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Abstract: We demonstrate a new near-analytical path to the threshold-size of random-lasing 

for the case of a uniform and isotropic-scattering sphere. We assess a geometric-distribution-

probability (GDP) weighted integration of the diffusion-equation derived time-dependent 

photon fluence-rate at a spherical boundary, in response to uniform, synchronous, and Delta-

functional photon generations within the sphere. The GDP weights the contribution of the 

modeled Delta-functional photon sources to the temporal behavior of the photon fluence rate at 

the spherical boundary-domain based on the line-of-sight distance between the modeled-photon 

source and the same field point. The integral manifests a bi-phasic pattern versus time with a 

global minimum followed by an exponential growth. The line-of-sight length that corresponds 

to the time of global minimum decreases monotonically as the size of the sphere increases. The 

condition that this line-of-sight length equaling the radius of the sphere is hypothesized to 

indicate a threshold whereby the medium can sustain the growth of the photon fluence-rate at 

the boundary over time. This threshold line-of-sight length is assessed over a gain/scattering 

ratio of [𝟏𝟎−𝟑, 𝟏𝟎𝟒] covering the diffusive to quasi-ballistic regimes. The threshold line-of-

sight length applied with a simple empirical gain/scattering ratio predicts the threshold size 

over the diffusive region and outperforms the threshold size given by Letoknov’s eigen-mode-

decomposition in the semi-ballistic region, when compared to the radiative transfer approach. 

The method sheds new insights to amplified diffusion process in a scattering medium with gain. 

 

1. Introduction 

Size-dependency in self-stimulated emission has long been investigated [1]. And since 

Letokhov theorized lasing action in the stellar dimension [2, 3], it has been generally believed 

[4] and experimentally validated [5] that a strongly scattering medium with a gain mechanism 

will start to lase when its radius exceeds a certain critical value [6]. This line of thinking, in 

terms of the criticality of lasing [7, 8] in a medium that randomizes photon propagation over a 

gain mechanism, served as the “photonic” extension of the nuclear chain reaction [6]. The 

nuclear chain reaction occurs as the size of the fission material exceeds a critical value 

determined predominantly by the pathlength of neutron-nuclide collision and the specific rate 

of secondary neutron production per neutron-nuclide collision [9-11].  Likewise, a photonically 

random medium causing scattering and having gain over the path of photon propagation may 

reach a critical condition of “photonic bomb” when its size surpasses a threshold dictated by 

the relative scale between the gain length and the scattering length of the random medium [12].   

For nuclear chain reaction applying to weaponry [13] or controlled power generation 

[14], the critical size has been precisely modeled by means of sophisticated time-dependent 

analysis of neutron transport with complex boundary conditions and medium properties that 

may vary over space and time. Whereas analytical approaches to the critical size of nuclear 

chain reaction with various approximations have been proposed for convenient modeling of 

simpler limiting cases such as bare core. The critical size of nuclear fission at a given purity of 
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the fission material is mostly found by assessing the condition of the neutron flux becoming 

outgoing at the boundary [9-11], due to more secondary neutron generation than is attenuated 

per length of neutron transport within the material. The spatially outgoing neutron flux at the 

boundary would be equivalent to a temporal increase of the neutron energy density at the 

boundary. Similarly, the criticality of random laser for a fixed set of medium optical properties 

corresponds to a threshold condition that the photon energy density at the boundary shall transit 

from a decay over time to an exponential increase in time [2, 12].      

There are arguably two aspects of the threshold of random lasing. A medium of fixed 

size needs to reach a threshold ratio of gain-length/scattering-length to lase [15]. And a medium 

with a fixed ratio of gain-length/scattering-length cannot lase if the size is below a threshold 

value. Since the inception of random lasing, there have been a few model-approaches or paths 

predicting the threshold size for a fixed set of medium optical properties. The first and most 

widely used model-path to the critical size of random laser was derived with eigen-mode 

decomposition of the solution of source-free diffusion equation [2, 12]. The criticality of this 

model-path becomes straightforward in terms of the solution reaching the condition that the 

photon-energy density at the boundary increases with time. The critical radius conveniently 

predicted by this approach holds accurately over the diffusion regime where the analytical 

treatment can take the convenience of the equation of photon diffusion. An anisotropic-

scattering medium can be considered isotropically-diffusive if the size of the material is 

significantly greater than the mean scattering pathlength. An additional condition of diffusivity 

for random laser may be that the scattering is much stronger than gain. Robust treatment of 

light propagation in a weakly scattering or anisotropic-scattering medium, or a medium in the 

sub-diffusive and quasi-ballistic domains, prefers radiative transfer equation (RTE) over 

diffusion approach [16, 17]. The critical radius as derived by the eigen-mode decomposition 

[3] of the solution of diffusion equation correctly responds to the scattering/gain ratio. 

However, when compared to the RTE approach and coherent wave simulation that addresses 

interfering effect due to phase [16], the diffusion-based prediction overestimates the critical 

size significantly over the sub-diffusive domain and breaks down over the quasi-ballistic 

domain where the critical radius becomes insensitive to the scattering/gain ratio [16].    

The photon energy density after scaling over the energy of photon leads to the photon 

fluence rate that is scaled over photon density. The threshold condition of the random laser thus 

translates to a size of the medium at which the photon fluence rate at the boundary increases 

over time to cause a net outgoing photon flux. A critical size of the medium for random lasing 

thus shall be a size below which the photon fluence rate at the boundary decreases over time 

perpetually and above which the photon fluence rate at the boundary may increase over time.   

A random laser has only one threshold size, but there might have multiple ways to 

approach the same threshold size. In this work, we demonstrate a new near-analytical path 

leading to the threshold size of a random laser, exemplified for a spherical domain of uniform 

isotropic-scattering medium with gain. We note that this work does not intend to propose a new 

threshold size for random lasing that differs from the values known by way of eigen-mode 

decomposition or RTE or coherent-wave simulation and thus shall be experimentally validated. 

What this work intends to elaborate is a new aspect of reasoning leading to the known threshold 

size of random lasing based on a hypothetical physical perspective that could shed more 

understanding to the generalizable amplified diffusion processes including random lasing. 

We illustrate the basic reasoning of random lasing threshold with Fig. 1. We consider 

a hypothetical case of a spherical domain that has homogeneous isotropic scattering and gain 

properties. Assume that the medium is distributed uniformly with spatial and temporal Delta-

functional isotropic photon sources. We further assume that these photon sources emit 

simultaneously at a single moment. The medium’s scattering causes the photon packet emitting 

from a source to reach a field position at a total duration much broader than that due to ballistic 

transport over the line-of-sight distance between the source position and the field position. The 

resulted time-spread function of the photon packet at a field point contains early-arriving 



ballistic photons and later arriving scattered photons. And the longer the line-of-sight distance 

of the source to the field point is, the broader the photon packet becomes when it reaches the 

field point. We consider the temporal behaviors of the photon packets at three field points A, 

B, C, all at the 3 o’clock position, in response to the spatial and temporal Delta-functional 

photon sources emitting simultaneously within the entire spherical domain bordering with A, 

B, C, respectively. The photons originating from the sources of iso-distance (having the same 

distance to the field-point, exemplified by the three arcs co-centric at the field point) from a 

field-point has the temporal-spread when flushing through the field-point. And photons 

originating from an iso-distant shell that is farther to the field point arrives at the field point 

with a later peak that must be broader in the width due to longer scattering and could be lower 

in the amplitude if the gain surpasses loss due to scattering. The temporal decay of the earlier 

arriving photon-flush originating from the closer shells is replenished by later arriving photon-

flush originating from the farther shells. If the medium is large enough, the later replenishment 

of the photons originating from farther shells could counter the decay of the earlier arriving 

photons in time to cause a net increase of the photon fluence rate over time. This infers the 

existence of a threshold size of the sphere.        

 

Figure 1. The temporal course of the photon (energy) density at a virtual boundary point as the result of photon diffusion associated 

with uniform, synchronous, and impulsive photon generation of one time in the entire spherical volume inner to the virtual boundary. 

(A) When the sphere is smaller than a threshold size, the later arriving photon packets from farther distances will be inadequate to 

compensate the reduction of the earlier arriving photon packets, causing the photon density to reduce perpetually.  (B) When the sphere 

is at a threshold size, the later arriving photon packets from farther distances will be just enough to compensate the reduction of earlier 

arriving photon packets to make the photon density to not drop further. (C) When the sphere is greater than a threshold size, the later 

arriving photon packets from farther distances will be more than enough to compensate the reduction of earlier arriving photon packets 

to make the photon density to increase after an initial phase of reduction.                                           

 The afore-conjectured threshold condition concerns the temporal behavior of the 

ensemble of photons on a field-point when the photons are sourced simultaneously within the 

spherical domain that borders the field-point. This threshold condition may help find the critical 

size of a spherical random laser. We demonstrate this model-path in the following: Section 2 

presents the general solution of spatially resolved time-dependent diffuse photon fluence rate 

corresponding to a spatial and temporal Delta-functional source and a field-point in an 

unbounded homogeneous scattering medium with gain. This solution is then combined with a 

geometric-distribution-probability (GDP) function to derive the composite time-dependent 

photon fluence rate at a virtual spherical boundary when resulted from uniform once-time 

photon generation in the volume defined by the virtual boundary. This integration involves a 

GDP as a weighting mechanism to reach an algebraic form. Section 3 details numerical 



configurations to reveal the bi-phasic pattern of the weight-integrated photon fluence rate and 

assess the threshold radius of the sphere at which the line-of-sight length corresponding to the 

time of global minimum of the integrated photon fluence rate equals the modeled-radius of the 

spherical domain. Section 3 then compares the threshold line-of-sight length predicted by the 

proposed approach against the threshold radius given by eigen-mode decomposition of 

diffusion solution and the more accurate RTE. Section 4 presents the results of threshold radius 

assessed over the diffusive to quasi-ballistic region covering 7 orders of magnitude of the 

gain/scattering ratio, which shows how a simple correction factor involving gain/scattering 

ratio to the threshold line-of-sight length matches with the threshold size of a spherical random 

laser. Section 5 discusses issues including strategies to account for the boundary effect that may 

help explain the simple correction factor. The Appendices list some supporting analytics.  

 

2. Theoretical approach  
 

2.1 Spatially resolved and time-dependent diffuse photon fluence rate in an unbounded 

homogeneous isotropic-scattering medium with gain   

The approach in this work integrates the photon fluence rate at a field point that originates from 

any point in the spherical domain bordering the field point to examine the temporal behavior 

of the ensembled photon fluence rate. It is thus imperative to use the spatially resolved and 

time-dependent photon fluence rate. We assess the following equation of time-resolved 

diffusive photon transport with a global source term, assuming a homogeneous and isotopically 

scattering medium [17, 18]:  

∂U(χ⃗ ,t)

∂t
=

𝑐∙𝑙𝑠𝑐

3
∙ ∇2𝑈(χ⃗ , t) +

𝑐

𝑙𝑔
∙ 𝑈(χ⃗ , t)+𝑐 ∙Q(χ⃗ , t)         (1) 

Where U(χ⃗ , t) is the photon fluence rate [𝑐𝑚−2𝑠−1], 𝑐 is the speed of light in the medium 

[cm/s],  𝑙𝑠𝑐 is the scattering path-length [cm], 𝑙𝑔 is the gain path-length [cm], and Q(χ⃗ , t) is the 

global source of photon generation [𝑐𝑚−3𝑠−1]. For an isotopically scattering medium with a 

scattering coefficient of 𝜇𝑠 [𝑐𝑚−1], the scattering pathlength is 𝑙𝑠𝑐 = 1 𝜇𝑠⁄ . For a medium of 

anisotropic scattering with a scattering coefficient of 𝜇𝑠, a scattering anisotropy of 〈𝑐𝑜𝑠𝜙〉 with 

𝜙  being the scattering angle, the scattering pathlength is 𝑙𝑠𝑐 = 1 [𝜇𝑠(1 − 〈𝑐𝑜𝑠𝜙〉)]⁄ . By 

denoting 𝑔 as the gain coefficient [𝑐𝑚−1] of the medium, we have 𝑙𝑔 = 1 𝑔⁄ . For a medium 

that contains both absorber and gain materials, the 𝑔 is the net gain or the amount of the gain 

exceeding the absorption. The diffusion constant [𝑐𝑚2 𝑠⁄ ] of the scattering medium is denoted 

as  𝔻 = 𝑐 ∙ 𝑙𝑠𝑐𝑎𝑡 3⁄ . Equation (1) thus converts to  

∇2𝑈(χ⃗ , t) +
𝑔𝑐

𝔻
∙ 𝑈(χ⃗ , t) −

1

𝔻

∂U(χ⃗ ,t)

∂t
= −

c

𝔻
 𝑄(χ⃗ , t)             (2) 

The solution of Eq. (2) corresponding to a spatial and temporal delta-functional stimulation at  
(χ⃗ ′, 0) and assessed at a field point of (χ⃗ , t) at a line-of-sight distance of 𝜌 = |χ⃗ − χ⃗ ′| from the 

Delta-functional stimulation, within a spherical domain of a radius of 𝑅0 is [19] 

Uinf(χ⃗ ′, 0|χ⃗ , t) =
𝑐

(4π)3 2⁄

1

𝑅0
3 (

𝑅0

√𝔻𝑡
)
3

∙ exp[gct] ∙ exp [− (
𝑅0

√𝔻𝑡
)
2

(
𝜌

2𝑅0
)
2

]        (3) 

The exponent of Eq. (3) contains two dimensionless terms. The (𝑅0 √𝔻𝑡⁄ ) term scales the total 

length of diffuse propagation at a given time over the medium size. The (𝜌 2𝑅0⁄ ) term scales a 

spatial distance of ballistic transport over the domain size. When evaluated at a fixed time, Eq. 

(3) reveals a photon distribution that spreads over the spatial distance. When evaluated at a 



fixed position, Eq. (3) reveals a photon “wave” flushing through the field position with the peak 

of the “wave” becoming broader for longer ballistic transport from the source to the field point.  

 

2.2. Total photon fluence rate on a virtual spherical boundary within an infinite medium 
as the result of synchronous, momentary, and homogeneous photon generation inside 
the spherical domain  

We consider a homogeneous unbounded medium as shown in Fig. 2. We consider a virtual 

spherical domain within which there are uniform distribution of photon sources that are Delta-

functional in position and time. We consider only the intensity and assess the temporal profile 

of photon fluence rate at the virtual spherical boundary. This assumption is adhered to 

demonstrate the threshold behavior inferred by a cross-over between two length parameters, 

the modeled radius of the spherical domain and a line-of-sight length corresponding to the time 

of global minimum of the time-spread function of the photon fluence rate resulted by 

accounting the contributions of all synchronous Delta-functional photon sources within the 

spherical domain. The approach necessary to addressing boundary effect is outlined in 

Discussions.   

 
Figure 2. A virtual spherical domain within an infinite homogeneous medium. We consider the photon fluence rate on a point on the 

virtual spherical boundary that originates from all photon sources uniformly distributed in the spherical domain bordering the field-

point.  The arch marked with a red star represents a differential layer that is iso-distant from the field position at the 3 o’clock position.   

We specify the field point as the 3 o’clock position with respect to the center of the 

virtual sphere of a radius 𝑅0. We denote 𝑈inf(𝑟
′, 𝜃′, 𝜙′, 0|R𝑜, 0, 0, t) as the photon fluence rate 

at (R𝑜, 0, 0, t) when caused by a spatial and temporal Delta-functional photon generation at 
(𝑟′, 𝜃′, 𝜙′, 0).   Note that, Eq. (3) is expressed versus the line-of-sight distance between the 

source and the field positions. Any point within the virtual sphere that has the same distance 

(iso-distant) from the same field-point has the same weight of contribution to the total photon 

fluence rate at the field point. The total photon fluence rate at the boundary point is thus the 

integration of the photon fluence rate originating from all points within the spherical domain 

that borders with the field-point, after weighted by the probability of having a specific line-of-

sight distance between the source point and the field point. This probability is bounded by the 

probability of a cord of a length that is no greater than the diameter of the sphere and has one 

end on the common field point with the other end terminating anywhere within the spherical 

domain. Such a probability function distribution is referred to as geometric-distribution-

probability (GDP). The GDPs in 2-dimensions have been used to assess the ensembled behavior 



of an analytical pattern of which the occurrence is modulated by a distance-dictated probability 

[20, 21]. The GDF illustrated in Fig. 2, however, is 3-dimensional and needs to be derived. 

 The GDP specific to the geometry illustrated in Fig. 2 is derived in Appendix A. The 

probability pertaining to a pair of photon generation at (𝑟′, 𝜃′, 𝜙′) and photon counting at 
(R𝑜, 0,0)  is denoted as 𝑃(𝑟′, 𝜃′, 𝜙′|R𝑜, 0,0) . The total photon fluence rate at (R𝑜, 0,0, t) 

resulted from all synchronous and one-time photon sources within the virtual spherical 

boundary of a radius of R𝑜 centered on (0,0,0) is then 

𝑈sph(R𝑜, 0,0, t) = ∫ 𝑈inf(𝑟
′, 𝜃′, 𝜙′, 0|R𝑜, 0, 0, t)𝑃(𝑟′, 𝜃′, 𝜙′|R𝑜, 0, 0)𝑑𝑟′2R𝑜

0
    (4) 

This integration involves only the radial dimension since the zenith and azimuthal dimensions 

are absorbed in 𝑃(𝑟′, 𝜃′, 𝜙′|R𝑜, 0, 0). Equation (4) reads as the following   

𝑈𝑠𝑝ℎ(R𝑜, 0,0, t) = ∫ 𝑈inf(χ⃗ ′, 0|χ⃗ , t) ∙ 𝑃(𝜌)
2R𝑜

0

∙ 𝑑𝜌 

=
3

2𝑅0
3

𝑐

(4π)3 2⁄

1

[𝔻𝑡]3 2⁄ ∙ exp[ηct]      

∙ {∫ 𝜌2 ∙ exp (−
1

4𝔻t
𝜌2)  ∙ 𝑑𝜌

2R𝑜

0
−

1

2𝑅0
∫ 𝜌3 ∙ exp (−

1

4Dct
𝜌2) ∙ 𝑑𝜌

2R𝑜

0
}         (5) 

According to Appendix B, the first and the second integrations of Eq. (5) lead respectively to: 

∫ 𝜌2 ∙ exp (−
1

4𝔻t
𝜌2)  ∙ 𝑑𝜌

2R𝑜

0
=4(𝔻𝑡)

3
2⁄ [𝑒𝑟𝑓 (

R𝑜

√𝔻𝑡
) −

R𝑜

√𝔻𝑡
∙ exp (−

R𝑜
2

𝔻t
)]    (6) 

and 

∫ 𝜌3 ∙ exp (−
1

4𝔻t
𝜌2)  ∙ 𝑑𝜌

2R𝑜

0
=8(𝔻t)2 [1 − (1 +

R𝑜
2

𝔻t
) exp (−

R𝑜
2

𝔻t
)]    (7) 

Equation (5) then reads   

𝑈𝑠𝑝ℎ(R𝑜, t) =
3𝑐

4𝜋
3
2

∙
1

𝑅0
3 ∙ exp[ηct] ∙                 

{[𝑒𝑟𝑓 (
R𝑜

√𝔻𝑡
) −

R𝑜

√𝔻𝑡
∙ exp (−

R𝑜
2

𝔻t
)] −

√𝔻𝑡

𝑅0
[1 − (1 +

R𝑜
2

𝔻t
) exp (−

R𝑜
2

𝔻t
)]}   (8) 

By denoting  

𝑥 =
R𝑜

√𝔻𝑡
     (9) 

Equation (8) finalizes to a simpler form of  

𝑈𝑠𝑝ℎ(R𝑜, t) =
3𝑐

4𝜋
3
2

∙
1

𝑅0
3 [𝑒𝑟𝑓(𝑥) −

1

𝑥
[1 − exp(−𝑥2)]] exp[ηct]  (10) 

 

3. Numerical Evaluation 

As will be shown in Results, Eq. (10) evaluated versus time at a fixed value of the model-radius 

𝑅0 reveals a bi-phasic patten with a global minimum. The time of the global minimum thus 

corresponds to a line-of-sight length by multiplying it with the speed of light in the medium. 

We have found that this line-of-sight length changes monotonically in the opposite direction as 

the model-radius changes, and there is a value at which the line-of-sight length and the model-

radius may become the same. We hypothesize that this value of the line-of-sight length equaling 

the model-radius is a critical condition and it may be indicative of the threshold size of random 

lasing. We demonstrate the existence of this threshold line-of-sight length and compare it 

against the critical radius predicted by two established models.    

 

3.1 The critical radius modeled by Letokhov [2, 12] 

We refer to the well-known result of random lasing threshold [2, 12] of a sphere predicted by way of 

diffusion equation of photon energy density. The result was developed by decomposing the solution of 

time-dependent photon diffusion equation to eigen-modes. The source-free diffusion equation of the time-

dependent photon fluence rate is the following: 



∂U(χ⃗ ,t)

∂t
= 𝔻 ∙ ∇2𝑈(χ⃗ , t) +

𝑐

𝑙𝑔
∙ 𝑈(χ⃗ , t)       (11) 

Equation (11) has a solution of the following   

𝑈(r , t) = ∑ 𝑎𝑛𝑛 𝜓𝑛(r , t)𝑒𝑥𝑝[−(𝔻𝐵𝑛
2 − 𝑐 𝑙𝑔⁄ )𝑡]           (12) 

where 𝜓𝑛 and  𝐵𝑛 are the eigen functions and eigen values of the corresponding spatial Helmholtz-type 

equation. Onset of the increase of photon fluence rate over time is expected from Eq. (12) beyond a 

threshold condition of  𝔻𝐵𝑛
2 − 𝑐 𝑙𝑔⁄ = 0.  This leads to a critical radius of the following for a spherical 

domain     

𝑅𝑑𝑖𝑓𝑓 ≈ 𝜋√(𝑙𝑠𝑐𝑙𝑔) 3⁄ =
𝜋

√3𝑔𝜇𝑠
    (13) 

 

3.2 The critical radius rendered by radiative transfer approach [16] 

A threshold condition derived from RTE for a spherical random laser has been summarized by 

Guerin et al. [16].  For a random laser in the shape of a sphere, a critical radius 𝑅𝑟𝑡𝑒 satisfies 

the following equation    

𝑡𝑎𝑛(𝑞𝑅𝑟𝑡𝑒) =
2𝑔𝑞𝑅𝑟𝑡𝑒

2𝑔−𝑞2𝑅𝑟𝑡𝑒
    (14) 

Where   

𝑞2 =
3

𝑙𝑔
(

1

𝑙𝑠𝑐
−

1

𝑙𝑔
) = 3𝑔(𝜇𝑠 − 𝑔)   (15) 

 

 

3.3 The time of global minimum of Equation (10) that converts to a line-of-sight 
length  

Numerical evaluation of Eq. (10) reveals that this function at any value of R𝑜 manifests a bi-phasic pattern 

versus time with a global minimum. Setting the first-order time-derivative of Eq. (10) to zero leads to the 

following equation for identifying the time of the global minimum: 

{
1

2𝑥𝑡
+ [

𝑥

𝑡
+

ηc

𝑥
] −

1

√𝜋
(
𝑥

𝑡
)} 𝑒𝑥𝑝[−𝑥2] =

1

2𝑥𝑡
+

ηc

𝑥
− ηc ∙ 𝑒𝑟𝑓(𝑥)  (16)  

Equation (16) is numerically evaluated to find the crossing point between the left-hand-side (LHS) and 

the right-hand-side (RHS), both being monotonic with respect to time but are opposite in the changes with 

time. The point of time that the LHS and RHS of Eq. (16) cross each other, e.g., the onset of the global 

minimum of Eq. (10), is multiplied with the speed of light in the medium to reach a line-of-sight length 

to be compared against the model-radius R𝑜. If the change of this ballistic transport length crosses the 

change of the model-radius R𝑜, a threshold length is identified as the value common to both the model 

radius and the line-of-sight length.    

 

3.4 Configuration of the medium properties 

The critical radii of 𝑅𝑑𝑖𝑓𝑓 and 𝑅𝑟𝑡𝑒 as well as the proposed threshold line-of-sight length are 

numerated according to Eqs. (13-16) at a gain-length/scattering-length that spans 7 orders of 

magnitude. The range of the 7 orders of magnitude between the gain-length and scattering-

length is configured in two ways: one is to vary the scattering coefficient or scattering 

pathlength while keeping the gain coefficient or gain length, and the other is to keep the 

scattering coefficient or scattering length while varying the gain coefficient or gain length. The 

two sets of configurations are detailed as the following.  

Set 1. The gain coefficient is fixed at 𝑔 = 0.1 𝑐𝑚−1 that corresponds to a gain length 

of 𝑙𝑔 = 10  cm. The scattering coefficient 𝜇𝑠  is set to cover the following ratios of 

(𝑙𝑔 𝑙𝑠𝑐⁄ = 𝜇𝑔 𝑔⁄ ): [0.001, 0.002, 0.003, 0.004, 0.005], [0.01, 0.02, 0.03, 0.04, 0.05], [0.1, 0.2, 

0.3, 0.4, 0.5], [1, 2, 3, 4, 5], [10, 20, 30, 40, 50], [100, 200, 300, 400, 500], [1000, 2000, 3000, 

4000, 5000], and 10000.  



Set 2.  The scattering coefficient is fixed at 𝜇𝑠 = 10 𝑐𝑚−1 , corresponding to a 

scattering pathlength of 𝑙𝑠𝑐 = 0.1 𝑐𝑚 . The gain coefficient 𝑔 is set to cover the following ratios 

of (𝑙𝑔 𝑙𝑠𝑐⁄ = 𝜇𝑠 𝑔⁄ ): [0.006, 0.007, 0.008, 0.009, 0.01], [0.06, 0.07, 0.08, 0.09, 0.1], [0.6, 0.7, 

0.8, 0.9, 0.99, 1.01, 1.1], [6, 7, 8, 9, 10], [60, 70, 80, 90, 100], [600, 700, 800, 900, 1000], and 

[6000, 7000, 8000, 9000, 10000]..   

The sets 1 and 2 combined make the 𝜇𝑠 𝑔⁄  or 𝑙𝑔 𝑙𝑠𝑐⁄  to span over 7 orders of 

magnitude, with 10 values distributed evenly over each decade. A few values of the 

gain/scattering ratio may have been duplicated between the two sets. Note that Eq. (15) incurs 

a singularity at 𝑙𝑠𝑐 = 𝑙𝑔. The singularity could be circumvented by evaluating the equation with 

finer resolution in the close vicinity of 𝑙𝑠𝑐 = 𝑙𝑔 . Accordingly, both sets contain values of 

𝑙𝑔 𝑙𝑠𝑐⁄ = 𝜇𝑠 𝑔⁄  of [0.99, 1.01, 1.1] in lieu of the unity value. The refractive index of the medium is 

fixed at 1.33.  

 

 

 
Fig. 3 The temporal behavior of the total photon density of Eq. (10) evaluated at a fixed gain and scattering pathlengths, for two values 

of the radius of the spherical domain. The gain length is 100 cm corresponding to a gain coefficient of 0.01 𝑐𝑚−1 and the transport 

length is 0.1 cm corresponding to a scattering coefficient of 10 𝑐𝑚−1. In both cases, the abscissa representing time has been converted 

to ballistic transport length by multiplying the time with light speed in the medium. (A) The case for the radius of 4.2 cm. The global 

minimum occurs at >6 cm, indicating that the size is less than what is necessary for the photon density at the boundary to increase. (B) 

The case for the radius of 5 cm. The global minimum occurs at ~4 cm, indicating that the size is greater than what is necessary for the 

photon density at the boundary to increase after an initial phase of decrease.  

 

4 RESULTS 

 

4.1 The bi-phasic pattern of the total photon fluence rate of Equation (10) 

The total photon fluence rate given by Equation (10) is exemplified in Fig 3 for two values of the model-

radius 𝑅0  for otherwise identical setting of the medium properties. The gain length is 100 cm 

corresponding to a gain coefficient of 0.01 𝑐𝑚−1 and the scattering length is 0.1 cm corresponding to a 

scattering coefficient of 10 𝑐𝑚−1, making the medium diffusive. The model-radius 𝑅0 is  4.2cm in (A) 

and 5cm in (B), respectively. The abscissa of Fig. 3 representing time in both (A) and (B) has been 

converted to the line-of-sight length by multiplying the time with light speed in the medium. Accordingly, 

the global minimum in (A) occurs at >6 cm that is greater than the model-radius of 4.2cm. This may 

indicate that picking-up of the photon fluence rate at the position assessed after the initial decrease would 

occur at a radial size greater than that of the position and thus would not happen. Comparatively, the global 

minimum in (B) occurs at ~4 cm that is smaller than the model-radius of 5cm. This could indicate that 

picking-up of the photon fluence rate at the position assessed after the initial decrease would occur at a 

radial size less than that of the position and thus would happen.  
 

4.2 The threshold time of global minimum of the total photon fluence rate of Equation (10) that 
equals the model-radius to make the threshold line-of-sight length 



Figure 4 exemplifies identifying the threshold length scale of the medium that has the same optical 

properties as the medium shown in Fig. 3. As shown in (a) that is specific to a model-radius of 4.65cm, 

the global-minimum-converted line-of-sight length appears to match the model-radius. (B) confirms that 

the LHS and the RHS of Eq. (14) do cross at ~4.65cm, thus confer that a line-of-sight length 

corresponding to the time of global minimum can match the model-radius. As the gain length is 100 cm 

corresponding to a gain coefficient of 0.01 𝑐𝑚−1 and the scattering length is 0.1 cm corresponding to a 

scattering coefficient of 10 𝑐𝑚−1, this threshold line-of-sight length of 4.65cm corresponds to 46.5 times 

of the scattering length and 0.0465 times of the gain length.   

 The procedure of manually finding the threshold condition that the line-of-sight length 

corresponding to the time of global minimum of the GDF integrated photon fluence rate equals the model-

radius, is repeated for all setting of the medium parameters detailed in 3.4 to obtain a threshold line-of-

sight length, denoted as 𝑅𝑛𝑒𝑤, to be compared against 𝑅𝑑𝑖𝑓𝑓 of Eq. (13) and 𝑅𝑟𝑡𝑒 of Eq. (14).  

 

 
Fig. 4 The temporal behavior of the total photon density of Eq. (10) evaluated at gain and scattering pathlengths identical those in Fig. 

3 for identifying a dimension of the model-radius 𝑅0 that matches with the global minimum.  The gain length is 100 cm corresponding 

to a gain coefficient of 0.01 𝑐𝑚−1 and the transport length is 0.1 cm corresponding to a scattering coefficient of 10 𝑐𝑚−1. In both cases, 

the abscissa representing time has been converted to ballistic transport length by multiplying the time with light speed in the medium. 

(A) The case for the radius of 4.65 cm. The global minimum occurs at ~4.65 cm. (B) Numerical evaluations of the LHS term and the 

RHS term of Eq. (16) that helps identify the crossing point corresponding to the global minimum of the curve in (A).  

4.3 The critical line-of-sight length evaluated with Equation (10) as compared to the values 
given by Equations (13) and (14)  

The critical lengths as exemplified in Fig. 4 based on Eq. (10) are displayed in Fig. 5 in comparing to the 

values of 𝑅𝑑𝑖𝑓𝑓  given by Eq. (13) and 𝑅𝑟𝑡𝑒  rendered by Eq. (14), over the same gain/scattering ratio 

varied over 7 orders of magnitude.  

 The ordinate in Fig. (5) is the same for (A) and (B) but set with different ranges. The 

ordinate is the critical length scaled over the gain-length. The abscissa of (A) is the critical 

radius scaled over the scattering length, whereas that of (B) is the inversion of that of (A), or 

the scattering length scaled over the critical radius. With these configurations, the abscissa of 

(A) has a range of [5 × 10−3, 2 × 102], and the ordinate over a range of [0.01 100]. There are 

four traces of data in (A) or (B). Each trace contains two sets of values marked with slightly 

different colors. The two sets of the values correspond to the two sets of the parameter 

configurations as specified in 3.4 which overlap at the integer points of each decade.  

The straight line annotated by 𝑅𝑑𝑖𝑓𝑓  depicts the critical radius given by the eigen-mode 

decomposition of the solution of diffusion equation. The trace that coincides with the line of 𝑅𝑑𝑖𝑓𝑓 at the 

lower-right aspect representing strong scattering and reaching a plateau at the upper left aspect 

representing weak scattering demarks the critical sizes predicted by RTE. The trace marked by a framed 

arrow at the right-lower section that is oblique to the line of 𝑅𝑑𝑖𝑓𝑓 represents the threshold lengths given 

by the method illustrated in Fig. 4, i.e., the time-of-global minimum converted line-of-sight length that 

matches the model-radius. When this trace of the threshold-length is multiplied by a simple factor of  
8

𝜋
(𝜇𝑎 𝜇𝑠⁄ )0.11, or  

8

𝜋
(𝑙𝑠𝑐 𝑙𝑔⁄ )

0.11
, it becomes the one marked by blue diamonds and circles that is below 



the trace of 𝑅𝑟𝑡𝑒  at 𝑅𝑐𝑟 𝑙𝑠𝑐⁄ <1 and falls very close to the values of  𝑅𝑑𝑖𝑓𝑓  and 𝑅𝑟𝑡𝑒  over the strong 

scattering regime of 𝑅𝑐𝑟 𝑙𝑠𝑐⁄ >5.  

The patterns shown in (A) are reiterated in (B) over smaller ranges of both the abscissa and ordinate. 

In this arrangement, the critical size scaled over the gain length is displayed with respect to the optical 

thickness of the medium (∝ 𝑅 𝑙𝑠𝑐⁄ ), and both the ordinate and abscissa are in linear scale. As the optical 

thickness decreases or the scattering pathlength over size increases, the present model predicts a constant 

scaling of the critical size over gain-length, a pattern that seems to be in better agreement with prediction 

in 2-dimension by a coherent-wave approach [16].  

       

 
Fig. 5 Comparison of the thresholds of the present model with those computed by diffusion and RTE.  (A) The threshold size scaled 

over the length is plotted as a function of the threshold size scaled over the scattering length. (B) The threshold size scaled over the 

length is plotted as a function of the scattering length scaled over the threshold size which is inversely proportional to the optical 

thickness. In both figures, the broken straight line corresponds to the computation by diffusion model of Eq. (13). The solid curved line 

corresponds to the output of the RTE model. The trace of smaller discrete markers corresponds to the output of the present model 

without the empirical correction. The trace of greater discrete markers corresponds to the output of the present model with the addition 

of a diffusivity correction term of 
8

𝜋
(𝑙𝑠𝑐 𝑙𝑔⁄ )

0.11
. Each trace contains two sets of thresholds, one from the case of fixing the gain length 

via varying the scattering length, and the other from the case of varying the gain length while fixing the scattering length. The 

gain/scattering ratio in the two sets of variations combined gives approximately 10 data points over each decade of the scattering/gain 

ratio. The shaded and framed region in (A) has the same range of the gain-length scaling and transport-length scaling of the threshold 

of the 2-dimensional cases as the Fig. 2(A) of ref [8].  The horizonal dashed line pointed by the red arrow indicates a limit to which the 

RTE model of two-dimension of the ref [8] approaches.  (B) is the zoomed-in version of (A) covering the diffusive and intermediate 

regimes. With the abscissa and ordinate plotted in linear scale. The shaded and framed region of (B) has the same range of the gain-

length scaling and transport-length scaling of the threshold of the 2-dimensional cases as the Fig. 2(B) of ref [8].  

A yellow shaded region can be seen in both (A) and (B). These two regions match respectively with 

the (A) and (B) of Figure 2 of reference [16] where the critical sizes assessed for 2-dimensions were 

compared among three methods including the eigen-mode-decomposition, RTE, and coherent-wave 

approach, over the semi-diffusive to quasi-ballistic regions. We note that, the range of the threshold size 

scaled over the scattering length as is assessed in Fig. 5 is more than one order of magnitude greater than 

that of [16], and the range of the critical size scaled over the gain length as is assessed in Fig. 5 is 

approximately one order of magnitude greater than that of [16]. Both the range of the optical thickness 

and the range of the critical size scaled over the gain length as assessed in Fig. 5 are 5 times more than 

those of Fig. 2 in [16].      

 

4. Discussions   

This work approaches the threshold of random lasing in a spherical domain by considering the photon 

flush at a boundary point as the result of one-time simultaneous homogeneous photon generation within 

the medium. The temporal profile of the photon fluence rate counted on a boundary point, as the result of 



a one-time, synchronous, homogeneous generation of photons within the medium and followed by 

diffusive propagation in the medium reveals a biphasic pattern with a global minimum that separates a 

decreasing pattern and an increasing pattern over time. The photon’s temporal spread function at a fixed 

distance from the source as corresponding to Eq. (3) has an initial peak followed by a long tail of decay. 

The farther the position is from the source of photon generation, the later the time is when the photon 

packet reaches the position, and the greater the spread of the photon packet becomes over the spatial 

distance. If the medium is smaller than a critical size, the later arriving photons from photon generation 

within the medium at longer distances from the point of photon-counting will be inadequate to 

compensate the rate of reduction of photons originating from photon sources that are closer, causing the 

photon fluence rate to reduce perpetually. If the medium is greater than a critical size, the later arriving 

photons from photon sources of longer distances could be more than enough to compensate the rate of 

reduction of photons originating from sources that are closer, and this will make the photon fluence rate 

to increase after a phase of reduction to manifest a bi-phasic pattern. And between these two conditions 

there should have a threshold condition whereupon the photon fluence rate at a time-lapse governed by 

the size of the sphere will transfer between a decaying trend and an increasing pattern.  

This threshold condition may also be interpreted in a different perspective. Assume that (1) the 

modeled photon sources within the entire spherical domain is condensed onto the center of the spherical 

domain, (2) the field-point remains at the position of the spherical boundary, and (3) the intensity of the 

condensed source decays in time with the decay constant inversely scaled over the radius of the sphere. 

A condensed source with an infinitely large decay constant of the intensity is a Delta-functional source, 

and the photon emission getting to the field point while passing through the scattering medium will have 

an initial rise of ballistic propagation followed by a later decay going to zero due to scattering. As the 

decay constant of the intensity of the condensed source becomes smaller over time, the tail of the photon 

flushing at the field point after the initial rise may decay slower over time and there should have a threshold 

condition of the tail does not decay. That would infer a threshold size of the spherical domain.   

 It is worthy of noting that, the proposed threshold length, after applying a correcting factor 

representing the diffusivity of the medium, not only fits well over the diffusive regime but also agrees 

qualitatively to the pattern over the sub-diffusive and quasi-ballistic regimes as was predicted by coherent 

wave approach limiting to 2-dimensional cases [16]. Future endeavors shall be directed to implementing 

the coherent-wave method shown in [16] to 3-dimension to examine the validity of the threshold size 

predicted here with the line-of-sight length, for the spherical domain shown in this work as well as 

extending to 2-dimensional case, in comparing to the RTE approach. However, it may be insightful to see 

why the treatment of this work based on the diffusion equation has given results that are qualitatively 

consistent with the results given by the full-wave treatment. The coherent wave approach in [16] modeled 

the random laser by uniformly distributing N Delta-function scatterers within a circular region of radius 

R containing a uniform background of gain materials.  With that, the lasing threshold was calculated for 

a fixed lasing frequency, scatterer distribution, and scatterer strength by finding a complex value of g that 

satisfies the wave equation to generate purely outgoing waves at the boundary of concern. Our approach 

may be similar in making the medium filled with uniform distribution of Delta-functional sources, but 

our approach deals with the intensity alone. Given the dimension of the medium in the coherent-wave 

approach with respect to the wavelength, the summation of all coherent waves over the domain has 

averaged the phase over the vast distribution of the phase corresponding to the domain. The phase-

averaging outcome of the coherence wave approach could have been mimicked by the integration of the 

temporal photon fluence rate over the volume that has intensity information alone.     

 This proposed approach as demonstrated is limited in missing the boundary treatment. 

Appropriate treatment of the boundary will be challenging for the principle demonstrated heretofore, since 

the integration of the temporal photon fluence rate shall be applied to the entire spherical domain which 

means the boundary effect to ALL photon sources within the spherical domain needs to be accounted for. 

A boundary condition applicable to photon propagation in a random laser is the following 

Ubr(χ⃗ ′, 0|𝑅0, t) + 𝑅𝑏 [
𝜕

𝜕𝑟
𝑈br(χ⃗ ′, 0|𝑅0, t)] = 0        (17) 

Where  



𝑅𝑏 =
2𝑙𝑠𝑐

3
     (18) 

The boundary effect may be accounted for by introducing an extrapolated zero-boundary [22] 

located outside of the physical boundary. An image source of a physical source with respect to the 

extrapolated zero-boundary can be found by deriving the composite photon fluence rate from a physics 

source and the image source on a field-point at the physical boundary. Due to the obvious symmetry, an 

extrapolated zero-boundary outside the spherical boundary will be concentric to the spherical boundary, 

and the image source of a Delta-functional source with respect to the extrapolated boundary shall have 

the same azimuthal and zenith coordinates of the Delta-function source but a different radial function. 

And the radial contribution to each source differs according to the order of the spherical harmonics 

associated with the solution of the diffusion equation. When this treatment is implemented with an 

integration like that of Eq. (4), one will find that the same line-of-sight distance of 𝜌 is associated with 

radial coordinate terms that differ throughput the shell. This would cause it to be quite challenging to reach 

an analytical solution of the integral with the boundary effect accounted for. However, once can expect 

that the boundary effect is affected by the diffusivity of the medium and that effect could allow 

approximation by means of the scattering/gain ratio. A correction term of 
8

𝜋
(𝜇𝑎 𝜇𝑠⁄ )0.11 has been able to 

bring the threshold length developed without counting for the boundary to be in close agreement with the 

value given by Letokhov’s approach or RTE in the diffusive region. The number of (
8

𝜋
) in the correction 

factor shall relate to an angular pattern such as a spatial angle. We note that the 𝜇𝑎 𝜇𝑠⁄  is essentially the 

absorption over a step-length of scattering. The power of 0.11 is a weighting of the absorption correction 

due to the scattering step-size. This factor could also relate to the deficiency of the diffusion treatment 

with respect to the more accurate radiative transfer approach since the equation of the photon diffusion 

has neglected the higher order moments of photon irradiance. We may therefore project that, the GDP 

weighting of photon fluence rate by utilizing the RTE derived spatially resolved time-dependent photon-

fluence rate as the base of the integration in Eq. (4) could lend on a threshold line-of-sight length that is 

much more accurate than is obtained herein. Future works are warranted to examine these possibilities.  
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Appendices 

 

A. The geometry-distribution probability of a length of 𝜌 that is no greater than the 

diameter 2𝑅0 and has one end at the spherical boundary  
We consider a spherical domain Ω of radius of 2𝑅0, with a field point locating on (𝑅0, 0, 0).  A spherical 

shell of Ω′ centered on (𝑅0, 0, 0) with the radius less than 2𝑅0 is called iso-shell. The iso-shell intercepts 

Ω  over a circle, which is to be called the circle of interception. Denote the radius of the circle-of-

interception as 𝑅𝜌, we have 𝑅𝜌 = 𝜌 ∙sin(𝛼), where 𝛼 is the angle formed by any point within the sphere 

on the surface of Ω and the radius formed by (𝑅0, 0, 0) and the center of the sphere.  Apparently, 𝛼 ∈

[0,
𝜋

2
]. The circle of interception between Ω′  and Ω has a radius of 𝑅𝜌 = 𝜌 ∙ 𝑠𝑖𝑛(𝛼), with and 𝜌 =

[0, 2𝑅0]. The condition of 𝜌 = 0  or  𝛼 =
𝜋

2
 is when the iso-shell just starts to intercept the sphere, and 

the condition of 𝜌 = 2𝑅0  or  𝛼 = 0 is when the iso-shell misses intercepting the sphere. And we have 

cos(𝛼) =
𝜌

2𝑅0
 or sin(𝛼) =

√(2𝑅0)2−𝜌2

2𝑅0
.  

The total surface area of the Ω′ forms a solid angle over (𝑅0, 0, 0) as the following  

𝜌2 ∗ 𝑎𝑐𝑡𝑢𝑎𝑙 𝑠𝑜𝑙𝑖𝑑 𝑎𝑛𝑔𝑙𝑒 = 2𝜋𝜌2[1 − 𝑐𝑜𝑠(𝛼)] 

= 2𝜋𝜌2 [1 −
𝜌

2𝑅0
] = 8𝜋𝑅0

2 (
𝜌

2𝑅0
)
2

[1 −
𝜌

2𝑅0
]   (A1) 



We have 𝑐𝑜𝑠(𝛼) ∈ [
𝜌

2𝑅0
, 1]. The differential volume of the iso-shell from (𝑅0, 0, 0) is  

𝑑𝑉 = 2𝜋𝜌2 [1 −
𝜌

2𝑅0
] ∙ 𝑑𝜌 = 8𝜋𝑅0

2 (
𝜌

2𝑅0
)
2

[1 −
𝜌

2𝑅0
] ∙ 𝑑𝜌     (A2) 

The probability of the differential volume of the iso-shell represented by Eq. (A2) is then the 

ratio of it over the spherical volume of Ω, which leads to 

𝑃(𝜌) =
𝑑𝑉

4

3
𝜋𝑅0

3
= 12 (

𝜌

2𝑅0
)
2

[1 −
𝜌

2𝑅0
] ∙ 𝑑 (

𝜌

2𝑅0
)   (A3)  

Apparently, the GDP of the iso-shell of 𝜌 = 0, 𝑜𝑟 2𝑅0 is zero, as expected.  

 

 
Fig. a1. Geometric distribution of the points within a spherical domain that has a distance of 𝜌 from a boundary field point. If a spherical 

shell of Ω′ centered at the field point and has a radius of 𝜌 is plot, the intercept of the shell with the spherical domain Ω of the medium 

is a thin strip. All points on the differential strip Ω′ within Ω contribute equally to the photon fluence rate at the same field point shown.         

 

B. Derivation of a few integrals [23] 
The following integrals become useful: 

∫ exp(−𝑞2𝑥2)  ∙ 𝑑𝑥
𝑢

0
=

√𝜋

2
Φ(𝑞𝑢) = 𝑒𝑟𝑓(𝑞𝑢)  (A4) 

Integration table:   3,321 (4*, 5* and 6*) and 8.250 (1) 

∫ x ∙ exp(−𝑞2𝑥2)  ∙ 𝑑𝑥
𝑢

0
=

1

2𝑞2
[1 − exp(−𝑞2𝑢2)]  (A5) 

Integration table:   3,321 (5* and 6*) and 8.250 (1) 

∫ 𝑥2 ∙ exp(−𝑞2𝑥2)  ∙ 𝑑𝑥
𝑢

0
=

1

2𝑞3 [
√𝜋

2
Φ(𝑞𝑢) − 𝑞𝑢 ∙ exp(−𝑞2𝑢2)]   

=
1

2𝑞3
[𝑒𝑟𝑓(𝑞𝑢) − 𝑞𝑢 ∙ exp(−𝑞2𝑢2)]      (A6) 

and 

∫ 𝑥3 ∙ exp(−𝑞2𝑥2)  ∙ 𝑑𝑥
𝑢

0
=

1

2𝑞4
[1 − (1 + 𝑞2𝑢2)exp(−𝑞2𝑢2)]  (A7) 

We therefore have the following two equations 

∫ 𝜌2 ∙ exp (−
1

4𝔻t
𝜌2)  ∙ 𝑑𝜌

2R𝑜

0
= 4(𝔻𝑡)

3
2⁄ [𝑒𝑟𝑓 (

R𝑜

√𝔻𝑡
) −

R𝑜

√𝔻𝑡
∙ exp (−

R𝑜
2

𝔻t
)]    (A8) 

and 

 ∫ 𝜌3 ∙ exp (−
1

4Dct
𝜌2)  ∙ 𝑑𝜌

2R𝑜

0
= 8(𝔻t)2 [1 − (1 +

R𝑜
2

𝔻t
) exp (−

R𝑜
2

𝔻t
)]  (A9) 

Combining (A7) and (A8) lead to  

∫ 𝜌2 ∙ exp (−
1

4𝔻t
𝜌2) ∙ 𝑑𝜌

2R𝑜

0

−
1

2𝑅0
∫ 𝜌3 ∙ exp (−

1

4𝔻t
𝜌2) ∙ 𝑑𝜌

2R𝑜

0

 

=
3

4𝜋
3
2𝑅0

3
∙ exp[ηct] ∙ {[𝑒𝑟𝑓 (

R𝑜

√𝔻𝑡
) −

R𝑜

√𝔻𝑡
∙ exp (−

R𝑜
2

𝔻t
)] −

√𝔻𝑡

𝑅0
[1 − (1 +

R𝑜
2

𝔻t
) exp (−

R𝑜
2

𝔻t
)]}   



    (A10) 

The RHS of Eq. (A10) evolves to the following  

RHS=
3𝑐

4𝜋
3
2

∙
1

𝑅0
3 [exp[ηct] ∙ 𝑒𝑟𝑓(𝑥) +

1

𝑥
exp(−𝑥2 + ηct) −

1

𝑥
∙ exp[ηct]]  (A11)  

 

C. Time-derivative of the function of Equation (A11) 
𝑑

𝑑𝑡
[exp[ηt] ∙ 𝑒𝑟𝑓(𝑥) +

1

𝑥
exp(−𝑥2 + ηct) −

1

𝑥
∙ exp[ηct]] 

=ηc ∙ exp[ηct] ∙ 𝑒𝑟𝑓(𝑥) − exp[ηct] ∙ (
R𝑜

2√𝔻
𝑡−3/2)

2

√𝜋
𝑒𝑥𝑝[−𝑥2] 

+(
R𝑜

2√𝔻
𝑡−

3
2) [

1

𝑥2
] ∙ exp(−𝑥2)exp(ηct) +

1

𝑥
∙ exp(−𝑥2)exp(ηct) ∙ [2𝑥 (

R𝑜

2√𝔻
𝑡−3/2) + ηc] 

−(
R𝑜

2√𝔻
𝑡−3/2) [

1

𝑥2] ∙ exp[ηct] −
1

𝑥
∙ ηc ∙ exp[ηct] (A12) 

Removing the common term of exp[ηct] as it does not affect the zeroing point, we have 

ηc ∙ 𝑒𝑟𝑓(𝑥) − (
R𝑜

2√𝔻
𝑡−

3
2)

2

√𝜋
𝑒𝑥𝑝[−𝑥2] + (

R𝑜

2√𝔻
𝑡−3/2) [

1

𝑥2
] ∙ exp(−𝑥2) + 

1

𝑥
∙ exp(−𝑥2) ∙ [2𝑥 (

R𝑜

2√𝔻
𝑡−3/2) + ηc] − (

R𝑜

2√𝔻
𝑡−3/2) [

1

𝑥2
] −

1

𝑥
∙ ηc 

= (
R𝑜

2√𝔻
𝑡−

3
2) [

1

𝑥2
] ∙ exp(−𝑥2) − (

R𝑜

2√𝔻
𝑡−

3
2)

2

√𝜋
𝑒𝑥𝑝[−𝑥2] 

+[2 (
R𝑜

2√𝔻
𝑡−

3
2) +

ηc

𝑥
] exp(−𝑥2) − (

R𝑜

2√𝔻
𝑡−

3
2) [

1

𝑥2
] −

ηc

𝑥
∙ +ηc ∙ 𝑒𝑟𝑓(𝑥) = 0 

Which reads 

{
1

2𝑥𝑡
+ [

𝑥

𝑡
+

ηc

𝑥
] −

1

√𝜋
(
𝑥

𝑡
)} 𝑒𝑥𝑝[−𝑥2] =

1

2𝑥𝑡
+

ηc

𝑥
− ηc ∙ 𝑒𝑟𝑓(𝑥)  (A13) 
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