
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

NON-TERMINAL HYDROMETEOR FALL SPEED EFFECTS ON MODELED

RAIN PROCESSES

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE

By

LOGAN M. ROY
Norman, Oklahoma

2023



NON-TERMINAL HYDROMETEOR FALL SPEED EFFECTS ON MODELED
RAIN PROCESSES

A THESIS APPROVED FOR THE
SCHOOL OF METEOROLOGY

BY THE COMMITTEE CONSISTING OF

Dr. Gregory McFarquhar, Chair

Dr. Feng Xu

Dr. Hugh Morrison



© Copyright by LOGAN M. ROY 2023
All Rights Reserved.



Acknowledgments

I would like to begin by thanking my advisor Dr. Greg McFarquhar. Without

his continuous support, guidance, and encouragement, I would not have grown as a

scientist and would not have been able to complete this project. I am extremely grateful

for the commitment you showed me and hope that I can carry all the lessons you taught

me into my future work.

I would also like to thank Dr. Feng Xu, without whom it would have been

impossible to complete this project. Your work managing the logistics of this project

was invaluable and for that, I am truly grateful. I’d also like to thank Dr. Hugh

Morrison whose expertise has inspired me to take this research as far as I can and

share it with as many members of the cloud modeling community as will listen.

I would like to thank Dr. Wei Wu, who initially supported my master’s research.

Without his faith in my abilities, I would not have had the opportunity to grow through

this research. While it wasn’t possible to finish the research under his guidance, he

has continued to go above and beyond in supporting me, and for that, I am extremely

grateful

For all the members of OU and the cloud modeling community that have sup-

ported and helped me grow as a scientist, I am so thankful.

Lastly, I must acknowledge the tremendous support I received from my loving

family. Without their encouragement, I would never have been able to push myself in

my academic career. I want to specifically thank my sister, Alex Roy, for giving up

iv



her guest bedroom for 2 years. Without your support I would not have been able to

do any of this. Thank you all so much.

v



Table of Contents

Acknowledgments iv

Table of Contents vi

List of Tables viii

List of Figures ix

Abstract xiii

1 Introduction and Background 1

1.1 Cloud Microphysics Modeling Basics . . . . . . . . . . . . . . . . . . . 2

1.2 Non-Terminal Hydrometeor Fall Speeds . . . . . . . . . . . . . . . . . . 5

2 The Cloud Particle Model 8

2.1 Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Diffusional Growth . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Coalescence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Collisional Breakup . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.4 Spontaneous Breakup . . . . . . . . . . . . . . . . . . . . . . . . 12

vi



2.1.5 Limited Volume Method . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Stochastic Fall Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Simple Noise Term . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Statistical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Sensitivity Studies 19

3.1 Stochastic Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Nt Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.2 Distribution Experiment . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Bias Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Scaling Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Conclusion and Recommended Future Work 48

Bibliography 51

vii



List of Tables

3.1 P-values from the bootstrap statistical test against the σ = 0.0 m/s run.

Significantly different model runs are shown in bold. Note that as Nt

increases, σ∗ also decreases, from σ∗ = 0.4 m/s for the low Nt run to σ∗

= 0.35 m/s for the moderate and high Nt runs. . . . . . . . . . . . . . 26

viii



List of Figures

2.1 Comparison between the different types of fall speeds available to the

CPM, terminal in black, simple noise in green, biased in blue, and scaled

in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 DSD evolution in a box model from an initial exponential distribution

for each of the different σ values tested at four different times during the

evolution towards equilibrium. The most obvious difference between the

runs is the decrease in number concentration of particles with diameters

less than 1.3 mm. The plots show the distributions at different time: a)

t = 0 s; b) t = 1200 s; c) 2400 s; d) t = 3600 s . . . . . . . . . . . . . . 21

3.2 P-value generated by the bootstrap statistical analysis comparing each

model run to the terminal case (σ = 0 m/s) as a function of time. . . . 22

3.3 Collisional Activity for all σ runs as a function of time. . . . . . . . . . 23

3.4 DSD development for the three exponential distributions used in the

Nt experiment at four times during the equilibrium development with

σ = 0.5 m/s. Low) Nt = 3000 mm−1m−3, mod) Nt = 6000 mm−1m−3,

and high) Nt = 9000 mm−1m−3. The plots show the distributions at

different time: a) t = 0 s; b) t = 1200 s; c) 2400 s; d) t = 3600 s . . . . 25

ix



3.5 Total number of collision events per second for each of the σ values

tested with Nt = 6000 m−3mm−1. . . . . . . . . . . . . . . . . . . . . . 27

3.6 The number concentration for various size ranges of particles. Plot a)

shows the evolution of number concentration for the region of the DSD

which initially experience a complete reduction in particles. Plot b)

shows the evolution of number concentration for the region of the DSD

populated by particles with smaller diameters than the first peak at D

= 0.4 mm. Plot c) shows the evolution of number concentration for the

region of the DSD between the two peaks at D = 0.4 mm and D = 1.3

mm. Plot d) shows the evolution of number concentration for the region

of the DSD populated by particles with larger diameters than the second

peak at D = 1.3 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.7 The evolution of the three different initial distributions used for the

distribution experiment with σ = 0 m/s at four different times during

the simulation. Note that the three distributions in plot d have similar

shapes for particles less than 0.8 mm and greater than 1.3 mm, but

different shapes for particles of intermediate sizes. The plots show the

distributions at different time: a) t = 0 s; b) t = 1200 s; c) 2400 s; d) t

= 3600 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.8 Same as figure 3.7 except with σ = 0.5m/s. Note that in d the different

distributions have more similar shapes with σ = 0.5 m/s than in the

model outputs generated with σ = 0.0 m/s, especially when looking at

particle concentrations around 1 mm. . . . . . . . . . . . . . . . . . . . 31

x



3.9 P-value generated by the bootstrap statistical analysis comparing each

model run to the terminal case (σ = 0 m/s) as a function of time from

an initial gamma distribution. . . . . . . . . . . . . . . . . . . . . . . 32

3.10 P-value generated by the bootstrap statistical analysis comparing each

model run to the terminal case (σ = 0 m/s) as a function of time from

an initial uniform distribution. . . . . . . . . . . . . . . . . . . . . . . . 33

3.11 a) Number of collisions per second for each of the three initial distribu-

tions, with σ = 0.0 m/s and σ = 0.5 m/s. b) Ratio of breakup events

per second to coalescence events per second for each of the three initial

distributions with σ = 0.0 m/s and σ = 0.5 m/s . . . . . . . . . . . . . 34

3.12 Number concentration for all diameters over the course of the evolution

of the DSD from an initial uniform distribution. . . . . . . . . . . . . . 35

3.13 Number concentration for all diameters over the course of the evolution

of the DSD from an initial gamma distribution. . . . . . . . . . . . . . 36

3.14 Comparison between the biased (blue) and unbiased (red) model drop

size distributions. The different models produces significantly different

distributions, with the biased model having a notably larger amount of

particles of size less than 1.3 mm. The plots show the distributions at

different time: a) t = 0 s; b) t = 1200 s; c) 2400 s; d) t = 3600 s . . . . 38

3.15 Comparison between the biased (dotted lines) and unbiased (solid lines)

model collision rates for different σ values. It is clear that for all σ the

biased runs have lower collision rates when compared to the unbiased

runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

xi



3.16 Comparison between the biased (dotted lines) and unbiased (solid lines)

model ratios of breakup to coalescence events for different σ values. It

is clear that for all σ the biased runs have lower ratios when compared

to the unbiased runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.17 a) Comparison between the number concentration of the biased (blue)

and unbiased (red) models with different values of σ (dashed: σ = 0.0

m/s, solid: σ = 0.5 m/s). b) Same as plot a) but for rain rate instead

of number concentration. . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.18 Fall speed distributions for the 6 model runs performed in this sensitivity

test. The color fill represents the number of particles in each pixel of

the diameter vs. fall speed distribution. . . . . . . . . . . . . . . . . . . 43

3.19 a) Equilibrium distribution generated under different values of Ds with

bias included and σ = 0.5 m/s b) Same as left for unbiased model run

with σ = 0.5 m/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.20 Collision counts for the biased (solid lines) and unbiased (dashed lines)

model runs with σ = 0.5 m/s under different values of Ds. For both

sets of model runs the Ds = 0.25 mm runs have notably lower collision

activity compared to the less scaled and unscaled model runs. . . . . . 46

3.21 a) Number concentration (N0) as a function of time for each of the 6

simulation runs performed. b) Rain rate as a function of time for each

of the 6 model runs performed. . . . . . . . . . . . . . . . . . . . . . . 46

xii



Abstract

Recent observational studies have shown hydrometeors exhibit non-terminal fall

speeds. The goal of this study is to understand how these non-terminal fall speeds affect

the collision, coalescence and breakup of raindrops in a Lagrangian cloud model called

the Cloud Particle Model (CPM). The observational studies identified three important

characteristics of the non-terminal fall speeds; 1) hydrometeor fall speeds have some

variance around the expected terminal velocity; 2) hydrometeors have a tendency for

large particles (D > 1.5 mm) to display sub-terminal fall speeds and small particles (D

< 0.5 mm) to display super-terminal fall speeds; 3) hydrometeors have the tendency

for large particles to have narrower fall speed distributions than small particles. The

CPM is a Lagrangian model that uses the method of limited volume (MLV) to maintain

computational feasibility rather than the super droplet method commonly used in

Lagrangian models. The MLV samples a fixed number of nearby particles at each

time step to calculate collisional interactions rather than combine multiple particles

of the same size into super droplets. This makes the CPM more sensitive to random

fluctuations than the super droplet method, a desirable feature for studying random

variation in fall speeds.

The first sensitivity study, varying the width of the fall speed distribution,

showed that there was a critical width of the velocity variations, which if not exceeded,

resulted in approached equilibrium distributions that were statistically indistinguish-

able from the equilibrium distributions approached using the deterministic terminal

velocities. The exact value of this critical standard deviation depends strongly on the

assumed initial distribution. The second sensitivity test, adding a bias term, showed

the bias had a greater impact on the number concentration of large particles in the

xiii



approached equilibrium distribution than the did random noise term, which means

the bias has a big impact on higher moments of the size distribution like radar re-

flectivity and rain rate. The last sensitivity study, which scaled the variance of large

particles, found that the scaling term had a very small effect on any moment of the

approached equilibrium distribution, including the number concentration (7 % change

between scaling terms, and 18 % change between bias terms) and rain rate (1.3 %

change between scaling terms and 5 % change between bias terms), which lessens the

impact of the term compared to the other two terms.
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Chapter 1

Introduction and Background

Improvements in modeling of cloud microphysical processes can impact a wide range

of fields from numerical weather prediction and radar retrievals to hydrology. Clouds

represent a major source of uncertainty in climate models and are important to numer-

ical weather prediction through radiative effects and latent heat release. Corrections

to the drop size distributions, specifically functional fits to environmental variables

could be used to modify the assumed DSD in radar retrieval algorithms to more ac-

curately interpret the radar signal. Currently, Satellite platforms like the GPM and

before it the TRMM used cloud models based on bulk schemes to generate statistics

for precipitation retrieval algorithms. The DSD assumed by these applications follows

an exponential distribution which has the advantage of being computationally easy to

work with but doesn’t match the observed DSDs from ground-based or airborne obser-

vations. Therefore improved understanding of drop size distributions (DSDs) and their

dependence on environmental conditions could improve radar retrieval algorithms (Pei

et al., 2014) as well as impact hydrological models and erosion estimations (Rosewell,
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1986). This wide application of cloud microphysics necessitates a robust understanding

of the underlying mechanisms that affect the DSDs which is still lacking.

1.1 Cloud Microphysics Modeling Basics

Three major types of cloud microphysics models are currently used, bulk schemes, bin

schemes, and Lagrangian schemes. Bulk schemes offer computational efficiency at the

expense of microphysical detail, as they require assumptions about the shape of the

DSD and cannot generally offer insight into DSD development due to these assump-

tions (Grabowski et al., 2019). Bin schemes represent DSDs as discrete distributions

where the mass and number concentrations are predicted for specific size bins, allowing

the distribution to evolve under the influence of various microphysical processes. Thus,

bin schemes offer much more detail than bulk schemes and allow for the study of DSD

development. But, bin schemes suffer from numerical diffusion, mean-field theory ap-

proximations of microphysical processes, and the curse of dimensionality, which pose

a challenge to accurately modeling DSD development (Tzivion et al., 1987; Morrison

et al., 2018; Grabowski et al., 2019). Lagrangian models have recently been adopted as

an alternative to bin schemes, offering similar levels of micropysical detail, without the

draw back of numerical diffusion. These schemes operate by representing DSDs as a

collection of Lagrangian particles, which are tracked as they advect through a domain

without numerical diffusion. Lagrangian schemes are only computationally feasible

due to the adoption of the super droplet method (SDM) which uses the concept of

superdroplets to represent a large number of real droplets of the same size (Andrejczuk

et al., 2008; Shima et al., 2009; Andrejczuk et al., 2010). There are still drawbacks
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associated with Lagrangian schemes beyond their computational cost, including ambi-

guity in the number of super droplets that are required within a grid box to accurately

represent the microphysical properties in various conditions, and the problem of acti-

vating additional super droplets. One common approach to use models to study DSDs

is to allow the development of a steady state under some set of conditions, usually

in a box model, and perform sensitivity studies to understand the impact of various

microphysical processes or environmental conditions on the steady state DSD that is

approached (Srivastava, 1971, 1982; List and McFarquhar, 1990; McFarquhar, 2004;

Young, 1975; Hu and Srivastava, 1995).

One of the main microphysical processes responsible for warm rain development

is the collision-coalescence processes, which is described by the stochastic collection

equation (SCE), sometimes known as the Smoluchowski equation, which is given by

∂n(v, t)

∂t
= −n(v, t)

∫ +∞

0

K(v, u)n(u, t) du+
1

2

∫ v

0

K(u, v − u)n(u, t)n(v − u, t) du

+

∫ +∞

0

L(v, u)n(u, t) du− n(v, t)

v

∫ v

0

uL(v, u) du+ SC(v, t)− SK(v, t), (1.1)

where n(v, t) is the number distribution for particles of volume v at time t, K(v, u)

is the collection kernel, L(v, u) is the breakup kernel, and SC(v, t) and SK(v, t) are

source and sink terms (Gillespie, 1972, 1975). Several attempts have been made to

represent DSDs using analytical functions with several forms, including exponential

distributions (Marshall and Palmer, 1948), gamma distributions (Ulbrich, 1983), and

log-normal distributions (Feingold and Levin, 1986). However since the stochastic

collection equation cannot be solved analytically except for simple collection kernels,

these analytical functions do not fully represent the evolution of the DSD (Scott, 1968;
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Drake, 1972; Schumann, 1940). To address the lack of analytical solutions, bin schemes

are implemented to understand the development of DSDs. Despite its name, the SCE is

actually deterministic, relying on the mean field approximations of particle collisions to

represent the physical processes, which is fundamentally stochastic (Grabowski et al.,

2019). The mean-field approach of the SCE used in bin schemes is unable to represent

the random fluctuations of the stochastic collision-coalescence processes, which are

important for ”lucky droplet” theories (Dziekan and Pawlowska, 2017), which cannot

be tested or simulated using bin schemes.

Lagrangian schemes actually calculate the probability of two droplets interacting

from the collision kernel and determine the outcome of the interaction using these prob-

abilities in collection and breakup kernels, which makes them ideal for understanding

the importance of the stochastic coalescence-breakup process. Lagrangian schemes

that use the SDM can capture the stochastic nature of the coalescence-breakup pro-

cess, but still suffer from mean approximations associated with the multiplicity of super

droplets. The effects of the mean field approach used in bin schemes and the super

droplet method used in Lagrangian schemes extends to more than just the stochas-

tic coalescence-breakup process, but to all stochastic properties of cloud microphysics.

To address the limitations of these schemes, a new model was developed by Dr. Wei

Wu, the Cloud Particle Model (CPM), which is used to study the impact of stochas-

tic variables on DSD development. The CPM is a particle based model capable of

directly simulating the growth of individual particles, which leverages the utility of

Lagrangian models, without suffering from sampling issues associated with the super

droplet method. The representation of particle fall speeds in Lagrangian models is the

focus of the research presented here, but it is also identified that the supersaturation is

4



a potentially important stochastic variable in the representation of cloud microphysics

(Chandrakar et al., 2021).

1.2 Non-Terminal Hydrometeor Fall Speeds

Several studies have identified particle fall speeds as non-terminal (Bringi et al., 2018;

Chatterjee et al., 2022; Montero-Mart́ınez and Garćıa-Garćıa, 2016; Thurai et al., 2019),

however most models still assume that hydrometeors fall at their terminal fall speeds

using some form of the Gunn and Kinzer (1949) terminal fall speed measurements.

Observations from a two dimensional video disdrometer (2DVD) and an optical array

probe by Bringi et al. (2018) measured significantly broadened fall speed distributions

for droplets of size 3 mm, 2 mm , and 1.3 mm with negative skewness, meaning sub-

terminal droplets were more common than super-terminal droplets, in high intensity

turbulence during heavy rainfall. Montero-Mart́ınez and Garćıa-Garćıa (2016) ob-

served droplet fall speeds under calm, light, and moderate wind conditions and under

different rain rates. They observed super-terminal fall speed for particles of size less

than 0.7 mm and sub-terminal fall speeds for particles up to 2 mm. They identified

a correlation with increasing wind intensity and increasing departure from terminal

velocities. These results led them to conclude that more turbulent conditions lead to

a general broadening of hydrometeor fall speeds for particles of various sizes. Thurai

et al. (2019) also observed sub-terminal droplet fall velocities for particles of sizes larger

than 2 mm. These studies attribute the observed sub-terminal fall speeds mostly to

the oscillation of the larger droplets cross sectional area resulting in an increased drag

coefficient in more turbulent conditions. This explanation has been tested in direct
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numerical simulations of water droplets in turbulent flows by Ren et al. (2020). They

found that the difference in oscillation amplitude was not significantly affected by the

presence of turbulence and could not fully explain the difference between fall speeds

in still vs turbulent conditions. Instead they presented the decrease in wake recircu-

lation length as the key factor to increased drag coefficients for droplets in turbulent

conditions. Independent of the exact nature or cause of the sub-terminal fall speed,

the DNS study by Ren et al. (2020) produced results similar to those observed by the

studies mentioned above.

Larsen et al. (2014) presented observations which confirm earlier observations of

super-terminal droplets using an array of laser precipitation monitors and a 2DVD to

observe 6 rain cases. The array of laser precipitation monitors observed a significant

proportion of droplets, between 80% and 5% depending on the size of particles, with

diameters less than 1 mm with super-terminal fall speeds, in agreement with past

studies. Another study by Chatterjee et al. (2022) used optical laser based disdrometers

to observe the size and velocities of particles during a large number of rain events. They

observed sub-terminal velocities for droplets of sizes greater than 1 mm. Particles of

sizes between 0.6 mm and 1.1 mm displayed some super-terminal (faster than terminal)

and some sub-terminal (slower than terminal) fall speeds with a strong negative bias.

For particles of sizes less than 0.6 mm the bias shifts from negative to positive.

There are several proposed hypotheses to explain the observed super-terminal fall

speeds (Ren et al., 2020; Chatterjee et al., 2022; Larsen et al., 2014). Firstly, the

super-terminal droplets may be the resultant fragments of very recent breakup events

of larger droplets. In this explanation the super-terminal fall speed is highly transitory

and the droplets return to the expected fall speed after some relaxation time due to

6



drag forces. The second hypothesis invokes wake effects to explain the supper-terminal

fall speeds, where small particles are pulled along in the wake of a larger droplets,

resulting in fall speeds greater than expected. The third hypothesis states that the

oscillations of the droplets cross sectional area results in different drag coefficients,

which lead to non-terminal fall speed observations. The last hypothesis attributes the

super-terminal fall speeds directly to turbulent effects, where smaller particles with

lower inertia are more directly influenced by turbulent eddies resulting in fall speed

deviations having a strong dependence on particle size.

It is hypothesized that the strictly terminal treatment of hydrometeor fall speed

leads to under representing collisional activity and strictly precludes the collisional

interaction of particles of similar sizes, which would be possible when non-terminal

fall speeds for particles are allowed. Past DNS studies have identified similar particle

interactions as a consequence of turbulence. This thesis test this hypothesis using the

Cloud Particle Model.

The model is described in section 2, then in section 3 several sensitivity studies

are presented where the effects of fall speed distribution biases and variance, as well

as hydrometer inertia on the DSD development, is described. Finally in section 4

the major findings of this study are discussed and summarized along with several

suggestions for future work.
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Chapter 2

The Cloud Particle Model

The CPM is a new particle based microphysics model for warm rain microphysics that

was developed by Dr. Wei Wu to understand important impacts on non-mean-field

effects on DSDs. Currently the CPM is limited to warm rain processes and will be ex-

tended to include ice phase and mixed phase processes in the future. The CPM includes

several microphysical processes implemented on a particle by particle basis which al-

lows for a careful analysis of non-mean-field effects when compared with Lagrangian

models which are limited by the sampling bias of the super droplet method. The

microphysical processes that are represented in the CPM include diffusional growth,

collision-coalescence, collision induced breakup, and spontaneous breakup. Stochas-

tic representation of two microphysical properties, hydrometoer fall speed and super

saturation, have been identified as particularly promising for investigating the impact

of non-mean microphysical properties on DSD development. This study focuses on

the impact of stochastic fall speed because of its importance to the collision induced

coalescence and breakup of particles. It is important to note that the stochastic rep-

resentation of super saturation has the potential to impact the diffusional growth of

8



particles, and hence DSD development as well. The following subsections describe the

treatment of each microphysical processes that is implemented in the CPM.

2.1 Processes

2.1.1 Diffusional Growth

The growth of droplets by diffusion of water vapor onto droplets is modeled following

Pruppacher and Klett (2010), with

r(t+∆t) =

√
r20 +∆t

(
1

Fd + Fk

(
4 ∗ SS − 8a

r0
+

32b

r30

))
(2.1)

where r is the radius of the particle at time t + ∆t and r0 is the radius at time t, ∆t

is the time step used in the simulation, SS is the supersaturation, and Fd and Fk are

the vapor diffusion and thermodynamic conduction terms, respectively, given by

Fd =
ρRT

2res(T )
, (2.2)

where ρ is the density of liquid water, R is the specific gas constant of water vapor,

T is temperature, and es(T ) is the vapor saturation pressure over a plane surface of

water at temperature T, and

Fk =
(L/RT − 1) ∗ Lρ

KT
, (2.3)

where L is the latent heat of vaporization of water, and K is the coefficient of thermal

conductivity of air. The a parameter is given by

a =
2Mwσ

RTρ
(2.4)
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where Mw is the molecular weight of water, σ is the surface tension of water, and b is

given by

b =
msiMw

Ms(4/3πρ)
(2.5)

where ms is the mass of solute, i is the Van ’t Hoff disassociation factor, and Ms is the

molecular weight of the solute.

2.1.2 Coalescence

To model the coalescence of two droplets in the CPM a geometric kernel is used to

determine the probability that two droplets collide during a time step. Each particle

falls some distance in each time step, and has a probability to interact with the particles

it sweeps out in that time step as a function of the diameter of both droplets, and their

fall speeds. This probability of collision, P (coll), is calculated as

P (coll) = E ∗G(r1, r2, V1, V2, V ol) ∗∆t (2.6)

where E is the collision efficiency which is a constant in the CPM and G is the geometric

collision kernel, which is calculated as

G(r1, r2, V1, V2, V ol) =
|V1 − V2|π(r1 + r2)

2

V ol
(2.7)

where r1 and r2 are the radii of the particles, V1 and V2 are the velocities of the particles,

and Vol is the volume of the simulation. If the two particles do collide, then one of

two processes ensues: coalescence or breakup. To determine the outcome of collisions,

a probability for the particles to coalesce is calculated following Low and List (1982)

as

P (coal) =

a
exp(bσ∗ET 2/SC)

(1 +D1/D2)2
(2.8)
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where the constants a = 0.778 and b = 2.61 X106J−2m2, σ is the surface tension

of water, ET is the total energy of coalescence, SC is the energy associated with the

surfaces of the two interacting particles, and D1 and D2 are the diameters of the

particles. Note that in this equation it is important that D1 < D2, and that all

velocities used for these equations use the actual non-terminal fall speed, rather than

the terminal fall speed that is typically used in the application of these equations.

2.1.3 Collisional Breakup

Like coalescence, collision induced breakup is handled probabilistically in the CPM.

The probability of breakup is the complement of the probability of coalescence mean-

ing when two particles collide, if they don’t coalesce, then they must breakup. The

fragment size distributions produced by collision induced breakup are represented fol-

lowing the McFarquhar (2004) parameterization where three types of breakups can

occur, filament, sheet, or disk. The fragment distribution is represented by a combina-

tion of Gaussian and gamma distributions from which the resultant fragment particles

are drawn probabalistically while insuring mass conservation. For all breakup types

the number of fragments produced, and the distribution from which they are sampled

are a function of the sizes of the two colliding droplets. More details about the imple-

mentation of this parameterization can be found in McFarquhar (2004). To conserve

mass in collisional breakup events, tests insure that the particles generated have the

same mass as that of the two colliding particles.
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2.1.4 Spontaneous Breakup

The CPM models spontaneous breakup of particles following Komabayasi et al. (1964)

which describes the probability that a particle of size D will spontaneously breakup in

a given time step, ∆t, P (r,∆t) as

P (r,∆t) = ∆t ∗ (2.94−7) ∗ e68∗D. (2.9)

Once a particle undergoes spontaneous breakup the resultant distribution of frag-

ment droplets is assumed to follow an exponential distribution with scale parameter

set as one seventh the parent droplet size. This process is not very active compared to

the other processes, occurring only when droplets grow to a size greater than 5.5 mm.

2.1.5 Limited Volume Method

The CPM does not use the super droplet method to limit the computational cost of

the simulations; instead it uses the limited volume method (LVM). The LVM limits

the amount of particle pairs checked at each time step in the collision processes to

some constant A. This results in a computational cost on the order of O(AN) rather

than O(N2), which results in significantly lower computational cost for simulations

with N on the order of 109 particles. For these simulations A was set to 1000, following

Dziekan and Pawlowska (2017). Initial testing of the CPM by Dr. Wu indicates that

increasing values of A converge in agreement with Dziekan and Pawlowska (2017).
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2.2 Stochastic Fall Speed

The usual representation of hydrometeor fall speeds is done following some fit to the

data collected by Gunn and Kinzer (1949). In this study the fit described by Foote

and Toit (1969) to the Gunn and Kinzer (1949) data is used to represent what is called

the terminal fall speed of droplets, which is given by

VTerminal = [−0.193 + 4.96D − 0.904D2 + 0.0566D3]e
z
20 . (2.10)

Simulations with this fall speed representation will serve as a control run to compare

the various representations of non-terminal fall speeds.

Several different representations of non-terminal fall speeds are implemented in this

study. The simplest form of non-terminal fall speed is a simple stochastic noise term,

described further in section 2.2.1, added to the terminal fall speeds calculated using

equation 2.10. The other representations each consider a specific physical feature of

non-terminal fall speeds, whether that feature is observed in ground based studies like

Montero-Mart́ınez and Garćıa-Garćıa (2016), Bringi et al. (2018), Testik and Bolek

(2023), or Chatterjee et al. (2022), or is expected from the physical sources of non-

terminal fall speeds as explained in these studies. These features include observed

biases and variance in non-terminal fall speeds, and the inertia of hydrometeors.

2.2.1 Simple Noise Term

The simple stochastic noise term is the simplest representation of non-terminal fall

speeds, and calculates hydrometeor velocities as

VSimple = [−0.193 + 4.96D − 0.904D2 + 0.0566D3]e
z
20 + ϵ (2.11)
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where ϵ is the Gaussian noise term,

ϵ = N(µ = 0, σ) (2.12)

with a mean of µ and variance of σ. It is important to note that this term is uncorrelated

in time and across particles which likely over represents the number of collisions.

Even with this simple representation there is an important characteristics of model

behavior under non-terminal fall speeds that can be studied, the model sensitivity to

the width of the fall speed distribution, which is represented by the standard deviation

of the noise term, σ. Observations from Montero-Mart́ınez and Garćıa-Garćıa (2016),

Bringi et al. (2018), Testik and Bolek (2023), and Chatterjee et al. (2022) found hy-

drometeors with fall speed distributions around the terminal velocity calculated from

equation 2.10. The exact standard deviation for any given particle size is poorly con-

strained from these studies but the observed standard deviations range from 0.5 m/s

< σ < 1.5 m/s. Also, the existence of a distribution is consistent for observations in

windy conditions.

2.2.2 Bias

The same studies that observed non-terminal fall speeds also identified strong rela-

tionships between observed fall speed distribution bias and particle size (Bringi et al.,

2018; Chatterjee et al., 2022; Montero-Mart́ınez and Garćıa-Garćıa, 2016). Specifically

these studies found that particles larger than 1.3 mm had negative biases (lower fall

speed than expected from Gun and Kinzer data) while particles less than 0.8 mm had

positive biases (higher fall speeds than expected from Gun and Kinzer data). The

physical cause of the observed bias in fall speeds is still poorly constrained but there
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are a few different theories presented in the observational studies: Firstly, Bringi et al.

(2018) and Montero-Mart́ınez and Garćıa-Garćıa (2016) note that the magnitude of

the fall speed bias is correlated with the strength of the wind associated with each ob-

servation. This led Montero-Martinez and Garcia Garcia to present a turbulence-based

explanation for the presence of the bias, with large and small particles preferentially

interacting with different vertical regions of turbulent eddies. The DNS study by Ren

et al. (2020) observed the sub-terminal fall speed bias in large droplets and identified

the underlying cause as increased drag interactions in the presence of turbulence.

However, these studies were limited in the maximum and minimum sizes of rain-

drops that were observed. Extending this general relationship to larger and smaller

diameters can be accomplished by adding in a functional dependence of the bias of

the noise term on the particle size. While the observations provide good agreement on

the general trend of super-terminal small droplets and sub-terminal large droplets, the

exact nature of the bias dependence on size is still poorly constrained. To represent

this trend in the CPM the fall speeds were calculated using

VBias = [−0.193 + 4.96D − 0.904D2 + 0.0566D3]e
z
20 + [ϵ(µ(D), σ)] (2.13)

where µ(D) is

µ(D) = −2.6e−4D + 0.25. (2.14)

Equation 2.14 is a rough linear fit that captures the negative bias for large particles

and the positive bias for small particles. This linear function was selected such that

the bias for particles between 0.8 mm and 1 mm was close to zero, while the positive

and negative biases for particles with diameters near zero and particles with diameters

near 2.5 mm was +0.25 m/s and -0.4 m/s respectively. The function µ(D) is a crude
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first order approximation to the observations, specifically chosen as a conservative

approximation that can demonstrate how this bias tendency affects model behavior.

2.2.3 Scaling

The first extension to the simple noise term representation is to include the effects of

the inertia of the particles on the non-terminal fall speed term. This is represented as

a scaling factor, S(D), applied to the standard deviation in the noise term

VtScale = [−0.193 + 4.96D − 0.904D2 + 0.0566D3]e
z
20 + [ϵ(µ, σ ∗ S(D)] (2.15)

where S(D) is the scaling factor. S(D) is defined as

S =


√

Ds

D
, if D ≥ Ds

1, otherwise

(2.16)

where Ds is defined as the scaling diameter. By varying Ds the study of the model

dependence on σ can be extended to include the tendency of larger droplets to have

smaller fall speed distribution widths than smaller droplets, as observed in several

ground based studies.

2.3 Statistical Methods

For this study, a bootstrap technique was applied to evaluate and compare a wide array

of relevant statistics to various combinations of model outputs. To determine if two

DSD’s statistics are significantly different from one another, the following statistical

analysis was performed, following Rousselet et al. (2021).
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Figure 2.1: Comparison between the different types of fall speeds available to the CPM,

terminal in black, simple noise in green, biased in blue, and scaled in red.

1. Each DSD was sampled with replacement 10,000 times to generate two ”synthetic

data sets”.

2. Some relevant statistic was calculated for each of the synthetic data sets.

3. The ratio of these synthetic statistics was recorded.

4. Steps 1-3 were repeated 10,000 times to generate a histogram of synthetic statistic

ratios.

5. Percentiles associated with the 97.5% and 2.5% were identified for the histogram

of synthetic statistic ratios.

6. If 1.0 was not between the bounds identified in step 5, the two distributions were

identified as significantly different at the α=0.05 level.
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The specific statistic calculated for each of the synthetic data sets is flexible enough

to allow this analysis to be applied to various data sets with different statistics. This

flexibility is very useful for the multiple sensitivity studies presented in section 3. Sev-

eral classes of statistics are used, including DSD moments, velocity statistics, and

collision statistics. The most commonly evaluated DSD moments are the zeroth mo-

ment, which is equivalent to the number concentration (N0) and the third moment,

which is equivalent to the liquid water content (LWC). The rain rate (RR) is also useful

for characterizing the distributions. The velocity statistics used in this analysis were

the mean and standard deviation, and the collision data used to determine whether

two model runs were significantly different was the total number of collision events,

and the ratio of coalescence events to breakup events.
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Chapter 3

Sensitivity Studies

To better understand the effects of non-terminal fall speeds on model output and

behavior, several different sensitivity studies were preformed. The variables tested in-

clude both the standard deviation (σ) and bias (µ) of ϵ in equations 2.11 and 2.15,

and the inertial scaling parameter, Ds in equation 2.16. The total number of par-

ticles simulated for each run was on the order of 108. The CPM is largely memory

limited by the volume of the simulation. For our purposes, a simulation volume of

20 m3 was used. The simulations were run on the NCAR Cheyenne supercomputer

utilizing the large memory nodes to maximize the volume simulated (Computational

and Information Systems Laboratory, 2020). It is possible to trivially parallelize the

CPM by running multiple simulations with identical initializations to simulate larger

and larger volumes. However, it is difficult to parallelize the simulation to account for

the vertical or horizontal inhomogeneity needed for accurate modeling of real cases.

First, several model runs were performed using different standard deviations for the

noise term to determine how wide the noise distribution can get before there is a sta-

tistically significant impact on model output. Second, a bias was added to the noise
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term ϵ that approximated the behavior of particles as observed in ground based studies

to determine the impact of large droplets tendency to fall at sub-terminal fall speeds

and small droplets tendency to fall at super-terminal fall speeds on model behavior.

The last sensitivity test involved varying Ds in equation 2.16 to determine the model

sensitivity to inertial tendencies.

3.1 Stochastic Sensitivity

Measured distributions of particle fall speeds reported in Bringi et al. (2018) and Testik

and Bolek (2023) show a dependence on particle size and wind speed, but generally

constrain the standard deviation of the distributions to within ±2 m/s for particles

with 0.5 mm < D <1.3 mm, with less variance for particles with D > 1.3 mm. For this

sensitivity study, the standard deviation (σ) of the normal distribution from which the

noise term of the non-terminal fall speed is sampled is varied from σ = 0 m/s to σ =

0.5 m/s with σ being the same regardless of particle size. These standard deviations

are tested by running identical model setups 10 times for each variance to generate

statistics to compare model output behavior under different amounts of noise. For the

initial stochastic sensitivity test, an exponential distribution

N(D) = N0λe
−λD (3.1)

with total number concentration Nt = 6000 m−3 and mean particle size λ = 1
550

µm−1

is sampled to generate the initial distribution. The DSDs development under different

standard deviations over the course of one hour are plotted in Figure 3.1. After 3600

s there were no large changes in the shape of the DSD, therefore the distribution at

3600 s was identified as the approached equilibrium distribution.
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Figure 3.1: DSD evolution in a box model from an initial exponential distribution

for each of the different σ values tested at four different times during the evolution

towards equilibrium. The most obvious difference between the runs is the decrease in

number concentration of particles with diameters less than 1.3 mm. The plots show

the distributions at different time: a) t = 0 s; b) t = 1200 s; c) 2400 s; d) t = 3600 s

The difference between the DSDs for different σ as time evolves is most apparent

in the decrease in number concentration of particles with diameters less than 1.3 mm

as time evolves, with the equilibrium distribution approached with σ = 0.5 m/s only

having 78% as many particles with diameters less than 1.3 mm as the equilibrium dis-

tribution approached with σ = 0.0 m/s. There is a corresponding increase in particles

with D > 1.3 mm but this relationship is less obvious from the DSD plots due to the

smaller percent change. For example the σ = 0.5 m/s run had 3.5% more particles
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with D > 1.3 mm in the equilibrium distribution approached than the σ = 0.0 m/s

run.

A plot of the p-value generated by the bootstrap test for significant differences

between the distribution modeled at each time for each σ tested against the distributing

at the same time for the σ = 0 m/s run is shown in Figure 3.2. From Figure 3.2 it is clear

that simulations with σ ≥ 0.25 m/s approach equilibrium distributions with diverging

bulk properties (the divergent group) compared to the model runs with σ < 0.25 m/s

(the similar group) for simulations initialized with this exponential distribution.

Figure 3.2: P-value generated by the bootstrap statistical analysis comparing each

model run to the terminal case (σ = 0 m/s) as a function of time.

It is important to identify which processes are responsible for the difference be-

tween the strictly terminal fall (σ = 0.0 m/s) speed run and the runs with larger σ to

understand the implications of non-terminal fall speeds. Of the processes represented
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in the CPM, the only one that is likely to have a strong dependence on fall speed

variance is the collision-coalescence-breakup process due to the importance of relative

particle velocity for these process. The collision-coalescence-breakup process depends

on the relative velocities to calculate the sweep out volume in the geometric kernel,

and the kinetic energy is used to calculate coalescence efficiency and fragment size

distributions. Comparing the collisional activity (number of collisions per second per

particle) is shown in Figure 3.3 shows higher collisional activity in runs with higher σ,

thus showing this process is affecting the DSD evolution.

Figure 3.3: Collisional Activity for all σ runs as a function of time.

This increase in collisional activity is especially profound within the first 100 sec-

onds, where the most dramatic shift from the initial exponential distributions towards

the equilibrium distribution occurs, as seen in Figure 3.1 b). Understanding how dif-

ferent values of σ affect the evolution of DSDs is critical for identifying scenarios or
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cases where the inclusion of non-terminal fall speeds may be important. Thus two dif-

ferent numerical experiments were performed, the first of which involved varying the

total number concentration (the Nt experiment), while the second experiment involved

varying the form of the initial DSDs (the distribution experiment).

3.1.1 Nt Experiment

The Nt experiment allowed a comparison of model behavior in cases with different

total concentrations of particles without affecting the ratio of the concentration of

small particles to large particles. The three initial exponential distributions are all

sampled from the same exponential distribution with mean diameter Dm = 0.55 mm.

Each distribution varies by Nt with low Nt = 3000 m−3, moderate (mod) Nt = 6000

m−3, and high Nt = 9000 m−3, The three initial exponential distributions for the Nt

experiment, and their evolution with σ = 0.5 m/s are shown in figure 3.4.

From Figure 3.4 b), it is clear that initially all three distributions are most dramat-

ically changed for the smallest and largest particles with a noticeable decrease in the

number of particles with D < 0.2 mm and D > 3 mm. Once the distributions have

approached equilibrium, shown in Figure 3.4 d), each of the two peaks have a spread

of number concentrations across all three Nt runs. The peak around D = 0.4 mm has

a spread of N(D) values of 540 mm−1m−3 between the low Nt and high Nt runs while

the other peak around D = 1.3 mm also has a spread of 540 mm−1m−3. The spread in

N(D) between the peaks is notably smaller, with only 110 mm−1m−3 between the low

Nt and high Nt runs. The sharp rise in the number of particles present with diameters

of 1 mm to diameters of 1.3 mm is indicative of an increase in collision coalescence

rates for the higher number concentration case.
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Figure 3.4: DSD development for the three exponential distributions used in the Nt

experiment at four times during the equilibrium development with σ = 0.5 m/s. Low)

Nt = 3000 mm−1m−3, mod) Nt = 6000 mm−1m−3, and high) Nt = 9000 mm−1m−3.

The plots show the distributions at different time: a) t = 0 s; b) t = 1200 s; c) 2400 s;

d) t = 3600 s

To determine if two distributions are significantly different from each other, the

bootstrap method outlined in section 2.3 is applied to the two distributions. Table 3.1

shows the P-value of the statistical test to determine uniqueness between the DSD of a

given σ value and the strictly terminal fall speed (σ = 0.0 m/s) run for all times during

the simulation, initialized with the same Nt value. If two distributions are significantly

different at the 95% confidence level, then the P-value of the test will be less than 0.05.

The critical standard deviation, σ∗, is the lowest σ value that results in a significantly

different distribution from the strictly terminal fall speed case.
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Table 3.1: P-values from the bootstrap statistical test against the σ = 0.0 m/s run.

Significantly different model runs are shown in bold. Note that as Nt increases, σ
∗ also

decreases, from σ∗ = 0.4 m/s for the low Nt run to σ∗ = 0.35 m/s for the moderate

and high Nt runs.

σ [m/s] Low Nt Moderate Nt High Nt

0.00 0.987 0.997 0.989

0.05 0.708 0.927 0.711

0.10 0.875 0.976 0.478

0.15 0.826 0.844 0.335

0.20 0.664 0.948 0.264

0.25 0.324 0.281 0.230

0.30 0.109 0.124 0.056

0.35 0.065 0.018 0.008

0.40 0.006 0.002 4e-4

0.50 2e-4 2e-4 2e-4

All three of the number concentrations have similar values of σ∗ around 0.35 m/s,

with the low Nt run σ∗ being slightly larger at 0.4 m/s. Since it is hypothesized that

the collision coalescence process is responsible for the difference between the various σ

runs, a comparison between the collision statistics for the divergent group (σ ≥ 0.25

m/s) against the similar group (σ < 0.25 m/s) is presented in Figure 3.5.
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Figure 3.5: Total number of collision events per second for each of the σ values tested

with Nt = 6000 m−3mm−1.

From Figure 3.5, an increase in the number of collisions per second with increasing

σ is apparent, with the similar group clustering together and the divergent group

displaying increase in total collisions by at least 5% of the strictly terminal run. The

difference between the total number of collisions is highest after the initial spike in

collisions per second, but all models approach the same number of collisions per second

by t = 3600 seconds.

A comparison between the number concentration of different size ranges of particles

is also performed to better understand how the evolution of DSDs differed for different

σ, shown in Figure 3.6. There are four regions of the DSD of interest, the number

concentration of the smallest particles with D < 0.15 mm is shown in Figure 3.6 a),

this region of the DSD initially drops to near zero where it remains for the duration of
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Figure 3.6: The number concentration for various size ranges of particles. Plot a)

shows the evolution of number concentration for the region of the DSD which initially

experience a complete reduction in particles. Plot b) shows the evolution of number

concentration for the region of the DSD populated by particles with smaller diameters

than the first peak at D = 0.4 mm. Plot c) shows the evolution of number concentration

for the region of the DSD between the two peaks at D = 0.4 mm and D = 1.3 mm. Plot

d) shows the evolution of number concentration for the region of the DSD populated

by particles with larger diameters than the second peak at D = 1.3 mm.

the simulation for all σ values. Particles with 0.15 mm < D < 0.4 mm, shown in Figure

3.6 b), display different trends depending on the value of σ, the divergent group (σ ≥

0.25 m/s) displays a marked decrease in the number concentration of particles in this

region of the DSD compared to the similar group (σ < 0.25 m/s). The next region of
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the DSD of interest is particles with 0.4 mm < D < 1.3 mm is shown in Figure 3.6 c),

this region of the DSD shows good agreement between the various σ for the first 500

seconds of the simulation before the divergent group begins producing lower number

concentrations than the similar group in this region. The last region of the DSD of

interest is for particles with D > 1.3 mm, shown in Figure 3.6 d), where again all of

the σ runs result in very similar trends.

The initial drop in number concentration shown in Figure 3.6 a) and b) shows

which particles are coalesced in the initial spike in collisional activity shown in Figure

3.5. The difference in the number concentration evolution in Figure 3.6 b) illustrates

that with higher σ, larger particles are included in the initial coalescence spike. Since

the difference in equilibrium distributions for simulations with varying σ extends to

particles with diameters up to 1.3 mm the impact of non-terminal fall speeds should

not be ignored in cases where rain rate or liquid water content are of interest even

though the greatest difference may be in the smallest particles.

3.1.2 Distribution Experiment

The importance of small particles in determining the evolution of DSDs for differ-

ent σ values established by the Nt experiment is unsurprising given the dominance of

small particles in exponential number concentration distributions. Thus, a sensitivity

study using different initial distributions that are not dominated by small particles

was performed to explore the role of large particles in affecting the evolution of DSDs.

By using three distributions with different fractional importance of small and large

particles the relationship between σ∗ and the ratio of small to large particles is exam-

ined. The three different initial distributions tested were uniform, exponential, and
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gamma because there is a large variation in the relative importance of both the total

concentration of particles and the ratio of small to large particles.

Figure 3.7: The evolution of the three different initial distributions used for the distri-

bution experiment with σ = 0 m/s at four different times during the simulation. Note

that the three distributions in plot d have similar shapes for particles less than 0.8 mm

and greater than 1.3 mm, but different shapes for particles of intermediate sizes. The

plots show the distributions at different time: a) t = 0 s; b) t = 1200 s; c) 2400 s; d) t

= 3600 s

Figure 3.7 shows the evolution of the DSDs from the three different initial distribu-

tions with all drops falling at terminal velocity (σ = 0 m/s). The uniform distribution

is initialized using
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Figure 3.8: Same as figure 3.7 except with σ = 0.5m/s. Note that in d the different

distributions have more similar shapes with σ = 0.5 m/s than in the model outputs

generated with σ = 0.0 m/s, especially when looking at particle concentrations around

1 mm.

N(D) =


3000, if D < 4mm

0, otherwise

(3.2)

and the gamma distribution is initialied using

N(D) =
βα

Γ(α)
Dα−1e−βD (3.3)

where β = 1
310

µm−1 and α = 3.
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Note that the number distribution functions of particles with D > 2 mm can range

from 1 to 4 orders of magnitude higher in the initial uniform distribution case compared

to the other two cases. At the initial time, the number distribution functions of particles

with D < 0.1 mm also span ranges of almost 3 orders of magnitude between the

three distributions. This large range of small and large particle concentrations allows

this sensitivity test to identify any relationships between concentrations of particles of

different sizes with σ.

Figure 3.9: P-value generated by the bootstrap statistical analysis comparing each

model run to the terminal case (σ = 0 m/s) as a function of time from an initial

gamma distribution.

To determine which of the σ values generated equilibrium distributions that were

significantly different from the σ = 0.0 m/s, the p-value of the significance test was

calculated for the three initial distributions. Unlike the Nt study, the different initial
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distributions evolve differently from one another. Comparing how the p-value for each

σ runs evolve over time with the initial gamma distribution in Figure 3.9 and with

the initial uniform distribution in Figure 3.10. Both of these figures indicate that the

models are yet to approach an equilibrium, in the case of the uniform distribution

the models are all varying wildly, while the gamma distributions are all very slowly

approaching equilibrium. These difference can be understood in terms of the over

abundance of particles in specific regions of the DSDs. The uniform distribution has

an over abundance of both small particles (D < 0.2 mm) and large particles (D > 3

mm), while the gamma distribution does not have an over abundance of particles in

any region of the DSD which results in the slow approach to equilibrium.

Figure 3.10: P-value generated by the bootstrap statistical analysis comparing each

model run to the terminal case (σ = 0 m/s) as a function of time from an initial

uniform distribution.
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Figure 3.11: a) Number of collisions per second for each of the three initial distributions,

with σ = 0.0 m/s and σ = 0.5 m/s. b) Ratio of breakup events per second to coalescence

events per second for each of the three initial distributions with σ = 0.0 m/s and σ =

0.5 m/s

As with the Nt experiment, the relevant collision statistics for the distribution ex-

periment (Figure 3.11) are computed and show that the collisional activity for each

simulation varies greatly depending on the initial distribution. In the run initialized

with a gamma distribution, the collisional activity within the first 250 seconds is much

lower than in the models initialized with uniform or exponential distributions. This

relatively low initial collisional activity is due to the gamma distributions lack of par-

ticles with D < 0.2 mm. The ratio of breakup to coalescence events in the gamma

distribution runs is also more stable over time compared to the other distributions,

likely due to the lack of over representation of any size range in the initial distribution.

The uniform distribution has a more pronounced initial spike in collisional evolution

and over all collisional activity when compared to the exponential distribution. Inter-

estingly, the ratio of breakup to coalescence events in the uniform distribution runs
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have different trends depending on the value of σ. For the σ = 0.0 m/s run, the ratio

slowly, roughly linearly increases over the course of the simulation, while the ratio for

the σ = 0.5 m/s run has an initially lower ratio that quickly increases over the first 250

s. This initially lower ratio indicates that for the σ = 0.5 m/s run there is an increase

in the relative importance of coalescence events in the first 250 seconds.

Figure 3.12: Number concentration for all diameters over the course of the evolution

of the DSD from an initial uniform distribution.

To better understand the basis of the collision differences, the total number con-

centrations of the different distributions are shown in Figure 3.12 and Figure 3.13. No

critical diameter is found for the gamma distribution since the particles of all sizes

follow the same trend. This means that there is no region of the DSD where the

various σ runs show a sudden or dramatic deviation in form from one another. The

number concentration for the uniform distribution is wildly different due to the over

representation of large particles in the initial distribution. The critical diameter D∗
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Figure 3.13: Number concentration for all diameters over the course of the evolution

of the DSD from an initial gamma distribution.

for the uniform case is 1.3 mm, where models run with lower σ values begin to diverge

from models run with higher σ values.

Since D∗ for the Uniform case occurs in one of the peaks of the distribution caused

by the breakup of large particles, larger values of σ increased the occurrence of breakup

events for very large particles with D > 3 mm. This is consistent with the evolution

from the initial distribution with an overabundance of large particles towards the equi-

librium distribution where those large particles have been broken up through collisions.

The deviation between the different σ runs begins after 250 seconds where the ratio of

breakup events to coalescence events increases, which further supports the interpreta-

tion that the deviation is caused by a higher rate of breakup.

The similarity for all σ values in the model initialized with the gamma distribu-

tion indicates that without an over representation of particles in a specific region the
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evolution towards the equilibrium distribution occurs smoothly across all regions of

the DSD. Unlike in the exponential distribution where there was an overabundance of

small particles or the uniform distribution where there was an overabundance of large

particles, the gamma distribution did not have any region of the initial DSD with over

representation compared to the equilibrium distribution.

3.2 Bias Sensitivity

Figure 3.14 shows the evolution of the DSD for model runs with and without accounting

for the functional dependence of µ on D from equation 2.13, the so-called bias term. The

equilibrium distribution approached by the unbiased model clearly shows a decrease in

number concentration of particles with D < 1.5 mm by 70%, compared to the biased

model.

Since the difference between the biased and unbiased fall speed representations is

the relative velocity difference between large and small particles, the same approach

applied to identify the cause of the differing model behavior under stochastic noise can

be applied. This leads to the conclusion that the collision-coalescence-breakup process

is responsible for the different model outputs for the biased and unbiased fall speed

representations. A comparison of the collision statistics of the two models is shown

in figure 3.15. The most obvious difference between the biased and unbiased model

results is the decrease in the number of collisions per second in the biased model. For

the σ = 0.5 m/s simulations, the biased model only produced 88% as many collisions

over the course of the simulation as the unbiased model. The difference in the number

of collisions per second is much less at the end of the simulation where for the lat
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Figure 3.14: Comparison between the biased (blue) and unbiased (red) model drop

size distributions. The different models produces significantly different distributions,

with the biased model having a notably larger amount of particles of size less than 1.3

mm. The plots show the distributions at different time: a) t = 0 s; b) t = 1200 s; c)

2400 s; d) t = 3600 s

60 seconds all models are within 5.1% of each other. The decrease in the collisional

activity of the biased model is caused by the sub-terminal fall speeds of particles with

D > 1 mm. Since the large particles fall slower and the small particles fall faster,

the number of particles that intersect in each time step is smaller with the bias than

without, which reduces the number of collisions per second. The similarity between the

biased model with σ = 0.5 m/s and the unbiased model with σ = 0.3 m/s is interesting

considering the two distributions not only have very similar collisional activity but

also very similar distributions, which is not shown. This similarity makes it difficult
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Figure 3.15: Comparison between the biased (dotted lines) and unbiased (solid lines)

model collision rates for different σ values. It is clear that for all σ the biased runs

have lower collision rates when compared to the unbiased runs.

to differentiate the importance of a specific representation on any observed DSD. This

highlights the necessity of high quality fall speed observations to determine the noise

and bias to incorporate in the model representation.

Another important difference is the ratio of breakup to coalescence events between

the biased and unbiased fall speed representations, which is shown in figure 3.16. The

biased model has a lower ratio, meaning that for any given collision event, the proba-

bility of coalescence is slightly higher than in the unbiased model. This is most likely a

consequence of reducing the number of collisions that particles with D > 1 mm undergo

at each time step. The decrease in fall speed for particles with D > 1 mm leads to

them interacting with fewer large particles, which are interactions that generally result

in breakup. The tendency for larger values of σ to lead to higher ratios of breakup to

coalescence events is caused by the increase in interactions of particle with similar sizes
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Figure 3.16: Comparison between the biased (dotted lines) and unbiased (solid lines)

model ratios of breakup to coalescence events for different σ values. It is clear that for

all σ the biased runs have lower ratios when compared to the unbiased runs.

in model runs with high values of σ. These interactions are extremely rare without the

inclusion of the noise term and are very likely to result in breakup events.

Comparing the total number concentration Nt and rain rate of the biased and unbi-

ased models in Figure 3.17 shows that the total number concentration is more sensitive

to variations in σ than in µ and that the rain rate is more sensitive to variations in µ

than in σ. This shows that the bias has a much larger effect on large particles than

the standard deviation. Due to the bias’ greater effect on larger particles, this repre-

sentation has the potential to impact bulk properties associated with higher moments

such as the rain rate and the radar reflectivity.
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Figure 3.17: a) Comparison between the number concentration of the biased (blue)

and unbiased (red) models with different values of σ (dashed: σ = 0.0 m/s, solid: σ =

0.5 m/s). b) Same as plot a) but for rain rate instead of number concentration.

3.3 Scaling Sensitivity

The last sensitivity study performed aimed to better understand the impact of particle

inertial effects on model behavior. The inertial effects are modeled by a fall speed

representation that aims to capture the inertial nature of hydrometeors by scaling the

standard deviation of the noise term for particles with diameters greater than some

diameter Ds such that particles with D > Ds have smaller standard deviations than

those with D < Ds. This sensitivity study is motivated by several previous studies that

observed a functional dependence of fall speed variance on size (Bringi et al., 2018;

Chatterjee et al., 2022; Montero-Mart́ınez and Garćıa-Garćıa, 2016). This relationship

is characterized by a general trend for particles of larger diameters to display a smaller

spread in observed fall speeds. Bringi et al. (2018) reported that the standard deviation

of 1.3 mm droplets was 1.5 m/s during highly turbulent events, while the standard
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deviation of 3 mm droplets during these same events drops to 1 m/s. Montero-Mart́ınez

and Garćıa-Garćıa (2016) reported that the average standard deviation in observed

fall speeds tended to decrease with increasing size from 0.4 mm diameter to 2.3 mm

diameter droplets for all wind categories they observed (calm, light, and moderate).

Data collected by Montero-Mart́ınez and Garćıa-Garćıa (2016) also indicates that the

decrease in average standard deviation of fall speeds is not monotonic with the average

standard deviation for droplets larger than 2.3 mm increasing. One important feature

of the Montero-Mart́ınez and Garćıa-Garćıa (2016) and Bringi et al. (2018) data is

that the number of droplets of sizes larger than 1.8 mm and 2 mm respectively is very

limited, which could result in less reliable standard deviation observations for larger

sizes.

Despite these limitations in the observations, it is still important to explore the

potential impact of the relationship between fall speed standard deviation and particle

size. To represent the observed decrease in standard deviation for larger particles,

Equation 2.15 is used. Equation 2.15 uses a scaling factor S that depends on the

parameter Ds to control the size at which particles begin to display inertial affects.

Equation 2.15 decreases the standard deviation for particles with D > Ds without

affecting particles with diameters less than Ds. The model sensitivity to Ds is explored

for values of Ds that correspond to particles with diameters around 1.0 mm having

significantly less fall speed variance. The values of Ds used are Ds = 0.25 mm, which

results in halving the fall speed variance for particles with D = 1 mm and Ds = 0.5

mm which results in a 70% reduction in fall speed variance for particles with D = 1

mm.
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Figure 3.18: Fall speed distributions for the 6 model runs performed in this sensitivity

test. The color fill represents the number of particles in each pixel of the diameter vs.

fall speed distribution.

The fall speed distributions for the different model runs are shown in figure 3.18.

The six model runs used for this sensitivity study include 3 runs with bias and 3 runs
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without bias, one run for each with no scaling applied to any particle, one run each with

Ds = 0.5 mm, and a final set of runs with Ds = 0.25 mm. As the scaling parameter

Ds increases, the width of the fall speed distributions for large particles drastically

decreases as illustrated in the second and third rows of Figure 3.18. From Figure 3.18

the difference between the DSD for the biased and unbiased models is apparent in

the regions with the highest density of points in the fall speed distribution. For the

biased runs without any scaling applied there are more particles in the smaller peak

around 0.4 mm than in the larger peak around 1.3 mm, but the opposite is true for

the unbiased, unscaled runs. The scaling runs all increase the relative importance of

the large peak compared to the small peak, independent of the bias.

Figure 3.19: a) Equilibrium distribution generated under different values of Ds with

bias included and σ = 0.5 m/s b) Same as left for unbiased model run with σ = 0.5

m/s.

Figure 3.19 shows the equilibrium distribution approached for model runs with σ

= 0.5 m/s with and without bias. The same trends between the biased and unbiased

models persist even with the inclusion of the scaling term. There is a tendency for the
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biased models to have fewer large particles than the unbiased models. These differences

are less pronounced than the differences between biased and unbiased, or terminal and

noise models. The only two minor differences between the DSD generated by the

unscaled and scaled models are the increase in the number of particles with diameter

around 1.3 mm by 5 % and 4.5 % respectively and a decrease in the number of particles

of size greater than 2.4 mm by 5.5 % and 4.1 % respectively. For both the biased and

unbiased runs, the scaling term tends to increase the number of particles with diameters

around 1 mm and decrease the number of particles with diameters greater than 2.5

mm. The microphysical cause of these two trends is the reduced number of interactions

between large particles (D > 2.5 mm) and intermediate sized particles (D ≈ 1 mm).

The number of interactions between large particles and small particles (D < 0.5 mm)

is less affected due to the noise of small particles partially offsetting the difference in

velocities between large and small particles. With fewer interactions between large

and moderate particles there are fewer coalescence events, resulting in more moderate

particles and fewer large particles.

Figure 3.20 shows the collision counts for the same model runs shown in figure

3.19. For all values of Ds, the biased model runs have lower collisional activity than the

unbiased runs. Within each of these categories, an increase in the Ds parameter results

in fewer collisions, meaning that as the number of particles that are scaled increases,

the number of collisions occurring per second decreases. This trend is consistent,

microphysically speaking, with the results plotted in figure 3.5, where an increase in

the standard deviation increases the number of collisions. In figure 3.19 the model runs

with the most scaling (Ds = 0.25 mm) results in the collisional activity.
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Figure 3.20: Collision counts for the biased (solid lines) and unbiased (dashed lines)

model runs with σ = 0.5 m/s under different values of Ds. For both sets of model

runs the Ds = 0.25 mm runs have notably lower collision activity compared to the less

scaled and unscaled model runs.

Figure 3.21: a) Number concentration (N0) as a function of time for each of the 6

simulation runs performed. b) Rain rate as a function of time for each of the 6 model

runs performed.
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The comparison between the time evolution of number concentration (N0) and

rain rate (RR) for the six model runs is presented in figure 3.21. This comparison

summarizes how the fall speed representation affect the bulk cloud moments predicted

by the model. The trends present in figure 3.21 are similar to those present in figure

3.17. The inclusion of the scaling term results in greater number concentration while

decreasing the rain rate. This is the inverse relationship observed in figure 3.17.

One important caveat to this discussion relates to the physical nature of the scaling

term. The term is intended to capture the inertial nature of hydrometeors but the

actual acceleration that any given particle experiences in a time step is not directly

affected by decreasing the standard deviation of the noise term. To fully represent this

physical feature, a more careful treatment of the acceleration during a time step would

be required. This crude treatment makes it unsuitable to constrain or estimate the

importance of inertia as a physical consideration, but is sufficient to account for the

observed decrease in fall speed variance from the available studies.
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Chapter 4

Conclusion and Recommended Future Work

For this thesis a novel Lagrangian cloud microphysics model, the Cloud Particle Model

(CPM), was used to explore the importance on non-terminal fall speed representa-

tions of hydrometeors in warm rain microphysics simulations. The CPM accounted for

the most important warm rain microphysical processes including diffusional growth,

collision induced coalescence and breakup, and spontaneous breakup. Several differ-

ent sensitivity studies using non-terminal fall speed representations were performed

to better understand how non-terminal fall speeds affect the evolution of drop size

distributions (DSDs).

These different fall speed representations were motivated by several observational

studies that identified several key features of non-terminal hydrometeor fall speeds.

These features include the following; 1) a variance in the fall speed on the order of

0.5 to 1.5 m/s for particles with diameters (D) between 0.4 mm and 3.0 mm which

is represented in the CPM by adding a random white noise term to the terminal fall

speed; 2) a trend in the variance, such that the variance of larger particles was less

than the variance of small particles which is represented in the CPM by scaling the
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variance of the noise term for larger particles; and 3) a trend for particles D > 1.3 mm

to have sub-terminal fall speeds while particles with D < 0.8 mm tended to have fall

speeds that are super-terminal which is represented by adding a functional dependence

of the mean of the noise term on the size of particles.

Several sensitivity studies were performed to test the model sensitivity to the dif-

ferent fall speed representations. Firstly the sensitivity of the model to the standard

deviation σ of the normal distribution from which the noise term is sampled was tested.

From this study the following was revealed:

1. There exists a critical standard deviation, σ∗ below which there is no significant

difference in the terminal versus non-terminal model output. For the exponential

distribution used in this study σ∗ = 0.3 m/s.

2. Higher standard deviation in the noise term resulted in more coalescence events

for particles with 0.15 mm < D < 0.4 mm for exponential distributions compared

to lower standard deviations.

3. Model runs with different initial distributions demonstrated varying collisional

activity due to the difference between those initial distributions and the equilib-

rium distribution. For example, in initially modeled high collision rate for input

exponential distributions were reduced when an equilibrium distribution was ap-

proached because the initially high concentration of small drops was reduced.

The model sensitivity to the observed bias was also studied, which showed the

following:
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1. The inclusion of the bias term results in equilibrium distributions with only 70%

as many particles with D < 1.3 mm when compared to equilibrium distributions

approached without including the bias.

2. Since the biased model reduced the fall speeds of large particles, they interacted

with fewer particles, resulting in a 22 % decrease in the number of collisions per

second in the biased model.

3. Higher order moments are more sensitive to variations in the mean of the distri-

bution from which the noise term is drawn µ than in variations in the width of

the noise term σ.

The last of the sensitivity studies performed involved experimenting with scaling

the width of the distribution from which the noise term in the non-terminal fall speed

representations was sampled. The results of this study were as follows:

1. The decrease in the variance in fall speed for large particles results in fewer col-

lision events between particles with large diameters ( D > 1.4 mm) and particles

with moderate diameters (1.0 mm < D < 1.4 mm)

2. The number of collisions between the large particles and small particles is rel-

atively unaffected due to the small particles higher fall speed variance which

somewhat offsets the negative bias of the large particles.

3. The equilibrium distributions that were approached under different scaling condi-

tions were very similar, only varying by only 4 - 5% of each other in total number

concentration of particles around the second peak ( D ≈ 1.3 mm) and 4 - 5 % in

total number concentration of particles with D > 2.4 mm.
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These sensitivity studies identified specific observational parameters that could be

targeted by future observational studies to better constrain the assumptions used in

models. It is important to observe the fall speed bias for all particles sizes and especially

for large particles, as that would allow field observations of non-terminal fall speeds

to be fit to a function. The resulting bias function could then be implemented into

the CPM without the inclusion of any noise term. Second, laboratory observations

of collision events in a cloud chamber in turbulent environments could complement

and explore relationships identified in prior observational and laboratory studies. Such

laboratory experiments would allow for the careful study of the causes of non-terminal

fall speed variance and allow for greater statistics on the relationship between that

variance and particle size, to be established that are difficult to acquire from field

observations alone.

Future modeling studies using CPM should focus on understanding how differ-

ent representations of non-terminal fall speeds directly affect collision, collection, and

breakup kernels. This could generate specific corrections to current collision kernels

that could be used in broader and more computationally efficient models. Future work

with the CPM should also include expanding the model to include mixed phase micro-

physics, since the fall speed of hydrometeors in mixed and ice phase clouds can have a

very different interactions with turbulent environments.
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