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CHAPTER I 

INTRODUCTION 

Thf focus of this dissertation is the nonlinear optical properties of binary lead 

silicate and Eu-doped alkali-silicate glasses. Nonlinear optics is a very important 

field of physics that deals with the study of light-matter interaction under in­

tense laser illumination. Among the many nonlinear optical responses of a mate­

rial, self-focusing is one that is well understood. This effect manifests itself by 

changing the index of refraction of the material. The nonlinear effect that we dis­

cuss and study in the dissertation is the third-order nonlinear optical process of 

self-focusing inasmuch as is relevant to our glasses. 

Glasses have a special place among the variety of materials that are m­

vestigated by nonlinear optical techniques. They are easily fabricated and can be 

drawn into fibers. They also have other useful properties, such as negligible lin­

ear loss, that makes them highly desirable to the communications industry. 

Glasses with large nonresonant nonlinear refraction coefficients are good candi­

dates for all-optical switching. They have fast electronic response times and small 

two-photon absorption coefficients at the infra-red wavelengths used for commu­

nications. There is also a fundamental interest in the nonlinear optical properties 

of glasses. At the basic physics level, there is not a clear understanding of the 

origin and dispersion of the nonlinear refraction coefficient in glasses. Two­

photon absorption in glasses is also poorly understood since glasses do not have 
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long-range periodicity like semiconductors and hence a direct application of a 

two-band model is questionable. 

The objective of our study was to characterize the nonlinear optical prop­

erties of these glasses on nanosecond and millisecond time scales. We investigated 

two different categories of glasses. The first category included lead silicate glasses 

where the PbO concentration was varied systematically and forms a family of its 

own. The second category had two families of Eu:-doped alkali-silicate glasses. 

The first family consisted of sodium alkali-silicate based glasses that had a sys­

tematic variation of Eu concentration .. This family also had two samples with 

dual-alkali ions. The glasses in the second family had the same percent of Eu but 

varied the alkali ion systematically from Li to Cs. We studied the effects of com­

position on the self-focusing properties of each family of glasses on both time­

scales. 

Since self-focusing arises from a change in the refractive index, it 1s con­

venient to denote this index change as An = yl, where I is the intensity and y is 

the nonlinear refraction coefficient. The parameter y characterizes the nonlinear­

ity of the material and is directly related to the third-order nonlinear susceptibil­

ity -l3). Finding the value of y for glasses within a family will provide information 

as to what microscopic or macroscopic material properties affect it. Therefore, we 

have explored the nonlinearities of the glasses in terms of their y values. 

The nonlinear optical properties of the glasses were investigated using the 

well-established Z-scan and, more recent, related Intensity-scan techniques. The 

beam used in our Z-scan e."Xperiment was of elliptic Gaussian spatial profile and 

it was necessary to incorporate the beam ellipticity in our modeling. Thus, we 

generalized the theory behind these two techniques that was originally applicable 

only to circular Gaussian beams to account for a beam with any ellipticity. A 
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Gaussian beam-optics theory for optically thin media and a wave-optics theory 

for optically thick media were developed for the case of an elliptic Gaussian 

beam. The theories predict new features to occur in the Z-scan signature. 

Although the same experiments were performed on each glass in a given 

family, they were not performed on all the families. This was due to sample 

availability and time constraints. The elliptic beam Z-scan and Optical Limiting 

experiments were performed on the lead silicate glasses on a nanosecond time 

scale from which we were able to derive the nonlinear refraction and nonlinear 

absorption coefficients. The Optical Limiting experiment on the lead silicate 

glasses was part of a larger project that was conducted to find glasses that would 

safely limit dangerous levels of laser radiation so as to protect sensitive devices. 

The nanosecond Intensity-scan was performed only on the first family of Eu­

doped alkali-silicate glasses. We should point out that this is the first such appli­

cation of the Intensity-scan technique to a nanosecond time-scale. To investigate 

thermal nonlinearities, we developed a highly sensitive version of the Intensity­

scan technique for the millisecond time-scale. As this technique is new, not all of 

its features have been fully explored. However, we were able to derive y values 

that arose predominantly from thermal effects for the lead silicate and the second 

family of Eu-doped alkali-silicate glasses. We also performed temperature­

dependent absorption measurements on the lead silicates to compliment the 

thermal lensing experiments. Brillouin scattering measurements were performed 

on the lead silicate and the first family of Eu-doped alkali-silicate glasses to 

study their elastic and photoelastic properties. More importantly, Brillouin scat­

tering provided information that could be used to evaluate the effects of laser­

induced stress on our nonlinear optical measurements such as electrostriction and 

stress-induced contribution to the thermo-optic coefficient. 
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In Chapter II, we present the theory behind our nonlinear optical and 

Brillouin scattering measurements. The first part of the chapter concerns nonlin­

ear optics. After a brief discussion of what is meant by optical nonlinearity, we 

discuss the theory behind the Z-scan and Intensity-scan techniques that were 

used in our experiments. The elliptic beam Z-scan theory for optically thick me­

dia is first presented. It is based on a Gaussian beam-optics approach. Next, we 

present the wave-optics version of the elliptic beam Intensity-scan theory that is 

applicable to optically thin medium. The chapter concludes with the well-known 

Brillouin scattering theory for isotropic media that was used to study the elastic 

and photoelastic properties of the glasses. 

Chapter ill details the experimental techniques employed in the study of 

the nonlinear optical properties of the glasses. Some of the experimental prob­

lems that were encountered and methods devised to circumvent these difficulties 

are also included. The sample compositions and nomenclature used to describe 

the glasses are presented in this chapter. The nanosecond Z-scan technique using 

an elliptic Gaussian beam is first presented. This section is followed by the nano­

second Intensity-scan technique. The next section is about the millisecond ver­

sion of the Intensity-scan technique we developed to study thermal nonlinearities 

of glasses. The Brillouin scattering experimental procedure using a Fabry-Perot 

interferometer of the Sandercock design is then described. The temperature­

dependent absorption measurements are then discussed. The experimental chap­

ter concludes with a very quick and accurate method of determining the refrac-

tive index of materials based on the Brewster's angle technique that we devel­

oped and used to measure the refractive index of some of the glasses. 

Chapter IV contains the results and discussion of our experimental find­

mgs. The chapter consists of lead silicate and Eu-doped alkali-silicate parts. In 
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the lead silicate part, we first try to synthesis a structural model from several x­

ray diffraction data and other structural studies that have been done. This is 

particularly difficult to do since the sources are not all in agreement with each 

other regarding the structure of lead silicate glasses. The Brillouin scattering re­

sults are then presented which we try to interpret with the available structural 

models. The next section consists of the temperature-dependent absorption 

measurements that helped us understand our thermal lensing measurements bet­

ter. The millisecond Intensity-scan results are then presented. These focus on the 

thermal nonlinearity of these glasses including the effects of laser-induced stress. 

Finally, the nanosecond Z-scan results are described. 

The last part of Chapter N contains the results and discussion for the 

Eu-doped alkali-silicate glasses. The Brillouin scattering results of the first family 

of Eu-doped glasses are shown in a series of tables and discussed. The nanosec­

ond Intensity-scans of the same set of glasses are then described and interpreted 

in terms of the hyperpolarizibility of ions. The results and discussion chapter 

concludes with the millisecond Intensity-scans of the second family of Eu-doped 

alkali silicate glasses where we try to assess the contribution of laser-induced 

stress to the conventional value of the thermo-optic coefficient. 

In Chapter V, we summarize the main conclusions and findings of the dis­

sertation and offer some ideas and recommendations for future work. 

There are three appendices. The first appendix contains the discussion of 

the effects of beam ellipticity to the Z-scan signature. The second appendix in­

vestigates the propagation of elliptic Gaussian beams in a Kerr medium. The 

third appendix contains a brief discussion of the Sandercock Fabry-Perot system 

that was used in the Brillouin scattering experiments. 



CHAPTER II 

THEORY 

1. Nonlinear Optics 

The optical properties of materials are, in general, independent of the light in­

tensity for the relatively low illuminations that occur in nature. However, this 

does not hold true when the illumination is high and the properties become de­

pendent on the intensity and other characteristics of the light. Typically, only 

lasers can provide sufficient intensity to affect the optical properties of materials. 

The material response to an applied optical field will then depend on the 

strength of the optical field in a nonlinear manner. Nonlinear Optics is the study 

of such light-matter interaction. 

To clarify what we mean by optical nonlinearity, let us consider the ma­

terial system to be composed of many charged particles: negatively charged elec­

trons bound harmonically to positively charged ion cores. This treatment of the 

atom as a harmonic oscillator is known as the Lorentz model. A static electric 

field applied to the material will cause the charged particles to separate forming 

dipoles, i.e., it will polarize the material. vVhen an optical electric field with fre­

quencies of 1013 to 1017 Hz is incident on the material, it will induce many oscil­

lating dipoles. Since the ratio of the electric force over the magnetic force exerted 

on the particles goes as v / c, the effect of the optical magnetic field is much 
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weaker and is neglected. The mass of the positively charged nucleus is much 

heavier than the electrons, and it is the motion of the electrons that is signifi­

cant. If the electron displacement is x, then its motion will be governed by 

x + 2lli + roix + {ax2 - bx3+··} = -eE(t)/m (II.1) 

where n is a damping constant, -e is the charge of the electron, m is its mass, 

and E(t) is the applied optical electric field. The dots above the x represent time 

derivatives. The terms in brackets are higher order corrections to the restoring 

force or equivalently to the potential energy function. It is these terms that are 

responsible for nonlinear optical phenomenon. 

Another way of expressing the optical nonlinearity is through the macro­

scopic polarizat~on or dipole moment per unit volume P. This is done through a 

Taylor series expansion of the polarization in terms of the electric field as 

(II.2) 

where we have neglected the tensorial nature of the relationship as well as the 

explicit frequency dependence. Here, X(n) is the nth-order susceptibility, and X(l) 

is the familiar linear susceptibility. The effects caused by in) are known as nth 

order nonlinearities. We will be concerned only with the third order. By simply 

substituting E(t) = E0 cos(rot) into Eq. II.2, we find the third-order polarization 

p(3\t) = EoX(3) E 3 (t) to be: 

p(3)(t) = "!EoX(3)E7& cos3rot +fe0:/3)Eg cos rot. (II.3) 

The first term produces a polarization that oscillates at three times the incident 

frequency and thus gives rise to third-harmonic generation. The second term is 

the nonlinear contribution to the polarization at the incident frequency and 

therefore acts to change the refractive index of the material at the applied optical 
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field. A consequence of the second term is the well-known phenomenon of self-

focusing or defocusing which is one of the main focuses of this dissertation. 

The intensity dependence of the refractive index n and the absorption 

coefficient a., which are related to the real and imaginary parts of X(l), becomes 

apparent in the presence of a strong optical field. They change according to the 

following formula: n(I) = n0 + yl and a.(J) = a.0 + f3I, where n0 and a.o are the 

linear refractive inde.x and linear absorption coefficients, respectively, and y and 

f3 are the nonlinear refraction and nonlinear absorption coefficients, respectively. 

The nonlinear parameters y and f3 are, in turn, related to the real and imaginary 

(3) (3) 2 · (3) 2 2 I . parts of X by XR = 2n0e0cy, and Xr = n0e0c B1co where c 1s the speed of 

light, co is the frequency, and e0 is the permitivity, all in free space. It is apparent 

that a parallel beam traversing a medium will focus if y > 0 and will defocus if y < 

0. The first case is known as self-focusing and the second case as self-defocusing. 

It will also experience a reduction in transmitted power if J3 > 0 and an increase if 

f3 < 0 when compared to its linear transmission. There are many physical 

mechanisms that give rise to this phenomenon, but they depend on what time 

scale is being investigated. 

The best method of experimentally determining the nonlinear parameters 

y and f3 is by directly measuring the changes in n and a.. The Z-scan and related 

Intensity-scan techniques are highly sensitive methods of obtaining nonlinear pa-

rameters. Both techniques will be presented in the next section along with their 

theory. Another important issue is that the initial spatial beam profile greatly 

influences self-focusing and defocusing. We also present the effects of beam ellip-

ticity on these experiments. 
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(a) Z-scan 

( i) Introduction 

The Z-scan method1'2 has become a standard tool in determining nonlinear pa­

rameters of various materials. It is a single-beam technique that is based on the 

phenomenon of self-focusing and defocusing and has been described in detail in 

Ref. [1,2]. Briefly, the Z-scan setup consists of a sample, a collimated beam which 

is focused by a lens, and a far-field aperture set to collect a fraction of the inci-

dent light, as shown in Fig. 11.1. The sample is translated through the focus in 

the direction of beam propagation (z-direction), and the. far-field aperture 

transmission (D2/Dl) after normalization {dividing by the first data point) is 

monitored keeping the input beam energy constant. When the sample is far from 

the focus, the intensity is low and does · not induce nonlinear refraction in the 

sample. Consequently, the beam passes through the sample linearly and the 

normalized transmission in this region is one. As the sample is brought closer to 

the focus, the intensity increases, and the sample behaves as a lens with an in­

tensity-dependent focal length. For example, if the sample acts as a converging 

lens (positive nonlinearity), then as it is brought near the focus of the beam the 

sample will focus the light closer to the lens, and · the normalized transmission 

will decrease. This is schematically shown in Fig. Il.2. When the sample is at the 

focus of the beam, the nonlinearity induced is a maximum, but the normalized 

transmission is one. This is due to the fact that the beam is being focused 

through the center of a converging lens. When the sample has passed though the 

focus, the same nonlinearity will cause the beam to collimate, and the normalized 

transmission will increase. Finally, when the sample is far from focus, the nor-
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malized transmission will reach one again. An opposite behavior occurs for sam-

ples with negative nonlinearity. 

A dispersion shaped curve, as shown in Fig. II.3, is obtained in the pres-

ence of nonlinear refraction from which the sign as well as the magnitude of the 

nonlinear refraction coefficient can be quickly estimated. Experimentally, we need 

only to know the difference in the peak and valley transmission !:{I'p-v = Tp - Tv 

since it has been shown1 that this difference is directly proportional to the non-

linear refraction coefficient. This type of scan which allows a small fraction of the 

light through is known as a closed aperture Z-scan. 

Dl 

z = O 

Sample Aperture 

G 
-+ 

BS 
Lens 

Figure II.1 Setup for Z-scan experiment. Dl and D2 are energy detectors. The 
sample is translated form negative z to positive z ( direction of ar­
row) while the ratio D2/Dl is monitored. 
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(a) z < 0 

(b) z = 0 

(a) z > 0 

Figure Il.2 A positive nonlinearity is used to demonstrate the Z-scan technique. 
Solid lines are the actual beam paths and dashed lines are the beam 
paths without any nonlinearity.(a) The sample is positioned before 
the focus. The beam focuses closer to the lens. (b) The sample is at 
the focus of the incoming beam which passes through undeviated. 
( c) The sample is now after the focus and the beam tends to colli­
mate. 
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It should be pointed out that the rise and fall in a Z-scan is solely an aperture 

effect. If the aperture is removed and all the is light collected, then the Z-scan 

will only be sensitive to nonlinear absorption and is called an open aperture Z­

scan. Again, experimentally, we need only to know the valley or peak transmis­

sion T0 in an open aperture Z-scan since T0 is directly proportional to the nonlin­

ear absorption coefficient. The Z-scan technique has been used to study semicon­

ductors, 2---5 glasses, 6'7 semiconductor doped glasses,8 liquid crystals,9 nonlinear 

liquids such as tea, 10 and even biological materials.11 

New extensions have recently been added to this method in order to en­

hance its sensitivity and applicability. It is possible to unambiguously deduce the 

effects of nonlinear absorption and refraction simply by taking scans with an 

open and closed aperture.2 The effects of bound-electronic and free-carrier refrac­

tion in the presence of two photon absorption has also been derived. 3 A two color 

Z-scan was introduced to study nondegenerate optical ··nonlinearities4'12 and can 

also be used to do time-resolved measurements. 6 In fact, using such a pump­

probe technique it is possible to isolate the effects that are of thermal origin.13 A 

much more sensitive technique than the standard Z-scan known as the EZ-scan 

has been developed. It utilizes the fact that the wings of a circular Gaussian 

beam are more sensitive to far-field beam distortion.14'15 Recently, a RZ-scan was 

introduced to study optical nonlinearities of surfaces via reflection.16 Also, the 

effects of multiple reflections on the Z-scan and EZ-scan signatures have been 

presented.17 

The standard Z-scan is analyzed using a wave optics approach and assum­

ing a thin sample, i.e., the sample thickness is smaller than the Rayleigh range. 

The technique has been extended to thick samples by using ray matrices and 

employing the constant shape approximation18 (aberationless). A more rigorous 
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1.03 
(a) 

C 
0 1.02 'in /~\ .!:2 
E 1.01 / \ en 
C -- ./"" \ ~ 
I- 1.00 
"C --(I) -~ 0.99 /"' 

m / 
E / 
s... 0.98 'Y > 0 0 
z --y<O 

0.97 

1.02 (b) 
C r .o I \ en 

.!:2 1.01 . \. 
E 

/ " en 
C __./ ...._ 
~ ---I- 1.00 ---

"C 
(I) 

-~ m 0.99 E 
s... f3 > 0 0 
z -- f3 < 0 0.98 Q0 = ± 0.05 To 
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Figure II.3 Typical Z-scan signature for a (a) closed and (b) open aperture. In 
(a), a small on-axis phase-shift of Li<I>0 = ± 0.1 was used with no 
nonlinear absorption, and in (b) a dimensionless irradiance Q0 = ± 
0.05 was used. Here, y is the nonlinear refraction and J3 is the nonlin­
ear absorption coefficient, respectively. The sample position z is nor­
malized to the Rayleigh range Zo· 
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method that does not involve the use of this aberationless theory has been car­

ried out that holds for both thick and thin samples and in the limit of a thin 

sample gives the same on-axis peak-valley transmission difference as the wave 

optics approach. Since the method accounts for aberration, it is also possible to 

analyze a Z-scan in the near field. 19 Recently, excellent agreement between theory 

and experiment was obtained using both this analytical theory, which is correct 

to the first order of irradiance, and a numerical calculation method based on 

Gaussian-Laguerre decomposition which is correct to all orders of irradiance.20 

The above analyses require that the beam be a circular Gaussian. Since 

there are laser sources such as some dye lasers that produce beams that are ir­

regularly shaped, the Z-scan method needs to be extended to incorporate such 

beams. As such, a top-hat Z-scan analysis has been presented that uses a thin 

sample wave optics approach and includes both linear and nonlinear absorp­

tion.9'21 However, there is a class of beams that has not .been previously analyzed 

which possesses a degree of symmetry but is not circular. They are elliptic Gaus­

sian in spatial profile. There are some dye lasers and OPOs that produce these 

elliptic type beams. 

We have recently encountered such a beam from our dye laser while in­

vestigating the nonlinear properties of some lead glasses. Due to the mixed thick 

and thin nature of our samples in the geometry used, we developed a model in 

the constant-shape approximation using ray matrices suitable for thick samples 

that includes both nonlinear refraction and absorption. We found good agreement 

between theory and experiment. 22 However, in this thick sample regime the ef­

fects of beam ellipticity on the Z-scan signature were studied numerically. In or­

der to better understand the role of beam ellipticity we also developed a wave 

optics model in the thin sample regime (where experiments are usually done) 
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from which we were able to derive analytical expressions for the transmission.23 

This wave-optics theory will form part of the Intensity-scan section due to the 

similarity of the two techniques. The Z-scan results predicted by the wave-optics 

theory and its discussion are relegated to Appendix A. 

In the following section, we present the thick sample Z-scan theory for el-

liptic beams. The model was successfully applied to our nanosecond Z-scan work. 

Also, an extension of this model is presented in Appendix B where we studied 

the propagation of elliptic beams in a Kerr medium. It is important to emphasis 

that a circular beam is just a special case of an elliptic beam and the thick and 

thin Z-scan theory that we developed is a general theory. 

{ii) Theory 

When an intense laser beam is incident on a material, its refractive index as well 

as its absorption coefficient become, in general, functions of intensity. Assuming 

a cubic nonlinearity, they are given by the following equations, 

n = n(I) = no + y I , (II.4a) 

and a= a(I) = ao + f3J , (II.4b) 

where n0 is the linear refractive index, a 0 is the linear absorption coefficient, y 

and f3 are the nonlinear refraction and absorption coefficients respectively, and I 

is the intensity. The contributions toy come from phenomena such as the optical 

Kerr effect, electrostriction and thermal effects while f3 comes from mechanisms 

such as two-photon absorption. We consider an intensity distribution I(x,y,t) 

that is elliptic Gaussian in spatial profile and is given in the TEM00 mode by, 

2P(t) { 2x2 2y2} I(x,y,t) = exp --2 --2 , 
nwxwy Wx Wy 

(II.5) 
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where W:z: and Wy are the radii, x and y are the transverse coordinates all along 

the semi-minor and semi-major axes respectively, and P(t) is the instantaneous 

power. The z-dependence of the intensity is implicitly contained in the radii. The 

form of Eq. II.5 suggests that we can break the beam up into two one-

dimensional Gaussian "beams". Indeed, an elliptic Gaussian beam can be repre-

sented by two complex beam parameters (q-parameters) that contain all the in­

formation needed to specify its characteristics. They are defined along the semi­

major and semi-minor axes of the beam. Their form can be derived by solving 

the paraxial wave equation and are found to be, 

1 1 . 1.. 
---= -i . ' 
q:z:,y(z) R:z;,y(z) · 1tnow~,y(z) 

(II.6) 

where qx,y are the q-parameters, Rx,y are the radii of curvature of the two one-

dimensional Gaussian beams, and A is the wavelength in vacuum.26 The formu-

lation of the q-parameters allows the use of ray matrices to propagate the beams 

through the system which consists of a focusing lens, sample and far-field aper-

ture. It is this type of geometric optics model we employ. 

We model the self~action in our sample by considering it to be a quadratic 

index medium. In the aberration-free approximation, a Gaussian type beam is 

assumed to preserve its shape as it propagates through a nonlinear medium. This 

in turn requires that the refractive index vary quadratically in the transverse co-

ordinates, r for circular and x and y for elliptic type beams. We expand the ex­

ponential in the intensity and keep only the quadratic terms in which case the 

refractive index becomes, 

n(x,y,t) = n1(t)-}n2:,;(t)x2 -}n2y(t)y2 , (II. 7a) 

where, (II.7b) 



and, 

n2x(t) = 8P(t)y/rcw! Wy , 

n2y(t) = 8P(t)y /re Wxwt . 
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(II.7c) 

(II. 7d) 

For simplicity of discussion, we consider here a temporally square pulse of width 

't and incident power P0. A temporal Gaussian pulse can be easily incorporated 

by performing a separate time integral during the propagation. The ABCD opti­

cal transfer matrices that change the q-parameters within the sample can now be 

derived from the above expression. 

It has been shown that a correction factor, a, should be included in the 

parabolic expansion of the refractive index induced by a circular Gaussian beam 

if one is to achieve a better agreement between theory and experiment.18 For our 

elliptic Gaussian beam two such factors ax and ay would be required. The range 

of values that ax and ay have can only be found after comparing this model with 

the corresponding wave-optics theory of elliptic beams and also numerical calcu­

lations of self-focusing of such beams which at the present, to our knowledge, is 

unavailable. Inclusion of the correction factors will enhance the accuracy of the 

nonlinear parameters found by this method but will not alter the qualitative 

predictions of the theory. Since our initial study was to investigate the relative 

thermo-optic properties of several lead silicate glasses, these correction factors 

were not considered. 

The propagation of the elliptic beam through the media can be followed 

by studying the transformation of the q-parameters. The q-parameters are propa-

gated separately through the system. The scheme used is that of a "distributed 

lens model". The sample is theoretically sliced many times, and each section is 

represented by two matrices, one to change qx and the other to change Qy· By 

knowing the q-parameter at the beginning of each section, we can calculate the 
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radii and hence know the input intensity. The beams are then propagated to the 

end of the section using these matrices, and new radii and intensities are calcu-

lated prior to the propagation through the next one. In each section, the beam 

radii change very little, and we take the area of the elliptic beam to be constant. 

The power can then be attenuated by Eq. II.4b, thus including nonlinear ab-

sorption. This process is continued throughout all the sections of the sample. 

In general, if we know the input q-parametet qx,y(O) at some position in. a 

quadratic index media, then we can find the q--parameter qx,y(z) at any position z 

within the media as: 

qx,y(z) = qx,y(O)coscpx,y~+(l/cpx,y)sincpx,yZ , 
-cpx,y qx,y (0) sm C?x,yZ + cos C?x,yZ 

(II.8) 

where C?i,y = n2x,2y / n1 . Since the second term in Eq. II. 7b is much smaller then 

n 0 , we let n 1 = n 0. The positions O and z should more accurately be replaced by 

z and z + flz, i.e., these expressions hold for incremental distances. In a linear 

medium (C?x,y = 0), the q-parameters can be propagated separately. However, in 

a nonlinear medium C?x,y is continuously changing, and it is the term that cou-

ples the q-parameters for the x and y beams during the propagation. 

At the back face of the sample, the beams are propagated to the aperture, 

where the final radii wfx and wfy are calculated. The aperture, being circular, 

requires a simple numerical integration of the following expression, 

{II.9a) 

where, u2 = -u2 -v2 - u2 cos 28 + v 2 cos 28 (II.9b) 

and, V 2 = u 2 +v2 +u2 cos28-v2 cos28 (II.9c) 
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to calculate the transmitted power. Here, u = J2/w1x, v = -/2/wfy, Pexit is the 

power at the exit plane of the sample, and a is the aperture radius. This reduces 

to the well known value of Pexit{l- exp(-2a2 /w2)} in the case of cylindrical 

symmetry of the beam. The above model allows for the beam radii to change in 

the sample due to self-action when the Rayleigh ranges are smaller than or com­

parable to the sample .thickness. The effects of such a thick sample have been 

analyzed for similar experiments using a geometric optics model without nonlin­

ear absorption for circular Gaussian beams.18 The model presented here reduces 

to a circular Gaussian thin lens approach 7 where nonlinear· absorption was in­

cluded, and can be easily extended to a time-dependent domain. 6 

( iii) Theoretical Results 

We present a brief numerical study of elliptical Gaussian beam Z-scans for thick 

samples. As shown in Appendix A, the waist separation and initial beam elliptic­

ity greatly effects the Z-scan signature. If the beam is tightly focused so that the 

waist separation is small, then the Z-scan signature will be similar to that of a 

circular Gaussian beam. In Figs. II.4a and II.4b, the Z-scan plot of a beam with 

ellipticity e, defined as the ratio of the semi-major to semi-minor axes, of two is 

shown. In both figures, the sample thickness is 1 mm, and the beam having w11 = 

1 mm and Wx = 0.5 mm is focused by a 5 cm lens. The aperture was set to col­

lect 88% in the far-field. This means that most of the light from the x dimension 

is not blocked by the aperture. In Fig. II.4a, the nonlinear absorption coefficient 

13 is changed while keeping the nonlinear refraction coefficient y constant. In Fig. 

II.4b 13 is set to zero, and y is varied. The model correctly predicts the behavior 

of the Z-scan signature as these parameters are varied. As 13 is increased (Fig. 
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II.4a), the effect is to suppress the peak, and the signature resembles that of an 

open aperture Z-scan. Other interesting features of the elliptic beam Z-scan such 

as the appearance of an additional peak and valley is discussed in Appendix A. 

Some theoretical plots of Z-scan and optical limiting are shown in Figs. 

II.5a and II.5b to demonstrate the role of beam ellipticity assuming only a re­

fractive nonlinearity. In an optical limiting experiment, the sample position is 

fixed, and the transmission is monitored as a function of input intensity. The 

solid line is that of a circular Gaussian beam of radius of 1 mm, and the dotted 

and dashed lines are for elliptic beams with ellipticity of two and four, respec­

tively. The beams have the same prefocusing area and also the same on-axis on­

focus intensity of 1 GW /cm 2, producing an on-a.xis on-focus average index 

change of (.!\ n 0 ) i l.3x10~6• The sample thickness is 1 mm, and the beam is fo-

cused by a 20 cm focal length lens. The aperture has a radius of 0.589 mm which 

amounts to 50% transmission for the circular beam. Upon careful examination of 

Fig. II.5a, the peak and valley of the Z-scan is found to be asymmetric about the 

transmission equals unity line. This is caused by the astigmatic nature of the fo­

cused beam. The optical limiting input is normalized to the .critical power for 

catastrophic self-focusing for the circular beam. As the plots show, the character­

istic signatures are the same, but the amount of nonlinearity manifested is differ­

ent thus giving rise to the varied outputs.6'7 Thus, if an experiment is performed 

where the actual beam profile is elliptic but a circular one is used for the model, 

the theoretical fits will deviate from experimental data. The amount of deviation 

will of course depend on the asymmetry of the actual beam and on how tightly 

focused it is. 
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{b) Intensity-scan 

(i) Introduction 

The Intensity-scan method of determining optical nonlinearities of materials is 

complimentary to the conventional Z-scan technique. It is based on the phe­

nomenon of self-focusing or defocusing, and both methods share the same theo­

retical formalism. Instead of translating the sample through the focus of the 

beam, as is done with the Z-scan technique, we place the sample at approxi­

mately a Rayleigh range distance from the focus. This is done in order to maxi­

mize the far-field effect. More precisely, the, distance is 0.858z0 which corresponds 

to the peak or valley of a z.:.scan. The intensity is gradually increased while the 

transmission is monitored. If there is an aperture in the far-field, then the 

transmission will either increase or de~ease depending on the sign of the non-
.,. 

linearity and also whether the sample is placed before or after the focus. In the 

absence of an aperture, the transmission will only be affected by nonlinear ab-

sorption. The Z-scan technique is also an Intensity-scan method, even though the 

beam energy is held constant, in that the sample encounters different intensities 

as it is translated. 

Researchers have been conducting transmission measurements similar to 

the Z-scan and Intensity-scans for over 20 years. 24'25 In fact, the traditional 

thermal lensing techniques24 have been used to study the transmission both as a 

function of sample position and intensity. These transmission-type measurements 

were refined and enhanced into the Z-scan technique by Sheik-Bahae et al.1 The 

Z-scan combined both high-sensitivity and simplicity, something previous tech-

niques could not achieve. Also, an elegant theory was developed that allowed the 
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unambiguous interpretation of experimental results and easy extraction of rele-

vant nonlinear material parameters from the data. 

There are several practical difficulties that may be encountered in per­

forming Z-scan measurements. It is essential to have very good pulse to pulse la-

ser stability since the beam energy must be held constant. The linearity of the 

translation stage is also an important factor for a Z-scan because beam walk-off 

may occur. If the samples are wedged, then one must subtract a low intensity Z-

scan from a high intensity one in order to cancel out the systematic transmission 
. . . 

variation, i.e., take two Z-scans for a sample. In addition, the samples might 

damage at the focus of the beam. Some of these difficulties were experienced by 

us and another research group at the Center for Laser Research at OSU, Stillwa-

ter. Taheri et al.21 realized that an Intensity-scan method could be used instead 

of the Z-scan that would avoid ~ll the above mentioned problems but would re­

veal the same information as the Z-scan technique. More importantly, the Z-scan 

theoretical formalism could be applied yielding a simple extraction of nonlinear 

material parameters. 

In what follows, we present a wave-optics theory for the Intensity-scan 

using an elliptical Gaussian. beam. It was initially developed to study the effects 

of beam ellipticity on the Z-scan signature but is equally applicable to Intensity-

scans. The circular limit of this theory was used to fit our Intensity-scan data. 

1. Theory 

The electric field of an elliptic Gaussian beam can be derived by solving the par­

axial wave equation and is outlined in Ref. [26]. The form of the electric field is 

such that for the sake of theoretical analysis the beam can be broken up into two 
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separate one-dimensional beams, the x-beam and the y-beam. In the TEM00 

mode an elliptic beam has the following form: 

WQx WO 
E(x, y, z, t) = Eo(t) -(-) _(Y) exp{- ~kz - ri(z)]} 

Wx Z Wy Z 

{ 2 [ 1 ik ] 2 [ 1 ik ]} xexp -x --+ -y --+ , 
w;(z) 2.fi.x(z) wi(z) 2Ry(z) 

(II.10) 

where . { 2} 2 2 (z-zx,y) 
wx,y(z) = wOx,Oy 1 + 2 ' 

ZOx,Oy 
(II.11) 

Zox,Oy 
{ 

2 } (II.12) 

and (z -z ) 1 (z -z ) ri(z)=ftan-1 x +ftan- Y • 
Zox ZQy 

(II.13) 

Here, wx,y(z) and Rx,y(z) are the beam radius and radius of curvature for the x-

beam and y-beam, respectively, and ri(z) is the phase of the elliptic beam. The 

minimum beam waists are denoted by Wox,Oy and are located at Zx,y· The 

Rayleigh ranges are given by zox,Oy = kw&c,0y /2 , where k = 2rc/').., is the wavevec-

tor, and ').., is the wavelength in free space. The temporal behavior of the electric 

field is contained in the term Eb(t). The beam is traveling in the direction of in-

creasing z and we take z to be zero at the focusing lens. 

When an intense electric field of this nature is incident on a material, the 

resulting nonlinear paraxial wave equation can be solved analytically for a thin 

sample, i.e., the sample length is much smaller than that of the Rayleigh ranges. 

In this thin lens approximation the beam widths do not change as the beam tra-

verses the sample, and the electric field only encounters a nonlinear phase shift 
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which leads to external self-focusing or defocusing. In the slowly varying envelope 

approximation (SVEA), Maxwell's equations can be written as 

dA<J> = An(I)k 
dz' ' 

(II.14) 

and 
dl - = -a(I)I 
dz' 

(II.15) 

where An(J) is the change in the refractive index, a(J) is the absorption coeffi-

cient, z' is the penetration depth in the sample, A<J> is the phase shift, and I is the 

intensity of the elliptic beam incident on the material (front face, ignoring Fres-

nel reflection losses). The change in refractive index may be brought about by 

effects of various orders, but we will concentrate on a cubic nonlinearity 

An(!) = y I where y is the nonlinear refraction coefficient. The absorption coef-

ficient will, in general, contain both linear and nonlinear terms a(I) = a + PI, 

where a is the linear absorption coefficient, and P is the two-photon absorption 

coefficient, respectively. If we do not consider any nonlinear absorption, then Eq. 

II.14 and Eq. II.15 can be solved to give the on-axis phase shift at the exit plane 

A<J>e(z, t) as 

{ 
2x2 2y2 } 

A<l>e(z, t) = A<l>o(z, t)exp --2 - - - 2 - ' 
Wx(z) wy(z) 

(II.16) 

where (II.17) 

and A<f>o(t) = ykLeff2P(t)/nwoxWOy. (II.18) 

Here, Leff = (1- e-a..L)/a, and P(t) is the input beam power. It is important to 

note that A<f>o(t) should not be considered the "on-focus" phase shift literally 
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since the two "beams" focus at different z positions. We will, however, use this as 

a working definition since it will allow us later to derive a geometry-independent 

normalized Z-scan/Intensity-scan transmission. Another way of writing the phase 

shift at the exit plane is A<l>e(z, t) = ykILeff where I is 

2P(t) { 2x2 2y2 } I(x y z t) = exp------ · 
' ' ' 1twx(z)wy(z) · · w;(z) w:(z) 

(II.19) 

The electric field at the exit face Ee of .the sample can be found in a manner 

similar to that of a circular Gaussian beam as 

E (x y z t) = E(x y z t) e-a.Lf2eil!J.~.(x,y,z,t) 
e , , , , ' ' 

= E(O,O,z, t)e-a.L/2 f [iA<l>o(z, t)]m exp{- ikx2 - iky2 } ,(II.20) 
m=O ml . . 2qmox(z) 2qmoy(z) 

where qmOx and qm(}g are the q-parameters defined by, 

1 1 
-----=---
qmOx,mOy (z) Rx,Y (z) 

-----, 
1tw!iox,mOy (z) 

(II.21) 

and w!iox,mOy(z) = w;,y(z)/(2m + 1). (II.22) 

This method of writing the electric field at the exit face in terms of an infinite 

sum of Gaussian beams, with each beam having the same initial radius of curva­

ture, is known as Gaussian decomposition. The Gaussian decomposition method, 

as applicable to circular beams, is generalized to elliptic beams and is used to 

propagate each of the decomposed x- and y-beams to an aperture plane a dis-

tance d away. In terms of a few definitions that naturally arise from the propa-

gation, 

Bx,y(z) = 1 + d/R-,;,y(z), (II.23) 
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( ) 9x;y(z) { }
4 

RmxmyZ =dl- 2 2 2 , 
' 9x,y(z) + d /dmOx,mOy(z) 

(II.24) 

w!x,my(z) = w!i0x,m0y(z){o;,y(z) + 2 d2 
} , 

dmox,m0y(z) 
(II.25) 

and dm0x,m0y(z) = kw!i0x,m0y(z)/2 (II.26) 

and by considering the following relation 

1 1 

Wmox(z) Wmoy(z) itt (z) ( { ) . id .)-2( { ) id J-2 -~-'---- e. ffl = 9x z + ·. 9y z + ' 
Wmx(z) Wmy(z) . dmoz{z) dmoy(z) 

(II.27) 

the electric field at the aperture plane Ea can be written as 

( ) '(, ) aL/2 ~ Wmax(z) Wmoy(z) eittm(z) Ea x, y, z, t = E\.0,0, z, t e- £.. 
m = 0 . Wmx(z) Wmy(z) 

{ ix;x2 . i!r,y2 . } [iA<l>o(z, t)]m xexp- · -
. 2qmx(z) 2qmy(z) m! 

(II.28) 

The q-parameters are defined to be 

1 1 iA 
---=----
qmx,my(z) Rmx,my(z) 1tW~x,my(z) 

(II.29) 

When nonlinear absorption is included. in Eq. II.15, the intensity at the 

exit face le is given by 

I ( ) _ I(x, y, z, t) e-aL 
e x,y,z, t - , 

1 + J3 I(x, y, z, t)Leff 
(II.30) 

and the phase shift at the exit plane is 

A<!>e (x, y, z, t) = ky ln[l + J3 I(x, y, z, t)Leff]. 
J3 

(II.31) 
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Note that when two-photon absorption is not present, Eq. II.31 reduces to Eq. 

II.16. Combining Eq. II.30 and Eq. II.31, the electric field at the exit plane can 

be written as 

iky 1 

Ee(x,y,z, t) = E(x,y,z, t)e-a.Lf2 [1 + '3LefJI(x,y,z, t)]T-2 (II.32) 

The electric field at the aperture plane can be found in the same way and 1s 

identical to Eq. II.28 except that an adc:litional term of the form 

m [ ''3] lf o 1 + (2n - 1) ~y {II.33) 

must be included in the sum over m. To find the normalized transmission, it is 

convenient to convert from Cartesian to polar coordinates since most apertures 

are circular. The normalized transmission is 

. ao r. 2x . 
ceono f ·f ·f I ( )!2 · . Ea r,0,z,t .. rdrd0dt 

T(z) = __ 2 __ -_ao_o_o_ao ___________ _ (II.34) 

Sf P(t)dt 
-ao 

where, S is the transmission in the linear regime, r a is the aperture radius, c is 

the speed of light in free space, e0 is the permitivity,. and n0 is the· linear refrac-

tive index. 

{iia) Closed aperture ( S = 0 ) 

We now calculate the on-axis transmission m the presence of a small "on-

focus" nonlinearity assuming a steady state cw situation or, equivalently, a 

square pulse with instantaneous nonlinearity. That is, we take IA<t>ol << 1, and 

impose a far-field condition d >> z0x, zoy. By keeping only the first two terms 
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in the expansion in Eq. II.28, the transmission as given by Eq. II.34 can be 

written as 

T(z) = IEa(0,0,z, A<l>o)l2 
2 

IEa (0,0, z, A<l>o = O)j 

, ( id ) i ( id ) i ( id )- i ( id )- i 2 

= l+iA<l>o 9x +-- 9y +--. 9x +-- 9y +--
d00x dooy d1ox d1oy 

, (II.35) 

where the z dependence of 9x,y, doox,OOy, and drnx,lOy are to be understood. 

We take 9x = d/ Rx and 9y = d/ Ry and rewrite Eq. II.35 as 

(II.36) 

where (II.37) 

a= (d5ox + 3~)(dfuy + 3~)- 4R:,;Ryd00xdooy, (II.38) 

and b = 2{Rxdo0x(d60x + 3~) + Rydooy(d60y + 3~)} · (II.39) 

By defining A - i B = ..J a - i b , the transmission becomes 

T(z) = 1 + 2A<l>0B/h 
1 

{
..Ja2 -b2 - a}2 

= 1 + 2A<l>op 2h2 ' (II.40) 

where p = ±1 comes from the square root. We define the following terms: 

x(z) = (z - zx)f zox , 

and y(z) = (z- zy)/zoy, 

(II.41) 

(II.42) 

to derive a geometry-independent expression for the transmission. It simpli-

fies to 
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1 

( ) {
~(x2 + 9)(x2 + l)(y2 + 9)(y2 + 1) - (x2 + 3)(y2 + 3) + 4xy}2 

T z = 1 + 2A<l>op ·(II.43) 
2(x2 + 9)(x2 + l)(y2 + 9)(y2 + 1) 

This is the Z-scan/Intensity-scan geometry-independent transmission expres-

sion for elliptic Gaussian beams. The theoretical results of the effects of beam 

ellipticity on the Z-scan signature will be presented in Appendix A. 

The circular limit of the above expression was used in our Intensity-

scan measurements. The case for circular symmetry can be checked by letting 

x = y = u = (z-zmin)lz0, i.e., u is an algebraic quantity that can be either 

positive or negative. Then the above expression reduces to 

T(u) = 1 + 4A<l>ou 
(u2 + 9)(u2 + 1) 

(II.44) 

which is the well-known circular Gaussian on-axis transmission. Experimen-

tally, the far-field condition ( d >> z0x, zoy) is not always rigorously met, and, 

to incorporate the aperture distance d, we derive the following expression for 

the on-axis transmission for a circular Gaussian beam: 

T(z) = 1 + 4gdA<l>o . 
zo(g2 + d2 / df )(1 + z2 / z5)2 

(II.45) 

Here, dm = kw~ /2, and Wm is defined by Eq. II.25. This is the transmission for-

mula that was used to fit our data. For pulsed work, the on-axis phase shift A<I>0 

should be replaced by a time-averaged phase shift (A<I>o). For a Gaussian laser 

pulse with instantaneous nonlinearity (e.g. electronic effect) (A<t>0 ) = A<t>0 /J2, 

and for a cumulative nonlinearity with a decay time much longer than the pulse 

duration (e.g. thermal effect) (A<I>o) = A<l>o/2. Recall that A<l>o = ykLetJlo 
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where I 0 is the peak intensity at the sample {front face). The front and back face 

reflections are canceled by the normalization procedure, but the nonlinear refrac-

tion is caused by an intensity within the sample. Thus, reflection losses can be 

included by replacing I0 by I0(l-R) where R is the reflectivity. 

( iib) Open aperture { S = .1 ) 

The basic results needed to calculate the open aperture transmission are now 

presented. Since the final expression is very similar to that of a circular 

Gaussian beam and is straight forward to obtain, we will only highlight the 

derivation. Starting with Eq. II.30, we change to polar coordinates and write 

q(r, e,z, t) = PLe11I(r,e, z, t) = qo(z, t) exp{-2r2f{0,z)}, {II.46) 

where {II.47) 

and 
2 e . 2 e 

f(S,z) = COS + Slil • 

w~(z) w~(z) 
{II.48) 

The power at the exit plane is then found to be 

00J2Jxq0 (z, t)exp{-2r2 f(9,z)}e-a.L rdrd9 

Pe(z, t) = [ { }] 
o o PLeff l+qo(z,t)exp -2r2f(0,z) 

1twx(z)wy(z) [ ( )]e-a.L 
= 1n 1+ q0 z, t 

2PLeff . 
(II.49) 

Since the numerator in Eq. II.34 is just the time-integral of the transmitted 

power, we can substitute Eq. II.49 in it to get the normalized transmission for 

any q0(z,t). For a Gaussian temporal pulse with peak power P0 and for 

I qo(z,O) I< 1, the normalized transmission can be written as a simple series 



where 

T(z) = ~ [-qo(z,o)t 
k~O (k + 1)3/2 
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(II.50) 

(II.51) 

Here, Po = E/( -r./ir.), where E is the energy of the beam and 't is the e-1 pulse 

width. Only a few terms are required in the sum to fit the data. In order to con-

sider front and back face reflection losses, we include a (1-R) factor in the nu-

merator of the definition of q0(z,O) for the open aperture transmission. 

3. Theoretical Results 

A brief discussion of the theoretical results for the Intensity-scan is presented, 

but only for a circular beam. The effects of beam ellipticity on Intensity-scans for 

both thick and thin samples will be considered for future studies. In Fig. II.6a, a 

closed aperture Intensity-scan is shown with a positive nonlinearity and sample 

placed before and after the focus. The opposite behavior is exhibited with a 

negative nonlinearity. The slope of the graph is directly related to the nonlinear 

refraction coefficient by Eq. II.18. Since most commercial graphics programs are 

capable of doing linear regressions, the slope can be easily found. 

When there is nonlinear absorption present in the sample, the slope will 

either be enhanced or diminished depending on the sign of J3 and y and the sam-

ple position. For example, with positive JJ, positive y, and sample placed before 

the focus, the slope will be reduced (be more negative). If the aperture is re-

moved and J3 is positive, the normalized transmission will drop with increasing 

intensity. This is schematically represented in Fig. II.6b. 
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Figure. II.6 (a) Theoretical plot of closed aperture Intensity-scan with positive 
nonlinearity, and sample positions before and after the focus. A 
negative nonlinearity exhibits the opposite behavior. (b) Theoretical 
plot of open aperture Intensity-scan with positive nonlinear ab­
sorption. 
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2. Brillouin Scattering 

Light scattering is a very important tool for studying the fundamental excitations 

of materials. The inelastic scattering of light from thermally excited acoustic 

phonons gives rise to the phenomenon known as Brillouin scattering. The origin 

of the Brillouin scattered light can be traced back to inhomogeneities in the di­

electric constant that are caused by thermal fluctuations. The acoustic excita-

tions responsible for Brillouin scattering are very weak (-1-5 cm-1), and thus a 

high resolution instrument such as a Fabry-Perot interferometer must be used to 

detect the signal. In addition, the light source must also be a laser operating in a 

single longitudinal mode for the unambiguous interpretation of the signal. The 

Brillouin scattering theory presented in . the ri.ext section is applicable to trans­

parent isotropic materials and is, therefore, relevant to glasses. 

Brillouin scattering" theory can be approached from either a classical or a 

quantum mechanical point of view. In quantum mechanical terms, a photon of 

wavevector k0 and frequency ro0 is scattered into a wavevector k8 and frequency 

C0 8 after interacting with a phonon of wavevector q and frequency roq. The conser­

vation of momentum and energy require the following relation: 

ro 8 = ro 0 ±roq 

and k8 = ko ± q . 

(II.52) 

(II.53) 

The plus sign physically means that a phonon was absorbed or annihilated in the 

scattering event causing the scattered photon to be of higher energy. This is 

called an Anti-Stokes event. The minus sign refers to the fact that a phonon was 

created during the interaction causing the scattered photon to have lower energy. 

Such a process is called a Stokes event. Both processes are known as first-order 
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scattering since there is only one interaction between the photon and phonon. 

They are schematically shown in Figure II. 7. 

COq, q • • 

. . 

Stokes Event 

. . 

Anti-Stokes 

Figure II. 7 Diagram for first-order photon-phonon scattering 

. . 

. . 

For a crystal with a lattice parameter of a, the range of q that spans the first 

Brillouin zone is O ~ lql ~re/a. Thus, jql ranges from zero to 108 cm-1• Since first-

order light scattering only involves phonon modes whose wavelength is compa­

rable to that of light, it is easy to see that lql ~ 105 cm-1. In other words, we can 

only study the phonon modes that lie very close to the Brillouin zone center. 

There are three acoustic modes. Along principal directions two are transverse or 

shear waves, and one is a longitudinal or a compressional wave. In a glassy sys­

tem, two of the transverse modes are degenerate due to the isotropic nature of 

glass. The frequency of the three acoustic modes co B near the zone center in-
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creases linearly with the wavevector and slopes are simply the sound velocity vB 

of the modes, i.e., roB = vBq. Typically, VB - 105 cm/s. 

Since the velocity of light c is much greater than that of sound, it 1s a 

very good approximation to take jk8 j = jk0 j and therefore 

(II.54) 

where 8 is the scattering angle between k0 and k 8 • From the above equation, it is 

a simple matter to derive the Brillouin shift Aro B in cm-1 as 

A 2nv B sin 8/2 
uroB = · · tAo . (II.55) 

where n is the refractive index and all the units are in cgs. The Brillouin shift is 

the frequency difference between the Brillouin scattered light and the incident 

laser. It thus corresponds to the frequency of the acoustic modes. These modes 

appear as Stokes and Anti-Stokes side peaks to the predominantly elastically 

scattered light or Rayleigh line in the observed spectrum. 

The long wavelength nature of the acoustic phonons involves in-phase 

motion of many units cells, and we may treat the medium as an elastic contin-

uum or Debye model. In that case, the above equation can also be derived by 

considering the sound wave as a moving grating and the incident light being 

Bragg reflected from it. Thus, the frequency of the scattered light experiences a 

Doppler shift from which the Brillouin shift can be found. The maximum shift 

will occur during back-scattering (8 = 180°) and minimum during forward-scat-

tering (8 = 0°). 

The polarization and frequency of each acoustic mode can be found for a 

particular q through the elastic constants Ciklm assuming a continuum model. In 

the harmonic approximation, the equation of motion is: 
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(II.56) 

Here, p is the density, u is the displacement vector, and r is the location of the 

equilibrium point that is being displaced. 28 Plane-wave solutions to this equation 

can be found for a given direction of q of the form ui = u0i exp(q · r-wt). Sub-

stituting this solution into Eq. II.56 results in the following matrix equation: 

L [ciklmqkql - pv2aim ]Uom = o 
kl 

(II.57) 

where qk is the kth component of the unit vector q. Nontrivial solutions of the 

above can be found by setting the determinant of the coefficient of Uom to zero. 

There are three roots corresponding to the three acoustic modes each with its 

own velocity. In general, the three modes may be of mixed polarization. However, 

if q is chosen to be in a high symmetry· direction, then the displacement eigenvec-

. tors u will be either perpendicular or parallel to q. The perpendicular displace­

ment is a transverse acoustic mode (TA phonon), and the parallel one is a longi­

tudinal acoustic mode (LA phonon). That is, only in particular directions of q do 

there exist two pure transverse modes and one pure longitudinal mode. 

For example; if. q is propagating in an arbitrary [1,0,0] direction of an iso-

tropic system, then in six-component notation, Eq. II.57 yields two degenerate 

transverse phonons with eigenvectors [0,1,0] and [0,0,1], each phonon having the 

same velocity vTA = ~C44 /p. There is also a longitudinal phonon represented by 

an eigenvector [1,0,0] and velocity vLA = ~C11 /p. Note that the displacement 

eigenvectors are perpendicular to q for the TA phonons and parallel to q for the 

LA phonon. The contracted notation used follows the convention that 11~1; 

22~2; 33~3; 23,32~4; 13,31~5; 12,21~6. In a glass there are only two inde-
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pendent elastic constants 0 11 and 0 44 and the third elastic constant is related to 

the first two through the Cauchy relation, 0 12 = 0 11 - 2044 • Thus, experimen-

tally we can calculate the phonon velocities from the measured Brillouin shifts 

and then determine the elastic constants. 

We have seen that glasses have two pairs of Brillouin peaks on either side 

of the Rayleigh line. However, to determine which peak corresponds to a trans-

verse phonon and which to a longitudinal phonon, we need to understand . the 

polarization selection rules of the Brillouin scattered light. Therefore, we must 

study the effect of the sound waves on the optical properties of the material. 

As a sound wave propagates, it produces a local strain in the material 

which in turn perturbs the local dielectric constant 6 by an .amount c>s. When a 

plane monochromatic light wave traverses the material, there will be an addi-

tional polarization due tothis perturbation BP= EJoc>s/41t that will scatter light 

at shifted frequencies corresponding to the acoustic modes. Here, E0 is the ampli-

tude of the incident light. For an incident light that is polarized in the jth direc­

tion and scattered light that is polarized in the ith direction, the Rayleigh ratio 

or differential scattering cross-section per unit volume R;; is defined as 

2 i/ j ~j = r I 8 VI0 {II.58) 

where r 2 is the distance from the scattering volume to the detector, Vis the scat-

tering volume, and I 8 and 10 are the scattered and incident intensity, respec­

tively. R;; can be completely specified in terms of macroscopic parameters.28 The 

local strain tensor xkl and the change in reciprocal of the local dielectric constant 

A(s-1);; are physically related through the photoelastic effect by 

(II.59) 
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where Piikl are Pockel's coefficients. Eq. II.59 can be rewritten as 

OE · · = -~ Eo · ·Eo · ·P · ·klxkl i3 LJ ti 33 23 (II.60) 
kl 

where Eoii = Eo;; = Eo for a glass. If we assume that each acoustic excitation is on 

average at thermal equilibrium at temperature T, then the Rayleigh ratio of the 

jth mode with velocity v; is found to be. 

4 . 
R 0) skBT [" T ,. ]2{ / ) j = 2 4 2 es . j • eo ns no 

321t C pvj 
(II.61) 

where T; is the Brillouin tensor for the jth mode, IDs is the scattered angular fre-

quency, kB is Boltzman's constant, and es and eo are the unit vectors showing 

the polarization clirections of the scattered and incident electric fields. 28 Here, ns 

and n 0 are the refractive indices of the scattered and incident light, respectively, 

and are equivalent in glasses. The Brillouin scatterin~ tensors are listed below for 

the [1,0,0] or x phonon in contracted notation for an isotropic medium: 

LA phonon [1,0,0] 

(
Pn 

T= e! ~ 
0 

P12 

0 

TA phonon [0,1,0] TA phonon [0,0,1] 

( 
0 0 P44J 

T = e! 0 0 0 : (II.62) 

p44 0 0 

There are only two independent Pockel's coefficient in glasses, p11 and p44 and 

the third p12 = p11 - 2p44 is related to the first two by the Cauchy relation. 

For a right-angle scattering geometry with q along [1,0,0] direction, k0 

along [-1,0,1] and ks along [1,0,1] the Brillouin scattered intensities are 

(II.63a) 
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(II.63b) 

(II.63c) 

Here, ro0 refers to the frequency of the incident light. The first and second sub-

scripts in the scattered intensity refers to the polarization of the incident and 

scattered light, respectively. The Wand HH components are scattering from LA 

phonons and depend on normal strains that are parallel to the scattering plane. 

The VH and HV intensities originate exclusively from TA phonons and are 

caused by shearing strains acting. perpendicular to the scattering plane. Thus, by 

selecting relative polarization for the incident and scattered light, we may select 

specific acoustic modes. Alternatively, we may perform measurements in a back-

scattering geometry in which case there is no scattering from the TA phonons. 

This can be verified by calculating the Rayleigh ratio for such a geometry using 

the TA Brillouin tensors. 

Finally, we give the formulae that were used to calculate the photoelastic 

constants from our experiments. The Brillouin intensities of our samples were 

measured relative to a fused quartz standard with known photoelastic constants. 

1 1 · 1 
P12 = pf2(V0 /v)2(c11/cf1)2[(n + 1)/(n° + 1)]2(n° /n)5r;2 

1 

p44 = P12(vrA/VLA)(2IrA/ ILA)2 

(II.64) 

(II.65) 

Here, the superscript O refers to the standard, F; is the ratio of the integrated in-

tensity of the sample to that of fused quartz for the LA phonon, and ITA and hA 

refer to the integrated intensities of the appropriate modes. 



CHAPTER III 

EXPERIMENT 

1. Z-scan and Optical Limiting 

We performed Z-scan and Optical Limiting on several binary lead silicate glasses 

in order to study their nonlinear optical properties in the nanosecond regime. At 

the time of the experiments, it was believed that the thermal nonlinearity was 

the dominant mechanism in these high absorbing glasses on thjs time scale.6'7 To 

further our understanding of the mechanism behind the nonlinearity, we studied 

the glasses close to their UV absorption edge. 

The lead glasses had the following compositions: [PbO]x (Si02h-x, where x 

= 32%, 42%, 52% and 62% all in mole percent. The samples were cut into paral­

lelepipeds of two thicknesses, 1.0 mm and 1.5 mm and polished to optical quality 

using cerium oxide (CeO) as a water-based polishing agent. We found the CeO 

suspensions to be much better than the traditional diamond paste due to their 

simplicity of use and variable granularity. The samples were also brittle and 

much care was exercised in there handling. It is noteworthy that during the 

heating of the samples onto the polishing stubs and their subsequent removal, 

the polished side that was last in contact with the glue (or wax) on the stub had 

developed a thin film. The amount of film increased with lead concentration. 

42 
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Table ill.I Sample designation and relevant parameters for lead silicate glasses 

Sample PbO Si02 Thickness n a. (cm-1) 
(% mole) (% mole) (mm) (460 nm) (460 nm) 

132 32 68 1.00, 1.50 1.726 0.758 

142 42 58 1.00, 1.50 1.847 0.783 

152 52 48 1.00, 1.56 1.947 0.902 

162 62 38 1.00, 1.50 2.117 2.47 

Therefore, we used a soft adhesive tape to stick the side that had no film onto 

the stub and repolished the filmed side for about 30 to 60 seconds. This elimi-

nated the films but reduced the optical quality of the surface somewhat. Further 

repolishing of the filmed side may have resulted in a sacrifice of parallelism and 

was thus avoided. Table ill.I has the nomenclature and other relevant parame-

ters we will use to describe the glasses. 

For the experiment, we used an injection-seeded Nd:YAG laser (Spectra 

Physics GCR-4) operating at 1064 nm. The beam was passed through a KDP 

crystal to get the third harmonic at 355 nm. This served as a pump beam for our 

dye laser (Spectra Physics PDL-3) which had Coumarine 460 as the active me­

dium. Coumarine 460 is a low gain dye with a half-life of 3 hours at 10 Hz and 

tuning range of 446 nm to 478 nm centered around 460 nm. The low gain nature 

of the dye forced us to use a side-pumping scheme which had some interesting 

consequences. The beam that emerged from the dye laser had an elliptical Gaus-

sian shape in its transverse spatial profile. The beam output was checked using a 

laser beam profiler (Spiricon 1BA 100) which had software capable of curve fit-
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ting Gaussian functions to each transverse dimension of the intensity profile. A 

correlation value of 0.85-0.90 was reported demonstrating that the beam was ap­

proximately 85%-90% elliptical Gaussian. The semi-major, wy, and semi-minor, 

wx, axes were measured to be 2.0 mm and 0.35 mm, respectively, for the colli­

mated output beam. The pulse duration of the Nd:YAG laser was 10 ns 

(FWHM) and that of the dye laser was 7 ns. 

The Z-scan/Optical Limiting setup is shown in Fig. III.1. Our setup is an 

example of a "tight-focusing" geometry that is commonly used to study optical 

limiting of materials. The beam was passed through a variable attenuator 

(Newport 935-10), that allowed us to control the input energy, followed by a 

vertical polarizer. A small portion (about 10%) of the beam was split off to moni­

tor how much energy was incident on the samples. The beam was then focused 

by a 5 cm focal length lens. A far-field circular aperture of radius 1.64 mm was 

placed a distance of 10 cm from the lens. This gave a transmission of about 90% 

with no sample present. The minimum radii Woy and Wox could not be accurately 

measured but were calculated by a Gaussian beam-optics method26 to be 3. 7 µm 

and 21 µm, respectively, wit~ a corresponding Rayleigh range of z0y = 0.20 mm 

and Zox = 6.4 mm. The sample thicknesses were 1.00 and 1.50 mm, indicating a 

mixed thick and thin sample, i.e., it is thin for the x-beam but thick for the y­

beam. Since the x and y beams do not focus at the same z position, we choose 

z = 0 at the focusing lens. The calculated waist separation is Azxy = Zy - Zx is 

200 µm, where zy and Zx are the positions where the y and x beam focus, re­

spectively. The energy was detected by pyroelectric energy probes (Molectron J4-

09) connected to a dual energy meter (Molectron JD2000). The sample was 

placed on an adjustable sample holder which in turn was placed on a micrometer 
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Figure ill.1 Setup for Z-scan/Optical Limiting. HG - harmonic generator; A -
attenuator; V - vertical polarizer; M - mirror; AP - aperture; S -
sample; BS - beam splitter; Ll, L2 - lens and Dl, D2 - energy 
probes. The sample is moved in the direction of the dashed arrow 
for the Z-scan measurements. 
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translation stage that allowed translation in the direction of beam propagation 

( z-direction). 

The Z-scans were done at a fixed energy input ranging from 10 µJ for L62 

to 35 µJ for L32 within an uncertainty of about 10%. The experiments were done 

in single-shot mode, and each data point was recorded manually. Both energy 

probe readings were recorded as a function of z position. Since we had accurately 

calibrated the beam splitter and knew how much energy was lost through the 

focusing and collecting lenses (Ll and L2), we could easily find the incident and 

aperture transmitted energies. The ratio of the aperture transmitted energy to 

the incident energy was calculated for each z position. The normalized transmis­

sion was deriveci from the Z-scan data by 'dividing the scan by the first data 

point where no nonlinear refraction or nonlinear absorption took place. 

At input energies lower than the ones used in the Z-scan measurements, 

the statistical laser fluctuations became a problem. At 'times, laser pulses with 

energies producing intensities exceeding the damage threshold would strike the 

sample. This would occur particularly near the focus of the lens. Therefore, in 

the focal region the sample was translated in the x and y directions such that 

each laser pulse would be incident upon a new region. It also enabled us to un­

mask the effects of accidental damage. 

The sample was then fixed at the valley of the Z-scan and an Optical 

Limiting experiment was performed by gradually increasing the input energy 

while monitoring the transmission. Again, we recorded both energy probe read­

ings. The sample was translated in the x and y direction after each laser shot 

which was done in order to minimize surface damage resulting from multiple la­

ser shots. 
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2. Intensity-scan (nanosecond) 

We performed Intensity-scan measurements on two sets of the Eu-doped alkali­

silicate glasses to study their. nonlinear optical properties. Specifically, we were 

interested in seeing how the Eus+ concentration affected the nonlinearity of al­

kali-silicate glasses on a nanosecond time scale. The sample thicknesses varied 

from 2 to 5 mm. A long focusing lens was used in order to make the samples op­

tically thin so that .the thin sample approximation could be employed. The con­

ventional Z-scan technique, for such long.focusing geometry, would require a long 

range translation stage which we did not have. Thus, the Intensity-scan tech­

nique was used instead. The Intensity-scan technique is also insensitive to laser 

fluctuations which can make Z-scan measurements difficult to perform. 

The first set of glasses had a systematic variation of Eu 3+ in the following 

manner: (Eu20 3)x(Baseh-x, where x = 0%, 0.1%, 0.5%, 1%. 2.5%, and 5%, and 

the base consists of 70% Si02, 15% Na20, 12% MgO, and 3% Al20 3, all in mole 

percent. The specific compositions are shown in Table ill.2. The second set had 

the Eu concentration at 2.5% but split the alkali concentration equally first be­

tween Na and Li and second between Na and K as shown in Table ill.3. Other 

relevant sample parameters are listed Table ill.4. These samples formed part of a 

group of samples that had been also been investigated via four-wave mixing, 

thermal diffusivity, ionic conductivity, and Raman scattering. 

The Intensity-scans were performed at 532 nm, the second harmonic of 

the Nd:YAG laser. The laser was injection-seeded to give Gaussian temporal 

pulses of 10 ns FWHM. The experimental setup is the same as the one shown in 

Fig. ill. l but with some differences. The dye laser was bypassed by using a di­

chroic mirror to filter out the residual 1064 nm radiation and redirect the 532 nm 
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laser. The beam emerging from the laser was not circular Gaussian but quas1-

top-hat in spatial profile with a radius of 4 mm. It was focused by a lens of focal 

length 52.5 cm. The minimum beam radius or spot size was measured to be 

about 50 µm giving a Rayleigh range of 14.8 mm. Our samples had thicknesses 

that varied from 2 to 5 mm which is smaller than the Rayleigh range; therefore, 

we could use the thin sample approximation. The samples were placed 15 mm 

after the focus. The beam radius at the sample position was measured to be ap-

proximately 70 µm. The aperture had a radius of 0.5 mm and was placed about 

44 cm after the focus in a holder with x and y translation capability. Some of the 

samples did not have adequate parallelism and would shift the beam slightly. We 

had to adjust the aperture position so as to center it on the beam. If we were to 

perform a Z-scan, then we would encounter a systematic transmission variation 

due to the beam walk-off that .would mask the nonlinear effects. The transmis­

sion with no sample was about 2% which means we were detecting the on-axis 

transmission. 

The energy probe was placed immediately after the aperture and no col­

lecting lens (L2) was required. The calibration of the probes was checked with an 

oscilloscope and found to be in good agreement. The reading of the dual energy 

meter was downloaded to a personal computer via an RS 232 connection. Each 

scan lasted less than a minute. Thus, many scans per sample could be obtained 

in a short period of time. 

The beam splitter and focusing lens were accurately calibrated so that we 

could determine how much energy was incident on the sample. The damage 

threshold of the samples were determined by taking a scan in which the input 

energy was increased until the sample damaged. This resulted in a sudden drop 

in transmission, and visually the sample would scatter a tremendous amount of 
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light. We always worked well below the damage threshold. Since these glasses 

had positive nonlinearity, the samples would collimate the beam in the far-field 

thus raising the transmission. 

Table ID.2 Nomenclature and comp~ition for Eu-doped alkali-silicate glasses 
with systematic Eu variation. 

Samples Eu20 3 Si02 .. Na20 MgO Al20 3 
{% mole) (% mole) {% mole) (% mole) (% mole) 

B5 0 70 15 12 3 

B6 0.1 69.93 14.985 11.988 2.997 

B7 0.5 69.65 14.925 11.94 2.985 

BB 1.0 59:3 14.85 11.88 2.97 

B9 2.5 68.25 14.625 11.7 2.925 

BlO 5.0 66.5 14.25 11.4 2.85 

Table ID.3 Nomenclature and compositio:i;i. for Eu-doped alkali-silicate glasses 
with dual alkali ions. · 

Eu20 3 Si02 Na20 Li20 K20 MgO Al20a 
Samples (% mole) (% mole) (% mole) {% mole) (% mole) (% mole) (% mole) 

B12 2.5 68.25 7.31 7.31 11.7 2.925 -

B14 2.5 68.25 7.31 7.31 11.7 2.925 -
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Table ill.4 Refractive index, absorption coefficient, density and sample thickness 
values of all Eu3+-doped alkali-silicate glasses. 

Samples n a (cm-1) Thickness Densi~ 
(532 nm) (532 nm) (mm) (g/cm) 

B5 1.525 0.553 2.05 2.72 

B6 1.525 0.528 2.38 2.41 

B7 1.535 0.562 3.05 2.49 

B8 1.535 0.597 4.30 2.51 

B9 1.540 0.797 4.45 2.58 

BIO 1.565 1.39 4.50 2.82 ~---------r---------- ---~:-~--·--!'--------------------
B12 1.565. 1.16 2.00 2.64 

B14 1.555 0.870 2.80 2.57 ~---------~-----------------------------~---------
Si02 1.462 0.040 3.12 2.207 

Due to the very poor quality of the beam profile, we performed Intensity-

scans on our samples using a fused quartz sample as a standard. Since the slope 

of an Intensity scan is proportional to the nonlinear refraction coefficient in the 

absence of nonlinear absorption, we compared the slopes of the samples to that 

of fused quartz. From the ratio of the slopes we calculated the nonlinear refrac-

tion coefficient for our samples. This procedure of comparing slopes has not been 

done before, but we justify it on the basis that for Z-scans one can compare the 

peak to valley transmission differences of a standard to that of a sample to get 

the nonlinear refraction coefficient.10 



51 

3. Intensity-scan (millisecond) 

Optical nonlinearities have been studied previously on the cw and millisecond 

time scales for a wide variety of materials. 29-32 The dominant mechanism in these 

time scales for glasses has been established to be of thermal origin and is thus 

also known as "thermal lensing". In order to observe thermal lensing the medium 

must necessarily be absorbing since it is the heat that is generated within the 

sample that causes the local change in the index of refraction. We have previ­

ously studied thermal nonlinearity in glasses in the millisecond regime by the Z­

scan technique and also by monitoring transmitted laser pulse distortions. 6 

In this section, we present an extension of the Intensity-scan technique 

suitable for measuring thermal nonlinearities. The main difference between this 

technique and the one used in the nanosecond regime is the manner in which we 

monitor the transmitted beam. In the nanosecond scale, we detected the energy 

of the beam via calibrated energy probes. However, in the millisecond regime we 

use a photodiode to monitor laser pulse distortions. 

We have studied thermal nonlinearity with this technique in two sets of 

glasses. The first set studied were the lead silicates whose composition is given in 

Table Ill 1. The second set were Eu-doped alkali-silicates that had the alkali ion 

vary according to the following formula: Base-M20, where M = Li, Na, K, Rb, 

and Cs. Table III.5 has the nomenclature and composition for the second set of 

glasses. These Eu-doped glasses have been previously investigated via four-wave 

mixing, Raman (both resonant and nonresonant), Brillouin, and thermal diffusiv­

ity. 33-36 Other relevant parameters such as refractive index and absorption coeffi­

cients of all the samples used in this study are listed in Table III.6. 
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Table III.5. Nomenclature and composition for Eu-doped alkali silicate glasses 
where M = Li, Na, K, Rb, and Cs. 

Samples M20 Si02 Eu20 3 ZnO BaO 
(% mole) (% mole) (% mole) (% mole) (% mole) 

LS, M=Li 15 70 5 5 5 

NS, M=Na 15 70 5 5 5 

KS, M=K 15 70 5 5 5 

RS, M=Rb 15 70 5 5 5 

CS, M=Cs 15 70 ·5 5 5 

Table III.6. The linear index of refraction, absorption coefficient, and sample 
thickness values of lead silicate glasses and Eu-doped alkali-silicate 
glasses. 

Samples n a {cm-1) Thickness 
(514.5 nm) (514.5 nm) (mm) 

L32 1.715 0.439 1.50 

L42 1.829 0.539 1.50 

L52 1.922 0.556 1.56 

L62 2.080 1.15 1.50 

~---------~-------------------P"'----------
LS 1.604 0.6 2.75 

NS 1.583 1.49 3.19 

KS 1.584 1.98 4.01 

RS 1.573 0.24 4.02 

cs 1.591 0.43 4.37 
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Let us consider what happens to a square laser pulse as it transmits 

through an absorbing sample. To make the analysis easier we section the pulse 

into thin strips. When the first strip enters the sample it encounters a room­

temperature refractive index and thus passes through linearly. The material will 

absorb some of the strip's energy. This will raise the temperature of the sample, 

and the local heating will give rise fo a change in the index of refraction. The 

second strip now enters the sample and experiences this index change and will 

take up a nonlinear phase shift that will cause the beam to either focus or defo­

cus in the far-field thus increasing or decreasing the transmission. This second 

strip also deposits energy raising the local temperature even more. The third 

strip will see an even bigger index change than the second strip and will propa­

gate accordingly. The subsequent strips deposit energy and continue to change 

the index of refraction. However, heat diffusion is taking place as well. Th us, the 

change in the refractive index will not grow indefinitely but will reach a steady 

state value in which the rates of heat generation and heat diffusion are equal. 

This will occur provided that the pulse duration is much larger than the charac-

teristic time for thermal diffusion tc = w 2 / 4D , where w is the beam radius and 

D is the diffusivity. This time is 2-5 ms in glasses for typical thermal lensing 

measurements. It is easy to see that the last strip will carry information to the 

detector that has both linear and steady state nonlinear contributions. The first 

strip just contains only linear information. If we divide the transmissions of end 

of the pulse (T2) by its beginning (T1), then we have eliminated any linear con-

tribution from the resultant normalized transmission T = T 2 / T 1. This method 

of normalization is due to Oliveira et al., which they used for the Z-scan tech­

nique.37 We have found that it works equally well for the Intensity-scan tech­

mque. 
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The experimental setup is shown in Fig. III.2. An argon-ion laser (Spectra 

Physics 2020) with an air-spaced etalon operating at 514.5 nm was used as the 

excitation source. The beam was passed through a vertical polarizer. A shutter 

(Uniblitz) was connected to a shutter driver (Uniblitz D122) which in turn was 

connected to a pulse generator (Hewlett Packard 8013B). The pulse duration was 

set for 50 ms with 200 ms between pulses. This was done in order to assure that 

the sample had sufficient time to reach steady state during the pulse and also 

that it had ample time to return to room temperature between pulses. The rise­

time and fall-time of the pulse was about 2.5 ms. 

The output of the laser was a TEM00 circular Gaussian beam and was fo-

cused using a 20.4 cm lens. A 25 µm radius pinhole was placed about 40.2 cm 

from the lens which gave an aperture transmission of S = 2.74x10-3• Since this 

transmission is very small, we can conclude that we are detecting effectively the 

on-axis transmission. A fast photodiode (Electro-Optics Technology ET 2010) 

with rise time less than a nanosecond was placed immediately after the pinhole 

and connected to a digital storage oscilloscope (Tektronix 2440) with 500 MegaS­

amples/s sampling rate. The pinhole and photodiode assembly was put on an x 

and y translation stage. The samples were placed on an adjustable sample holder 

which was in turn fixed to a digital micrometer translation stage. 

The focused beam radius was accurately measured to be 48±1 µm and was 

done in the following manner. The L62 sample which has a high absorption and 

is also thin was placed near the focus. The sample was then moved along the z­

direction while monitoring the pulse distortion. When the sample was at the fo­

cus no pulse distortion was detected, and this position was recorded as z = 0. 

However, when the sample was placed before the focus the pulse height quickly 

decayed to a steady state value. The sample was moved such that the difference 
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between the beginning and end of the pulse was maximized while keeping the in-

put constant. The sample position was then recorded. This position corresponds 

to the Z-scan valley and is 0.858.zo, where zo = 1ew5j')... is the Rayleigh range. We 

could thus find the minimum beam radius w0. This method of utilizing the non-

linear effects of materials to find the minimum beam radius is very reliable. 

V 
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c-_.....-J L 
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Driver 
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Figure III.2. Setup for Intensity-scan. V - vertical polarizer, M - mirror, SH -
shutter, L - lens (20.4 cm), S - sample, ND - neutral density fil-
ters, PH - pinhole (50 µm diameter), and PD - photodiode. 
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We cross-checked our results with a simplified version of the scanning 

knife-edge technique. In this method a sharp knife-edge such as a razor blade is 

moved transversely across the beam along various z positions while the far-field 

beam pattern is monitored by eye. When the blade is moved across the focus, the 

beam uniformly disappears. Far from focus, the blade cuts across the beam area. 

The beam radius is measured at different z positions and extrapolated to find w0. 

The value obtained was w0 = 50±10 µm. We also used the laser beam profiler to 

measure w0 and found it to be 50±5 µm_. Both methods gave reasonably good 

agreement with the pulse distortion technique. 

Intensity-scans were taken on the lead silicates with the sample fixed at z 

= -12.1 mm (before the focus) -where the beam radius was 63 µm. The distance 

from the samples to the aperture was 210 mm. The pinhole was centered on the 

transmitted beam vety accurately by maximizing the signal with the sample in 

place. The Eu-doped alkali silicates where placed at a distance z = -19.1 mm 

where the beam radius was 81 µm. The distance from these samples to the aper­

ture was 217 mm. The Rayleigh range was 14.1 mm, and all the samples varied 

in thickness from 1.5 mm to 4.37 mm which is still smaller than the Rayleigh 

range. Therefore, we could safely use the thin sample approximation. There was 

a further complication in the Eu-doped glasses due to the strong fluorescence in 

the orange part of the spectrum when excited by 514.5 nm light. We used a 514.5 

nm interference filter with a 0.8 nm bandwidth to negate the effects of fluores­

cence in the detected signal for the Eu-doped glasses. No fluorescence was ob­

served for the lead silicate glasses. 

Some plots of the pulse distortion from 162 are shown in Fig. III.3 at a 

fixed position but with different powers. How fast the pulse height decayed de-
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pended on the incident power. We took an average of 32 shots for each scan to 

smooth out any noise. Fig. III.4 shows a typical Intensity-scan where we plot the 

normalized transmission versus input intensity. The slope of the line is directly 

proportional to the thermal nonlinear refraction coefficient. Each data point is an 

average of 32 shots. 

What is remarkable about the t~chnique is that we can measure extremely 

small nonlinear phase-shifts, much less than 0.1 rad, that the beam incurs after 

traversing the sample. This allows us to detect very small thermal nonlinearities. 

The temporal detection method has the advantage that it ·is minimally affected 

by parasitic scattering. However, the samples should not have bulk inhomogenei­

ties or striations that would alter the path of the beam. This was not the case in 

some of the alkali-silicate glasses, and we . had to find regions in them that were 

clear of striations. The KS sample was by far the worst in terms of bulk inhomo­

geneities. The LS sample had regions that were light blue superimposed on a 

yellow background. By comparison, the lead silicate samples were much better in 

optical quality. Great care was taken to assure the beam went through the sam­

ples undistorted. 

Another important issue discovered during the experiments was the effect 

neutral density filters had on the experimental results when placed prior to focus. 

This was initially done in order to attenuate the beam beyond the point where 

the argon laser becomes unstable (about 20 mW). The ND filters would absorb 

some of the light and would thermally lens and impart a positive nonlinear phase 

shift to the beam. Consequently, during the 50 ms pulse the focal position of the 

beam would move closer to the lens (towards negative z), and as a result, the 

transmission would be smaller at the end of the pulse than at the beginning. 
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Figure III.3. Pulse distortions for 162 at different input powers. The sample is 
placed at z = -12.1 mm. T is the transmission. The power for: {a) 
P = 30 mW, with no sample; (b) P = 30 mW, (c) P = 40 mW, 
and (d) P = 50 mW. 
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· Figure ID.4. Intensity-scan for L62. The sample is placed at z = -12.1 mm. The 
nonlinear refraction coefficient is 13.5x10-8 cm2 /W. 

The strength of the ND filter and beam power determined how large the effect 

was. In our experiments, we did not use ND filters prior to focus in order to 

avoid this complication. However, the fact that the ND filters thermally lens 

makes them a good choice for determining the minimum beam waist using the 

pulse distortion technique. A thin ND filter with high absorbance would be an 

ideal candidate. 
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4. Brillouin Scattering 

We performed Brillouin scattering experiments on the lead silicate glasses and 

Eu-doped alkali silicate glasses with systematic Eu variation in order to study 

their elastic and photoelastic properties. More importantly, they provided infor­

mation about the contributions of laser beam induced stress to our nonlinear op-

tical measurements. Using the Pockel's coefficients, we. can derive the electros­

trictive contribution to the nonlinear refraction coefficient as well as the stress 

part of the thermo-optic coefficient, dn/ dT. 

The FP interferometer is the single most important instrument in Bril­

louin scattering. We review some of the fundamentals of a Fabry-Perot (FP) in­

terferometer without going into much detail in Appendix C. This will enable us 

to better understand the tandem FP interferometer· used in our experiments and 

its basic alignment. 

The experimental setup is shown in Fig. III.5. An argon ion laser (Spectra 

Physics 2020) operating at 514.5 nm was the excitation source. An air-space eta­

lon was inserted into the laser cavity to produce a single longitudinal mode and 

thus increase the coherence length of the laser. The transverse profile of the laser 

beam was a very clean TEM00 mode and had a correlation value very close to 

one when checked by our laser beam profiler. The beam passed through a verti­

cal polarizer, and a small part of it was split off to act as a reference signal for 

the Fabry-Perot interferometer. The reference signal was further attenuated by 

neutral density filters. The remaining part of the beam was focused by a 20.4 cm 

lens onto the sample, and the transmitted beam was captured by a beam dump. 

Since it is not always practical or possible to measure the absolute Bril­

louin scattering intensities, we measured the Brillouin intensities of our sample to 
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that of a fused quartz standard. This procedure of relative intensity measure­

ments is common in Brillouin scattering experiments. The samples were mounted 

on an a dual sample holder which allowed us to hold the standard sample a.swell 

as the sample under investigation. The sample holder was placed in a vertical 

stage and could be raised or lowered. This enabled us to switch from the stan­

dard sample to our glass samples easily reproducing the same experimental con­

ditions for each run. The vertical stage in turn was mounted on two micrometer 

translation stages which allowed precision motion in two dimensions. The full 

range of three-dimensional motion was necessary since the samples had absorp­

tion. Thus, we needed to know the exact location. of the scattering volume. 

The scattered light was collected by a compound lens (Olympus) of focal 

length 5 cm and . a diameter of 4.5 mm. The lens was placed about 10 cm from 

the scattering volume and provided a large solid angl~ of collection. The image 

plane was located 10 cm behind the lens where a pinhole of diameter 100 µm was 

placed to spatially filter the signal. Another compound lens (Olympus) of focal 

length 5.5 cm and diameter 4.5 mm was used to collimate the beam. By using a 

telescope after the collimating lens, we made sure that the image of the pinhole 

was at the sharpest focus of the lens. The collimated bean:i. had to be focused 

onto the pinhole of the Fabry-Perot (FP) interferometer entrance. Therefore, an 

achromatic lens of focal length 50 cm was used for proper F-matchin.g with the 

FP optics and two mirrors to guide the focused beam onto the pinhole. 

A photomultiplier tube (PMT, ITT FW130) was used for detecting the 

signal which had a circular detection area of diameter 2.5 mm. It was placed in a 

photomultiplier tube housing and cooled to -25 °C by a thermoelectric cooler 

(Products for Research). There was a continuous flow of filtered water 24 hours a 

day going through the system. The dark count was typically 1-2 cts/sec and had 
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Figure III.5 Experimental setup for right-angle Brillouin Scattering. E-etalon, 
VP-vertical polarizer, BS-beam splitter, L's-lenses, M's-mirrors, PH­
pinhole, S-sample, BD-beam dump, D/A-spectrum digital to analog 
converter, HY-high voltage, PMT-photomultiplier tube, FD-fast dis­
criminator, LM-light modulator, SU-shutter unit, ND-neutral density 
filters. 
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about 10% quantum efficiency at 514.5 nm. A -2200 V voltage was supplied to 

the cathode of the PMT by a high voltage source (Tennelec). The output of the 

PMT was connected to a fast discriminator (EG&G PARC 1182) that was set to 

produce 50 ns TTL pulses. The output from the discriminator was then split for 

monitoring and stabilizing the FP, and also data acquisition. The data was col-

lected in a multichannel analyzer (MCA, Canberra 35 plus) and then downloaded 

to a personal computer (IBM XT). 

The signal that was split for stabilization and monitoring first went 

through a spectrum digital to analog converter and then on to the interferometer 

control unit. The output spectrum from the ~ntrol unit was. monitored on an 

oscilloscope (Soltec 520) in real time. The control unit also provided the trigger 
'· 

for the multichannel analyzer and also provided the signal to the shutter unit 

which controlled th~ light modulator. 

The details of the complete FP alignment is quite complex and will not be 

discussed. Assuming that the there is no gross misalignment problems, we outline 

the everyday alignment procedure of our overall system that is required before 

taking data. The alignment of the external optics was carefully checked with 

light scattered from a Teflon or metal block The interferometer box cover was 

slid open, and a card was placed before the beam went into the FPl mirrors 

(first FP). By going to the smallest possible pinhole size (150 µm diameter), we 

verified that the input beam was correctly focused through the pinhole by adjust­

ing the mirrors M2 and M3 that are placed before FPL The card was then re­

moved, and a glass slide was placed before the light modulator to verify that the 

back-reflection from FPl was cleanly coming through the pinhole. The FP sys-

tern was then switched to reflection mode, and the scan amplitude on the inter-
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ferometer control unit was set to one order. Such a setting allowed us to see 

clearly two orders from both FP interferometers. An example of that is shown in 

Fig. C.3. The background level was increased by tweaking the alignment mode 

optics. 

After this point, the FP alignment was done electronically, and we were 

ready to take data. We generally scanned only one order so that the observed 

spectra would have a central Rayleigh peak and side Brillouin peaks. The input 

and output pinhole of the FP interferometer were set at 450 µm and 700 µm, re­

spectively. The mirror spacing was set at 2.5 or 2. 75 mm giving a free spectral 

range (FSR) of 2 or 1.818 cm-1. The contrast was about 109, and the overall fi­

nesse, approximately 120. The dwell time on the MCA was set for 0.5 ms/ch, 

and each FP scan lasted 0.5 seconds. Each data file contained 1024 channels 

(histogram) and took anywhere from 30 to 60 minutes to collect. The reflection 

spectra were inverted and fitted along with the corresponding data files with the 

commercial software Peakfit. The integrated area and peak position were accu­

rately reported for each Brillouin component, and an entire spectrum took about 

5 minutes to fit. 

5. Temperature-dependent Absorption Measurements 

We performed temperature-dependent absorption measurements on the lead sili­

cate glasses to further our understanding of their thermal nonlinear optical prop­

erties. It is well-known that the changes in the absorption coefficient and index of 

refraction are related to one another by a Kramers-Kronig transformation. Our 

aim was to study the change in the absorption spectra with temperature and 
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then derive the corresponding change in the index of refraction. This would allow 

us to calculate the thermo-optic coefficient dn/dT that is due to homogeneous 

heating. In what follows, we describe the samples, instrumentation and procedure 

of temperature-dependent absorption measurements. 

The samples were all cut and polished to optical quality into dimensions 

of lxlxO.l cm3• This was done to match the dimensions of the sample holder 

cavity and ensure good thermal contact. The spring loaded sample holder not 

only let us secure the sample but also enabled us to minimize the applied exter­

nal stress. This was very crucial to our experiment since we were interested in 

the change in the index of refractive due to thermal heating with no stress ap­

plied to the sample. 

The experimental setup is shown in Fig. ID.6. The absorption measure­

ments were done in a Cary 05 spectrometer. The samples were housed in a dewar 

with quartz windows (Janis CCS 400). The dewar in turn was attached to a' 

cryopump with a cold head (Leybold RGD 210). The cryopump was connected to 

a water cooled He compressor or refrigerator (Leybold RW 3) with a pair of 

flexible steel He gas lines (Leybold FL2). The compressor provided the necessary 

pressurized He gas to the cold head as well as its electrical power. The cold head 

then used this compressed He gas to produce the very low temperatures needed 

for cyropumping the dewar. The dewar and cryopump were evacuated with the 

help of a vacuum controller (Balzers TCP 121) connected to a roughing pump 

(Balzers DUO 1.5A) which in turn was connected to a turbomolecular pump 

(Balzers TPH 060). The pressure inside the dewar was monitored by a pressure 

controller (Balzers TPG 300). The temperature was varied in the dewar by an 

autotuning temperature controller (Lakeshore 320) with stability better than 

0.lK. A temperature monitor (Omega 6102) was also used for safety reasons to 
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Figure ill.6. Experimental setup for temperature-dependent absorption meas­
urements. TM - safety temperature monitor, TMC - temperature 
monitor and controller, TMP - turbo-molecular pump, PMC -
pressure monitor and controller. 

shut off the heater if the temperature became dangerously high. 

The samples were carefully mounted in the dewar and the dewar was then 

placed in the spectrometer. We pre-evacuated the cryopum p down to its starting 

pressure of about 1 mTorr by turning on the roughing pump and then slowly 
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opened the dewar valve. When the combined dewar and cryopump pressure was 

about 10 µTorr, the He compressor was activated, and the final dewar chamber 

pressure was held at 1 µTorr for the experiments. The heater was turned on, and 

the temperature was increased in 40 K intervals starting from 290 K to 450 K. 

Each scan lasted about an hour and was always reproducible. 

We also performed room-temperature absorption measurements on the 

Eu-doped alkali-silicate glasses that had the systematic variation in Eu. The rich 

spectrum of the Eua+ ion was clearly observed and were found to be in good 

agreement with known Eu3+ transitions. 

6. Refractive index and density measurements 

In this section, we present an enhanced version of the Brewster's angle experi-

ment to measure the refractive index of materials.38 The Brewster's angle ex-

periment is usually performed to get a quick estimate of the refractive index to 

about one or two decimal places. The technique requires one polished surface and 

can be done on both transparent and opaque materials. At the Brewster's angle, 

only s-polarized light is reflected.39 That is, if our incident light is p-polarized, 

then ideally we should not detect any reflected light. In practice, however, the 

reflected intensity reaches a minimum. The reflected intensity for p-polarized 

light at an angle 9 is:40 

( ) _ (a - cos 9)2 + b2 ( a - sin 9 tan 9)2 + b2 
Rp9 - 2 x 2 

(a+cos9) +b2 (a+sin0tan9) +b2 
(ill.I) 



where, a2 = t{~(n2 - k2 - sin2 e)2 + 4n2k 2 + (n2 -k2 - sin2 e)} 

b2 = t{~(n2 -k2 -sin2 e)' + 4n2k2 -(n' -k2 - sin2 e)} 
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(ill.2) 

(ill.3) 

Here, k =a) .. / 41t is the extinction coefficient, a. is the absorption coefficient, and 

A is the wavelength. It is important to point out that the reflectivity will be 

slightly altered in the presence of absorption. This will lead to a small increase in 

the Brewster's angle. However, for the small absorption coefficients (- 1 cm-1 or 

less) in our glasses k << n, and this does not pose a problem. 

The intensity change, as one rotates through the Brewster's angle, can be 

monitored by eye. We have found that by introducing a CCD camera with a la­

ser beam profiler to monitor the intensity change, we can isolate the angle close 

to the resolution of the sample rotation stage. By using the relation n = tan 0 B, 

the refractive index is easily found. The uncertainty in the refractive index meas­

urement is typically in the third decimal place. 

The experimental setup is very simple and can be quickly assembled, as 

shown in Fig. ill.7. Apart from the sample and laser source, the experiment re­

quires a sample holder, rotation stage, CCD camera connected to a laser beam 

profiler, and neutral density filters to attenuate the beam going into the camera. 

It is very important to make sure the incident laser beam is perpendicular to the 

sample surface since the Brewster's angle is measured with respect to this nor­

mal. This can be easily accomplished by aligning the back-reflected beam with 

the incident one. However, to be more accurate, we place a pinhole concentric 

with the incident laser beam and close to the laser source. We align the back­

reflected diffraction rings so that they are properly centered on the pinhole. The 
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greater the distance between the sample and the pinhole the greater the assur-

ance the beam is normal to the sample. We can therefore eliminate (or minimize) 

the uncertainty in our Brewster's angle measurements that comes from initially 

non-normal beams. The pinhole can subsequently be removed or a variable aper-

ture can be used in its place. 

We now carefully rotate the sample and place a card about 10 to 20 cm 

from it and monitor the change in the reflected intensity by eye. Once we ap-

proximately find this angle from the surface normal, we move the CCD camera 

in place. By making small rotational increments, we can see the intensity dip 

through a minimum on the monitor of the laser beam profiler as we rotate 

through the Brewster's angle. This reflected intensity change can be observed on 

the monitor of the laser beam profiler as a change in the color of cross section of 

the beam and also the peak intensity of the beam profile. We can adjust the gain 

Laser 

PH 
D 

I 

Laser Beam 
Profiler 

. . . . 

Rotary 
Stage 

CCD 

Figure III. 7 Setup for measuring the refractive index using a CCD camera and 
laser beam profiler. ND - neutral density filters; PH - pinhole; S -
sample; SB - Brewster's angle. 
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and background level on the camera and accurately find the angle close to the 

resolution of our rotation stage which is 0.01 °. 

The introduction of the CCD camera along with the laser beam profiler 

makes the detection of the Brewster's angle simple to do. The fact that the CCD 

camera has a larger effective detection area than most photodiodes and PMT' s, 

and the fact that the reflected beam does not have to be centered on this area 

makes the CCD camera a better choice for this experiment. We can easily scan 

through the Brewster's angle without having to adjust the camera position. This 

is particularly advantageous since the reflectivity near the vicinity of the Brew­

ter's angle is a very shallow function. In addition, we can adjust the gain and 

background level on the camera to better isolate the angle. 

We have used this technique to measure the refractive indices of some of 

the glass samples used in this study. Actually, it was the need to quickly and ac­

curately measure the refractive indices of glass samples that were provided to us 

by a collaborator and to whom the samples had to be returned to intact, that 

lead to the development of this refined Brewster's angle technique. 

To demonstrate the usefulness of the technique, we found the refractive 

index of a fused quartz sample with this method that had previously been meas-

ured with the minimum-deviation technique.36 At 514.5 nm, the Brewster's angle 

was found to be 55.63° ± 0.05° giving a refractive index of n = 1.462 ± 0.003. 

This compares quite well with the previously measured n = 1.462 ± 0.001. The 

uncertainty reported is larger than that of the minimum-deviation technique be­

cause we found it hard to accurately isolate the Brewster's angle any better than 

±0.05° as a result of laser fluctuations. The reason for this is that the monitored 
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reflected intensity change is the determining criteria for the Brewster's angle. 

With better laser stability, it should be possible to push the uncertainty to 

±0.001. 

Although we found a slightly larger uncertainty in our refractive index 

measurements than the standard minimum-deviation technique, we can perform 

the experiments relatively quickly. We also avoid the time-consuming sample 

preparation that is needed with the minimum-deviation technique since only one 

polished surface is required with the Brewster's angle method. Furthermore, if a 

sample has striations as was the case with some of the glasses, then a laser beam 

passing through it may become distorted which would lead to large errors in the 

refractive index measurements. 

We could further enhance the technique by measuring the reflected inten-

sity at various angles near the Brewster's angle.41 The data could be fitted using 

a cubic equation which is the lowest-order polynomial that accounts for the 

asymmetry in the reflectivity. We could then accurately find the Brewter's angle 

by using the standard method of calculating roots of an equation. The resultant 

uncertainty in the index of refraction from this more involved measurement has 

been demonstrated to be ±0.0001.41 However, in its present form, the ease, quick­

ness and accuracy with which our experiment can be performed makes it an at­

tractive method for measuring the refractive index of materials. 

We also measured the density of the glass samples. Since they were paral­

lelepipeds of sides that varied from 1 to 2 cm and thicknesses that ranged from 2 

to 5 mm, we accurately measured the dimensions using a micrometer and sepa­

rately weight them on a digital balance. This gave us the density to three signifi­

cant figures. 



CHAPTER IV 

RESULTS AND DISCUSSION 

1. Lead Silicate Glasses 

(a) Structural Properties 

The emphasis of this dissertation concerns the nonlinear optical properties of 

lead silicate and Eu-doped alkali silicate glasses. A discussion of the structural 

properties of these glasses will undoubtedly shed light on our experimental re­

sults. In this section, we will discuss some of the basic structural properties of 

lead silicate glasses. In particular, we will review some of the available vibra­

tional spectroscopy and x-ray diffraction data. A thorough review of lead in 

glasses is beyond the scope of this work but can be found in the article by E. 

Rabinovich 42 and references therein. At the outset, we stress that the structural 

properties of glasses have not been fully established and there are many aspects 

of glasses that are not well understood. This fact will be made evident by the 

existence of different structural models of lead silicate glasses. 

The first x-ray study of binary lead silicate glasses was done by Bair43 in 

1936 who looked at PbO mole concentrations of 9.5, 19.9, 31.2, 39.9, 49.8 and 

60%. The results were interpreted by a trial and error method. He made the fol­

lowing bond length assignments: Pb-0 (2.5 A), Si-0 (1.6 A), Si-0 (4.0 A, next 

nearest neighbor), Si-Si (3.2 A), Si-Si (5.2 A, next nearest neighbor), and Pb-Si 

72 
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(3.8 A). The calculations based on density measurements showed that the Pb-Pb 

distance varied between 4.0 A to 6.5 A depending on the lead concentration. He 

suggested that these glasses contained a continuous, randomly oriented silicon­

oxygen tetrahedra with a lead atoms distributed in the network like a gas. 

Bair's conclusions were strongly contested by Krogh-Moe44 since Bair did 

not allow for the strong Pb-Pb interaction in his calculations. This interaction 

can be understood as the ability of the lead ion to form a dipole due to its strong 

polarizibility. From x-ray diffraction studies of a lead silicate glass with 58.8 

mole% of PbO, Krogh-Moe found the bond lengths to be 1.6A for Si-0, 2.5 A 

for 0-0 and Pb-0, and 3.9 A for Pb-Pb, Pb-Si, and Pb-0. The Pb-0 distance 

leads to a lead-oxygen coordination number between 6 and 10. The density was 

found to be 6.75 g/cm3 from which the average volume occupied by a lead atom 

was 65.3 A3• From these measurements, he found that a Pb-Pb distance of 4.03 

A, corresponding to a lead-lead coordination number of 6, was closest to the ob­

served value of 3.9 A. Krogh-Moe stressed that high lead concentration glasses 

can not be described by the random-network theory. 

Bagdyk'yants et al. 45 studied five lead silicate glasses with concentrations 

of 20, 33, 40, 50, and 60 mole % of PbO by electron diffraction. They found the 

Pb-Pb distance to be 4.2 A and therefore had a lead-lead coordination number of 

9. They concluded that in high-silica glasses, the Pb atoms are randomly distrib­

uted in the gaps of the three-dimensional Si04 tetrahedral network with each 

lead atom being linked to two oxygen. The lead-oxygen coordination number in­

creases to 6 as the PbO concentration is increased and the three-dimensional Si-

0 network gradually breaks down into two and one-dimensional clusters. 

Brosset46 studied the Pb0-xSi02 systems with x=0.56, 0.92, and 1.53 us­

ing x-ray diffraction. He observed that the peak position at 3.9 A due to Pb-Pb 
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did not change with lead concentration implying that there is a well-defined lead­

oxygen grouping with primarily covalent bonds. NMR investigations of lead sili-

cate glasses by Bray et al.47 revealed the presence of Pb04 pyramidal structures. 

They also found pyramidal structures in crystalline lead silicate. 

Mydlar et al.48 studied the structure of 2Pb0-Si02, Pb0-Si02, and Pb0-

2Si02 glasses using x-ray diffraction and calculating radial distribution functions 

(RDF). They found that the peak at 3.8 A in Pb0-Si02 and in 2Pb0-Si02 is 

made up of several Pb-Pb distances. The peak is very sharp and almost disap­

pears when there is less PbO which suggests that lead is not randomly distrib­

uted in these glasses. For the Pb-Pb distances, they calculated the first nearest 

Pb to be at 3.6 A, two more at 4.15 A, and another at 4.8 A. Furthermore, they 

agreed with Brosset's conclusion that the lead atoms are distributed in the 

glasses in a systematic manner. The RDF's of crystalline PbSi03 and PbO (red­

tetragonal and yellow-orthorhombic) were also compared with the lead silicate 

glasses. They found that the Pb-Pb distances in the glasses are only slightly 

larger than those found in the crystals. They concluded that the lead in these 

glasses forms Pb-0-Pb chains similar to those found in PbO around which the 

Si04 tetrahedrals wind. This is thought possible because the Pb2+ is nearly as 

large as the 02- and a little smaller than the Si04 tetrahedral edge. In the Pb0-

2Si02 system, the chains seem to be almost straight. In the Pb0-Si02 system, 

the chains show a twisting effect and the twists are more pronounced in 2Pb0-

Si02. A diagram of possible Pb-0-Pb chains are shown in Fig. IV.l. 

Gotz et al.49 used chemical methods to determine the type and percentage 

of silicate groups in binary lead silicate glasses ranging in composition from 

4Pb0-Si02 to Pb0-Si02• The results indicated that the relative amounts of 
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Figure IV.I Possible structures of lead silicate glass for high PbO content after 
Mydlar et al. 

silicate groups change with Si02 concentration. For molar ratio R = PbO /Si02 

from 4 to 2, the structure consists mainly of monosilicates Si04, disilicates S~07, 

trisilicates Si30 10 and tetrameric rings Si40 12• For R between 2.5 and 1.5, the low 

molecular silicate groups, such as the monosilicate and disilicate, decreases and 

higher chain-forming polysilicates (Si03)n and two and three-dimensional silicate 

groups appear. As R reduces from 1.5 to 1.22, the percentage of low molecular 

silicate groups as well as the chain-forming polysilicates and two and three­

dimensional silicate groups decline, and the phyllosilicates and higher polymer­

ized silicate groups rise. This general trend toward continuous polymerization as 

the Si02 concentration is increased, eventually leads to the three-dimensional, 

high molecular silica network that forms the backbone of silicate glasses. For bet-

ter agreement between the stoichiometric composition and the experimental dis-
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tribution of silicate anions, they postulated the existence of Pb-0-Pb groups 

which forms the basic structure of PbO. This is in agreement with Mydlar et al. 

Morikawa et al.50 studied the structure of 2Pb0-Si02 by x-ray diffraction 

and concluded that most of the lead atoms form covalent Pb04 pyramids and 

these pyramids form zigzag chains. The chains are bridged and modified by the 

monosilicates, disilicates, trisilicates, tetrameric rings, cham-forming polysilicates, 

and ionic Pb06 octahedron. Morikawa et al. suggested that this is the manner in 

which lead plays the role of a network former in high lead silicate glasses. Their 

structural model is a further developed version of the original zigzag chain pro-

posed by Mydlar et al. Leventhal et al.51 observed chemical shifts of 207Pb in 

Pb0-Si02 glass as a function of PbO concentration which suggest that there is 

also some ionic character to these glasses. In that sense, the lead also acts as a 

network modifier. Due to the existence of both ionic and covalent Pb in the sili­

cate glasses, Morikawa suggested that the Pb04 zigzag chains exist over a wide 

range of composition. Finally, we note that Imaoka et al. 52 performed x-ray dif­

fraction measurements on Pb0-Si02 and 2Pb0-Si02• For the Pb0-Si02 system, · 

they developed a structural model consisting of chains of (Pb03)n pyramid that 

are joined into double layers by chains of Si04 . tetrahedra. For the 2Pb0-Si02 

system, the (Pb03)n pyramidal chains were connected by the various silicate an­

ion groups. Imaoka et al. also pointed out that the strong resemblance in the 

RDF's of the Pb0-Si02 and 2Pb0-Si02 systems suggests that they must have 

the lead atoms similarly arranged. 

Another useful tool for probing the structure of glasses is vibrational spec­

troscopy, such as infra-red absorption and Raman scattering. We performed Ra­

man scattering experiments on the lead silicate glasses and hence present a brief 
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report on the findings. The excitation source was an Argon-ion laser (Spectra­

Physics 2020) operating at 514.5 nm with 400 mW. The incident light was verti-

cally polarized and the scattered light was collected via a 90° geometry. The 

spectrum was analyzed using a double grating monochromator (Instruments SA) 

with a resolution of 1 cm-1. The Raman spectra from the lead silicate glasses are 

shown in Fig. IV.2. 

Shuker and Gammon53 proposed that because there is a lack of long-range 

symmetry in a glass, all the vibration modes that do not have a center of inver­

sion take place in first-order scattering, and so the spectra of glasses also exhibit 

the phonon density of states. Our results on the Raman spectra agree with those 

obtained previously by Worrell et al. 54 The first band at approximately 30 cm-1 

increases in relative intensity with an increase in the silica content. It has been 

shown by Hass by doing low temperature studies that this band is due to ther­

mal agitation of the silica network. 55 This first band appears to be a universal 

feature of glasses due to its connection to the amorphous state and has been 

termed the boson peak. It is has been experimentally shown by Dixon et al.56 

that the boson peak is due to phonon modes that are localized. Novikov et al.57 

developed a model in which the boson peak is considered to arise from first-order 

light scattering by quasi-localized harmonic vibrations. They further showed that 

the boson peak is predominantly due to transverse-type atomic motions. 

The Raman band at 90 cm-1 is definitely due to the presence of the lead 

since it is absent in the Raman spectra of fused quartz. The origin of this weak 

band is uncertain, but Worrell speculates that it might be due to the perturba­

tion caused by Pb2+ ions in the silica lattice. The strong band that appears at 

135 cm-1 is due to a Pb-0 stretching mode. From the spectra, we can see that 
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the relative intensity of this band increases with increasing PbO concentration. It 

is also strongly polarized which is suggestive of a totally symmetric stretching 

mode of an isotropic vibrating unit. This conclusion is further supported by the 

appearance of a similar strong and narrow band in crystalline Pb0.53 

The shoulder effect near 450 cm-1 is associated with the Raman active an-

gular bending mode of vibration of O-Si-0. The small band at 800 cm-1 decreases 

in relative intensity with increasing PbO concentration. The band centered at 

about 950 cm-1 arises from a two types Si-0 stretching modes since any Pb-0 

stretching modes should be at a lower frequency due to the large atomic mass of 

lead. The band near 1000 cm-1 decreases in relative intensity with increasing PbO 

and is more polarized than the shoulder at 950 cm -1. An explanation for this is 

that the introduction of the Pb2+ ions into the silica network breaks some of the 

Si-0 bond and the resulting silicate anions have different degrees of polymeriza­

tion. The lead atoms weaken the Si-0 bond, and lowers its stretching mode fre-

quency from 1065 cm-1• In that sense, Pb2+ also acts as a glass network modifier. 

Thus, the Raman spectra reveals that the lead atoms are arranged in the glass 

with some degree of symmetry as is suggested by x-ray diffraction measurements. 

In light of the x-ray diffraction and Raman scattering measurements, we 

may conceptualize that lead will likely form Pb-0-Pb chains or pyramidal units 

and act like a network modifier when the PbO concentration is small. These 

same pyramidal units will link up with the two or one-dimensional silicate anion 

groups and form a network for large PbO concentrations. In both cases, there 

may also be ionic Pb2+ present in the glass. 



79 

4 

- L32 
:::, 3 
Cll -z. 2 ·en 
C 
2 1 C 

0 

- 4 L42 
:::, 

Cll 
3 -;?!' 

en 2 C 
2 
C 1 

0 

- 4 L52 
:::, 

Cll 
3 -z. ·en 2 C 

Q) ..... 
C 1 

0 

- 6 L62 
:::, 5 
Cll - 4 ;?!' 
en 3 
C 
2 2 
C 

1 
0 

150 300 450 600 750 900 1050 1200 

Raman Shift (cm-1) 

Figure IV.2 Raman scattering from binary lead silicate glasses with PbO con­
centrations of 32, 42, 52, 62% all in mole %. 



80 

(b) Brillouin Scattering 

In a glass, vibrational modes with small wavelengths can not be represented by 

plane waves due to the disorder of the amorphous system. The Ioffe-Regel crite-

rion for eigenstates with well-defined wavevectors vectors q is q > 1/ A, where A is 

the mean free path of the phonon. This criterion does not hold for small wave­

length vibrations in a glass because the plane-wave states are strongly scattered 

by the inhomogeneities in the density and elastic properties of the system, thus 

limiting A.56 However, we have seen in Chapter II that the long wavelength 

acoustic excitations in glasses can be described successfully by plane waves with 

well defined q. We may thus speak of acoustic phonons in glasses just as we 

would in crystals. 

The Brillouin scattered spectra for the lead silicate glasses are shown in 

Fig. IV.3 for a backscattering geometry. As mentioned in Chapter II, scattering 

by TA phonons in this configuration are not allowed. Thus, one can unambigu-

ously study the LA phonons. The free spectral range (FSR) was set at 2.5 cm-1• 

Each Fabry-Perot scan lasted about 0.5 s and a sample run consisted of 1000 

scans. The incident powers at the samples were 54 mW. As can be clearly seen 

from the spectra, the LA Brillouin shift decreases, i.e., the LA phonons become 

less energetic, and the scattered intensity increases as the PbO concentration in­

creases. The LA phonon sound velocities and corresponding elastic constants are 

in excellent agreement with those obtained from the right-angle scattering ge­

ometry. 

Another interesting feature that appeared after carefully fitting the data 

with Peakfit was that there was a consistent and reproducible difference between 

the Stokes and Anti-Stokes shift. The Anti-Stokes shift was slightly greater than 

the Stokes shift. This difference was extremely small (on the order of 10-3 cm-1) 
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and increased from L62 to L32. Eq. II.55 neglects higher order terms in vB/ c and 

the exact expression for the Brillouin shift ( cm -l) for a backscattering geometry is 

2nvB [ _ ( )]-1 ilCOB± = -- l+ nvB/c 
CAO 

(IV.l) 

where, + refers to the Anti-Stokes shift and the - refers to the Stokes shift.58 

From this expression, we can see that the Anti-Stokes shift is slightly larger than 

the Stokes shift as we have observed. However, the difference in Stokes and Anti-

Stokes shift from Eq. IV.l would be on the order of 10-5 cm-1 for our glasses 

which is smaller than the difference we detected by two orders of magnitude. 

Since the Rayleigh line was blanked out, the center of the scan was taken to be 

the peak of the reference beam. This may have contributed to the larger differ-

ences we observed. Pine had mentioned in an article on Brillouin scattering that 

this asymmetry between the Stokes and Anti-Stokes shift was predicted by sev­

eral authors but had not been experimentally resolved.58 Pine suggested that 

semiconductors would be good candidates to observe this asymmetry due to their 

high refractive indices and large dispersion. It seems that glasses with high re-

fractive indices, such as lead glasses, may also be good candidates. 

The Brillouin spectra for the lead silicate glasses in a right-angle scatter-

ing geometry are shown in Fig. IV.4. The spectra are scaled to show the TA 

phonons. The mirror spacing was set for 2.750 mm giving a FSR of 1.818 cm-1 so 

that we could clearly resolve the TA peaks. The Fabry-Perot scan time was 

about 0.5 s, and 6000 scans were taken for each run for L62, L52 and L42. For 

L32, 3000 scans were taken for each run. The incident power was varied for the 

samples; L62 had 100 mW; L52 and L32 had 200 mW; L42 had 300 mW. The 

TA phonon shift decreases as PbO concentration increases similar to the behav-

ior of the LA phonons. We did not detect any TA phonons for L42 even for long 
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Figure IV.3 Brillouin spectra for lead silicate glasses in a back-scattering geome­
try. (a) L32; (b) L42; (c) L52; (d) L62. The incident power was 54 
mW. 
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Figure IV.4 Brillouin spectra for lead silicate glasses in a right-angle scattering 
geometry. (a) 132; (b) 142; (c) 152; (d) 162. TA phonons were not 
detected for 142. 
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collection times and high powers. These lead silicate glasses exhibit strong ther-

mal lensing characteristics, i.e., optical nonlinearity caused by thermal heating, 

and thus care was taken not to use too high an incident power. 

The acoustic phonon velocities of our samples were calculated from the 

measured Brillouin shifts using Eq. II.55. The Brillouin shifts for a right-angle 

geometry are shown in Table IV.l along with the density and refractive index. 

The refractive index was measured by the minimum deviation principle, and the 

density was calculated by a direct volume and mass measurements. 

Table IV.l The density, refractive index and Brillouin shifts for lead silicate 
glasses for a right-angle geometry. 

Sample Density (g/ cm 3) n (514.5 nm) AroLA ( cm-1) AroTA (cm-1) 

L32 4.51 ± 0.01 1. 715 ± 0.001 0.6053 ± 0.0003 0.3627 ± 0.0004 

L42 5.32 ± 0.01 1.829 ± 0.001 0.5844 ± 0.0004 not detected 

L52 6.03 ± 0.01 1.922 ± 0.001 0.5752 ± 0.0002 0.3247 ± 0.0007 

L62 6.83 ± 0.01 2.080 ± 0.001 0.5644 ± 0.0007 0.3137 ± 0.0008 

The errors quoted in the Brillouin shifts are the standard errors done from many 

measurements. Several points are immediately obvious. Both the refractive index 

and density increase with PbO concentration. This is to be expected because of 

the large atomic weight of the Pb and also the UV absorption edge shifts to-

wards the visible as PbO are increased. The density and refractive index meas­

urements are in agreement with values found by other authors. 48'59 In addition, 
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the Brillouin shifts decreases by 7% (about 0.4 cm-1) for the LA phonons and 

about 14% (almost 0.5 cm-1) for the TA phonons as the PbO concentration in-

creases from 32% to 62% mole. 

The sound velocities are shown in Table IV.2 with their corresponding 

elastic constants. The elastic constants were calculated using ci = pv;, where i 

represents the TA or LA phonon. The errors were calculated from standard error 

analysis. The uncertainties in the velocity Av and elastic constants Ac were de-

termined from 

Av = A(Aro) +An+ cos0/2 AS 
v Aro n 2 sin 0/2 

(IV.2) 

Ac Ap 2Av 
-=-+--
c p V 

(IV.3) 

where Aro, An, and Ap are the uncertainties in Brillouin shift, refractive index, 

and density, respectively. The uncertainty in the scattering angle due to refrac-

tion and collection optics is A0 = b'/ Jin where J2 = 55 mm and b' = 3.04 mm. 

This term dominates over the other terms in the velocity uncertainty and varies 

from 1.85° {0.032 rad) to 1.52° (0.026 rad). The derivation for A0 can be found in 

Ref (36]. 

The Brillouin shifts of the LA phonon and the associated sound velocities 

and elastic constants from the back-scattering geometry are shown in Table IV.3. 

The observed shifts agree very well with calculated shifts assuming values from 

the right-angle geometry. The sound velocity and elastic constants are well 

within the error bars shown Table IV.2. 

The LA velocity decreases by 23%, and the TA velocity decreases by 29%. 

From Table IV.2, we see that c11 decreases by 11%, and c44 decreases by 23% as 
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Table IV.2 The velocities of the LA and TA phonons and their corresponding 
elastic constants of the lead silicate glasses obtained from a right­
angle scattering geometry. 

Sample VLA VTA 10 cu 2 10 C44 2 
(105 cm/s) (105 cm/s) (10 dynes/ cm ) (10 dynes/ cm ) 

L32 3.849 ± 0.066 2.307 ± 0.041 66.8 ± 2.4 24.0 ± 0.9 

L42 3.485 ± 0.057 not detected 64.6 ± 2.2 not detected 

L52 3.264 ± 0.050 1.842 ± 0.031 64.2 ± 2.1 20.5 ± 0.7 

L62 2.960 ± 0.044 1.645 ± 0.027 59.8 ± 1.9 18.4 ± 0.6 

Table IV.3 The Brillouin shift of the LA phonon, and its corresponding velocity 
and elastic constant for lead silicate glasses obtained in a back­
scattering geometry. 

Sample Li.roLA, meas. ilffiLA, cal. VLA 10 cu 2 

(cm-1) (cm-1) (105 cm/s) (10 dynes/cm ) 

L32 0.8523 0.8559 3.833 66.3 

L42 0.8258 0.8265 3.482 64.5 

L52 0.8109 0.8134 3.254 63.8 

L62 0.7894 0.7983 2.927 58.5 
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we go from 132 to 162. Fig. IV.5 shows the dependence of the elastic constants 

on the PbO concentration or, equivalently, the density. 

The macroscopic elastic constants reveal information about the intera­

tomic forces of a material. Indeed, it is the microscopic bond strengths that de-

termines the material's elastic properties, and this is reflected in the magnitude 

of the elastic constants. Eq. II.56 is actually the generalized Hooke's law for a 

continuum, and so the elastic constants are the tensorial analog of the simple 

one-dimensional spring constant. 

Since the elastic constants decrease with increasing PbO concentration, we 

may conclude that the structure of the glass becomes weaker. By weak, we mean 

the following. The three-dimensional silicon-oxygen tetrahedral network breaks 

up into a two and one-dimensional silicate network and also into silicate anion 

groups due to the presence of lead pyramidal structures. At first glance, it ap­

pears that the break up of the silicate network alone explains the trend in data. 

However, some of these lead pyramidal structures are connected to one another 

in chains and to the broken up silicate network or some of the silicate anion 

groups. There may also be isolated units of both the lead and silicon type. That 

is, at low concentrations lead can act as a network modifier and as a network 

former at high concentrations. The fact that the elastic constants decrease with 

increasing PbO concentration suggests, apart from the weakening of the structure 

due to the break up of the silicate network, that the bonds connecting the lead 

pyramidal structures together may not be as strong as the silicon-oxygen tetra­

hedral connection in the silicate network. H the bonds were stronger, then we 

would expect an increase in the elastic constants as we go from 132 to 162. 

Therefore, the break up of the stronger silicate network, along with the emer-
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gence of the weaker pyramidal chains, results in a decrease in the elastic stiffness 

of the glasses with increasing PbO concentration. 

The fact that the structure of the glass weakens as PbO is increased was 

very apparent during the cutting and polishing of these samples. The time re-

quired to cut and polish L62 samples were considerably less than for the L32 

samples. The L62 samples were also soft and damaged very easily. 

We can derive other important material parameters from our measured 

elastic constants. These values are listed in Table IV.4. The linear elasticity or 

Young's modulus Eis defined as the ratio of an applied stress T to the fractional 

change in length fll/l in the direction of the applied stress. 60 That is, a smaller E 

corresponds to an easily strained material. It can also be expressed in terms of 
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Figure IV.5 Elastic properties of the lead silicate glasses. 
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Table IV.4 Poisson's ratio, Young's Modulus and bulk modulus for lead silicate 
glasses. The values for L42 could not be calculated because no TA 
phonon was detected. 

Sample Poisson's Young's modulus Bulk modulus 
ratio (1010 dynes/cm2) (1010 dynes/cm2) 

L32 0.220 29.3 34.8 

L42 - - -

L52 0.265 25.9 36.9 

L62 0.276 23.6 35.1 

the elastic constants as E = c44 (3c11 - 4c44)/2(c11 - c44). The Young's modulus 

decreases with PbO concentration indicating that the structure becomes progres-

sively weaker. 

The adiabatic compressibility 1C is defined as the ratio of the fractional 

change in volume A WV due to an applied pressure p. That is, a bigger 1C corre-

sponds to a more easily compressed material. The adiabatic bulk modulus B is 

the reciprocal of the compressibility and is the given by B = c11 - f c44. 61 No 

meaningful trend in B can be established from the data because the TA phonon 

from L42 was not detected. 

We can also calculate the Poisson's ratio cr which is defined as the ratio of 

the fractional change in length in the direction of the applied stress to the frac­

tional change in length perpendicular to the applied stress. It is given by the 

formula v = (c11 - 2c44)/2(c11 - c44). The Poisson's ratio for the lead silicate 
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glasses steadily increases from 0.220 for 132 to 0.276 for 162 demonstrating that 

the bond nature becomes progressively ionic. 

Finally, we will discuss the photoelastic behavior of the lead silicate 

glasses. The expressions used to derive the photoelastic constants were given in 

Eq. II.64 and Eq. II.65. As mentioned in Chapter II and III, the method used to 

determine the photoelastic constants involved comparing the integrated intensity 

of the Brillouin spectrum of the sample to that of a standard with known photoe­

lastic constants. The standard used in our measurements was fused quartz with 

P12 = 0.279 and p44 = -0.0792. 

Since the samples absorbed some light at 514.5 nm, we had to take ab­

sorption into account in our measured ~ values. Recall, ~ is the ratio of the inte­

grated intensities of the LA phonons of the sample to that of fused quartz. The 

details of accounting for absorption is given in Ref [36]. Briefly, as the incident 

light enters the sample and travels a distance x to the scattering volume it de­

creases in intensity due to absorption. The Brillouin scattered light, collected at 

right-angles to the incident beam, is further attenuated as it travels a distance y 

to the exit plane facing the collecting lens. The ~ value decreases linearly with 

the total distance x+y. To extract out the effects of absorption from~' x+y was 

extrapolated to zero. The~ value thus obtained was free of absorption and was 

used in our calculations. The absorption of fused quartz at 514.5 nm was found 

to be 0.04, and so the decrease in~ comes predominantly from the absorption in 

the lead glasses. 

Two other important correction factors have to be applied to ~ before it 

can be used in Eq. II.64; namely, the solid angle and back-reflection corrections. 

Details of these correction factors can be found in Ref (36]. The scattered light 
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collected depends on both the collection optics and the refractive index n of the 

sample. The solid angle correction due to refraction increases ~ by (n/n°)2. The 

superscripts O refers to the fused quartz sample. Furthermore, as the scattered 

light leaves the sample, refraction causes the observed size of the scattering vol-

1 

ume to be reduced. This why there is a volume ratio (v0 /v)2 of the sample to 

that of fused quartz in Eq. II.64. However, this ratio is very close to one for all 

the samples and can be neglected. The back-reflection correction increases ~ by 

(1+R0 exp[-2a0L0 ])/(1+Rexp(-2a.L]), where R is the percentage reflection, a 

is the absorption coefficient, and L is the length of the sample. The absorption-

free ~' and correction factors are shown in Table IV.5. 

The measured photoelastic constants p12 and p44 along with the ratio of 

the integrated intensity of the TA to LA phonons are shown in Table IV.6. By 

increasing the PbO concentration, the Brillouin scattered intensity of the LA 

phonons increases as is evident from the trend in ~ values. Another important 

feature is that the scattering from TA phonons are much smaller than that of LA 

phonons. This is due to the fact that the LA phonon perturbs the dielectric con-

stant much more than the TA phonon. The value of the photoelastic constants 

show an opposite trend to that of ~- We will try to understand the mechanism 

behind this trend in the photoelastic constants from existing physical models. In 

particular, we will apply the Carleton model of photoelasticity to our glasses.62 

Carleton developed the strain dependence of the Fixman formulation of 

the dielectric constant. He expressed the photoelastic constants p12, p11, and p44 

with the following formulae: 
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= (n 2 -1)2 (~+~-14r) 
Pn n 4 a.'p 15 15 ' 

(IV.4) 

(IV.5) 

and = (n2 -1)2 (!- .!_ r) 
P44 n 4 5 5 ' 

(IV.6) 

h r 3a.' OOJ 912(r)d were =-- 4 r. 
41tEo o r 

(IV.7) 

Here, n is the refractive index, Eo is the permitivity of free space, a.' is the free 

particle polarizibilty, p is the density, and g12 is the two-particle correlation 

function. The first term in the brackets (after multiplying by the refractive index 

term) of Eq. IV.4 and Eq. IV.5 represents the change in the refractive index due 

to density changes produced by the strain caused by the propagation of LA pho-

nons. Such a density term does not appear in Eq. IV.6. This can be explained as 

Table IV.5 The~ value and correction factors for the lead silicate glasses. 

Sample ~ Volume Solid-angle Back-reflection 
ratio correction correction 

L32 2.97 0.9991 1.376 0.9925 

L42 4.46 0.9988 1.565 0.9864 

L52 5.20 0.9985 1.728 0.9791 

L62 7.89 0.9982 2.024 1.000 
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Table IV.6 The photoelastic constants of the lead silicate glasses and ratio of 
integrated intensity for the TA to LA phonon. 

Sample P12 
IP441 JTAfhA 

L32 0.283 0.076 0.0101 

L42 0.285 0.000 0.0000 

L52 0.268 0.012 0.0031 

L62 0.260 0.024 0.0134 

follows. As an LA phonon propagates through the material, the distances be-

tween neighboring atoms vary in the direction of propagation. This is because an 

LA phonon is a compressional wave. However, the neighboring atomic distances 

do not change in the propagation direction for a TA phonon. Hence, we would 

expect p11 and p12 to be density-dependent but not p44• 

A graph of the density dependence of p12 and p44 is shown in Fig. IV.6. In 

accordance with the Carleton model, there is a small degree of density-

dependence of p12. This is similar to the behavior of c11 which we attributed to 

the weakening of the glass structure. However, there is also a density-dependence 

of p44 which seems to be quite large. Schroeder63 observed a small p44 density-

dependence for binary glasses but not for ternary systems. Our data shows that 

p44 first decreases to zero and then begins to increase. Although the density de-

pendence of p44 will not be studied further, we will try to understand the behav-

ior of p44 in terms of structural changes. 

The second term in the brackets of Eq. IV.4 and Eq. IV.5 and the first 

term in brackets of Eq. IV.6 represents a change in the polarizibility associated 

with a network distortion. The change in the atomic positions due to the strain 
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produced by the propagating phonons give rise to the network distortion. This 

displacement of the charge centers has some degree of regularity. Hence, we shall 

term this the lattice effect (LE) in accordance with other researchers. 64 The last 

terms in the brackets of Eq. IV.4, Eq. IV.5, and Eq. IV.6 represents the polariz­

ing effects of the neighboring atoms on each other which we will term the atomic 

effect ( AE). 64 

We may write p44 = LE - AE. Since the lattice effect is only a function of 

the refractive index, we may use the measured values of p44 to determine the 

atomic effect. These values are shown in Table IV. 7. We note that p44 must be 

negative in order to predict the correct density dependence of p12• The lattice 

0.35 

0.30 • • • • 0.25 

0.20 • P12 '<t 
'<t 

c.. • I P44 I 0.15 

"' ..... 
c.. 0.10 

• 0.05 

• • 0.00 • 
4.0 4.5 5.0 5.5 6.0 6.5 7.0 

Density (g/cm3) 

Figure IV.6. Density-dependence of the photoelastic constants for lead glasses. 



95 

effect increases with PbO concentration showing that the network distortion by 

the TA phonon becomes easier as we go from L32 to L62. This is understandable 

since we concluded earlier from our elastic constant measurements that the struc­

ture becomes weaker. The lattice effect of fused quartz is 0.057 which is smaller 

than the lead silicate glasses. 

On the other hand, the atomic effect first decreases and then increases 

with PbO concentration. The Si-0 bond in fused quartz is highly covalent, and 

the oxygen electrons are strongly bound to the bonds. When there is a strain in 

the material due to the propagation of the phonons, the electron cloud of the 

bridging oxygen will distort in the direction of the strain. The electrons of the 

oxygen will then respond differently to the incident light field in the direction 

parallel to and perpendicularly to the strain.64 This gives rise to a large atomic 

effect for fused quartz (0.136). Matusita et al.65 assumed that the electron clouds 

of the nonbridging oxygen do not to distort in the direction of the strain and 

hence should not contribute much to the atomic effect. 

Table IV. 7 The lattice and atomic effects and p44 of the lead silicate glasses. 

Sample p44 Lattice Effect Atomic Effect 

L32 -0.076 0.087 0.163 

L42 0.000 0.098 0.098 

L52 -0.012 0.106 0.118 

L62 -0.024 0.118 0.142 
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The L32 sample has an atomic effect value higher than in fused quartz. 

This suggests that in L32 the atoms in the Pb-0-Pb chains easily distort giving 

rise to an atomic effect. When this atomic effect is added to that of the partially 

broken up silicate network, the resulting effect is 20% larger than that of fused 

quartz. In L42 it appears that a structural change is taking place. The Pb-0-Pb 

chains are probably forming lead pyramidal structures and are not well con­

nected to each other. The silicate network is also broken up more than it was for 

L32, therefore producing less of an atomic effect. The net atomic effect is about 

28% smaller than that of fused quartz. The lattice and atomic effects are equal to 

each other in L42, and thus we could ilbt detect any TA phonons from this 

sample. The atomic effect rises in L52 and is now 13% smaller than that of fused 

quartz demonstrating that in this system perhaps the lead pyramidal units are 

starting to form a better connection. The atomic effect from the silicate network 

is even less than that of L42. Finally in L62, the net atomic effect is 4% larger 

than that of fused quartz. The lead pyramidal chains probably have a better 

connection giving rise to a larger atomic effect. 

The atomic effect results derived from Brillouin scattering show that there 

1s probably a structural change taken place as the PbO concentration is in­

creased. The glass appears to be changing from a silicate type network to a more 

looser lead-based network in accordance with structural studies.48-52 If this is in­

deed taking place, then the monitoring of the TA phonons as a function of con­

centration seems to be a good method of detecting the structural change. 
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{ c) Temperature-dependent Absorption 

In this section, we present the results of the temperature-dependent absorption 

measurements on the lead silicate glasses. The initial purpose of this study was 

to determine the thermo-optic coefficient dn/ dT that is caused by homogeneous 

heating of the material. This is the dn / dT that is most often reported in litera-

ture. The dn/dT that arises from inhomogeneous heating caused by a Gaussian 

laser beam, i.e., thermal lensing, will invariably contain stress components. We 

were interested in finding a stress-free dn/dT and then correlating the effects of 

the stress components which could be derived from Brillouin scattering. 

The measurements were accomplished by monitoring the change m the 

absorption coefficient of the samples as a function of temperature and then using 

a Kramers-Kronig transformation to find the corresponding change in the index 

of refraction. The Kramers-Kronig transformation is given by 

An(1 Kr)= PV oof Lla.{A', KI') d'A' 
' 21t2 0 (11.'/A. -1) 

(IV.8) 

where An, Aa., and AT are the changes in the refractive index, absorption coeffi-

cient and temperature, respectively, and A. is the wavelength. PV stands for prin-

ciple value of the integral. This method had been successfully employed to study 

the temperature change in the band gap of ZnSe by St. John et al. 66 The integral 

extends to infinity which is, of course, impossible to accommodate experimentally 

and a finite range from 750 nm to 250 nm was established. 

However, upon performing the Kramers-Kronig transformation we found 

the dn/dT values to be negative. The dn/dT of these glasses are positive which 

we have verified from thermal lensing measurements. The problem was traced 

back to the fact that the ultraviolet absorption in these glasses dominates the in-
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tegral. In fact, the electronic absorption in the UV almost completely determines 

the refractive index in the visible. Nevertheless, the data could still be used to 

reveal important information about what happens to the optical properties of 

these glasses as the temperature is increased. This information is germane to our 

thermal lensing measurements. 

Before proceeding to the temperature-dependent absorption measurements 

in these glasses, we will try to ascertain the cause of their visible absorption. The 

color of the glasses ranged from yellow for L32 to light-brown for L62. This col­

oration has been attributed to scattering due to the formation of microcrystals of 

Si02 in the glass by Cohen et al.67 However, Weyl et al.68 have pointed out that 

silicate, borate and phosphate glasses with high PbO content can be made that 

are transparent in the visible. The reason for this behavior, they suggested, was 

that Pb2+ formed highly symmetrical polyhedra in these glasses. The Pb2+ that is 

present in red or yellow PbO is in the form of a dipole [Pb4+(2e-)] 2+ which causes 

an asymmetric environment around the Pb2+ by the oxygen ions. This asymmet­

ric environment is responsible for the color of PbO. When the Pb2+ is moved to a 

symmetric environment, as in a high quality glass, the color vanishes, and the 

glass becomes clear. However, if the glass is not of high quality, then distorted 

polyhedra are formed which causes visible absorption. That is, the environment 

around Pb2+ is no longer symmetric. 

The room-temperature absorption coefficients a. (cm-1) for the glasses are 

shown in Fig. IV. 7. Note that the absorption-edge shifts toward the visible as the 

PbO concentration is increased. This shift in the optical absorption has been ob­

served by other researchers in lead silicate glasses.70-73 In light of the conclusions 

of Weyl et al., it appears that the environment around the Pb2+ becomes more 

asymmetric as PbO is increased. Thus, the absorption shifts toward the visible. 
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Figure IV. 7 The absorption coefficients of lead silicate glasses. 

We will briefly review the findings of Ellis et al. 59 who performed experi-

mental and theoretical investigations of the electronic absorption of lead silicate 

glasses. Fused quartz shows no absorption for energies below 9 eV (138 nm). 

However, when PbO is added to it, three strong new bands appear in the low-

energy end of the spectrum. The intensity of these bands increase with PbO con-

centration and are located at 6.7 eV (185 nm), 5.3 eV (234 nm) and 4.2-4.6 eV 

(295-270 nm). There are other absorption bands that occur above 9 eV, but Ellis 

et al. have shown that their contribution to the visible index of refraction is far 

less than the bands below 9 e V. 
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Ellis et al. calculated band structures, and joint density of states for crys­

talline PbO and a lead silicate glass model. For the glass, they found that the 

top of the valence band is primarily of lead and oxygen origin, and the bottom of 

the conduction band is made up mostly of Pb 6p states. Thus, the lowest energy 

transitions are associated mainly with lead orbitals. Upon comparing the joint 

density of states for PbO and the lead silicate glass model with the observed ab­

sorption spectra, they concluded that the low-energy absorption in these glasses 

are mainly due to Pb 6s ~ Pb 6p transitions which involves two electrons. There 

is also some contribution from the oxygen lone pair O 2p ~ Pb 6p. 

The observed upward curvature in our absorption spectra is likely due to 

tail end of the band occurring at 4.2-4.6 e V and thus originate from the transi­

tions described in the previous paragraph. This tailing effect is observed in semi-

conductors and glasses and has been successfully described by Urbach's rule. The 

rule prescribes the absorption coefficient to follow a= a 0 exp[-l.;;(E9 - iuo )] near 

the absorption edge, where f;,-1/kBT, and Eg is the optical band-gap energy.71 

Although our absorption curves appear to follow an exponential trend, they do 

not follow the simple Urbach's rule. Apart from the fact that an optical band­

gap in an amorphous system is not well-defined, the band tailing was too wide 

for the rule to satisfactorily fit our spectrum. 

The temperature-dependent absorption spectra of the glasses are shown in 

Fig. IV.8. For each sample, the absorption curve clearly shifts to the visible with 

increasing temperature. We were able to reproduce each scan regardless of how 

the temperature was varied. Such reversibility and shifts in absorption have also 

been observed by McSwain et al.12 for alkali-silicate glasses. In order to make 

some quantitative statements about this temperature effect, we define a UV 
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Figure IV.8 Temperature-dependent absorption measurements for 132 to 162. 
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cutoff wavelength Ac as the point where the transmission of a 1 mm thick sample 

drops to 1 %. This is an arbitrary definition, but as long as we are consistent, it 

provides a means for comparison among the glasses. Fig. IV.9 shows that Ac in­

creases with temperature linearly and also that the slopes of the lines increases 

from L32 to L62. The magnitude of the slope is a measure of how strong the 

temperature effect is. We will loosely interpret Ac as the "optical band-gap" E0• 

The values of Ac, E0, and the slope d'A.c/dT are given in Table. IV.8. Thus, we 

may conclude that temperature affects the optical properties of the lead silicate 

glasses more as the PbO concentration increases. 

According to Weyl et al., the increase in temperature causes a fluctuation 

in the symmetry around the Pb2+ and renders the glasses less transparent. In our 

opinion, the thermal energy that is supplied to the samples increases the wave­

function overlap among the electronic states and thus reduces the "optical band­

gap". This does not conflict with Weyl et al. We will try to put this discussion on 

a more mathematical basis by following the method of Prod'homme.73 

The refractive index n is related to the polarizibilty cp of the constituent 

atoms and the volume Vof the material through some functional form f(n). For 

simplicity, we will assume that. all the atoms have the same cp. The polarizibility 

will be allowed to be temperature-dependent because the thermal energy supplied 

to the glass will most likely weaken the ionic or covalent bonds. The relationship · 

can be written as f(n) = Acp/V, where A is a constant. By taking the tempera­

ture differentiation of f(n), we have the following expression 

(IV.9) 
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Figure N.9. The temperature dependence of the UV cutoff wavelength for the 
lead silicate glasses 

Table N.8 The UV cutoff wavelength Ac, the slope dAc/dT and the correspond­
ing "optical band-gap" E0 for the lead silicate glasses. 

Sample Ac (nm) dAc/ dT ( nm/K) E 0 (eV) 

L32 334.0 0.04875 3.712 

L42 345.8 0.06375 3.585 

L52 358.8 0.07125 3.455 

L62 390.9 0.08375 3.171 
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where we have assumed a Lorentz-Lorenz type relation f(n) = (n2 - l)/(n2 + 2), 

<P = (1/ q>) ( d<p / dT) is the fractional change in temperature derivative of the polar­

izibility, and J3ex = (l/V)(dV/dT) is the volume coefficient of expansion. Thus 

dn/dT depends on the relative strengths of <P and l3ex· We have concluded from 

the thermal lensing measurements of the lead silicate glasses, that dn/dT is posi­

tive and increases with PbO concentration. This indicates that the temperature 

derivative of the polarizibility of the glasses also increases from L32 to L62 and is 

greater in magnitude than the thermal expansion coefficient. This increase in the 

net temperature-dependent polarizibility <P is probably due to an increase in the 

number of lead and nonbridging oxygen ions. 

If we recall that An = ( dn/ dT)KI' and A.a. = ( da./ dT)KI', then it is easy to 

see that da./dT will be related to dn/dT by a Kramers-Kronig transformation 

given by Eq. IV.8. From Fig. IV.8, we find that da./dT is positive for visible 

wavelengths. This is particularly obvious near the absorption-edge. Since da./dT 

is positive, it follows that dn/ dT should also be positive in agreement with our 

thermal lensing measurements. 
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( d) Intensity-scan {millisecond) 

A laser beam traveling through an absorbing medium will have some of its elec­

tromagnetic energy converted into thermal energy and will, thus, increase the 

temperature of the medium. The heat that is generated will give rise to a tem­

perature gradient that will follow the intensity profile of the incident beam. As 

we have seen in the last section, the change in the index of refraction An is re-

lated to the change in the temperature KI' by '1.n = (dn/dT)KI', where dn/dT is 

the thermo-optic coefficient. Since the intensity profile of many laser beams is 

circular Gaussian, it follows that KI' and, therefore, An will also have a circular 

Gaussian variation. It is easy to see that a positive dn/dT will cause a parallel 

incident beam to focus while a negative dn/ dT will make it defocus. This kind of 

optical nonlinearity that results from the inhomogeneous heating of a medium by 

a laser beam is known as thermal lensing. The strength of thermal lensing in ma­

terials will depend mostly on the absorption coefficient since it determines the 

amount of energy that is absorbed. 

The millisecond version of the Intensity-scan technique we have developed 

has proven to be a highly sensitive method for investigating thermal lensing. The 

data for the lead silicate glasses are shown in Fig. IV.10 where we have plotted 

the normalized transmission versus the input beam power at the sample. The 

samples were optically thin and imparted a positive nonlinear phase-shift to the 

beam. Since the samples were placed before the focus of the incoming beam (z < 

0), the phase-shift caused the emerging beam to focus before prior to the z = 0 

position. The z = 0 location is where the beam would have focused in the ab­

sence of the samples. This resulted in the observed decrease in transmission in 

the far-field. 
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Thus, from the Intensity-scan data, we can conclude that the lead silicate glasses 

have a positive thermal nonlinear refraction coefficient Yth· As the plots show, the 

transmission data scales very linearly with the incident beam power verifying the 

circular beam limit of the Intensity-scan theory presented in Chapter II. We 

should reiterate that the thermal nonlinearity reaches a steady-state situation 

during the passage of the pulse. Thus, the An we measured is the steady-state 

value. Recall that Eq. II.45 is derived assuming a square pulse with an instanta­

neous nonlinearity or, equivalently, a cw laser in which the nonlinearity has 

reached steady-state. Therefore, Eq. II.45 can be directly used without having to 

perform a time-average over the pulse duration. In Fig. IV.11, we show the 

change in the on-axis on-focus refractive index as a function of input intensity. 

This range of An0 is typical for glasses. 

What is remarkable about the technique is that we can readily measure 

very small induced phase distortions. For example, the L32 sample at 20 mW 

has a normalized transmission value of 0.998. The change in refractive index at 

this power is 9.5x10-7 which corresponds to a phase-shift of only 0.017 rad or a 

wave-front distortion of about ')../370. The sensitivity of the technique could be 

enhanced by using a reference arm as introduced by Ma et al.12 for the Z-scan 

technique. The reference arm is identical to the main arm of the Intensity-scan 

setup consisting of the focusing lens followed by the far-field aperture. This 

would greatly improve the signal to noise ratio. 

The nonlinear refraction coefficients for the lead silicate glasses are shown 

in Table. IV.9 along with the effective sample thickness Leff and the slope of the 

transmission lines. There is an overall uncertainty in Yth of about 10% that arises 

primarily from the uncertainty in the slope calculations taken from scans at 
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Table IV. 9 Values of Yth, Leff, and transmission slopes of the lead glasses. 

Sample Leff {mm) Yth {cm2/GW) slope {xl0-4/mW) 

L32 1.452 1.72 -0.8738 

L42 1.442 3.07 -1.553 

L52 1.494 7.59 -3.976 

L62 1.373 67.7 -32.55 

different points within the sample. The value of Yth increases with PbO concen-

tration. However, there is a large increase in Yth from L52 to L62. This peculiar 

behavior of L62 having optical properties that are quite different from the other 

lead silicate glasses will emerge as a common theme. We have already seen this 

behavior with the .absorption measurements in the last section. 

To understand what material parameters affect An0, we will investigate 

their inter-relationship. We begin with the heat diffusion equation given by 

V2T(r, t) + g(r, t) = _!_ o.I'(r, t) 
kth D ot 

for O < r < oo, t > 0 

T(r,t) = T0 for O < r < co, t = 0. (IV.IO) 

Here, T(r,t) is the temperature at position r and time t, kth is the thermal con-

ductivity {W /m°C), Dis the thermal diffusivity (m2 /s) and g(r,t) = a.I(r,t) is the 

heat generation rate (W /m3). We solve the heat diffusion equation in two-

dimensions neglecting heat diffusion along the z-axis, o2T / o2 z = 0 . In addition, 
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we will use cylindrical coordinates and assume a circular Gaussian beam. The 

above equation can be solved by a using Green's functions given by 

(IV.11) 

where we now interpret r as a radial coordinate. This is the temperature distri-

bution in the x-y plane, which is initially at T = 0, due to an impulsive heat 

source of strength unity located at r' and releasing its heat spontaneously at t'. 

The temperature distribution is found to be 

oo D t oo 

T(r, t) = f G(r, t; r',O)T0 21tr 1 dr' + k f dt' f G(r, t; r', t ')g(r', t')21tr' dr' 
0 th O 0 

= To + 4::: [-~ - sn!~ w•) + E{- :: ) ] (N.12) 

where Ei is the exponential integral and we have used a square pulse of power 

P0• The exponential integral can be expanded as 

-Ei(-x) = -~ - lnx + x -f x 2 + O(x3 ) (IV.13) 

where ~ = 0.5772 is known as Euler's constant. Thus the change in temperature 

can be written in the parabolic approximation as 

_ P0a. { 2r2 ( t/2tc J} KI'(r, t) = ln{l + t/2tc) - - 2 / 
41tkth w 1 + t 2tc 

(IV.14) 

However, we are interested in the on-axis change in the index of refraction and 

can set r = 0. The on-axis change in refractive index is then given by 

dn P0a. dn 
L\n(O, t) = -KI'(O, t) = -ln(l + t/2tc) 

dT 4rckth dT 
(IV.15) 

The above equation has been shown to accurately predict the thermal lensing 

behavior of millisecond pulses in glasses by St. John et al. 6 The only disadvan-



110 

tage of Eq. N.15 is that it is not applicable to cw lasers because as t goes to in­

finity, so does f!..T. We find that the linear absorption coefficient and thermal 

conductivity will compete with one another to raise fin. If kth is small, then there 

will be significant heat localization which will tend to increase An. If a. is large, 

then more of the beam's energy will be absorbed leading to a rise in temperature 

and again increase An. To maximize An, it is desirable to have a small kth, a 

large a., and a large dn/dT. 

In light of the above discussion, it seems clear that the much larger An 

exhibited by L62 is caused by a larger a., a larger dn/dT and a smaller kth when 

compared to the other samples. We know that the absorption coefficient of L62 is 

about twice as large as that of L52. Unfortunately, we do not know the conduc­

tivity values nor the thermo-optic coefficients of these specific glasses. It seems 

reasonable from the structural studies made on similar glasses, that the thermal 

conductivity of L62 will be considerably less than that of the other samples due 

to its weaker structure. It also seems likely, that the thermo-optic coefficient of 

L62 will be considerably higher than the other samples because of the larger 

number of polarizable entities such as lead and oxygen ions. If kth for L62 is half 

as large as that of L52, and also if dn/dT for L62 is twice as large as that of L52, 

then the difference between Yth for these two samples can be understood. 

Since dn/ dT will invariably contain stress components, it would be inter­

esting to see how stress affects the thermal lensing behavior of the lead silicate 

glasses. We will derive an expression for dn/dT that explicitly contains all the 

stress components. Consider the refractive index to be a function of density and 

temperature n = n(p, T). The variation in n can be written as 
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dn = (on/op)r dp + (onjffI')p dT. (IV.16) 

In terms of the volume expansion coefficient Pea: and the density derivative of the 

refractive index p(dn/dp) = (p11 + 2p12)n3 /6, we can write dn/dT as 

(IV.17) 

The above thermo-optic coefficient is due to the homogeneous heating of the 

medium and has been previously derived by Sparks.74 The first term in Eq. IV.17 

can be positive if the absorption of the medium shifts with temperature such that 

An increases. The second term is always negative because dp/dT is negative. No-

tice that there are stress components present in Eq. IV.17. This can be under-

stood from the fact that heating the medium will change its volume and hence its 

dielectric constant and, thus, can be related to the photoelastic effect. The values 

of dn/dTthat are most often reported in the literature is given by Eq. IV.17. 

Now consider the effects of inhomogeneous heating. Let us take a cylindri­

cal region of the medium with radius Rand having a temperature gradient T(r). 

A small variation in the density Bp(r) is given by 

Bp(r) = - Pex 1 + V {aT(r) + 4(1- 2v) j BT(r)rdr} 
p 3 1 - V (1 + V )R2 0 

for r << R 

where vis Possion's ratio.75 Therefore, from Eq. IV.16, we can write 

dn =(on) _ Pexn3(Pu + 2P12) 1 + V 

dT ff['} p 18 1 - V 

=(:t. +(:t. 

(IV.18) 

(IV.19) 
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The first expression for dn/ar"in Eq. IV.19 is due to inhomogeneous heating of 

the medium which is typical of laser-induced thermal lensing.76 In the second ex-

pression, we split up dn/dT to reflect the effects of laser beam induced stress er. 

The dn/dT with er = 0 is due to homogeneous heating (the conventional value) 

and is given by Eq. IV.17. The dn/dT with er-::/:. 0 is solely due to laser-induced 

stress and is described by 

( dn) ~ezn 3 (Pu + 2P12) 1- 2v 
dT <J¢O = 9 1- V 

(IV.20) 

The contributions of the stress components to the conventional value of dn/dT 

are shown in Table IV.IO. The ~ez values were derived from Ref [77]. We clearly 

see that this contribution increases with PbO concentration. This result is not 

unexpected since we have shown that the lead glasses more easily strained with 

increasing PbO content. 

Table IV. 10 Values of ~ez and (dn/dT)-o for the lead glasses. 

Sample ~ez (x106/°C) (dn/dT )-o (x106/°C) 

L32 19 5.3 

L42 24 9.5 

L52 30 12 

L62 35 16 
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( e) Z-scan and Optical Limiting 

We have investigated the nonlinear properties of the lead silicate glasses on a 

nanosecond time scale by performing Z-scan/Optical Limiting experiments. By 

studying the relative self-focusing behavior of the glasses, we could determine 

what material characteristics are most important to the nonlinear properties. The 

nonlinear refraction coefficient y found in glasses has contributions from elec­

tronic, nuclear, electrostrictive and thermal effects. The electronic or Kerr effect 

is due to the nonlinear deformation of the electron clouds of the constituent at­

oms and has a nearly instantaneous response time. The nuclear effect is due to 

the change in the motions of the nuclei that are induced by the optical field and 

has a response time on the order of nuclear motions which is. about a picosecond. 

The electrostrictive effect is caused by the change in the refractive index due to 

strains induced in the material by the electric field of the laser. The thermal ef­

fect is due to the refractive index variation caused by local heating that arises 

from the finite absorption of laser radiation. Both the electrostriction and ther­

mal effects have a response time t = r /v that depends on the sound velocity v 

and beam diameter r. On a nanosecond time-scale, it is possible to have all four 

of the above nonlinear effects present in a glass. It was believed that in this time­

scale, the thermal effect was the dominant mechanism in glasses containing 

heavy-metal atoms such as lead silicate glasses.6'7 We will try to explore what 

processes contribute to the nonlinear refraction coefficient in our glasses. 

We performed measurements on a 1 mm and a 1.5 mm thick sample for 

each lead silicate glass in order to study the effects of sample thicknesses on the 

optical limiting behavior of the glasses. By noting the optical limiting clamping 

values, we could assess the usefulness of these materials for protective devices. 

The position of the sample relative to the focus of the beam in addition to the 
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sign of its nonlinearity is crucial in determining whether the sample will limit or 

enhance the radiation in a far-field detector.18 The best method of finding the 

optimal position of the sample for limiting the light in the far-field is by first 

performing a Z-scan. The Z-scan, depending on the size of the aperture and rela­

tive strengths of the nonlinear refraction and nonlinear absorption coefficients, 

will generally show a peak and a valley. The optimal sample position for perform­

ing an Optical Limiting experiment is then the Z-scan valley. This method of 

carrying out a Z-scan followed by an Optical Limiting experiment is the pre­

ferred choice in determining the optical limiting characteristics of a material. 6•7•18 

A representative Z-scan and Optical Limiting data are shown in Fig. 

IV.12 for the 1mm thick sample and Fig. IV.13 the 1.5 mm thick sample for L62. 

The Z-scans were done with an input energy of 10.1 µJ and 7.7 µJ for the 1 mm 

and 1.5 mm thick samples, respectively, within an uncertainty of about 10%. The 

solid line is an application of the elliptical Gaussian beam Z-scan theory that we 

developed and presented in Chapter II. The agreement between theory and ex­

periment is quite good considering the fact that the theory assumed a 100% el­

liptical Gaussian beam where as the actual beam was about 85-90% elliptical 

Gaussian. Only near the slopes of the valley of the Z-scan does the theoretical 

line not match the experimental data points very well for either the 1 mm or the 

1.5 mm samples. This is most likely a consequence of the parabolic approxima­

tion which can be verified by comparing the wave-optics Z-scan results with that 

of the Gaussian beam-optics for a circular Gaussian beam.18 The theoretical fit of 

the Optical Limiting data is better than that of the Z-scan. The nonlinear pa-

rameters used to fit the data for L62 as shown in Fig. IV.12 and Fig. IV.13 are y 

= 4x10-6 GW/cm2 and~= 14 cm/GW which are in good agreement with Hagan 

et al. 78 It is interesting to note that the theory correctly predicts the broadening 
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Figure IV.12 Z-scan/Optical Limiting data for L62 using a 1 mm thick sample. 
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Figure IV.13 Z-scan/Optical Limiting data for L62 using a 1.5 mm thick sample. 
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of the valley in the Z-scan for the 1.5 mm thick sample which is attributed to the 

enhanced nonlinearity due to an increase in sample thickness. 

Four different sets of data were available for each glass sample, two Z­

scan and two Optical Limiting. Each Z-scan and Optical Limiting run was re­

peated several times and found to be reproducible. The Optical Limiting data for 

the two sample thicknesses show a difference in the clamping value. The 1 mm 

and 1.5 mm thick samples clamp at about 70 µJ/cm2 and 60 µJ/cm2, respec­

tively. This difference in clamping value is easily understood by sectioning a 

sample into many slices and interpreting the enhanced nonlinear behavior as a 

cascading effect. That is, each slice focuses the incoming beam more within the 

sample than the previous slice, and the nonlinearity amplifies. Since the 1.5 mm 

thick sample can be sectioned more than the 1 mm thick sample, assuming equal 

section lengths for both sample, it is easy to see that the 1.5 mm thick sample 

will limit more light than the 1 mm thick sample. 

The presence of a deep valley and the absence of the any peaks in the ob­

served Z-scan can be explained as follows. The deep valley of the Z-scan is in­

dicative of a strong nonlinear absorption coefficient. The circular aperture was 

set for 90% transmission of the elliptic beam which essentially means that the 

elongated ends of the beam was clipped. Recall, that the ratio of the semi-major 

to semi-minor axis was about six. Therefore, the setup was more sensitive to 

nonlinear absorption than nonlinear refraction since we nearly had an open aper­

ture, and so no peaks were observed. 

We simultaneously fitted the four sets of data that were available for each 

sample to obtain the nonlinear refraction and nonlinear absorption coefficients. 

Nonlinear absorption played the strongest role in fitting the theory with experi­

ments for both the Z-scan and Optical Limiting. Nonlinear refraction played a 
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more involved role in the Optical Limiting data fitting than the Z-scan data in 

that it affected the clamping value and the curvature of optical limiting. We 

could thus better isolate they values by studying the optical limiting curves than 

would have been possible by studying the Z-scan data alone. The fact that the 

same set of nonlinear parameters fitted the data for both the 1 mm and 1.5 mm 

thick samples, as shown in Fig. N.12 and Fig. N.13, suggested that they are 

reasonable values for these samples. 

The Optical Limiting data for all the glasses are shown in Fig. N.14 for 

both the 1 mm and 1.5 mm thick samples. The clamping value is seen to rise as 

the PbO concentration falls. That is, the glasses with larger PbO content exhibit 

stronger nonlinear behavior. We should reiterate th~t the samples were carefully 

translated after each laser shot such that subsequent shots fell on undamaged 

material. The damage threshold was seen to rise with decreasing PbO concentra­

tion which is to be expected because the glass structure becomes weaker as the 

PbO content is raised. Interestingly, all the damage spots were elliptic shaped 

but the semi-major and semi-minor axis were flipped. This is understandable due 

to the fact that the larger y-axis of the beam is focused by the lens more strongly 

than the smaller x-axis. 

The nonlinear parameters derived from the Z-scan/Optical Limiting ex­

periments are listed in Table N.11. Both nonlinear refraction and nonlinear ab­

sorption coefficients are seen to increase with PbO concentration. The uncer­

tainty in these values is about 25% which is typical for Z-scan experiments with 

pulsed lasers and stems primarily from the uncertainty in irradiance calibration. 

The nonlinear refraction coefficients show a modest increase with heavy metal 

content, in our case lead, and confirms the trend reported by previous research-

ers. 79 This suggests that y is determined not so much by structural differences of 
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Table IV. 11 Values of the nonlinear refraction and absorption coefficients. 

Sample y (x10-6cm2 /GW) f3 (cm/GW) 

L32 2.9 3.1 

L42 3.2 4.6 

L52 3.5 7.6 

L62 4.0 14 

the glasses than by the concentration of highly polarizible entities such as lead 

ions. In conventional silicate glasses, the network modifiers increases the number 

of nonbridging oxygen, which are more polarizable than the bridging oxygen, and 

thus there is a modest increase in the nonlinearity. 80 In lead silicate glasses, the 

lead enters the glass as a network former at high concentrations and a network 

modifier at low concentrations. Therefore, we can not solely attribute the rise in 

nonlinearity to the presence of nonbridging oxygen which is not expected to in­

crease by the same amount as if lead were to enter as only a network modifier. 

For heavy-metal glasses, the large nonlinearity is usually attributed to the hy­

perpolarizibility, the additional polarizibility that arises due to the large electric 

fields of the laser, of the cations. Vogel et al. 81 have shown that the heavy-metal 

cations are much more important than the oxygen anions. For the lead glasses, it 

is believed that the two 6s electrons in the external shell of the Pb ions are re­

sponsible for the large nonlinearity.82 Thus, our measurements are in agreement 

with the statement that large heavy-metal cations mostly determines the non­

resonant nonlinearity in heavy-metal based glasses. 
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The large nonlinear absorption coefficients we measured have also been 

observed by other researchers. 78'83 The UV absorption edges of our glasses have 

been shown in the temperature-dependent absorption section (See Table IV.8). 

There are three strong bands in the low energy spectrum of the UV absorption. 

The high energy bands that are present in fused quartz around 10 e V are 

strongly diminished as the PbO content increases. 59 The new bands due to the 

addition of lead are located at 6.7 eV, 5.3 eV and 4.2-4.6 eV and arose from the 

internal Pb 6s ~ Pb 6p transitions of the lead atom and the lone pair O 2p ~ 

Pb 6p transition. The incident light we used in our experiments was 460 nm or 

2.7 eV. Therefore, it seems likely that the nonlinear absorption we have observed 

is a two-photon absorption (TP A) process to these low energy UV bands. The 

TP A for L62 is the largest among the these glasses. By simply adding the energy 

of two photons to the absorption edge we see that the incident light excites the 

electrons close to the 5.3 e V band. The above statement is only a possible expla-

nation since the "optical band-gap" in glass is not well-defined as in crystals. De­

fining the UV absorption edge as the "optical band-gap", although in accordance 

with other researchers, is arbitrary.71 We do note that the nonlinear absorption 

coefficient scales inversely proportional to the UV absorption-edge. However, we 

must also state that our experiment does not allow us to distinguish between 

TP A and a two-step absorption process. In TP A, the intermediate level involved 

in the transition. is a virtual state. However, in a two-step absorption. process, the 

intermediate level is a real state. Although there is evidence that a TP A process 

is at work in similar lead glasses on the nanosecond time-scale, we can not be 

certain which process is operatin.g.78 Mizrahi et al.83 suggested that if the two­

step absorption. process is significant, then the nonlinear absorption. will sub­

stantially decrease if the laser pulse duration. is made less than the lifetime of the 
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intermediate state responsible for the process. There is no general theory that 

explains nonlinear absorption in glasses primarily because of the lack of under­

standing of their basic structure. There has been a theory put forward recently 

by Sheik-Bahae et al.84 that correctly predicts the behavior of nonlinear refraction 

and nonlinear absorption in semiconductors. Until there is a similar theory for 

glasses, the explanation put forward for the nonlinear absorption in our lead sili­

cate glasses seems reasonable. 

In our experiments, an elliptical Gaussian beam was used and so the x 

and y directions of the beam are not affected by electrostriction or thermal ef­

fects by the same amount. For example, 132 has the highest LA phonon sound 

velocity among the lead glasses of about 3.85 km/s and so is expected to have a 

faster rise time than the other glasses. This means that the rise time of either 

thermal or electrostrictive effects at the focus of the x-beam is about 5 ns and for 

the y-beam about 1 ns. The rise times in the x and y directions will increase for 

the other samples because the sound velocities decreases. Since our pulse dura­

tion was 7 ns, we can conclude that thermal or electrostrictive effects have barely 

enough time to establish themselves. For the Z-scan experiments where the beam 

radii at the sample is continuously changing, thermal and electrostrictive effects 

will affect, at most, the data points at the center of the scan, i.e., near the focus. 

For the optical limiting experiment, it also does not seem likely that both effects 

will have sufficient time to take hold because the samples were placed several 

hundred microns from the geometric focus of the lens where the beam radii are 

larger. However, it is possible that the on-axis part of the beam may be affected 

by the two effects. In light of this discussion, it therefore appears unlikely that 

the nonlinear mechanism responsible for our observation can be attributed solely 

to a thermal or electrostrictive effect. 
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However, we can calculate the nonlinear refraction coefficient assummg 

that it arises from a strictly electrostrictive effect. The characteristic time for 

sounds waves is about 100 ps. Elasto-optic effects can contribute to the self­

focusing process provided that the laser pulse exists for a time longer than this 

characteristic time. The Brillouin scattering cross-sections must be known in or­

der to calculate the magnitude of the nonlinearity due to electrostrictive effects. 

This is another reason why we performed Brillouin scattering on our glasses. 

Heiman et al.85 have shown that the nonlinear refraction coefficient can be writ-

ten in as n2,es = n 7 pf2/161tpv£A in esu, where all the terms have there usual 

definitions. The SI version can be found by yes = (401t/cn)n2,es and are given in 

Table N.12. We find that the electrostrictive contribution increases with PbO 

content which is expected due to the ease of straining higher PbO glasses. The 

contribution is also a small percent of the total nonlinear refraction coefficient. In 

our experiments, the contribution, if any, would be smaller. 

Table N. 12 Values of the electrostrictive nonlinear refraction coefficients. 

Sample Yes (x10-6cm2 /GW) (Yes f Ytotal) xlOO 

L32 0.25 8.6 

L42 0.39 12 

L52 0.47 13 

L62 0.77 19 
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2. Eu-doped alkali-silicate glasses 

{a) Brillouin Scattering 

In this section, we present the results of Brillouin scattering that have been per­

formed on Eu-doped alkali silicate glasses that had a systematic variation of 

Eu20 3 concentration. These glasses have recently been investigated by the four­

wave-mixing technique, Raman scattering, and thermal diffusivity measure­

ments. 86 This is the first reported study of Brillouin scattering on these glasses 

although Brillouin scattering has been performed on similar glass systems. 36 Since 

all the error analysis discussion, correction factors, and definitions of measured 

quantities were included in the Brillouin scattering section for the lead glasses, 

we will not repeat it here. 

The Brillouin shifts for these glasses along with the density and refractive 

index are shown in Table IV.13. The refractive index values were obtained with 

our modified Brewster's angle technique. However, the sample surfaces were not 

very well polished and lead to an uncertainty of ±0.005. B12 and B14 contain 

dual alkali and will be discussed later. We will first discuss B5-B10 that have 

systematic Eu variation. There appears to be a slight shift of the LA phonon to­

wards higher energies from B5 to BIO but it is difficult to say anything conclu­

sive about the TA shift. On the other hand, the density measurements for these 

glasses are interesting. It is clearly seen that the B5 sample decreases in density 

from 2.72 g/cm3 to 2.41 g/cm3 with the addition of 0.1% mole of Eu20 3• This 

suggests that the network expands to accommodate the large Eu ions and as a 

result there is less mass present per unit volume. The number of Eu ions in­

creases per unit volume as more Eu20 3 is added. The density is seen to increase 

from 2.41 g/cm3 for B6 which has 0.1% mole of Eu20 3 to 2.82 g/cm3 for BIO 
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Table IV.13 The density, refractive index, and Brillouin shifts for the Eu-glasses. 

Sample Density (g/cm3) n (514.5 nm) AroLA ( cm -l) AroTA (cm-1) 

B5 2.72 ± 0.01 1.525 ± 0.005 0. 7927 ± 0.0006 0.4742 ± 0.0005 

B6 2.41 ± 0.01 1.525 ± 0.005 0. 7982 ± 0.0008 0.4755 ± 0.0005 

B7 2.49 ± 0.01 1.535 ± 0.005 0.7935 ± 0.0007 0.4724 ± 0.0007 

BB 2.51 ± 0.01 1.535 ± 0.005 0. 7976 ± 0.0007 0.4748 ± 0.0007 

B9 2.58 ± 0.01 1.540 ± 0.005 0. 7979 ± 0.0006 0.4736 ± 0.0005 

BlO 2.82 ± 0.01 1.565 ± 0.005 0.8069 ± 0.0007 0.4728 ± 0.0005 ,_ _______ 
.------------ 1-------- -·--- ------------ ------------

B12 2.64 ± 0.01 1.565 ± 0.005 0.8693 ± 0.0007 0.5136 ± 0.0007 

B14 2.57 ± 0.01 1.555 ± 0.005 0. 7867 ± 0.0002 0.4655 ± 0.0004 

Table IV.14 The sound velocities, and elastic constants for the Eu-glasses. 

Sample VLA 
(105cm/s) 

VTA 
(105cm/s) 

10 cu 2 
(10 dynes/cm) 

10 C44 2 
(10 dynes/cm) 

B5 5.670 ± 0.126 3.392 ± 0.076 87.4 ± 4.2 31.3 ± 1.5 

B6 5. 708 ± 0.128 3.401 ± 0.076 78.5 ± 3.8 27.9 ± 1.4 

B7 5.638 ± 0.125 3.356 ± 0.076 79.1 ± 3.8 28.0 ± 1.4 

BB 5.667 ± 0.125 3.374 ± 0.077 80.6 ± 3.9 28.6 ± 1.4 

B9 5.651 ± 0.124 3.354 ± 0.075 82.4 ± 3.9 29.0 ± 1.4 

BlO 5.623 ± 0.122 3.295 ± 0.072 89.2 ± 4.2 30.6 ± 1.4 ,_ _______ 
------------ ------------ i-------------- ------------

B12 6.058 ± 0.131 3.580 ± 0.080 96.9 ± 4.6 33.8 ± 1.6 

B14 5.518 ± 0.117 3.265 ± 0.071 78.3 ± 3.6 27.4 ± 1.3 
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which has 5% mole of Eu20 3• 

The sound velocity of both LA and TA phonons and corresponding elastic 

constants are shown in Table IV.14. Although it appears that the LA and TA 

sound velocities decrease slightly from B5 to BlO, it is not conclusive. The elastic 

constants, on the other hand, show a definite density dependence from BS to 

BlO. This can be seen from the relationship c = pv2, where v, in our case, does 

not change dramatically between samples. A plot of the Eu concentration de-

pendence of the elastic constants is shown in Fig. IV.15. Therefore, it appears 

that the glass system with no Eu ions present is harder to strain applying either 

a compression or shear stress than it is for the same system with just a small 

percent (less than 5%) of Eu ions. 

The Young's modulus, Bulle modulus and Poisson's ratio are presented in 

Table IV.15. Both the Bulle and Young's moduli show a density dependence of 
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Figure IV.15. Eu concentration dependence of the elastic constants of B5 to BlO. 
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Table IV.15 Young's modulus, Poisson's ratio, and Bulk modulus of Eu-glasses. 

Sample Poisson's Young's modulus Bulk modulus 
ratio (1010 dynes/ cm 2) (1010dynes/cm2) 

B5 0.221 38.2 45.7 

B6 0.224 34.2 41.3 

B7 0.226 34.3 41.8 

BB 0.225 35.0 42.5 

B9 0.229 35.6 43.7 

BlO 0.239 37.9 48.4 -------- -------------- r""'------------- ~-------------
B12 0.232 41.6 51.8 

B14 0.231 33.7 41.8 

first decreasing and then gradually increasing in value as the Eu20 3 is increased. 

Recall that the density of B5 exceeds that of B9. 

As we have seen in the Brillouin scattering section on lead silicate glasses, 

the larger the value of the Young's modulus, the more difficult it is to have the 

material strained by shearing stresses. Also, the larger the bulk modulus, the 

more difficult it is to compress the material. The Possion's ratio increases in 

value from 0.221 for B5 to 0.239 for BlO, indicating that the structural bonds 

become progressively ionic. This may be understood by the fact that the intro­

duction of the large Eu ions in the glass network breaks more of the Si-0 bonds 

that connects the Si04 tetrahedral units together, thereby creating additional 

nonbridging oxygen bonds. The bridging oxygen bonds are predominantly cova-

lent bonds whereas the nonbridging oxygen bonds are more ionic in nature. 
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The photoelastic properties of these glasses will now be presented. The 

correction factors used in determining the photoelastic constants are shown in 

Table IV.16 and the photoelastic constants are shown in Table IV.17. We cannot 

conclusively say whether p12 shows a density dependence as expected from Carle-

ton's model of photoelasticity. There is no clear density dependence of I p44 I 
which is in agreement with what Schroeder63 observed in ternary glass systems. It 

is interesting to note that the photoelastic properties of B5 and B6 are very 

similar even though there is a large difference in density. Perhaps the addition of 

0.1 % mole of Eu20 3 does not appreciably change the strain induced polarizibility 

of the two glasses. The photoelastic constants for B5 to BlO are plotted against 

Eu concentration in Fig. IV.16. 
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Figure IV.16. Eu concentration dependence of the photoelastic constants of B5 to 
Bl 0. 
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Table IV.16 Correction factors for the Eu-doped alkali-silicate glasses. 

Sample ~ Back reflection Solid angle Volume 
correction correction correction 

B5 1.006 1.000 1.088 0.9992 

B6 1.135 1.001 1.088 0.9992 

B7 1.032 1.002 1.102 0.9991 

B8 1.020 1.006 1.102 0.9991 

B9 1.019 1.008 1.110 0.9991 

BlO 1.009 1.013 1.146 0.9988 i---------~----------- ~----------- ----------.- i,...-----------
B12 0.9587 1.001 1.146 0.9988 

B14 0.9888 1.002 1.131 0.9989 

Table IV.17 The photoelastic constants of the Eu-doped alkali-silicate glasses. 

Sample P12 IP441 ITA!ILA 

B5 0.262 0.077 0.1213 

B6 0.263 0.079 0.1252 

B7 0.252 0.074 0.1226 

B8 0.251 0.075 0.1242 

B9 0.250 0.074 0.1253 

BlO 0.248 0.075 0.1335 1-------- -------------- -------------- --------------
B12 0.250 0.080 0.1460 

B14 0.233 0.067 0.1173 
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Finally, we briefly discuss the results of the dual-alkali modified Eu-doped 

silicate glasses. The samples B12, B14, and B9 have the same 2.5% mole concen­

tration of Eu20 3 but the amount of Na+ that is in B9 is split evenly into Na+ 

and Li+ for B12, and Na+ and K+ for B14. The B12 sample has a density that is 

higher than B9. This may be understood in terms of the field produced by Li+. 

Li+, having the smallest ionic radius of the three alkali ions, will have a larger 

field than Na+ or K+ and will contract the network and thus increase the density 

of the glass. The B14 sample has a slightly lower density than B9 because the 

field produced by K+ is smaller than Na+ and will not contract the network as 

much. These density measurements are in agreement with those done by 

Gangwere et al. 36 on similar glasses. 

The values of the sound velocities for both LA and TA phono~s, and cor­

responding elastic constants for B12 and B14 show the same trend in data that 

was exhibited by the single alkali-modified Eu-doped silicate glasses LS and KS 

samples which had been investigated by Gangwere et al.36 Namely, the Li sam­

ples (B12, LS) showed higher values of these properties than the K samples (B14, 

KS). For example, the elastic constants for LS were c11 = 103.5 and c44 = 35.3 

and for KS were c11 = 81.0 and c44 = 26.7, all in 1010 dynes/cm2• This trend has 

been attributed to the increase in alkali-oxygen bond length in going from Li to 

K due to the decrease in the field strength of the alkali ion.36 

The photoelastic constants of B12 are larger than B14. This is opposite to 

the trend that is displayed by LS and KS. It seems plausible that the presence of 

two alkali modifies the strain induced polarizibility in a manner that is different 

from the presence of one alkali. However, more systematic studies of mixed alkali 

ions in such rare-earth doped silicate glasses need to be done before a coherent 

picture can be put forward. 
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(b) Intensity-scan ( :nanosecond) 

In this section, we present the results of the nanosecond Intensity-scan measure­

ments on the Eu-doped alkali-silicate glasses that had a systematic Eu3+ concen­

tration variation. The theory and experimental parts of the technique have been 

presented in Chapters II and III. The procedure of deriving the nonlinear refrac­

tion coefficient from the data was done by comparing slopes of the Intensity-scan 

plots of our samples to that of a standard sample, which in our case was fused 

quartz. We used the accepted value of y = 2.5x10-7 cm2 /GW for the nonlinear 

refraction coefficient for fused quartz. 82 The nonlinear refraction coefficients for 

the glasses are shown in Table IV.18. 

A representative Intensity-scan plot is shown for BlO in Fig. IV.17. The 

samples were placed after the focus of the lens. The rise in transmission shown in 

the closed aperture Intensity-scan of Fig. IV.17a clearly indicates that the sample 

collimates the beam in the far-field and thus exhibits a positive :nonlinear behav­

ior. In the open aperture Intensity-scan shown in Fig. IV.l 7b, we failed to detect 

any nonlinear absorption for the range of intensities used. We always worked 

below the damage threshold of the glasses and did not use higher intensities for 

fear of damaging the samples. It may be possible that :nonlinear absorption oc­

curs at higher intensities and/or different wavelengths than the ones we used. 

The nonlinear absorptive processes in glasses are not well understood. The 

lack of long-range periodicity in glasses means that we cannot meaningfully apply 

the band-gap explanation for nonlinear absorption that exists for semi­

conductors. 84 In addition, we do not know what electronic states would take part, 

if any, in the nonlinear absorption process in these modified alkali-silicate glasses. 

Therefore, we will not discuss nonlinear absorption any further and will try to 

understand the behavior of the nonlinear refraction coefficient. 



132 

1.5 

C 1.4 
(a) 

.o 
(/) . (/) 
E 1.3 
(/) 
C 
ct1 ..... 
I- 1.2 
-0 
(I) 

.N 
1.1 C'CS 

E ..... 
0 
z 1.0 

0.9 

C 
( b) 

0 1.10 
(/) 
(/) 

E 
(/) 
C 
ct1 

1.05 ..... 
I-
"'O 
(1.) 
,N 

~~i cu 
E 1.00 ..... 
0 0 0 0 0 z 0 

0 . 9 5 L-.L.....l--1........l.-.L.....L-1...-L...l..-.1-.J_L_'--1.....J.---L-...J..---'----L.......L......L....,___._.1-J........JL-'--L-'--'-__.__._--'--'--' 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

Input Intensity ( GW I cm2 ) 

Figure IV.17 Intensity-scan data for BlO. (a) closed-aperture, and (b) open­
aperture. y = 21x10-7 cm2/GW. 
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Table IV.18 Nonlinear refraction coefficient, ratio of slopes and density values of 
the Eu-doped alkali-silicate glasses. 

Samples 
Slope Quartz 

y (10-7 cm2 /GW) Density (g/ cm 3) Slope sample 

B5 0.63 6.4 2.72 

B6 0.61 5.7 2.41 

B7 0.45 6.2 2.49 

B8 0.32 6.5 2.51 

B9 0.28 7.6 2.58 

BlO 0.11 21 2.82 1-----------~------------ ------------- -------------
B12 0.29 15 2.64 

B14 0.21 15 2.57 1-----------i-------------- -------------- r-------------
Si02 1.0 2.5 2.207 

As mentioned in the last section, density measurements indicate that the 

addition of Eu3+ in these glasses expands the undoped network to accommodate 

the large Eu ions. The y values of all the samples are listed in Table IV.18 and 

have an uncertainty of about 20% that arises primarily from irradiance calibra-

tion and uncertainty in the measured slopes. We see that the value of the nonlin-

ear refraction coefficient first decreases from 6.4x10-7 cm2 /GW for B5, which has 

no Eu3+, to 5.7x10-7 cm2/GW for B6, which has only 0.1% mole of Eu20 3• The 

nonlinear refraction coefficient then begins to rise and reaches its highest value of 

21xl0-7 cm2 /GW for the 5% mole of Eu20 3 sample BlO. The nonlinear refraction 

coefficient is plotted as a function of Eu20 3 concentration in Fig. IV.18 where we 
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Figure N.18 Plot of the nonlinear refraction coefficient for B5 through BlO and 
also showing fused quartz. The line is a guide for the eye. 

see that there is almost a three-fold increase in y value from B9 to BlO, with a 

difference of 2.5% mole of Eu20 3 between the samples. We will try to understand 

this behavior in terms of what we believe is happening on a microscopic level. 

We will first derive an expression for the nonlinear refraction coefficient 

based on a semiclassical model of the simple harmonic oscillator due to Boling et 

al. 81 The assumption is made that a transparent dielectric can be adequately de-

scribed by a solid made of atomic or molecular constituents and that each con-

stituent exhibits a linear electronic polarizibility aP) and an electronic hyperpo-

larizibility a.C3). The microscopic polarizibility Pi(t) induced in the ith constituent 

by an incident light wave E 0cosmt is given by 
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(IV.21) 

The macroscopic polarization P is taken to be the sum of the microscopic polari-

zation by P = LiNiPi, where Ni is the number density of the ith constituent. 

By approximating the local field correction with the Lorentz function (n2 + 2)/3, 
Boling et al. 87 expressed the third-order nonlinear susceptibility as 

( )
4 

(3) _ 1 n 2 + 2 (3) 
:x;1111 (-co:co,co,-co) - - "J:_Nia.i (co). 

24 3 . 
'I, 

(IV.22) 

Thus, we can see that the nonlinear refraction coefficient will depend on the hy-

perpolarizibility and the number density of each constituent. 

Nasu et al.80 have shown that the nonbridging oxygen has a larger a.<3) 

than a bridging oxygen. They were able to derive the hyperpolarizibilities of the 

following ions reported in (esu 10-35 cm3 /ion): (1) bridging oxygen a.<3) = 0.43, 

(2) nonbridging oxygen a.<3) = 0.60, (3) Na+, a.(3) = 0.60, (4) K+, a.<3) = 1.0, and 

(5) Rb+, a.<3) = 2.2. From their findings, it appears that the contribution to the 

total nonlinear refraction coefficient of the individual chemical species increases 

with increasing ionic radius. Since the valence electrons of large ions can be con-

sidered spherical, they can be easily distorted by strong optical fields. The 

bridging oxygen are covalently bonded, and their electrons are not expected to 

distort as much as the nonbridging oxygen. 

The glass structure becomes more ionic as the Eu20 3 concentration is in-

creased. This is due to the fact that the systematic addition of the large Eu ions 

increasingly breaks some of the oxygen bonds that connect the Si04 tetrahedral 

units together. For example, we would expect to find more nonbridging oxygens 

in BlO than in B5 per molar volume. However, we note from Table IV.18 that 
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there appears to be a density dependence of the nonlinear refraction coefficient. 

This may be understood in terms of the total number of hyperpolarizable entities 

and the magnitude of their a.<3) that exist in the glass per. unit volume. For the 

B5 sample, there are more hyperpolarizable entities in a unit volume of the glass 

than B6 and, therefore, should expect the nonlinear refraction coefficient to be 

larger for B5 than B6. The density of the glasses steadily increases from B6 to 

BlO with Eu ion concentration due to the larger mass of the ion. The Eu3+ ion is 

expected to exhibit a large a(3) because of its large ionic radius. Therefore, we 

should expect the nonlinear refraction coefficient to increase for B6 to BlO as the 

number of Eu3+ increases per unit volume. This conclusion appears to be sup-

ported by our data. The almost three-fold (2.8) increase in y from B9 to BlO does 

not seem unreasonable if we assume that the number density of Eu3+ doubles in 

going from B9 to BlO and also increases the number density of the nonbridging 

oxygen. 

Finally, we consider the B12 and B14 samples that contain mixed alkali. 

The percent of Na+ present in B9 is equally split into Li+ and Na+ for B12 and 

K+ and Na+ for Bl4. We did not detect any differences in y between the samples. 

In addition, they value is about twice that of B9 which just contains Na+. We 

would expect B14 to have a larger y than B12 because of the larger a(3) of K+ 

and B9 to have a larger y than B12 since the a(3) of Na+ is expected to be larger 

than that of Li+. 80 It appears that the presence of mixed alkali ions enhances the 

nonlinearity that is not apparent from the simple model of Boling et al.81 Addi-

tional studies need to be done concerning the contributions to y from this mixed 

alkali-effect before commenting any further. 
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(c) Intensity-scan (millisecond) 

We report the results from the millisecond Intensity-scan experiments that were 

performed on the Eu-doped alkali-silicate glasses that had the alkali ion replaced 

systematically from Li, Na, K, Rb, to Cs. These glasses had been investigated by 

Gangwere et al. 36 by Brillouin scattering and Behrens et al. 35 by four-wave mix­

ing and were available to us. Unfortunately, the Eu-doped alkali-silicate glasses 

with systematic Eu-variation were not available for this study. However, we ex­

pect the BlO sample to have a thermal nonlinearity comparable to the NS sam­

ple due to their similarity in composition. 

The glasses were fairly thick ranging from 2.75 mm to 4.37 mm but were 

optically thin when compared to the Rayleigh range of 12.1 mm, and we could 

safely use the thin lens approximation to derive the nonlinear refraction coeffi­

cients. Like the lead silicate glasses, the samples were placed before the focal 

point of the lens. The Intensity-scan plots are shown in Fig. IV.19, and the cor­

responding steady-state change in the index of refraction are shown in Fig. IV.20. 

From the Intensity-scan plot, we can conclude that the thermal nonlinear refrac-

tion coefficient Yth is positive because of the negative slope. The Yth values of the 

glasses are listed in Table IV.19 along with their absorption coefficients. These 

values do not follow a trend based on compositional characteristics such as in­

creasing ionic radii of the alkali ions. They do, however, strongly follow the 

strength in absorption. The KS sample has the highest absorption coefficient of 

1.98 cm-1 and has the highest Yth value of 27.6 cm2/GW. The RS sample has the 

smallest absorption coefficient of 0.24 cm-1 and therefore has the smallest Yth 

value of 4.35 cm2 /GW. Since Lin0 is directly proportional with a., these results are 

understandable. We are unaware of any thermo-optic coefficients derived for 
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Table IV.19 The thermal nonlinear refraction coefficients for the alkali-silicate 
glasses along with the absorption coefficients. 

Sample a (cm-1)* Yth (cm2/GW) slope (xl0-4/mW) 

LS 0.6 11.1 -5.308 

NS 1.49 17.9 -8.585 

KS 1.98 27.6 -14.39 

RS 0.24 4.35 -3.144 

cs 0.43 5.74 -4.312 

* After Ref. [36]. 

these glasses but expect dn/ dT to increase in the direction from Li to Cs because 

of the increasing polarizibility of the alkali ion.80 The graph in Fig. IV.21 clearly 

shows the absorption dependence of the thermal nonlinearity for these glasses. 

Therefore, it seems from our data that the absorption coefficient is the dominant 

factor that determines the thermal nonlinearity and also that the dn / dT values of 

the glasses are probably similar in magnitude. If dn/ dT was the dominating fac-

tor, we would expect Yth to increase from Li to Cs as can be seen from Eq. IV.15. 

By using the photoelastic constants and Poisson's ratio from Ref. [36], we 

may derive the contributions of laser induced stress to the conventional dn/dT 

value of these glasses. These values are shown in Table IV.20 along with the 

relevant parameters taken from Ref. [36]. The volume expansion coefficients ~ex 

are not known for these glasses and so we show (dn/dT)mc-0/~ex· vVe also show the 

value of (dn/dT)=o using a constant value for ~ex = 2lxl0-6 K-1 for all the 
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Fig. IV.21 Plot of Yth versus a. for the Eu-doped alkali silicate glasses. 

samples. This f3ex value is for a sodium silicate glass with 15% Na20. The laser 

induced stress dn/aI' is shown to increase as the alkali is changed from Li to Cs. 

This is expected because Gangwere et al. have shown that the glasses strain eas-

ier by changing the alkali from Li to Cs. The reason for this can be traced back 

to the increase in bond length between the alkali and the nonbridging oxygen 

due to the decrease in field strength of the alkali ion in going from Li to Cs. 

Finally, we calculate the electrostrictive contribution to the nonlinear re-

fraction coefficient which is shown in Table IV.21. Although we have designated 

it by Yth, there are actually other nonlinear effects that take place. The electros-

trictive contribution is shown to increase as the alkali is changed from Li to Cs 
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but minuscule compared to the total nonlinear refraction coefficient. This justi-

fies our using the designation Yth· 

Table IV.20 The laser induced stress dn/d:r for the alkali-silicate glasses along 
with photoelastic constants and Poisson's ratio. 

Sample * * Poisson's ( dn/ dT)-o/f3e$ (dn/dT)-o P12 Pu 
ratio* (x106 K-1) 

LS 0.191 0.087 0.24 0.147 3.09 

NS 0.230 0.126 0.24 0.177 3.71 

KS 0.207 0.125 0.25 0.159 3.33 

RS 0.244 0.158 0.25 0.186 3.91 

cs 0.251 0.183 0.26 0.199 4.18 

* After Ref. [36]. 

Table IV.21 The electrostrictive contribution to the total nonlinear refraction 
coefficient along with LA sound velocity and density. 

Sample VLA (km/s)* density (g/cm3)* Yes (10-8 cm2 /GW) 

LS 0.6 3.22 5.02 

NS 1.49 3.21 7.73 

KS 1.98 3.15 6.97 

RS 0.24 3.47 9.57 

cs 0.43 3.74 11.4 

* After Ref. (36]. 



CHAPTER V 

SUMMARY AND RECOMMENDATIONS 

This dissertation concerned the nonlinear optical properties of binary lead silicate 

and Eu-doped alkali-silicate glasses. We attempted to understand the nonlinear 

optical properties in terms of the compositional changes that occurred between 

samples of the same family and also used some simple models that relate the 

nonlinear refraction coefficient to the hyperpolarizibilities of the constituents ions 

and other material properties. Based on the current level of understanding of the 

structure of glasses, the conclusions drawn from our results provide reasonable 

explanations of the observed nonlinear behavior. 

We will first summarize the main findings of the lead silicate glasses. The 

consensus appears to be that PbO can act as a network modifier at small concen­

trations and a network former at large concentrations. The major disagreement 

seems to be in the manner in which PbO forms a network. The Brillouin scatter­

ing results indicate that the glass structure becomes progressively weaker as the 

PbO concentration increases. The gradual disappearance and reappearance of the 

TA phonon as the PbO content increased from 32% to 62% (mole) was inter­

preted as an indication of a structural change from a stronger silicate-based glass 

to a weaker lead-based glass. 

The nonlinear optical properties of the lead silicates were seen to increase 

with PbO concentration on both the nanosecond and millisecond time-scales. The 
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optical Kerr effect is most likely the dominating factor to the nonlinear refractive 

index on the nanosecond time-scale. The thermal and electrostrictive effects did 

not have sufficient time to develop, and thus their contributions to y are much 

smaller. The large hyperpolarizibility of the lead ions seems to be the cause of 

the large y values observed. The nonlinear absorption coefficient ~ was also seen 

to increase with PbO content and the electrons taken part in the process were 

probably excited to the 5.3 eV band in the UV spectrum. The~ values were also 

seen to scale inversely with the UV absorption edge. The millisecond Intensity­

scan results showed that the thermal change in the refractive index also increased 

with PbO content and was due to the large polarizibility of the lead and non­

bridging oxygen ions. The laser-induced stress contribution to the conventional 

value of the thermo-optic coefficient was seen to increase with PbO content be­

cause it became progressively easier to stress the glasses. 

The elastic properties of the first family of the Eu-doped alkali-silicate 

glasses showed a density dependence. The photoelastic behavior (at least I p44 I 
and perhaps p12) was in accordance with the theory developed by Carleton. The 

nonlinear refraction coefficient on the nanosecond time-scale for the same family 

of Eu-doped alkali-silicate glasses showed that the hyperpolarizibility of the Eua+ 

ion was a large contributing factor. No nonlinear absorption was detected for the 

intensity range and wavelength used in the experiment, though it may be ob­

servable at higher intensities and/or other wavelengths. The thermal change in 

the index of refraction as determined from the millisecond Intensity-scans for the 

second family of Eu-doped alkali-silicate glasses showed that the absorption coef­

ficient was the determining factor. 
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Finally, we mention specific advances we have made in nonlinear optics. A 

generalized theory was developed to account for beam ellipticity for the popular 

Z-scan and related Intensity-scan techniques for both optically thin and thick 

media. It should be mentioned that we were the first to investigate the effects of 

beam ellipticity on these two nonlinear optics techniques. For the Intensity-scan, 

we have shown that if there is uncertainty about the quality of the beam profile, 

then it is possible to take the ratio of slopes to determine the nonlinear refraction 

coefficient. The Intensity-scan technique was extended to the millisecond time­

scale to detect thermal nonlinearities and was shown to be highly sensitive to 

small wavefront distortions. A modified version of the familiar Brewster's angle 

technique was also developed to measure the refractive indices of materials both 

quickly and accurately. 

The nonlinear optical properties of glasses need to be investigated further 

from both a fundamental and technological point of view. In particular, we need 

to understand the role of nonlinear absorption better both theoretically and ex­

perimentally. The dispersion of the nonlinear refraction coefficient and its behav­

ior near resonance would also prove interesting. By comparing and contrasting 

data for y and 13 over a wide frequency range with that of semiconductors, it may 

be possible to develop a consistent theory that explains the nonlinear behavior of 

glasses. Glasses with high nonlinear refraction coefficients, such as the lead sili­

cate system, should be studied in the femtosecond regime to determine their elec­

tronic nonlinearity without having complications from other effects. Determining 

the nuclear contribution to the nonlinear refraction coefficient for these glasses 

from Raman scattering measurements could possibly be done in the future. A 

knowledge of the origin and dispersion of y and 13 is essential to a better under­

standing of nonlinear optical properties of glasses. 
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1. Introduction 

APPENDIX A 

EFFECTS OF BEAM ELLIPTICITY ON 
THE Z-SCAN SIGNATURE 

A wave optics theory pertaining to Z-scans was developed by closely following 

the original work of Sheik-Bahae et al.1'2 so as to compare and contrast the ef-

fects of beam ellipticity. To that end, we will call the beams with circular sym-

metry circular beams and elliptic otherwise, though it should be clear that a cir-

cular beam is just a special kind of an elliptic beam and the theory developed 

applies to all elliptic beams. We describe the various beam shapes by an elliptic-

ity parameter e, defined as the ratio of the semi-major to semi-minor axes. We 

demonstrate how the ellipticity changes the Z-scan signature and how additional 

peaks and valleys arise for closed apertures. 

2. Theoretical Results 

The overall behavior of T(z) as given in Eq. II.43 is now studied. Recall that x 

and y continuously change throughout the Z-scan. Far away from the focus both 

Ix, y I >> 1 and so T(z) = 1. It is only when z - Zx,y i'll;i z0x,Oy that there is appre-

ciable change in T(z) in that the transmission goes above or below the T(z) = 1 

line. There is a null in the Z-scan when the transmission crosses this line and it 
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occurs when the numerator in the radical of Eq. II.43 equals zero. This translates 

to the following relationship between x and y:-

x(y2 + 3) + y(x2 + 3) = 0 . (A.l) 

The solutions of this equation are x = -y, -3/y. When x = -y, the null occurs at 

Znull = (zxZQy + ZyZQx )/(zox + Zoy) · (A.2) 

This expression applies to both circular and elliptic beams. Note that for a circu­

lar Gaussian beam, Zx = Zy = Zmin and thus Znull = Zmin as it should be. On 

the other hand, when x = -3/y another null is located at 

Znull = 1 {(zy + zx) ± ~(zy - zx)2 -12z0xzoy} (A.3) 

which can occur only for an elliptic beam provided that the waist separation 

I Zy - Zx I is greater than or equal to ~12z0xzoy . If the waist separation is equal 

to this quantity, then the additional null will be located at the midpoint between 

the waists. If it is not, then there will be two nulls equidistant from the midpoint 

of the waists. It can be concluded that the Z-scan signature for such a beam may 

contain an additional peak and valley depending on the beam ellipticity and 

particular geometry used. This conclusion is in qualitative agreement with a re­

cent experiment where the incoming beam was circular but the sample studied 

was anisotropic. 88 This work is conjugate to that of Ref. [88) in that in both 

cases, the electric field at the exit plane has a nonlinear phase shift that 1s am­

sotropic. 

We now investigate the geometry-independent on-axis transmission as 

given by Eq. II.43 graphically. A positive nonlinearity is chosen to illustrate the 

theory but it is a simple matter to extend it for a negative one. A contour plot 

with a small nonlinearity ~<I>o = 0.1 is shown in Fig. A.l from which the effects 
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of beam ellipticity can be seen. All elliptic beams can be represented by a curve 

on this plot. We can write this quantitatively with the line 

y = (z0x/zoy )x- (A zxy /zoy) (A.4) 

where A Zxy = Zy - Zx is the separation of the waists, and we take wy and wx to 

be the semi-major and minor axes, respectively. Thus, for an elliptic beam the 

intercept is always negative ( A zxy ~ 0) and the slope is always greater than 1 

(zox ~ zoy ). The curves x = -y and xy = -3 demarcates the region where the 

transmission goes above or below the ytz) = 1 line. The major and minor con­

tours are shown with solid and dotted lines, respectively. The extraneous lines at 

the ends of the line x = -y are just noise in producing the contour plot. By fol­

lowing they = x line, the circular Gaussian Z-scan is reproduced. Any other line 

given by Eq. A.4 represents an elliptic beam. It is easy to see from this plot how 

the signature gets modified and also how an additional peak and valley may ap­

pear in the Z-scan. 

Some specific examples are now discussed so that the role of beam elliptic­

ity may be better understood. We take a 250 mm focal length lens, a small non-

linearity A<l>0 = 0.1, and a prefocused beam radius of wy = 2 mm, wx = 2, 1.5, 1, 

0.4, 0.3, and 0.2 mm. The graphs are shown in Fig. A.2. For a negative nonline­

arity, the plots are identical but mirrored on the ytz) = 1 line. We notice that 

with an increase in ellipticity both peak and valley reduce from their symmetric 

maximum and minimum that was attained in the circular limit. However, the 

valley tends to approach T(z) = 1 sooner than the peak as the ellipticity is in­

creased. In Fig. A.3, a Z-scan with an ellipticity of 5.5 (wy = 1.1 mm, Wx = 0.2 

mm) with the same nonlinearity is shown where an extra peak is observed at 
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about 195 mm. The transmission actually reaches a very weak local minimum at 

52 mm. The dominant peak and valley occur at 256 mm and 236 mm, respec­

tively. The nulls are located at 243 mm, 213 mm, and 172 mm. This particular 

graph (Fig. A.3) corresponds to the line y = 16.48x - 15.05 on the contour plot. 

There is a simple physical explanation for these modifications in the Z­

scan signature. It can be understood in terms of the astigmatic focus of the 

beams and two crossed cylindrical lenses representing the sample, each lens 

modifying a beam. If the waists are separated by a large distance, then the effects 

of the individual beams can be seen in the Z-scan. The smaller x-beam focuses 

closer to the lens than they-beam, i.e., Zx < Zy and thus there are three regions 

along the z axis that need to be studied closely. When the sample position z is 

such that z < Zx < zy, the incoming focused beams incur a nonlinear phase shift 

that causes both of them to diverge in the far-field and the transmission drops 

below the T(z) = 1 line. If the waist separation is large (zx << Zy ), then the 

sample for positions z < Zx may be near the maximum lensing position of the x­

beam. In that case, as z increases from z < Zx to z > Zx the transmission will 

initially go down, pass through a local minimum, and then rise. If the waist 

separation is small, then the transmission will continue to go down for z > Zx. 

When Zx < z < zy, the incoming x-beam is defocusing while the y-beam is still 

focusing at the sample position. This means that the x-beam tends to collimate 

and they-beam diverge in the far-field thus raising the transmission in a compet­

ing manner. The transmission will rise as the waist separation increases, ap­

proaching the T(z) = 1 line and eventually surpassing it which is indicative of a 

secondary peak. A little further away (increasing z) in the same region, the larger 
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y-beam will dominate and pull the transmission below this line. If the waists are 

located very close to each other, then the transmission will simply go down until 

it reaches its minimum value and eventually rise. Finally, when Zx < zy < z 

both incoming beams are diverging at the sample position which tend to colli­

mate in the far-field and thus raise the transmission until maximum collimation 

is reached. As the sample gets further away from both focuses, the nonlinearity 

induced becomes smaller and the transmission drops to the T(z) = 1 line. 

We have numerically looked at the behavior of the peak-valley transmis­

sion difference. Since there may be an extra peak and valley in the Z-scan, we 

define ATp-v as the difference between the :tnajor peak and valley near the focus of 

the y-beam. A graph is shown in Fig. A.4 where ATp-v divided by A<I>0 is plotted 

against beam ellipticity. We keep the large waist Wy at 2 mm and change wx­

Two different lenses are used to separate the waists; a 50 mm and 500 mm focus­

ing lens. As the waist separation Azxy increases for a given ellipticity e, the ratio 

ATp-v / A<I>0 decreases. This nonlinear change in the ratio as a function of e and 

Azxy is dramatic for large ellipticity. 

We can now investigate the qualitative effects of beam ellipticity for the 

open-aperture expression. During the Z-scan, the only quantity that is changing 

in Eq. II.49 is the beam area. For a beam with small ellipticity and waist sepa­

ration, the area decreases, reaches its minimum and then increases parabolically 

in a symmetric manner as a function of sample position z. Thus, the Z-scan sig­

nature is expected to resemble that of a circular beam. However, for large ellip­

ticity and waist separation the beam area changes like an asymmetric parabola. 

This is because the smaller x-beam focuses closer to the lens than the larger y­

beam and they change the beam area in a competing manner for positions be-
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tween their focus. By following the beams, it is easy to see that the net effect is 

to reduce the area for positions closer to the lens and increase it for all positions 

past the geometric focus in an asymmetric way. Hence, in general, we can expect 

a small degree of asymmetry in a open-aperture Z-scan for an elliptic beam. 

The geometry-independent expression can be easily obtained for the open­

aperture transmission from Eqs. II.50 and II.51 and is now graphically studied. A 

contour plot is shown in Fig. A.5. By using Eq. A.4, one can investigate the na­

ture of the open aperture Z-scan signature for any elliptic beam. In particular, 

we look at the Z-scan of beams with waists Wy = 2 mm, Wx = 2, 1, and 0.5 mm, 

with Q0 = 0.9, and a 250 mm focusing lens as shown in Fig. A.6. The location of 

the transmission minimum is dominated by the large beam and the overall Z­

scan shape changes from its circular counterpart. The main feature of the plots is 

the fact that the transmission minimum increases with increasing ellipticity. 

Since the knowledge of this minimum value and input irradiance are required 

from the experiment to find f3, 3 it is important that the beam ellipticity be con­

sidered. The other characteristic of an open aperture Z-scan is its asymmetry. A 

Z-scan of a beam with waists wy = 0.8 mm, wx = 0.2 mm with Q0 = 0.9 and 

using the same lens is shown in Fig. A. 7 where this asymmetry is clearly observ­

able. This graph corresponds to the equation y = 8.74x - 7.94 on the contour 

plot. 

An interesting aspect about the Z-scan experiment is its applicability in 

optical limiting experiments. For a circular beam, the sample should be placed at 

the maximum lensing position of the beam which is at the valley of the Z-scan. 

We can similarly find the optimal position of the sample for an elliptic beam by 

simply placing it at the waist of one of the beams and theoretically scan with the 
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other. That is, set x = 0 in Eq. II.43 (sample is placed at the waist of the x­

beam) and solve for y where T(z) is a minimum. We find that when y = -1.123 

or Azxy = 1.123z0y, then T(z) is a minimum. Thus for a given beam ellipticity, 

by suitably choosing a lens it is possible to minimize the transmission in an opti­

cal limiting experiment. 

3. Conclusion 

We have theoretically studied the effects of beam ellipticity on both open and 

closed aperture Z-scans. A thin lens wave optics model was developed closely 

following the formalism for circular beams to which it was compared and con-

trasted. The beam ellipticity e and waist separation Azxy were found to greatly 

influence the Z-scan signature. The appearance of an extra peak and valley in a 

closed aperture and an asymmetry in an open aperture Z-scan is predicted by the 

theory. From the contour plots of the geometry-independent transmissions, it is 

possible to envision any kind of Z-scan based on beam ellipticity. The peak-valley 

transmission difference ATp-v was found to decrease nonlinearly as a function of e. 

It is clear that an assumption of a circular beam regardless of its ellipticity will 

produce Z-scan signatures which will deviate from experimental data. The 

amount of deviation will depend on how elliptic and how tightly focused the 

beam actually is in addition to the strength of the nonlinearity. We have found 

that for small waist separation and ellipticity, the circular beam formalism can 

be a g,JOd approximation. However, the anisotropy induced by the elliptic beam 

should be accounted for in order to obtain better agreement between theory and 

experiment. 
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Figure. A.1 A contour plot of the closed aperture transmission. The circular 
beam lies along y = x. All possible closed Z-scan signatures can be 
envisioned from this plot by using Eq. A.4. The solid and dotted 
lines represent major and minor contour lines, respectively. 
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Figure. A.2 Specific examples of the effects of beam ellipticity on the closed ap­
erture Z-scan signature. A small nonlinearity of ~cI>o = 0.1 and a 
250 mm focal length lens are used. The beams are characterized by 
their ellipticity. (a) The beams have waists Wy = 2 mm, Wz = 2, 
1.5, and 1 mm. (b) The beams have Wy = 2 mm, Wz = 0.4, 0.3, and 
0.2 mm. 
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Figure. A.3 A beam with an ellipticity of e = 5.5 (wy = 1.1 mm, wx = 0.2 mm) 
and a sample nonlinearity of .1<Do = 0.1, is shown in a closed aper­
ture Z-scan where an extra peak is observed. This curve corre­
sponds to y = 16.48 x - 15.05 as given by Eq. A.4. 
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Figure. A.4 The nonlinear decrease of the ratio .1 Tp-v/ .1<P0 as a function of el­
lipticity. The waist Wy is kept at 2 mm and Wz is changed. Two fo­
cusing lenses, 50 mm and 500 mm, are used to separate the waists. 
The arrow denotes the direction of increasing waist separation. 
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Figure. A.5 A contour plot of the open aperture transmission. The circular 
beam lies along y = x. All possible open aperture Z-scan signatures 
can be envisioned from this plot by using Eq. A.4. The solid and 
dotted lines represent major and minor contour lines, respectively. 
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Figure. A.6 Specific examples of the effects of beam ellipticity on an open aper­
ture Z-scan signature. A dimensionless irradiance of Q0 = 0.9 and a 
250 mm focal length lens are used. The beams have waists wy = 2 
mm, W:c = 2, 1.0, and 0.5 mm, and are characterized in terms of 
their ellipticity. 
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Figure. A. 7 An open aperture Z-scan for a beam with waists w!l = 0.8 mm, and 
W:c = 0.2 mm and a focusing lens of 250 mm is shown. A dimen­
sionless irradiance of Q0 = 0.9 is used and a small degree of asym­
metry is observed. 



1. Introduction 

APPENDIX B 

PROPAGATION OF ELLIPTIC BEAMS 
IN A KERR MEDIUM 

Self-focusing of optical beams have been studied extensively for the past three 

decades. Both numerical and approximate methods have been employed to solve 

the scalar wave equation for beam propagation in nonlinear media. The numeri-

cal study of the nonlinear wave equation with and without the paraxial approxi-

mat ion reveals details of the beam propagation characteristics. However, a 

mathematically tractable method of approaching the subject is to assume that 

the beam maintains its Gaussian shape as it propagates though the nonlinear 

media. This is known as the constant-shape approximation which Marburger89 

examines in detail. It correctly predicts the qualitative features of the beam 

propagation but overestimates the nonlinearity. Nevertheless, it is a useful tool in 

studying the nonlinear propagation of beams in Kerr media. 

An elliptic Gaussian beam is the general case of the well-studied circular 

beam. Elliptic beam propagation in a Kerr media has been investigated by Vo-

rob'jev90 and Schwarzburg91 in the early seventies and again twenty years later 

by Cornolti et al.92 The authors all used the Eikonal method of Akhmanov, giv-

ing similar predictions. Recently, a Lagrangian method was used in connection to 
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a beam-deflection experiment.93 Both these methods have, in common, a pair of 

coupled second-order differential equations for the beam radii that need to be 

solved numerically in order to study the beam propagation. 

In this appendix, we apply the well-known q-parameter formalism to 

study the propagation of elliptic Gaussian beams in Kerr-type media using the 

constant-shape approximation. This method was first applied by Y ariv et al. 94 to 

study circular beam propagation in nonlinear media. The formalism provides two 

new features that is not possible with the Eikonal or Lagrangian methods: it al-

lows us to (1) derive closed form expressions for the beam radii for incremental 

distances, and (2) identify an ellipticity-dependent critical power for self-focusing 

for each one-dimensional beam. There are some important differences in the 

manner which an elliptic beam propagates when compared to a circular beam. 

We graphically demonstrate what these differences are and show the equivalence 

of the q-parameter formalism to the Eikonal and Lagrangian methods 

2. Theory 

The starting point is the detailed theory presented in Chapter II. We can 

easily find expressions for the beam radii and radii of curvature for each of the 

beams within the medium by using Eq. II.8,: 

W2 (z) = W2 (0){sin2 (!)x,yZ ( 1 +--1-) 
x,y x,y 2 Q2 (0) d2 (0) 

(!)x,y .L"x,y x,y 

2 sin 2q,x,yZ } 
+ COS (!)x,yZ + (Q) 

Rx,y (!)x,y 

(B.l) 

and 1 _ w;,y(O) {cos 2<px,yZ sin 2cpx,yZ ( 1 1 _ 2 J} (B.2) 
- 2 + 2 + 2 <px Y ' 

Rx,y(z) Wx,y(z) Rx,y(O) 2cpx,y Rx,y(O) dx,y(O) ' 
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where dx,y = nnowiy (0) / A is the diffraction length for each beam. The positions 

0 and z should more accurately be replaced by z and z + ~z, i.e., these expres-

sions hold for incremental distances. In addition, we can identify a critical power 

for self-focusing for each of the beams from Eq. B.l. If the incoming beams are 

parallel, then the following condition holds: 

w;,y(z) _ 2 ( _ 1 J 1 
2 0 - COS <Px,yZ 1 2 d2 + 2 d2 

Wx,y ( ) <Px,y x,y <Px,y x,y 
(B.3) 

Thus, wx,y becomes independent of z or is trapped initially when cp;,yd;,y = 1 or, 

equivalently, when P / P crx,cry = 1, 

where (B.4) 

and p = A2 Wx(O) = _Per_. 
cry 8ynn0 wy (0) e(O) 

(B.5) 

Here, Per is the critical power for self-focusing for a circular Gaussian beam 

which is indEpendent of the beam radius and e(O) is the initial ellipticity. Recall 

that from our definition of ellipticity, e(O) ~ 1. 

To gain more insight into the beam propagation the evolution of the q-

parameters are examined. By taking a differential variation of Eq. II.6, we find 

_!},_ (~-_l ___ 1 __ n2x,2y 
dz qx,y) - q;,y n0 

(B.6) 

from which a pair of coupled differential equations are derived: 

(B.7a) 
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(B.7b) 

These equations governing the evolution of the beam radii are the fundamental 

equations derived by the Eikonal and Lagrangian methods. The similarity of the 

above equations to that of the Newtonian mechanics suggests that the beam 

evolution can be viewed of as a particle of mass k2/2 moving in a potential U 

given by 

(B.8) 

By taking cpz to be small in Eq. B.1, we derive an important relationship between 

the beam radii during propagation: 

2 2 4H 2/k2 2 ( · · ) 2 2 Wx + Wy = Z + Z WxQWxO + WyOWyQ + WxO + WyO, (B.9) 

where 
k2(w!o + w;o) 1 1 2P/Pcr 

H= +-+-- . 
4 w 2 w 2 wx0wy0 xO yO 

(B.10) 

Here, H is the Hamiltonian of the system and the z dependence of wx,y is to be 

understood. The following replacements have been made: wx,y(O) with Wxo,yO and 

wx0,y0 = dwx,y / dzjz=O = WxO,yO / Rxo,yO. Note that Wxo,yo is equal to the mini-

mum beam radii wox,Oy when the initial beam is parallel. The relationship ex-

pressed by Eq. B.9 can also be derived from Eqs. B.7a and B.7b. 

To make the analysis easier, we will hereafter assume the incoming beam 

to be parallel ( wxo = wy0 = 0 ). The first interesting finding is that if H = 0, then 

the elliptic beam will oscillate indefinitely. The power for this beam trapping is 

Ptrap = } ( ea + 1/ ea )Per · (B.11) 
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However, if the power is greater than Ptrap, then the beam will focus at a dis-

tance z I given by 

3. Theoretical Results 

k 
ZJ =-

2 2P/Pcr 1 1 
(B.12) 

WoxWOy 

We graphically investigate the propagation of elliptic Gaussian beams as a func-

tion of input power. Our formalism provided us with separate critical powers of 

self-focusing for each of the beams. Cornolti et al.92 have already shown the ef-

fects of two other powers on the propagation, namely, P = Ptrap+Pcr and P = 

2Ptrap and we will not rederive their results. For illustration, we take an elliptic 

beam with initial beam radii Wy = 2 mm and W:i; = 0.5 mm and a positive non­

linearity such that the Per = 10 KW. Thus, the critical powers for focusing the 

individual beams are P = = 40 KW and P cry = 2.5 KW and the beam trapping 

power is Ptrap = 21.25 KW. In Fig. B.la, P = Pery and they beam initially gets 

trapped but then diverges. However, when P cry < P < Ptrap < P crx the y beam 

and depending on the power the x beam oscillates as shown in Figs. B. l b-c. The 

beams become trapped when P = Ptrap and the ellipticity is shown (Fig. B.ld) to 

oscillate between two extrema· e0 and 1 / e0• When P > Ptrap, the beams will oscil-

late and then focus as in Fig. B.2a. However if P = ~rap+Pcr, then the beams fo­

cus with no crossing (Fig. B.2b). Interestingly, when P = 2~rap the beam focuses 

with constant ellipticity as shown in Fig. B.2c. In all the above cases, the beam 

ellipticity never exceeded its initial value during propagation. This condition is 

violated when P > 2Ptrap as shown in Fig. B.2d. 
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Figure B.1 Elliptic beam propagation in Kerr media. P==40KW, Pcry=2.5KW, 
Pcr=lOKW, Ptrap=2l.25KW. In (a) P=2.5KW, (b) P=lOKW, (c) 
.P=20KW, and (d) P=21.25KW. 
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Figure B.2 Elliptic beam propagation in Kerr media. Pcrx=40KW, P cry=2.5KvV, 
Pcr=lOKW, Ptrap=21.25KvV. In (a) .P=22KW, (b) .P=31.:.::5KvV, (c) 
.P=42.5KW, and (d) .P=44KW. 



APPENDIX C 

MULTI-PASS TANDEM FABRY-PEROT 
INTERFEROMETER 

An FP interferometer consists of two plane mirrors that are highly polished 

(typically A/100 or better) and are held very parallel to each other. One is usu-

ally fixed and the other is movable. If the mirrors are separated by a distance L, 

then the transmission T is given by 

(C.l) 

where, Tmax is the maximum possible transmission which is determined by sys-

tern losses, and Fis the finesse which is a quality factor that depends primarily 

on mirror reflectivity and flatness. From Eq. C.l, it is clear that only the wave-

lengths A that satisfy the standing wave condition of L = ! pA, where p is an in-

teger, will transmit. If the spacing L is varied, the FP will transmit light at dif-

ferent wavelengths and can thus be used as a spectrometer. A typical FP trans-

mission is shown with three orders in Fig. C.l. The spacing between the trans-

mission peaks t,.).. is called the free spectral range (FSR) and the full-width at 

half maximum of the peak DA determines the resolution. The finesse of the FP is 

defined as, F = 6.A/OA. It is important to point out that the FP will transmit all 

light satisfying the standing· wave criteria; so the observed spectra must lie 
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sirable to have a FSR large enough to encompass the spectrum of interest. How­

ever, by increasing the FSR, we decrease the resolution. 

This is when the tandem operation of two FP interferometers becomes 

useful, i.e., operating two FP interferometers one after the other. Each FP 

transmits independently and their transmission will depend on their individual 

mirror spacing (See Fig. C.l). If the ratio of the mirror spacing of one FP to the 

other is always a constant, then the transmission from the tandem system will be 

a combination of the two spectra. It is easy to see from Fig. C.1 that the central 

peak of both the FP interferometers will combine but the side peaks will cancel 

one another, i.e., when one FP transmits the other does not. What remains is a 

central transmission peak with several "ghost" peaks arising from the minute 

transmission overlap of the side orders. The side peaks will eventually align and 

give rise to another transmission peak but this will occur after many orders 

(about 20 in our case). Thus, we can increase the FSR while maintaining the 

same resolution. 

We spectrally analyzed the signal from our Brillouin scattering experi­

ments using a multi-pass tandem Fabry-Perot interferometer developed by Dr. J. 

R. Sandercock. Traditional FP interferometers suffer from nonlinear scans, mir­

ror tilting during the scan, and stability problems and they are not particularly 

suitable for tandem operation. Changing the mirror spacing is also tedious. These 

difficulties are not present in the Sandercock design. This system makes use of a 

compound translation stage for scanning which is the key element that makes 

this design superior to other systems. Complete details of the interferometer con­

struction and operation can be found in the manuai95 and our supplementary 

notes. 96 However, we do highlight some of the design features so that the basic 

operating and alignment procedures become clearer. All instruments necessary 
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for monitoring and stabilizing the FP came with the system. There are two FP 

interferometers in the Sandercock system which are operated in tandem to give 

the high resolution needed for Brillouin scattering. The arrangement of the mir-

rors are shown in Fig. C.2. There is a deformable parallelogram at the base of 

the compound translation stage on which the two scanning mirrors are placed. It 

is acted upon by a single piezoelectric transducer which ensures that the mirrors 

will always scan synchronously and linearly. 
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Figure C.l A transmission spectrum of a Fabry-Perot interferometer. /J."A is the 
free spectral range and OA is the full-width at half maximum. The 
length of the cavity in (a) is larger than that of (b). In a tandem 
system, both the transmissions spectra from (a) and (b) combine to 
give a large free spectral range and high resolution. 
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This is used for small scanning displacements, typically less than 3 µm. The de-

formable parallelogram stage rests on a crossed roller translation stage that is 

used for large mirror spacing displacements, typically several millimeters. All 

parts of the mirrors move to within a few angstroms during a scan of 3 µm and 

about 0.5 µm during a large mirror spacing displacement of a few millimeters. 

Furthermore, the relative spacing of the two FP interferometers is always within 

2 nm and is maintained during scanning .. This level of stability can not be 

achieved with the traditional FP. 

........... . 

: ...__ 

. . 
. . . ..·, 

..... .. ··• 
direction of movement 

Figure C.2 Compound translation stage of the FP interferometer with two mir­
rors mounted on the stage. The ratio of 11 to 12 is fixed. Both 
FP's always scan synchronously. 
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interferometers operating in tandem. Another impressive feature is that we can 

scan up to ten orders with each order being identical. 

The first interferometer (FPl) spacing is monitored with a capacitor and 

is displayed to within 5 µm on a micrometer gauge on the side of the interfer­

ometer box. We therefore know the mirror spacing very accurately and do not 

have to indirectly calculate it using known Brillouin shifts of a standard sample 

such as fused quartz. The scattered light passed through both FP mirrors three 

times (multi-pass) and through many other optical elements before going into the 

light detection system. Such multi-passing greatly enhances the contrast or signal 

to noise. The interferometer control unit had knobs to finely adjust the vertical 

and horizontal orientation of the nonscanning interferometer mirrors and also the 

relative spacing between the interferometers. A course adjustment of these mirror 

orientations and separation were placed on the side of the "light-tight" interfer­

ometer box in the form of toggle switches. 

A light modulator in the form of a mechanical shutter also came with the 

FP system. It was mounted on the outside of the interferometer opening and had 

a variable pinhole entrance on the front face and a diffuser on one of the side 

faces. A weak reference beam was guided on to the diffuser where a beam splitter 

inside the modulator directed it to the FP mirrors. The modulator would be 

timed such that when the strong Rayleigh signal from the sample was about to 

be scanned the shutter would open and let the reference beam through while 

blocking the signal from the sample. This was always used during our experi­

ments. There is also an output pinhole within the interferometer box which is set 

to be 1.5 times larger than the input pinhole. The setting of both pinholes de­

termines the overall finesse. 
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A unique and very useful feature of the Sandercock system was the ability 

to align both FP mirrors without having to even open the interferometer box. 

That is, the alignment could be done electronically from outside the interferome­

ter. The reference beam was always used for this purpose. This was accomplished 

with a set of optics that could be moved in and out of the beam path leading to 

the mirrors. The optics would guide the reflected signal into the detection system 

and the mirrors could .be aligned in reflection mode. The reflection spectra looked 

like a high background plateau punctuated with sharp valleys representing the 

transmission of the FP mirrors. Such a spectra is shown in Fig. C.3 with two or­

ders from both FPs. The second interferometer (FP2) was deliberately mis­

aligned so that we could calculate the correspondence of the FSR of FPl with 

the channel numbers of the data acquisition system. 

In practice, we would use the interferometer controls to maximize the 

depth of the transmission valleys and then adjust the relative spacing of the two 

FP interferometers such that the valleys of one pair would coincide. The system 

would be then switched to transmission mode by moving the alignment mode 

optics out of the way. The single resulting transmission peak would then be 

moved to the middle of the scan and improved upon by the fine adjustments on 

the interferometer control unit. The stabilizers were then turned on and a win­

dow would be set on the spectra covering the central peak to blank out the 

Rayleigh line during scanning. 

The overall performance of the FP interferometer can be checked by 

looking at the Brillouin scattered light from Plexiglas®. In a backscattering ge­

ometry, the Brillouin shifts of the LA phonons (TA phonons are not allowed in 

backscattering) should be at 0.547 cm-1, and should give 5-10 cts/ms/mW (5 is 
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more common). We always measured 3-4 cts/ms/mW due to the low quantum 

efficiency of the PMT. 
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Reflection spectra of the tandem FP interferometer. The smaller 
peak is that of FP2 and was deliberately misaligned. The separa­
tion of the FPl valleys was recorded. This allowed us to make a 
correspondence between the channel numbers of the multichannel 
analyzer and our FSR 
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We conclude this FP section by showing a high quality scan of a silicon 

wafer (001) that was taken in a back-scattering geometry (Fig. C.4). The results 

agree with those taken by Sandercock97 and are discussed in detail in his paper. 

The longitudinal, transverse, surface phonons and the central mode along with 

the Rayleigh peak are clearly seen. The laser power at the sample was 60 mW. 

The incident light was horizontally polarized and hit the sample at the Brew-

ster's angle of 76°. The scattered light collected was unpolarized. 
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Figure C.4 Brillouin spectra of Si (001) showing bulk transverse (T) and longi­
tudinal (L), surface phonon (R), and central mode with the Rayleigh 
line using 514.5 nm. The sample is opaque at this wavelength. 
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