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INTRODUCTION

Finite fields and structures over finite fields have a rich and well-
developed theory. There has been considerable interest in generalizing
these results to finite rings and preliminary to this, to finite local
rings since finite rings decompose into structures involving local rings
(See Chapter I).

McDonald and Ganske [21], [9] have developed extensively the theory
of commutative finite local rings and in particular a Galois theory.
Clark and Drake [2] have characterized commutative finite local principal
ideal rings. While Raghavendran [23], Wilson [27], [28], and others have
proven several structure theorems for particular finite local rings. But
a workable structure theorem for the non-~commutative case has not beeﬁ
obtained. Thus the theory of non-commutative finite rings remains
undeveloped.

In this paper we show that non-commutative local rings are homo-
morphic images of skew polynomial rings over a suitable "coefficient"
subring. This corresponds to the Cohen Structure Theorem for commutative
complete local rings so that much of the theory in the non-commutative
case is a parallel to the commutative theory.

The technique often used in the study of local rings is to reduce
modulo the maximal ideal and then "1ift" results back to the ring. This

same technique is used in the case of polynomial rings over a local ring.
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2

The needed background and motivation for studying finite non-
commutative local rings is given in Chapter I without proof. In Chapter
II we prove the existence of a "coefficient" subring S of a finite local
ring R. Clark [3] and Wilson [27] independently have shown
R=S® Sb, ® +++ @ 8b_as a two-sided S-module where b, are in the Rad(R).
We will extend this by showing there exist automorphisms o, of S such
that

sb, = b.0.(s) for sin Sand 1 < i < n.
i i'i

This is the needed substitute for the lack of commutativity in R. Using
this decomposition of R we then show that R is the homomorphic image of
the skew polynomial ring S[Xl,---,xn,ol,---,on] where Xi are non-commuting
indeterminants and sX, = Xiai(s) for s in Sand 1 < i < n.

In Chapter III we study in detail the skew polynomial ring R[X,0] for
R a finite local ring. We are interested in R being finite due to the
above structure theorem, but we note that most of the results of Chapter
III are also valid for local or Artinian local rings with only slight
modification of several proofs. Ore [22] in 1933 first considered skew
polynomial rings over fields and division rings. Since Ore's work, little
has been done to develop the properties of polynomials and ideals in skew
polynomial rings over a more general coefficient ring. We follow the
approach of Snapper [25] for polynomial rings over commutative local rings
and develop an extensive theory for polynomials, ideals, and factorization
in skew polynomial rings over finite local (Artinian local) rings.

Chapter IV is an application of our skew polynomial theory and the
structure theorem., We first consider ring extensions of a non-commutative

finite local ring. In particular our interest is in a skew simple
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algebraic extension R[8,0] where ¢ is an automorphism of R such that

rd = 8o(r) for r in R. Also we complete the characterization of Clark
[2] of all finite chain rings R by using a skew Eisenstein extension of
the coefficient subring S of R. Further we characterize the finite one-

step ring of Redei [24] in terms of a particular skew polynomial ring,



CHAPTER I
SURVEY OF FINITE RINGS

This chapter introduces some of the definitions and notation used in
studying finite rings with identity and gives several decomposition
theorems of finite rings into rings involving local rings. Thus the study
of finite rings involves that of local rings.

Throughout this paper 'ring" will mean a finite ring with identity
which is not necessarily commutative. The one exception is the polynomial
ring which will not be finite but will have coefficients from a finite
ring.

A ring R is called local or completely primary if R/Rad(R) is a

finite field, where the radical of R is
Rad(R) = N{M | M is a maximal right ideal of R},

We have the following well-known results concerning the radical of R
and local rings, which are given without proof. The first proposition
shows that for finite rings the various well-known types of radicals are
equivalent. See McDonald [21] for proof.

1.1 PROPOSITION. Let R be a finite ring with identity.

(1) Rad (R)

{r in R| 1 - rs is invertible for all s in R}

{r in R|1 - sr is invertible for all s in R}.

(2) Rad (R) is an ideal and is the largeet ideal k such that

m
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for all r in k, 1 - r is a unit.
(3) Rad (R) =N{M| M is a maximal left ideal of R}.
(#) Rad (R) =n{P| P is a prime ideal of R}.
(5) Rad (R) =U{B| B is a nilpotent ideal of R}.
(6) Rad (R) = {r in R|r is strongly nilpotent},
Our concern is mostly with local rings:

1.2 PROPOSTTION, The following are equivalent.,

(1) R is a local ring.

(2) R has exactly one maximal right (or left) ideal,

(3) The non-units of R form a right (or left) proper ideal.

(4) TFor every r in R, either r or 1 + r is a unit.

(5) R has only 0 and 1 as its idempotents.

(6) Every element of R is either a unit or a nilpotent element,

1.3 PROPOSITION, If R is a finite local ring with maximal ideal M, then

(1) Rad (R) =M = {r in R|r is nilpotent}; hence M is nilpotent.

{2) The units of R = {r | r is not in M}.

(3) Every non~unit is a two-sided zero divisor in R.

The following proposition from Raghavendran [20, Thm, 2,p. 1991
gives the relationship of the orders of R, M, and R/M for R a finite
local ring.

l.4 THEOREM, Let R be a finite local ring with unique maximal ideal M,

Then there are associated with R integers p (prime), n, and r such that
nr (n-1)r r
IRl =p~, [M| =p » |RM| = p
where

(1) The characteristic of R is pk where 1 £ k <€ nr,

(23 M* = (o).



Examples of local rings are:
(1) Any finite field GF(pr), whose radical is (0) and x(R) = p.
(2) The ring Z/2p" (p prime), whose radical is Zp/Zp" and

x(R) = p".

(3) The ring of matrices

{[a b] | a,b are in Z/Zp}

0 a

whose radical is

;[z »:l | a is in Z/Zp}

and x(R) = p.

(4) (Wilson [28]) The ring of matrices

a b
j 2c 24 l a,b,c,d are in Z/uz}

whose radical is

i 2a b | a,b,c,d are in Z/HZS
2c 24

and x(R) = &4,
The first three examples are commutative while the last is noncommutative.
To require that R has a unique maximal right ideal is stronger than
requiring that R have a unique maximal two-sided ideal as the following
illustrates,
Let S = Z/Zpn (p prime) and R = Mn(S) be the n x n matrix ring

over S (n > 2). Then R has a unique maximal two-sided ideal
n
M= Mn(Zp/Zp ),
but

R/M = Mn(Z/Zp )/Mn(Zp/Zp )= M n(z/zp)

which is not a field.
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We next give various structure theorems for finite rings each of
which involves finite local rings. Thus the structure of finite rings
may be approached from the context of the structure of finite local rings.

1.5 PROPOSITION. (Structure theorem for semi-local rings)

Let R be a semi-~local ring. Then R is isomorphic to an n < n matrix
ring over a local ring S. The integer n is unique and S is unique up to
a ring isomorphism.

By lifting orthogonal idempotents from R/RadR) we cbtain the follow~
ing well-known result for finite rings. The proof may be found in

McDonald [21].

1.6 PROPOSITION. (Standard decomposition)

Let R be a finite ring. Then
R=S +N
where (a) S NN = o,
() S=e 22-1 M,,(S;) is a direct sum as an additive Abelian
= i
group. of n, > o, matrix rings over local rings Si'

(c) N is a subgroup of Rad (R).

If in the above standard decomposition the characteristic of Si is
Ps (prime), then Si contains a subfield ki igomorphic to the residue field
Si/Rad(Si). Thus we may consider S; as a finite dimensional algebra over
ki' Applying the Wedderburn-Malcev Theorem we have
S; =k, @ Rad(Si) as Abelian groups for 1 < i < n.
So that the standard decomposition splits into

R=@ 7, ¥y (I;) + Rad (R)

where
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[ie1 ¥n (k) N Rad (®) = 0.

In Chapter II we generalize this result to all finite rings.

In (1.6) the local rings Si are called the associated local rings

of R. These local rings together with the subgroup N and the manner in
which their elements combine determine the structure of R.

If N=0, thenR=@& 22:1 Mni(si) is a direct sum of matrix rings
over the associated local rings; i.e., is a direct sum of semi-local rings.
It is easy to show that N = 0 if the radical of R is contained in the
center of R or if the commutative orthogonal idempotents of R/Rad (R)
1lift to commutative idempotents in R, Other necessary and sufficient

conditions for N = 0 were given recently by Courter [5].



CHAPTER II
STRUCTURE OF FINITE LOCAL RINGS

As shown in the first chapter every finite ring has a standard
decomposition into the direct sum (as Abelian groups) of matrix rings over
finite local rings plus a factor which is a subgroup of the radical R.

Thus knowing the structure of finite local rings one hopes to use the
properties of matrix rings to study the structure of finite rings.

In this chapter we give several structure theorems for non-commutative
finite local rings. Each of the structure theorems employs the use of a
commutative local principal ideal subring S of R. The ring S is a Galois
ring of the form (Z/an[x])/ (f). (2 denotes the rational integers, p is
a prime and £ is irreducible modulo p). Following Krull and Janusz [16]
who have shown similar results for commutative rings we will call S a
"coefficient" subring of R.

As a substitute for commutativity in R we show that R has a
"distinguished" independent generating set {1,b2,- .o ,bm} where for each
i, 1 £ i £ m, there is an automorphism ¢

i

for each s in S. Using this result we have our main structure theorem.

of S such that sb, = b.0. (s)
i ii

THEOREM. Let R be a finite local ring with coefficient ring S: Then R
is the homomorphic image of a skew polynomial ring S[xl ,0--,xm; Oyocce ,om]

where o i's are automorphisms of S, xi's noncommuting indeterminants, and

sxi = xioi(s) for s in s.
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l. GAIOIS RINGS.

Let GR(pn,r) denote the extension (Z/an[x]) /(£) of the ring Z/an
(p a prime) where f is monic of degree r and irreducible modulo Zp/an.
Such a ring is called a Galois ring of characteristic p'. We note that
a Galois ring is a generalization of a Galois field GF (pr) and the ring
Z/an. For n = 1, GR(p,x) = GF(pr) and for r = 1, GR(pn,l) = Z/an.

For another characterization of GR(pn,r) we use the fact that Z/an
and (2/Zp™)[X]/(f) are commutative rings to conclude from Ganske and
McDonald [9, Theorems 5.6, 5.11] that GR(pn,r) is a Galois extension of
Z/an. We include for completeness and reference their theorem which
summarizes the properties of commutative Galois extensions.

2.1 PROPOSITION. Let S = GR(p",r) = (2/2p"[X]1)/(£) be a Galois extension

of Z/an. Then
(i) S is unramified over Z/an, with unique maximal ideal Sp, and
every ideal is of the fomm SPi.
(ii) s = (Z/an) [a]l, where a is a root of E£.
(iii) S is a splitting ring of E£.
{(iv) The automorphisms of S permute the roots of f.

(v) |auto (s)| = dim (S) = deg £.

2/ZpR
(vi) Auto (S) is a cyclic group and isomorphic to Auto (S/Sp).
(vii) s is the unique Galois extension of Z/an of degree r.
Further note that since each ideal of GR(p",r) is of the form (pi) R
for g in GR(pn,r), g= upt, where u is a unit and t a unique integer,
Next we show that if R is a finite local ring with characteristic
p" and R/Rad(R) = GF(p"), then R contains the Galois ring S = GR(p",r).

Thus we may consider R as a two«-sided S=module (denoted (S=S)-module),
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In fact, S is a (S-S)-module direct summand of R and is called the

coefficient subring of R,

2.2 THEOREM. (Coefficient Subring)

Let R be a finite local ring with unique maximal ideal M, the
characteristic of R be pn, and residue field R/M = GF (pr) .

Then there exists a commutative local subring S of R such that

(1) s = GR(p",r); i.e., S is a Galois ring.

(2) S/Rad(s) = s/Sp = R/Rad(R) = R/M,

(3) S is unique up to an inner automorphism.

(4) s is an (S~S)-module direct summand of R, i.e.,

SRS = SSS D SNS where N < Rad(R) .

Proof. We construct S in R as follows. Since the finite field

R/Rad(R) = GF(pr) contains the subfield 2/Zp, we have from the theory of

finite fields that

GF(p°) = (2/2pIx1)/(F) = (2/2p) IB]

for some monic irreducible £ of degree r in (2/2p)[X] and ¥ in GF(pr) a
zero of £. Let £ in (Z/Zp") [X] be a monic preimage of E of degree r.
Then f is irreducible and hence by (2.1) (Z/an) [X]1/(f) is the Galois
ring GR(pn,r) . Further 6 has a preimage 6 in GR(pn,r) such that ©
satisfies £ and GR(p",x) = (2/2p") [0]. We let (z/zp") [X)/(£) = GR(p ,x)
be denoted by S, and note that S is commutative since it is a simple
extension of Z/ZPn.

By Raghavendran [20, Thm. 8, p. 212] we have that up to an inner
automorphism of R, S is a unique subring of R, Note, if R is commutative

then s is absolutely unique by (2.1).
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Further Rad(S) = Rad(R) N S, and from the construction of S under

the natural homomorphism
¥ ¢ R <+ R/Rad(R)
S is mapped surjectively onto R/Rad(R). Thus
S/Rad(S) = S/(Rad(R) 0 S) = S/ker u = R/Rad(R).

It remains to prove (iv). Since R and S are natural (S-S)-modules
and S is commutative,R and S may be considered as left modules over their
enveloping algebra S ®, S.

We first show that S QZ S=& z§=ls & rings. Now S = (Z/an) [X1/(£)
where £ is monic of degree r and irreducible modulo Z/Zp. We have a

natural ring isomorphism

v :S®, s = (3/20") [XI/(£) &, S+ SIXI/(E)
defined by

Yy : X®s -+ sX where X =X + (f) and s is in S.

But by (2.1), S[X] is a splitting ring for £, so that

£(X) = (X-al) (X-ar). Thus

1]

$®, S = S[X1/(f) ~ S[X1/(X - al) cee (X ~ ar)

® ]I, SIX/(X - a)

n

) ZL]_ S as rings.
Therefore we consider R and S as left (@ 2;1 S) -modules.

Since S is a local principal ideal ring, by Hungerford [13] S is the
homomorphic image of a principal ideal domain and hence is a quasi-
Frobenius ring. Now S Qz S being the direct sum of quasi-Frobenius rings

is also quasi-Frobenius. The ring S being a direct summand of S oz S is
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S ez S-projective and hence injective. A module is projective if and
only if injective over quasi-Frobenius rings. Thus S is an injective
(s-S)-module. That is, S is a (S-S)-module direct summand of R. So that

there exists a (S-S)-module N such that
s®s = s55 @ Vs

By Wilson [24, Prop. 2.2] SNS is contained in Rad(R).

2. MODULES OVER GALOIS RINGS

We show that for a Galois ring S = GR(pn,r) , an (S-S)-module M
decomposes into (S~8)-submodules M, wvhere for each i there is an auto-
morphism ci of S such that sm = mci(s) = msoi for m in M, and s in S. This
will be referred to as "skew commuting". Thus, when considering the
structure of M as a (S-S)-module we need only consider the left S-module
structure.

2.3 THEOREM, Let S = GR(pn,r) be a Galois ring, M a (S-S)~-module, and

Auto(s) = {1,02,---,0r} be the ring automorphisms of S. Then

M= Ml ® 0 Mr as (S-S)-modules

where for each i, 1 £ i € r, there is an automorphism dk (1) of S such that
Sm = mo, (1) (s)

for eac:hm:i.nMi and s in S.
Proof. Since § = (2/Zp ) [X1/(£) is a Galois extension of 2/Zp", by (2.1)

there exists a primitive element a, in S such that S = (Z/ZPn) [al] . The

1
element a; satisfies the monic polynomial f whichis irreducible modulo
2/2p. In S[X] £ splits into £(X) = (X ~ al) see (X = ar) . Since f has

distinct roots in S/Sp = (2/2pIX])/{f) we have 'e'ii # Ej for i # j. Thus
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a; - a:j is not in Sp and is a unit. Define
5
£.(x) = (x - a.).
i i j
i=1

Then £, (a;} = (a; - a;) *+- (a;-a, ,)(a;-a, ,) *** (a,-a) is a unit

+1
in s, and we have the following identity
by

.-1 -
(%) i£1 1£,(a)]1 g, (x) = 1.

Observe that right multiplication of elements in M by a, is a left

S-linear morphism. Denote it by

0 : M>M where o(m) = mal.

Let £(X) = x° o+ tlxr-l + v+ tr where the t, are in Z/ZPn, Then

i
1

(c +t.0F”

£(o)m 1

+ °°° + t )m
r

r r=-1
mal + tlmal + + trm

nf (al)

= 0,

im = mti for 1:i in z/an. From the identity (%) we

have the identity mapping

since f(al) =Q0and t

r
. -1 .
iy = 151 [£,(a))7"E.(0) = M+ u,

so that

MMy o+ M+ oce 4 M

where for 1 s 1 £ r
-1
Mi = [fi(ai)J fi(o)M.
We show that this sum is direct. Suppose, without loss of generality,

that m is in M implies.

ln (M2+---+Mr). Now, m in M

1



15

mm= Ifl(al)]-lfl(a)ml for some m, in M., and thus since S[X] is commuta-

1 1’
tive,

(o - al)m (o -al) If]_(a.]_)]'-]'fl(cf)ml

-1
£, (al) I 4 (0)m,

= 0,

On the other hand, sincem is in M_ + <+« 4+ Mr‘

2

m = I£(a )17 e (O, + <o- + £ (a)) 7 E (o)

for some 1n2,---,mr in M. Thus

r z
-1
(o~ az) (o~ ar)m = [;D; (6~ ai)] [122 fi(ai) fi(O)mi]

= 0.

Thus the sum is direct.

. -1 .
Now for each m in Mi' m [fi(ai)] fi(o)mi for some m, in M, and

(@~ a)m= (0 - a)If, ()1 7', (Im,
_ -1
= 1£, (a,)1 (o),
= 0,

Thus o(m) = a,m, but also by definition of 0, 0(m) = ma

R Consequently

l'
for m ixi Mi

mal = aim.

Since a, and a, are roots of £(x) in S[X] there is by (2.1) an

automorphism o in Auto(s) such that

k(i)

Uk(i) (al) - ai.

That is, for each m in Mi' ma, = Gk(i) (al)m.



16
Since S = Z/an[al] each s in S has the form

1 r A n .
s = c0 + clal + cr-lal where ci is in 2/Z2p . Thus for m in Mi and

s in §,

ms = m(§ ciai) = § cimai
i - i
= E il gy @I m = E 3% 1) (B

i
o =0 N
k(i) ‘§ cjaIm = Oy gy (SIm
We are done.
Let § = GR(pn,r) be a Galois ring. If.{bl'bz'.."bn} is a generating

set for a (S-S)-module M, itis an independent generating set if whenever

s.b, + 52b

1By + - +sb =0

2
with s, in S, then sibi = 0 for all i, 1 £ i < n. Equivalently,

{bl,-~-,bn} is an independent generating set for M if

M=Sb, & «-- & 5b .
1 n

The set {bi'oi}?=l is a distinguished generating set for the (S~S)module

M if for each i, 1 £ i $ n, there is an automorphism Oi of S such that
sb, = b.0,(s) for each s in S.
i i'i

We prove that every (S-S)-module M over a Galois ring S possesses a
distinguished independent generating set over S.
2.4 THEOREM. Let S be the Galois ring GR(pn,r) and M be a (S-S)module.
Let {1,02,---,or} be the ring automorphisms of S. Then M is the direct

sum of cyclic modules

where
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sbij = bij Gk(i) {(s), for each s in S

and 1 £ j £ n(i).
r,n(i)

i=1,4=1 is a distinguished independent generating set
= ' -

Hence {bij’ck(i)}
for M.

Proof: This follows immediately from theorem 2,3 and the fact that S is
a principal ideal ring so that by Jacobson [15, Theorem 43, p. 78] the Mi

in (2.3) decompose into the direct sum of cyclic S-modules, That is,

n(i)
j=1

(s) for each {b, _}n(i)

where Sbij = bijak(i) ij'4=1

and s in S.

3. STRUCTURE THEOREMS.

Let R be a finite local ring with coefficient subring S = GR(pn,r) .

Consider R as a (S-S)~-module. By theorem 2.2

SRS = sSS ® SNS as (S-S) modules,

where N_. < Rad(R).

ss
Let
r,n(i)
by 5195 4y Yima, gm1
be a distinguished independent generating set of N_ where o is an

s's k(i)
automorphism of S. We use this set in arriving at the following main

structure theorem for R.

2.5 THEOREM. (Main Structure Theorem)

Let R be a finite local ring of characteristic pn and coefficient
subring § = GR(pn,r) . Let {1,02,---,%} be the ring automorphisms of S.

Then R is the homomorphic image of the skew polynomial ring
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ran(i)

sIx ] iw1,jml under the ring homomorphism

13%% (1)

sb:xij *+b 13 and #:s + 3, where the xi 3 are noncommuting indeterminants

such that Sxij (s) for s in s,

= X35 %)
Proof: Since S = GR(pn,r) we have as noted the distinguished

' . “yr,n(i) :
independent generating set {1,b ij'ok (1) }i=l, j=1 for R as a (S-~S)-module.
The map

. r,n(i)

Q'Slxij'ak(i)]i=l,j=l + R

defined by ¢(xi j) = bij and ¢(s) = s is clearly well-defined since each

]r,n(i)

polynomial in SIXi j'ck( 1) 4=1,5=1 has a unique representation in the xi

j.
Further, it is surjective since it takes generators to generators. Thus
it only remains to show that ¢ is a ring morphism. ¢ is clearly linear

and preserves products since

sy e 8'Xpy) = 0(s0y () (s IX K )

= 50, (k) (s! )bkjbhi

= '
sbk js bhi

¢(sxkj)¢(s'xhi) .

An ideal structure for R would result if N € Rad(R) had a distin~
guished independent generating set of the form {b,bz,"-,bm-l ,0} where
m is the degree of nilpotency of Rad(R) and ¢ an automorphism of S. Then
R=S6Sb® -+ @Sb" " as (S-5)-modules and also R would be the
homomorphic image of S[X,c]l. 1In Chapter IV we will show that a chain
ring has such a structure.

A natural generalization of this is to replace the cyclic

S-submodules (b),*--, (b?nrl)‘ ‘by finitely generated S~submodules
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T, oo 'Tm-l. With additional requirements on the (S-S)-submodule N we

show that R is the homomorphic image of the finite ring
seTeT’ @ --r @ T L,

We require that N be a subring of R such that N2 can be complemented in
N; that is, N = N2 @ T. Note that to require that N be a subring of R
is equivalent to requiring that N be an ideal of R, since R =S & N
implies rn = (s + n")n = sn + n’n is in N.
2.6 THEOREM. (Quasi-cyclic Structure Theorem)

Let R be a finite local ring with X(R) = pn, the degree of nilpotency
of Rad(R) bemand S = GR(pn,r) the coefficient subring of R.

If SNS of the decomposition R, = S_ ® SNS is an ideal of R and

s s§°s
N = N2 ® T as (S-S)-modules, then R is the ring homomorphic image of

se N @ - @ N L,

N2 & T as (S-S)-modules. Let

Proof: We have N

(k)

T Tas @S T (k factors) for 1 £ k<sm=-1,

Then T(k)

is a natural (S-S)-module. For 1 < k < m=-1 we have the
following (S-S)-module morphism

- (k) — LR I 4
8,:T *>Nbyo (t)®--@t) =t t, .

It is straight-forward to show by induction that ek is well-defined by

showing the corresponding morphism

ek:Tx erve X T+be ek(<tl"..'%>) = tl e tk

is S-balanced and appealing to universal mapping property of tensor
product.

Consider the (S-S)-module
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H=rl) g ... @plm1)

The morphisms ek extend linearly to a unique (S-S)-module morphism

g:H * N,

Since N = N> ® T and N = 0,an element n in N can be written as

n==+ t; °t. + cee 4 XY
i, i, b PR SO

so that

Gt +t, @t;i + *+o +t;, B v+ @ tq ) =n
i 7 3 I

1 1

and 0 is a surjection.
We give H = '.lu' )e e @ 'l‘m_'u a ring structure (without identity) by

defining a multiplication on the generators as follows:

(kp) 10, plk2)

For Hkl inT and sz , define

(kl-l-kz)

) for k. + k. <m-1

Hkl* H.k Hkl ® sz (which is in T 1t ¥,

2

0 otherwise.

This is clearly a well-defined operation. The associative and distribu-
tive properties of * follow since tensor product is associative and

bilinear. Since

o((tilo ---atikl)*(tjle ---atjkz)) = a(tilo c-® tiklatjln .- ® tjkz)

* t

t. -aee 2 L] L ] t
1) 7 By Ty Ik,

O(tilﬁ"'ltik )'O‘(tjlﬁ"'ﬁ tjkz)

1
we have that g:H -+ N is a ring morphism.

Let C = S @ H as (S-S)-modules. We give C a ring structure

(without identity) by defining

(sl,hl) (sz,hz) = (sl:l'sz,slh2 + h182 + hl*hz) .
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Using the distributive property of H as a (S~S)~module and also H as a

ring the distributive property is easily verified. The key in showing
that H is associative is that tensor product is S-balanced and H is a

(S~s)-module, thus we have

hl*(shzl =h ® sh2 =h

1 15®h

2 = (hysl*h,

and s(hla h2) = s(hl ® h2) = shl @ h2 = (shl) * h2. It is then routine to
show that
so that C is a ring (without identity).

We are now in the position to show that R is the hamomorphic image

of C =S ® H. Consider the map
y:C =85S ®H + R defined by v(s,h) = s + o(h),
where 0:H + N is the ring surjection defined by

a(t + til Otiz + e+t @0 @ tjm_l) =t + til,-.tiz+---+tj1---tjm_l.

31
Since ¢ is a ring morphism ¥y is clearly linear. Further, ¢ is a

(s~S) -module morphism so that

((sy/h))(8,/h))) = 5,8, + o(s;h, + hys, + h) +h)

sls2 + slo'(hz) + 0(h1)82 + o(hl)c(hz)

Y(sl.hl)v(sz,hz) .

Finally y is surjective since R = S © N and o:H + N is a surjection.

Thus R is the homomorphic image of the ring

(1) -1)

sea=sert) g... gl

But
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T = (RN = NN

and

(k)

T =T®...@T=T*H-*T=(T)kinc.

Thus R is the homomorphic image of

s® (/N @ - @ BANI™L, where m
is the degree of nilpotency of the ideal N.

The advantage of this theorem over (2.5) is that the ring
se /M%) @ - o N is finite, while SIX;,++,X 0
not.

The natural question that arises when considering this proposition
is, will SNS be an ideal of R? We give the following examples to show
this may or may not be the case.

Let R be a finite local ring with characteristic p.
Then S = GR(p,r) = Z/2p is a field. Thus R is an algebra over the field
S and by the Wedderburn-Malcev theorem we have R = § + Rad(R) where
SN Rad R= 0. Hence N = Rad(R) is a two-sided ideal in R.

On the other hand consider example 4 on page 3. In this ring S has

the form

&[g 2] | ais in Z/Z4.§.

Now N €Rad(R), so every element of N is of the form

{[g: 2bd] | a,b,c are in Z/Z4§.

. o 1] . . _ 2a 1 .
Since [2 0] is in R and R = S ® N, the element [ 2 2a] for some a in

Z2/24 must be in N. But then

ﬁ [2a12_2oES
- 2 2a] " |o 2

and S\ N = 0,so that N cannot be a subring of R,



CHAPTER III

THEORY OF SKEW POLYNOMIAL RINGS

OVER FINITE LOCAL RINGS

Until recently skew polynomial rings have largely been a source of
counter—-examples (See Jategaonkar [19]). Ore [22] in 1933 considered
skew polynomial rings over fields and division rings developing results
directly from the properties of the polynomials themselves. Jacobson in
[2, 1943] considered skew polynomial rings over division rings as non-
commutative principal ideal domains. The structure of skew polynomial
rings over a more general ring was not furthered until recently; for
example, see Jategaonkar [17] for structure theorems for skew polynomial
rings over semi-~simple rings.

We develop the theory of skew polynomial rings over finite local non-
commutative rings following the approach of Snapper [25] for polynomial
rings over local commutative rings. Although the results of this chapter
are developed in the context of finite local rings, slight modification

will yield analogous results for local or Artinian local rings.

1. BACKGROUND

Let R be a finite local ring with unique maximal ideal M = Rad(R).

Let R[X,0] denote the skew polynomial ‘ring where X is an indeterminant

and 0 an automorphism of R such that

23
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rX = Xo(r) for r in R,

The multiplication in R[X,0] is defined by the distributive property and
(ax™ (bx") = ac®B)X" T ",

We note that since M is nilpotent,c(M) € M and 0 maps units to units.
Our technique in studying polynomials will be to "1lift" results from

(R/M) [X,6] under the natural map

uiR[X,0] + (R/M)IX,0)
defined by
() =r+M=1=¢
H(X) =X

n(o) = @ where G(¥) = o(r) + M,

We note that 0 is a well-defined automorphism of R/M. Suppose
r+M=s+M, thenr - s is in M. So that o(r -~ 8) = 0(r) - o(s) is in
M and hence o(r) + M = o(s) + M. Purther, G(¥) = o(r) + M = 0 if and
only if o(r) is in M. Equivalently, r is in M. Thus r = 0 and we have
that @ is injective. The ring R/M is finite so 0 is also surjective
and hence an autormophism of R/M,

Let £(X) = :=o aixi and g(X) = ?=o b ixi be polynomials in RIX,0]
where n < m. It is clear that p is linear. We show that pu presecrves

products and is thus a ring morphism.

n+m

i+d
k=0 (Li4quk NX

H(feg) = 5 5t

3

n i, om 3
= Yimo 5 X “Ej-o sj x7)
= u(Eulg),

where ¢° is the identity map of R.



25
Since much of the theory of R[X,0] depends upon that of the skew

polynomial ring (R/M)IX,8] where R/M is a finite field we summarize its
properties.

Consider the polynomials f and g above, the degree of £, D(f), is n. We
define the degree of 0 to be - ®, Then in (R/M) [X,G] we have

(1) DIf.g]l = D(f) + D(g)

(2) DIf +g] = max[D(£),D(g)].

Since equality holds in (1), (R/M)I[X,0] has no divisors of zero and is
thus an integral domain., The units of (R/M) [X,G] are the non-zero
elements of R/M; that is, the units of R, Further (R/M)I[X,G] is a
Euclidean domain.

Let A be a non~zero right ideal in (R/M)IX,0], then a non-zero
polynomial in A of least degree generates A, So that (R/M)I[X,0] is a
non-commutative right (or left) principal ideal domain.

Concerning two-sided ideals in (R/M)[X,3] we have that any two-sided
ideal which is generated on the left by a polynomial £ is also generated
on the right by £. This follows since if A = f(R/M) [X,5] = (R/M) [X,Glg
then £ = ug and g = fv for some u and v in (R/M) [X,G]. But since uf is
in A = £(R/M) [X,0] there is a u' such that uf = fu'. Now
f = ug = ufv = fu'v, so that v is a unit since (R/M)[X,0] is an integral
domain., Similarly u is a unit and thus g = u-lf. Hence f(R/M) [X,0] =

(R/M) [X,G)£.

2. NILPOTENTS, UNITS, AND ZERO DIVISORS IN RIX,q).

We have the following result concerning the nilpotent polynomials in
RIX,c].

3.1 PROPOSITION. Let f be a polynomial in R[X,0]. Then
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n . .
£ = a, + alx + eee 4 anx is nilpotent if and only if ao,al,

nilpotent; i.e., ay,

+++,a_ are
n
"',an are in M.

Proof. Suppose (ao + a. X+ *°° + anxn)B = 0 for some B > 0. Then

1

0 =0 = ullag + -+ + 2 xH0)
= Iu(ao + ene + amxn)]8
=[5y + oo + Snxn]B.

Thus 50 + e 4 Enx“ is a zero divisor in (R/M) [X,G] and is the zero

polynomial; that is, a

,°**,a_ are zero. Hence a ss+,a are in M.
’
0 n n

0'

Conversely suppose ayrdys°c,a, are nilpotent and thus in M. Then

1'

if MB = 0 we have

iy yheeetlga] §o4eeend
X4 ta = ¥ oayad e ag x ! B
n <ij> 172 8

(a0+a

1’ B>with0$ijsn.

But each term of this sum has its coefficient in MB so that the sum is

where the sum ranges over all the B-tuples <i_ ,**-,i
zero and £ is nilpotent.

In general, this theorem is not true for a skew polynomial ring.
Example: Let R = k @ k where k is a field, then R is not local. Let
0:R * R be defined by 0<i,j> = <j,i>¢ Then in R[X,0] we have

(<1,05%)2 = <1,05X<1,05X = <1,0><0,1>X>

= <0,0>X2 = 0,

while (<1,()>)n = <1,0> for every integer n.

Concerning units in R[X,0] we have the following result.

3.2 PROPOSITION. The polynomial £ = a, + alx + eee + anxn in RIX,0] is

a unit if and only if a, is a unit of Rand a “*rea are in M.

ll
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Proof. Suppose a *ev,a are in M and a, is a unit of R. Then

1’
anal'e in M and thus by (3.1)

-1 -1

ao al'olc'ao

-1_ .1 -1 _n
a, alx +---+ato anx
is nilpotent so that

-1 1 - n
l+aoa1x + --+a0anx

is a unit of R[X,0]). Hence

laxh =a +axt+ e 4 axd
n n

-1 1 -
a°(1+a a. X + + a 0 1

01 0
is a unit of R[X,0].

Conversely suppose £ = a_ + a xl + oo 4 anxn is a unit of R[X,0].

0 1
Then u(f) = 3, + &,X + +-- + 3 X" is a unit in (R IX,5) so that
50 # 0 and '51,---,5n are zero. Thus ao is not in M so a unit of R, while
a

1,'°',an are in M|
We have the following result due to Castillion [1, Thm. 1] which is
well-known for commutative rings and generalizes to skew polynomial rings.

3.3 PROPOSITION. (Hilbert basis theorem)

If R is Noetherian, then R[X,0] is Noetherian.

It is well~known that in Noetherian rings nil ideals are nilpotent.
(For example, see Lambek, p. 70). Let M[X,0] denote the ideal of R[X,0]
consisting of polynomials whose coefficients are contained in the maximal
ideal M = Rad(R). Then, since M[X,0] is a nil ideal in the Noetherian
ring R[X,0), M[X,0] is nilpotent.

As is in the case of R, the various well-known radicals of R[X,o]
are equivalent.

3.4 PROPOSITION. Let R[X,d] be a skew polynomial ring over a finite

local ring R. Then the following sets are equal.
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(1) U{B|B is a two-sided nilpotent ideal of RIX,0]}.

(2) {f in RIX,0] Ifn = 0 for some integer n}.
(3) {f in RIX,0] |1 + £g is a unit of R[X,0] for each g in RIX,0l}.

(4) (Rad(R)}I[X,0] = MIX,0].

We denote by Rad(R][X,0]) any of the above ideals.

Proof. From (3.1) and the preceding remarks we have that the sets (1),
(2) and (3) are equivalent. If f is nilpotent in R[X,0] then by (3.2)
l + f is a unit of R[X,0] and taus f is in set (3). If

f=a +a Xl + e + anxn is in set (3) then

0 1

1

1+ (a,. +a Xl + ece 4+ 3 xn)x =1l+aX+ e+ + a Xn+
0 n n

1 0
is a unit of R[X,0] and thus by (3.2) ao,"-,an are in M, Hence f is in
set (4), and all are equivalent.

We will have occasion tJ'consider the ring R[X,0]/A and its radical
where A is an ideal of R[X,0], Since by (3.3) RIX,0] is Noetherian,A is
£ Two cases should be noted. If one
of the fi is not in M[X,0], then RI[X,0]/A is a finite ring and its

finitely generated by say fl,'--,f

radical is given by (1.1). On the other hand, if each fi is in M[X,0]
then A is in M[X,0]. 1In this case, r(a) = {f in R[X,0] | for some
integern, £° is in A} is precisely the ideal M[X,0] and
Rad(R[X,0]l/R) = MI[X,0].
We show that in the case that R[X,0]/A is finite the
Rad(R[X,017a) = { in RIX,0]/A | £" is
in A for £ in RIX,0] with u(f) = (E)}

Since R[X,0l/A is finite, by McDonald [21]
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s = (R[X,0]/3) / Rad(R][X,0]/A)
- t
® [y Mo, (k)

where Mni(ki) is an n, X< ng matrix ring over a finite field. But on the
other hand S is the homomorphic image of the non-~comnmutative principal
ideal domain (R/M)IX,0]. This follows by considering the following

camposition of natural homomorphisms
B:R[X,0] »+ R[X,0]/A > S,

Now B(Rad(RIX,0]}) < Rad(S) = 0, and thus by the "induced homomorphism
theorem" there exists a homomorphism taking (R/M)IX,§] to s.
It is now clear thatni=lfor15:l,<_ t, and thus § =ez:=lki is
a direct sum of fields ki' Hence S contains no nilpotent elements, so
that if £ in R[X,0]/A is nilpotent it is contained in Rad(R[X,01/A).
Conversely, by (1.1) if f is in Rad(R[X,0}/3a) then f is nilpotent,
Hence Rad(R[X,01/a) = {f in RI[X,01/a!| £ is in A for £ in R[X,0]
with u(f) = £},

A ring R is right primary provided ab = 0 and a # 0 implies b is in

Rad(R). We define left primary analogously. The ring R is primary if

it is both ieft and right primary.

3.5 PROPOSITION. Let R be a finite local ring with Rad(R) = M. Then
(1) R is primary.

(2) R[X,0] is primary.

Proof. (1) Suppose ab = 0 and a ¥ 0. Then b is in M, For if not, b
is a unit. In which case abb ® = a = 0.
(2) Let n be the degree of nilpotency of M. The proof is by

induction on the smallest integer n such that M = 0.
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If n = 1, then R[X,0] is right primary, For suppose fg = 0 and
f#0, theng = 0 is in M[X,0] = Rad(R[X,0]) since R[X,c] is an
integral domain.

Assume that all finite local rings R with M of nilpotency k; i.e., such
that Mk = 0, have R[X,0] a right primary ring.

Consider a finite local ring R with Mk +1 = 0 and Mk # 0, We show
that RIX,0] is right primary. The ring R/Mk is local and has radical
M/Mk. The degree of nilpotency of M/Mk is k, so by the induction
hypothesis (R/M") [X,0] is right primary.

Now suppose £ and g are in R[X,0] with £fg = 0, £ # 0 and g is not
in Rad(R[X,0]). Then, since (R/M)I[X,0] is an integral domain and £§ = O
with § # D,we conclude f is in M[X,0]. If we can show £ is not in
Mk[x,o] we are done, For if fa =0 in (R/Mk) [X,0)] and £ # 0, then
because (W) [X,0] is primary by above, we conclude that g is in
Rad((R/Mk) [X,0]) = (M/Mk) [X,6]. Hence ¢ is in M[X,o] which is a contra-
diction. Thus R[X,0] will be right primary.

We now show £ is not in Mk[x,o]. Suppose £ = brxr + e 4 b0 is in
Mk[X,q] where br # 0. Since g is not in M[X,0], let a, be the coefficient

of the highest power of X in g which is not in M. Since Mk+1 = 0 and

S*r oo in the product of £ and g. But

fg = 0 we have the term asas (br)x
br # 0 so the automorphism cs does not take br to zero. Thus since R is
primary by (1) and as(br) # 0 we conclude ag is in Rad(R) = M. But this
contradicts the choice of a_-

Hence R[X,0] is right primary. 1In a similar fashion R[X,0] is left
primary, thus primary.

We have the following important corollary.
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3.6 COROLLARY. Let f be in R[X,0). Then £ is a zero divisor if and only

if £ is in MIX,0].
Proof. If f is in M[X,0], then by (3.1) £ is nilpotent of say degree n,
Then ffn-l = 0 with fn“l # 0 so that £ is a zero divisor,

On the other hand if fg = 0 and g # 0, since R[X,0] is primary f is
in Rad(R[X,0]] = M[X,0].

Many of the results concerning polynomials in R[X,0] will result
from the fact that the divisors of zero are contained in the Rad(R[X,0]) =

MIX,c]. The following illustrates this.

3.7 PROPOSITION, If f£f in R[X,0] is a right (or left) unit, then f is a

unit of RIX,0].

Further, if £g is a unit, both £ and g are units.
Proof. Suppose fg = 1, then gfg = g so that (1 ~ gf)g = 0. Thus since
RIX,0) is primary and g # 0 we conclude by (3.6) that 1 -~ gf is in
Rad(R[X,0]). Let h=1 « gf, then gf =1 -~ h is a unit of R[X,0], so

that {gf) -lgf

l. Hence f is a left unit and thus a unit of R[X,0].

If fg is a unit, then (fg)h = £(gh) = 1 and k(fg) = (kf)g = 1 for
some h and k in R[X,0]. Thus £ is a right unit and g is a left unit and
hence a unit of R[X,o]l.

3.8 PROPOSITION. Let f and g be non-zero polynomials in RIX,q].

i1f £fg = £ or gf = £, then g is a unit. Hence 1 is the only non-zero
idempotent in R[X,0].

Proof. Suppose f and g are non-zero polynomials such that fg = £, then
f(g~-1) = 0 so that g - 1 is in Rad(R[X,0]). Thus g = 1 + 2z for some
in Rad(R[X,0]). Hence g is a unit of RIX,q]. Similarly if gf = £ we

conclude g is a unit.



32
Further suppose f is a non-zero idempotent of R[X,0]. Then £ff = f

so that f is a unit. Hence,

f= (£ =% = £ =1,

2. RELATIONSHIPS BETWEEN PROPERTIES OF (R/M)[X,0] AND THOSE IN R[X,0l,

We have the following obvious relationship between the units of R[X,0]
and the units of (R/M)IX,8]. Let u:R[X,0] + (R/M)[X,5].

3.9 PROPOSITION. A polynomial £ in R[X,0] is a unit if and only if

f =u(f) is a unit of (R/M) IX,0].
Proof. By (3.2) if f is a unit then f is non~zero and hence a unit of
(R/M) [X,3].

Conversely suppose £g+ M[X,0] = 1+M[X,0] then 1 - f£g is in
MIX,0] = Rad(R[X,0]). Let 1 - fg=2. Then fg =1 « z is a unit of
RIX,0], so that by (3.7) £ is a unit of RIX,0].

Two right idgals Q and Q, of R[X,0] are relatively prime if

Ql + Q2 = R[X,0]. We say two polynomials f and g of R[X,0] are relatively

prime if as right ideals fR[X,0] + gRI[X,0] = R[X,d].
By applying the preceding propesition (3.9) on units we have the
following immediate result.

3.10 PROPOSITION. The right ideals Ql and 92 are relatively prime in

R[X,0] if and only if §l and 52 are relatively prime right ideals in
(RM) [X,8].

The non~zero polynomials £ and g of R[X,0] are called right associates

if fRi{X,0] = gRIX,0], left associates if R[X,0]lf = R[X,clg, and associates

if both left and right associates,
Since RIX,0] is a primary ring we have the following characterization

of the associates of R[X,0].
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3.11 PROPOSITION. The polynomials £ and g in R[X,0] are right associates

if and only if f = gu where u is a unit of RIX,0].
Proof. 1If fRIX,0] = gR[X,0], then £ = gu and g = fv for u and v in R[X,0].
Thus £ = fvu and by (3.8) and (3.7) u and v are units of R[X,0].
With this characterization the following is clear.
3.12 PROPOSITION. If f and g are right (left) associates in R[X,0], then

-

f and § are right (left) associates in (R/M) [X,0].

If £ and g are non~-zero polynomials in R[X,0], £ is called a left

factor or right divisor of g if gR[X,0] < fR[X,0], that is g = fh for

some h in RIX,0]. We may similarly define right factors or left divisors

and proper divisors.
Again the following is immediate.

3.13 PROPOSITION. If f is a right divisor in R[X,0}, then fis a right

divisor in (R/M) IX,0]). -
A polynomial f of R[X,0] is called irreducible if f = gh for some ¢
and h in R[X,0] implies that either g or h is aunit of R[X,0]. The

polynomial £ is called a fundamental irreducible if its coset f = f + M[X,0]

is irreducible in (R/M) [X,G].

3.14 PROPOSITION. Let f be a polynomial in R[X,0].

(1) If f is a unit, then f is irreducible.
(2) If £ is irreducible in (R/M) \’IX,G] , then £ is irreducible in
R[X,0].
Proof. Part (1) is immediate from (3.7).
For part (2) suppose £ = gh is in R[X,0). Then £ = gh in (R/M)[X,5)
and hence by hypothesis g or h is a unit. Thus by (3.9) g or h is a

unit of R[X,0].
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A polynomial f in R[X,0] is called regular if f is not a zero divisor.

By (3.6) f is regular if £ is not in M[X,0]. An ideal I in R[X,0] is
reqular if I ¢ MIX,0]; i.e., I is not nilpotent. We show that the form
of regular polynomials closely resemble units in R[X,0],

3.15 PROPOSITION. Let £ = a, + alxl + Ve 4 anxn be in RIX,0]. The

following are equivalent.
(1) £ is regular.
(2) a, is a unit for some i, 1 € i < n,
(3) £ #o0.
(4) T is regular.
Proof. This follows immediately from the fact that the non-units of R are
M, R/M is a field, and (R/M)[X,G] is an integral domain.
An ideal P of RIX,0] is prime if for f and g in R[X,0] with
frR[X,0lg < P, then £ or g is in P. We also have the more restricted

definition, that is, an ideal P of R[X,0] is completely prime if for f

and g in R[X,0) with fg in P, then f or g is in P. Equivalently, P is
completely prime if R[X,0]/P is an integral domain. An ideal P of R[X,dq]
is maximal right if R[X,0]/P is a finite field. Thus maximal right implies

completely prime.

3.16 PROPOSITION. An ideal P in R[X,0] is completely prime (maximal

right) if and only if

(1) MIX,0l P

{2) P is a completely prime (maximal right) ideal of (R/M)[X,5].
Proof. Suppose P is a completely prime ideal of R[X,0]l. Then if £ is in
M[X,0}, £ is nilpotent and thus since £% = 0 is in P for some n; we

conclude that f is in P. Now if P is a maximal right then it is completely
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prime so that M[X,0] < P.

If M[X,0] ¢ P, then we have

(R/M) [X,51/(p/ (MIX,01)) = (RIX,01/MIX,01)/(¥/ (MIX,0])

RIX,0l/P,

so that (R/M)[X,0)/P is an integral domain (finite field) if and only if
R[X,0]/P is an integral domain (finite field).
By (3.1) we have the following corollary.

3.17 COROLLARY. If the ideal M[X,0] is completely prime then M[X,0] is

the only nilpotent completely prime ideal R[X,0] contains.

3. PRIMARY IDEALS

Let A be an ideal in R[X,0]. Then we define the radical of A denoted

as r(A) to be
r(A) = {f in RIX,0] | £" is in A for some n}.

In general r(A) need not be an ideal. (See McCoy [20, p. 31]). We will
be interested only in r(Q) where Q is a primary ideal. In this case r(Q)
is an ideal of R[X,0].

An ideal Q of R[X,0] is right priwary if fg is in Q and f not in Q

implies gn is in Q for some integer n. Q is left primary if £g is in Q

and g not in Q implies £ is in Q for some integer n. Further, an ideal Q
is primary if it is both left and right primary.

3.18 THEOREM. Let Q be a primary ideal in R[X,0]. Then r(Q) is an ideal

of R[X,0].

Proof. Recall from comments following (3.4) that for Q an ideal of RI[X,q]

Rad(RIX,0]/Q) = {F in RIX,01/Q | £2 ¢ 0

for £ in RIX,0] with u(f] = £}.
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Thus the natural morphism

p:R[X,0] + R[X,01/9Q

maps r(Q) = {f in R[X,0] | £ is in Q for some n} onto Rad(RIX,01/Q).
Let £ and g be in r(Q). Then ﬁ(f) and ﬁ(gl are in the ideal
Rad(R[X,01/Q). Thus p(f) + u(g) = n(f+g) is in Rad(RIX,0]1/Q), so

there is an h in r(Q) and t in Q such that

f+g=h+t,
Let m be such that h" is in Q. Then since Q is an ideal (f+ g)m = (h+ t)m
is in Q. Hence £ + g is in r(Q).

Further r(Q) is closed under right and left multiplication by
elements of RIX,0], for suppose f is in r(Q) and n is the least integer
such that £° is in Q. Since Q is an ideal, hf" is in Q for h in RIX,0].
If n > 1, then (hf)£" ! is in Q and £7 * not in Q implies (hf)™ is in @
for some integer m. Thus hf is in r(Q). If n = 1, then hf is in Q € r(Q).
In a similar fashion r(Q) is a right ideal.

Since r(Q) is an i@eal when Q is primary we have
Rad(R[X,0]/Q) = r(Q)/Q.

The radical of a primary ideal has the following properties. The proof

of which followé the commutative case and the fact

r(Q) = r(Q + MIX,0]) = r(Q) + MIX,x] = r(Q)

since M[X,0] is nilpotent.

3.19 PROPOSITION. If P and Q are primary ideals in R[X,0], then

(1) z(Q

r(Q).

n

(2) x(P) < r(D) if and only if r(P) € x(Q}.

Further, we have the following isomorphisms which follow from the
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inclusions:

Q cr(Q) and M[X,0] < r(Q):

n

(R[X,01/Q) /Rad(R[X,01/Q) = (RIX,01/Q)/(r(Q)/Q)

RIX,0]/x(Q)

[

(RIX,0]1/MIX,0]) / (x (Q) /MIX,0])
((rR/M) IX,31) /2(Q) .

]

Thus we have immediately that if Q is a nilpotent primary ideal in
(RIX,0]/Q) /Rad(R[X,0]/Q) = R/M[X,0C].

The characterization of the primary ideals of RI[X,c] will depend
largely upon the following theorem.

3.20 THEOREM, Let P be a non-~trivial ideal in (R/M) [X,5). Then P is

completely prime if and only if P is maximal right.
Proof. If P is maximal right then (R/M)[X,5]1/P isa finite field and
hence an integral domain.

To show the converse we again note that in (R/M) [X,3] a left
generator of a two-sided ideal is also a right generator. Thus assume
that P = £(R/M) [X,G] = (R/M) [X,G]f is a non-trivial completely prime
ideal and let I = g(R/M)[X,G] be a right ideal such that P « I < (R/M) IX,T].
Then £ = gh for some h in (R/M) [X,G]. But P is completely prime so
either g or h is in P. If g is in P then I = P; on the other hand if h is
in P = (R/M) [X,G]£, then h = kf for some k in (R/M) [X,5]. Thus
f = gh = gkf. By (3.8) gk = 1 and hence I = (R/M)[X,G]. In either case
we have a contradiction so that P is a maximal right ideal,

3.21 PROPOSITION, Let Q be an ideal in RIX,0]. If r(Q) is an ideal and




38

is maximal right, then Q is primary.

Proof. We have (RIX,0]1/Q)/Rad(R[X,01/Q) = (RIX,01/Q)/(x(Q)/Q) =

RI[X,0]1/x(Q) is a finite field since r(Q) is maximal right. Thus R[X,0]/Q
is a local ring, so that the divisors of zero are nilpotent. Suppose fg
is in @ and f not in Q, then £ # 0 in R[X,01/Q. But fg = 0 and g is
nilpotent, Thus gn is in Q for some integer n, and Q is right primary.
Similarly Q is left primary, hence primary.

Concerning the nilpotent primary ideals in R[X,0] we have a primary
ideal Q is nilpotent if and only if Q € MI[X,0]. Further, r(Q) = M[X,0].
Suppose £ is in r(Q), then £ is in Q <€ MIX,0] for some integer n.
Conversely, if f is in M[X,0], then f% = 0 is in Q for some integer m,
so that £ is in r(Q).

Thus if M[X,0] is maximal right, by the above proposition every
nilpotent ideal is primary.

The following proposition characterizes the non-trivial primary
ideals which are not nilpotent,

3.22 PROPOSITION. Let Q be a non-trivial non-nilpotent ideal in R[X,d].

(1) Q is completely prime if and only if Q is maximal right.

(2) Q is primary if and only if r(Q) is completely prime.
Proof. (1) If Q is completely prime by (3.16) MIX,0] € Q and § is nom-
trivial and completely prime in (R/M) [X,5)]. Thus by (3.20) O is maximal
right,and by (3.16) Q is maximal right.

The converse is clear since (R)[X,0]/Q is a finite field.

(2) Suppose that Q is a primary ideal in RIX,dl.. Then r(Q) is
completely prime. For assume £g is in r(Ql; i.e., (_fg)n ig in Q for some

integer n, Then consider the product fgfg...fg (2n factors). Let
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a4 ,°**,83  be the smallest subcollection of the £ and g's such that
4 iy

ail aik is in Q. Then since Q is primary and k minimal ail se a.
is not in Q and thus aik is in Q € r(Q). But aik is either £ or g, so
that £ or g is in r(Q) whenever fg is in r(Q)., Hence r(Q) is completely
prime.

Conversely, suppose Q ‘is such that r(Q) is completely prime. We
may suppose r(Q) c R[X,0] for otherwise it is clear that r(Q) = R[X,o]
implies Q is primary. Now since r(Q) is primary, MIX,0] < r(Q) < RIX,0],
and hence r(Q) is a non~trivial completely prime ideal in (R/M) [X,G].
Thus by (3.20) r(Q) is maximal right and by (3.16) r(Q) is maximal right,
so that by (3.21) Q is primary.

We are now in a position to give the relationship between primary
ideals in R[X,0] and their images in (R/M)IX,5].

3.23 PROPOSITION,.

(1) If Q is a primary ideal in R[X,0], then § is primary in
(rR/M) [X,3].
(2) The ideal Q is non-nilpotent and primary in R[X,g] if
and only if Q ié a non-zero primary ideal in (R/M) [X,5].
Proof. If Q is primary and Q < MIX,q]; i.e., Q is nilpotent, then § = 0
and is primary since (R/M) [X,5] is an integral domain. Thus we only need
to prove part (2).
Suppose Q is a non-nilpotent primary ideal, then Q ¢ M[X,c] and z(Q)
is completely prime by (3.22, part (2)). Thus r(Q) = r(Q) # 0 is a
completely prime non-nilpotent ideal in (R/M) [X,5] so that by (3.22) §
is primary.

Conversely, suppose § ¥ 0 is primary. Then Q is not nilpotent in
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R[X,0]. Thus r(Q) is either R[X,0] or is maximal right. 1In both cases

by (3.22) Q is primary.

As previously noted, if £ is a left generator of an ideal in
(R/M) [X,8], then £ is a right generator. In (R/M)IX,G] we will denote
the ideal £(R/M)IX,0] = (R/M)IX,8]1f by (£f).

We now characterize a generator of a primary ideal in (R/M) [X,5].

3.24 PROPOSITION, If Q = (f) is a primary ideal in (R/M)IX,G] with

r(Q) = (g), then g is irreducible and f = vgn = gnu for some integer n
and u,v units of (R/M) [X,0].
Proof. The polynomial g is irreducible, for suppose g = rs. Then
r(Q) = (g) is completely prime by (3.22);so that r or s is in (g). If r
is in (g) then r = gt for some t in (R/M)} [X,G]. Thus g = gts and by (3,8)
8 is a unit. Similarly if s is in (g) then t is a unit. Therefore g is
irreducible.

Further, since Q € r(Q) we have (f) < (g) where g is irreducible.
Let £ = gh for some h in (R/M) [X,3]. Since (f) = Q is primary, if g is
not in (f), then n" is in (f) for some integer n. Thus h is in
r((£)) = (q), so that h = gk and £ = g2k for k in (R/M) [X,0]). Since
(R/M) [X,8] is a non-commutative principal ideal domain by Jacobson
[15, p. 34, Thm. 5] this process finally gives an integer n such that
£f= gnu where gn is in (f). But gn-l is not in (f). (Otherwise f would
not factor into a unique number of irreducible factors). Now gn = fd
for some d in (R/M) [X,0) so that £ = fud and thus u is a unit of
(R/M) [X,8]. In a similar fashion f = vgn where v is a unit,

This representation of the primary ideal Q = (£f) in (R/M)IX,0] may

be "lifted" to RI[X,0].
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3.25 LEMMA. If Q is an ideal in R[X,0], then there is anf in Q such that
Q0 = R[X,0]f + N = £fR[X,0] + N

where N = M[X,0] N Q,

Proof. If Q is an ideal in R[X,0], then § = (¥) in (R/M)IX,0], Let f be
a preimage in Q of £, Clearly .;'RIx,c] + MIX,01 N Q €Q. On the other
hand suppose g is in Q. Then § = fh for some h in (R/M)IX,5]. If h is

a preimage of h, then g = fh + m where h is in RIX,0] and m in M[X,0].
Sincem = g - fh, m is also in Q and thus in MIX,0] N Q. Hence we have

0 = fR[X,0] + M[X,0]lNnQ and in a similar fashion Q = RIX,0]lf + M[X,0] n Q,

3.26 THEOREM. Let Q be a non-trivial, non-nilpotent primary ideal in

R[X,0]. Then

(ug” + m)RIX,0] + MIX,0] N Q

0
1]

RIX,0] (ug” + m) + MIX,q] N Q

where u is a unit, g is a fundamental irreducible, and m is in M[X,0] in
the ring R[X,0].

Further r(Q) = gRI[X,0] + MIX,0] and R[X,0]/(x(Q)) is a finite field.
Proof. Let Q be a non-trivial, non-nilpotent primary ideal: Then by

Lemma 3.25 there is a £ in Q such that
0 = fR[X,0] + M[X,0] Nn Q = R[X,0l1f + M[X,0] n Q.

Then § = (f) is primary in (R/M)[X,5], and by (3.24) r(Q) = (g) and

f = Gg" = 3V where U,V are units and § irreducible in (R/M)[X,3]. Hence
f = gnv +m= ugn + m where g is a fundamental irreducible, u,v units, and

m in MI[X,o] in R[X,0].

wlla

Now Q = () = § ¥(R/M) [X,5). But (R/M)IX,5] is a right principal

ll

ideal domain and § irreducible so g{R/M)[X,5] is maximal right in
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(R/M) [X,B]. Hence r(8) ¢ g(R/M) [X,G]; but also it is clear that

g(R/M) [X,0] € § <r(@). Thus r(Q) = r(Q) = g(R/M)IX,5] and r(Q) =
gR[X,0] + MIX,q].

Since Q is a non~trivial non-nilpotent primary ideal,by (3,22) r(Q)
is completely prime and hence maximal right. Thus RI[X,0]l/r(Q) is a

finite field. .

3.27 PROPOSITION. Let Q be a non~trivial, nonenilpotent primary ideal

of R[X,0]. Then R][X,0]1/Q is a local ring,
Proof. From {3.26) R[X,0]/r(Q) = (RIX,01/Q)/(r(Q)/Q) =

(RI[X,0]1/0Q) /Rad(R]x,0]1/Q) is a finite field. Hence RiX,0] is a local ring.

N

A polynomial f in RI[X,0] is said to be prime if R[X,0]f = £R[X,0],
and fR[X,0] is a completely prime ideal. A polynomial £ in R[X,0] is
primary if R[X,0]1f = fR[X,0], and £R[X,0] is a primary ideal.

3.28 PROPOSITION. If f is an irreducible polynomial in (R/M) IX,J) such

that £(R/M)IX,0] = (R/M)[X,0]f then £ is prime hence primary.

Proof. Let f be irreducible and (R/M) [X,8]1f = £(R/M) [X,07). 1If gh is in
f(R/M) [X,G] then gh = fr for some polynomial r in (R/M)[X,3}. Since f is
irreducible, f must appear in either the factorization of g or h.

Suppose without loss that g = 9y°°°9 jfgj +2° --fn. Now gif = fki' where

l<igjand ki is in (R/M)[X,0], so that g = fk,-:-k.q

17 "%59542" "I
kl,---,k 3 must be irreducible since the number of irreducible factors in

Now

a factorization is unique by Jacobson [15, p. 34, Thm. 5). Thus g is in
£(R/M) [X,0] and we conclude f£(R/M)[X,3] is completely prime hence primary,
go that £ is a prime and thus primary polynomial.

In (R/M)[X,0) irreducible polynomials generate maximal right (or left)

ideals.
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3.29 PROPOSITION. A polynomial £ in (R/M)[X,8] is irreducible if and

only if £(R/M) [X,0] is a maximal right ideal.

Proof. Let g(R/M)IX,0] be a right ideal such that

£(r/M) [X,3] Ccg(R/M]1X,0] c (R/M)IX,3] where f is irreducible. Then

f = gh for some h in g(R/M)[X,0] and thus g or h is a unit. If g is a unit
then clearly g(R/M)IX,0] = (R/M)IX,0], while if h is a unit g = fh—l then
f(rR/M) [X,3] = g(R/M) IX,0]. Hence f£(R/M)IX,G] is maximal right.

Conversely, let £(R/M)IX,3] be a maximal right ideal and suppose f is
not irreducible. Then f =gh where neither g or h is a unit. We may
suppose g is not in £(R/M)IX,0] for if it is,g = fk and £ = fkh for some
k in (R/M)IX,0]. Thus by (3.7) and (3.8) h is a unit. Now
f(R/M) IX,0] cg(rR/M)Ix,5] C (R/M)IX,T] since g is not a unit. Hence
£(R/M) [X,G] is not maximal.

Note: If f£(R/M) [X,0] = (R/M) [X,G)f where £ is irreducible then f(R/M) [X,5]
is maximal right; i.e., ((R/M)IX,3])/(£(R/M)X,0]) is a finite field..

We use (3.29) to obtain the following representation of non-trivial
non-nilpotent completely prime and maximal right ideals in R[X,0].

3.30 PROPOSITION. In R[X,0] a non-~trivial non-nilpotent ideal P is

completely prime if and only if P = gR[X,0] + M[X,0] = R[X,0]lg + M[X,0]
where g is a non-trivial regular fundamental irreducible in R[X,0].
Proof. If P is completely prime it is primary and thus by (3.26)

P= (ugn+ m)R[X,0c] + M[X,0] n P = RIX,¢] (ugn-i- m) + M{X,0] N P where u is
is a unit, g a non~trivial fundamental irreducible and m in M[X,0}.
Further r(P) = gR[X,0] + M[X,0] = R[X,0]g + M[X,0]. But if P is
completely prime P = r(P),

Conversely, suppose P = gRIX,0] + MI[X,0] = RIX,0lg + M[X,0], where
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g is a regular fundamental irreducible in R[X,0]. Then P = 3(R/M) [X,0] =

(R/M) IX,5]§ where § is a non-trivial irreducible in (R/M}[X,0]. By (3,29)
P is maximal right, and hence by (3,22) P is completely prime, Now since
MIX,0] < P we conclude by (3.16) that P is completely prime.

We are interested in the prime elements in RIX,0], The following is
immediate from (3.30).

3.31 COROLIARY. A polynomial f in R[X,0] is a nonetrivial regular prime

polynomial if and only if
(1) £ is a nonetrivial regular fundamental irreducible.
(2) f£R[X,0] = RIX,0]f.
(3) MIX,0] c fRIX,ql.

3.32 PROPOSITION. (Characterization of Finite Fields)

Let R be a finite local ring. Then RIX,0] contains a prime regular
polynomial if and only if R is a finite field.
Proof. Let M be the maximal ideal of R and suppose M # 0. If £ =r + uX
is a prime, regular polynomial where u is a unit of R, then for any

n .
i, o _n+ .
g= Z aix in R[X,0], fg = lower terms + ua X" 1. But u is not a zero

i=l
divisor in R and c(an) # 0 so uo (an) # 0. Thus M 4: fRrR[X,0] which
contradicts (3.31 part 3); i.e,, M[X,0] < fR[X,0]. Therefore M = 0 and R

is a finite field.

The converse is clear.

5 FACTORIZATION IN RIX,c]

The factorization of polynomials in R[X,0] is achieved from factoriza-
tion in (R/M) IX,0] given by the following well-known theorem for factoriza-
tion in nonecommutative principal ideal domains, See Jacobson [15,

Thm. S, p. 34].
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3.33 THEOREM Let f be a polynomial which is a non-unit and non-~trivial

in the non-commutative principal ideal domain (R/M) [X,3]. Then f factors
as follows:
(1) £ = 9,09, where the gi's are non<trivial irreducibles in
(rR/M) IX,0] .
(2) If £ = hl- . -hm is another factorization into non-trivial
irreducibles then n = m, and there is a permutation m of
{1,2,+-+,n} such that 94 is Similar to h'n(i)'
Two polynomials g and h in R[X,0] are said to be right similar if

R[X,0]/hR][X,0] = RIX,0]/gR[X,0] as right R[X,0]emodules. The notion of

left similar may be defined analogously. Since (R/M)[X,G] is an integral

domain we have from Jacobson [15] the following result.

3.34 PROPOSITION. Let g and h be non-trivial polynamials in (R/M) [X,C].

Then g and h are right similar if and only if they are left similar.
Further the preimages in RIX,0] of regular similar polynomials are
similar.

3.35 PROPOSITION. Let g and h be non-~trivial regular polynomials in

(R/M) [X,G) which are similar. Then g and h are similar in R[X,0].

Proof. Since (R/M)[X,51/§(R/M)IX,8] = (R/M)IX,8]1/R(R/M)IX,5] as
(R/M) [X,0] ~modules and

(r/M) [X,51/3 (R/M) IX,5] = RIX,¢1/9RIX,q]
as R[X,0]-modules, we have a natural isomorphism
R[X,0]l/gRI[X,0] = RIX,0]/hR[X,0]

as R[X,0]~modules. Where g and h are preimages in RIX,0] of § and h in

(R/M) [X,5] .
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3.36 PROPOSITION. Let g and h in (R/M) {X,0] be similar and

g(R/M) [X,G] and h(R/M) [X,G] be ideals. Then g and h are associates.
Proof. If g(R/M)I[X,G] and h(R/M) [X,8] are ideals, then
(R/M) [X,8]/9 (R/M) [X,0]) = (R/M) [X,6]1/h(R/M) [x,0] as rings. Thus
h + g(R/M) [X,5] maps to 0 in the isomorphism and hence h is in g(R/M) [X,5]
so that h and g are left associates. In an analogous manner using (3,34)
we have h and ¢ are right associates, hence associates.

Unless we put more restrictions on R[X,0] we only have the following
factorization theorem for polynomials in R[X,0].

3.37 THEOREM. Let f be a regular non-unit in R[X,0]. Then

(1) £ = fl- . -fn where fi are non-trivial irreducibles.

(2) 1£ = g,--*g  thenn < m.
Proof. It is clear that £ factors as a product of irreducibles
£=f£---f£. Nowf=F-...f =g ...q vhere§; are irreducible and fi
may or may not be irreducible. Thus by (3.33) we conclude n < m.

Note: If £ = fl-“fn where fi are fundamental irreducibles, then n = n.

6 FACTORIZATION IN S[X,0] for S a GALOIS RING

We have shown in (2.5) that a finite local ring R with characteristic

pn is the homomorphic image of the skew polynomial ring

]r,n(i)

X ... where S is the Galois ring GR(pn,r) . Thus we now
i=1l,j=1

SIX; 5% (1)

consider the factorization of polynomials in S[X,c] which is lifted from
(s/sp) [X,3] = (R/M) [X,0].

3.38 THEOREM (Hensel's Lemma)

Let S = GR(p",r) be a Gal®is ring with maximal ideal Sp. Let £ be
in S[X,c] and suppose

u(f) = g-h
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where § and h are polynomials in (S/Sp) [X,5) such that

§(s/sp) [X,81 + (s/sp) [x,31k = (s/sp) [X,3].

Then there exists g and h in S[X,0] such that

(1) ulg) =3 wuh =F§,

(2) £ = gh.
Proof. As shown earlier S is a comautative local principal ideal ring
and thus the maximal ideal Sp is nilpotent of degree of nilpotency n
where S = GR(pn,r)..

The approach follows the classical proof in that we construct two
sequences {gk} and {hk} in s[X,0) such that

(1) deghk=r;deggk=m-r
2 h,=h mod (sp) “**; a1 = % mod (sp) "
(3 £=gn modisp)

Then since (Sp)n = 0 we use h = hn and g = 9, for the desired polynomials
since hngn =h = £,

We construct the sequences {gk},' {}Hc} inductively. For k = 0, since
p:S[X,0] + (S/sp) [X,5] is surjective we have 9 and h0 in S[X,q] with
u(qo) =g and u(ho) = h,

Suppose that 9o """ 19 and ho, ese,h j satisfy properties 1-3.

]
Let

- j+1
Iy =9y * P8

- j+1
hj+l hj+p t

where s and t are in S[X,0] with deg s < r and deg t ¢m-r. Then (1)

and (2) are clear. Further,

_ 42
£ gj+1hj+l mod (Sp)
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holds if and only if
_ - £ = j+l j+l
(%) £ gj+lhj+l £ (gj + p° 7s) (h:i + p~ Tt)

+1 j+

. ‘h v
f--gjhj - (gjpJ t+p J lspJ 1

lshj + p t)

0 mod (sp) 3 +2.

We note that the automorphism ¢ takes p to p since p = p°l.

Further S is commutative so that pJ+lspJ+1t is in (sp) +2 and thus equals

zero modulo (Sp) J+2. Also by the induction step £ -~ gjhj = PJ+1q for

some g in S[X,0] of degree less than m. Under these simplifications we
have

- = pi*tlq -
£ - g5ty =00 @ - gyt +shy).

Thus our choice of s and t must be such that

9 = gt + sh, mod(sp)7*2.
But
gj =9, mod (Sp) and hj = h0 mod (Sp) ,
so that
q = gyt + sh, mod(Sp).

By our hypothesis
(s/sp) [X,G6] = g(s/sp) [X,5] + (S/sp) [X,5]h.
Thus there exists 8, € in (S/Sp) [X,0] such that
<‘;=§§+‘t’5=§0§+£ﬁo,
where deg B S deg ﬁo and deg t < deg G, Let s and t be preimages of &
and t. Then

q= gjs + th, mod(Sp),

j
and thus



49

q =gjs+th )j+2.

3 mod (Sp

Hence we have shown there exist s and t such that

£ mod (sp) I*2,

= 9441541
so by induction the sequences {gk} and {hk} exists for all k.
Th = = = ‘n.
us for h = hn g gnwe have £ gnhn g°h

3.39 COROLLARY. Let f be a polynomial in S[X,0]. Suppose

u(f) - glo . .gn
where §1,' .. ,En are polynomials in (S/Sp) [X,0] such that
g, (s/sp) [X,8] = (s/sp) [X,515,

and the §i are pairwise relatively prime. Then there exist h ,---,hn in
S{X,c] such that

(1) u(hi) =3,.

(2) £= hl---hn.

(3) hl" . -,hn are pairwise relatively prime.

Proof. The proof is by induction on n, using Hensel's Lemma (3.38) and
the fact that if §i(S/Sp) [X,61 = (S/Sp) [x.6]§i where the 'tji's are pair-
wise relatively prime then §l and 'g'2- . -§n are relatively prime., The
polynomials hl,-- . 'hn are pairwise relatively prime by (3.10).

A ring R is said to be duo if every right ideal is also a left
ideal and every left ideal is also a right ideal. We note that S[X,0] is
duo if 0 is the identity automorphism of S. For duo skew polynomial rings
over Galois rings S = GR(pn,r) we have the following classical primary

factorization.

3.40 THEOREM. Let S = GR(pn,r) be a Galois ring, and S[X,0] a duo skew
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polynomial ring. Then,

(1) Every regular polynomial £ in S[X,0] can be factored as
£f= ufl---fn'where u is a unit and fl,u',fn are pairwise
relatively prime, primary, non-units in S[X,0].

(2) If £ = uflu-fn = Vg9 where u,v,fi,gi are as in (1),
then n = m and there is a permutation 7 of {1,---,n} where f

i

and g“(i) are associates.
Proof. (2) The proof of this is standard in the case of duo rings.

See Feller [7, p. 87].
To prove (1) let f be a reqgular polynomial in S[X,0]. Then f is a

non-zero polynomial in (S/Sp) [X,6] and hence by (3.33) can be factored as

- ..k -
Fogel ... g
1l n

where u is a unit and fl,---,fg are irreducible non-associated non-units
in (s/sp) [X,6] which are relatively prime in pairs. Then ftl,---,E:n are
regular primary polynomials which are also pairwise relatively prime in
(s/sp) [X,06]1. By (3.39) there are pairwise relatively prime polynomials
fl,---,fn in S[X,0) such that

£ = ufl eee fn

e

ki
u(fi) = f

i L]
By (3.9) u is a unit in S[X,0] and by (3.23) fl,-o-,fn are primary,

non-units in S[X,0].

7 S—-AUTOMORPHISMS OF S[X,0)] FOR S A GALOIS RING

Let § = GR(pn,r) be a Galois ring with maximal ideal Sp, We

consider in this section the automorphisms of S[X,0] which leave S fixed.
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Let £ be an S-automorphism of S(X,0), then since £ fixes S we have that

f is completely determined by itz action on the indeterminant X. 1If f

takes X to the polynomial t = s . + 8. X + **° + snxn we denote f by ft'

0 1
Thus
ft:S[x,o] + S[X,0]

is defined by

£, (g(x) = g(t)

ft(s) S.

In showing that ft is an endomorphism of S[X,0] we £ind that t must
be restricted to t = sX as the following illustrates. Suppose t = sx.
Then

. . i i . .
ft((axl)(bxj)) = ft(abo ) = a® (sx™ (e

—y .
a(sxm)ibol " (S}gn):]

C femi 4
a) ' (t)3

£, (ax') £, (bX7)
if and only if m = 1 and o° is identity map. We also note that the above
required that S be commutative or S to be in the center of the ring.
Restricting t to t = sX it is then clear that f & is an S—-endomorphism of
S[X,0). We assume throughout that ¢ is not the identity.
3.41 LEMMA Let t = sX be in S[X,0] and u be a unit of S. Then

(1) ft is onto if and only if fut is onto.

(2) ft is 1-1 if and only if fut is 1-1. (1-1 denotes injective)
Proof. We note that the units of S form a group under multiplication and

¢ being an automorphism of S maps units to units, We have that

ft[s[x,o]] = S[t,0]. Thus part (1) follows by showing 5[t,c]l = Slut,o].
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Suppose g(t) = Z sitl is a polynomial in S[t,c]. Then we have
i

i i-1 -1 i-1 g
z sit1 = 2 s, (ua *+u’ ) (uu ---u? e
i i’

j-1 -1 .
= X si(uuo'nu.ol ) (ut)t
i

is a polynomial in S[ut,0)}. While conversely if Z si(ut)1 is in s[ut,0]
i
then (-1
. 1~ i

) s.(ut)r = § s’ o’
T i A §
i i

is in Slt,0].

To show part (2), suppose ft is not 1-1. Then for some non-zero

g(x) =) siXﬁ we have

i
i
£.(g(x) = E st = 0.
Hence
i-1 -1 : :
Z si(uuo---ug ) (up)t = I sitl = 0.
i i
That is fut(h(X)) = 0, but
i-1 _
h(X) = Z si(uua---ug ) lxi #£ 0.
i
o oi-l-1
Since (uwu +--u ) is not a zero divisor and si are not all zero. Thus

fut is not 1-1.

The converse follows similarly.

3.42 PROPOSITION. Let t = sX be in S[X,0]. Then,

(1) ft is onto if and only if s is a unit of S.
(2) ft is 1-1 if and only if s is a unit of S.

(3) ft is an S-automorphism if and only if s is a unit of S.

Proof. We use the fact that ft induces a natural S/Sprendomorphism of
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(s/sp) [X,0; i.e. £ (g(X)) = £ (g(X)) = g(t).

n .
Suppose ft is onto and t = sX. Then for g(X) = 2 sixl in s([Xx,0]
i=1

where s, is a unit, there is some polynomial h(X) = Y r ixl such that
i=1

ft(h(x)) = g(X). Thus ft(h(x)) g(X) # 0; that is,

v i v 0 5i-1 3 T - .i
) ri(sx) =) r;ss s X = ) 8,X # 0.
i=1 i=1 i=1
So that for some j, 1 < j < n,
j-1
rjss ---sU #0

and thus § # 0; i.e., s is a unit in S/Sp and hence a unit in S by (3.9).
The converse follows immediately from Lemma (3.41) using the fact
that for t = X in s[X,0l, ft is onto. Then if s is a unit fsx is onto,
For part (2) suppose t = sX where s is not a unit of S. Then S is a
zero divisor so that for some non-zero c in S,c*s = 0, Now take

g(X) = ¢X # 0. Then
ft(g(x)) =ca8X =0

so that ft is not 1-1.
The converse follows as in part (1).
Part (3) is immediate since ft fixes S.
We next characterize the automorphisms of S[X,s] which are extensions

of automorphisms of S to an automorphism of S[X,0]. Suppose ¢ is an
automorphism of S. Let

¢t:S[X,0] - SIX'OI
be defined for g(X) = 8_ + 8. X + +++ + snx“ by

0 1

l o0 n
¢t(g(X)) = ¢(so) + ¢(81)t + + ¢(sn)t
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where t = sX.

Since by (2.1 vi) the automorphisms of S form a commutative group,
¢ -oi = oi «¢$. Using this we have that ¢t is an endomorphism of S[X,0].
Clearly ¢t is additive, and the following extends linearly to show that

¢t is multiplicative.
. . s i e
6, (@XM 5%) = ¢(a” ) = p@e T et
s s ; .
= ¢(a) (s N7t = ¢(a)t (o)t
- i j
= ¢, (ax")¢, (B57).

It is clear that ¢t extends ¢ to S[X,0)]. The following theorem gives

necessary and sufficient conditions for ¢t and ft to be automorphisms of

six,o]l.

3.43 THEOREM. Let ft and ¢t:S[x,o] + S[X,0] be as described. Then,

(1) ¢t is 1-1 if and only if ft is 1-1 if and only if t = sX
for s a unit of S.
(2) ¢t is onto if and only if ft is onto if and only if t = sX
for s a unit of S,
Proof. Part (1) follows from (3.42) by showing ¢t is 1-1 if and only if

£, is 1-1. Suppose g(X) = ) sixl is such that
i

i
£.(g(x) =] s,t" =0,
i
and ¢t is 1-1. Now
i -1 i
Z 5,6 = ¢ (] ¢ (si)xll = 0,
i i
-1 i X -1
so that z ) (si)x = 0 since ¢, is 1-1. Hence ¢ (si) =0and g, = 0

i i
since ¢—l is 1-1. Thus g(X) = 0 and ft is 1-1.
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Conversely, if g(X) = Z sixi is such that
i
b tax) = § ots, 0t = £.(J as,0xh = 0
t i ts i
i i
and ft is 1-1, then

) <li(si)xjL =0
i

or ¢(si) = 0 and thus s, = O since ¢ is 1-1., Hence ¢t is 1-1.

i
Part (2) follows immediately since ¢ is .an automorphism of S and

thus the range of ¢t is S[t,0] which is precisely the range of ft'



CHAPTER IV

APPLICATIONS OF SKEW POLYNOMIAL THEORY

In this chapter we use the polynomial theory of Chapter 3 in the
development of . simple and unramified extensions of a finite local ring.

Further we characterize finite chain rings and finite one~step rings,

1 EXTENSIONS

Let R be a finite local ring. A ring T is said to be an extension
of Rif R€ T. We will be interested in rings T which are finite local
extensions of R, but on occasion we take T to be R[X,0]. 1In either case
the only non-zero idempotent is 1, thus R and T share the same identity.

Since R € T we may consider T to be an R-module. If T is finitely
generated over R we take the degree of T over R, denoted by [T:R], to be
the rank of T over R; i.e. the cardinality of a minimal generating set of
T over R, Observe this is well-defined.

Further note that T/(T Rad(R)) is a natural R/Rad(R)-vector space
since Rad(R) annihilates T/(T Rad(R)). We use this to "lift" the
R/Rad (R)-basis of T/(T Rad(R)) to R-minimal generating sets of S.

We begin a somewhat more general setting with the following lemmas.
4.1 LEMMA, (Nakayama's Lemma)

Let R be a ring, J an ideal of R contained in Rad(R), M an R-module,

N an arbitrary submodule of M, and F a finitely generated submodule of M.,

56
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Then M = N + JF implies M = N,

4.2 LEMMA. 1Let R be a ring, J an ideal of R contained in Rad(R), M an
R-module, N and N’ arbitrary submodules of M, and F a submodule of M such
that M/F is a finitely generated R~module.

Then M

N+F+JN"impliesM=N+F.

Proof. Let Xy + F,---,xn + F generate M/F, Then M = Rx, + **+ + Rxn + F.

1
Since F is a submodule of M we have

{
M=N+F+JIN =N+F + JIM

N+F+ J(Rx, + -+ + Rx_ + F)
1 n

N+F + J(Rx +~--+Rxn)

1
and thus, by (4.1), M =N + F.
Let R be a finite local ring with maximal ideal M and T a ring

extension of R. Let Q be an ideal of T such that T/Q is a finitely

generated R-module. We say that a subset B of T is a R-generating set

modulo Qof T if T = Q + RB.

Let "—" denote the image under the natural homomorphisms
u:T > T/MT and u:R + R/M.

Since M annihilates T/MT = T, the R-module structure of T induces a

natural R/M = R structure on ¥; i.e.,
(r + M)(t + MT) = r(t + MT) = rt + MT,

4.3 THEOREM. (Lifting of generating sets)

Consider the above setting, Then

(1) If B is a subset of T,

T=Q+RB if and only if T = Q + RB,

(2) rank (T/Q) = rank (T/Q).



(3) If T is a finite extension and Q = 0,

]
e
o
Sl

{T:R]

where T is a R-vector space.
Proof. If B is a subset of T and T = Q + RB then clearly T = + RB as
R-modules and thus from above remark, T = ) + RB as R-modules. Conversely,
if T = § + RB as R-modules then T = § + RE as R-modules and thus
T=Q + RB + MI'. Since T/Q is finitely generated by hypothesis we conclude
from (4.2) that T = Q + RB.

From (1) we have T/Q = RB if and only if T/Q ~ RB so that the rank
(T/Q) equals the rank (T/Q). Thus if Q = O we conclude [T:R] = [T:R].

If R and T are rings with R € T, then the contraction I, of an ideal
IinTis I, = I NR; while the extension 1* of an ideal I in R is
* = TIT, that is, the smallest two-sided ideal of T containing I. We
have shown that for T local or T = R[X,0] that Rad(T) is a two-sided
ideal. We are interested in extensions T of R such that Rad(T) =

T(Rad(R)) = (Rad(R))*. Such a ring T is called an unramified extension of

R.

4.4 PROPOSITION. Let T be a local extension of R. Then R =T if and

only if [T:R] = 1.

Proof. Clearly R = T implies [T:R] = 1. Conversely, if [T:R] = 1 and
{b} is a generating set of T, then since 1l is in T,rb = 1 for some r in R.
Thus b is a unit of T and thus b2 # 0. Now there exists an rl in R with
rlb - bz, 8o that (rl-b)b = 0 and hence rl = b is in R, That is, T = R.

4,5 COROLLARY. Let T be an unramified local extension of R, If T = R

then T = R.

Proof, If T = R then since T is an Revector space (T = T/MT = T/Rad(T)
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is a finite field) we have 1 = [T:R] = [T:R] by (4.3). Thus by (4.4)
T = R,
In general if R = T0 [+ Tl G e ‘.7-.'1‘n where Ti is a finite extension
of Ti—l of degree ITi:Ti_ll = ri then

. < se e
['I'n.R] £ rl rn.

We now show in the case of unramified extensions equality holds.

4.6 PROPOSITION. Let R = '1‘0 C e & Tn where Ti is an unramified finite

local extension of T, of degree [T.:T, .] = r.. Then
i-1 i "i-1l i
[Tn:R] = rl' . 'rn.

Proof. Since Rad('.l'i) = TiRad(Ti—l) is a two-sided ideal, we have
Rad('rn) = Tl"'TnRad(R) = TnRad(R) so that 'I'n is unramified over R. Thus

by (4.5) [T :Rl = [T :R] and [T.:T, ,1 = [T,:T; ] =z, ButR®,-..,T |

are finite subspaces of i"n, so that

[Tn:R] = ['I‘n:R] = ['rn:Tn_ll---[E'lxm

Y_seeX
1 n

2 DEGREE OF IDEALS IN R[X,0].

We have from (3.4) that Rad(RiX,0]) = (Rad(R)) [X,0] so that R[X,0] is
an unramified exteasion of R. We say that an ideal 0 of R[X,0] has

finite degree if the rank of the R-module R[X,0]/Q is finite, in which

case, we define

deg(Q) = rank(R[X,0]1/Q) = [RI[X,0]1/Q:R/Q,].

By (4.3) if Q has finite degree then

deg(Q) = deg(D).
4.7 THEOREM. Let Q be an ideal of R[X,0]. Then the following are

equivalent.
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(1) Q has finite degree

(2) Q contains a monic polynomial.

(3) Q is regular.

(4) O has finite degree in (R/M) [X,G].
M. We first show (1) ahd (2) are equivalent. Suppose Q has finite
degree, then R[X,01/Q has a R-generating set say {fl,---,ft}. Let m be

the maximal degree of the polynomials £ ,---,f £ Then for n > m there

ll
. . n
in R and g in Q such that X =rlf1+ . +rtft+g.

n X . . .
Now X - rlfl - rtft = ¢ is a monic polynomial in Q.

exists EyreeceTy

Conversely, let £ be a monic polynomial of degree n in Q. Then
since the division algorithm holds in R[X,0] for monic polynomials as
divisors (§roof same as for R[X] with appropriate consideration for
skewing) , for g in R[X,0] there exists h and k in R[X,0] such that
g = hf + k where k = 0 or the degree of £ is less than n. Thus
{1,x,---,x“"l} is an R-generating set of R[X,0]/Q, and Q has finite
degree less than or equal to n.

It is immediate that (2) implies (3). Further we have noted (1)
implies (4). We show (4) implies (l).

Suppose Q has finite degree in (R/M) [X,0]. Then since (R/M) [X,G] is
a skew polynomial ring over a finite local ring R/M, by (2) § contains a

n-1

monic polynomial T = 5+ En_lx + 00 4+ Eo where fi s in R/M. Thus

Q contains f = ™+ rn_lx"'l + s 4 z, + m(X) where m(X) is a polynomial
in M[X,0]. Since M[X,0] is nilpotent, M[X,0] <€ r(Q) and hence £ is in
r(Q). Thus £ - m(X) = X" + rn_lx“'l oo txg is in r(Q) so that

(x" + rn_lx"'l 4 oee 4+ r:o)k is in Q for some integer k, Hence Q has

degree less than or equal to nk.
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If Q is regular, then § # 0 and thus since R/M is a finite field

(R/M) [X,51/0 is finitely generated as a (R/M)-module; i.e., Q has finite
degree. Hence (3) implies (4).
We denote the degree of a polynomial f by D(f). Since R[X,0]

contains zero divisors for polynomials f and g in R[X,0],
D(£-g) < D(f) + D(9)

while in the integral domain (R/M) [X,G]
D(f-g) = D(E) + D(J).

Thus we define the order of a regular polynomial £ in R[X,0] to be the
minimal degree of the non-zero polynomials of the right ideal £R[X,0].
Note that in (R/M) [X,5] if § = E(R/M) [X,0] = (R/M) [X,0]f then from above
we have

deg(Q) = D(f) = order(f).
4.8 LEMMA. Let f be a regular polynomial in R[X,0], Then the order(f)

equals the maximum exponent of X in the polynomial £ whose coefficient is

a unit of R.

Proof. Letf=rxs+---+rxm+°--+r where r ,*°**,x are in M
—_— s m 0 s’ mt+l

and T is a unit of R. Then clearly order(f) < m since T reteeE , aTe

zero divisors in R[X,0)]. For example, if we choose rl such that
rsos(rl) = 0 then (r:sxs + s+ ro) rl is a polynomial in fR[X,0] of
degree less than or equal to s - 1.

Let B denote the degree of nilpotency of M = Rad(R). We show by
induction on B that order(f) = m. The result is obvious if Ml = 0.
Assume inductively that the theorem is true for all local rings with

M = 0 for r < B. We show the result holds for all local rings R with
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M8 # 0 and MBH' = 0, Suppose for g = atxt + 0 + 2, where a, # 0 that
D(fg) < m, then D(£:§) < m. But D(£+§) = D(E) + D(F) = m + D(F) implies
that § = 0 or g is in M[X,0]. WNow since R is local with maximal ideal

B B+1

M #0 and M = 0, we have R/MB is a local ring with maximal ideal

M/MB. But (M/MB)B = 0, thus if g is not in (MB) [X,0] by the induction
hypothesis D(f°g) 2 m in R[X,0]. 1If on the other hand, g is in (MB) [X,0]
and D(f°g) < m then amom(bs) = 0 which is contradictory since am is a unit
of R and thus not a zero divisor. 1In either case the assumption that

D(f*g) < m leads to a contradiction so that order(f) = m.

4.9 PROPOSITION. Let R be a finite local ring with maximal ideal M.

Let £ be a polynomial in R[X,0] which generates a two-sided ideal

fR[X,3] = R[X,0]1f = (£). Then (£) is generated by a monic polynomial of

degree m if and only if £ = rtxt

are in M and rm is a unit of R.

+ e+ rmxm oot where

T el
Proof. Suppose fR[X,6] = R[X,0]f and £ is as above. Let

B = {l,x,---,}gn-l} in R[X,0]. Then since f= ?:mxm + F lx‘“'l + ** +F

m- 0

where 'fm # 0 we have by the division algorithm that
(R/M) [X,5)] = (£) + RB and hence by (4.3) R[X,0] = (£) + RB.
Thus for xm in RIX,0],

m-1
"}n‘am-f‘ +----i-ao+f0

where a _,,*"*,a, are in R and £5 in (£), so that

1 0

)P- xm-l---a-asf is monic and in (f).
m-1 0 0

It remains to show (fo) = (f). This follows since fo # 0 and fo has
leading coefficient a unit so by the division algorithm there exists h

and k in R[X,0] such that
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f = hfo + k where k = 0 or D(k) < m.

Since order(f) = m by (4.8) D(k) 2 m and hence k = 0; i.e., (f) = R[x,o]fo.
Similarly foR[x,a] = (f) so that (f) = (fo).

Conversely suppose (f) = (fo) where f0 is monic of degree m. Then
order(f) = order(fo), but order(fo) = m by (4.8), Thus order(f) = m
and £ is of the form

f=rxt+ --o+rm£‘+ e 4 r

t 0

where r_,°*+,r are in M and r_is a unit of R.
t m m
We conclude this section with the following summary.

4.10 THEOREM. Let Q be a regular ideal in R[X,0] with form as in (3.26);

i.e.,
k
Q = (ug + m)R[X,0] + M[X, 01 N Q

where u is a unit, g a fundamental irreducible and m in M[X,0] in RI[X,0].

Further, let § = £(R/M) [X,5] = (R/M) [X,31E. Then,

deg(Q) = deg(Q) = order(f) = D(f) = kD(3).

3 SIMPLE ALGEBRAIC EXTENSIONS.

Let R and T be finite rings with R € T. If 6 is an element in T such
that r8 = 80(r) for some automorphism ¢ of R and all r's in R, then we
denote by R{6,0] the smallest subring of T containing R and 6. We denote
by R(6,0) the smallest local subring of T containing R and 6, and call

R(6,0) a simple extension of R and 6.

Suppose that R iﬁ local. The ring R[6,0] is the homomorphic image
of R[X,0] under the natural substitution map taking f(X) to £(6), Let Q

be the kernfl of the substitution map. Then
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RIX,01/Q = R[6,0].

Since R[8,0] is a homomorphic image of the primary ring R[X,0], RI6,0]
is also primary; that is, (0) is a primary ideal in R[6,0]. We use this
in showing that Q is primary. Suppose £(X)g(X) is in Q, then £(8)g(6) = O.
Thus £(X) is in Q'or (g(X)"is in Q. -

Further since Q = {f in R[X,0] | £(8) = 0} it is clear that RN Q = O
and thus R[X,0]/Q is a finite ring.

We now show that Q is a regular non-trivial ideal so that by (3.27)
RIX,0]1/0 = R[6,0])

is a local ring. Hence R[6,0] = R(8,0).

4.11 PROPOSITION. Let R &€ T be finite rings. If 8 in T is such that

for some automorphism ¢ of R,x6 = 60(r) for all r in R, then there exists

a monic polynomial £ in R[X,0] such that £(8) = O.

Proof. Let 8 be in T and such that r6 = §o(r) for r in R. Consider

R = {I re’ | x. is in R}. Then R €R. < T. For each element in R

0 i i 0 0

select a representative with least degree as a polynomial in 6. Let B

denote the set of these representatives. Then B is finite and thus con-
1

tains a polynomial of greatest degree, say m. Since e“‘* is in RO’

em+1 = p(8) for some p(f) in B. That is, 0 satisfies the monic

polynomial xxn-i-l - p(X) in R[X,0].
The kernel Q@ = {f in RIX,0] | £(8) = 0} of the substitution map is

called the defining ideal of 6. The element 6 is called skew algebraic

and R(6,0) is called a simple skew algebraic extension or simply a simple

algebraic extension if 6 is algebraic.

4.12 THEOREM. If T = R(®,0) is a simple algebraic extension of R, then
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the defining ideal Q of § is a regular primary ideal and has the form

- 0 = (ug® + mRIX,0] + M[X,0] N Q,

where u is a unit, g a fundamental irreducible and m in M[X,0] in R[X,0].

Further, T = R(0,0) = R[6,0] and T is a finite local extension of R
with

[T:R] = kD(q).

The finite field T = T/Rad(T) = (R/M) [X,51/(8 =(R/M) (8,5) is obtained
from (R/M) by the adjunction of © the zero of g to (R/M).

Hence [T:R] = k[T:R].
Proof. 1In the preceding discussion we have already noted that Q is a
non~trivial regular primary ideal. Thus by (3.26) Q has the given form.
By definition and (4.10) the deg(Q) = [RI[X,0}/Q:R] = [T:R] = kD(G). Now

from (3.26), (3.19) and following comments we have the isomorphisms

23

T = T/Rad(T) (R[X,01/0) /Rad (R[X,01/9Q)
(R/M) [X,31/2(Q)

(R/M) [X,51/(5) -

n

R

Thus T is a finite field extension of R, and hence by McDonald
[21, Thm. II.1] T is the adjunction of R and. ® the zero of the irreducible

polynomial § in (R/M) [X,5]. Hence [T:R] = D(g), so that [T:R] = k[F:R].

4 FINITE CHAIN RINGS AND ONE~STEP NON-COMMUTATIVE RINGS

In this section we apply the main structure theorem (2.5) to the
results of Clark and Drake [2] to characterize finite non-commutative chain
rings.

A ring R is a left (right) chain ring if its lattice of left (right)

ideals forms achain.
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The following lemma from [2] summarizes the properties of finite chain

rings.
4.13 LEMMA 1If R is a finite ring with Rad(R) = M # 0,.then the follow-
ing are equivalent.

(1) R is a left chain ring.

(2) R is a right chain ring.

(3) R is a local ring with M = RO for any 6 in M - M2.

(4) The principal left ideals of R form a chain,

Thus the ideals of R are

RDRS:Rezz see ::RGB =0

where 8 is the index of nilpotency of Rad(R) = M, Further, for 1 < i s B
RBi = ein.

Since a finite chain ring R is local by (2.2) R contains the
coefficient subring S = GR(pn,r) where the characteristic of R is pn and
R/Rad(R) = GF(pr) . Now R=8 & N as (S-S)~modules where N is a
(s-s)-submodule of R contained in Rad(R) = M. Since N is an (S-S)-module
by (2.4) it has a distinguished independent generating set

{b. ,---,bm; 01,---,om} where sbi = bioi(s) for s in S. Thus

R=S 6 Sb1 © 00 @ Sbm. We now show that some bi is in M - Mz. For
suppose bl" . -,bm are in M2. . Then since p is also in M2 (otherwise

Rp = M and R would be an unramified extension of Z/2pn which contradicts

(2.1)) we conclude that

2

Sp ® Sb, & "'QSmeM .

1
But S is an unramified extension of 2/21:n so that M N s = Ssp. Thus since

M € R it is clear that



67

Sp®Sb) © -+ ®Sb =M.

1
But this contradicts the above inclusion so that for some i, 1 < i < m,
bi is in M - M2. Denote bi by 8, then s = eci(s) and 6 generates M.

Using this we have an improved veréion of Clark and Drake's
principal result in [2].

4.14 THEOREM Let R be a finite chain ring with characteristic pn,

maximal ideal M = RO (6 as above), and S = GR(pn,r) the coefficient
subring of R.
Let m denote the degree of nilpotency of M. Then there exist:.
integers k and t such that
(1) R=5S®S0® -+ @ Sekal as an (S-S)-module direct sum,
where sei = Gioi(s) for some fixed automorphism of S and each
s in S.
(2) ek = p(s ek'l + +++ + 3.0 +s) where s, is in S and s_ is a
k-1 1 0 i 0

unit of s.

(3) There are (S-S)-module isomorphisms

S8t =S for i =1,-+-,£-1
s6 = Sp for i = t,+++ k- 1.
() m=(n- 1k +t, 1<t<k, where k is the greatest integer
i £ m such that p is in M.

Let R be a finite chain ring as described above in (4.14) with
coefficient subring S = GR(pn,r), and integer k being the greatest integer

i < m such that p is in M = Re",

A skew polynomial g(X) = xk + p(ssk_lxk'-l + e + slx + so) in s[X,0]

where s0 is a unit in S is called a skew Eisenstein polynomial over §.
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The ring S[X,0]/(g(X)) is called an Eisenstein extension of S of degree k.

By using a skew Eisenstein extension we are able to extend Krull's
characterization of commutative finite chain rings to that of non-
commutative finite chain rings.

4.15 THEOREM (Characterization of chain rings)

Let R be a finite chain ring with maximal ideal M of degree of
nilpotency m, R/M = GF(pr), and coefficient ring s = GR(pn,r).
Then there exists integers t and k such that

R = 5[X,01/(g(x) ,p" x5

where t =m - (n-1)k > 0 and g(X) is an Eisenstein polynomial of degree
k over S.

Conversely, such a quotient is a finite chain ring.
Proof. It is clear from the proof of (4.14) that the above quotient ring
has the properties given in (4.14). Thus we map the generator of
S[x,o]/(g(x),pn-lxt) to the generator of R and achieve the desired

isomorphism.

A one~-step non-commutative ring is a non-~commutative ring for which

every proper subring is commutative.

In {24; p. 753, Thm. 447 Ring RII] Redei has characterized finite
one-step non-commutative rings. From this theorem and our theory of skew
polynomial ¥ing;“we have the following characterization of finite non~
nilpotent one-step rings with identity.

Let p and q be primes and m, e, n positive integers with n < q. Let
f be a fundamental irreducible in (Z/me)[X] of degree qe. Consider the
Galois ring S = (Z/pr)[x]/(f). Select a separable generator p of S over

Z/me such that Auto pm(s) are given by power maps of this generator

2/2
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(See Ganske and McDonald [9, Thm. 5.11}). Define an automorphism

T:S + S by T:p > pt

e-1
where t = pnq . For this automorphism consider S[X,t].

4.16 THEOREM (In the above setting) The ring

SIX,71/(x%)

is a one~step non~commutative r&ng with identity. Further, every non-
nilpotent one-step non-commutative ring with identity has the above form.
Proof. It is clear that s[x,r]/(xz) is generated by p and X where p and
X have the properties of the ring RII in [24, p. 753, Thm. 447]. Hence
S[X,T]/(Xz) is a one-step non-commutative ring. Further, for any non-
nilpotent one-step ring with identity we may construct S[X,T]/(Xz) as
above. Then mapping generators to generators we have the desired

isomorphism.
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