombs-Algina 1.*, and Coombs-Algina 

V* tests are respectively .2190, .2438, .1016, .0932, .0868, and .0730 or less. Both 

Table 10 

Percentiles for Estimated Power Level 

Test Criterion Percentile 

0 25 50 75 100 

Pillai-Bartlett .0114 .0531 .2190 .6909 .9972 

Johansen .0550 .1053 .2438 .7238 .9956 

Coombs-Algina Ui .0264 .0540 .1016 .6726 .9975 

Coombs-Algina u; .0183 .0505 .0932 .6609 .9975 

Coom bs-Algina 1. * .0207 .0467 .0868 .6390 .9973 

Coombs-Algina V* .0161 .0449 .0730 .5885 .9964 
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the histograms and percentile table indicate that ( a) power levels for all tests 

across all conditions tend to be inadequate and (b) power levels by themselves do 

not identify any test as vastly superior to the others. 

The histogram results for all six tests reveal a similar pattern. All have 

large frequencies at or below .10 followed by an erratic decline and leveling off 

between .10 and .90, and finally a rather sharp increase for .90 and above. The 

percentile table confirms this pattern. It reveals further that if acceptable power 

is defined by approximately .60 and above, it is achieved only about one-quarter 

of the time. Acceptable power has no generally accepted cutoff point. Cohen 

(1992) does, however, suggest .80 and above as acceptable power, because that 

level yields a ratio of 4 to 1 for Type II error rate to Type I error rate. Given the · 

low power levels of currently available criteria, doubling that ratio to 8 to 1 

(resulting in a power level of .60) may be the only way for the testing of 

multivariate omnibus hypotheses under assumption violations to continue. The 

user, however, should be aware that a Type II error will occur on the average 

eight times as often as a Type I error. And this "acceptable" situation will be 

achieved only about one-quarter of the time. The performance of the Coombs

Algina V* test is slightly worse, while the other five tests perform somewhat 

better than the acceptable .60 twenty-five percent of the time. In the case of the 

Pillai-Bartlett and Johansen tests, some of the power advantage over the Coombs

Algina tests can be explained by their inflated Type I error rates. Adjusting for 

differences in Type I error rate would tend to equalize power levels. So, concern 

should center on identifying those conditions that maximize power while 

maintaining adequate Type I error control, since, in at least the conditions 

studied, test criteria does not appear to be a distinguishing factor in determining 

power level. 



As with Type I error rate power was further analyzed using a split-plot 

analysis of variance model. Eight between factors--the same seven used in 
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analyzing Type I error rate plus type of noncentrality structure ~ ( concentrated or 

diffuse)--and one within factor (test criterion) were included in the model. The 

highest order interaction term was used as the error term. Hence, for the between 

analysis the mean squared error for the effect DT x k x 11 x F x r x Q x §. x f was the 

error term. The mean square for the interaction of these factors and test criterion 

(T) served as the error term for the within analysis. 

Practical significance for an effect was measured, as in the Type I error rate 

analysis, using w2, the estimated proportion of total variance accounted for by 

that effect. Five factors, all between effects, accounted for over 93% of the total 

variance. These effects and their c} values appear in Table 11. Included are all 

effects that accounted for at least 1 % of the total variance. Two effects subsumed 

all others that were both statistically and practically significant: 

kxDT 

DTxc. 

Table 11 

Proportion of Variance in Estimated Power Accounted for by Statistically and 

Practically Significant Effects 

Between 

Effect 

k 
DTxk 
DTx~ 
~ 
DT 

Proportion of Total Variance 

.01036 

.01415 

.12770 

.12770 

.65081 

.93072 



The two-way interaction k x DT and the main effects k and DT that it 

subsumes account for 67.532% of total variance. The effect DT x £ and the two 

main effects it subsumes, DT and £, account for 90.621 %. Table 12 shows how 

these percentages were computed. 

Table 12 
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Proportion of Variance in Power Levels Accounted for by Various Effects by Group 

Group Effect Proportion of Total Variance 

kxDT kxDT .01415 
k .01036 
DT .65081 

.67532 

DTX£ DTX£ .12770 
£ .12770 
DT .65081 

.90621 

The results of the split-plot analysis of variance are consistent with the 

results obtained from examining the percentile table and histograms for power. 

At least under the conditions studied, test criterion is not a practically significant 

factor. Identification of conditions that maximize power while adequately 

controlling Type I error rate should be the focal point of continued analysis using 

the data obtained in this study. This identification was accomplished in part 

using mean plots for the two practically significant interaction effects that 

subsume all others. 

Effects of Distribution Type and Noncentrality Structure (12.'.r and£). Mean 

plots for the four combinations of distribution type and non.centrality structure 

appear in Figure 41. It shows estimated mean power to be negligible for all 
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practical purposes when the underlying distribution is exponential, regardless of 

type of noncentrality structure. On the other hand, estimated power is much 

higher when the normality assumptions is satisfied. For the concentrated 

structure it is an enviable .9013. When noncentrality is diffuse estimated power 

falls to a usually unacceptable level of .3910. These results apply to all tests over 

all condition combinations, all of which include some degree of violation of the 

homoscedasticity assumption. 

Effects of Number of Groups and Distribution Type (k and fil). The k x 

DT interaction was also examined using mean plots. The plots appear in Figure 

42. As with the DT X f interaction, when DT = exponential, estimated mean 

power is woefully inadequate and precludes the use of any of the tests. When the 

normality assumption is met, mean power rises dramatically. When six groups 

are sample (k = 6) under normality, estimated mean power is .5673. For three 

groups estimated mean power is a perhaps acceptable .7249. 

Combined Results of Type I Error Rate and Power 

Because the selection of an appropriate multivariate omnibus test depends 

upon both Type I error rate and power level, a graphical tool that incorporates 

both ideas would be useful. A double box plot does so. Double box plots for the 

six test criteria in this study appear in Figures 43-48. In each plot 50% of all 

estimated Type I error rates fall within the interval delineated by the vertical 

sides of the box. The "whiskers" that extend left and right indicate the location 

of the other half of the values. Similarly, 50% of all estimated power levels are 

located in the interval defined by the horizontal sides of the box, the remaining 

50% in the intervals described by the whiskers. Dotted lines within the box 

indicate medians. The optimal situation is a very small box located high on the 

chart ( at or above the acceptable power level) and near the nominal Type I error 
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rate horizontally. Further, shorter whiskers are more desirable than longer ones 

as they indicate a higher degree of consistency. 

Figures 43-48 illustrate the superiority of the Coombs-Algina tests over both 

the Pillai-Bartlett and Johansen tests in controlling Type I error rate in the 

studied conditions. Both box widths and left-right whisker extensions confirm 

this result. The large heights and large up-down whisker extensions indicate the 

overall failure of the tests to achieve adequate power levels. Drawings of this type 

may be useful to future researchers as investigation continues. 

Summary 

The results of this study show that under the heteroscedastic experimental 

conditions studied (a) neither the Pillai-Bartlett test nor the Johansen test is 

effective in controlling Type I error rate, (b) the four Coombs-Algina tests are 

generally effective in controlling Type I error rate, ( c) the differences among the 

four Coombs-Algina tests are small, and ( d) none of the six tests studied offers 

sufficient power to advocate its use in all cases. 
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Chapter 5 
Discussion 
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In partial answer to the research questions posed in Chapter 1 conclusions 

are offered both in terms of adequately controlling Type I error rate and 

maintaining suitable power levels .. More complete answers to those questions can 

be obtained only through continued research. 

Conclusions Regarding Control of Type I Error Rate 

Six conclusions were drawn concerning the effectiveness of the six criteria 

considered in maintaining nominal Type I error rates. 

Conclusion 1. The Johansen test does not provide adequate control of Type 

I error rates over the entire range of conditions studied. It is adequate when 

sampling is from a small (k = 3) number of normal distributions (DT = normal) 

and the ratio of the smallest sample size to the number of dependent variables is 

large (r ~ 4). Otherwise it is liberal. This conclusion is consistent with those of 

Coombs and Algina (in press). When the ratio of the smallest sample size to the 

number of dependent variables is large, the Johansen test may perform better in 

the positive condition. 

Conclusion 2. The Pillai-Bartlett test does not provide adequate control of 

Type I error rates over the entire range of conditions studied. Because of the 

large variability it exhibits in Type I error rates when assumptions are not 

met -it may be very liberal or very conservative, it is not recommended when 

assumptions are violated. 

Conclusion 3. The performances of the Coombs-Algina tests suggest 

adequate control of Type I error rate over the set of experimental conditions 

included in this study. V* tends to be slightly conservative. Di and U2 tend to 

be slightly liberal. Of the four Coombs-Algina tests 1. * is the most effective 

overall in maintaining nominal Type I error rates in the studied conditions. 
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Condition 4. V* is the best choice for controlling r when sampling from a 

large number of groups. For all Coombs-Algina tests actual Type I error rate 

increases as the number of groups sampled increases. The increase is smallest for 

V*. For six populations V* is the most effective of the Coombs-Algina tests 

except when the ratio of the smallest sample size to the number of dependent 

variables is 2. Under normality V* is the most effective of the tests when 

sampling from six populations. The conservative tendency of V* coupled with the 

tendency for r to increase with the number of groups suggests V* may work well 

in controlling r with even larger numbers of populations. 

Condition 5. V* is the best choice for controlling r when the ratio of the 

smallest sample size to the number of dependent variables is large. The increases 

in mean values off decreased in this study as the ratio increased causing the 

mean fs to level off. This, coupled with the conservative tendency of V*, suggests 

that V* may also perform well with larger ratios. 

Condition 6. Of the four Coombs-Algina tests 1 * offers the best protection 

against the effects of high heteroscedasticity in the negative condition. In the 

positive condition V* offers the best protection. 

Conclusions Regarding Power 

Conclusions for any test in terms of yielding sufficient power levels are 

meaningful only if the test adequately controls Type I error rates. Hence, the 

following conclusions apply to all four Coombs-Algina tests and to the Johansen 

test in those conditions in which it adequately controls Type I error rates. 

Conclusion 1. None of the tests possesses suitable power levels for use when 

underlying distributions are as skewed as the exponential distribution used in this 

study. 

Conclusion 2. The four Coombs-Algina tests and the Johansen test (when it 



adequately controls Type I error rates) possess suitable power levels to detect 

concentrated noncentrality of the type and magnitude used in this study when 

distributions are normal. 

138 

Conclusion 3. The four Coombs-Algina tests and the Johansen test (when it 

adequately controls Type I error rates) possess only marginally adequate power 

levels to detect diffuse noncentrality of the type and magnitude used in this study 

when distributions are normal. 

Conclusion 4. Sampling from a small number of normal populations 

max1m1zes power. 

Limitations of This Study 

The results obtained and conclusions drawn may be applied only to 

experiments in which the conditions match or are similar to those used in this 

study. Generalization is limited by the range of values assigned to (a) the 

distribution type, (b) the number of groups sampled, ( c) the number of dependent 

variables, ( d) the form of the sample size ratio, ( e) the ratio between the smallest 

sample size and the number of dependent variables, (f) the degree of 

heteroscedasticity, (g) the relationship between sample sizes and covariance 

matrices, and (h) the type and magnitude of the deviation from the null 

hypothesis (noncentrality structure). 

Suggestions for Further Research 

This study has both extended earlier research and established some 

boundaries to guide future research. Numerous avenues for continued inquiry into 

the performance of the Coombs-Algina tests are suggested. 

First, consistently good results in both Type I error rate control and power 

were obtained only with sampling from normal distributions. While the Coombs

Algina tests maintained control of Tin the extremely skewed exponential 
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distribution, the power dropoff was so dramatic as to render the tests useless. It 

is reasonable to conjecture that reducing skewness will have a positive effect on 

power. However, empirical confirmation is required along with evidence that such 

changes will allow Type I error control to be maintained. The amount of 

reduction in skew required for satisfactory power is also an issue of interest. 

Second, the effects of a wider variety of covariance matrices should be 

investigated. The Coombs-Algina tests, especially 1. * and V*, appear to offer 

some immunity to the effects of heteroscedasticity. At what levels and under 

which combinations with other factors such as distribution type, sample size ratio 

form, and relationship with sample size might the immunity disappear? If the 

immunity is preserved, the effect of the heteroscedasticity on power levels should 

be examined. Although the purpose of this study was to investigate test criteria 

performances under assumption violations, the behaviors of the Coombs-Algina 

tests when all assumptions are satisfied remains an unexplored area. 

Third, the effects upon Type I error control and power maintenance for 

increased numbers of populations deserves study. Interestingly, mean estimated 

Type I error rate declined for all four Coombs-Algina tests when the population 

number increased from three to six when sampling was done from exponential 

populations. The more expected result of an increase in T occurred under 

normality. Type I error rates, however, remained within acceptable limits for all 

tests even with the increase in number of groups. These tests need to be 

examined for larger numbers of populations to ascertain whether adequate control 

continues to be maintained. Given the decrease in mean T that occurred in this 

study when number of groups was increased with the exponential distribution, it 

remains unanswered how increases in number of groups would affect T if sampling 

were done from various other distributions. 
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Fourth, the behaviors of the Coombs-Algina tests as the ratio between the 

smallest sample size and the number of dependent variables increases should be 

pursued. The results appear to challenge the commonly held notion that 

increased sample size automatically reduces error rate and increases power. 

Unlike the Pillai-Bartlett and Johansen tests in which mean estimated Type I 

error rate was inversely related to the ratio of smallest sample size to number of 

dependent variables, mean f increased with the ratio in this study for the 

Coombs-Algina tests. That is, as more and more observations per dependent 

variable appeared in the smallest sample, mean estimated Type I error rate 

actually increased for the Coombs-Algina tests. The pattern suggests that mean f 

will level off or approach some limiting value. Further, the limiting value, if one 

exists, appears to differ from test to test and may be dependent upon the number 

of groups or the relationship between sample sizes and covariance matrices. These 

relationships and the ability of the Coombs-Algina tests to maintain acceptable 

Type I error rates and suitable power as the rate increases offer rich research 

opportunities. 

Fifth, the powers of the Coombs-Algina tests to detect deviations from the 

null hypothesis in a wider variety of ways remains an open area of research. In 

normal distributions power was shown to be high (.9013) for the highly 

concentrated structure considered, but only marginal ( .3910) for the diffuse 

structure. Numerous structures fall between these two. Olson (1974) identified a 

third structure, an alternate concentrated structure. This third structure and 

other intermediate ones should be examined to learn at which point or points 

power begins to suffer. 

Sixth, further distinguishing factors should be sought among the four 

Coombs-Algina tests. Although some were suggested in the conclusions, a 
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majority of this study's results revealed similar patterns in the tests' behaviors. 

Additional recommendations differentiating among the tests would increase their 

value to the research community. 

Finally, from a more practical standpoint, the simulated results of this and 

similar studies could be used in other analyses such as a regression analysis for 

predicting both Type I error rate and power. One might envision a computer 

software program in which the practitioner obtains confidence intervals for both 

actual Type I error rate and power level under specified conditions. The user 

could both predict rates and levels for already designed experiments or, 

preferably, design experiments to control error rate and maximize power. 

The tools for inquiry of the type pursued in this study have only recently 

become accessible to a large number of researchers. Hence, this research and its 

results provide only a skeleton to help direct future investigations. The 

opportunities are rich and varied, allowing for investigations across a wide 

spectrum of data types, both "real-world" and contrived and analyses of complex 

relationships and interactions that continually will provide better matches with 

real-world events and extend the frontiers of knowledge. 
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