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Abstract 

Stress perturbations across a fault zone can change seismic wave velocity in the 

adjacent area, with implications for rock properties and fault mechanics. Ambient noise 

seismic interferometry is increasingly used to retrieve information about wave 

propagation between seismic stations, constrain seismic velocity changes, and 

potentially monitor the subsurface strain field. Comparing seismic velocity changes 

with strain changes in space and time may help us understand the damage and healing 

processes of fault rocks. Here we study the seismic velocity and strain changes in the 

shallow crust associated with the 2004 Mw 6.0 Parkfield earthquake in California. We 

process continuous seismic recordings from 13 stations of the High Resolution Seismic 

Network (HRSN) from 2001 to 2007. Then we use an open-source software NoisePy 

(Jiang and Denolle, 2020) to cut band-pass-filtered data into 1-hour chunks and perform 

cross-correlation, stack hourly cross-correlation functions into 30-day averages, and 

retrieve reference Green’s functions based on a criteria of cross-correlation coefficients. 

To estimate the history of relative velocity changes, dv/v, we use a moving-window 

cross spectrum method with a moving window of 30 days. To resolve potential spatial 

variations in velocity changes, we first fit the dv/v history with a parametric function 

with seasonal, offset, and logarithmic terms, then select better-fitting station pairs based 

on signal-to-residual ratios and map the coseismic velocity changes at 5 frequency 

bands. We also assess the relationship between dv/v estimates, peak dynamic strains 

from strong-motion seismograms, and static strain changes inferred from coseismic and 

postseismic space-geodetic measurements. Our results show larger amplitudes of 

coseismic velocity drops in higher frequency bands for both network-averaged and 
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station-pair dv/v values. We attribute the instantaneous drop of dv/v to ground shaking 

during the earthquake and the later gradual increase of dv/v to the postseismic recovery 

of shallow fault zones. While the coseismic dv/v changes suggest potential spatial 

variations across the fault, future efforts are needed to quantify and reduce uncertainties. 

Our study will help improve strategies to obtain robust dv/v time series and distinguish 

the causes of seismic velocity changes in the subsurface.  
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1. Introduction 

1.1. Ambient-Noise Interferometry 

1.1.1. Background 

In recent decades, advancements in computing power and innovative 

instrumentation have resulted in significant developments in the field of seismology. 

The exponential growth in the volume of recorded seismic data has led to the 

application of numerous new theories aimed at better understanding the Earth's 

structures and properties. Traditionally, seismologists have focused only on the portions 

of seismograms that display strong motion, such as the arrival of direct body waves, 

while disregarding other components like coda waves (the part of seismograph after 

direct arrivals) and background noise. Direct waves are straightforward to understand 

with classic ray theory. In contrast, coda waves, which are generated through multiple 

scattering and have complex diffusive characteristics, have not received much attention 

in research. While direct waves provide valuable information about the Earth's interior 

structures and properties, coda waves, as a complementary source, can offer additional 

insights, including information about the scattering properties of subsurface structures. 

However, their complex nature has made it challenging to understand and analyze them 

effectively. 

Considering the conceptually easy and mathematically simple features, 

seismologists have long been using the direct body waves from earthquakes or 

controlled explosions to study the internal structure and properties of the Earth. These 
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waves travel through the Earth's interior and their energy distribution in the phase space, 

which describes all parameters related to seismic waves such as amplitude and 

frequency, depends on the nature and position of the source and is influenced by the 

properties of the medium they pass through, such as the density and elastic properties of 

the rocks. By analyzing the point-to-point response of these waves, seismologists can 

obtain information about the structure and properties of the Earth's interior along the 

path of the waves. This information is reflected in seismic velocity variations, which 

can be measured by the arrival time of the body waves and dispersion curves of surface 

waves. One of the most significant applications of this method is the inversion of 

velocity variations, which provides “fundamental information about the Earth's 

interior… in terms of its spherically symmetric stratification… and anisotropic 

variations of seismic properties” (Shapiro et al., 2004). This technique has been used in 

various fields, such as seismic tomography, to gain insight into the Earth's structure and 

evolution. However, while these methods have proven to be reliable and have broad 

applications, they also have inherent deficiencies. 

First, traditional seismic methods are limited by their dependence on 

earthquakes or artificial sources, which makes it impractical to make continuous or 

regular observations of changes in the Earth's interior. While thousands of earthquakes 

occur every day globally, most of these events are not useful for seismic analysis due to 

their low signal-to-noise ratio and potential contamination from noise. To overcome 

these challenges, seismologists typically rely on higher magnitude earthquakes, which 

occur less frequently and in more limited regions. Consequently, when high temporal 
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resolution monitoring is required, seismologists must seek out other seismic sources and 

methods to meet their needs. 

Second, one limitation of direct waves is that they only provide information on 

the Earth's interior structures and elastic properties along the paths of propagation. 

Variations in properties in spaces other than the direction of wave travel remain 

unobserved. Furthermore, the limited number and inhomogeneous distribution of large 

earthquakes results in a restricted spatial resolution. As a result, it is difficult to obtain a 

comprehensive and accurate understanding of the Earth's interior structure and 

properties merely using direct body wave measurements. 

Third, to perform reliable inversions, seismologists need a good approximation 

of the location and properties of the earthquake source. However, obtaining accurate 

information about the source can be challenging, especially for remote earthquakes or 

those that occur in regions with poor seismic monitoring. In addition, uncertainties in 

the source location and properties can lead to significant errors in the inversion results. 

Therefore, an alternative approach that can better describe the Earth’s impulse response 

to a point source without depending on source information is favorable. 

Fourth, while direct body waves are valuable for long-period measurements (> 

50s) and can provide better constraints on the structures and properties of the Earth's 

deeper regions, they are not ideal for shallower regions due to the high degree of 

heterogeneity (Shapiro and Campillo, 2004). This is especially true for areas located 

within stable continents, where seismic activity is low, and it can be challenging to 
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make measurements of shallow structures with sufficient resolution using teleseismic 

seismic (surface) waves. 

1.1.2. Development of Ambient-Noise Interferometry 

One approach that has gained attention in recent years as an alternative to 

traditional methods is ambient noise interferometry. This technique overcomes the 

limitations of traditional methods relying solely on earthquakes by utilizing continuous 

ambient noise wavefields to study the Earth's interior. The method involves cross-

correlating the ambient noise wavefields at two seismic stations over a long period of 

time to extract a stable cross-correlation function, i.e., the empirical Green's function, 

for surface waves. This function describes the Earth's impulse response to a point source 

and is mathematically the solution to the partial differential equation of wave 

propagation in the elastic medium. Unlike traditional methods, no approximation of 

earthquake source location and properties is necessary, making it easier to extract 

information about the subsurface structures and properties with higher accuracy. 

Additionally, the method can also provide better resolution of shallow structures in 

areas of low seismicity, making it a valuable tool for seismologists. 

The term "ambient noise" refers to the continuous and diffuse seismic signals 

that are present in the Earth’s background ‘humming’, originating from various sources. 

These sources can range from human activities to natural phenomena such as ocean and 

tidal forces, wind, and atmospheric variations (Stehly et al., 2006; Nicolson et al., 

2012). The power spectral density of ambient noise exhibits distinct features that 

correspond to different sources, for example, the ocean source microseism has peak 
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energy between 10 and 20s, allowing seismologists to identify and distinguish between 

them and choose the best frequency band for specific targets. Compared to direct waves 

from earthquakes or explosions, whose short-period signal can be obscured by 

attenuation, especially for long distances, ambient noise shows the ability to extract 

Rayleigh waves at short periods (5-40s) over hundreds of kilometers distance (Shapiro 

and Campillo, 2004). This feature enables the use of ambient noise for studying and 

monitoring the crustal and upper mantle structures of the Earth, where traditional 

seismic methods may not be effective. In addition, the diffusive nature of ambient noise 

makes it suitable for imaging the interior of the Earth in a way that is not limited by the 

sparsity and heterogeneity of earthquake sources. By cross-correlating ambient noise 

recorded at two or more seismic stations over a long period of time, the empirical 

Green's function for surface waves can be extracted, allowing for more precise and 

accurate measurements of the Earth's interior properties. 

Various methods of retrieving Green’s function from a diffusive random noise 

wavefield, which are commonly referred as wavefield interferometry, have been 

developed and effectively applied in domains of oceanic acoustics (Roux et al., 2003), 

helioseismology (Duvall et al., 1993; Rickett et al., 2000), ultrasonic (Weaver et al., 

2001) and geophysics. In the field of seismology, however, it was not until the early 

2000s that seismic interferometry became widely known and underwent systematic 

mathematical research and analysis (Snieder et al., 2002; Campillo et al., 2003; Shapiro 

et al., 2004; Snieder et al., 2004, Stehly et al., 2006; Campillo, 2006; Wapenaar et al., 

2010; Snieder et al., 2011; Weaver et al., 2013). 
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Ambient-noise interferometry, also known as seismic interferometry, involves 

the extraction of Green’s function from the ambient seismic waves using two 

fundamental techniques: cross-correlation of ambient noise wavefield and coda wave 

interferometry (Mao et al., 2022). The cross-correlation of ambient noise wavefield is 

utilized to reconstruct the Green's function of the surface wave between two points, 

which provides insights into the transmission of waveforms through the elastic medium. 

Coda wave interferometry exploits the sensitivity of the diffuse wavefield to 

perturbations by measuring the delay in the arrival time of coda waves. Coda waves are 

scattered waves that are generated by the interaction of seismic waves with the 

heterogeneous structure of the subsurface. Therefore, it contains much more 

information about crustal structures than direct body waves. This technique allows 

researchers to understand the characteristics of the Earth's crust with improved 

resolution. 

The proposition of extracting surface waves from ambient noise was initially 

suggested by Aki (1957)using cross-coherence rather than cross-correlation. His study 

demonstrated that the Green's function of surface waves could be reconstructed if waves 

propagated homogeneously with uniform power. Subsequently, Clearbout (1968) 

mathematically proved that the autocorrelation, a specific type of cross-correlation, of 

seismograms recorded on a surface receiver from a buried source (transmission) is 

related to the cross-correlation of seismographs between two surface receivers 

(reflection). This was the first example of using cross-correlation of waves to retrieve 

reflection response despite their unknown phase spectrum. 
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It is generally agreed upon that seismic coda is the result of multiple 

backscattering of both body and surface waves due to heterogeneity in the medium, as 

noted by Aki et al. (1975). One important characteristic of seismic coda waves is that 

they accumulate changes in the medium along their paths. Thus, as the statistically 

averaged changes increase as a function of time lag, seismic coda becomes more 

sensitive to medium changes than direct body waves. This means that useful 

information about the temporal evolution of structural properties can be found in the 

diffusive wavefield, which can be extracted using seismic interferometry to measure the 

differences between wavelets. Lobkis and Weaver (2001) conducted a study that 

confirmed the possibility of retrieving Green's function by cross correlating a diffusive 

acoustic field, despite the existence of significant differences between the actual signal 

and the reconstructed Green's function. The authors attributed these discrepancies to the 

insufficient averaging of source positions, which highlights the importance of fully 

averaging the sources to obtain a more precise reconstruction of the Green's function. In 

light of their findings, Lobkis and Weaver (2001) also proposed the application of this 

method to seismic coda, which is considered a fully diffusive wavefield and carries 

information on the local stratigraphy. 

In 2003, Campillo and Paul achieved the first successful extraction of the 

Green's function for surface waves from seismic coda. Their work utilized seismic 

signals recorded in Mexico to demonstrate that the cross-correlation of diffusive seismic 

coda contains coherent information about the elastic impulse response of the Earth 

between two seismic receivers. Furthermore, they found that the cross-correlation 

function between wavefields recorded at two stations possesses the same characteristics 
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as surface Rayleigh waves. This study provided strong evidence for the feasibility and 

efficacy of using seismic interferometry techniques to analyze seismic coda and study 

the subsurface properties of the Earth. In early theories, it was believed that the 

approximation of the Green's function between two points required a homogeneous 

distribution of earthquakes to provide sufficient averaging of correlation functions. 

However, as this distribution pattern is unlikely to occur in reality, the authors proposed 

a solution to this problem by discussing the concept of modal equipartition of the 

diffuse wavefield. Equipartition refers to the uniform distribution of wave energy in 

phase space. Because diffusive wavefields, such as seismic coda and ambient noise, are 

composed of backscattering waves, their energy tends to homogenize in the diffusive 

regime. This property is independent of the heterogeneities of the medium and makes 

the distribution of earthquake locations less important. 

Shapiro and Campillo (2004) and Snieder (2004) have shown that, by stacking a 

long periods of data, the incoherent signal from other paths can be cancelled, and the 

coherent signal between stations can be enhanced, allowing the inhomogeneous 

distribution of source locations to be ignored. However, it is crucial to ensure that the 

wavefield is fully diffused by using a long enough time stacking to retrieve a robust 

Green's function. Additionally, Snieder (2004) has emphasized that seismic sources 

located in the lobes on both ends of the inter-station path contribute most to the 

reconstruction of the Green's function. Stehly et al. (2006) have explored the asymmetry 

of the reconstructed Green's function and argued that the property discussed by Snieder 

(2004) could be used to decide the spatial density pattern of heterogeneous seismic 

sources and the main azimuth of energy flow. These studies have provided important 
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insights into the retrieval of Green's function from seismic coda and its potential 

applications in seismic imaging and monitoring. 

Cross-correlation of ambient noise produces Green’s functions between a pair of 

seismic stations. But a simple Green’s function between a station pair does not reflect 

information of temporal evolution. In order to obtain the changes in cross-correlation 

functions over time, seismic interferometry should be applied (Mao et al., 2022). The 

first implementation of seismic interferometry was done by Poupinet in 1984. Poupinet 

et al. (1984) utilized the doublet method to monitor velocity variations in the crust 

beneath the Calaveras Fault, California. In his work, Poupinet observed the progressive 

delay of coda wave arrivals and proposed that seismic interferometry can detect velocity 

changes as small as 0.01%. Poupinet's study was significant because it demonstrated 

that seismic interferometry could be used to monitor small changes in the subsurface, 

which was previously not possible with traditional seismic methods. But instead of 

using merely coda wave as most researchers do nowadays, Poupinet used whole 

seismograms for their calculations.  

Coda-Wave Interferometry (CWI) was introduced as a method for studying the 

temporal and spatial variations of the subsurface medium by Snieder et al. in 2002. The 

theory assumes that the subsurface contains isotropic scattering points that randomly 

scatter seismic waves. The multiple scattering of waves leads to the formation of a 

diffusive field, or coda, which can be used to retrieve the Green's function of the 

medium. CWI involves cross-correlating coda waves recorded by a repeatable source at 

different receiver pairs and in different time windows. The mean and variance of wave 
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arrival time changes, known as the differential travel times, can be calculated using the 

cross-correlation functions. Because point sources are excluded from this process, the 

differential travel times provide information on the temporal and spatial variations of 

the subsurface medium, including changes in seismic velocity, attenuation, and 

scattering strength. This method is also known as moving-window cross correlation 

method, and the linear relation between velocity change and time shift was introduced 

as shown in the equation 
𝛿𝑣

𝑣
=  − 

<𝜏>(𝑡,𝜏)

𝑡
, where δ is the root mean square displacement 

of perturbed scatters, < 𝜏 >(𝑡,𝜏) is the mean travel time change. However, Snieder et al. 

(2002) did not test the CWI method on real seismic data in their original paper. Instead, 

they validated the method using laboratory experiments on granite samples under 

different temperature conditions. The results of the experiments confirmed the 

feasibility of the CWI method for monitoring small changes in the medium with high 

precision. 

Shapiro and Campillo (2004) demonstrated the effectiveness of cross-correlating 

continuous ambient noise recorded at different seismic stations for extracting coherent 

empirical Green’s functions of Rayleigh waves in a wide range of periods, by assuming 

that ambient noise fields are fully diffusive and the sources are isotropic. As a result, the 

retrieved Green’s functions contain statistically averaged information about any 

possible path and corresponding elastic properties between pairs of stations. This 

approach was used to retrieve the Rayleigh wave Green's functions and dispersion curve 

for a network of seismometers in southern California. The results matched well with 

observations of dispersion curves made using traditional methods and showed better 
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measurements in short period ranges (5-40s). The success of this method has led to its 

widespread use in seismology and has opened up new avenues for studying the Earth's 

interior structure. 

Since the seminal work by Shapiro and Campillo (2004), ambient noise 

interferometry (ANI) has rapidly developed and been applied in numerous studies 

across the globe. In the past decade, many comprehensive tutorials on data processing 

techniques have been published, providing general guides for the development of more 

advanced methods (Bensen et al., 2007). ANI has been extended to other fields such as 

civil engineering, and the noise sources have expanded from oceanic microseism to 

higher frequency sources like anthropogenic activities and freight trains. Nevertheless, 

ANI remains a powerful tool in monitoring and tomography studies, where its unique 

features of continuously repeating noise sources and high spectral power in short 

periods can capture temporal changes in crustal properties and complement the 

shortcomings of traditional methods. 

ANI has been widely applied in monitoring and predicting volcanic eruptions 

(Brenguier et al., 2008a; Mordret et al., 2010), detecting seismic velocity changes 

caused by major earthquakes (Brenguier et al., 2008b; Hobiger et al., 2012; Liu et al., 

2014; Taira et al., 2015; Wu et al., 2016; Hillers et al., 2019; Wang et al., 2019), 

aseismic slow slip events, non-volcanic tremors (River et al., 2014), and velocity 

changes caused by seasonal variations, ground water content, and tides (Wang et al., 

2017; Mao et al., 2019, 2022). ANI has also been used for high-resolution tomography 
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of the crust and mantle (Shapiro et al., 2005; Lin et al., 2008; Nicolson et al., 2012; 

Roux et al., 2016; Berg et al., 2018; Retaileau et al., 2020). 

In addition, many open-source Python packages have been developed for ANI 

and related analysis, which allow easy access and manipulation of ANI data (Lecocq et 

al., 2014; Jiang et al., 2020). The development of these packages has greatly facilitated 

ANI applications and expanded the user community. Future work on ANI is expected to 

further improve the accuracy and resolution of tomography, as well as its applications in 

seismic hazard assessment, resource exploration, and environmental monitoring. 

1.1.3. Basics of Ambient-Noise Interferometry 

The mathematical derivation for Green’s function reconstruction from diffuse 

wavefield is complicated. Here I show a simplified explanation from Snieder and 

Larcose (2004). We start with a one-dimensional scenario, where two stations A and B 

locate at x = R and x = 0, respectively. The incident wave with spectrum SL comes from 

left at station B and the incident wave with spectrum SR from right at station A. Both 

random incident waves are uncorrelated and have the same power spectrum. The 

superposed wave 𝑢𝐴 and 𝑢𝐵 recorded at two stations are  

𝑢𝐴 =  𝑆𝐿𝑒𝑖𝑘𝑅 + 𝑆𝑅𝑒−𝑖𝑘𝑅       , 𝑢𝐵 =  𝑆𝐿 + 𝑆𝑅       (1) 

Where k is the wave number at angular frequency ω. Because the waveforms are 

represented in the frequency domain in this case, cross-correlation in frequency domain 

is simply multiplication of 𝑢𝐴 and 𝑢  𝐵
∗ , where the asterisk denotes the complex 

conjugate. Next we represent the expectation value of incident wave spectra with angled 
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brackets<∙∙∙>. Since both incident waves are uncorrelated and have the same power 

spectrum, we have 

    < |𝑆𝐿|2 > = < |𝑆𝑅|2 > = < |𝑆|2 > 𝑎𝑛𝑑 < 𝑆𝐿𝑆  𝑅
∗ > = 0                      (2) 

In this setting, the expectation value < 𝑢𝐴𝑢  𝐵
∗ > of the cross-correlation simplifies to 

    < 𝑢𝐴𝑢  𝐵
∗ > = < |𝑆|2 > (𝑒𝑖𝑘𝑅 + 𝑒−𝑖𝑘𝑅)        (3) 

We know that the Green’s functions of a one-dimensional homogenous medium is 

𝐺1𝐷(𝑅, 𝜔) = (−
𝑖

2𝑘
)𝑒𝑖𝑘𝑅, so the formula for cross-correlation of two wavefields can be 

expressed as  

< 𝑢𝐴𝑢  𝐵
∗ > =  2𝑖𝑘 < |𝑆|2 > [𝐺1𝐷(𝑅, 𝜔) − 𝐺1𝐷

∗ (𝑅, 𝜔)]                         (4) 

This equation shows that if the power spectrum of the noise is known, the 

difference of the Green’s function and its complex conjugate can be obtained through 

cross correlation. The difference in frequency domain can be translated to the difference 

in time domain 𝐺(𝑅, 𝑡) − 𝐺(𝑅, −𝑡). Since the Green’s function is causal, 𝐺(𝑅, 𝑡) is 

nonzero for 𝑡 > 0 and 𝐺(𝑅, −𝑡) is nonzero for 𝑡 < 0. By breaking down the two 

solutions into their constituent parts and combining them, the complete Green’s 

functions can be reconstructed. Shapiro and Campillo (2004) stated that the cross-

correlation result differs only by an amplitude of spectral energy density from the actual 

Green’s function and this result is usually referred to as the empirical Green’s function 

for this reason. Snieder and Larcose (2004) also explored the mathematical expression 

of cross-correlation in 2-D and 3-D conditions. Their results showed that the 

expressions have the same form as the 1-D case but with different constants. 
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Coda wave interferometry (CWI) has enabled significant applications in 

monitoring the subsurface. A range of techniques has been proposed, including the 

moving-window cross-correlation method (Snieder et al., 2002), the moving-window 

cross-spectrum method, also known as the doublet method (Poupinet et al., 1984), the 

stretching method (Lobkis & Weaver, 2003), the dynamic time wrapping method 

(Mikesell et al., 2015), and wavelet cross-spectrum (Mao et al., 2019). Each of these 

methods targets the measurement of shifts that occur in either the time, frequency or 

wavelet domain. However, it should be noted that each approach exhibits different 

preferences and limitations. 

The Moving-Window Cross-Correlation (MWCC) method is a time-domain 

technique that enables the measurement of seismic velocity variations. This approach 

operates by determining the value of time shift (dt) that maximizes the cross-correlation 

between waveforms. It should be noted, however, that an important assumption 

associated with this method is that the spectral content of the waveforms is similar. 

While this approach has shown utility in various applications (Gret et al., 2006; Snieder 

et al., 2006), it also exhibits limitations in its ability to accurately measure phase shifts 

in cases where significant spectral differences exist between waveforms. 

The Moving-Window Cross Spectrum (MWCS) method is an extension of the 

MWCC method that enables the measurement of time shifts within specified frequency 

bands. Unlike MWCC, MWCS measures phase shifts in the frequency domain. This 

approach operates based on the assumption that dt increases linearly with lag time t, 

such that dt/t can be approximated through linear regression. One potential issue 
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associated with MWCS is cycle-skipping, which can be mitigated through careful 

selection of window size; this ensures a certain level of accuracy and robustness in the 

measurement process. 

The Stretching method is another approach that builds on the assumption that 

time shift, dt, linearly increases with lag time, t. By linearly stretching one waveform, 

the time shift can be determined as the value that maximizes the correlation coefficient 

between the two waveforms. However, this method has limitations. For example, 

because the stretching method measures time shifts over the entire trace, it fails to 

localize perturbations within the coda. As a result, it limits the ability to recognize 

changes associated with specific scatters. Additionally, this method is not well-suited 

for broad-band waveforms that have different spectral contents. Despite these 

limitations, the Stretching method represents a useful tool in certain applications where 

high accuracy in measuring time shifts is required (Zhan et al., 2013). 

The Dynamic Time Warping (DTW) method is similar to the Stretching method 

in that it allows for adaptive stretching factors at each lag time. However, in DTW, the 

phase shifts, dt, are determined by the shortest warping path, which can help to mitigate 

the problem of cycle-skipping. Despite this advantage, DTW also has limitations. For 

example, it may lack accuracy in localizing scatters in coda waves. 

The Wavelet Cross Spectrum (WCS) method estimates velocity changes in both 

the time and frequency domains, overcoming the limitations of poor time-frequency 

resolution associated with Fourier transform-based methods. WCS utilizes the wavelet 

transform, which generates a complex-valued time-frequency field. The time shifts 



16 
 

retrieved in this field are functions of both time and frequency changes. While WCS 

shows promise in suppressing many of the shortcomings of other methods (e.g., cycle 

skipping), its measurement is only reliable when the time-frequency space has sufficient 

power. Furthermore, it also experiences the cycle-skipping problem. 

As discussed above, each method in coda wave interferometry has its own 

advantages and disadvantages. Selecting the appropriate method requires careful 

consideration of the wavefield properties and the targeted questions. Among the various 

methods available, the most popular ones include MWCS, Stretching, and DTW. 

However, other methods are also being utilized for various purposes. Ultimately, the 

selection of the most suitable method (e.g., Mikesell et al., 2015; Yuan et al., 2021) is 

crucial for accurate and reliable measurements in coda wave interferometry. 

  



17 
 

1.2. Parkfield 

1.2.1. Geologic Setting 

In this thesis, I focus on studying the crustal structure in Parkfield, California. 

Parkfield is a small town located in the central coast region of California. It is situated 

in the southern part of Monterey County, about 200 miles northwest of Los Angeles and 

175 miles southeast of San Francisco. The town is located at the boundary of the North 

American and Pacific tectonic plates along the San Andreas Fault, making it a region of 

great geological interest. The geology of Parkfield is characterized by a mix of 

sedimentary and volcanic rocks, which have been shaped by the complex tectonic 

activity in the area. This tectonic activity has resulted in the formation of several fault 

structures, making this area an ideal place for investigating the physical properties and 

processes that control deformation (Catchings et al., 2002).  

The San Andreas Fault is a major right-lateral transform fault that extends for 

more than 1,200 kilometers across California. The fault segment at Parkfield is known 

to host recurring M~6.0 earthquakes (Bakun & Lindh, 1985). This makes it an 

important site for earthquake research and monitoring, leading to the United States 

Geological Survey (USGS) Parkfield Earthquake Experiment in 1985 and 1993 (Bakun 

& Lindh, 1985). Many seismic arrays, such as the USArray and borehole sensors, are 

also installed in this region. The area has been the site of many seismic studies 

(Unsworth et al., 1997; Li et al., 2007; Brenguier et al., 2008; Zhao et al., 2010; Wu et 

al., 2016), focusing on properties of the San Andreas Fault, making Parkfield one of the 
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most well-studied regions in the world, with a wealth of geological and geophysical 

data available for analysis. 

Studying the crustal structure of Parkfield has the potential to provide insights 

into the complex geological processes that occur at plate boundaries. The presence of 

multiple fault structures and the absence of significant earthquake activity in the region 

make it a unique site for geological research, particularly in the study of fault behavior 

and earthquake prediction. 

1.2.2. Previous Research 

One of the most significant earthquakes at Parkfield was a magnitude 6 event in 

2004. This earthquake has been extensively studied by scientists to better understand its 

properties and impacts. Researchers have used various methods to investigate the 

effects of the Parkfield earthquake, including changes in seismic velocity, direct body 

waves, and ambient noise interferometry. 

Li et al. (2007) found a decrease in direct body waves after the Parkfield 

earthquake and concluded that the velocity variations occurred in a zone of 

approximately 200 meters wide and extended to depths of up to 6 kilometers. They 

suggested that the earthquake had a significant impact on the seismic velocity of the 

fault damage zone. 

Brenguier et al. (2008) used ambient noise interferometry to detect small seismic 

velocity changes associated with the earthquake. Their continuous monitoring results 

showed an instant velocity drop after the earthquake, followed by a gradual recovery to 
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pre-earthquake levels. However, they did not constrain the depth variation of the 

velocity variation. 

Wu et al. (2016) expanded on the previous research by investigating the velocity 

changes at different depths by cutting broadband waveforms into subsequent narrow 

frequency bands. Their results showed that coseismic velocity change increased in 

amplitude with frequency band. So higher frequency bands, which correspond to 

shallower depths, demonstrate more apparent coseismic velocity changes. After careful 

inversion, they proposed that the S-wave velocity change extended to at least 1.2 km, 

providing new insights into the depth variation of the velocity change. 

Other researchers, such as Rubinstein and Beroza (2005), Zhao et al. (2010), and 

Schaff (2012), have also studied the Parkfield earthquake using different methods. 

These studies have contributed to a better understanding of the properties and impacts 

of this significant earthquake. 

 

  



20 
 

1.3. Motivation and Objectives 

Previous research by Brenguier et al. (2008) and Wu et al. (2016) has 

investigated the temporal evolution of seismic velocity variations and their depth 

changes. However, their findings were based on averaged measurements of dv/v across 

all station pairs, which only reflected overall changes in the study region and do not 

capture any spatial variations. 

To address this issue, an alternative approach that avoids averaging between 

station pairs has been proposed. Hobiger et al. (2012) examined the coseismic velocity 

changes and postseismic recovery process of the 2008 Iwate earthquake using 

measurements made between individual station pairs. Their study demonstrated the 

feasibility of utilizing single station pair measurements to investigate spatial variations 

in seismic velocity changes. Similarly, Taira et al. (2015) also studied the spatial 

variation of seismic velocity changes associated with the 2014 Napa earthquake and 

found that the velocity changes were correlated with dynamic peak strain estimates, 

suggesting that they were caused by fractures during the mainshock. 

In addition to exploring the spatial variation of seismic velocity changes, another 

objective of this project is to estimate how these changes are related to dynamic and 

static strain changes. Rivet et al. (2013) provides a good example of mapping strain rate 

with velocity variation and demonstrating their causal relationship. The goal of this 

study is to investigate similar patterns in Parkfield and gain a better understanding of 

the properties of the San Andreas Fault. 
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To find the spatial pattern of velocity variations and find the relation between 

strain changes, I generally follow methods described in Brenguier et al. (2008), Rivet et 

al. (2013), Taira et al. (2015) and Wu et al. (2016). The same datasets from the HRSN 

network will be used and cover a similar period. Crucial data processing methods and 

parameters will be made the same as well. More details about methods and workflow 

will be discussed in the following sections. Our results demonstrate similar seismic 

velocity change patterns as stated in previous research (Brenguier et al., 2008; Wu et al. 

2016). Meanwhile, we investigate and map signal-station-pair coseismic velocity 

changes to compare with static and dynamic strain changes. We observe some 

relationships between seismic velocity and strain changes, but a clear quantitative 

relationship remains obscure. 
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2. Data 

2.1. Seismic Data 

This study involves the utilization of continuous seismic data obtained from 13 

three-component borehole geophone seismometers from the High-Resolution Seismic 

Network (HRSN). This network has been specially designed to facilitate high-quality 

seismic data collection, essential for comprehensive geophysical analysis. The raw data 

in miniseed format was provided by the Northern California Earthquake Data Center's 

(NCEDC) FDSN web service. The data extraction employed the built-in NoisePy 

function, a powerful open-source Python package that assembles comprehensive 

ambient noise data inquiring and processing workflow (Jiang and Denolle, 2020).  

The Berkeley Seismological Laboratory operates and maintains several 

geophysical instrumentation networks within northern and central California. These 

networks consist of broadband seismometers, borehole geophones, and GPS (Global 

Positioning System) stations, all contributing crucial data to better understand seismic 

activities in the region. The High-Resolution Seismic Network (HRSN) is a borehole 

geophone network deployed in the vicinity of Parkfield, California since 1986. Initially 

created as part of a controlled-source monitoring project, namely the Vibroseis project 

(HRSN, 2014), the network later underwent an upgrade to observe and monitor local 

microseismicity on the San Andreas Fault. The network code for HRSN is BP, which 

includes 13 stations distributed across the San Andreas Fault, as depicted in Figure 1. 

The geophone sensors, meticulously installed from 60 to 300 meters below the ground 
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level, were designed to mitigate the effects of incoherent noise generated by 

temperature fluctuations, precipitation, or human activities. 

For investigating seismic velocity alterations before and after earthquakes, we 

analyze data spanning from January 2001 to October 2007. This time span encapsulates 

both the 2003 M6.5 San Simeon earthquake and the 2004 M6.0 Parkfield earthquake. 

This extensive period of data collection ensures adequate scattering averaging, which is 

essential for reconstructing reliable Green's functions. Following the methodology 

employed by Brenguier et al., 2008, and Wu et al., 2016, we select the BP channels of 

the geophone sensors, which operate at a sampling rate of 20 Hz. To optimize our data 

processing, we restrict our calculations to the vertical component as it demonstrates 

higher sensitivity to surface waves compared to other directions. In Section 3.1.4, we 

will demonstrate that waveforms stacked using the vertical component yield a higher 

signal-to-noise ratio than those processed using other components. Table 1 provides an 

overview of all parameters required for downloading the raw data for reviewing 

purposes. 
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Figure 1. Station Map. Black triangular are seismic stations. The yellow star marks 

epicenter of 2004 Parkfield earthquake. The blue circles are GPS stations. The grey 

lines are traces of the San Andreas Fault. The inset map shows location of this area 

with blue marks the ocean. 

Network Code BP 

Channels BP1 (vertical) 

Number of Stations 13 

Period 01/01/2001 to 10/02/2007 

Sampling Frequency 20 Hz 

Frequency Band 0.08 to 2.0 Hz 

Table 1. All parameters used for downloading raw seismic data 
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2.2. Raw GPS and Strong Motion Data 

We use high-rate GPS displacement time series and strong motion seismograms 

(Shakal et al., 2006; Jiang et al., 2021) to estimate static and dynamic strains of the 

shallow crust. GPS data are downsampled from the combined 1 Hz and daily solutions 

recorded in a local real-time GPS network, which spans the entire coseismic and early 

postseismic phases of the 2004 Parkfield earthquake. Details of GPS data processing are 

described in Jiang et al. (2021). Network-wide common mode noise is reduced in the 

daily GPS solutions with a Principal Component Approach (Dong et al., 2002), whereas 

multipath effects are mitigated through a modified sidereal filtering approach (Choi et 

al., 2004). Furthermore, interseismic trends and offsets due to other events or artifacts 

have been corrected in the post-processing (Jiang et al., 2021). Velocity seismograms 

for the earthquake over durations of up to 30 s are obtained for 60 strong motion 

stations from the Center for Engineering Strong Motion Data (CESMD; 

https://strongmotioncenter. org/). Recording of these seismograms was triggered when 

the amplitude of acceleration reached 0.005 g at most stations. 
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3. Methods 

In this section we introduce our workflow for data processing and seismic 

velocity variation computation. We also elaborate on the rationale behind the selection 

of various techniques and parameters. Lastly, this section also includes methods for 

processing geodetic and strong motion data to obtain both static and dynamic strain 

data. 

3.1. Seismic Data Processing 

3.1.1. Workflow 

The methodology of ambient noise interferometry has been well-established and 

standardized in the past decade. Bensen et al. (2007) provides a comprehensive guide on 

processing ambient noise data to retrieve Green's function, which has become a 

standard workflow for ambient noise interferometry. However, it is important to note 

that many techniques outlined in this tutorial, such as normalization and stacking 

methods, along with other key parameters, should be adjusted accordingly based on the 

requirements and objectives of individual research projects. The data processing and 

analysis procedures implemented in our study generally follows the methodologies 

depicted in the works of Brenguier et al., (2008), Taira et al., (2015), and Wu et al., 

(2016). The overall workflow of data processing and analysis procedures is presented in 

Figure 2, which provides a step-by-step overview of the entire process form raw data 

acquisition to dv/v measurement. 

The complete workflow of our study comprises four steps: preprocessing, cross-

correlation, stacking, and measuring dv/v (relative velocity changes). The first step is 
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filtering the data into user-defined frequency bands, checking for recording gaps, and 

segmenting the continuous data into chunks corresponding to specified time intervals. 

The preprocessed data are then stored in sequential h5 files, with each file containing 

complete information about the station and waveforms within that particular period. 

 

The second step involves data processing and cross-correlation. Here, 

preprocessed data are further processed to eliminate the effects of minor earthquakes or 

perturbations on the amplitude of seismic noise by clipping seismic recordings that are 

10 times the overall standard deviation of the remaining seismograph, and to whiten the 

Figure 2. Complete workflow of data processing and dv/v calculation 

procedures. The arrow means return to SNR filtering step and proceed to the 

next steps again. 
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data in selected frequency domains. Following this data cleaning process, hourly cross-

correlation functions are calculated using segments (traces) of continuous data then 

stacked to create substack waveforms for that time chunk. The outcomes of this step are 

30-day-long substacks of cross-correlation functions between all station pairs, which are 

subsequently stored in the h5 files of successive time chunks. 

The third step is the stacking of all substacks to generate the reference 

waveform, also known as the empirical Green’s function of the Rayleigh wave. This 

reference waveform is computed by simply stacking all substacks using various 

methods. If necessary, the reference waveform can be employed to determine the center 

of the reconstructed direct wave, and we can revert to the previous cross-correlation 

step to execute filtering over traces based on the signal-to-noise ratio between direct and 

coda parts. Subsequently, all traces for substacks and the reference waveform are 

stacked. This approach enhances the signal-to-noise ratio of the reconstructed 

waveform, thereby improving the subsequent measurements. An appropriate stacking 

method is critical for retrieving robust reference waveforms because they act as 

standards for comparison with substack waveforms. Yang et al. (2022) provides a 

comprehensive evaluation of different stacking methods and outlines optimal selections 

for diverse applications that can used as a guideline for choosing the best stacking 

strategy. 

The last step is calculating relative velocity changes (dv/v) between substacks 

(current waveforms) and reference waveform. Various methods can be employed to 

achieve this calculation, but the choice should be made on a case-by-case basis to 
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ensure sufficient accuracy and computational efficiency. With measurements from a 

single station, they can be averaged to obtain an overall velocity variation in the area, or 

they can be used to reflect velocity changes between a station pair. Important 

parameters and methods utilized in the above steps are summarized in Table 2. 

Frequency Bands 0.2 to 0.6 Hz, 0.3 to 0.8 Hz, 0.5 to 1.0 Hz, 

0.7 to 1.2 Hz, 0.9 to 1,4 Hz 

Cross-correlation Length 1 hour 

Cross-correlation Step 0.5 hour 

Cross-correlation Pair All stations 

Cross-correlation Channels Vertical-Vertical 

Time-domain Normalization None 

Freq-domain Normalization Spectral Whitening 

Earthquake Signal Removal Threshold 10*Std 

Stacking Method Linear 

Reference Period 07/14/2005 to 10/02/2007 

dv/v Measurement Method  Moving-Window Cross Spectrum 

Table 2. Important parameters and methods used in the complete workflow 

3.1.2. Software 

With the increasing application of seismic interferometry, numerous open-

source Python toolboxes have been developed to facilitate the processing of ambient 

noise data. We use NoisePy (Jiang et al., 2020), a versatile Python package capable of 

reconstructing Green's function from ambient noise and also incorporates application 
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modules such as measuring dv/v and dispersion curve. The structure of NoisePy is quite 

straightforward and mirrors the procedure described in Bensen et al. (2007), ensuring 

user-friendly navigation and operation. In the main data processing segment, NoisePy 

features three scripts (denoted as S0, S1, and S2), each targeting one of the three steps 

involved in extracting the reference waveform (Figure 3). The output generated by each 

script is stored in separate, independent folders, which simplifies data management and 

retrieval. Moreover, each script implements the complete procedure for its respective 

step, minimizing dependencies on other scripts. This design facilitates modifications to 

the scripts, making them more adaptable to varying research needs. Importantly, it 

doesn’t necessitate advanced coding skills, making NoisePy an accessible tool for 

researchers with varying degrees of programming expertise. 

The script S0A is utilized for downloading raw seismic data from the targeted 

network and webservice. The S1 script plays a critical role in data processing and 

calculating cross-correlations. In this step, data from each station are normalized first, 

then a Fourier transform is performed to convert the data to the frequency domain and 

calculate cross-correlation. Depending on the user-defined values, each time chunk may 

contain multiple or a single substack waveform. The script S2 is employed for stacking 

substacks and generating the reference waveform. This script also has the capability to 

rotate Cartesian coordinates to radial coordinates if needed. The outputs from this script 

are stored in h5 files corresponding to each station pair. After completing these steps, 

users can select application module scripts for further visualization or analysis. 

However, it is important to note that these scripts may not be universally applicable or 
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comprehensive for most scenarios. As a result, they may require modifications to fit the 

specifics of a particular research project. 

NoisePy distinguishes itself from other packages such as MSNoise by Lecocq et 

al. (2014), which uses seed or SAC format data and employs MySQL for parallel 

computing and data management. Unlike the predecessor, NoisePy initially converts 

miniseed data into ASDF (h5) format. ASDF format has significant advantages that can 

be easily read and transported in Python and other programming languages, and they 

can store large datasets with parallel input and output strategies. The implementation of 

parallel processing techniques enhances NoisePy’s capacity to process data over 

extended periods, a capability that scales with the number of cores. This makes NoisePy 

particularly well-suited to the analysis of large datasets, such as those used in this study. 

However, there are still some improvements can be made. Functions can be added 

include, but not limited to, various types of filtering, selective stacking, and the capacity 

to process only one channel at a time. Another shortcoming of NoisePy is the lack of 

ability to generate various figures, which require additional work to plot desired figures 

for visualization and process monitoring. Overall, NoisePy provides diverse choices for 

each step of data processing and is a powerful tool for analyzing large datasets such as 

in this study (Table 3).  
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Figure 3. Workflow of NoisePy (Jiang et al., 2020). 
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Script Parameter Available Methods 

 Time-domain normalization running mean average, one-bit 

 Frequency-domain normalization running mean average, one-bit 

S1 

 

Cross-correlation methods 

pure-correlation, coherency,   

deconvolution, phase-

correlation 

 

S2 

 

Stacking methods 

linear, phase weighted 

stacking, robust stacking, 

nroot, selective stacking, auto-

covariance 

 

 

Measuring dv/v 

 

 

Methods 

stretching, dynamic time 

wrapping, moving-window 

cross spectrum/correlation, 

wavelet stretching, wavelet 

cross spectrum 

Table 3. List of some important parameters in each step and choices of methods. 

3.1.3. Raw Data Preprocess 

We downloaded a total of 70 months of continuous seismic data, spanning from 

01/01/2001 to 10/02/2007, from the Northern California Earthquake Data Center 

(NCEDC). Along with the recorded waveforms from the 13 stations, additional 

information such as geographical coordinates was also downloaded and stored in h5 

files as waveform tags. The raw data underwent an initial quality check for gaps and 

sampling rate. Data gaps were identified by calculating the ratio of data points with zero 

values to the total number of data points within each stream, an ObsPy object for data 
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traces (Beyreuther et al., 2010). Streams exhibiting large data gaps (greater than 70%) 

were excluded, while the remaining data were merged after removing NaN/infinity 

values, mean values, and trends from each trace within the stream. Following this, the 

merged data was filtered to the frequency range of 0.08 to 2 Hz by using a Butterworth 

filter to minimize computational expense. We do not downsample data as the sampling 

rates for both the geophone and our requirements were 20 Hz. Instrument response 

removal is optional, and the last step is trimming continuous data to user-defined 

sequences. The output files from preprocessing procedure are 70 h5 files, with each file 

contains 30 days of data from all 13 stations.  

3.1.4. Cross-correlation 

Based on our choices of parameter values and data processing methods (Table 

2), we performed cross-correlation function between seismic stations using script S1. In 

line with the methodology presented by Wu et al. (2016), we utilized only the vertical 

channel in this study. The vertical channel was chosen not only because it encapsulates 

more information about the surface wave, but also because it offers a high signal-to-

noise ratio (SNR) for the reconstructed waveforms compared to other channels, as 

illustrated in Figure 4. Even though direct waves are not used for velocity change 

calculations, a high SNR indicates the high quality of the waveform and clearly 

demarcates the beginning of coda parts. Therefore, to ensure the reliability of the 

results, it's critical to maximize the SNR of the reconstructed waveforms as much as 

possible. 
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The preprocessed data from the previous step are segmented into five frequency 

bands to investigate the dependence of velocity variation on frequency and as a function 

of depth. These frequency bands are as follows: 0.2-0.6 Hz, 0.3-0.8 Hz, 0.5-1.0 Hz, 0.7-

1.2 Hz, and 0.9-1.4 Hz. Employing narrower frequency bands can also reduce the 

spectral complexity of waveforms, potentially increasing their coherence. Parameters 

such as frequency- and time-domain normalization, data length for cross-correlation, 

step size, filtering methods, and substack length play a crucial role in producing 

coherent substack waveforms. In contrast to the approach taken by Brenguier et al. 

(2008) and Wu et al. (2016), which utilized both time- and frequency-domain 

normalization with a cross-correlation length of 24 hours, this study employs only 

spectral whitening and uses a cross-correlation length of 1 hour following the Welch’s 

method (Seats et al., 2012). 

Figure 4. Reconstructed reference waveforms using different channels 
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Time-domain normalization can mitigate the effects of large amplitude 

difference by a few of orders of magnitude in ambient noise signal, which may 

overshadow the most energetic parts of the noise. Frequency-domain (spectral) 

whitening can broaden the bands of ambient noise, enabling the extraction of longer 

periods of data (Bensen et al., 2007). Without this, the spectral energy of ambient noise 

would concentrate mostly in the microseism band. Seats et al. (2012) suggests that with 

a cross-correlation length of 1 hour and 50% overlap, the stacked cross-correlation 

function swiftly converges to a robust noise correlation function. This occurs even faster 

than the normalized long correlation length time series. The authors have demonstrated 

that time-domain normalization, as widely assumed necessary before, is not required 

and does not accelerate the entire process.  

Figure 5 compares waveforms obtained using Welch’s method (labeled 1h) and 

traditional method (labeled 24h). Two waveforms are almost identical and the one 

generated using Welch’s method has slightly higher SNR. Therefore, it is hard to decide 

which cross-correlation length is better because no major changes are observed between 

waveforms. But if we consider consistency of the reconstructed waveforms over time, 

the Welch’s method performs much better than the traditional method as shown in 

Figures 6 and 7. These figures show waveform interferometry of monthly substacks 

generated by using Welch’s method and traditional method, respectively. Figure 6 

shows higher coherence between traces than Figure 7, meaning more stable 

reconstruction of Green’s function. Since many of the dv/v measuring methods rely on 

similarities between waveforms, higher coherency over time is ideal for obtaining stable 

and accurate dv/v results. Furthermore, higher coherency between waveforms also 
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increases the number of good measurements that can be used for further analysis and 

increase the overall quality of our study. Additionally, Seats et al. (2002) showed that 

better time averaging leads to better spatial averaging, which is the primary challenge in 

retrieving Green’s functions. Because the Welch’s method uses hourly traces, it 

increases the number of averaging by an order of magnitude compared to the 

conventional method using 24-hour traces. Hence the Welch’s method is more 

favorable than the traditional method due to its better performance in reconstructing 

stable substack waveforms. The differences between the two methods can be explained 

by the number of correlation functions averaged in the process. More correlation 

functions used result in better construction of a fully diffusive wavefield, and thus 

closer to the wavefield settings required by the math calculation. Figure 8 compares 

waveforms using one-bit normalization or not. We can see two waveforms are very 

similar, but the one without time-domain normalization has high SNR. So, the effect of 

time-domain normalization can be achieved in better quality by averaging enough 

number of correlation functions. 
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Figure 5. Upper panel: comparison between reference waveforms stacked by using 

daily and hourly traces. Middle panel: amplitude difference between the two 

waveforms. Lower panel: percentage difference between the two waveforms. 

Figure 6. Substack waveform interferometry stacked from hourly traces. The 

vertical axis is waveform numbers, the horizontal axis is length in seconds. 
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Figure 8. The upper panel shows comparison between reference waveforms of using 

1-bit normalization and not. The middle panel shows the amplitude differences 

between the waveforms. The lower panel shows relative changes in percentage. 

The choice of stacking strategy is critical in preserving the completeness of 

information contained in the seismic data, particularly when focusing on the coda parts 

of the waveforms. Similar to stacking over substacks for reference waveform using 

different methods such as linear stacking or phase-weighted stacking, the stacking of 

hourly traces also has various choices. Figure 9 plots waveforms stacked by using linear 

Figure 7. Substack waveform interferometry stacked from daily traces. The 

vertical axis is waveform numbers, the horizontal axis is length in seconds. 
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and phase-weighted methods. Phase-weighted stacked waveform has higher SNR than 

the other one, but it loses information on the coda parts. Therefore, it is not ideal for 

analysis done using coda waves. Linearly stacked waveform preserves information on 

the coda parts even though it has a lower SNR. Other stacking strategies have the same 

issue for over simplifying coda part if too many traces are stacked. Since the monthly 

waveforms will be stacked again in subsequent step, more original information should 

be preserved at this point. Otherwise, the measurement of dv/v will not be robust. 

 

Figure 9.  The upper panel shows difference between waveforms stacked using pws 

and linear methods over hourly traces. The middle panel shows amplitude 

difference between waveforms. The lower panel shows relative changes in 

percentage. 

An additional capability of this script is implementing filtering using the single-

to-noise ratio (SNR). In the process of seismic data analysis, the accurate determination 

of the central point, which is the highest amplitude of the reference waveform, for all 

traces is imperative. Once the center has been established, the script is run again to 

compute the SNR for individual traces between user-defined signal parts and noise 



41 
 

parts. For the purposes of this study, the signal part is defined as a window spanning 20 

seconds, centered at the maximum point. On the other hand, the noise parts consist of 

two windows that are 40 seconds wide, located on both sides of the signal part. The 

SNR is quantified by calculating the ratio of the root-mean-square of the absolute 

amplitudes in the signal and noise parts.  

Choosing the appropriate filtering threshold based on SNR is arbitrary. If the 

threshold is set too high, there's a risk of discarding too many traces, leaving insufficient 

data for the stacking process. Conversely, if it's set too low, the filtering process loses 

its effectiveness and fails to sufficiently differentiate between signal and noise. The 

objective of the SNR filtering process is to remove traces that are dominated by low 

SNR and incoherent noise. This step enhances the coherence of the reconstructed 

substacks, ultimately leading to more reliable measurements. Figures 10A and 10B 

demonstrate the traces before and after filtering, respectively. After applying the filter, 

the signal parts in Figure 10B are qualitatively more coherent and the code parts have 

less variations in amplitude than the other plot. 

To calculate cross-correlation between station pairs in the frequency domain, we 

employ a wavelet transform to convert the results into a time-series format. These time-

series are essentially correlation functions which are subsequently stacked and 

preserved for the next stage of analysis. In this study, we use a duration of 30 days as 

the length for substacks. This means that each h5 file comprises one monthly substack 

for each station pair. 



42 
 

 

 

3.1.5. Stacking 

The script S2 is responsible for executing the waveform stacking procedure, 

offering a range of stacking methods and their associated parameters to choose from. In 

this section, our primary focus will be on discussing the linear stacking method, which 

was selected for use in this study, along with other parameter options. 

Figure 10. (A) Traces before SNR filtering. The vertical dash lines mark signal 

and noise parts. (B) Traces after applying SNR filter with threshold of 3.0. The 

vertical dash lines mark signal and noise parts 
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In this study, we took a different approach to reconstruct the reference waveform 

compared to most previous studies. Rather than stacking all monthly substacks from the 

cross-correlation stage, we selectively stacked only parts of the monthly substacks to 

produce the reference waveform. The reference waveform in this study is expected to 

provide a representation of wave propagation through the medium under normal, 

undisturbed conditions between two seismic stations. Aiming at accurately monitoring 

velocity variations over time, we need to establish a benchmark reference waveform 

that accurately resolve the properties of undisturbed rocks. Therefore, we determined 

that it is crucial to exclude from the stacking process any substacks from periods in 

proximity to major earthquakes. During these periods, the rock properties undergo 

significant changes, which lead to the contamination of random signals into the 

waveforms. These so-called “contaminated” substacks can compromise the coherence 

of the reference waveform compared to other substacks, consequently leading to less 

reliable and fluctuating dv/v measurements. In consideration of this, we carefully 

selected the time frame of July 14, 2005, to October 2, 2007, as our stacking period. 

This choice was informed by estimations of fault recovery speed (i.e., when dv/v returns 

to pre-earthquake levels) derived from previous research (Brenguier et al., 2008; Wu et 

al., 2014; Okubo & Denolle, 2020). 

To illustrate the difference our approach makes, Figure 11 provides a 

comparison between reference waveforms generated using our selective method in the 

time domain, versus those produced using the non-selective methods commonly 

employed in other studies.  
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There is clear increase in amplitude in both reference waveforms, especially in 

the direct wave parts. And the changes in amplitudes are concentrated in high frequency 

bands as shown in panels B and D, which is reasonable because strong motion involves 

changes in higher frequency bands. Therefore, by using period-selective stacking, some 

contamination caused by earthquakes can be removed and the resulting reference 

waveform becomes more coherent and robust. 

Figure 11 (A) & (C): Reference waveform between different station pairs stacked 

by using all substacks (blue) and only selective periods (red). (B) & (D): Amplitude 

difference between the two reference waveforms in each panel A and C. 
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In our pursuit of monitoring temporal phase changes across waveforms, 

maintaining coherence between the reference and current correlation functions is 

essential. This is particularly true for the coda parts of the waveforms. As such, 

selecting an appropriate stacking method that can rapidly converge towards the 

empirical Green's function with minimal distortion in the power spectrum, becomes a 

critical step in the entire process. In this study we used several stacking methods to 

stack the same set of short-time (1 hour) correlation functions and compared the 

differences between resulting waveforms. Figure 12 illustrates a selection of the short-

time correlation functions we used to construct the reference waveform. While the 

signal parts appear noisy, there is still a discernible coherent peak around zero time. The 

noise window also show incoherency across waveforms but the amplitude variance is 

less clear. Figure 13 displays the reference waveforms generated using linear stacking, 

phase-weighted stacking, nroot stacking, and robust stacking methods. All these 

methods exhibit similar features between -25s and 25s, including a peak amplitude 

around zero. However, some discrepancies become apparent in the post-arrival parts of 

the waveforms. Both the linear and robust methods manage to preserve some amplitude 

variations and possibly some phase information in the coda parts, as depicted in the 

traces in Figure 12. The other two methods, on the other hand, do not exhibit the same 

level of detail. These differences can be attributed to the divergent focuses of these 

methods. Some methods accentuate the signal part, while others aim to average the 

traces. As demonstrated in Figure 13, from the standpoint of monitoring transient 

velocity changes which requires preserving phase information and maintaining 

coherence, the linear and robust stacking methods are good choices. 
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Yang et al. (2022) systematically examined performance of multiple stacking 

strategies from convergence, dispersion stability, signal-to-noise ratio, similarity index 

and other aspects. The authors proposed that the optimal stacking methods for both 

velocity tomography and seismic monitoring are linear and robust stacking for 

processed datasets. Yang et al. (2022) also pointed out that phase-weighted-stacking 

method failed the test on obtaining velocity variation because of the very low 

 

 

Figure 12. Some traces of correlation functions of station pair EADB-FROB. The 

traces are normalized in each row. Dashed lines mark windows for signal and 

noise parts. 
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Figure 13 Reference waveform between station EADB-FROB stacked by different 

methods 

correlation coefficient between current and reference waveform as a result of over 

distortion and simplifying of coda waves in the long-time waveform. Following 

previous research, we also use linear stacking method in this case from the 

consideration of both computation expense and reliability.  

The last crucial parameter in this step is the length of the substacking window, 

which effectively is the temporal resolution of the dv/v measurements. Previous seismic 

monitoring studies have used window lengths ranging from as short as 5 days to as long 

as 50 days (Taira et al., 2015). A shorter window length results in a higher temporal 

resolution, but it also has its drawbacks. Namely, the use of a narrow window can result 

in insufficient averaging of correlation traces, hindering the convergence to a robust 

Green’s function and subsequently leading to a low correlation coefficient with the 

reference waveform. This can cause the velocity variations measured using these 
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substacks to fluctuate significantly, sometimes to the point where it becomes too noisy 

to extract any useful information. A longer substacking window, on the contrary, can 

provide stable substack waveforms and smoother dv/v measurements. However, despite 

the smooth velocity variation curve it produces, this approach can potentially 

overshadow or obscure some weaker and transient signals. Hence, selecting an 

appropriate substacking window length should be selected based on the specific goals of 

the study. 

In this study, we adopted a 30-day substacking window, following the precedent 

set by Brenguier et al. (2006) and Wu et al. (2016), which worked with the same 

datasets and also focused on seismic monitoring. In addition to window length, several 

pioneering studies have employed moving windows for substacking. For instance, 

Brenguier et al. (2006) and Wu et al. (2016) shifted their window by one day for each 

substacking calculation, while Rivet et al., (2014) used a 10-day step for each 

substacking window. In our study, we do not overlap the substacking windows as the 

temporal resolution remains unaffected by the size of the overlap. Theoretically, 

overlapping tends to smooth the dv/v measurement curve but does not alter the overall 

trend. Therefore, any strong signals should still be discernible even without 

overlapping. 
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3.1.6. The dv/v Measurement 

The final step in this workflow is the dv/v measurement, which is calculated 

using the script 'measure_dvv.py'. Each monthly substack is compared with the 

reference waveform to determine time shifts as a function of time lags (dt/t), and then 

converted into velocity variations (dv/v). A variety of methods have been developed to 

measure seismic travel-time changes across time, frequency, and wavelet domains. Each 

method has its strengths and limitations (Mao et al., 2020; Yuan et al., 2021). However, 

the results across these methods are generally comparable. While more advanced and 

complex methods have been introduced, such as the continuous wavelet transform 

(CWT) and wavelet transform dynamic time warping (WTDTW), we favor the MWCS 

method, primarily due to its proven effectiveness with the same dataset that we are 

using (Brenguier et al. 2008; Wu et al., 2016). 

In the MWCS method, time shifts are calculated in the frequency domain based 

on the assumption that phase shifts increase linearly with frequency. Consequently, the 

slope of the linear regression of phase changes against frequencies between the current 

and reference waveforms within a moving window corresponds to the time shift (dt) 

centered at a specific time lag (t). Another important assumption is homogenous 

medium along the path. This assumption results in the expectation that the time shift 

will increase proportionally with distance or time. By obtaining time shifts at different 

time lags and performing another linear regression, the resulting slope is the negative of 

velocity change: −𝑑𝑡/𝑡 = 𝑑𝑣/𝑣. The accuracy and reliability of MWCS measurements 

is therefore susceptible to some parameters such as the similarity between waveforms 
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and the length of the window utilized in the analysis. We discuss the effects of these 

two parameters in the following context. 

One common challenge encountered in MWCS measurements is cycle skipping, 

which refers to the mismatching of phases over multiple wave cycles between two 

waveforms, leading to inaccurate time shift approximations. Therefore, selecting an 

appropriate window size for comparison is vital. If the size is too large or too small 

(greater than 2.5 times the longest wavelength or smaller than 1 times the longest 

wavelength), the risk of cycle skipping increases. Meanwhile, if the size is too small, 

there may be insufficient information to perform a reliable linear regression. 

Figure 14 illustrates the effect of window length on the final dv/v measurements. 

As the window length increases from 0.6 to 2.0 times the longest wavelength within the 

frequency range (which spans 0.3 to 0.8 Hz in this instance), the dv/v measurements 

become more dependable, indicated by the narrowing error bars. Furthermore, the 

velocity drop associated with the occurrence of the Parkfield earthquake becomes more 

evident relative to the size of the error bars. Based on these results, we decided to use a 

window size equal to twice the longest wavelength in the specific frequency range for 

this study. Figure 14 also demonstrates that the number of windows used to perform 

linear regression significantly influences the results. The more data points that are used, 

the more reliable the regression becomes. To increase the number of windows, one 

should avoid overly large windows and enhance the overlap between windows. In this 

study, we adopted a 50 percent overlap to ensure robust linear regression and to 

accommodate lower quality windows that are filtered out. 
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The MWCS method calculates the cross-spectrum between the reference and 

current Green's functions to detect minor phase shifts, necessitating a certain level of 

similarity between the waveforms. We utilize the Pearson correlation coefficient to 

measure the linear relationship between two sets of variables, which in our case can be 

considered as a measure of similarity. The Pearson correlation coefficient ranges from -

1 to 1, with 0 indicating no correlation, 1 for perfect positive correlation and -1 for 

perfect negative correlation. However, in real-world scenarios, we regard a cc value 

higher than 0.6 as indicative of good correlation due to the inherent complexity of 

seismic waveforms. This threshold has also been employed in other studies as a lower 

limit to discard unreliable measurements (Hobiger et al., 2012; Rivet et al., 2014). 

We also conducted tests to ascertain the effects of cc values on dv/v 

measurements, as displayed in Figure 15. The correlation coefficient is calculated 

between the coda parts of the current and reference waveforms, rather than between 

each moving window. As shown in Figure 15, a lower cc threshold provides a better 

resolution of the velocity change during an earthquake, and the dv/v measurements 

feature smaller error bars. Additionally, the number of averaged dv/v measurements 

increases with a lower cc threshold, offering a more robust approximation of the 

velocity variations. Given the complex nature of seismic waveforms, even minor 

stretching can induce a significant change in the correlation coefficient. Therefore, a 

high threshold could potentially filter out some velocity change signals. While 

Brenguier et al. (2008) and Wu et al. (2016) did not include this step in their analyses, 

we incorporate it into our study to enhance the reliability of our results.  



52 
 

 

 

 

Figure 14. From (A) to (C) the upper panels show averaged dv/v measurements 

with the window lengths increase from 0.6x to 1.0x to 2.0x the longest 

wavelength in the frequency range (0.3 to 0.8 Hz), respectively. The lower panels 

show values used to average at that time. 
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Figure 15(A) upper panel shows averaged dv/v measurements using cc threshold 

of 0.7; middle panel shows distribution of dv/v values used to average on that 

timestamp; lower panel shows the number of dv/v values used to average on that 

timestamp. Figure 15(B) shows the same plots using a cc threshold of 0.9 
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3.2. GPS and Strong Motion Data Processing 

We calculate the strain components 𝜖𝑥𝑥, 𝜖𝑦𝑦 and 𝜖𝑥𝑦 using relative 

displacements between each pair of GPS stations with distances smaller than 9 km and 

then derive the second strain invariant using 𝐼2 =
1

2
(𝜖𝑥𝑥𝜖𝑦𝑦 −  𝜖𝑥𝑦𝜖𝑥𝑦) . The metric 

serves as a simple proxy for the amplitude of strain changes for the coseismic and 

specified postseismic periods. We focus on the decimal logarithm of the square root of 

the second invariant, log10(√𝐼2) to assess the spatial variations of the strain changes. 

The dynamic strains during the earthquake are estimated from strong-motion 

records, with the peak ground velocities (PGV) divided by the assumed S-wave phase 

speed (2.7 km/s) (e.g., Hill et al., 1993; Taira et al., 2015). We compare the spatial 

variations of maximum logarithmic values of dynamic strains in Section 4. 
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4. Results 

4.1. The dv/v Results 

After implementing the ambient noise interferometry workflow for each station 

pair, we proceeded to generate dv/v measurements for each of the five distinct 

frequency bands. To resolve the subtle velocity variations, we examine the averaged 

dv/v over all station pairs, (Figure 16), and individual station pair dv/v values (Figures 

17–21). Each substack is averaged over a period of 30 days with no overlap, providing 

us with a total of 70 data points for each frequency band. To accurately evaluate the 

coseismic velocity changes (∆0), we model the dv/v time series using a five-parameter 

function, following Hobiger et al. (2012):  

                       𝑓(𝑡) = 𝐴 + 𝐵 ∗ ln (
𝑡−𝑡0

𝜏
) ∗ 𝐻(𝑡 − 𝑡0) + 𝐸 ∗ cos(𝜔𝑡 + 𝜑)                     (5) 

where t is the date of measurement, t0 is the date of the Parkfield earthquake, and H(t-t0) 

is the Heaviside function defined by H(t-t0) = 0 for t < t0 and H(t-t0) = 1 for t > t0. The 

five parameters in this equation are A, B, τ, E and φ, where A is a constant offset; B is a 

coefficient that describes the coseismic velocity change; τ is the postseismic recovery 

time in years; E and φ are the amplitude and phase shift for the seasonal variation model 

with a fixed period, ω, of 2π/year. We note that the model behaves like a simple cosine 

function with some offset before the Parkfield earthquake and incorporates a 

logarithmic function after the event to capture the postseismic recovery process. Since 

the logarithmic function 𝐵 ∗ ln (
𝑡−𝑡0

𝜏
)  approaches negative infinity for very small (𝑡 −

𝑡0) values, it describes an infinite coseismic velocity drop, which is unrealistic in real 

scenarios. Therefore, we need to use a different definition to estimate the coseismic 



56 
 

velocity jump (∆0). As we use an averaging window, d, with a length of 30 days for 

current waveforms, the coseismic velocity change (∆0) can be estimated using the 

difference between the beginning and end of the averaging window centered on the date 

of earthquake. Following Hobiger et al. (2012), we use the following equation to 

calculate ∆0:             

                                                     ∆0= 𝐵 ∗ ln (
𝑑

2𝜏
)                                                    (6) 

where d is the substack smoothing window length in days, 𝜏 is the number of 

postcoseismic recovery time in days and B is the best fitting parameter for each station 

in Eq. 5. Because of the usage of averaging window, a factor of 2 is added to the 

denominator to calculate the ∆0 value at the center point of the smoothing window.  

For each station pair, we execute the grid-search algorithm on the five 

parameters to minimize the root-mean-square error (RMSE) of the fitting curve. Table 4 

lists the ranges used in grid-search for the five parameters in Eq. 5. The ranges are 

estimated from reasonable extreme values and based on previous studies (We et al., 

2016; Hobiger et al., 2012; Taira et al., 2015; Okubo & Denolle, 2020).  

The optimal combination of these parameters, which yields the most accurate 

fitting curve, is subsequently displayed in each dv/v curve figure. Even though the final 

best-fitting curves have the lowest RMSE, it is still insufficient to reflect the realistic 

and correct coseismic velocity variations because the calculated ∆0value may be only a 

random number within the error range that happen to show the expect value, and thus 

cannot be considered as clear and robust unless it is statistically valid. So, in order to 
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make sure our coseismic velocity change measurements are solid and meaningful, i.e., 

not within the uncertainty range of a predicted value, we need to introduce an additional 

quality metric to select the ∆0 values. We also ascertain the robustness of the fitting 

curves by calculating the ratio between the RMSE and ∆0 values. If a fitting curve has a 

ratio that is less than 30%, it is deemed to be within the acceptable range. In this way, 

we can focus on calculated ∆0 values that are at least 3.3 times higher than the model 

fitting error. Thus, only fitting curves that meet this criterion are selected and presented 

for further discussion and demonstration. 

Constant offset (A) 0 – 0.2% 

Coseismic Velocity Change (B) 0 – 0.3% 

Recovery Time (𝜏) 0 – 100 years 

Seasonal Variations Amplitude (E) 0 – 0.1% 

Seasonal Variations Phase (𝜑) 0 – 150 days 

Table 4. List of ranges for the five parameters in performing grid-search. 

As indicated in Figure 16, we observe an increase in the amplitude of coseismic 

dv/v drop, from 0.06% at 0.2-0.6 Hz to 0.13% at 0.9-1.4 Hz. Concurrently, we witness a 

decrease in the RMSE error of the fitting curve with the increment of the frequency 

band. This trend suggests a better characterization of the distribution of data points with 

higher frequencies. Examining all averaged dv/v measurements, we observe a 

fluctuation in the values prior to the earthquake. However, these values exhibit 

relatively less variability in the period following the seismic event. We hypothesize that 

the observed characteristic is attributable to a relatively small number of values utilized 
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for averaging before Sept. 2004 due to data gap and relatively low quality of recorded 

data. However, in general the averaged dv/v measurements present consistent patterns 

of the coseismic velocity drop and the subsequent postseismic recovery process. 

Moreover, the trend of an increasing dv/v at higher frequency bands, and the magnitude 

of velocity change, are consistent with the findings of previous research (Wu et al., 

2016). 

The single station dv/v measurements across different frequency bands, as 

illustrated in Figures 17-21 and Appendix Figures 1-4, reveal more features compared 

to the averaged dv/v plots shown in Figure 16. A notable feature, increasingly 

prominent with higher frequency bands, is the larger quantity of good fitting curves. 

Based on a previous study (Campillo and Paul, 2003), this change in better averaging is 

indicative of improving quality dv/v measurements at higher frequencies. The cause 

behind this phenomenon is not entirely clear, but we suspect it may be related to the 

comparatively smaller reactions to perturbations at lower frequencies, resulting in low 

amplitudes that are harder to detect in both time and frequency domains.  

Figures 17-21 also demonstrate a pattern that errors are lower at high 

frequencies and higher at low frequencies. Large error represents more randomly 

distributed data points, but we expect them to arrange in certain patterns. Therefore, a 

small error is also critical for accurately estimating coseismic velocity changes using 

fitting curves. In contrast with averaged dv/v measurements, single-station-pair 

measurements exhibit greater fluctuation across all frequency bands. This is mainly 

caused by insufficient averaging in the single-station-pair measurements. In the 
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averaging process, incoherent values will be cancelled out and the coherent part will be 

emphasized. But because single station pair dv/v measurements do not go through such 

procedure, the larger fluctuation is expected. 

While all single station pairs exhibit patterns of velocity change to a certain 

degree, the quality of these patterns is somewhat hindered by the fluctuation of data 

points. Another issue contributing to this problem is the incoherency between the 

current and reference waveforms, especially in the coda portions. Some monthly 

waveforms possess a higher overall amplitude, thus having more weight when 

combined with other waveforms. This results in a more significant contribution to the 

reference Green's functions, which in turn reduces the coherency with other current 

waveforms. We have also observed time shifts in some waveforms, which could 

potentially result in abnormal dv/v measurements. However, we currently lack a method 

to validate this assumption. Despite these challenges, all Figures from 17 to 21 exhibit 

similar patterns as seen in Figure 16, namely, that coseismic velocity changes increase 

and errors decrease with increasing frequencies. Notably, some station pairs even 

display a coseismic velocity change as high as 0.27%. 

To illustrate the spatial pattern at different frequency bands, we map out 

coseismic velocity change values for all station-pairs (Figure 22-26). The selected 

station pairs are connected with lines that are color-coded based on coseismic dv/v 

values. To facilitate comparisons across frequencies, figures for all frequency bands use 

the same color bar and range. These map views reiterate the overall increase in 

coseismic dv/v at higher frequency bands and highlight some intriguing spatial 



60 
 

variations. For instance, stations situated on the eastern side of the San Andreas Fault 

register higher velocity changes compared to other stations operating at the same 

frequency band. Conversely, some stations located in the southwest part of the array 

demonstrate higher velocity variations only at higher frequency bands.  
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Figure 16. Averaged dv/v measurements at 0.2-0.6, 0.3-0.8, 0.5-1.0, 0.7-1.2, 0.9-

1.4 Hz. The blue circles are observed values. The red curve represents the best 

fitting curve. The parameters of the best fitting curve are shown in the label. 
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Figure 17. Selected single station pair dv/v measurements at frequency band 0.2-

0.6 Hz. The blue circles are observed values. The red curve represents the best 

fitting curve. The parameters of the best fitting curve are shown in the label. 
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Figure 18. Selected single station pair dv/v measurements at frequency band 0.3-

0.8 Hz. The blue circles are observed values. The red curve represents the best 

fitting curve. The parameters of the best fitting curve are shown in the label. 
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Figure 19. Selected single station pair dv/v measurements at frequency band 0.5-

1.0 Hz. The blue circles are observed values. The red curve represents the best 

fitting curve. The parameters of the best fitting curve are shown in the label. 
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Figure 21. Selected single station pair dv/v measurements at frequency band 0.7-

1.2 Hz. The blue circles are observed values. The red curve represents the best 

fitting curve. The parameters of the best fitting curve are shown in the label. 

 

Figure 20. Selected single station pair dv/v measurements at frequency band 0.7-

1.2 Hz. The blue circles are observed values. The red curve represents the best 

fitting curve. The parameters of the best fitting curve are shown in the label. 
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Figure 21. Selected single station pair dv/v measurements at frequency band 0.9-

1.4 Hz. The blue circles are observed values. The red curve represents the best 

fitting curve. The parameters of the best fitting curve are shown in the label. 
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Figure 22. Map view of selected single station pair coseismic dv/v measurements 

at 0.2-0.6 Hz frequency band. Black triangles are seismic stations and the red 

star marks epicenter of the Parkfield earthquake. The grey lines are fault traces. 
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Figure 23. Map view of selected single station pair coseismic dv/v measurements 

at 0.3-0.8 Hz frequency band. Black triangles are seismic stations and the red 

star marks epicenter of the Parkfield earthquake. The grey lines are fault traces. 
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Figure 24. Map view of selected single station pair coseismic dv/v measurements 

at 0.5-1.0 Hz frequency band. Black triangles are seismic stations and the red 

star marks epicenter of the Parkfield earthquake. The grey lines are fault traces. 
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Figure 25. Map view of selected single station pair coseismic dv/v measurements 

at 0.7-1.2 Hz frequency band. Black triangles are seismic stations and the red 

star marks epicenter of the Parkfield earthquake. The grey lines are fault traces. 
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Figure 26. Map view of selected single station pair coseismic dv/v measurements 

at 0.9-1.4 Hz frequency band. Black triangles are seismic stations and the red 

star marks epicenter of the Parkfield earthquake. The grey lines are fault traces. 
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4.2. Dynamic and Static Strain Results 

The results of dynamic and static strain are shown in the map view (Figures 27-

29). These figures elucidate the coseismic and postseismic displacements and strain 

changes that have been observed at GPS stations and calculated using records from 

several seismometers. Figures 27 and 28 reveal that static strain is more pronounced 

between stations located on either side of the fault. The associated displacements are 

approximately in the order of 10 mm. As for the peak dynamic strain changes (Figure 

29), these strain alterations are largely concentrated on the fault and its immediate 

surroundings. Areas situated at a further distance from the fault display smaller peak 

dynamic strain changes. For both static and dynamic strain changes, the amplitude are 

very similar. 
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Figure 27. Map view of coseismic static strain changes. The black circles are 

GPS stations. The blue circles mark seismic stations. The yellow star marks the 

epicenter. The arrow marks displacement and direction. Red color means higher 

strain changes and yellow means smaller strain changes. 
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Figure 28. Map view of postseismic static strain changes. The black circles are 

GPS stations. The blue circles mark seismic stations. The yellow star marks the 

epicenter. The arrow marks displacement and direction. Red color means higher 

strain changes and yellow means smaller strain changes. 
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Figure 29. Map view of peak dynamic strain changes. The black dots are 

seismometer stations. The blue circles mark BP stations. The yellow star marks 

the epicenter. Red color means higher strain changes and yellow means smaller 

strain changes. 
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5. Discussion 

5.1. Relation between dv/v and Strain Changes 

Brenguier et al. (2008) and Wu et al. (2016) have previously employed the 

ambient noise interferometry method on the same data set, utilizing all three 

components and the vertical component exclusively, respectively. Wu et al. (2016) 

conducted an examination of average velocity variations across different frequency 

bands and established constraints for the depth of velocity variation. In this study, we 

have expanded upon the analysis to single station pairs, offering insights into the 

patterns of spatial velocity variations. Our observations are consistent with the 

previously noted increase in the amplitude of the velocity drop at higher frequencies and 

the gradual trend of postseismic recovery. We conclude that a higher coseismic velocity 

change at higher frequency bands indicates more pronounced changes in rock elastic 

properties and potential inelastic deformation at shallower depths, with these effects 

diminishing at greater depths. Our results also imply that the coseismic velocity change 

may be generally larger on the eastern side of the San Andreas Fault. However, at 

higher frequencies, the southwest part of the BP station array also experiences 

significant velocity changes. From a theoretical standpoint, we would expect to see the 

highest dv/v changes spatially concentrated along the fault line, decreasing with 

distance from the fault. This expectation assumes that rocks in closer proximity to the 

fault would undergo more damage during earthquake rupture than those located further 

away. However, such patterns are not evident in our results, prompting further 

investigation and analysis to better understand these spatial velocity change patterns. 

The spatial distribution of seismic velocity changes presents a more nuanced picture of 
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the seismic phenomena associated with different frequency bands and may offer 

insights into the geodynamic processes at play in different areas surrounding the San 

Andreas Fault. 

Previous studies have explained the sudden velocity drop concurrent with large 

earthquakes with a variety of factors. These include the opening of cracks, reduced 

packing within weak sedimentary layers and fault zones, or an increase in water flow 

into cracks (Li et al., 2007). However, the entire process remains a subject of debate and 

is not fully understood. Since Figures 27-29 only map amplitudes of strain changes and 

neglect the directions of strain changes, we cannot yet investigate the relationship 

between velocity changes and tensional and compression strains. However, we can still 

observe that coseismic dynamic strains are generally several times larger than coseismic 

static strain changes, especially in areas further away from the fault. Therefore, 

coseismic dynamic strains likely contributed more to the seismic velocity drops, as 

suggested in Wu et al. (2009). The postseismic seismic velocity recovery may be related 

to postseismic static strain changes because dynamic strain changes only exist 

coseismically. Nonetheless, the relation between the spatial change patterns of dv/v and 

strain remains inconclusive. This ambiguity could be due to the distribution of seismic 

and GPS stations and uncertainties and potential biases in estimates of strain and dv/v. 

The connection between strain and velocity changes is complex and achieving a 

comprehensive understanding of it would require a more detailed study with a denser 

network of stations. 
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To check the reliability of our curve fitting results, we compare values of best-

fitting model parameters such as the recovery time (tau) with results of previous studies 

(Brenguier et al., 2008; Wu et al., 2016; Okubo & Denolle, 2020). For averaged dv/v 

measurements, higher frequency bands agree better with results from Brenguier et al. 

(2008) and Wu et al. (2016). At frequency bands higher than 0.5-1.0 Hz, our models 

have a recovery time of around 10 years, which is comparable with previous studies 

(Okubo & Denolle, 2020). However, model parameters are relatively random at lower 

frequency bands, which can be a result of large data noise. 
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5.2. Limitations and Potential Improvements 

While we have successfully captured some key features of velocity variations 

between different station pairs, there are several areas where improvements could be 

made. Firstly, higher waveform coherence would yield more accurate measurements, so 

the coherence between the current and reference waveform could be further increased 

by selectively stacking correlation functions. However, care must be taken not to 

excessively remove correlation functions. Secondly, to better illustrate the dv/v change 

over time, we could introduce a moving window for stacking substack waveforms. This 

would allow us to visualize and analyze temporal changes more effectively and in 

detail. When it comes to calculating dv/v values, we could also consider more 

comprehensive methods like the Weighted Time-Domain Cross-Correlation (WTDTW) 

method. This approach accounts for both time- and frequency-domain features of 

waveforms, offering a more holistic view of the data. Our single station dv/v results still 

have room for improvement. The data points have large fluctuations, making the 

velocity variation pattern not very clear, particularly for low-frequency bands. In 

addition, to better understand the possible relation between strain and seismic velocity 

changes, we should examine local rock properties maps, the relation between seismic 

velocity changes and distance from the fault, the spatial distribution of modeling 

parameters, and better estimation of errors in both modeling and calculating dv/v values.  

Finally, our method for examining spatial variation currently relies on first-order 

connections between stations (Mao et al., 2020). Future studies could incorporate 

inversion techniques and more advanced methodologies to better constrain and 

understand the spatial patterns of velocity variations. 
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6. Conclusion 

In this study, we implemented the ambient noise interferometry method to 

process continuous ambient noise data from 13 BP borehole stations. By exploiting and 

expanding the functions of an open-source Python package, NoisePy, we were able to 

execute the entire workflow of ambient noise interferometry with careful selection of 

important parameters and methods. Our results illustrate clear changes in dv/v 

measurements both over time and during earthquakes. The observed coseismic velocity 

variation aligns well with previous findings, and we further extended our analysis to 

single station pairs to resolve spatial variations. Our results suggest that the eastern part 

of the San Andreas Fault may exhibit larger velocity changes. We utilized static and 

dynamic strain change data for comparison with our results. Our analysis suggests that 

the velocity drop is primarily due to dynamic strain change, while the postseismic 

recovery process is predominantly related to static strain change. Several aspects of our 

study can be improved in the future. The coherence between substack and reference 

waveforms could be further improved to yield more accurate results. Additionally, other 

recently introduced methods could also be employed for calculating velocity variations. 

Lastly, seismic inversions could be used to better model the velocity changes at 

different depths and directions. More comprehensive information can be revealed in the 

future through careful data processing and the selection of appropriate techniques, thus 

deepening our understanding of seismic activity and fault behavior. 
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8. Appendix 

Appendix Figures 1-4 are complementary to Figures 21-24, showing all single 

station dv/v plots that cannot fit in the main text. By providing the complete sets of dv/v 

plots at 5 selected frequency bands, we can better observe and understand the features 

of velocity variations and check quality of curve fitting.  
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Appendix Figure 1. Selected single station pair dv/v measurements at frequency 

band 0.3-0.8 Hz. The blue circles are observed values. The red curve represents 

the best fitting curve. The parameters of the best fitting curve are shown in the 

label. 
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Appendix Figure 2. Selected single station pair dv/v measurements at frequency 

band 0.5-1.0 Hz. The blue circles are observed values. The red curve represents 

the best fitting curve. The parameters of the best fitting curve are shown in the 

label. 
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Appendix Figure 3. Selected single station pair dv/v measurements at frequency 

band 0.7-1.2 Hz. The blue circles are observed values. The red curve represents 

the best fitting curve. The parameters of the best fitting curve are shown in the 

label. 
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Appendix Figure 4. Selected single station pair dv/v measurements at frequency 

band 0.9-1.4 Hz. The blue circles are observed values. The red curve represents 

the best fitting curve. The parameters of the best fitting curve are shown in the 

label. 

 


