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NOMENCLATURE 

An: discharging area of the nozzle 

AN: nominal system matrix 

Ap: cross sectional area of the spool valve 

Ba: viscous damping constant of torque motor and flapper 

B8 : viscous damping constant of spool valve 
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d0 ,dn,dd: diameter of upstream, nozzles, and drain orifices 

E: perturbation matrix 

i, irn: electrical current differential and maximum electrical current diff erental respectively 

I: identity matrix 

J a: inertia of armature and attached load 

Ka, K 8 : spring constants of torque motor and spool valve respectively 

KL: internal leakage coefficient 

Kt: torque constant of the torque motor 

ki: uncertain perturbation parameters 

~-, kt; lower and upper bounds of uncertain parameter ki 

kU>: j-th vertex of perturbation parameter space's hypercube 

Ms: mass of moving spool 

m: number of uncertain perturbation parameters 

n: dimension of a nominal matrix 
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P, P 0 : Lyapunov matrix and nominal Lyapunov matrix respectively 

AP: perturbation of Lyapunov matrix 
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QF: a quadratic function for optimal Lyapunov function 

r: equivalent length of flapper 

t,t:c,: time and initial time respectively 

u: control input vector 

V: Lyapunov function 

Vt, Ve: internal oil volumes 

X,Xo: state vector and initial state vector respectively 

xro: equilibrium flapper position 

xr,xp: displacements of flapper and spool respectively 

Xpm: maximum displacement of spool 

a: angle of attack for an aircraft movement 

~: effective bulk modulus 

o(.): maximum singular value of matrix (.) 

E: small constant value 

µ(.): matrix measure of matrix(.) 

µp, µru, µys: robustness measures 
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A: performance measure of a Lyapunov function candidate 

A(.): eigenvalues of the matrix(.) 

"-max(.) ,"-min(.): largest and smallest eigenvalues of matrix (.) respectively 

p: oil mass density 

Q, <I>: symbol of a convex hull (polytope) 

r: a set of vertex matrices 

II: a hypercube of perturbation parameter space 

A: performance measure of a Lyapunov function candidate 

1¥: perturbation matrix set 

1-1: modulus matrix of(.) 

11-11: Euclidean norm of a vector (.) 
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CHAPTER I 

INTRODUCTION 

Overview 

The design and analysis of a control system is based on the mathematical model of 

the physical plant. One of the fundamental challenges facing a control engineer is to 

account for and accommodate the inaccuracies in the mathematical models of physical 

systems used for controller design. The presence of inaccuracies in the mathematical model 

results from simplifications such as lumped parameter approximations, simplified relations, 

ignored high-order dynamics, linearizations about operating points, neglected 

instrumentation uncertainties, and changes in the system component properties due to time 

and environmental effects. 

The nominal model of a physical plant often has the form of an autonomous linear 

system with uncertain parameters. Uncertain perturbation parameters can exist in the form 

of structured or unstructured perturbations. A structured uncertainty represents those 

uncertainties whose sources can be explicitly identified in a parameter model. Meanwhile 

an unstructured uncertainty is a lumped uncertainty that may represent several uncertainties 

that cannot be explicitly expressed in a parameter model. In unstructured uncertainty, only 

the bound on the norm of the perturbation matrix is given. This approach leads to overly 
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conservative results in many instances, since the robustness criteria do not identify the 

perturbation structure of uncertain parameters. This research addresses structured 

uncertainties. 

In controller design, these uncertain perturbations can be accommodated by the use 

of either adaptive or robust controllers. If the bounds of the perturbations are known, 

robust controllers are often utilized, and this has motivated the design of robust controllers 

for multi-variable linear systems ([Dorato 87], [Dorato 93]). The fundamental requirement 

for the design of robust control is the ability to analyze system stability and robustness. 

Stability analysis is concerned with the state trajectories for perturbations of an initial 

condition from its equilibrium point or reference trajectory. In the analysis and design of 

robust control systems, it is essential to determine to what extent a nominal system remains 

stable when subject to a certain class of perturbation. These bounds for perturbation 

parameters in which the system remains stable are referred to as stability robustness 

bounds. 

The approaches to estimating the stability robustness bounds of linear time-invariant 

systems can be viewed from two perspectives: one is the time domain approach based 

upon state space equations, and the other is the frequency domain approach primarily based 

upon system transfer function. The frequency domain approach has been extensively 

studied in the past ([Safonov 77], [Barrett 80], [Doyle 81], [Lehtomaki 81], [IEEE 81]). 

The main approach in frequency domain analysis is to extend the classical single-input, 

single-output stability margin to multi-input, multi-output systems by use of the singular

value decomposition method. The nonsingularity of a matrix is the criterion used to 

determine stability robustness bounds. Barett [Barett 80] presented a useful summary and 

a comparison of different robustness tests available with respect to their conservatism. One 

of the most important developments in robust stability analysis and control, in the 

frequency-domain, has been achieved in H2 and H00 theories (see [Francis 87] for 
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H2 and H00 theories). 

Kharitonov's theorem [Kharitonov 78] is the most celebrated work on the stability 

of a family of characteristic polynomials in the frequency domain. Kharitonov proved that 

the stability of dynamic systems whose parameter uncertainty is restricted to a 

hyperrectangular domain is guaranteed by the stability of four extreme polynomials whose 

parameters take values at the vertices of the hyperrectangle. Kharitonov's result for the 

interval polynomials dramatically alleviates the excessive computational demands of a 

stability test which would simply invoke repeated root or eigenvalue computations over a 

"sufficiently fine" grid of points within the family. However, there are several restrictions 

in the application of Kharitonov's theorem: first, if a polynomial family has mutually 

dependent coefficients, which is almost always the case in control applications, 

Kharitonov's result can not be applied directly but should be modified to provide sufficient 

conditions [Bartlett 88]; second, since there are no specific guides for choosing the vertex 

polynomials, one may try the epsilon-iteration algorithm [Barmish 87] to enlarge the 

polytope if the size of the initial polytope is not satisfactory; third, Kharitonov's theorem is 

only applicable to the interval polynomials and only considers the strict Hurwitz property of 

polynomials. Hence many researchers have made efforts to generalize Kharitonov's 

theorem ([Bartlett 88],[ Barmish 89], [Chapellat 89], [Peterson 90], [Foo 91], [Cavallo 

91], [Xu 93]). The well-known Edge Theorem ([Lin 87], [Bartlett 88]) extends 

Kharitonov's result to polytopes of polynomials. The stability of the exposed edges of a 

polytope of polynomials is both necessary and sufficient for the stability of the entire 

polytope. For a survey and further insight into Kharitonov's type of results, see [Barmish 

87], [Chapellat 88], [Jury 90] . 

The natural conjecture for Kharitonov's type of results would be that the family of 

interval system matrices (matrices whose elements vary independently in given intervals) in 

the time domain is stable if and only if all the vertex matrices are stable. Bialas [Bialas 83] 
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claimed that it is true; however, it turned out to be false as shown by Barmish and Hollot 

[Barmish 84] who constructed counterexamples. Barmish et al. [Barmish 88] also 

provided counterexamples for three plausible conjectures which are directly motivated by 

the results in the polynomial cases: the first conjecture is checking edges of a polytope of 

matrices (i.e., convex combinations of a number of matrices) in view of the Edge Theorem 

for polynomials; the second conjecture is checking edges of a hyperrectangle rather than a 

polytope; the third conjecture is mapping interval matrices onto the set of characteristic 

polynomials. All three conjectures failed. Similarly, Jiang [Jiang 88] attempted to prove 

the above conjectures for the discrete time case, which is also false as pointed out by Soh 

[Soh 89]. Various sufficient conditions for stability of a polytope of matrices ([Barmish 

86], [Shi 86], [Cobb 89], [Kokame 90], [Qian 92], [Fang 94b]) have been proposed, 

while some necessary and sufficient conditions ([Kokame 91], [Wang 91b], [Qian 92]) 

were obtained for special vertices in the parameter domain. Barmish and Kang [Barmish 

93] provided an extensive literatures survey of extreme point results for robust stability of 

systems with structured parametric uncertainty. For a polytope of matrices in the time 

domain, the stability problem is far from completely resolved. The stability problem of a 

polytope of matrices is treated in this research by using the convexity property of matrix 

measure ([Desoer 75], [Wang 91a], [Fang 94]). 

Although many of the stability robustness criteria developed in the frequency 

domain are significant, it is also useful to analyze stability robustness in the time domain, 

especially when a broader class of parameter perturbations have to be considered. The time 

domain approach is more amenable to the consideration of structured perturbations in the 

form of parameter variations and nonlinearities [Siljak 89]; and the time domain approach 

generally involves checking only a finite number of inequalities, often just one, while the 

frequency domain methodology requires all criteria over the whole range of frequencies to 

be satisfied [Petkovski 89]. 
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The time domain approach has been primarily based on Lyapunov theory, while 

root locus-based techniques [Qiu 86, Juang 87, Y edavalli 88] were sometimes utilized. 

The advantage of the Lyapunov-based approach is the capability to deal with nonlinear 

time-varying perturbations. The drawback in the application of the Lyapunov method is 

that estimates of the stability bounds are often too conservative to be used in high 

performance controller designs [Juang 87] and dependent upon the particular Lyapunov 

function used. Therefore, it is highly desirable to develop a better method for estimation of 

stability bounds. Research on the Lyapunov-based stability robustness is conducted in this 

study. 

There is an extensive amount of literature on the use of the Lyapunov direct method 

in robust stability and control problems. Early efforts include [Bellman 69], [Barnett 70], 

[Gutman 75], [Davison 76], [Desoer 77], [Ackermann 80], and [Eslarni 80]. Despite the 

considerable results of the time-domain stability conditions in these references, explicit 

stability bounds on the uncertain parameter perturbation of a linear system were first 

proposed by Siljak [Siljak 78] and Patel and Toda [Patel 80]. Since then, stability 

robustness conditions based on the Lyapunov direct method have been widely investigated 

([Yedavalli 85b], [Barrnish 86], [Zhou 87], [Siljak 89], [Latchman 91], [Olas 92], [Chen 

93], [Olas 94a], [Olas 94b]). 

Patel and Toda [Patel 80] studied the stability of linear systems with unstructured 

perturbation and obtained the upper Euclidean bound of the perturbation. Y edavalli 

[Y edavalli 85b ], Yedavalli and Liang [Yedavalli 86], and Zhou and Khargonekar [Zhou 87] 

further improved the stability robustness bounds of the perturbation parameters. Y edavalli 

[Y edavalli 85b] obtained an upper bound for the interval perturbation for robust control. 

Y edavalli and Liang [Y edavalli 86] used a state space transformation before applying 

Yedavalli's results [Yedavalli 85b] to reduce the conservatism in stability bounds 

estimation. Barrnish and DeMarco [Barrnish 86] proposed a technique for the 
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parameterization of the Lyapunov matrix to obtain less conservative stability bounds. Zhou 

and Khargonekar [Zhou 87] studied the robust stability of systems with perturbations that 

are linear combinations of a finite number of matrices and improved Y edavalli's results 

[Yedavalli 85b]. Siljak [Siljak 89] demonstrated that the estimation of the stability bounds 

of perturbation is strongly dependent upon the selection of the system state space. 

Latchman and Letra [Latchman 91] proposed an optimization procedure to 

systematically choose the best Lyapunov matrix so that the conservatism of stability bounds 

is reduced. Chen and Han [Chen 93] proposed a modified Lyapunov-based method where 

iterative interpolations of quadratic Lyapunov functions are considered. Olas [Olas 92] 

proposed another approach to the problem of stability robustness based on the construction 

of optimal Lyapunov functions. In a series of works, Olas ([Olas 92], [Olas 94a], [Olas 

94b]) proposed a recursive algorithm for the design of optimal Lyapunov functions which 

resulted in better estimates of stability bounds, approaching the maximum volume of the 

hypercube. Some of these methods ([Latchman 91], [Olas 92], [Chen 93]) provided less 

conservative stability estimates with recursive algorithms. However, these methods 

demand much computational efforts, and sometimes the procedure is empirical and 

subjective. For example, Olas [Olas 94b] showed that the stability bounds resulting from 

the recursive procedure are highly dependent on the way the estimated hypercube is 

enlarged; and no explicit method for the enlargement was proposed in Olas' works. 

Therefore the development of a better (i.e. less conservative) and easily applicable method 

for estimation of stability bounds is still highly desirable. 

Analysis of robust stability based upon the Lyapunov theorems consists of two 

principal steps: first, the generation of a Lyapunov function ([Schultz 65] and [Mohler 

89]); second, the determination of the robustness bounds based upon the generated 

Lyapunov function. 

It should be noted that stability estimates were conservative because the preceding 
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methods fail to consider the structured features of the uncertainties when generating a 

Lyapunov function, and because the directional property of the parameter variation was 

neglected. Most past works have used the zero-order Lyapunov robustness method. In the 

zero-order method, the nominal matrix Lyapunov equation is used to generate a nominal 

"P" matrix, which is then used to compute stability bounds for the perturbed system. This 

conventional method is referred to as the zero-order method in the sense of Taylor series 

expansion applying the perturbed dynamic model into the Lyapunov equation. Many early 

works on stability robustness bounds were restricted to bounds on the absolute values of 

the uncertain parameters, i.e., symmetric parameter variation with respect to the origin. 

These restrictions sometimes result in very conservative estimates of stability bounds. 

Significant progress ([Bernstein 89], [Leal 90], [Gao 93]) has been made recently 

in obtaining less conservative stability bounds by removing the restrictions already listed. 

In [Leal 90], the Lyapunov function varies with perturbation in the system matrix so that 

the method is called a first-order Lyapunov robustness method. In the first-order method, 

the perturbed dynamic model is used to generate a perturbed P matrix. This perturbed P 

matrix is then used to obtain modified stability bounds. In the sense of Taylor series 

expansion, this method is referred to as the first-order method. Meanwhile, the bounds in 

[Bernstein 89, Gao 93] are not necessarily symmetric. In particular, the estimate bounds 

obtained in [Gao 93] are expressed in terms of the uncertain parameters, rather than a 

convex hull over intervals as in [Bernstein 89]. 

However the bounds developed in [Leal 90] were symmetric bounds and the 

zero-order Lyapunov method was utilized in [Gao 93]. And the asymmetric stability bound 

estimates obtained in [Gao 93] is needed to expand to the entire region of the hypercube 

with maximum and minimum values of uncertain parameters. Hence, in this research, the 

first-order Lyapunov robustness method is applied to the method proposed in [Gao 93] to 

estimate asymmetric stability bounds and to further reduce the conservatism of the stability 
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bounds. 

For the current investigation, the structure of system equations with uncertain 

parameters, the convexity property of matrix measure, the asymmetric structure of 

perturbations, and the first-order terms for the parameter perturbation with Taylor series 

expansion are used to prove the new lemmas and theorems which have enabled the 

development of a procedure for better estimation of stability robustness bounds. The 

stability robustness bounds obtained by the development of these theorems are revealed to 

be less conservative than results of the early works of ([Zhou 87], [Gao 93]). It is also 

proved that the new proposed method can inherit the property of the optimal Lyapunov 

function in Olas' works ([Olas 92], [Olas 94a], [Olas 94b]). In other words, the new 

method can be completed by using the Olas' results. Theorems are derived to prove that 

the stability bounds estimated by the asymmetric first-order method are always less 

conservative than those of the zero-order method under certain conditions. 

The method proposed in this research provides three distinct advantages: first, ease 

of the application to system matrices with structured uncertain parameters; second, 

improved means to estimate less conservative stability bounds; third, the ability to extend 

to the properties of the optimal Lyapunov function for the systematic enlargement of 

hypercube of perturbation parameter space; fourth, the extensibility to better estimate 

measure of robustness bounds for eigenvalue distribution of uncertain linear systems. 

Several simple examples and practical design problems are considered to 

demonstrate the practicality and the advantages of the proposed method for the estimation 

of stability bounds with respect to the previously reported methods. Examples demonstrate 

superiority of the stability bounds estimated by the proposed method over those obtained 

by other methods [Zhou 87, Gao 93]. Two practical design problems for an 

electrohydraulic servovalve and a fighter aircraft control show that the new method 

significantly improves the "conventional" bound estimates providing less conservative 
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estimates, so that the new method can be effectively applied to practical design problems 

for control systems. 

Contributions of This Research 

This research demonstrates a new approach to the stability robustness problem of a 

linear time-invariant system with structured uncertain parameters. There are six principal 

contributions made by this research. 

First, a theorem referred to as the Expansion Theorem is derived. It is to verify 

whether the basic asymmetric robustness bounds estimated by the Gao's method can be 

expanded in the full hypercube whose vertices are a linear combination of maximum and 

minimum values of uncertain perturbation parameters. The Expansion Theorem enables the 

stability test to be simply applied at a vertex to find if the stability boundaries can be 

expanded to the full region of the hyper-quadrant to which each vertex belongs. 

Second, a new method for the analysis of stability robustness, referred to as the 

asymmetric first-order Lyapunov method, is developed by combining Gao's asymmetric 

stability bounds with the first-order Lyapunov method. The new method considers the 

structured features of uncertainties, when generating a quadratic Lyapunov function, and 

the directional property of perturbation parameters, so that it resolves the problem of 

conservative stability bound estimates that past methods often gave rise to. 

Third, using the properties of the optimal Lyapunov function and convexity of 

polytope of matrices, it is mathematically proved that, under certain condition, the 

asymmetric first-order Lyapunov method always provides better (less conservative) 

estimates of stability bounds than those of Gao's asymmetric stability bounds. 

Fourth, a theorem is developed to determine the optimal vertex for the application of 
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the asymmetric first-order method. It is proved that applying the asymmetric first-order 

method to the vertex with better performance measure of the Lyapunov function can 

provide better estimates of stability bounds. 

Fifth, new measures for robust eigenvalue-assignment of uncertain linear systems 

are presented. These robustness measures for eigenvalue-assignment are generalization of 

the results for the estimate of stability robustness bounds. 

Sixth, a new design for a two-stage electrohydraulic servovalve with a variant drain 

orifice is proposed. The effect of a variant drain orifice on a first-stage flapper-nozzle is 

analyzed to show that the variant drain orifice can enhance the valve performance across the 

null position and the overall stability of the servovalve simultaneously. It is also proved 

that the new asymmetric first-order method is easily applicable and provides a substantially 

large estimation of stability bounds for the design of a two-stage electrohydraulic 

servovalve. 

Organization of Contents 

Chapter II presents a discussion of the issues of stability of Lyapunov method, and 

Chapter III describes principal stability robustness methods proposed so far by other 

authors. Theorems for Gao's asymmetric stability bound estimation and the first-order 

method in the Lyapunov theorem and its physical meaning in the sense of Taylor series 

expansion are described in Chapter IV. Based on the results of the Chapter IV, the lemmas 

and theorems for the expansion of Gao's result to the full hypercube and the new 

asymmetric stability robustness bounds with the first-order method are established in 

Chapter V. Two numerical examples to validate the new method are demonstrated in 

Chapter VI. The examples compare the results of new method with those of the early 
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methods to establish the effectiveness of new method. Application of the new method to 

electrohydraulic servovalve design and to the sensor degradation problem of a fighter 

aircraft is also included in Chapter VII. Chapter VIII deals with robustness measures for 

uncertain linear systems where the eigenvalues of the perturbed systems are guaranteed to 

stay in a prescribed region. Similar to the results for the estimate of stability robustness 

bounds in Chapter V, new techniques to estimate allowable perturbation parameter bounds 

for the robust eigenvalue distribution are derived. Chapter IX describes the conclusion of 

this research and suggests the areas for future researches. Appendix A summarizes the 

preliminaries of uncertainties, matrix norms and matrix measure. A review of Lyapunov 

stability analysis is described in Appendix B. It includes the fundamental Lyapunov 

stability theorems, the Lyapunov equation for linear systems and the generation of the 

Lyapunov function. Appendix C summarizes the lemmas and theorems proposed by Gao 

[Gao 93]. Appendix D illustrates the design of a new two-stage electrohydraulic 

servovalve with a variant drain orifice to enhance both the servovalve performance and the 

stability of the servovalve. 
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CHAPTER II 

A REVIEW OF ROBUST ST ABILITY ANALYSIS 

Introduction 

In the analysis and synthesis of control systems, a fundamental problem is that the 

mathematical description of a physical plant is always characterized by uncertainty or 

modeling error. In addition, parameter variations are often present in the system dynamics. 

The figures and characteristics of the uncertainties are described in Appendix A. In recent 

years, the robustness of control systems, i.e., the ability to maintain performance in face of 

uncertainties has received much attention, and much research effort has been devoted to the 

analysis and synthesis of such systems. 

More attention has been given to the robustness analysis of multivariable feedback 

systems, however stability robustness evaluation is still a fundamental problem in control 

theory that has yet to be completely resolved. These problems have been investigated in 

both the frequency domain and the time domain. In the case of linear time-invariant 

systems, there are two basic common models: the state space representation and the transfer 

function or transfer matrix representation. For continuous systems, the former is a time 

domain description of the system using first-order linear differential equations, while the 

latter is a frequency domain description that maps the system from the time domain to the 
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frequency domain using the Laplace transformation technique. 

The most productive developments, in robust control in the frequency domain 

description for the system model, may be the H2 and H00 theories, developed from the 

"small gain principle" introduced by Zames [Zames 63]. Levine and Reichert [Levin 90] 

provided an introduction to the H00 system control design, and Francis [Francis 87] also 

contributed an excellent introduction to H00 theory. Most of the investigations of this 

subject have been based on transfer function representation. When system uncertainties 

can be translated into the uncertainties of the parameters in the characteristic polynomial, 

Kharitonov-type approaches ([Barlett 88], [Barmish 87], [Barmish 88], [Barmish 89], 

[Chapellat 89]) give a good stability test that considers all possible values of the uncertain 

parameters. In general, it is not a trivial task to determine the characteristic polynomial 

from the state space model when some of the parameters are given at intervals, especially 

when the system order is high, so alternative approaches are desirable. 

From the discussions above, it seems appropriate to focus on time domain 

approaches. This is because the uncertainties of a system are defined as the uncertainties of 

parameters in the state space model, which have specific physical meanings. For the time 

domain, the Lyapunov direct method has been widely used for the investigation of system 

robustness; this is because this method provides ready accommodation for both nonlinear 

and time-variant systems. It should be noted that the small gain theorem is concerned only 

with nominally linear systems. This is an important factor since the solution of nonlinear 

differential equations can be difficult or impossible. 

For robustness, the application of the Lyapunov direct method consists of two 

principal steps: first, the generation of the Lyapunov function; second, the determination 

of the robustness bounds based upon the generated Lyapunov function. Patel and Toda 

[Patel 80] considered linear autonomous systems with nonlinear, time-varying unstructured 
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vector perturbations and unstructured perturbations, and formulated estimates for the 

robustness bounds. Y edavalli [Y edavalli 85] improved the accuracy of these estimates 

when considering structured perturbations. The bounds obtained by the application of 

these methods were not directly dependent on the structure of the nominal matrix. 

Y edavalli and Liang [Y edavalli 86] improved estimation of the bounds by the 

transformation of states. For the case of structured perturbations, Zhou and Khargonekar 

[Zhou 87] improved the robustness bounds by separating independent perturbation 

elements within the perturbation matrix. Siljak [Siljak 89] suggested the use of a vector 

Lyapunov function introduced by Matrosov [Matrosov 82] and Bellman [Bellman 78], to 

reduce the conservatism of the estimates. Juang [Juang 91] considered robustness for 

linear time-invariant systems, including linear autonomous systems with time-varying 

perturbations as a special case. 

In the case of structured perturbations, the conservatism of the estimates was 

principally caused by two factors: first, the failure to consider the structured features of the 

perturbations when generating a Lyapunov function; second, neglecting the directional 

sign of the uncertain parameters. The problem studied in the research of ([Yeda 86], [Zhou 

87], [Martine 87], [Mansour 89]) was quite general. It applies to all linear time-invariant 

systems which have parameter variations with the additive perturbations residing at 

intervals symmetric to zero. It is, therefore, not surprising that the stability bounds 

obtained were very conservative. They are usually given as small, symmetric intervals 

around the origin in the parameter space. However, in many cases it is reasonable to 

assume that the signs of the uncertain parameters are known. For example, when an 

elevator on an aircraft is stuck, one can usually tell whether it is stuck upward or 

downward by the movement of the plane and this information can be translated into the 

signs of certain parameters of the system. Gao [Gao 93] first found that better (less 

conservative) robustness bounds can be obtained if the signs of the uncertain parameters 
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are known. However, Gao's method was not sufficient to estimate the full stability 

robustness bounds allowable for the given parameters. Although this research is based on 

the Gao's results, it overcomes the drawback of Gao's method. 

Application of the Lyapunov Method to the Stability Robustness 

As mentioned in Appendix B, the Lyapunov stability theorems have been 

established for the perturbations of initial conditions near an equilibrium point. These 

theorems were subsequently extended for application to perturbations of the system 

parameters [Leipholz 87]. The conclusions derived from the Lyapunov direct method are: 

if for a system, there exists a single Lyapunov function for all choices of the perturbation 

parameters within a compact bounded set, the system stability of equilibrium for the 

nonlinear and time-variant perturbations is insured. 

The uncertainties, the matrix norm and matrix measure are described in Appendix 

A. The remainder of this chapter reviews selected research on the robust stability analysis 

of nominally autonomous linear systems. Three perspectives for the approach to the 

problem of stability robustness are considered: first, the analytical method with matrix 

norm, eigenvalues and singular values; second, the stability of a convex hull (polytope) of 

matrices with their vertex matrices; third, numerical recursive algorithms to obtain less 

conservative stability bounds. 

Analytical Methods 

Patel and Toda [Patel 80], in an extension of their paper on robustness analysis for 
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linear state feedback design [Patel 77], considered nonlinear unstructured vector 

perturbation and unstructured perturbations for nominally autonomous linear systems. 

Consider the following system 

x = AN x + f(x,t) 

where AN is a time-invariant asymptotically stable matrix and f(x,t) is a time-varying 

nonlinear vector function of x(t), representing the nonlinear unstructured vector 

perturbations within the system and f(O,t) = 0 for all times. The fundamental stability 

robustness problem is to determine the magnitude of perturbation f(x,t) such that the 

system (2.8) remains stable. The answer to this problem is obtained in the form of the 

following theorem. 

Theorem 2.1 [Patel 80] 

The system on Equation (2.1) is stable if 

I lf(x,t)I I < ·- min A(Q) 
I Ix.I I - µp .- max A(P) 

(2.1) 

(2.2) 

where 11-11 is a Euclidean norm of a vector(.), A(.) is an eigenvalue of matrix(.) and Pis the 

unique positive definite solution of the Lyapunov equation 

where Q is a positive definite matrix. 

(2.3) 

D 

Further, it was proved that for unstructured perturbations, the robustness bound µp 

on the condition (2.2) is maximal for Q = I, where I is an identity matrix. In a particularly 

important case of linear perturbations where 

f(x,t) = E(t) x(t) (2.4) 

it was proposed that the system 

x(t) =(AN+ E(t)) x(t) (2.5) 
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is stable if 

jeij(t)I ~ µpu := -J- = 1 
n cr(P) n Amax(P) 

(2.6) 

where eij is the (i,j)1h element of perturbation matrix E, n is the dimension of the nominal 

matrix AN and cr(.) represents a maximal singular value of matrix(.). 

The results of [Patel 80] did not consider the structure of perturbation. This was 

accomplished in the work of Y edavalli [Y edavalli 85a], where the stability robustness 

bound estimate obtained on (2.6) is improved in the following theorem. 

Theorem 2.2 [Yedavalli 85a] 

The time invariant version of the system (2.5) is stable if 

(2.7) 

where 11-11 is the modulus matrix which means that all elements of matrix(.) are replaced by 

their absolute values, [.Js := [(.) + (. )T]112 is the symmetric part of the corresponding matrix, 

and U8 is a nxn matrix with all elements equal to 1. D 

It has been also shown in [Yedavalli 85a] that 

(2.8) 

which analytically proves that the bound on (2.7) is better than the one on (2.6). 

The follow-up paper [Y edavalli 85b] has shown that the matrix UE can be chosen 

such that 

(2.9) 

Stability robustness results obtained in ([Yedavalli 85a], [Yedavalli 85b]) were applied to 

the design of linear regulators [Y edavalli 85c] and to the stability analysis of interval 
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matrices [Y edavalli 86a]. In [Y edavalli 86b] it was indicated that the stability robustness 

bounds can be improved even more by using state transformation and solving the 

corresponding algebraic Lyapunov equation in the new coordinates. 

Based upon the fact that the stability of a system is invariant with respect to 

nonsingular linear transformation, Y edavalli and Liang [Y edavalli 86b] transformed the 

state vector through M, x = M x for the new system 

i = A(t) x(t) (2.10) 

where A(t) = M-1 A(t) M. 

.,.... 
By changing the system matrix A in the Lyapunov equation while maintaining Q = 

I, a(P) is reduced which results an improvement of robustness bounds (see conditions on 

(2.6) and (2.7)). Examples were presented to demonstrate improvement of the bounds, 

with respect to those achieved by Patel and Toda [Patel 80], for the structured as well as 

unstructured perturbations. However, with the exception of a special case limited to the 

diagonal transformation matrix, the question of generating the matrix M remained 

unsolved. 

Estimates for the upper bounds of perturbation elements presented by Patel and 

Toda [Patel 80], Yedavalli ([Yedavalli 85a], [Yedavalli 85b]) and Yedavalli and Liang 

[Y edavalli 86b] were not directly related to the structure of the nominal system matrix, 

rather they were indirectly influenced through the matrix P. Generalization of the results of 

([Y edavalli 85a], [Y edavalli 85b]) to a class of structured perturbations appearing in the 

feedback control systems is given by Zhou and Khargonekar [Zhou 87]. 
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Zhou and Khargonekar [Zhou 87] considered structured perturbations. In their 

work it is assumed that the perturbation matrix has the form 

(2.11) 

where ki E [-ki, kt]; -ki and kf are negative lower and positive upper bounds of 

uncertain parameters respectively varying in the symmetric interval around zero. The main 

result of [Zhou 87] is given in the following theorem. 

Theorem 2.3 

The time invariant version of the system (2.5) is stable under structured 

perturbation defined on (2.11) if one of the following conditions is satisfied: 

m 

L lkil cr(Pi) < 1 
i=l 

j=l, ... ,m 

where Pi:= lf2{ETP+PEi), i = 1, 2, ... , m, and Pe :=[P1, ... ,PmJ. 

(2.12) 

D 

These bounds were less conservative than those derived prior to this formulation. 

Yedavalli [Yedavalli 85a] proved that the bound obtained on Theorem 2.2 is a special case 

of the third condition of (2.12). 

Siljak [Siljak 89] performed an extensive review of the parameter space methods for 

19 



analysis and design of robust control systems, and demonstrated that estimation of the 

stability bounds of perturbation is strongly dependent upon the selection of the system state 

space. 

Siljak ( [Siljak 89], [Siljak 90]) also used the property of the vector Lyapunov 

function to develop a method, so-called "connectivity stability" ([Siljak 72], [Siljak 78]), to 

determine the stability of a large scale system which is composed of several decoupled 

subsystems. The concept of the vector Lyapunov function was introduced by Matrosov 

[Matrosov 82] and Bellman [Bellman 78]. This concept associates several scalar functions 

with a given dynamic system in such a way that each function determines a desirable 

stability property in a part of the state where others do not. These scalar functions are 

considered as components of a vector Lyapunov function. The results of "connective 

stability" [Siljak 90] are described as follows: 

Considered the system 

N 

SE: Xi= Ai Xi+ L kij Aij Xj, i = 1, ... ,N 
j=l 

to be an interconnection of N subsystem 

Si : Xi = Ai Xi, i = l, ... ,N 

(2.13) 

(2.14) 

where Ai are negative definite matrices and lkijl < kt are perturbation elements. The system 

SE can be rewritten in a compact form 

SE: x=Aox+Acx (2.15) 

where Ao= {A1, ... ,AN} and Ac= {kij Aij) are matrices of appropriate dimensions. 

Equation (2.14) implies that the couplings between the subsystems consist only of the 

perturbation elements, and the perturbation within each subsystem is unstructured. 
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Let 'r,f(x) represent the Lyapunov function for the ith subsystem Si such that 

(2.16) 

where Pi is the symmetric positive definite solution for the Lyapunov equation. 

(2.17) 

The Lyapunov function for the overall system SE is selected as 

V(x) = dT 'v{x) (2.18) 

where 'fl E RN is a vector Lyapunov function with components defined on Equation (2.16) 

and d E RN is a positive vector. It was then demonstrated that the overall system, SE, is 

connectively stable if the following matrix is an M matrix [Siljak. 78], i.e. 

where 

Wij = 

Wij l : > 0, j = 1, ... ,N 
Wjj 

l Amin(Q) _ lrT. ~- i = J. 
2 i~J ":,1, 

Amax(Pi) 

-kT. ~-- i-:f:.J0 

lJ ":,ij, 
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As shown on Equation (2.20), Q can be set as the solution to the following 

problem to maximize chances of proving stability 

fmd: ~{Amin(Q}} 
Q Amax(Pi} 

subject to the Lyapunov equation (2.17). Based upon the assumption that Ai has all 

distinctive eigenvalues, the maximum value of the ratio is found to be 

For the special case, SE is reduced to a single subsystem 

the system is stable if 

SE: X = AN X +EX 

cr(E) < AminCQ) 
AmaxCP) 

This result is identical to that achieved by Patel and Toda [Patel 80] for the case of 

unstructured perturbations. 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

A general case for Zhou and Khargonekar [Zhou 87] is also considered by Juang 

[Juang 91] as follows: 

Consider the system 

m 

X = L ki(t) Ai X 

i=l 

m 

where ki E [-k;, kt], L lki(t)i '=t Oas a special case for the robustness analysis of 
i=l 
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autonomous linear systems with structured perturbations. Note that for k1(t) = 1, the 

system is identical to that represented by Zhou and Khargonekar [Zhou 87]. 

First, for structured perturbations. Defining 

m 

Vj := L ki(t) Ai k;(t) = kt or k1• j = 1, ... ,2m 
i=l 

(2.26) 

it was demonstrated that the system is stable if an invertible matrix P existed such that 

µz(P Vj P-1) < 0 for all j = l, ... ,2m, where µz(.) denotes the matrix measure corresponding 

to a 2-norm (see Appendix A). As before, this approach left the issue of the generation of a 

Lyapunov function an open question, where the Lyapunov function is V(x) = xT p* P x 

and P* is the complex conjugate of P. 

Polytope of Matrices 

The application of Kharitonov's theorem to the robust stability of characteristic 

polynomials has motivated many studies for the polytope of matrices using a similar 

approach for the polynomial cases. Even though the plausible conjectures were proved to 

be false and the stability problem of a polytope of matrices is unresolved, there were some 

considerable achievements. 

Barmish and DeMarco [Barmish 86] first considered the linear perturbation problem 

on Equation (2.5) with the perturbation matrices (2.11) as equivalent to the problem of 

determining the stability of the convex hull (polytope) of a finite set of stable matrices. 

Given the system and perturbation matrices of equations (2.5) and (2.11) one can generate 

a finite set of "extreme" matrices {A1, ... , Ak} having the following property: the system on 

(2.5) with perturbation matrices (2.11) is stable for all uncertain parameters ki if and only if 
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all matrices in the convex hull (polytope) 

Q := conv{A1, ... , Ak} (2.27) 

are stable. 

Denote the unit simplex in R k by 

r:={a=(a 1, ... , ak)ai~O'ii'i,t ai= 1} 
t=l 

(2.28) 

The main result in [Barmish 86] is given in the following theorem: 

Theorem 2.4 

The set of matrices Q is stable if 

(2.29) 

where Pi is the unique positive definite symmetric matrix satisfying the Lyapunov equation 

(2.30) 

D 
Barmish and DeMarco [Barmish 86] also found that the stability robustness bounds 

in [Y edavalli 85b] are a special case of their works. 

Theorem 2.4 verifies that a polytope of matrices is stable if there exists a positive 

definite quadratic function that is a Lyapunov function common to all vertex members. For 

normal vertex matrices, Wang [Wang 91 b] derived a necessary and sufficient condition. 

Theorem 2.5 [Wang 91b] 

Apolytope of matrices with (2.27) and (2.28) given by 

Q :={A=± ai A ai ~ 0 'iii,± ai = 1} 
i=l i=l 

(2.31) 

is Hurwitz stable if and only if all the vertex matrices, Ai, are Hurwitz stable and normal, 
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that is, A/ Ai = Ai~*, where ~ * is the conjugate transpose of Ai. D 

Fang and et al. provided a general sufficient condition for the stability of a family 

using matrix measure such that stability of the vertices guarantees stability of the convex 

hull of the matrix family. 

Theorem 2.6 [Fang 94b] 

The polytope of matrices (2.31) is stable if there exists a norm µ(A) such that 

µ(Ai)< 0, Vi = l, ... ,k (2.32) 

D 

Theorem 2.7 [Fang 94b] 

Let V be the set of vertex matrices for a polytope n, and V be *-closed which 

means v* E n. Then n is stable if and only if there exists a matrix measure µ such that 

µ(A)< Ofor any A E V. 

Fang et. al also proved that theorem 2.5 [Wang 91b] is another representation of 

their preceding theorems. 

Recursive Numerical Method 

D 

Petkovski [Petkovski 89] used a time-domain stability robustness methodology in 

[Y edavalli 85c] to develop an iterative algorithm to determine the largest positive number e , 

such that the perturbed system 

x =(AN+eE)x (2.33) 

where AN is a time-invariant asymptotically stable matrix, E is given, and e > 0 is 

unknown, remains asymptotically stable. The criterion for the stability Petkovski used is in 
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the following theorem: 

Theorem 2.8 

The system of Equation (2.33) is stable if 

e <_ 1 
o(IIPII IIF.l)s 

(2.34) 

where Pis the solution of the Lyapunov matrix equation (2.3) when Q = I. D 

Latchman and Letra [Latchman 91] proposed an optimization algorithm to 

systematically choose the Lyapunov matrix Q so that the conservatism of stability bounds is 

reduced. The criterion for the stability that Latchman and Letra used is in the following 

theorem: 

Theorem 2.9 

The structurally perturbed system of equations (2.5) and (2.11) is stable if 

m 
~ k-2 < l ti 1 [o(Mcl]2 

(2.35) 

where 

(2.36) 

(2.37) 

D 
The optimal choice of Q is the one which minimizes the norm of M°Q, thus providing a less 

conservative assessment of the upper-bound on the uncertain parameters. 

Analysis and synthesis of control systems using linear matrix inequalities (LMI) 
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have received much attention recently ([Boyd 94a], [Boyd 94b], [Boyd 95]) motivated by 

the advent of useful algorithms for convex optimization (interior-point methods by 

Nesterov and Nemirovsky [Nesterov 93] for example). As Horisberger and Belanger 

remarked in [Horisberger 76], stability robustness problem can be considered as a convex 

problem involving linear matrix inequalities. 

A linear matrix inequality is a matrix inequality of the form 

m 

F(x) := F0 + L XiFi > 0 
i=l 

(2.38) 

where x E Rm is a variable vector, and Fi = F{ E R nxn, i = 0, ... , mare given matrices. 

Thus, a linear matrix inequality is a constraint on the variable x whose set { x I F(x) > 0} is 

convex. 

For a system x = A x where matrix A is a polytope of matrices on (2.31 ), the 

sufficient condition for stability is the existence of a positive definite matrix P such that 

Al P + P Ai< 0, i = 1, ... , k (2.39) 

Boyd [Boyd 94a] showed that the inequality (2.39) can be transformed to the form (2.38) 

in P. 

Olas [Olas 92] proposed an approach to the problem of stability robustness based 

on the construction of the optimal Lyapunov function. The concept of the optimal 

Lyapunov function [Olas 94a] is summarized. 

Determine the derivative of the Lyapunov function candidate V, along solutions of 

Equation (2.5) and introduce a function 

v (t,x) 
A(t,x) := V(x) , I Ix! I * 0 (2.40) 
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Define the performance measure 'A. of the function of the function V as an upper 

bound of the function A(t,x) 

'A. := sup sup A(t,x) 
xeRn,x:;t:O te [o,oo) 

It is said that a function V is better than V if the performance measure 'A. of the 

(2.41) 

function V is smaller than the performance measure 'A. of V. Denote the distance d between 

two functions V 1 = x TS 1 x and V 2 = x TS2x by a norm of a difference between matrices S 1 

and S2, i.e., d = I IS1 - S~ I. The function Vis called optimal if all the neighboring 

functions at less than some distance d from V are not better than V. When searching for the 

solution of the robust stability problem of Equation (2.5) with a Lyapunov matrix equation 

such that 

Po AN + AJ Po = - 2 I (2.42) 

in a form of a hypercube Ile Rm, one has 2m quadratic forms 

(2.43) 

where 

(2.44) 

The subscript "j" denotesj-th vertex of 2m vertices, kO), k<2), ... , k(2m), on the hypercube 

II. 

Consider the arbitrary form of perturbed Lyapunov function ti V = x T l1P x, and let 

tiQFj denote 2m forms resulting from entering the vertices k(i) into the derivative of ti V 

along the solutions of Equation (1). Then, the theorem addressed in [Olas 94a] follows. 
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Theorem 2.10 (Olas' Theorem) 

If there is a matrix AP such that the corresponding forms AQFj, j = 1, ... , q 

satisfy 

(2.45) 

where 

(2.46) 

then for sufficiently small E the fanction V + E AV is better than the fanction V where ~ is 

a root of the form QFj. D 

A recursive algorithm for the problem of the stability robustness was proposed by 

Olas ([Olas 92], [Olas 94a], [Olas 94b]). However, no systematic method to enlarge the 

parallelepiped II was proposed. It was found that the stability robustness bounds resulting 

from the procedure of the algorithm are highly dependent on the way the parallelepiped II is 

enlarged [Olas 94b]. 

As reviewed so far, most methods for stability robustness have used the zero-order 

Lyapunov method and assumed symmetric parameter variation with respect to the origin. 

These restrictions often result in extremely conservative estimates of stability bounds. Leal 

and Gibson [Leal 90] proposed a first-order Lyapunov robustness method where the 

Lyapunov function varies with perturbation in the system matrix. Gao and Antsaklis [Gao 

93] derived an unique stability criterion for an asymmetric stability bounds. However, the 

stability bounds in [Leal 90] were still symmetric bounds and the zero-order Lyapunov 

method was utilized in [Gao 90]. Hence, as a natural next step, this research establishes an 

asymmetric first-order Lyapunov method using the results in [Leal 90] and [Gao 93]. 
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Chapter ill first reviews the works in [Gao 93] and [Leal 90], and then describes the 

drawbacks of their results. 
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CHAPTER III 

GAO'S THEOREM AND BASIC FIRST-ORDER LY APUNOV METHOD 

Gao's Theorem for Asymmetric Stability Robustness Bounds 

As reviewed in the preceding chapters, parameter variations with structured 

perturbations were often assumed to be intervals symmetric to zero. Therefore, the stability 

bounds could be very conservative. They are usually given as small, symmetric intervals 

around the origin in the parameter space. Gao [Gao 93] first considered the directional 

property of parameter variations and derived a theorem for an asymmetric stability bounds 

of perturbation parameters in the following manner: 

Review of Gao's Theorem 

Consider the linear time-invariant system represented by the state space model with 

perturbation E as shown below: 

(3.1) 

where AN is a nxn real Hurwitz matrix. 
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Assume that the parameter perturbation matrix takes the form 

m 

E= L kiEi (3.2) 
i=l 

where Ei are real, constant matrices and ki are real, uncertain parameters. This form of the 

parameter perturbation matrix of Equation (3.2) has many useful features. First, notice that 

each uncertain parameter ki can have multiple entries in the Ei matrices, each with its own 

scale factor. This allows an uncertain parameter that is one term of a product to be used in 

the E matrix. Also there is nothing to prevent a parameter from having multiple entries at 

the same row column address of the Ei matrix. Lastly, note that the total E matrix is linear 

in the parameter ki. Because there are m parameters ki and each term can be positive or 

negative, there are 2m perturbations on E or zm-l perturbations on ±E. The parameters ki 

form a hypercube in the m-dimensional parameter space with a vertex of the hypercube 

being one of the perturbations with all maximum and minimum values of ki. 

The analysis of robustness for the system Equation (3 .1) is concerned with the 

determination of the bounds for the perturbation elements E in which the system stays 

stable. Gao [Gao 93] developed following theorem for the stability robustness of the 

system described by equations (3.1) and (3.2). See Appendix C for the proof and related 

lemmas. 

Theorem 3.1 (Gao's Theorem) 

The system on Equation ( 3.1) is asymptotically stable if 

(3.3) 
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where 

in which 

~ =( Amax{Pi) 

Amin{Pi) 

for ki ~ 0 

for ki < 0 
i = 1, ... ,m (3.4) 

(3.5) 

D 
The significance of this theorem is that it takes into consideration the directional 

information which is often available in practice. Consequently, it can be shown that the 

stability bound obtained here is always less conservative than that or equal to the bound 

proposed by Zhou et al. [Zhou 87] which is described 

m 

Li lkil cr(P i) < 1 (3.6) 
i=l 

where cr(.) denotes the largest singular value of a matrix(.). 

The Shortcoming of Gao's Method 

In order to show the shortcoming of the Gao's method, consider a two-dimensional 

perturbation problem on Equation (3 .1). 
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In general, the stability robustness bounds for two-dimensional perturbed 

parameters are obtained by using Theorem 3 .1 as follows: 

k1 Amax{Pi) + k2 Amax{P2) < 1, for k1 ~ 0 and k2 ~ 0 

k1 Amax{Pi) + k2 Amin{P2) < 1, for k1 ~ 0 and k2 < 0 

k1 Amin{Pi) + k2 Amax{P2) < 1, for k1 < 0 and k2 ~ 0 

k1 Amin{Pi) + k2 Amin{P2) < 1, for k1 < 0 and k2 < 0 

(3.7) 

The condition (3.7) basically determines four boundary lines defining the stability 

bounds in four quadrant respectively. Graphically, the region of the stability bounds on the 

condition (3.7) is shown on Figure 3.1. 

Figure 3.1 clearly illustrates that Gao's method cannot estimate the maximum 

robustness bounds allowable for the range of given perturbed parameters, 

This is the shortcoming of the Gao's method. The conventional methods reviewed 

in Chapter II provide robustness bounds expressed by the full range of ki E [ k/, ~ -]. 

Also, notice the hypercube obtained by the Gao's method in m-dimensional perturbed 

parameter space has 2m vertices, while the number of vertices for a hypercube using the 

conventional methods is generally 2m. 

In Chapter N, several lemmas and a theorem called the "Expansion Theorem" is 

developed to improve the shortcoming of Gao's method. The theorem allows one to verify 

whether the basic asymmetric stability bounds estimated by Gao's method can be expanded 

in the full hypercube in the perturbation parameter space. 
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First-Order Lyapunov Robustness Method 

As reviewed in Chapter I and Chapter II, most previous works on stability 

robustness on time domain, based upon the Lyapunov stability theory, have used the 

zero-order method for applying the perturbed dynamic model in the Lyapunov equation. 

This often resulted in conservative stability bounds. Leal [Leal 90] first introduced a basic 

first-order method which uses a Lyapunov function varying linearly with perturbations in 

the system matrix. However, much ofLeal's work was to optimize the Q matrix in the 

Lyapunov equation with the assumption of symmetric bound of stability region. This 

chapter shows the development of the first-order method, compares it with the zero-order 

method, and shows its advantage in estimating less conservative robustness bounds. 

The Goal of Stability Robustness with Lyapunov Method 

The fundamental Lyapunov stability theorems are described in Appendix B. Any 

function possessing Lyapunov stability properties is termed a Lyapunov function, and the 

associated system is then known to be asymptotically stable (see detail on theorems in 

Appendix B). There are no general rules for finding such functions; however, for a 

time-invariant linear system on Equation (3.1) the following function V(x(t)), is a 

Lyapunov function candidate: 

V(x(t)) = xT(t) P0 x(t) (3.8) 

where PO is a positive definite, symmetric (Hermitian) matrix which satisfies following 
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Lyapunov equation 

(3.9) 

where the system matrix is given by A= AN + E, and Q is a positive definite, symmetric 

matrix. Then one has 

V(x(t)) = - xT(t) Q x(t) (3.10) 

The Lyapunov stability relationship is now used on the perturbed system defined on 

(3.1). Assume that the nominal system is stable but that it is unknown whether or not the 

perturbed system is stable. Certainly, if the perturbation "E" is sufficiently small, then the 

perturbed system should also be stable. The goal here is to determine the range of 

perturbations of matrix E for which the function on Equation (3.8) remains a Lyapunov 

function. 

Fundamental Zero-Order Stability Condition 

The zero-order method uses nominal system dynamics to compute a PO matrix for 

the Lyapunov function, V(x(t)). For a given positive definite, symmetric matrix Q, P0 

satisfies Equation (3.9) and V(x(t)) is given by Equation (3.8). For the perturbed system 

on Equation (3.1), one has 

dV(x(t)) = - xT(t) (Q-ET P0 -P0 E) x(t) 
dt 

Then V(x(t)) remains a Lyapunov function if: 

xT(t) W x(t)::::; xT(t) Q x(t), ':;f x(t) 
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where 

Condition (3.12) is the fundamental condition upon which various sufficient 

conditions have been developed, as reviewed in Chapter II. 

Overview of the Basic First-Order Lyapunov Method 

(3.13) 

In the zero-order method, the nominal matrix Lyapunov equation is used to generate 

a nominal P matrix, which is then used to compute a stability bound for the perturbed 

system. The distinctive feature of the first-order method lies in the use of the perturbed 

dynamic model to generate a perturbed P matrix. This perturbed P matrix is then used to 

obtain a modified stability bound. In a majority of problems, the first-order method is a 

large improvement for estimating stability robustness bounds [Leal 90]. However, Leal 

and Gibson [Leal 90] did not investigate the condition under which the first-order method 

provides less conservative estimates of stability bounds than the zero-order method. 

The procedure for computing first-order stability bounds is similar to the one for 

estimating zero-order stability bounds. The perturbed system matrix, A, is given by 

A=AN+E (3.14) 

Now define the perturbed P matrix with 

p :=Po+ ~p 

As before PO satisfies the nominal Lyapunov equation 

AJ Po + Po AN = - Qo 

The perturbed Lyapunov equation still satisfies 

ATP+PA=-Q 
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When this equation is expanded with Equation (3.14) and Equation (3.15) the result is 

(3.18) 

If one chooses .l\P so that 

(3.19) 

then 

(3.20) 

Now, in order for the perturbed system Equation (3.1) to be stable, V(x(t)) should 

be a Lyapunov function with dV~~(t)) negative definite; i.e., both the matrix Pon Equation 

(3.15) and the matrix Q on Equation (3.20) should be positive definite. 

Hence, 

V(x(t)) ·T p T p . 
dt =x x+x x (3.21) 

Therefore, the stability conditions for the perturbed system on Equation (3.1) are 

(3.22) 

The first and second conditions on Equation (3.22) are for the matrix P and matrix Q be 

positive definite, respectively. 

In Chapter V, a new method for the asymmetric robustness bounds will be 

developed using the results of first order method. Chapter V also establishes a sufficient 
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condition upon which the new asymmetric first-order method provides better (less 

conservative) estimates of stability bounds than those of Gao's zero-order method. The 

examples in Chapter VI show that this new method generates better stability bounds than 

the methods reviewed in Chapter II. 

A First-Order Method Using a Taylor Series Expansion 

The motivation for the first-order nomenclature will be made clear in the following 

development, in which a Taylor series expansion is used for the matrix P of the perturbed 

dynamic system. 

Consider a dynamic system represented by 

(3.23) 

with the perturbation matrix E is scaled by a constant E. The Lyapunov equation associated 

with matrix A is given by 

AT P(E) + P(E) A= -Q (3.24) 

The solution P(E) exists and is unique if the perturbed dynamic system is stable. 

Now assume that the solution P(E) is represented by a Taylor series expansion with center 

of the nominal point, i.e. E = 0: 

P(E) = P(O) + E dP(E)I + ... + H.O.T. 
dE E=O 

(3.25) 

When E = 0 the matrix A(E) = A0 from Equation (3.23) and P(O) is given by 

AT P(O) + P(O) A = -Q (3.26) 

If PO := P(O), then Equation (3.26) is identical to Equation (3.9). 

Now differentiate each side of Equation (3.24) with respect to the parameter E to 
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obtain 

_d_(AT P(e) + P(e) A)= _ _d_ Q = 0 
d£ de 

(3.27) 

Taking the derivative of the left hand side of Equation (3.27) gives 

dAT P(e) + AT dP(e) + dP(e) A+ P(e) dA = 0 
d£ d£ d£ de 

(3.28) 

Using:= E from Equation (3.23), Equation (3.28) gives 

(3.29) 

Since P(O) = P0 and A(O) = A0 when e = 0, Equation (3.29) yields 

ET Po+ Po E + AJ d~e)IE=O + d~~e)Lo Ao= 0 (3.30) 

The perturbation matrix L'.lP of Equation (3.15), resulting from the parameter variation, can 

be considered as a first -order term of Taylor series expansion on Equation (3.25) such that 

LlP := dP(e)I 
d£ £=0 

(3.31) 

Then, substituting Equation (3.31) into Equation (3.30) yields 

(3.31) 

Note that Equation (3.31) is identical to Equation (3.19) and this completes the 

development of the Taylor series expansion of P(e). This result reveals that the 

nomenclatures zero-order or first-order methods imply, i:q, the sense of the Taylor series 

expansion, the number of higher-order terms used to represent the parameter perturbation 

property. 

The basic first-order Lyapunov method is combined with Gao's method to obtain 

the asymmetric first-order stability robustness method as described in Chapter V. 
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CHAPTER IV 

EXPANSION OF GAO'S ASYMMETRIC STABILITY BOUNDS 

General Properties of Convexity 

Convexity is an important property in the estimation of stability bounds because its 

use can greatly reduce the amount of searching in the parameter space. Hence, the 

definition and the lemmas for convexity are introduced for future use before the lemmas 

and a theorem for the expansion of Gao's basic asymmetric stability bounds is developed. 

Definition 4.1 

A real valued function f defined on a convex subset of a linear space is convex if 

(4.1) 

holds for all 8 such that O :s; 8 :s; 1. D 

Lemma 4.1 

Let f be a convex function on a convex subset S of a linear space, and let 

{µ1, µ2, ... , µm} be a finite collection of points in S. lf 

m 

Si :2: 0 'vi and L ei = 1 (4.2) 
i=l 
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then 

(4.3) 

Assume that Lemma 4.1 is true for some positive integer n. By the definition of 

convexity, it is true form= 2. Now suppose 

m+l 

I ~i = 1, ~i ~ o "if i, o < ~m+ 1 < 1 (4.4) 
i=l 

and write 

m+l m 

I ~i µi = ~m+l µm+l + c1-~m+1)l ei µi (4.5) 
bl bl 

where 

~i ~ · d. ~ e 1 ei := ( ) 1or O :::; 1 :::; m an £.J i = 
1 - ~m+l i=l 

(4.6) 

Since the function f is convex, 

(4.7) 

m m+l 

:::; ~m+l ttµm+1) + (1-~m+1) I ei ttµi) = Ii ~i f\µi) 
i=l i=l 

D 
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Lemma 4.2 

Let {µ1, µ2, ... , µill} be a finite collection of points in Rill, let S be the convex hull 

of {µ1, µ2, ... , µill}, and let f be a convexfunction defined in S. Then 

maxµE sf(µ) = f (µk) for some k (4.8) 

Each µ in S can be written as 

ill 
µ=Ii µi ei (4.9) 

i=l 

where 

ill 
Ii ei = 1, ei ~ o vi (4.10) 
i=l 

It follows from Lemma 4.1 that 

(4.11) 

D 

Lemma 4.2 is. a generalization of the fact that a convex function of a single variable 

defined over a closed interval will achieve its maximum at one end of the interval. 

Lemmas and Theorem for Expansion 

Several lemmas and a theorem are derived in this chapter for the expansion of 
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Gao's asymmetric stability bounds. They allow one to verify whether the basic asymmetric 

robustness bounds estimated by Gao's method can be expanded in the full hypercube II in 

the perturbation parameter space. 

Let µ(A) denote the matrix measure of matrix A. Matrix measure have different 

values corresponding to the different induced matrix norms (see Appendix A). In 2-norm 

case, i.e., for the induced matrix norm J IAJ 12 = 'V Amax(A * A) given the vector norm 

( 
n )1/2 

Jxb = ti' Jxf , the induced matrix measure is obtained [Desoer 75] by 

(4.12) 

where A" is a conjugate matrix of A. For the sake of simplicityµ(.) is used for µ2(.) from 

now on. 

Define the admissible perturbation matrix set 

(4.13) 

where AN is a stable nominal matrix and c- is the set of all complex numbers with negative 

real parts. 

Lemma 4.3 

E E '¥ if µ(P O E) < 1 (4.14) 

where PO is symmetric, positive definite, and satisfies the Lyapunov equation 

(4.15) 

Asymptotic stability is guaranteed if 

(4.16) 
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Then 

(4.17) 

D 

Define 

q, 1 = {E I µ(PO E) < 1} (4.18) 

so that '¥ 1 is a subset of '¥. 

Lemma 4.4 

'¥ 1 is convex. 

For any Ea and Eb E '¥1, let Et= (1 - 8) Ea+ 8 Eb where O::;; 8::;; 1, then 

µ(P 0 Et)::;; (1- 8) µ(P 0 Ea)+ 8 µ(P 0 Eb)< (1- 8) + 8 = 1 (4.19) 

Hence Et E '¥ 1 which means '¥ 1 is convex. D 

Lemma4.5 

Assume <I> is a polytope in a parameter space. Then <I> E '¥ 1 if all of its vertices are 

Let vi denote the vertices of <I>, i = 1, ... ,k. Then a point in <I>, lf), is represented by 

a convex combination of these vertices such that 

k k 

1/f = L ei Vi, for V ei?:.0 and L ei = 1 (4.20) 
i= 1 i= 1 
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The triangle inequality, µ(A+B) ~µ(A)+ µ(B), and the property µ(aA) = a µ(A), 'v'a~O 

of matrix measure yield 

The condition ( 4.21) is generally known as a convexity property of matrix measure. 

Hence one has 

It is shown that the Gao's method is a corollary of three lemmas as follows: 

m 

For a parameter perturbation, E = L ki Ei, one has 
i = 1 

where Pi are defined in Equation (3.5). 

(4.21) 

(4.22) 

D 

Condition (4.23) leads to Gao's results (see lemmas C.l to C3 in Appendix C for 

proofs) such that 

(4.24) 
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Now, define 

( 4.25) 

Lemma4.6 

no and n 1 are convex. 

Similar to the proof of Lemma 4.4, n 0 and n 1 can be easily proved to possess the 

convexity property. D 

The fully expanded stability robustness bounds in n 1 would be denoted by 

(4.26) 

Lemma4.7 

n is convex. 

The vertices of n1, if they exist, are always on the hyper-axes in the parameter 

space. The vertices of n are linear unit combination of those of n 1 which is convex. 

D 
Hence n is convex. 

Lemma 4.8 (Fang, Loparo and Feng [Fang 941) 

If there exists a positive definite matrix PO such that AT PO + PO A is stable for any 
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A E r, then the polytope of matrix A is stable where r is the set of vertex matrices. 

D 

Theorem 4.1 (Expansion Theorem) 

Gao's stability robustness bounds, II1, are fully expanded in the hypercube II if 

AN+ E(k(j)), Vj = l, ... ,2m are negative definite, where k(j) is the j-th vertex of II 

It is known that the Lyapunov equation AT PO + PO A = -I yields a positive definite 

solution if 11.(A) E c- (see Theorem B.6 in Appendix B). Since II is convex, the set of 

m 

matrices A= AN+ L ki Ei is a polytope (convex hull). Hence using Lemma 4.8, if A= 
i=l 

~ + E(kU)} is negative definite at all vertices j = l, ... ,2m, then the polytope of matrix A is 

stable in the hypercube II. 

Remark 4.1 

D 

If~+ E(km), j = l, ... ,2m is negative definite, Gao's stability robustness bounds 

in j-th hyper-quadrant are fully expanded respectively, where k(j) is the j-th vertex of II 

Graphical illustration for a Three-Dimensional Example 

The preceding lemmas and theorem imply that the expanded zero-order stability 

robustness bounds can be tested only on 2m vertices points of the hypercube parameter 

space for ki's to expand Gao's stability robustness bounds to the full parallelepiped 
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II= {k E Rm: k-:::; k:::; k+}. Figure 4.1 illustrates the comparison of the stability bounds 

estimated by Gao's method and the expanded stability bound estimate by Theorem 4.1 for a 

three-dimensional perturbation parameter system. As shown in Figure 4.1, Gao's method 

yields stability bounds whose vertices, if they exist, are always located on the hyperspace 

axes. Each vertex of Gao's stability bounds is a maximum or a minimum value of each 

perturbation parameter, kt, k1-, ... , krr!, k~, and the number of all vertices would be 2m. 

Vertices of the expanded volume of the hypercube with these maximum and minimum 

perturbation parameters are linear combination of these extreme parameter values, and the 

number of vertices is 2m. For example, in Figure 4;1, kCl) = (kt, k2+, k3) and 

kC2) = (kt, k2+, ki). The stability test using Theorem 4.1 and Corollary 4.1 at vertices kCl) 

and kC2) respectively proves whether the stability boundaries can be expanded the full 

region of the hyper-quadrant to which each vertex belongs. 

A Discussion of Expansion Theorem 

As mentioned in Chapter I and Chapter II, the natural conjectures of Kharitonov's 

type of results to the family of interval system matrices have failed and the stability 

robustness problem for a polytope of matrices is not yet resolved. The significance of the 

Expansion Theorem is that it enables a Kharitonov's like stability test at the vertices of the 

hypercube to expand Gao's stability bound estimates to the full hypercube of perturbation 

parameter space. The versatility of the Expansion Theorem is that it can be applied at each 

vertex independently. In other words, the stability boundaries at each hyper-quadrant can 

be expanded by satisfying the sufficient condition independently regardless of the results of 

stability tests at the other vertices. 

49 



CHAPTER V 

ASYMMETRIC FIRST-ORDER ST ABILITY ROBUSTNESS BOUNDS 

Theorem for an Asymmetric First-Order Lyapunov Method 

In most earlier work on stability robustness as well as Gao's method, the zero-

order method has been used to generate the Lyapunov function. This often resulted in 

conservative robustness bounds. In this research, the first-order method is combined with 

the Gao's method so that the perturbed dynamic model is used to generate a perturbed P 

matrix. This perturbed P matrix is then used to obtain modified better stability bounds. 

Define the perturbed P matrix with 

P = P0 + AP (5.1) 

in which matrix PO satisfies the nominal Lyapunov equation 

(5.2) 

Define 

i = 1, ... ,m (5.3) 
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and 

The perturbed Lyapunov equation still satisfies 

for ki ~ 0 

for ki < 0 

Theorem 5.1 (Asymmetric First-Order Lyapunov Method) 

(5.4) 

(5.5) 

The linear system described by Equations (3.1) and (3.2) is asymptotically stable if 

m 

L ki AAi < 1 (5.6) 
i=l 

and if P is a positive definite matrix where AP satisfies 

(5.7) 

Let the candidate Lyapunov function V(x,t) = x(t? P x(t), then 

dV(x,t) ·T p T p . 
dt =x x+x x 

(5.8) 

=[(AN+ E) x]T(P0 + AP) x + xT (P0 + AP) (AN+ E) x 
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For the system on Equation (3.1) to be asymptotically stable 

(5.9) 

It was proved by Olas (see lemmas C.1 to C.3 in Appendix C for proofs) that 

(5.10) 

D 

Note that the positive definite matrix Q for the first-order method is obtained using the 

equations (5.2), (5.5) and (5.7). 

Q = 2 I-(ET AP+ APE) (5.11) 

The matrices P and Q should be positive definite so that a system equation satisfies 

the Lyapunov matrix equation to be asymptotically stable. Equation (5.7) provides AP 

which results in positive definite matrix Q on Equation ( 5 .11). One approach for the 

problem of stability robustness is to search for a matrix Q that maximizes the size of the 

hypercube of stability estimates. Nonlinear optimization techniques ([Leal 90], [Latchman 

91]) were used to directly find optimal matrix Q. It can be said that the Olas' works ([Olas 

92], [Olas 94a], [Olas 94b]) to find the optimal Lyapunov function is also a second 

approach to find the optimal matrix Q. 
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Optimal Property of Asymmetric First-Order Lyapunov Method 

The asymmetric first-order method proposed in Theorem 5.1 overcomes the 

shortcoming of Olas' algorithm. It is shown, in Theorem 5.1, that the perturbed Lyapunov 

matrix AP is obtained using Equation (5.7), and the increment of parallelepiped II, of 

uncertain parameters, is not arbitrary but explicitly enlarged by the inequality condition 

(5.6). Following theorems show how the optimal Lyapunov function property in Olas' 

Theorem completes the first-order method in Theorem 5 .1. 

Theorem 5.2 

The stability bounds estimated by the asymmetric first-order method are always 

better (less conservative) than those of zero-order method if the Asymmetric First-Order 

Method proposed in Theorem 5.1 satisfies the condition for an optimal Lyapunov function 

in Theorem 2.10, i.e., AQFk < O(Rk is negative definite) on the vertex k where thefirst

order method is applied. 

Proof 

Define P = P0 + AP, V = V0 +AV= xT {P0 + AP) x, then the variation AQFk is 

determined by 

AQF k = X T Rk X = X T [ AJ AP + AP AN + ET AP + AP E ]k X 

Substituting Equation (5.7) into Equation (5.12) yields 

AQFk = xT [ET (AP-P0 ) + (AP-P0 ) E]k x < 0, \Ix, x:;tO 
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Using Equation (3.5) and Equation (5.3) one has 

(5.14) 
m 

= L kl(E?AP+APEJ-(E?P0 +P0 Ei)]k 
i=l 

m 

= 2 L klAPi-PJ 
i=l 

Hence, Equation (5.13) yields 

(5.15) 

Equation ( 5 .15) implies that 

(5.16) 

Hence 

(5.17) 

Consider that the vertex on i-th axis of the stability hound's hypercube in the 

perturbation parameter space is given by Y Ai for the zero-order method and Y AAi for the 

first-order method as shown in Figure 1. Therefore one can conclude, using condition 

(5.17), that the estimate of stability bounds by the first-order method is better than those of 

the zero-order method. D 

There may be more than one vertex of the zero-order stability bounds which satisfy 

the conditions described in Theorem 5.1 and Theorem 5.2. In such a case, using the 
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performance measure of the Lyapunov function defined in Equation (2.39), one can 

determine the vertex where the first-order method is applied as follows: 

Let V := xT P0 x, AV:= xT AP x and P := P0 +AP:= P0 + E. AP. Determine matrix 

perturbation, AP, by Equation (5.7) at each vertex, kCO, ... ,k(2m). Consider two 

performance measures Aa and Ab of the functions Aa and Ab respectively, where subscript 

"a" or "b" denotes a vertex among the vertices of the zero-order stability bound estimates 

which satisfies the conditions in Theorem 5.1 and Theorem 5.2. Assume the Lyapunov 

function Va is better than Vb, i.e., Aa is smaller than Ab, then one has the following 

Theorem. 

Theorem 5.3 

Stability bound estimates /Jy the first-order method applied on the vertex "a" are 

better than those applied on the vertex "b" if the matrix AaAPa - AbAPb is positive definite. 

Using the results in Equation (5.8), one has 

A b _:,tTPx+xTP:x.l _\T+e.AVI am - -
xTPx a orb V +E.AV a orb 

(5.18) 

For small E., applying the Taylor series expansion to Equation (5.18) yields 

Aa orb = [v + E. (AV _ V AV )l 
V V V V ~aorb 

(5.19) 

Meanwhile as Olas [Olas 94a] suggested 

. I X T R X yT p --0.5 R p --0.5 y v_ J_ 0 Jo 

V j -xTP0 x - yTy 
(5.20) 
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where y := po0.5 X and Rj is defined in Equation (2.42). The maximum value of v/Jj is 

equal to the largest eigenvalue of the matrix P 0-0.5 Rj P 0-0·5. Let Aj denote the largest 

eigenvalue of the matrix P 0-0.5 Rj P 0--0.5. Then one has Aa < Ab since A.a < Ab. 

Then condition (5.21) yields 

(5.22) 

which leads to 

(5.23) 

Similar to the proof for Theorem 5.2, condition (5.23) derives 

(5.24) 

Hence, if AaLiP a - AbLiPb is positive definite, then 

i=l i=l i=l 

which means 

(5.26) 

Thus the stability bound estimates at vertex "a" are better (less conservative) than 

that at the vertex "b". D 
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Application Procedure for the Asymmetric First-Order Lyapunov Method 

to Estimate the Stability Robustness Bounds 

The whole procedure to estimate the stability robustness bounds using the 

asymmetric first-order Lyapunov method is proposed in the following manner: 

First, estimate the stability bounds using the Gao's zero-order method described in 

Theorem 3.1. 

Second, apply the Expansion Theorem to the vertices of stability boundaries 

estimated by Gao's method to verify whether Gao's stability bounds can be expanded in 

the full hypercube. 

Third, using Theorem 5.3, find the optimal vertex to apply the first-order method 

among the vertices of the stability bound hypercube obtained in second stage. 

Fourth, estimate the stability bounds by applying the asymmetric first-order method 

of Theorem 5.1 to the optimal vertex identified in third stage, then expand the stability 

bounds using the Expansion Theorem. 

Discussions of the Asymmetric First-Order Lyapunov Method 

First, the significance of the asymmetric first-order Lyapunov method is that it 

resolves the conservatism problem of stability bound estimates that conventional methods 

often produce. Two major causes of conservative stability bound estimate are the failure to 

consider structured features of the uncertainties when generating a Lyapunov function and 

the neglecting directional property of the perturbation parameters. These causes are 

resolved by considering a perturbed dynamic model of the Lyapunov matrix equation to 

generate a Lyapunov function and the directional property of the perturbation parameters. 
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Without mathematical proof, Olas and Ahmadkhanlou [Olas 94b] asserted that the 

optimal Lyapunov function ensures larger stability bound estimation than the other 

quadratic functions in its neighborhood could provide. Theorem 5.3 shows a condition 

under which Olas and Ahmadkhanlou's assertion can be proved. The significance of the 

asymmetric first-order Lyapunov method from a standpoint of Olas' optimal Lyapunov 

function is that the enlargement of the stability bounds for uncertain parameters can be 

obtained systematically as shown in Equation (5.7). Even though the stability bounds with 

Olas' algorithm [Olas 92] are highly dependent on the way the estimated stability bounds 

are enlarged [Olas 94b ], no explicit method for the enlargement was proposed in Olas' 

works. 

Theorem 5.2 shows that the condition for an optimal Lyapunov function in Olas' 

Theorem 2.10 can be used to complete the asymmetric first-order Lyapunov method. 

Theorem 5.2 proves that if the perturbed matrix P = P0 ± .1.P is positive definite, then the 

asymmetric first-order method always provides larger stability bounds than those of Gao's 

method. In other words, Theorem 5.2 determines the absolute amount of perturbation l.1.PI 

of nominal Lyapunov matrix PO to obtain better estimates of stability bounds by applying 

the asymmetric first-order method. 
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CHAPTER VI 

EXAMPLES 

Example 1: A Second-Order System 

Consider the two-dimensional, second-order the system in [Zhou 87]. 

[-3-2] [-1-1] [ 1 1 J x = I O x + k1 O O x + k2 O O x 

in which the stability bound obtained by Zhou and Khargonekar [Zhou 87] is 

lk1I + lk2I < 1, for any k1, k2 

The exact stability bound for the system on Equation (6.1) is 

-k1 + k2 < 2 

The eigenvalues of Pi defined in Equation (3.5) are 

A(P1) = {-1, O} and A(P2) = {1, O} 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

Hence, the zero-order stability bounds given by Theorem 3 .1 are determined by 

(6.5) 

k1 >-1 for k1 < 0, k2 < 0 
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From the results of the fundamental zero-order robustness bounds on condition 

(6.5), one has the vertices of the 2-dimensional k1-k2 perturbed parameters plane: (-1, 0), 

(0, 1), (-1, - 00), and (oo, 1). The expansion Theorem 4.1 is satisfied at the vertex (-1, 1) 

on the k1-k2 domain. Hence the expanded Gao's stability bounds are determined as 

follows: 

k 1 > -1 and k2 < 1 

The eigenvalues of ~pi on the vertex (-1, 1) are 

A(~P1) = {-0.5, O} and A(~P2) = {0.5, O} 

(6.6) 

(6.7) 

Hence the vertices of the 2-dimensional k 1-k2 perturbed parameters plane are: (-2, 

0), (0, 2), (-2, -oo), and (00 , 2). Using Theorem 5.1, the asymmetric first-order stability 

robustness bounds are determined by following four divisions: 

0.5 k2 < 1 for k1 :2: 0, k2 :2: 0 

',;/ k1, k2 for k1 :2: 0, k2 < 0 
(6.8) 

0.5 k1 + 0.5 k2 < 1 for k1 < 0, k2 :2: 0 

0.5k2>-l for k1 < 0, k2 < 0 

The expansion Theorem 4.1 is not satisfied at the vertex (-2, 2). Therefore the 

robustness bounds cannot be expanded further. The comparison between various 

robustness bounds for this example is shown on Figure 6.1. As shown on Figure 6.1, the 

stability region using the new first-order asymmetric method is less conservative, and 

approaches the exact stability region. 
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Example 2: A Third-Order System 

Consider the two-dimensional, third-order system in [Zhou 87] given by 

[
-2 0 -li [ 1 0 1 l [ 0 O O] x = 0 -3. 0 x + k1 0 0 0 x + k2 0 1 0 x 
-1-1-4 1 0 1 0 1 0 

(6.9) 

Zhou and Khargonekar [Zhou 87] proved that the system is stable within the 

following robustness bounds: 

0.6052 lkil + 0.3512 lk2I < 1, for any k1, k2 (6.10) 

The exact stability bound for the system on Equation (6.9) is 

k1 < 1.75 and k2 < 3 (6.11) 

The eigenvalues of P1 and P2 are 

A(P1) = {0.6052, 0, -0.0338} and A(P2) = {0.3512, 0, -0.0487} (6.12) 

and the stability bounds derived using Theorem 3.1 are 

0.6052 k1 + 0.3512 k2 < 1 for k1 ~ 0, k2 ~ 0 

0.0338 k1 + 0.3512 k2 < 1 for k1 < 0, k2 ~ 0 
(6.13) 

0.6052 k1 + 0.0487 k2 < 1 for k1 ~ 0, k2 < 0 

0.0338 k1 + 0.0487 k2 < 1 for k1 < 0, k2 < 0 

From the conditions of zero-order robustness bounds on (6.13), one has the 

vertices of the 2-dimensional k1-k2 perturbed parameters plane: (-29.586, 0), (0, 2.847), 

(l.652, 0), and (0, -20.534). The Expansion Theorem4.1 is satisfied at the four vertices 

of the k1-k2 domain: (-29.586, -20.534), (1.652, -20.534), (-29.586, 2.847), and 

(1.652, 2.847). Hence the robustness bounds are fully expanded on the ranges of the 

k1 and k2 parameters. At the vertices (-29.586, -20.534), (l.652, -20.534), (-29.586, 
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2.847), the perturbed matrices P = P0 + ~P, where ~pis obtained by Equation (5.7), are 

not positive definite. On the other hand, the matrix Pat the vertex (l.652, 2.847) is 

positive definite since their eigenvalues are all positive. The eigenvalues of ~pi at the 

vertex (1.652, 2.847) are 

f A(~P1) = { 0.5714, 0, -0.0318} 

\ A(~P2) = {0.3705, 0, -0.0131} 
(6.14) 

Using Theorem 5 .1, the asymmetric first-order stability robustness bounds are 

determined by the four divisions: 

0.5714 k1 + 0.3705 k2 < 1 for k1 2 0, k2 2 0 

0.0318 k1 + 0.3705 k2 < 1 for k1 < 0, k2 2 0 
(6.15) 

0.5714 k1 + 0.0131 k2 < 1 for k1 2 0, k2 < 0 

0.0318 k1 + 0.0131 k2 < 1 for k1 < 0, k2 < 0 

The vertices of the bounds defined on the condition (7.14) are: (1.7501, 0), (0, 

2.6991), (-31.4465, 0), and (0, -76.3358). At these vertices, the expansion Theorem 4.1 

is satisfied. The comparison between the various robustness bounds for this example is 

shown on Figure 6.2. 

A Discussion of Examples 

As the numerical examples demonstrated, the proposed asymmetric first-order 

method estimated less conservative stability bounds for perturbation parameters than those 

obtained by conventional methods. In particular, Example 1 shows that new method can 
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easily estimate the infinite bound of the stability region while the recursive iteration method 

demands much computational effort to identify the infinite boundaries of stability estimates 

[Olas 94b]. 
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CHAPTER VII 

CASE STUDIES 

Case 1: A Two-Stage Electrohydraulic Servovalve Design 

Problem Statement 

A two-stage electrohydraulic servovalve with a drain orifice is considered as a 

practical plant for the application of stability robustness. The stability of a two-stage 

electrohydraulic servovalve has received much attention for many years and is not 

completely resolved (see [Merritt 67], [Martin 76], [Watton 87], [Akers 90]). A new 

design for a two-stage electrohydraulic servovalve is introduced in Appendix D. A feature 

of the new servovalve is a variant drain orifice damping on the first-stage flapper-nozzle in 

order to increase the system performance as well as the system stability. 

The dynamics of an electrohydraulic servovalve are complex and highly nonlinear; 

many physical properties and characteristics of the electrohydraulic servovalve are hard to 

measure or affected by conditions such as temperature, wear, and oil contamination. 

Empirical or experimental data have been used in the design stage to determine the stability 

robustness of an electrohydraulic servovalve, however a few analytical methods for 
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determining the stability robustness of an electrohydraulic servovalve have been published 

(see for example [Merritt 67], [Nikiforuk 69], [de Pennington 74], [Watton 87], [Akers 

90]). 

Recently, Watton [Watton 87] addressed a stability criterion for the design of an 

electrohydraulic servovalve using the linearization method and some assumptions for 

simplification. However, Watton's stability criterion is too conservative to be used for the 

practical design of a two-stage electrohydraulic servovalve. Watton also neglected the 

effect of the viscous damping constant of the second-stage spool which is not negligible in 

practice. Watton's criterion provides narrow tolerance limits of the uncertain parameters 

resulting in high manufacturing cost. Therefore, a new stability robustness method for the 

design of the two-stage electrohydraulic servovalve is desirable. 

Modeling of Servovalve Dynamics 

The new method for the stability robustness bounds in preceding chapters could be 

applied to the design of a servovalve. Here, in order to illustrate effectiveness of the new 

stability robustness method when applied to practical design problems, a conventional 

two-stage electrohydraulic servovalve with a fixed drain orifice is considered [see Watton 

87 for details]. The results of the stability analysis using the new method are compared to 

Watton's stability criterion. 
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The simplified configuration of the flapper-nozzle valve with a fixed drain orifice is 

shown on Figure D.2, Appendix D. From the continuity of flow it is seen that 

VtdP2 Q () Q Q 
d = o2 - ~2 + sv + L p t 

(7.1) 

VedPe Q Q. Q · dt = nl + n2 - e p 

where 

(7.2) 
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The dynamics of the torque motor with a flapper are given by 

-
r Kt i = la d2Xf + Ba ddXf + Ka Xf + An r2 (P1 - P2) 

dt2 t 

And the dynamics of the second-stage spool valve are given by 

and 

Define following variables for the non-dimensionalization such that 

k - C 1t dJ · [2P; 
o - do 4 \j p' 

P1 = fl_ P2 = P2 P - Pe 
Ps' Ps' e-Ps' 

C = Ps Vt 
' 

~ 
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- Xf Xf=-, 
Xfo 

C _ Ps Ve 
e-

~ 

- Xp 
X -

p - Xpm' 

(7.3) 

(7.4) 

(7.5) 

(7.6) 

(7.7) 

(7.8) 



Then, Equation (7 .1) and Equation (7 .2) yield 

(7.9) 

(7.10) 

(7.11) 
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Using the Taylor series expansion at the null position of flapper, one has 

(7.12) 

(7.13) 

(7.14) 
l 1 ~p 
2 ,J- - e 

Pio - Peo 

(7.15) 

(7.16) 

Substituting the equations (7.12) to (7.16) into the equations (7.9) to (7.11) and 

defining the state variables such that 

one has the following state-space form of servovalve dynamics: 

x=Ax+Bu (7 .18) 
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where (i) : _ ---1L_ _ ___!n__ _ KLP s 

2C<!>1 2C<!>1e C 

(ii) : - ---1L_ _ ___!n__ _ Kr,P s 

2C<!>2 2C<!>2e C 

(iv) : _ 2~ (_l_ + _1_) _ Ako 
e <!>1e <!>2e 2Ce<l>e 

0 1 0 0 0 0 0 

-Ka -Ba 
0 0 -J\nr2Ps J\nr2Ps 0 

Ia Ia IaXfo IaXfo 

0 0 0 1 0 0 0 

J\= 0 0 -Ks -Bs J\pPs -J\pPs 
0 

Ms Ms MsXpm MsXpm 

kn<l>le 0 0 
-J\pXpm 

(i) KLPs ___!n__ 
C C C 2C<!>1e 

-kn<l>2e 
0 0 

J\pXpm KLPs (ii) ___!n__ 
C C C 2C<!>2e 

(iii) 0 0 0 kn kn (iv) 
2Ce<l>le 2Ce<l>2e 

BT=[ 0 rKtirn 0 0 0 0 0 ] IaXfo 
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in which the variables defined for simplification are 

<!>1 :=) 1 -Pio, <!>2 :=) 1 -P20, <l>1e :=)Pio - Peo, <l>2e :=)P20 - Peo, <l>e :=YPeo· 

Stability Consideration 

Since the servovalve system equation (7.18) is not a regulator form for Equation 

(3.1), one needs to consider the relationship between BIBO (Bounded Input-Bounded 

Output) stability and Lyapunov stability. It is said that a dynamic system described by a 

vector differential equation x = f(x,u,t) is BIBO stable (any bounded input u produces a 

bounded output x) if for all x0 and t0, and for all bounded inputs u(t), t0 ::::; t < oo, which 

satisfy the inequality 11 u 11 < M for all t;::: t0 where M < 00 is a constant. The output 

motion x(t,x0 ,t0 ) is bounded. 

It may be concluded that the Lyapunov stability concept is concerned with the 

internal dynamics of the system, whereas the BIBO stability reflects their external behavior. 

In general, Lyapunov stability does not guarantee BIBO stability, and vice versa. 

However, if a linear, time-invariant, differential system is asymptotically stable (in the 

large) in the Lyapunov sense, it is also BIBO stable; that is, any bounded input will 

produce a bounded output [Zadeh 63]. The converse is also true, provided the system is 

completely observable and controllable. Hence the new method for stability robustness 

bounds can be applied to the stability of the servovalve system on Equation (7.18). 
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A Typical Numerical Example 

Table 7.I shows typical servovalve parameters. From the data on Table 7.I and by 

[Watton 87], the values of some parameters on Equation (7.18) at the null position are 

estimated such that 

c r1 .2 
'A = aa U(I = 4.2, 

Cao do2 
z = (kn)2 = l6 (Caf dn Xfo)2 = 1.0l 

ko Cao do2 

and 

Hence 

Peo = 4 Z = 0.1023 
2 

4Z+(l+Z)'A 

2 
Pio = P20 = 4 Z + 'A = 0.5489 

2 
4Z+(l+Z)'A 

<\>1 = <\>2 = 0.9475, <\>el = <l>e2 = 0.6683, <l>e = 0.3198 

(7 .19) 

(7.20) 

(7.21) 

(7.22) 

Substituting the values of the parameters on Table 7.I into the matrix A on Equation 

(7 .18), and finding the eigenvalues of matrix A yields 

105 X [-1.5601 ± 1.1152i, -0.0116, -0.1939, -0.0005, -5.6693, -0.1326] 

Since all eigenvalues have negative real values, the system on Equation (7 .18) is 

asymptotically stable. 

Suppose that the uncertain parameters are the viscous damping constants of the 

flapper-nozzle and that of the second-stage spool: i.e., k1 = Ba, k2 = B8 • Applying Gao's 

zero-order stability bounds to the system matrix, one obtains the following robustness 

bounds condition. 
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5.1302 X 105 k1 + 1.8505 X 104 k2 < 1, k1 > 0, k2 > 0 (7.23) 

The Expansion Theorem 4.1 is satisfied at the vertices of the stability region defined 

on condition (7.23). Then applying the first-order method in Chapter Vat the vertex 

{1.9492 X 10-6, 5.4039 x 10-5), one also obtains the following stability robustness bounds 

9.1408 k1 + 0.04644 k2 < 1, k1 > 0, k2 > 0 (7.24) 

Since the Expansion Theorem 4.1 is satisfied at the vertices obtained on condition 

(7.24), the stability robustness bounds are fully expanded. Figure 7.1 graphically shows 

the results of the stability robustness bounds resulting from the conditions of (7 .23) and 

(7.24). This figure reveals that the first-order method estimates significantly less 

conservative stability bounds than the zero-order method. 

Analysis and Discussion 

Watton [Watton 87] proposed a sufficient condition for a two-stage electrohydraulic 

servovalve with a drain orifice as follows: 

(7.25) 

where fg is a gain function defined in [Watton 87]. The gain function fg is mainly 

determined by the parameters of the servovalve configuration and flow characteristics. 

In the stability criterion of the condition (7.25), Watton neglected the effect of the 

viscous damping of the second-stage spool valve. Even neglecting the effect of the viscous 

damping of the spool on the Watton's criterion, the maximum value of the damping 

constant of the flapper-nozzle in this example would be estimated less than 3. 977 5 x 10-4 

lbf in s I rad. This value is too small to be compared with a practical one. The supply 
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pressure should be also decreased for stability if the viscous damping constant of the 

flapper decreases. Hence precise estimation of the viscous damping is important for the 

economic operation and the design of the electrohydraulic servovalve. 

The purpose of Watton's study was to assess the effect of the drain orifice damping 

on the performance and the stability of an electrohydraulic servovalve. Since a drain orifice 

is attached to the flapper-nozzle, a small back pressure increases the stability of the 

servovalve, but decreases performance characteristics such as the null pressure sensitivity. 

However one cannot easily use the sufficient condition (7 .25) to determine the size of the 

drain orifice for stability, because parameters of the drain orifice such as dct and Ve are not 

explicitly included in the condition (7 .25). This drawback is resolved if the proposed 

method for the stability robustness is utilized. 

Hence, one can find that the proposed method for stability robustness provides 

superior stability bound estimates compared to those of conventional methods, and that the 

new method can be complementary to the Watton's criterion and applicable to the practical 

design of a two-stage electrohydraulic servovalve with a drain orifice. 

Case 2: Sensor Degrading Accommodation with Incomplete Information 

Problem Statement 

This is the type of control system failure where some of the sensors lose accuracy, 

and it is called a "sensor degrading" failure. When failure information is incomplete, the 

major concern is system stability. If the system can be stabilized quickly, immediate 

catastrophic consequences can be avoided and time is available to obtain more accurate 

information on the failure. The stability analysis, to check if the nominal system still 
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remains stable for any sensor degradation, should occur before the stabilization action. If 

result of the stability analysis is negative, then one can take the linear quadratic (LQ) 

approach to desensitize the system with respect to the uncertain sensor degradation. By 

utilizing the results of the preceding chapters one is able to analyze, in an aircraft flight 

control system for example, how much sensor failure the system can tolerate. See ([Etkin 

72], [Etkin 82]) for the sensors utilized in an aircraft. 

Modeling of Aircraft Control Motion 

A typical formulation of the longitudinal motion in a fighter aircraft is given by 

[Sparks 93] 

[:H (7.26) 

where 

a, q: angle of attack and pitch rate 

~>, M0: longitudinal dimensional stability derivatives 

<>pv: pitch vectoring nozzle deflection 

The gyroscope sensor produces measurement of pitch rate in the body axis, and angle of 

attack signal is constructed by augmenting the vane measurement from the air data unit with 

inertial data. 

Assume that the pitch rate sensor and the angle of attack sensing apparatus are 

degrading. Define the sensor degradation 

a := r1 a, q := r2 q (7.27) 

where r1 and r2 are the degrading constants for the angle of attack sensing apparatus and 
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the pitch rate sensor, respectively. 

Assuming the LQ controller where a constant state feedback, u = K x, is used to 

minimize the quadratic cost function 

(7.28) 

where Q and R are positive definite symmetric weighting matrices for the states and inputs, 

respectively. The control gain K is obtained by solving the Riccati equation. 

Substituting Equation (7.27) into Equation (7.26) and using the constant state 

feedback control yields the perturbation matrix 

0 
0 

where kij is ij_th component of the gain matrix K. 

A Typical Numerical Example 

0 
0 

Typical data for a fighter aircraft in [Sparks 93] are used for the numerical 

calculation. 

[ a 1-[ 0.0264 0.9905 J [ a J + [-0.0520] 8 
q J- -0.8810-0.2079 q -4.3434 PV 

(7.29) 

(7.30) 

Using this model, the stability robustness bounds analysis for the perturbed 

parameters r1 and r2 is performed, i.e., k1 = r1, k2 = r2. When Q = 10 I and R = I where I 

is an identity matrix, the feedback gain K = [3.0923, 3.2918] is obtained in Equation 
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(7 .28). Then one has 

[ -0.1608 
Ei = -13.4310 

0 
0 

0 
0 

-0.1712 ] (7.31) 
-14.2977 

The eigenvalues of P1 and P2 estimated by Gao's Theorem are 

A(P1) = {69.0815, -90.3626}, A(P2) = {0.7593, -168.9734} (7.32) 

and the stability bounds derived are 

69.0815 k1 + 0.7593 k2 < 1 for k1 ~ 0, k2 ~ 0 

90.3626 k1 + 0.7593 k2 < 1 for k1 < 0, k2 ~ 0 
(7.33) 

69.0815 k1 + 168.9734 k2 < 1 for k1 ~ 0, k2 < 0 

90.3626 k1 + 168.9734 k2 < 1 for k1 < 0, k2 < 0 

The Expansion Theorem is satisfied at the four vertices of the k1-k2 domain: (0.0145, 

1.3170), (-0.0111, 1.3170), (-0.0111, -0.0059), and (0.0145, -0.0059). Hence the 

stability bounds are expanded into the full ranges of Gao's zero-order estimates. The 

perturbed matrices P obtained by Equation (5.7) at the vertices (0.0145, 1.3170) and 

(-0.0111, 1.3170) are not positive definite, while the matrices P obtained at the vertices 

(-0.0111, -0.0059) and (0.0145, -0.0059) are positive definite. Denote v1 and v2 for the 

vertices (-0.0111, -0.0059) and (0.0145, -0.0059) respectively. Then, using Theorem 

5.3, one can find that the vertex v2 is better than the vertex v1 to apply the first-order 

method. The eigenvalues of ~pi at the vertex v1 are 

A(~P1) = {-47.6941, 41.8053}, A(~P2) = {0.1032, -95.1714} (7.34) 

And, the eigenvalues of ~pi at the vertex v2 are 

A(~P1) = {27.1281, -25.6049}, A(~P2) = {0.0117, -56.1240} (7.35) 
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which yield following first-order stability robustness bounds 

27.1281 k1 + 0.0117 k2 < 1 for k1 2 0, k2 2 0 

25.6049 k1 + 0.0117 k2 < 1 for k1 < 0, k2 2 0 

27.1281 k1 + 56.1240 k2 < 1 for k1 2 0, k2 < 0 

25.6049 k1 + 56.1240 k2 < 1 for k1 < 0, k2 < 0 

(7.36) 

Since the Expansion Theorem is satisfied at the vertices (0.0369, 85.4701) and (-0.03906, 

85.4701), the stability bounds can be expanded in the quadrants where these vertices 

belong to. Figure 7 .2 illustrates several stability bound estimates for the perturbed 

parameters k1 and k2. This figure shows that the degradation of pitch rate sensor is more 

tolerable than the failure of angle of attack sensing apparatus for the aircraft to maintain 

stability. 

A Discussion of Case Studies 

Many earlier works for stability robustness often used simple numerical examples 

as shown in Chapter VI to verify their results. However, as demonstrated in the preceding 

two practical examples, the stability bounds estimated by conventional stability robustness 

methods are often too conservative to be used for the analysis of practical systems. Case 1, 

for the design of a two-stage electrohydraulic servovalve, shows that conventional 

methods have estimated extremely conservative stability bounds for uncertain parameters. 

Even Gao's method for asymmetric stability bounds failed to provide practical, useful 

estimates. On the other hand, the proposed asymmetric first-order method, which was 

easily applicable, provided a substantially large estimation of stability bounds for practical 

usage. 
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CHAPTER VIII 

APPLICATION TO ASYMMETRIC ROBUSTNESS MEASURE 

OF EIGENVALUE DISTRIBUTION 

Introduction 

For a linear time-invariant control system, it is known that the performance 

specifications for the system can be satisfied by suitably assigning the poles of the system. 

However, due to the presence of uncertainty or variation of parameters for a system with 

an approximated model, the poles of the designed system shift away from their prescribed 

locations so that the performance of the system may be seriously degraded. Therefore, it is 

desirable to estimate the allowable bounds of uncertain perturbation parameters under 

which the eigenvalues of the perturbed system stay in the prescribed region. 

Recently, robust eigenvalue-assignment problems, to maintain the stability and 

meet additional performance requirements of a perturbed system, received much attention 

([Juang 89], [Juang 90], [Shieh 90], [Chou 91], [Juang 93], [Horng 93], [Alt 93], 

[Chouaib 94]). However, similar to the stability robustness problem, most estimation 

techniques developed assume symmetric bounds of perturbation parameters around the 

origin to provide conservative estimates of robustness bounds. This chapter deals with 

asymmetric robustness measures for linear systems with structured uncertainties where the 

eigenvalues of the perturbed systems are guaranteed to stay in a prescribed region. Based 
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upon the Lyapunov approach as shown in preceding chapters, new techniques to estimate 

allowable perturbation parameter bounds are derived. Examples are given to illustrate 

proposed methods. 

Preliminary Results 

Consider a line L which separates the complex plane into two open half-planes, H 

and H, as shown in Figure 8.1. The line L intersects the real axis at (a, 0), the imaginary 

axis at (o, jf3}, and makes an angle 8 with respect to the imaginary axis, wher.e 8 is 

assumed positive in a counterclockwise sense and -1t :s;; 8 :s;; 1t. 

Juang et. al [Juang 90] proposed the following lemmas: 

Lemma 8.1 

All the eigenvalues of the constant matrix A lie in the region H if and only if matrix 

e-j8(A - al) or matrix e-js(A - jf31} is stable. 

Lemma 8.2 

All the eigenvalues of a constant matrix A lie in the region H if and only if 

[e-j8(A- a.I)]* P + P [e-j8(A- al)]= -2 I 

or 

[ e-js(A- jf3I}]* P + P [ e-js(A- jf31}] = -2 I 

has a unique positive definite Hermitian solution P, where * denotes the conjugate 

transpose. 

D 

(8.1) 

(8.2) 

D 
Based upon the Lyapunov approach, Juang et. al [Juang 90] addressed a technique 
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for calculating the robustness bounds for eigenvalue-assignment in any prescribed region 

taking account not only stability robustness but also certain types of performance 

robustness. 

Consider the perturbed system described by 

(8.3) 

where AN is a nominally stable matrix and E represents a perturbation matrix which has a 

form 

m 

E = Li ki Ei (8.4) 
i=l 

where ki are uncertain perturbation parameters and Ei are constant matrices which denote 

the structure of the perturbations. 

Then the criterion for the analysis of eigenvalue-assignment robustness in [Juang 

90] is shown in the following theorem: 

Theorem 8.1 

If all the eigenvalues of a matrix AN lie in the region H, then the eigenvalues of the 

perturbed matrix AN + E will remain in the same region if 

(8.5) 

i=l 

where 

(8.6) 

11-11 denotes the spectral norm and Pis the unique Hermitian matrix obtained by Equation 

(8.1) or Equation (8.2). D 
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Asymmetric Robust Eigenvalue-Assignment Criteria 

Zero-Order Asymmetric Robustness Measure 

As shown in Theorem 8.1, the criterion for eigenvalue-assignment robustness by 

Juang [Juang 90] provides symmetric intervals around the origin for the uncertain 

parameter perturbations which resulting in conservative estimates of robustness bounds. 

Hence, an asymmetric robustness measure to resolve the conservatism is proposed. 

Lemma 8.3 

All eigenvalues of matrix Mi defined on Equation (8.6) are real values. 

The Lyapunov equation on Equation (8.1) has a unique Hermitian positive definite 

matrix, P. Alt and Jabbari [Alt 93] addressed that matrix Pis represented by 

P = PRe + j Pim, PRe = PJ'e, Pim = -P{~ (8. 7) 

where PRe is a real term and Pim is an imaginary term of a complex matrix P respectively. 

Hence Equation (8.6) yields 

ei8E?P + P Eie-je = (cose+j sine) Et (PRe+jP1m) + (PRe+jP1m) Ei (cose-j sine) 

= cose E?PRe - sine E?P1m + j sine E?PRe + j cose ETP1m + 

cose PRe Ei + sine Pim Ei - j sine PRe Ei + j cose Pim Ei 

Since the real terms of the right-hand side of Equation (8.8) are 

cose (E?PRe+PReEJ + sine (-E?P1m+P1mEi) = 

cose [(PReEi)T+ PReEi] +sine [(Pim Ei)T+ P1mEi] 
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and the imaginary terms are 

(8.10) 

sin8 [(PReEi)T- PReEJ + cos8 [-(Pim Ei)T+ P1mEJ 

Equation (8.9) and Equation (8.10) show that the matrix Mi on Equation (8.6) is a complex 

matrix whose real terms are symmetric, imaginary terms are skew-symmetric, and diagonal 

terms are real values. Hence all eigenvalues of matrix Mi are real. D 
Theorem 8.2 

If all the eigenvalues of a matrix AN lie in the region H, then the eigenvalues of the 

perturbed matrix~ + E will remain in the same region if 

m 

L ki A.Mi< 1 (8.11) 
i=l 

where 

(8.12) 

in which Amax(,) and AminO are largest and smallest real eigenvalues of matrix(.) 

respectively. 

Since all the eigenvalues of~ lie in the region H, according to Lemma 8.2 there 

must exist a Hermitian solution Pon Equation (8.1) or Equation (8.2), so for the system 

X = [e-j0(AN + E- al)] X (8.13) 

or 

(8.14) 
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the Lyapunov function candidate is chosen as 

V= x* Px (8.15) 

Differentiating Equation (8.15), and using equations (8.1), (8.2), (8.13) and (8.14) 

yields 

V = x* (eia E P +PE e-j9 - 21) x 

Substituting Equation (8.4) and Equation (8.6) into Equation (8.16), one has 

Hence following condition is necessary to satisfy V < 0 

(8.16) 

(8.17) 

(8.18) 

Since Lemma 3 proves that all eigenvalues of matrix Mi are real, one can apply Gao's [Gao 

93] result 

(8.19) 

D 
Gao's method is a special case when 8 = 0 and a = 0 in Theorem 2. 

First-Order Asymmetric Robustness Measure 

In order to improve the conservatism of robustness bounds estimates, the first-

order Lyapunov method [Leal 90] can be combined with the zero-order asymmetric 

robustness method proposed in Theorem 8.2. 
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Define the perturbed P matrix 

P := P0 + L1P (8.20) 

in which matrix PO satisfies the nominal Lyapunov equation on Equation (8.1) or Equation 

(8.2), i.e., 

[ e-j9(AN - aI)J* p O + p O [ e-j9(AN - al)] = -2 I (8.21) 

or 

(8.22) 

And define 

~e E-T L1P + L1P E- e-je 
AM· ·- 1 1 1· - 1 m l.l 1 .- 2 , - , ... , (8.23) 

and 

i = 1, ... , m (8.24) 

The first-order asymmetric robustness measure is obtained in the following 

theorem. 

Theorem 8.3 

For a linear system on Equation (8.3) where all the eigenvalues of a nominal matrix 

AN lie in the region Hon Figure 8.1, the eigenvalues of the perturbed matrix AN+ E remain 

in the region H if 

m 

L ki L1AMi < 1 (8.25) 
i=l 
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and if perturbed matrix P is a positive definite matrix in which L1P satisfies 

(8.26) 

where 

(8.27) 

As proof for theorem 8.2, for the system described on Equation (8.13) or Equation 

(8.14), the Lyapunov function candidate is chosen as 

V = x* P x = x* (P0 + L1P) x (8.28) 

Differentiating Equation (8.28) yields 

(8.29) 

Using Equation (8.23) and Equation (8.26), Equation (8.29) yields 

V = 2 x* (~ ki L1Mi - 1) x < 0 
l=l 

(8.30) 

Similarly as for Mi in Lemma 8.3, one can prove that all eigenvalues of matrix L1Mi are 

real values. Hence, using the results addressed in [Gao 93], it is shown that 

(8.31) 

D 
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Application Procedure for the Asymmetric First-Order Lyapunov Method to 

the Robustness Measure of Eigenvalue-Location Assignment 

A procedure is proposed as follows, to measure the robustness bounds of uncertain 

perturbation parameters for the eigenvalue-location assignment using the asymmetric 

first-order Lyapunov method. 

First, estimate the robustness bounds for uncertain perturbation parameters using 

the asymmetric zero-order method described in Theorem 8.2. 

Second, find the vertices to apply the first-order Lyapunov method among the 

vertices of the robustness bounds hypercube obtained at the first stage. The first-order 

method can be applied at the vertices where the estimated Lyapunov matrices "P" are 

positive definite. 

Third, estimate the robustness bounds by applying the asymmetric first-order 

Lyapunov method of Theorem 8.3 to the vertices identified at the second stage. The 

common boundaries of the robustness bounds are final measure when the first-order 

method is applied at more than one vertex. 
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Examples 

Example 1 

Consider a two-dimensional, third-order system in [Zhou 87, Gao 93] given by 

[
-2 0 -li [ 1 0 1 l [ 0 0 0. x = 0 -3 0 x + k1 . 0 0 0 x + k2 0 1 0 x 
-1-1-4 1 0 1 0 1 0 

(8.32) 

Assume 8 = rck a = 1 for the location of eigenvalues as shown in Figure 8.1 for 

the system on Equation (8.20). Juang's criterion described in Theorem 8.1 yields the 

following robustness bounds: 

(8.33) 

For the asymmetric zero-order robustness measure described in Theorem 8.2, the 

eigenvalues of M 1 and M2 are 

A(M1) = {0.4442, -0.0156, O}, A(M2) = {0.2729, 0, -0.0480} (8.34) 

Hence, the robustness bounds obtained in Theorem 8.2 are as follows: 

0.4442 k1 + 0.2729 k2 < 1 for k1 ~ 0, k2 ~ 0 

0.0156 k1 + 0.2729 k2 < 1 for k1 < 0, k2 ~ 0 
(8.35) 

0.4442 k1 + 0.0480 k2 < 1 for k1 ~ 0, k2 < 0 

0.0156 k1 + 0.0480 k2 < 1 for k1 < 0, k2 < 0 

The comparison between various stability and robustness bounds is shown on Figure 8.2. 

In this example, the bounds for the specification 8 = rck a = 1, obtained by Theorem 8.2 
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are wider than the stability bounds estimated by Gao's method, since the specification 

8 = rt/6, a= 1 includes certain unstable region. 

Consider the same system described by Equation (8.32), as far as the performance 

specifications are considered, all eigenvalues of the system even under parameter 

perturbations are required to lie within the shaded region H1 as shown on Figure 8.3; The 

eigenvalues AN + E should stay inside the specified region and the allowable bounds for the 

uncertain perturbation parameters k 1 and k2 are of interest. 

Assume, for eigenvalue locations, that the specifications of 8 = nk a 1 = -1 and 

a2 = -10 on Figure 8.3 are required. Then the desired region H1 is bounded by four lines 

L1 to L4. The specifications of 8 and a for each line L1 to L4, corresponding to the 

eigenvalues of M 1 and M2 are respectively listed on Table 8.I. The bound values for 

µ := 1 in Theorem 8.1 for Juang's criterion are also included on Table 8.I. 
m 

LIIMill 
i=l 

Figure 8.4 illustrates the robustness bounds of uncertain perturbation parameters in 

order that the eigenvalues of the system matrix stay in the prescribed region. The bounds 

obtained by Juang's criterion are: 

(8.36) 

asymmetric robustness bounds corresponding to the boundary lines L1 to L4 respectively, 

shows the robustness bounds obtained by the proposed zero-order asymmetric robustness 

measure in Theorem 8.2. This figure reveals that the asymmetric robustness bounds for 

uncertain perturbation parameters are less conservative than symmetric bounds obtained by 
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Juang's method. Given the values of uncertain parameters k1 and k2 at four vertices of the 

figure that defines the asymmetric robustness bounds illustrated on Figure 8.4, transient 

responses on time-domain are obtained as shown on Figure 8.5. The initial values for state 

variables were (x1, x2, x3 ) = (-10, 10, -20). This figure shows that the system responses 

are overdamped and satisfy the specifications of eigenvalue locations. 

Example2 

Consider a system 

x=[ O 1 ]x+k1[0-l]x+k2[0 l]x 
-10 -5 0 -1 0 0 

(8.37) 

Suppose that the eigenvalues of the system on Equation (8.37) are required to be 

located as shown on Figure 8.6. From Figure 8.6, the damping constant sand the natural 

frequency 000 are specified by 

1 ;?; s;?; sin(:n;/6) = 0.5, 20;?; 00n;?; 1 (8.38) 

Using Equation (8.37) and Equation (8.38), one can obtain the exact bounds of 

uncertain parameters k1 and k2 such that 

(8.39) 

Similar to example 1, the bounds of uncertain perturbation parameters k1 and k2 to 

satisfy the eigenvalues-assignment are estimated by criterion on Theorem 8.2 as well as 

Juang's criterion on Theorem 8.1. Table 8.11 shows the results of the numerical 

estimation, and Figure 8.7 shows the results graphically. These results show that the 

bounds estimated by the zero-order asymmetric robustness method in Theorem 8.2 are less 
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conservative than those obtained by Juang's method. 

The system on Equation (8.37) is also taken to validate the first-order asymmetric 

robustness measure in Theorem 8.3. Using the results on Table 8.II, one can apply the 

first-order asymmetric robustness method at each vertex of the robustness bounds 

estimated by the zero-order asymmetric robustness method. The results are summarized on 

Table Rill. Figure 8.8 shows that the robustness bounds estimated first-order asymmetric 

method is considerably less conservative than those obtained by Juang's method. Figure 

8.9 demonstrates the transient responses of the system at the extreme vertices of 

perturbation parameter bound estimates to show that the performance requirements are 

satisfied in the estimated bounds. 

A Discussion of Asymmetric Measure for Robust Eigenvalue-Assignment 

New measures for robust eigenvalue-assignment of uncertain systems are 

generalization of the asymmetric zero-order and first-order method for stability robustness 

bounds described in preceding chapters. The proposed methods for estimating asymmetric 

robustness bounds are less conservative than those obtained conventional Juang's method. 

In numerical example, the first-order asymmetric robustness measure provided better (less 

conservative) estimates of perturbation bounds than those of the zero-order method. 
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CHAPTER IX 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH 

Conclusions 

The subject of the current investigation has been the stability robustness of 

nominally linear time-invariant system with structured uncertainties. Gao's asymmetric 

stability bounds and the first-order Lyapunov method were combined to develop a new 

method for the estimation of stability bounds. 

Lemmas with the properties of matrix measure and convexity have formulated the 

Expansion Theorem in Chapter IV. The Expansion Theorem provides a sufficient 

condition under which a simple test at a vertex guarantees the expansion of the stability 

boundaries to the full region of the hyper-quadrant to which each vertex belongs. 

The Theorem 5.1 establishes a new method to estimate asymmetric first-order 

stability bounds. The new approach, with the asymmetric first-order robustness method 

and the Expansion Theorem, provides three distinct advantages: first, ease of the 

application given by system matrices with structured perturbation parameters; second, 

improved means to estimate less conservative stability bounds; third, using the properties 

of the optimal Lyapunov function for systematically enlarging the perturbation parameter 

space hypercube. As proved in Chapter V, the new method has the properties of the 
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optimal Lyapunov function in Olas' work. Theorem 5.2 with the properties of the optimal 

Lyapunov function proves that stability bounds estimated by the asymmetric first-order 

method are always less conservative than those of Gao's zero-order method under certain 

condition. Also, Theorem 5.3 shows that application of the asymmetric first-order method 

to the vertex which possesses a better performance measure of the Lyapunov function 

results in less conservative estimates of stability bounds. 

It was demonstrated in Chapter VI that the results obtained through application of 

the proposed approach are superior to those obtained from the application of conventional 

methods. In practical cases, the proposed technique effectively estimated the practical 

bounds of uncertain parameters for the design of a two-stage electrohydraulic servovalve 

and the sensor degradation problem for a fighter aircraft stability. Especially for the design 

of a two-stage electrohydraulic servovalve, the practicality of the proposed method was 

evident, demonstrating that the new method is easily applicable and provides a substantially 

large estimation of stability bounds for practical usage. It was further demonstrated that the 

conventional stability criterion for a two-stage electrohydraulic servovalve and past 

methods for stability robustness provide extremely conservative estimations of stability 

bounds for uncertain parameters. It was shown in Chapter VIII that the proposed approach 

for the estimates of stability robustness bounds can be generalized to estimate asymmetric 

measure for robust eigenvalue distribution. 

As described in Appendix D, a variant drain orifice on the first-stage flapper-nozzle 

enhances valve performance across the null position and overall stability of the servovalve 

simultaneously. The size and the features of a drain orifice with the uncertain parameters of 

an electrohydraulic servovalve could be determined by using the proposed technique of 

asymmetric first-order stability robustness. 
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Future Research Areas 

There can be many possible avenues for future research. Prime candidates for such 

research efforts are addressed in the following paragraphs. 

1. Transformation of the theorems for discrete-time systems. The results in this 

research are derived for continuous-time linear systems. A similar approach can be used to 

derive the first-order Lyapunov method for discrete-time linear systems as Gao derived 

corresponding results for the zero-order method in [Gao 93]. Thus, the use of the first

order Lyapunov method for the stability robustness in discrete-time domain with time 

delays can be a challenging research area. 

2. Generalization of the results of stability robustness bounds for the robust eigenvalue

location assignment. As shown in Chapter VITI, the stability robustness problem is a 

special case of general robust eigenvalue-location assignment. In Chapter Vill, by using 

the asymmetric first-order Lyapunov method, theorems for the robust eigenvalue-location 

are derived to estimate the bounds of uncertain parameters similarly to the theorems for the 

stability robustness bound estimates. However, there remains a large research area 

concerning how the results obtained for the stability robustness bounds, such as the 

Expansion Theorem, the optimal condition of the first-order Lyapunov method, and 

optimal vertex condition, can be applied to the general robust eigenvalue-distribution 

problem. 

3. Development of a recursive numerical algorithm. Since the stability bounds 

estimated by the proposed methods depend on the Q matrix of the Lyapunov equation, it is 

necessary to find a trend to obtain the optimum Q matrix. The proposed asymmetric 

first-order Lyapunov method in this research is obtained under the initial condition, Q = 21, 

and could be recursively iterated. As mentioned in earlier Chapters, the proposed approach 
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can inherit the results of Olas' optimal Lyapunov function. The development of a recursive 

numerical algorithm with the asymmetric first-order Lyapunov method, in conjunction with 

Olas' optimal Lyapunov function, might also prove to be a fruitful avenue of research. 
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APPENDIX A 

PRELIMINARIES 

Uncertainties 

The system uncertainties may come from different sources. Due to the limitations 

in measurements, some parameters in either the time domain or frequency domain model 

may not be exactly known. Instead, there is a range of possible values these parameters 

can assume. For example, the resistance of a resistor is normally given by a nominal value 

and a percentage that represents the possible variation. This type of uncertainty in a system 

is called a parameter uncertainty because it can be expressed as variations qf certain 

parameters in the system model. In contrast to parameter uncertainty, the unmodeled 

dynamics in a system constitute the non-parametric uncertainty because they cannot be 

directly described by variations of the system parameters. The unmodeled dynamics are the 

system dynamics that are not, or cannot be, incorporated in the mathematical model of the 

system and they are usually associated with the system behavior in response to relatively 

high-frequency inputs. In general, modeling techniques always leave ambiguities in the 

system model, either parametric or non-parametric, or both. Therefore, this is a problem 

all control engineers may face. 
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Sources of Uncertainties 

The designing stage of a dynamic system is preceded by the modeling stage. In 

general, this model is not a true representation of the real system, i.e., there are 

uncertainties in the plant model. These uncertainties can be attributed to two major sources: 

the one source is external disturbance; the other source is model uncertainty. 

External disturbances are often modeled statistically because they are not known, a 

priori. Disturbance signals can not be controlled and they are not dependent on the plant 

model. 

Model uncertainties are caused by the following two reasons: 

First, imprecise knowledge of the plant. Although the structure of the system 

equations can be obtained from basic laws of physics and engineering, or by experimental 

means, the numerical values of the parameters are only known within certain tolerances; 

Second, simplifications and linearizations. Although the dynamics of the physical 

system may be known accurately, the designer may choose to simplify the model, e.g., one 

may reduce the order of the model or linearize the nonlinear components in order to 

simplify the calculations. 

Types of Uncertainties 

In most practical design cases, uncertainties can be categorized into two groups: one 

group is called unstructured uncertainty ; the other group is called structured uncertainty. 

Their existence is dependent upon the physics of the physical plant under consideration. 

Structured uncertainty represents those uncertainties whose sources can be 
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explicitly identified in a parametric model. The source of this type of uncertainty is an 

imprecise knowledge of the model parameters. Consider a state matrix for the plant 

perturbation represented by the summation of a nominal fixed matrix and perturbation 

matrix, that is, 

A(t) =AN+ E(t) (A.1) 

Most engineering plants such as an aircraft or a robot can be described with known 

dynamical equations. The existing design uncertainties are with regard to the values of 

specific physical system parameters. Examples of structured perturbations in aircraft 

models include the parameter values for the spring constant, mass, inertia, aerodynamic 

coefficients, and changes in air pressure. These values cannot be considered as constant 

values, but they affect only specific system parameters [Bhattachargga 87]. 

An unstructured uncertainty is a lumped uncertainty that may represent several 

uncertainties that cannot explicitly be accomplished in a parametric model. This includes 

those that occur due to modeling approximation, e.g., linearization and unmodeled 

dynamics by neglecting high frequency components. Modeling continuous systems as 

finite lumped masses is one of the examples of unmodeled dynamics. In the unstructured 

perturbations, only the norm of the perturbation matrix E is specified. When possible, 

perturbations elements should be modeled as structured perturbations, since less 

conservative stability robustness bounds may then be obtained. These are the basic facts 

which have motivated growing interest in the robust control of systems with structured 

perturbation. 

Models of Uncertainties 

There are three prominent ways to model unstructured uncertainties. For a nominal 
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transfer function matrix Go(s), which represents the best model of the true plant behavior, 

the true plant transfer function G(s) can be represented as one of following three forms: 

G(s) = G0 (s) + ~a(s) 

G(s) = Go(s) [r + ~im(s)] (A.2) 

G(s) = [r + ~om(s)] Go(s) 

where ~a is an additive unstructured uncertainty, ~im is an input multiplicative unstructured 

uncertainty, and ~om is an output multiplicative unstructured uncertainty. Since matrix 

multiplication does not commute in general, the location of a multiplicative uncertainty is 

critical in MIMO systems. There is no structural limitation imposed on ~a, ~im and ~om· 

The only limitation imposed on these uncertainties are the "size" of the matrix measured in 

an appropriate matrix norm. On the other hand, these uncertainty matrices will inherit a 

certain structural form that is determined by the knowledge of parameter uncertainties when 

they represent structured uncertainties. 

In the case of structured perturbations, the system matrix is usually written in the 

following form: 

(A.3) 

where ki is a perturbation element, also called parameter perturbation and Ei is a constant 

matrix, called ith perturbation matrix. The advantage of this form is that it separates each of 

the independent perturbation parameters from the others. 
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Matrix Norms 

The robustness of a system is measured by the "size" of a certain transfer function 

in many current design methods. For MIMO systems, this transfer function is a matrix 

itself. The "size" of a matrix is measured by its norm. Following three matrix norms have 

been most commonly found in the current robust control literature. 

Singular Values 

The singular values of an mxn matrix A, denoted o'i(A), are defined to be non

negative square-roots of the eigenvalues of AHA, i.e., o'i(A) = ,,h·1,i(AHA) where AH denotes 

the conjugate transpose of A. By convention, the singular values of A are ordered as 

follows: 

O' = 0'1 :2: 0'2 :2: .•• :2: O'r = cr, O'r+l = ... = O'n (A.4) 

where r is the rank of matrix A, cr is the largest singular value and Q:,the smallest non-zero 

singular value. The largest singular value is defined to be the Hilbert or spectral norm of 

A, i.e., 

11 Al Is= cr (A.5) 

Let G( s) be a matrix whose entries are analytic functions of the complex variables in 
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the open right-half s-plane. The H2 norm of G(s) is denoted by 11 G(s) 112 and is defined to 

be 

11 G(s) I b = 2~ J f trace[ G'l(jro) G(jro)] dro (A.6) 

H_Norm 

Let G(s) be defined as stated above. The H00 norm of G(s) is denoted by 11 G(s) 1100 

and is defined to be 

11 G(s) I loo= SUPro cr(GGco)), co E R (A.7) 

where sup(.) denotes the least upper bound operator. Therefore, the H00 norm is the largest 

singular value evaluated along jco axis. For SISO systems, the H00 norm is the largest 

distance from the origin to the Nyquist plot. 
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Matrix Measure 

Matrix measure has been used in stability analysis probably since the 1950's (see 

[Coppel 65], [Desoer 75]). It is not a norm, however it is induced from matrix norms and 

has some interesting relationships with norms. 

The matrix measure of matrix A E cnxn is defined as follows: 

µ(A) := lim I II + h Al I - 1 
h~oo+ h 

(A.8) 

where 11-11 is any m.atrix norm induced by a vector norm (see for example [Coppel 65], 

[Desoer 75], [Vidyasagar 78]). It can be explained as the directional derivative on In in the 

direction of A. The matrix measure has different values corresponding to the different 

induced matrix norms. For example: 

µ1(A) := m~{Re(ajj) + I lad}, when I IA! 11 = m~x(t laijl) (A.9) 
J i=l,itj J !=l 

µ=(A):= m~{Re(aii) + ± lad}, when I IAJ loo= m~x(t laijl) (All) 
1 . 1 . . 1 1-1 != ,J;t:J -

From the definitions of matrix measure it is clear that µ 1 (A) ::::; I IAJ 11 and 

µ00(A)::::; I IAJ 100• These equalities hold when matrix A is real and has nonnegative diagonal 

entries, whereas µ2(A)::::; I IAJ Ii and the equality holds when A is symmetric and positive 
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definite. The main properties of matrix measure are as follows: 

(i) µ(In)= 1, µ(-In)= -1 

(ii) µ( a A)= a µ(A), Va~O 

(iii)~ IAJ I ~-µ(-A)~ µ(A)~ 1 IAJ I 

(iv) I IAxl I=~ IAxl I~ -µ(A) I IAJ I, for all vector x with proper dimension 

(v) µ(A)~ Re(11.i) and-µ(-A) ~ Re(11.J, Vi 

(vi) µ(A+B) ~µ(A)+ µ(B) 

(vii) µ(A+B) ~ max{µ(A}-µ(-B), -µ(A)+µ(B)} 

(viii) jµ(A}-µ(B) ~ max{jµ(A-B), jµ(B-A)} 

Remarks: 

(a) From property (i) one can see that a matrix measure is different from a norm, a 

matrix measure could be a negative real value. 

(b) Matrix measure can also be zero, however µ(A) = 0 doesn't mean A = 0. This is 

another difference between a norm and a matrix measure. 

(c) Properties (iii) and (iv) show the relationships between a norm and a matrix 

measure. 

(d) Property (iii) tells the relation with eigenvalues. In 2-norm case, 

µ(A) = max Ai(A) and -µ(-A) = min Ai(A) where A is symmetric. 
i i 
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APPENDIX B 

A REVIEW OF LY APUNOV STABILITY ANALYSIS 

Introduction 

Stability of the dynamic system is the fundamental requirement in design of control 

systems. In general, issues of stability are concerned with the state trajectory. This occurs 

when the system is perturbed from the equilibrium point or a reference trajectory. There 

are a number of different definitions of stability, and the underlying concept which is 

common to each is described as follows: Employ some measure called the norm, which 

characterizes the state at any desired time; let the state whose stability is under investigation 

be perturbed, then define measures for perturbation as well as for the norm. From this 

concept, it follows that stability is defined as follows: If the perturbation does not exceed 

the defined measure, then the perturbed state is stable when the change in the norm caused 

by the perturbation does not exceed its established measure. From the engineering point of 

view, these analyses are important because of the state perturbations caused by the 

existence of such external disturbances as noise and environmental changes around the 

equilibrium points [Leipholz 87]. The specific definition of Lyapunov stability for an 

equilibrium point is given in the following manner. 
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Stability in the Sense of Lyapunov 

If the solutions for the state equations are available, it is easy to determine stability 

for a particular case. However, solving the nonlinear differential equations is frequently a 

difficult or impossible task. The objective of Lyapunov stability theorems is to analyze 

system stability in the absence of knowledge of solutions to the system differential 

equations. In theory, an isolated (i.e., zero-input) system remains in the equilibrium state 

if that is where it initially started. In this sense, Lyapunov stability is concerned with the 

behavior of the system trajectories when the initial state is near the equilibrium point. As 

mentioned earlier, the results of this analysis are important because of the existence of 

external disturbances such as noise and environmental influences. Initially, Lyapunov 

stability theorems have been established for perturbations of initial condition near an 

equilibrium point. However, as explained in Chapter II on issues of robustness, these 

theorems can be extended and thus applied to the case of system parameter perturbations. 

The underlying concept for the Lyapunov theorems is as follows: consider a system 

with no external forces acting upon it. If "O" denotes one of the system equilibrium points, 

it can be assumed that it is possible to define a function which represents the total energy of 

the system, such that it is equal to zero at the point of origin and positive elsewhere. And if 

the system dynamics are such that the energy of the system is nonincreasing over time, 

dependent upon the nature of the energy function, the stability of equilibrium point "O" is 

implied. The virtue of the Lyapunov theorem has been to employ this concept in a 

mathematical form. 
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Basic Definitions (Refer to [Hahn 63], [Barnett 70], [Vidyasagar 78] in detail) 

Consider the vector differential equation 

x = t'(x,t) (B.l) 

Then, assume that "O" denotes an equilibrium point of the system equation (B.l), 

which is done since the equilibrium point can always be transferred by a simple 

transformation of the states. As described by many authors, the basic definitions of 

stability for the equilibrium points are as follows: 

Definition B. l 

The equilibrium point O at time t0 is said to be stable if, for E > 0, there exists a 

o(t0 ,E) > 0, such that lx(to) < o(t0 ,E)::::} lx(t) < E, V t ~ to. It is said to be uniformly stable 

over [ t0 , 00 ) if, for each E > 0, there exists o(t0 ,E) > 0 such that 

lx(t1) < o{E), t1 ~to::::} lx(t) < E, Vt~ t1. 

Definition B.2 

The equilibrium point O at time t0 is unstable if it is not stable at t0 • 

Definition B.3 

D 

D 

The equilibrium point O at time t0 is said to be asymptotically stable at to if first, it 

is stable at time to, and second, there exists a number 61(t0 ) > 0 such that 

It is uniformly asymptotically stable over [ t0 ,oo) if first, it is uniformly stable over 

[ t0 , 00 ), and second, there exists a number 61 > 0 such that lx(t0 ) < 61, t1 ~to::::} lx(t)--? 0, 

as t --?=. D 
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Definition B.4 

The equilibrium point O at time t0 is said to be globally asymptotically stable if it is 

asymptotically stable for all initial states (i.e., x(t) --?0 as t --?oo, regardless of x(t0 }); thus, 

if O is a globally asymptotically stable equilibrium point at time t0 for a given system, then it 

should be the only equilibrium point at time t0 • 

Lyapunov Stability Theorems (Refer to [La Salle 61], [Hahn 63], [Zubov 64], [Lehnigk 

66], [Lyapunov 66] in detail proofs) 

D 

In order to investigate the stability of a system of differential equations without 

having to solve them, Lyapunov proposed some methods in his doctoral dissertation in 

1892 [Lyapunov 66]. Although Lyapunov's theory was introduced at the end of the 

nineteenth century, it was not recognized for its vast applications until the 1960s. Since 

then it has become a major part in controls, system theory, and other fields. According to 

the sense of Lyapunov, the stability of dynamic systems can be determined in terms of 

certain scalar functions known as Lyapunov functions [Halanay 93]. The basic stability 

theorems for the Lyapunov direct method are as follows: 

Let x = f(x,t), where f(O,t) = 0 V t, describe a given system equation. It follows: 

Theorem B.1 

The equilibrium point O at time to is stable if there exists a continuously 

differentiable local positive definite function (l.p.d.f) V(x,t) such that 

V(x,t):::;; 0, Vt;?: t0 , V x E Br for some ball Br. 

If V( x, t) is a de crescent locally positive definite function in Theorem B. l, the 
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equilibrium point Oat time t0 is said to be uniformly stable over [ t0 ,oo ). D 

Theorem B.2 

The equilibrium point O at time t0 for the system is asymptotically stable over the 

interval [t0 , 00 ) if there exists a continuously differentiable l.p.d.f V(x,t) such that 

dV(x,t) . l df 
dt lS a .p . .. D 

Theorem B.3 

The equilibrium point O at time t0 is globally asymptotically stable if there exists a 

continuously differentiable decrescent p.d.f V(x,t) such that \T(x,t) ::;; -G(lxl) \I t ~ t0 , 

\I x E R n, where G is a fanction belonging to class K. D 

Theorem B.4 

The equilibrium point O at time t0 is unstable if there exists a continuously 

differentiable decrescentfanction V(x,t) such that first, dVd;,t) is a l.p.d.f, and second, 

V(O,t) = 0, and there exists points x arbitrary close to Osuch that V{x,t0 > 0). D 

Clearly, the advantage of the Lyapunov stability theorems is that they do not require 

a solution of the state equations; in contrast, they are disadvantaged in that only sufficient 

conditions are provided. If a particular function fails to satisfy all of the conditions, then 

no conclusions can be drawn and another function candidate should be attempted. For this 

reason, a function is referred to as a Lyapunov candidate when subject to the testing under 

the conditions described above. If all the conditions for one of the theorems can be 

satisfied, then it can be termed a Lyapunov function. However, it is difficult to find a 

Lyapunov function for a given system. The choice of a Lyapunov function is relatively 

easy for the case oflinear or weakly nonlinear systems; 
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Lyapunov Method for Linear Autonomous Systems 

Basic Theorems 

Consider the following linear autonomous system 

x=Ax 

Theorem B.5 ([Hahn 63) or [Willems 701) 

(B.2) 

For the system on Equation (B.2) the origin is asymptotically stable if and only if 

all the characteristic roots of matrix A have negative real parts. D 

The second method of Lyapunov takes a particularly simple form when Lyapunov 

function is selected in the quadratic form 

V(x,t) = xT P x (B.3) 

where Pis a positive definite symmetric (Hermitian) matrix. The derivative of V(x,t) along 

the solution of the system Equation (B.2) is obtained by 

dVJ;,t) = :x.TP x + xTp x = (A x?P x +xTp Ax= xT(ATP +PA) x (B.4) 

Consider the equation which is referred to as the Lyapunov matrix equation: 

(B.5) 

Then the following theorems are fundamental in the study of linear autonomous 

systems: 

Theorem B.6 ([Hahn 63), [Barnett 701) 

The system (B.2) is asymptotically stable if and only if there exists a symmetric 

positive definite matrix P which is the unique solution of the Lyapunov matrix equation 
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(B.5)for any given symmetric positive definite matrix Q. 

Theorem B. 7 ([Hahn 63 J, [Barnett 70]) 

The null solution of ( B.2) is unstable if at least one of the characteristic roots of 

matrix A has positive real part. 

Theorem B.8 [Khalil 92] 

D 

D 

An equilibrium point of a time invariant dynamical system is stable if there exists a 

continuously differentiable scalar function V(x) such that along the system trajectories V(x) 

> 0, V(O) = 0, and V(x) ::;; 0 of Equation (B.4) are satisfied. And if\T(x) < 0 is satisfied 

then the system is asymptotically stable. D 

The Solution of Lyapunov Equation 

Due to broad applications, the solution of Lyapunov matrix equation has been 

subject of very active research for the past thirty years (see [MacFarlane 63], [Barnett 66a], 

[Barnett 66b], [Bingulac 70], [Chen 84], [Lancaster 85], [Mori 86a], [Mori 86b], [Mori 

87]). Especially, in the 1970s growing use of digital computers, which resulted in 

celebrated algorithms for a numerical solution of the continuous-time algebraic Lyapunov 

equation (see [Davison 68], [Bartels 72], [Golub 79], [Hammarling 82], [Subrahmanyam 

86] for examples). 

For a time invariant linear system, the condition for existence of an unique solution 

of a Lyapunov matrix equation (B.5) is given by following theorem. 

Theorem B.9 ([Chen 71], [Lancaster 851) 

Equation (B.5) provides a unique solution for P corresponding to every 

Q E R nxn if and only if Ai + Aj ct. 0, "ii i, j, where A 1, ... ,An are the eigenvalues of A. D 
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Lyapunov Function Generation 

Of the different techniques for the generation of a Lyapunov function, the most 

important factor is to determine a function which provides the least conservative results. In 

the case of stability analysis, conservatism of results is referred to as the estimated size of 

regions of stability for state perturbations around equilibrium points or reference 

trajectories. However, for the analysis of robust stability, the conservatism refers to the 

estimated size of the robustness bounds. To determine less conservative estimates, the 

nominal part of the system as well as the structure of the perturbation elements must be 

considered when generating the Lyapunov functions. 

Apart from these two cases, there are a quadratic Lyapunov function for linear 

systems quoted precedingly and the so-called "Lure problem" (see details in [Lefschetz 65] 

and [ Aizerman 64 ]). There is no certain method of finding a Lyapunov function for a 

general nonlinear problem. A number of suggestions have been made for such 

construction in the general case: refer to [Krasovskii 57], [Ingwerson 61], [Zubov 62], 

[Schultz 62] for a variety of techniques for the generation of a Lyapunov function. For 

comprehensive study of the generation of a Lyapunov function, refer to Mohler [Mohler 

89] and Schultz[Schultz 65]. 

130 



APPENDIX C 

GAO'S LEMMAS AND THEOREM 

Since a new method of stability robustness is developed in this research by using 

the Gao's lemmas and a theorem [Gao 93], the results of Gao's work are briefly 

summarized as follows: 

Consider the linear time-invariant system represented by the state space model with 

perturbation E as shown below: 

(C. l) 

where AN is nxn real Hurwitz matrix. Assume that the parameter perturbation matrix, E, 

takes the form 

m 

E= L kiEi 
i=l 

where Ei are real constant matrices and ki are real uncertain parameters. 

Lemma C.1 

(C.2) 

Let CX.1 S: CX.2 S: ... S: CX.n, ~ 1 S: ~2 S: ... S: ~n, and "(1 S: "(2 S: ... S: 'Yn, be eigenvalues 

of the Hennitian matrices A, Band C =A+ B, then 

CX.j + ~1 S: 'Yi S: CX.j + ~n i = 1, ... ,n 
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Lemma C.2 

For any Hennitian matrices Pi, i = 1, ... ,m , 

where Ai are defined by 

A,= ( 
Amax{Pi) 

Amin{Pi) 

for ki ~ 0 

for ki < 0 

(C.4) 

i = l, ... ,m (C.5) 

in which A(.) denote all possible eigenvalues of the matrix (.), and Amax(.), Amin(.) are 

the largest and smallest eigenvalues, respectively. 

This lemma can be proved by using Lemma C.1 and mathematical induction. For m 

= 2, Equation (C.4) reduces Equation (C.3) where A= k1P1, B = k2P2. Assume that 

Equation (C.4) is valid form= k, that is 

then one only needs to prove that it is also valid for m = k + 1. Note that 
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Equation (C.6), one has 

Lemma C.3 

:s; Amax(A) + Amax(B) 

k 

= L Amax(kiPi) + Amax(kk+lPk+l) 
i=l 

k+l 
= L Amax(kiPi) 

i=l 

for ki ~ 0 

for ki < 0 
i = l, ... ,m 

n > 2, it can be proved in the same way. Since for any k, A1, A2 E R, clearly 
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fork~ 0 

fork< 0 

D 

(C.8) 

(C.9) 



This is illustrated as follows: for A1, A2 with the same sign on Equation (C.9) is obvious; 

otherwise one will have rnax:{11.1, 11.2}:::: 0 and min{11.1, 11.2} < 0, therefore, fork:::: 0, 

Theorem C.l 

The system on Equation (C.l) is asymptotically stable if 

where Ai are defined on Equation ( C.5 ). 

Proof 

D 

(C.10) 

Since it is assumed that the matrix ~ on Equation (C. l) is Hurwitz, there exists a 

symmetric positive definite matrix P which is the unique solution of the Lyapunov equation 

( see Theorem B.6 in Appendix B for explanation) represented by 

PAN+ AJ P + 2 I= 0 (C.11) 

Let the candidate Lyapunov function V(x) = xTPx. And define 

i = 1, 2, ... , m (C.12) 

where Ei are real constant matrices using on Equation (C.4). Note that Pi are real and 

symmetric, and therefore they are Hermitian matrices. 

134 



Then 

dV = .,?Px + xTp:x_ 
dt 

=[(AN+ E) x]T P x + xT P [(AN+ E) x] 

= xT (ET P +PE- 2 I) x 

Define the matrix M such that 

m 

M= L kiPi-I 
i=l 

Note that Mis an nxn Hermitian matrix. For the system on Equation (C.1) to be 

asymptotically stable, one needs di < 0, or equivalently, one needs matrix M to be 

negative definite. Since a Hermitian matrix is negative definite if and only if all its 

eigenvalues are negative, the following condition is necessary: 
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From Lemma C.1 to Lemma C.3 it is shown that 

(C.15) 

Hence the system on Equation (C.1) is asymptotically stable if the condition (C.10) 

is satisfied. D 
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APPENDIX D 

ON THE DESIGN OF AN ELECTROHYDRAULIC SERVOV AL VE 

WITH A VARIANT DRAIN ORIFICE DAMPING 

Introduction 

Since Moog [Moog 53] developed the first two-stage electrohydraulic servovalve 

with a flapper-nozzle valve in 1950, many researches have identified the important factors 

affecting steady-state behavior and dynamic response ([Zaborszky 58], [Feng 59], [Merritt 

67], [Nikiforuk 69], [Pennington 74], [Martin 76], [Arafa 87a], [Arafa 87b], [Liaw 90]). 

The flapper-nozzle valve [Maskrey 78] has been extensively used as a first-stage valve, 

because it is comparatively simple to construct and relatively reliable to operate. As a 

first-stage, the flapper-nozzle valve appreciably reduces the valve threshold and provides a 

high dynamic response because of its lower mass. Most recently, the effects of a damper 

attached to the outlet of the flapper-nozzle valve have been studied ([Watton 87], [Lin 89], 

[Akers 90]). Watton [Watton 87] placed a drain orifice in the flapper-nozzle return line (see 

Figure D.1), thus creating a small back pressure which, in turn, improved servovalve 

performance. He showed that the drain orifice damper reduces the power loss and may 

eliminate the high frequency valve whistle associated with servovalve instability. By 

directly attaching a squeeze film damper to the flapper, Lin [Lin 89], and Akers [Akers 90] 
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caused the damping force to increase exponentially as the flapper distance increased so that 

the first stage was a stable-alone dynamic system. However, as Watton [Watton 87] noted, 

the system gain of the servovalve at null condition of the flapper-nozzle is reduced as the 

drain orifice is attached. Also, the drain orifice deteriorates the uniform linearity of the gain 

function over the flapper displacement range. Even though the squeeze film damper 

provides the flapper-nozzle valve-alone stability, it destabilizes the servovalve when the 

feedback flow force increases, causing the high frequency valve whistle [Watton 87]. 

A new damper design is proposed to overcome the shortcomings ofWatton's 

design for a fixed drain orifice. Basically, the damper on Figure D.2 has the similar 

configuration to the drain orifice on Figure D. l. However, contrary to the drain orifice on 

Figure D.1, the flapper divides the drain chamber into two parts so that the return pressures 

in each side of the drain chamber depend on flapper movement. As the flapper moves 

away from the null position, the returning pressure difference on the flapper increases and, 

in turn, the damping force increases. It is expected that the newly designed damper on 

Figure D.2 will improve both performance and stability, i.e., increase null pressure 

sensitivity and enhance servovalve stability. 

Steady-State Characteristics of the Flapper-Nozzle Valve 

Consider the flapper-nozzle stage as shown on Figure D.2. If we assume a 

blocked-load so that Qs = 0 and no leakage, 

Qol = Qnl = Qel, Qo2 = Qn2 = Qe2 
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where 

where Cctf, Ccto, Cctct = the unitless discharge coefficients for curtain, nozzle, and drain 

orifice, and where 

Ao = orifice area { Ao = 7t ;i ). in2 

dn, do = diameters of nozzle area and orifice area, in 

w ct = area gradient of drain orifice, in 

Xfo, Xf = equilibrium flapper position and flapper displacement, in 

Equation (D.l) is simplified by 

k 0 ,y' 1 - P1 = kn ( 1 - Xf} -v'P1 - Pel 

k 0 ,y' 1 -P2 = kn (1 + xf) ,VP2 - Pe2 
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and 

where 

Then, Equation (D.2) yields 

where 

Equation (D.3) yields 

- P1 - P2 - P 1 - P 2 P1 =- P2 =- p 1 =-e- p 2=-e-p' p' e p, e p 
s s s s 

Pi = 1 + Pei Z (1 - xf)2 

1 + Z (1 - xf)2 

P2 = 1 + Pe2 Z (1 + xf)2 

1 + Z (1 + Xf)2 

Z = (kn)2 = 16 (Cdf dn Xfo)2 
ko Ccto d} 

- P1 P 1---e - ' 
1 +y2 

- P2 
Pe2=--

l +y2 
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Then, equations (D.4) and (D.5) can be combined to determine the steady-state 

characteristics of the flapper-nozzle valve, i.e., 

P1 = 1 
1 + z ( 1 - xr}2 - z ( 1 - xr}2 

1 + y2 

The nondimensional flow loss, Qe , and power loss, We, are written as follows: 

Q _ Qel + Qe2 
e-

kn 

= 'Y [(1 - xr) YP1 + (1 + xr) YP2] 
'Vl+f 

- w -
W - e -Q e---- e 

Ps kn 

(D.6) 

(D.7) 

(D.8) 

The nondimensional characteristics, P1 - P2, Pei - Pe2, and Qe =Weare shown on 

the figures D.3 through D.5 for values of the parameter Z = 1, 2, 3, 4. No drain orifice is 

represented by the configuration as y ~ =. 
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At the null condition, i.e., Xf = 0, equations (D.5) through (D.8) yield 

(D.9) 

P -P - 1 el - e2 -
(1 +z)(1 +f)-z 

(D.10) 

- . 2y 
We= Qe = ----;::====== 

-V ( 1 + Z) ( 1 + f) -Z 
(D.11) 

For servovalve with force feedback, it is common to have a value of Z = 1 so that, 

with no drain orifice, the null pressures on either side of the nozzle are at half supply 

pressure. Servovalves with direct feedback tend to have higher values of Z, typically up to 

4 [Watton 87]. Figure D.3 shows that the flapper-nozzle stage without a drain orifice has a 

maximum null gain (i.e., a maximum null pressure sensitivity ) when Z = 1. 

Consequently, the figures D.3 through D.5 reveal the following steady-state 

characteristics of the flapper-nozzle valve with drain orifice. First, when -y is finite and 

Z ~ 2, the gain around null increases as -y decreases. Second, the pressure differential 

versus the flapper displacement, i.e., (P1 - P2) / Xf, generally becomes more linear as -y 

decreases. Third, a decrease in -y or an increase in Z is accompanied by an increase in back 

pressure differential, IPe1 - Pd, but with a decrease in flow and power loss. Figure D.6 

illustrates the preferred null range of operation where the back pressure is selected to be 

less than 10 percent of the supply pressure. 
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Linearized Transfer Function of the Flapper-Nozzle Connected to a Spool Valve 

The load flow into the spool valve is represented by 

(D.12) 

Equation (D.12) is 

(D.13) 

Considering the small-signal dynamic response, then the steady-state flow characteristics of 

Equation (D.13) may be linearized about art operating point Xfo, P1 0 , P20 , Pelo, Pe2o as in 

equations (D.14) and (D.15) 

(D.14) 
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Combining equations (D.5) and (D.14) yields 

(D.15) 

where 

k _ kn (1 - Xfo) k kn (1 + Xfo) 
a2 - , b2 = ---;::::::::::::==== 

,Jplo - Pelo ,.jp2o - Pe20 

It is frequently assumed that the dynamic flow contribution is dominated by the 

spool valve velocity component and that the oil compressibility and leakage effects are 

negligible. Thus, the flow equation of the spool is simply represented by 

(D.16) 

where ap = cross sectional area of the spool valve, in2 

Xp = spool displacement from null position, in. 

Spool inertia is also assumed to dominate the dynamics of momentum equation and 

is combined with a resisting spring force which exists for a servovalve with direct 
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feedback. Thus, the dynamic equation for spool movement is 

(D.17) 

where m = spool mass, slug 

k = restraining spring stiffness, lb/in. 

Combining equations (D.15) and (D.16) yields 

AP - Xpm ap A- kx1 A-il 1 - S ilXp - ilXf 
ka1 - ka2 - ka3 ka1 - ka2 - ka3 

(D.18) 

where Xpm = maximum displacement of the spool, in 

A- ~Xp . 1 ilXp = -, umt ess. 
Xpm 

Hence, one has 

(D.19) 

where 

(D.20) 

(D.21) 
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Combining equations (D .17) and (D .19) yields the transfer function relating 

nondimensional spool movement to nondimensional flapper movement as follows: 

where 

AapPs 
L\xp = _____ X~pm ___ _ 
A- a 2 P 
LlXf m s2 + Xpm _P __ s B s + k 

Xpm 

= AC 
m s2 + 2 a kb B s + 1 
ro; ffin 

-{£ _ aJ Ps C- ap Ps 
ffin- -,a- ' ---

m 2Vmk kn kXpm 

(D.22) 

It is now appropriate to def me the gain function, f g, and the damping function, fct, 

such that 

fg:=A (D.23) 

(D.24) 

Consequently, it follows from equations (D.22) and (D.24) that the damping ratio of the 

second order transfer function is given by 

t; := a fct (D.25) 

Before pursuing the generalized transfer function of Equation (D.22) and its 

variation with operating conditions, it is worthwhile considering its nature at the null 

condition. At the null condition of a flapper-nozzle valve, i.e., Xf = 0, equations (D.5) and 
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(D.6) yield 

where Y= 1 +(1 +Z)y2• 

Hence, one has 

- - l+y2 
P1 =P2=-y 

- - 1 
Pel =Pe2=

Y 

y 
kx1 = kx2 = kn fY 

k 1 = kbl = - k {Y 
a o2VZy 

(D.26) 

(D.27) 

Then, using the equations (D.21), (D.24), and (D.27), the null damping function is 

f _ 4Zy(1 +y2) 
d - y3/2 

(D.28) 

And, for a servovalve with no drain orifice, i.e., as y ~ 00 

(f) _ 4 Z 
ct = - (1 + Z)312 

(D.29) 
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Therefore the damping constant ratio at null can be written as 

t; with drain orifice _ y { 1 + y2) (1 + z)312 

{; without drain orifice [ 1 + (1 + Z) f ]312 

(D.30) 

= (1 + rJ (l _ p )312 y2 el,2 

Also using the equations (D.20), (D.23), and (D.27), null gain function is represented by 

f _ 4zf(1 +f) 
g- y2 

And, as y~ 00 

(f) = 4 Z 
g = Cl+ z)2 

Therefore the gain ratio at null can be written as 

gain with drain orifice _ y2 { 1 + y2) (1 + Z)2 

gain without drain orifice - [ 1 + ( 1 + z) y2 J2 

(D.31) 

(D.32) 

(D.33) 

Figures D.7 and D.8 illustrate the nondimensional plots of the damping constant 

ratio of Equation (D.30) and the gain ratio of Equation (D.33), respectively. These figures 

reveal that both the damping constant and the gain at null always increase as Z increases for 

any value of y and that, in general, the damping constant and the gain at null reach peak 
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values in the range of O ( y ( 2. Consequently, figures D.7 and D.8 show the typical range 

of parameters for practical implementation of the drain orifice. For all cases of 'Y ~ 2 and Z 

~ 2, both the damping constant ratio and the gain ratio at null increase as the area gradient 

of the drain orifice decreases. 

Figures D.9 and D.10 show that the damping function, fct, and the gain function, 

fg, for a particular parameter, Z, may increase and reach the maximum at operating points 

away from null. Highly resistive drain orifices will also tend to produce flatter 

characteristics away from null and would certainly prevent the low gain and damping that 

occur at extreme flapper movements. With a drain orifice, an increase in the gain function 

occurs when Z ~ 2, and in all cases, an increase in the damping function always occurs. 

Generally the damping function and the gain function become more linear over the range of 

flapper displacement as the drain orifice is more resistive, that is 'Y decreases. It would 

appear that a high value of Z is required with 'Y values less than 2. 

Dynamics of Torque Motor/Flapper-Nozzle First-Stage Assembly 

On the first stage of an electrohydraulic servovalve, the torque which is produced 

by the electromotive force is proportional to the armature current. It is opposed by 

retarding torques due to the flapper restraining spring force, the static and dynamic fluid 

forces, the viscous friction force and the flapper acceleration force ([Merritt 67], [Nikiforuk 

69]). This is expressed by 

(D.34) 
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where i = electrical current differential, amp 

Ki= torque constant of the torque motor, in-lb/amp 

Ia= inertia of armature and any attached load, in-lb-sec2 

Ba = viscous damping coefficient of mechanical armature mounting and 

load, in-lb-sec 

Kat = total spring constant of torque motor and armature, Kat = Ka - Km, 

in-lb/rad 

Ka= mechanical torsion spring constant of armature pivot, in-lb/rad 

Km = magnetic spring constant of torque motor, in-lb/rad 

Ft= static and dynamic fluid flow forces on the flapper, in-lb 

r = equivalent length of flapper, in. 

Nikiforuk, et. al [Nikiforuk 69] showed that the fluid force on the flapper with no 

drain orifice is dominated by the static fluid force 

Hence, the fluid force on the flapper with a drain orifice is similarly given by 

where act = equivalent drain pressure sensing area of the flapper except nozzle 

h . 2 area, act= Wct - an, m 

h = height of the drain chamber, in 

n = ratio of aa 
an 

(D.35) 

(D.36) 

For the blocked load condition, the dynamics of the first-stage, torque 

motor/flapper-nozzle valve assembly can be represented using equations (D.19), (D.34) 
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and (D.36). The block diagram on Figure D.11 shows the dynamics of the first-stage 

assembly. The loop transfer function is 

G(s)H(s) = -~K~_ 

~+2ss+l 
ro; ffin 

where Sm = maximum angular displacement of flapper, rad 

ro; =Kat/ la 

The transfer function of the first stage assembly is 

where im = maximum current differential, amp 

(D.37) 

(D.38) 

The dynamics of the first-stage assembly are always stable since the contours of the 

polar plots of the transfer function G(s)H(s) do not encircle the point -1 + jO. However, an 

increase of the gain function K makes the contour closely approach to the point -1 + jO. 

Hence, in terms of stability, the parameter "I must be large and the area ratio n must be 
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small. A highly resistive drain orifice causes the first-stage system to have a low damping 

constant and a high natural frequency. With a high null gain for the small value of y, the 

practical value of 'Y must be determined. 

Interactions Between the Torque Motor and the Hydraulic Stage 

By combining equations (D.19), (D.22), (D.34 ), and (D.36), the dynamics of a 

two-stage electrohydraulic servovalve are represented as shown on Figure D.12. It is then 

possible to show that the response of the servovalve will contain oscillatory components 

using the Routh stability criterion. By adding a fixed drain orifice and deriving the 

sufficient condition, Watton [Watton 87] showed that these oscillatory components will not 

exist. By using Routh stability criterion, the sufficient condition for the stability of a 

servovalve with a variant drain orifice is obtained by 

B} Xpm ) f 
J a P s an ( 1 + _n_) r g 

i +r 
(D.39) 

As previously mentioned, the parameter 'Y and the area ratio n must be balanced, 

i.e., sufficiently large and small, respectively, to increase overall servovalve stability. 

However, as shown on Figure D.10, the gain function, fg, is a function of y, and its peak 

value on a stroke of the flapper increases as 'Y increases. Therefore the value of 'Y need to 

be determined to design an actual variant drain orifice. 
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data: 

For example, consider a commercially available servovalve having the following 

Ba= 0.24 lb in sec 

J a = 6.84 X 10-4 lb in2 

an= 7.13 X 10-2 in2 

Xfo = 2.6 X 10-3 in 

Ps = 1500 psi 

r = 0.5 in 

It is assumed that the servovalve is a direct feedback type of which typical value of 

Z is 4, and that "I= 1 and n = 3 (i.e., aci = 4 an). When "I= 1, the back pressure in the drain 

chamber at null is 25% of the supply pressure. Then, using the condition (D.39), the two 

sides of the inequality can be plotted using the information on Figure D.9. Figure D.13 

shows several plots of inequalities of (D.39). 

High frequency oscillations are identified when the horizontal straight lines on 

Figure D.13 intersect the gain function f g· The undesirable range of operation increases 

significantly when the variant drain orifice is attached to the flapper. For high supply 

pressures, the developed theory predicts an increase in audible noise resulting from 

instability over most of the operating range of the flapper displacement. 

Findings and a Discussion 

Table D.I summarizes the effects of a variant drain orifice compared to a fixed drain 

orifice. The specific advantages acquired by using a variant drain orifice on the first-stage 

flapper-nozzle of a two-stage electrohydraulic servovalve are as follows: 

1. A reduction of the flow and the power loss through the flapper-nozzle 

stage. 
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2. An increase in the null pressure sensitivity of the flapper-nozzle valve. 

3. An increase in the linearity of the gain function of the flapper-nozzle valve. 

4. An increase in the null gain of the overall servovalve dynamics. 

5. An increase in the uniformity of the gain function for each flapper stroke. 

However, a highly resistive drain orifice may deteriorate the stability of servovalve 

dynamics. Hence, the features and the size of the variant drain orifice must be determined 

considering stability. 
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TABLE 7.1 

Numerical Values for The Parameters of A Two-Satge Electrohydraulic Servovalve 

parameter value parameter value 

la 1. 75 x 10-6 lbr in s2 I rad Xfo 0.0015 in 

Ba 0.036 lbr ins I rad Cdo,Cdf 0.68 

Ka 32 lbr in I rad cdi 0.63 

dn 0.0145 in p 8.12 x 10-5 Ibr s2 I in4 

r 0.6882 in Ap 0.0515 in2 

Kt 18.5 lbr in I amp Ms 3.02 x 10-5 Ibr s2 I in 

fl 2.16 x 105 lbr I in2 Bs 5.15 lbr s I in 

Vt 0.003 in3 Ks 340 lbr I in 

Ve 0.0005 in3 Xpm 0.05 in 

KL 8. 79 x 10-4 in5 I lbr s irn lamp 

Ps 2000 lbr I in2 do 0.0093 in 

dd 0.0198 in 
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TABLE 8.1 

Various Values Depending on the Specifications of 8 and a 

Line 8 a A(Mi) 11.(M2) Juang's Criterion 

L1 x/6 1 0.4442 -0.0156 0 0.2729 0 -0.0480 µ1 = 1.3946 

Li 0 -1 1.2089 -0.2089 0 0.5277 0 -0.0991 µi = 0.5758 

L3 -x/6 1 0.4442 -0.0156 0 0.2729 0 -0.0480 µ3 = 1.3946 

Li 'Jr, -10 0.0017 -0.3421 0 0.0426 0 -0.2007 µ,i = 1.8428 

TABLE 8.II 

Various Values for Example 1 

Line 8 a 11.(Mi) A(M2) Juang's Criterion 

L1 x/6 0 2.1659 -3.3659 2.8581 -2.0248 µ1 = 0.1607 

Li 0 -1 3.2158 -4.4380 3.8000 -3.0222 µ2 = 0.1214 

L3 -x/6 0 2.1659 -3.3659 2.8581 -2.0248 µ3 = 0.1607 

Li 'Jr, -10 0.3530 -0.0685 0.0628 -0.1683 µ4 = 1.9182 
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TABLE 8.111 

Various Values for Example 2 

vertex 
11.(AM1) 11.(AM2) 

P: positive 
Line 

k1 k2 definite? 

0.4617 0 0.8099 -0.1204 0.0072 -0.4894 yes 
L1 

-0.2971 0 0.0775 -0.5211 0.3149 -0.0046 yes 
or 

0 0.3499 0.1390 
L.3 

-0.4305 0.3941 -0.1997 yes 

0 -0.4939 0.6077 -0.1961 0.2819 -0.5563 yes 

0.3110 0 1.5698 -1.8634 1.7181 -1.4071 yes 

-0.2253 0 1.3503 -1.1375 1.0196 -1.2449 yes 
Lz 

0 0.2632 1.7130 -1.4108 1.2790 -1.5616 yes 

0 -0.3309 1.7739 -2.1538 1.9635 -1.6081 yes 

2.8329 0 0.3301 -0.0581 0.0287 -0.1672 yes 

-14.5985 0 - - - - no 
~ 

0 15.9236 - - - - no 

0 -5.9418 0.2988 -0.0633 0.0285 -0.1666 yes 
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TABLED.I 

Comparison of Effects of Drain Dampers 

Characteristics Fixed Drain Orifice V ariantDrain Orifice 

Flow and power loss ! ! 

Null pressure sensitivity 
! t 

of flapper-nozzle valve 

Linearity of gain function 
! of flapper-nozzle valve t 

Null gain of servovalve ! t 

Null damping constant ! t 

Uniformity of gain function - t 

Stability of first-stage t t 

Overall Stability t i 

! : decrease t : increase ++ : little effect l : adjustable variance 
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k{ 
0 : Gao's method 

D : Maximum bounds 

allowable 

Figure 3.1 Stability bounds for a 2-dimensional perturbation system 

160 



~ Stability bound estimates by Gao's method 

~ Expanded stability bounds by Expansion Theorem 

Figure 4.1 Part view of stability bounds for a 3-dimensional perturbation system 
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. ... ............... ...... ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Zhou's method [1] 

Gao's method [7] 

Expansion of Gao's result 

Asymmetric First-Order Method 

Figure 6.1 Comparison between the stability bound estimates for example 1 
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2.85 
1.75 

:-:·:-:-: -:-:-:-:-:- :-~20:5 · 

Zhou's method [1] 

m Gao's method [7] 

~ Expansion of Gao's result 

[] Asymmetric First-Order Method 

-76.3 

Figure 6.2 Comparison between the stability bound estimates for example 2 
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k2 (Bs), lbr s I in 

~ Gao's Method (1993) 

E) Zero-Order Method 

D First-Order Method 

8:) Typical Value (k 1 =0. 036, k2=5.15) 

® Watton's Criterion (k1 = 3.98 X 10- 4 , k2 = 0) 

21.533 1-----------~ 

: ·: ·:·: · :· View "A"-"A" 

5.4039: ·: ·: ·: · : ·: ·: ·: 
X 10-S 

::::::::: :::$::::::::::::: :::: :::::::: 

"A" 
~+---~ ........... _._... ......... ......._._._. ......................... ___ k1 (Ba) 

0.1094 lbr in s I rad 

"A" 

Figure 7.1 Stability bound estimates for a two-stage electrohydraulic servovalve example 
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~ Gao's Method 

~ Expanded Zero-Order Method 

[J Expanded First-Order Method 

85.47 

........................ . . . . . . . . ,·. . . . ......... . 

-0.018 

Figure 7.2 Stability bounds for a fighter aircraft example 
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Im 

Figure 8.1 Two open half-planes seperated by a line L 

D Gao's Stability Bounds (0 = 0, a = 0) 

II Juang's Robustness Bounds (0 = rr,/6, a = 1) 

~ Asymmetric Robustness Bounds (0 = rr,/6, a= 1) 

Figure 8.2 Various stability and robustness bound estimates 
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Im 

Figure 8.3 Region H1 for eigenvalue assignment 

1111 Juang's Robustness Bounds 

-20.8 
~ Asymmetric Robustness Bounds 

Figure 8.4 Comparison of robustness bound estimates for example 1 

167 



10 10 

0 0 

-10 -10 

-20 .___ _ _..._ __ ..___......_ _ ___. -20....._ __ ....._ __ --'------l 
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(a) k1 = 2.25, k2 = 0 . (b) k1 = 0, k2 = 1.90 

10 

-20...._ __ _.__ __ __._ __ ___. 
0 1 2 3 2 3 

(c) k1 = -2.90, k2 = 0 (d) k1 = 0, k2 = -4.98 

Figure 8.5 Transient responses at the vertices for example 1 
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Figure 8.6 Eigenvalue assignment for example 2 

:::::::::::::::::::::::::::::·o:.~~:: ::::::::::::::::::::::: :• 

[J Exact Bounds 

E2] Juang's Robustness Bounds 

II Asymmetric Robustness Bounds 
(zero-order) 

Figure 8.7 Comparison of robustness bound estimates for example 2 (I) 
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k2 

.............. Q,~·\·.·.·.·.·.·. 

D Exact Bounds 

~ Asymmetric Robustness Bounds 
(zero-order) 

!TI] Asymmetric Robustness Bounds 

( first-order) 

II Juang's Robustness Bounds 

Figure 8.8 Comparison of robustness bound estimates for example 2 (II) 
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(c) k1 = --0.83, k2 = 0 (d) k1 = 0, k2 = --0.80 

Figure 8.9 Transient responses at the vertices for example 2 
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I I Ps 

Figure D.1 Flapper-nozzle with a fixed drain orifice 
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Figure D.2 Rapper-nozzle with a variant drain orifice 
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Figure 0.3 Steady-state characteristics, P1-P2 
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Figure D.4 Steady-state characteristics, Pe1-Pe2 
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Figure D.5 Steady-state characteristics, We or Qi 
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Figure D.6 Pressure characteristics at null 
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Figure D.7 Variation of null damping constant ratio 
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Figure D.8 Variation of null gain ratio 
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Figure D.9 Variation of gain function 

179 



3 

2 

1 

0'--~~~~---~~~~---' 
0 0.5 1 

(a) Z=l 

0 0.5 1 

(c) Z=3 

3 

1 

0'--~~~~_..._~~~~---
0 

0 

0.5 
(b) Z=2 

o.s 
(d)Z=4 

1 

1 

Figure D.10 Variation of damping function 
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Figure D.11 Block diagram for the dynamics of first-stage assembly 
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Figure D.12 Equivalent block diagram for the dynamics of a two-stage electrohydraulic servovalve 

182 



0.5 

...................................................................... , ........................................ (b)·· ........................................... .. 

o,!--~~~--'---~~~----'~~~~_,_~~~~_._~~~--....... 

~ 0.2 o.r 0.6 0.8 

~r---~~~61~~~~·~1 

~~~~~~~~~~~~62~~~~~~~~~---11~ 
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Figure D.13 Comparison of stable operation ranges of various servovalves 
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