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Abstract:

A quantum walk in momentum space with a rubidium spinor Bose-Einstein condensate was
recently realized in our research group by applying a periodic kicking potential as a walk
operator and a resonant microwave pulse as a coin toss operator. The generated quantum
walks appear to be stable for up to ten steps and then quickly transit to classical walks due
to spontaneous emissions induced by laser beams of the walk operator. The quantum to clas-
sical walk transitions were investigated by introducing well-controlled spontaneous emissions
with an external light source during quantum walks. Our findings demonstrate a scheme
to control the robustness of the quantum walks and can also be applied to other cold atom
experiments involving spontaneous emissions. Our QW possessed behaviors that generally
agreed with theoretical predictions; however, it also showed momentum distributions that
were not adequately explained by the theory. A theoretical model is presented in which the
coherent dynamics of the spinor condensate is sufficient to explain the experimental data
without invoking the presence of a thermal cloud of atoms as in the original theory. These
numerical findings are supported by an analytical prediction for the momentum distributions
in the limit of zero-temperature condensates. This current model provides more complete
explanations to the momentum-space QWs that can be applied to study quantum search
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CHAPTER I

INTRODUCTION

1.1 Outline

Since the advent of quantum theory by Max Planck in 1900 many interesting and surpris-

ing discoveries have been made as well as many applications that have had major effects

on everyday life. One of the first such applications was the discovery of the properties of

semiconductors that lead to the prevalence of electronics and computers in our everyday

lives. These computers often require searching for data within a stored database. To find

the desired piece of data one must use a method to search each piece of data until the re-

quired data is found. Such a method is known as a search algorithm. Classical random

walks have been used in such search algorithms and networks [12, 132]. These discoveries

and applications also lead to the development of the field of information theory pioneered in

the 1940s by mathematicians such as Turing, Shannon, and Van Neuman. In more recent

decades starting primarily with Richard Feynman in the 1970s information theory has begun

to be extended into the quantum realm. Such new and exciting phenomena and potential

applications of quantum information include quantum walks, quantum search algorithms,

quantum computing, and topological phenomena of quantum walks. In order to potentially

utilize such phenomena in future applications it is necessary to study them to learn about

their strengths and limitations. A very effective method of conducting such research is by

using the Bose-Einstein Condensates (BECs) as a basis. This state of matter is useful for

quantum information research because BECs consist of tens of thousands to around one

hundred thousand atoms of a particular species with each atom assuming the same quantum

state upon being prepared. This greatly aids in investigation as now measurements are taken
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at the micrometer scale ( 10−6m) rather than at the nanometer scale ( 10−9) characteristic

of the atomic scale. With BECs, numerous investigations of quantum information have been

successfully conducted over the last couple of decades. However, one important limitation

of utilizing BECs in this manner is the presence of spontaneous emission that causes deco-

herence or a loss of information during the experiments. Such spontaneous emission causes

a loss of atoms in experiments with BECs that are conducted over longer periods of time.

In QWs using BECs for instance, they can be carried out for up to around 10 to 15 steps

until the effect of spontaneous emissions induced by the kicked rotor becomes detrimental.

While this was adequate to observe the behavior of the QWs in our previous studies this

may increase difficulties in future experiments where more applications of the kicked rotor

increase the probability of spontaneous emission. In this thesis, we carefully investigate the

effects of spontaneous emission on QWs utilizing an external source of light to induce spon-

taneous emission to test how robust our QWs were under such a light source that is tunable

in both intensity and duration. This tunable source of light also provided an opportunity to

investigate the quantum-to-classical transition behavior of our QWs and suggest a possible

method of quantifying this transition. We also investigated the effects of light shift due

to the atom optics kicked rotor (AOKR) used to generate the shift in QWs and possible

future methods to “clean up” our QWs so that it could be carried out to greater number

of steps. The results of these studies indicate that our QWs could be used to successfully

realize further experiments to study topological phenomena, quantum search algorithm, and

other aspects of quantum information.

1.2 A brief history

In our studies we used the quantum walk with a BEC as a basis to investigate the effects

of spontaneous emission. As a result, it will be useful to briefly outline the history of

quantum walk. The concept of a quantum random walk is quite recent as the first paper

proposing the concept was from 1993 [2, 63]. This paper proposed a “coin” based on a spin-
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2
particle constrained onto a one-dimensional line. This paper also proposed as possible

experimental realizations the use of micromasers [83, 18]. In one of the papers mentioned

[18] interestingly a two photon maser was realized using 85Rb. A later paper by Agarwal et

al. [1] proposed an improved version of the experimental method proposed in Aharonov’s

paper. It is also important to note that the original model proposed by Aharonov differs

from the contemporary model of the quantum walk in two major ways. First, the position

states are forming an orthogonal basis with the walker. Secondly, the original proposal would

measure the state of the coin after each step while in contemporary models measurements

are made after a number of steps are performed [90, 125]. The first experimental realizations

of the quantum walk were done in 2009 using an ion trapped in phase space and optically

trapped individual atoms [104, 62]. Other possible schemes to realize a QW involve the use

of quantum circuits, nuclear magnetic resonance (NMR), and waveguides that can act as a

Mach-Zehnder interferometer [125]. The possibility of utilizing a BEC in momentum space

to realize a QW was first proposed by Chandrashekhar in 2006 [21] although it was proposed

that a Raman kick could be used to realize the unitary shift operator. It wasn’t until a

decade later that Wimberger et al. proposed the QW using a 87Rb BEC with the AOKR

to realize the aforementioned kicks [117]. Such a QW was then shortly realized by [27, 26]

in 2018 and it was stable up to about fifteen steps. Some of the applications of a quantum

walk include quantum search algorithms [107, 51, 52, 11], quantum computing [91], and

topological phenomena [135, 131, 68, 133]. They also possess faster hitting times compared

to classical random walks [124, 77, 64]. To attempt to realize some of potential applications

of these QWs it is important to analyze the robustness and quality of the walk. This was

done by subjecting QWs to external interference from laser light of tunable intensity. This

light introduced a spontaneous emission that increased the probability of atoms participating

in QWs to leave the walks. We also considered the possibility of adding initial momentum

states to our QWs as well as changing the operators of the walk to reduce the effects of light

shift from the translation operator that creates a persistent artifact that negatively affects

3



the quality of the QW over larger numbers of steps.

1.3 Dissertation layout

In chapter 2 I describe in detail the theoretical aspects of QWs using BECs. This setup

is what provides the basis for my project in studying spontaneous emission and effects of

light-shift. Because our QWs use the Atom-optics kicked rotor (AOKR), quantum ratchet,

and microwave spectroscopy to be successfully realized in experiment, these important com-

ponents are also described in detail. The theoretical aspects of spontaneous emission as

pertaining to QWs and the AOKR are also described in detail and theoretical predictions

are discussed and presented. The theory AC Stark shift is presented and its effects on the

AOKR and QWs are lastly discussed. In chapter 3 I present the aspects of the experimental

setup and the standard protocols used in obtaining the experimental data that is presented

and analyzed in this dissertation. Detailed schematics of the optical tables and relevant

equipment are presented and discussed in detail. The standard protocol of creating BECs

that are utilized in my experiments is outlined in detail. In chapter 4 the results of my

experiments are presented and discussed in detail. The robustness of QWs under external

spontaneous emission perturbation is analyzed and the detection of the quantum-to-classical

transition in QWs is explored. Simulations of the effects of light shift are also presented here

along with a discussion of possible methods to reduce the effects of light-shift on our QWs

to realize QWs that more closely resemble ideal behavior.
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CHAPTER II

THEORETICAL ASPECTS OF QUANTUM WALKS AND SPONTANEOUS

EMISSION

2.1 Introduction

In this chapter we will discuss the theoretical background of the quantum walk in general

as well as the theory in realizing such a walk using the BEC in momentum space with an

AOKR as the translation operator and the theory of utilizing microwave pulses to realize

the quantum coin. As was discussed in the introduction, regardless if we are considering a

classical or quantum walk they can both be classified as discrete or continuous in time. In

the classical case examples of the discrete case include the so-called drunkard’s walk along a

line [96] or a random walk along a circle [116] while such phenomena as Brownian motion [71]

are described by the continuous case. For our quantum walks we only considered discrete

walks although continuous walks have been realized in experiments [122, 126].

2.2 Theory of Quantum Walk

In this section we will first describe the general basic properties of the quantum walk as well

as its distribution. We then will detail the derivation of the Bloch equations necessary for

the description of a two level system using two hyperfine levels of alkali atoms in the presence

of on resonance radiation. A useful model to help visualize the transition of this system is

introduced via the Bloch vector and Bloch sphere which will be helpful in the derivation of

the results of Rabi oscillations. Hereafter we then describe the theory of the AOKR necessary

for the realization of the momentum space translation operator of the quantum walk. Lastly,
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we will outline the theory of spontaneous emission and apply this to the quantum walk and

discuss the predicted results.

2.2.1 Concept of a Quantum Walk

Let’s consider the simple case of a quantum walk on line in which our coin becomes a quantum

coin or qubit [90, 125, 63]. Now let the two possible states of our quantum coin be |1〉 and |2〉

and consider an application of a quantum coin denoted by the operator M̂ . This then results

in an equal superposition of our states giving us the following matrix representation [90]

M̂ =
1√
2







1 i

i 1






. (2.2.1)

Now if we let |1〉 =
[

0
1

]

and |2〉 =
[

1
0

]

and apply the operator defined in Eq. 2.2.1 then we

have [90]

M̂ |1〉 = 1√
2







i

1







M̂ |1〉 = 1√
2
(|1〉+ i|2〉) .

(2.2.2)

If we simply measured the state at this point and moved left or right along the line depending

upon this result then we arrive at the same results of the classical walk as described in the

Introduction. However, if instead we treat our walker as a quantum system and apply our

quantum walk where the coin operator is applied and the walker will move to the right

if the state is |1〉 and to the left if |2〉. This process is a step for the quantum walker

and is given by Û step = T̂ M̂ where M̂ and T̂ are the coin and momentum shift operator

respectively [63, 26]. The direction of this shift operation is determined by the result of the

quantum coin. If the initial state of our quantum system is given by |ψ0〉 and if the quantum
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walk is applied t number of steps then the state of the system is then [90]

|ψt〉 =
(

Ûstep

)t

|ψ0〉. (2.2.3)

The distribution of the walker produced by this process is dependent on the initial state of

our system. If, for instance the initial state is |1〉 then the second step will have a nonzero

mean showing that mean of the distribution can be nonzero. If we select the initial state

to be |ψ0〉 = 1√
2
(|1〉+ |2〉) then we have quantum walk with a zero mean for any number

of steps t. For the remainder of this discussion we will only consider this initial state. In

contrast with the classical walk shown in Table 1 [90], the probability p of the walker being

in a position, n after a number of steps t we can see that the terms are not terms from

Pascal’s triangle as shown [90] in Table 2 [90] with the first four states of |ψt〉.

t/d -4 -3 -2 -1 0 1 2 3 4

0 1

1 1
2

0 1
2

2 1
4

0 1
2

0 1
4

3 1
8

0 3
8

0 3
8

0 1
8

4 1
16

0 4
16

0 6
16

0 4
16

0 1
16

Table 1: Probability of finding a classical walker at a position d after t steps.

During the quantum walk the coin is not measured after each individual step but instead

quantum correlations between the different positions are kept and are allowed to interfere in

the proceeding steps. It is this interference that gives rise to the distinctly peculiar behavior

of the quantum walk. Indeed, if we take the distribution of the quantum walk after numerous

steps we can see that the resulting distribution has the appearance of horn-like maxima along

the edges of the distribution that widens ballistically as the number of steps increases. A

numerical simulation of this after t = 100 steps is shown [90] in Fig. 1

Because of this behavior it is clear that the calculation of the standard deviation, σq is not

trivial. In spite of this, it is shown by numerical calculations [121] that this standard deviation

is nearly independent of the initial state of the quantum walker and is approximately linear,
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t/d -4 -3 -2 -1 0 1 2 3 4

0 1

1 1
2

0 1
2

2 1
4

0 1
2

0 1
4

3 1
8

0 1
8

0 5
8

0 1
8

4 1
16

0 1
8

0 1
8

0 5
8

0 1
16

Table 2: Probability of finding a quantum walker at a position d after t steps. Note that
this walk is asymmetric when compared to the classical walk presented in Table 1.

i.e., σq ≈ t.

Next we will discuss the details of realizing the discrete-time quantum walk in momentum

space. Understanding the properties of this quantum walk is important if one wishes to apply

the walk to various applications. In the experiments that we conduct a coin operator, M̂

is used to produce a superposition of two internal states of 87Rb. To translate the atoms in

momentum space a unitary shift operator, T̂ , is applied. These two operators then produce

a step of each walk as was discussed at the beginning of this section, Ûstep = M̂T̂ .

2.2.2 Rabi Pulses and Coin Operator

To realize a quantum coin with a BEC of alkali atoms it is necessary to have precise control

over a pair of internal states. This effectively creates a spin-1/2 system that can then be

used to create the quantum coin. In 87Rb this is accomplished by using microwave radiation

that is resonant on two states in the
(

52S1/2

)

ground hyperfine levels. These states under

consideration are the |F = 1, mF = 0〉 and |F = 2, mF = 0〉 hyperfine levels which following

the works [27, 26] are denoted as |g〉 and |e〉 for ground and excited state respectively. In order

to understand how to use these states to realize the superposition of states for the quantum

coin it is necessary to understand the physics behind this microwave transition which in turn

requires some understanding of Bloch vectors, Bloch sphere, and Rabi oscillations.

The hyperfine levels under consideration are due to an interaction between the spins

of the electron and nucleus and this interaction causes the ground state to split into two

levels [115] with a difference in frequency of several GHz. If one approaches the system in a

8



Figure 1: Numerical simulation of a quantum walk after t = 100 steps with up to n = 100
positions calculated using code adapted from Portugal [90]. Note the distinctive “horns”
compared with the Gaussian distribution of the classical walk.

semi-classical manner in which the incident microwave radiation is considered as a classical

radiation field and the two states, |g〉 and |e〉 are considered as a two-level system then the

theoretical analysis becomes more manageable [3]. This is because the quantum physics of

a two-level system is well understood [35].

We can begin our discussion by considering the time-dependent interaction described by

the Hamiltonian[42]

Ĥ = Ĥ0 + ĤI(t), (2.2.4)

where Ĥ0 and ĤI are the stationary atomic and time-dependent terms respectively. If this

Hamiltonian interacts on a two level system then the state of the system after a time t can

be written as [35, 47]

|ψ(t)〉 = a(t)|e〉+ b(t)|g〉, (2.2.5)

where the ket vectors on the right hand side are the aforementioned hyperfine levels. Since

we are considering microwaves interacting with atoms we can quantitatively describe the

electric and magnetic effects. Because of the symmetry of the hyperfine S states we can

neglect the effects of the electric dipole and thus leave only magnetic interactions to be

considered. The situation can be further simplified if we consider the fact that if we limit
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ourselves to transitions where ∆m = 0 then the treatment resembles that of the electric

dipole. With these assumptions in mind we can then rewrite Eq. 2.2.4 as [43]

Ĥ = Ĥ0 −
∑

q

µ̂q · B̂(r0), (2.2.6)

here the second term on the right member of Eq. 2.2.6 contains the magnetic field operator B̂

at a point r0 and the sum
∑

q µ̂q represents the complete magnetic dipole moment operator.

This operator takes into account the contributions from the orbital (L̂) and spin (Ŝ) momenta

of the valence electron and the angular momentum from the nucleus (Î) respectively. These

contributions can then be written as [73]

∑

q

µ̂q = µ̂L + µ̂S + µ̂I . (2.2.7)

We can represent these operators in terms of the Pauli spin matrices as shown below

Ĥ0 =
~ω0

2
σ̂z (2.2.8)

û = µ̂rσ̂x − µ̂iσ̂y, (2.2.9)

here the subscripts r and i represent the radial and angular integrals specific to a particular

problem at hand [3]. Because we are only considering ∆m = 0 transitions the second term

in the left member of Eq. 2.2.9 will vanish because of the aforementioned symmetry and thus

we will only have the radial part to consider [38]. We can also neglect the contributions from

orbital spin angular spin momenta because the interaction is between the two S states, thus

L = 0. As a result of this analysis then we have [44, 3]

Ĥ =
~ω0

2
σ̂z −

(

µ̂r · B̂
)

σ̂x. (2.2.10)

If we work in the Heisenberg picture it becomes relatively simple to calculate the evolution
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of the Pauli matrices with the following commutation relation [3, 44]

i~ ˙̂σj =
[

σ̂j , Ĥ
]

. (2.2.11)

Expanding this commutation relation results in the system of coupled differential equa-

tions [3, 44]

˙̂σx(t) = −ω0σ̂y(t)

˙̂σy(t) = ω0σ̂x(t) +
2

~

(

µr · B̂
)

σ̂z(t)

˙̂σz(t) = −2

~

(

µr · B̂
)

σ̂y(t).

(2.2.12)

For convenience we can neglect the quantum interactions between the atom and the applied

microwave radiation field at a high power as this enables us to treat the incident microwave

radiation as a classical wave and it also allows us to consider the expectation values of the

Pauli matrices [3, 44]

sj = (〈ψ(t)|σ̂j|ψ(t)〉) . (2.2.13)

This also has the additional advantage where the expectation values of surviving operator

products can be readily calculated. The results of Eq. 2.2.13 can then be expanded in the

following system of differential equation that, although are still coupled, are also slightly

more simple than in Eq. 2.2.12 [3, 44]

ṡ1(t) = −ω0s2(t)

ṡ2(t) = ω0s1(t) +
2

~
(µr ·B) s3(t)

ṡ3(t) = −2

~

(

µr · B̂
)

s2(t).

(2.2.14)

We can also assume that the microwave radiation is linearly polarized and enables us to

write [3]
〈

B̂(t, 0)
〉

= B0 cos(ωt) = B0 cos(ωt)z. (2.2.15)

11



With all of these derived results we are now in a position to derive the optical Bloch equations

for microwave spectroscopy. The form of these equations vary depending upon the system

under consideration. We have already seen a version of these equations in Chapter 2 in the

analysis of laser cooling for example. Now, we introduce a further convenience in applying

the rotating wave approximation where we consider a reference frame that rotates with a

frequency ω that matches the frequency of the microwaves. Also, note that the coupled

equations in Eq. 2.2.14 show the s vector will trace out a path on a unit sphere. We will see

that such an observation will be very useful in interpreting these equations as they are very

difficult to solve directly. Thus it is necessary to make further simplifications using theory

of Rabi oscillations as we will discuss next.

Let’s consider the interaction term from Eq. 2.2.4 and calculate its terms in terms of the

stationary part [127, 44]

ĤI = Vi,j = 〈ψi|ĤI |ψj〉. (2.2.16)

Applying the reduced interaction term this then becomes [127, 44]

Vi,j = 〈e| −
(

µ̂ · B̂
)

|g〉 = ~

2
Ω, (2.2.17)

where Ω is again the Rabi frequency. Because we are able to factor the operator products

and determine each expectation value we recover the interaction under consideration. Now

let’s write the radial term µ̂r in terms of the Bohr magneton, µB = e~
2me

and Lande g-factor

gq [127, 44]

µ̂q =
µBgqq

~
. (2.2.18)

Because we have already aligned the system along the z-axis as implied in Eq. 2.2.15 we will

maintain this orientation and rewrite the interaction term as [127, 44]

ĤI =
B0

~
(µBgSSz + µBgIIz) cos(ωt). (2.2.19)
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Applying Eq. 2.2.19 to Eq. 2.2.17 results in the rather intimidating expression [127, 44]

Vi,j = 〈g|ĤI|e〉

= 〈F = 1, mF = 0|B0

~
(µBgSSz + µBgIIz) cos(ωt)|F = 2, mF = 0〉

=
B0

2~
cosωt〈F = 1, mF = 0|µBgSSz +muBgIIz|F = 2, mF = 0〉.

(2.2.20)

The last line of Eq. 2.2.20 can be successfully evaluated by the use of Clebsch-Gordon

coefficients using the basis {Iz, Sz} and for the |F = 1, mF = 0〉 ↔ |F = 2, mF = 0〉

transition [127, 26, 44]. Using these coefficients we can rewrite the angular momentum

vectors as

|1, 1〉 = √
3/2|3/2,−1/2〉 − 1/2|1/2, 1/2〉, (2.2.21)

and

|2, 1〉 = 1/2|3/2,−1/2〉 − √
3/2|1/2, 1/2〉. (2.2.22)

Therefore we have [44, 127, 26]

〈1, 1|ĤI |2, 1〉 = −
µB

〈

B̂(t, 0)
〉

~
〈1, 1|gs + gIIz|2, 1〉

=

√
3µBB0 cos(ωt)

4
(gS − gI) .

(2.2.23)

Now we use the fact that 〈1, 1|ĤI|2, 1〉 = 〈1,−1|ĤI |2,−1〉 and perform a similar calculation

for the other ∆m = 0 transition [44, 127, 26]

|1, 0〉 = √
2/2|1/2,−1/2〉 − √

2/2| − 1/2, 1/2〉, (2.2.24)

and

|2, 0〉 = √
2/2|1/2,−1/2〉+ √

2/2| − 1/2, 1/2〉. (2.2.25)
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We therefore arrive at [127, 44, 26]

〈1, 0|ĤI |2, 0〉 = −
µB

〈

B̂(t, 0)
〉

~
〈1, 0|gs + gIIz|2, 0〉

=
µBB0 cos(ωt)

2
(gS − gI) .

(2.2.26)

Now that we have found the matrix elements of the interaction term we can determine the

Rabi frequency that represents the interaction potential. If we assume that our system is in

the ground state initially and that the microwave radiation possesses a detuning of δ = ω−ω0

and also note that the diagonal terms Vee = Vgg = 0 and that Vge = V ∗
eg we can write the

population of the excited state in terms of the Rabi frequency [26, 127, 44]

Pe(t) =
|Ω|2
2Ω̄2

(

1− cos(Ω̄t)
)

, (2.2.27)

where Ω̄ =
√

|Ω|2 + δ2 is the generalized Rabi frequency [42]. It is predicted by Eq. 2.2.27

that the population will show oscillations between the excited and ground states with a rate

determined by the generalized Rabi frequency. Using the results of Eqs. 2.2.23,2.2.26, and

2.2.17 we obtain [26, 44, 127]

Ω0 =
µBB0

~
(gS − gI)

Ω1 =

√
3µBB0

2~
(gS − gI) .

(2.2.28)

The results of the equations in Eq. 2.2.28 allow us to simplify the system in Eq. 2.2.14 into a

more manageable form by applying the rotating wave approximation as well as introducing

the concept of a Bloch vector.

The modification of Eq. 2.2.14 allows us to represent the rate of change of vector s in

terms of a torque ΩF (t) [3]

d

dt
s = ΩF (t)× s(t). (2.2.29)

When we consider Eq. 2.2.29 it can be shown[3] that a component of this torque oscillates
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very rapidly and is thus nearly ineffective. As a result, we can neglect this term in the rotating

wave approximation which then results in the following linear system of equations [3]













u

v

w













=













cos(ωt) sin(ωt) 0

− sin(ωt) cos(ωt) 0

0 0 1

























s1

s2

s3













. (2.2.30)

The results of Eq. 2.2.30 can then be expanded to give with δ again representing the detun-

ing [3]

u̇ = −δv

v̇ = δu+ Ωw

ẇ = −Ωv

. (2.2.31)

Now that we can see that the variables u, v, and w govern the dynamics of the system we can

introduce a new vector ρ = (u, v, w) known as the Bloch vector[3, 73]. Before completing

the derivation of the coin operator it is necessary to digress and describe the properties of

the Bloch vector as well as the Bloch sphere. The Bloch sphere was first introduced by Felix

Bloch in 1946 in relation to nuclear magnetic resonance [13] and very recently a quantum

walk has been proposed that occurs entirely on such a sphere [37]. The concept of such a

vector can also be used to describe Stokes parameters of polarization states in optics where

it is also known as the Poincare1 sphere[113]. As was observed earlier Eq. 2.2.31 trace a path

along a unit sphere known as the Bloch sphere. This result provides a convenient method

to determine the state of the system at any particular time by knowing the location of the

Bloch vector on this sphere. If we define the Bloch sphere in such a way where our states

|g〉 and |e〉 are located on the north and south poles on the sphere respectively[26, 134] and

1Briefly, if we consider two polarization states |L〉 and |R〉 as lying at the south and north poles of a
unit sphere respectively and any general state |E〉 then the position of this state on the Poincare sphere
is then |E〉 = ae−

iφ/2 + be
iφ/2. Note that if the vector |E〉 is at a pure state then the components satisfy

P 2
1 + P 2

2 + P 2
3 = 1 where Pi represent the Stokes parameters. This can be seen to have a very similar form

and behavior to Eq. 2.2.32.
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the state of our system with the vector |ψ〉 as shown in Fig. 2 [127, 26]. The state vector

ϕ

θ

x̂

ŷ

|1〉

−|2〉

|ψ〉

Figure 2: A Bloch sphere where the state vector position is |ψ〉 and the angles θ and φ
represent the usual polar and azimuthal angles from spherical coordinates.

|ψ〉 is defined as[127, 42]

|ψ〉 = cos(θ/2)|g〉+ eiφ sin(θ/2)|e〉. (2.2.32)

To arrive at Eq. 2.2.32 let’s consider a general vector [134]

|ψ〉 = c0|0〉+ c1|1〉, (2.2.33)

rewriting this in polar form we have

c0 = r0e
iφ0, (2.2.34)

and

c1 = r1e
iφ1. (2.2.35)

Giving us for the original vector [134],

|ψ〉 = r0e
iφ0|0〉+ r1e

iφ1 |1〉. (2.2.36)

Although we have four unknowns in Eq.2.2.36 we can consider the fact that a state doesn’t

change if we multiply by a complex number with a modulus of one. Doing so will eliminate
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the phase of |0〉 giving [134].

ce−iφ0 |ψ〉 = r0|0〉+ r1e
i(φ1−φ0) (2.2.37)

Now if we consider that 1 = |r0|2
∣

∣eiφ0
∣

∣

2
+ |r1|2

∣

∣eiφ1
∣

∣

2
thus giving r20 + r21 = 1. Letting these

be r0 = cos(θ/2) and r1 = sin(θ/2) results in Eq.2.2.32. The time evolution of our system is

thus determined by the angles θ and φ. As was mentioned before the angles represent the

usual spherical coordinates and thus a relation between the coordinates of the Bloch sphere

with Cartesian coordinates can be readily written as[127]

ρ = (u, v, w) = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)) . (2.2.38)

Further physical interpretations can be obtained by considering that the population of the

states can be gathered by considering how the component w varies from −1 (all atoms

in excited state) to 1 (all are in the ground state) where Pg = (1 +w)/2 and Pe = (1− w)/2

indicating that the system is purely in the ground and excited states respectively [26]. While

the other components, u and v represent coherence or mixing of the states. For the state

vector to represent a pure state on the Bloch sphere the components of the Bloch vector

must satisfy the condition: u2+ v2+w2 = 1. If we have a mixed state then the Bloch vector

will precess inside of the Bloch sphere.

Having introduced and discussed the Bloch vector and sphere we can now derive the

microwave coin operator when we consider a special type of rotation of the Bloch vector

known as Rabi rotations. If we consider microwaves that are on resonance with the transition

the detuning in Eq. 2.2.31 will then vanish giving rise to case where the solutions become a

rotation [3]

ρ = Θ̂(t)ρ0. (2.2.39)
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And as a result the systems of equations will then become letting θ(t) = Ωt [3]













u

v

w













=













1 0 0

0 cos(θ(t)) sin(θ(t))

0 − sin(θ(t)) cos(θ(t))

























u0

v0

w0













. (2.2.40)

Using our vector state representation in the Bloch vector formalism a pulse of resonant

microwave radiation of duration t can then be denoted by an application of the unitary

operator M̂(t) and thus we can write[26]

|ψ(t)〉 = M̂(t)|ψ(0)〉. (2.2.41)

A full derivation of this unitary operator is done in [73]

M̂(θ(t), χ) =







cos(θ(t)/2) e−iχ sin(θ(t)/2)

−eiχ sin(θ(t)/2) cos(θ(t)/2)






. (2.2.42)

Here χ represents the offset phase of the applied microwave pulses and is very rarely adjusted

in the experiments. If we set θ(t) = π/2 and apply this π/2 pulse onto a system of atoms in

the ground state then our Bloch will rotate to become [73]

ρπ/2 =













1 0 0

0 0 1

0 −1 0

























0

0

1













=













0

1

0













. (2.2.43)

So if all of the atoms are in the ground state then this π/2 pulse will transfer the atoms to

the equator on the Bloch sphere corresponding to the v-direction. This then represents a

population where the atoms are equally split into a superposition of the ground and excited
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states. We can see this by applying Eq. 2.2.42 and setting θ(t) = π/2 [26]

|ψπ/2〉 = M̂ (π/2, χ)|g〉

=
1√
2







1 e−iχ

−eiχ 1













1

0







=
1√
2

(

|g〉 − eiχ|e〉
)

. (2.2.44)

A similar derivation can be done when θ(t) = π where all of the atoms can be transferred

from one pure state to another. In our work there are two specific microwave coin operators

that very important and are denoted as the gate and coin pulses and have the form [26]

M̂(π/2, π) =
1√
2







1 −1

1 1






, (2.2.45)

and the coin as

M̂(π/2,−π/2) =
1√
2







1 i

i 1






. (2.2.46)

The gate pulse prepares an equal superposition of the initial states following the Bragg pulse

and gives a symmetric QW and can be checked experimentally by measuring the population

after applying the gate only and without an imaging pulse. A proper gate pulse will give

half the population of the Bragg pulse as half the population will be in the |g〉 and |e〉 states.

Next we will consider how to realize the translation operator using the AOKR.

2.2.3 Translation Operator (AOKR)

Here we will describe how to utilize the AOKR to realize the translation operator necessary

for the quantum walk. Since it was first proposed in 1979 [22] and realized experimentally

in 1995 [95], the AOKR has been well studied over the last few decades [94, 69, 5] and was

the basis of the quantum ratchet which has been used in many studies [29, 9, 120, 110, 109,
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111, 87, 86, 65, 102]. The shift operator is unitary and denoted by T̂ is given by [26]

T̂ = e
(ix̂∆p)/~|1〉〈1|+ e−

(ix̂∆p)/~|2〉〈2|, (2.2.47)

where ±∆p is the shift in momentum of the atom and is dependent upon if the atom is

in |1〉 or |2〉 internal states. Such an operator is realized in the experiment by using a

quantum ratchet with the AOKR on quantum resonance. This quantum ratchet destroys

the spatial-temporal symmetry in the process [99, 101, 45]. The derivation of the AOKR

and its properties are outlined in the appendix but we present the Hamiltonian with the

constant phase term here as [101]

H(X̂, P̂ , t) =
P̂ 2

2M
+ ~φd cos(1 +GX̂)

t
∑

q=0

δ(t− qT ). (2.2.48)

The kicking strength in terms of the Rabi frequency, time duration of the light pulse, and

detuning of the laser from the atomic transition is φd = Ω2∆t
8δL

. For convenience in the

upcoming theoretical discussions we express Eq. 2.2.48 in dimensionless variables by making

the following scaling operations and letting H = MH
~2G2 , t

′ = 2πt
T(1/2)

, p̂ = P̂
~G

, τ = 2πT
T(1/2)

, and

x̂ = GX̂ where T(1/2) =
2πM
~G2 is the half Talbot time. The Talbot time is the period of the

AOKR and is named after Henry Talbot as it is an analogy in time to the optical effect

he discovered in the 1830s [119]. After this rescaling the Hamiltonian in Eq. 2.2.48 then

becomes [26]

Ĥ =
p̂2

2
+ φd (1 + cos(x̂))

t
∑

j=0

δ(t− jτ). (2.2.49)

The momentum operator p̂ in the AOKR in the form given by Eq. 2.2.49 consists of two

parts, an integer multiple of the photon recoil with units of ~G and a quasi-momentum part

denoted by β is a real number where β ∈ [0, 1)~G thus p̂ = n̂+β [48]. The quasi-momentum

is conserved due to the fact that non-integer transitions in momentum are forbidden, this

is due to the applied potential being periodic in space with a period of λG = 2π/G . It
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also describes the width of the BEC and is approximately a Gaussian distribution that is

determined from the parameters of the experiment. The integer part of the momentum are

given by the eigenvalues of the angular momentum operator n̂ = −i ∂
∂θ
. The periodic nature

of this potential provides the boundary conditions of the position operator x̂ such that it

becomes 2π periodic thus we can relate it with the angle operator θ̂ using the modulo relation

θ̂ = x̂ ·mod(2π) [48]. This results in the solutions being invariant after an application of the

periodic potential and thus we can now apply Bloch’s theorem [54, 48] to our problem. Also,

since the pulse duration is finite it must be kept shorter than the period between the pulses,

a limitation known as the Raman-Nath limit [46, 79]. With these conditions the Floquet

operator is then [48, 108, 26, 102]

Û(τ) = ÛfreeÛkick = e−
iτ(n̂+β)2

2 e−iφd(1+cosθ̂). (2.2.50)

The constant term of the kick part of Eq. 2.2.50 represents an offset due to the applied kicking

light and it represents a phase shift that affects the entire quantum walk. The periodic part

of this operator represents an atomic grating effect as we will show. If we start with a BEC

in the initial state |ψj〉 before a kick pulse is applied and let |ψj+1〉 then this kick operator

acts on the state in the following manner after a single pulse [48, 26, 108, 102]

|ψj+1〉 = Ûkick|ψj〉 = e−iφd cos(θ̂)|ψj〉. (2.2.51)

Now we must work out the dynamics of Eq. 2.2.51 by making use of an identity to evalu-

ate the complex exponential term, e−i cos θ̂ known as the Jacobi-Anger relation2, eix cos(θ) =
∑+∞

m=−∞ imJm(x)e
imθ. Applying this relation to Eq. 2.2.51 yields [26, 108, 85]

|ψt+1〉 =
∑

m

(−i)mJm(φd)|pm〉, (2.2.52)

2This relation is derived from a generating function that in turn is from Bessel functions of integral order.
This generating function is e

(x(t − 1/t))/2 =
∑+∞

m=−∞
tmJm(x)(t 6= 0). Setting t = eiθ arrives at a similar

expression with the sine function[19].
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here Jm(x) is the m
th order Bessel function of the first kind and |pm〉 = e−imθ̂ is a momentum

order in the atomic grating direction of pm = m~G where G is the grating wave vector due

to the standing waves generated from the kicking beams. The Bessel function gives us the

coupling amplitudes between the initial momentum state, n and a later state, m. As is

well known these[59] functions will decay rapidly when their difference |m − n| increases.

Moreover, when φd ≈ 1 in the AOKR then only the nearest momenta states will be coupled

in such a way where m = n ± 1. To realize the standing wave pulses used in applying the

kicking potential to the BEC two counter-propagating laser beams that are linearly polarized

and possess a Gaussian profile with an intensity Ik are used. The finer experimental details

of such a setup are discussed in Chapter 4 but we will present the underlying theory here

following Derevianko [34]. Let the intensity nodes of the standing wave, λG, be given by

λG =
λ

2 sin(θk)
, (2.2.53)

where θk being the angle between respective kicking beams with respect to the vertical. The

optical potential imposed on an atom is given by [34]

U (r, z) = U0e
−2(r/w)2 cos2 (2πz/λG) . (2.2.54)

where w the beam waist along the z-axis, r the radial axis from the center of the beam. Here

U0 is the depth of the potential and is given by [34, 26]

U0 = −8π

c
αg(ω)Ik, (2.2.55)

where αg(ω) is the polarizability of the ground state and is given by [26]

αg(ω) = |〈g|D · ǫ̂|e〉|2
(

2ω

ω2 − ω2
0

)

. (2.2.56)
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Here |g〉 and |e〉 are the ground and excited respectively states of the atoms separated by

frequency ω0, the laser frequency is ω, D is the electric dipole matrix, and ǫ̂ is the polarization

vector. When a very short pulse of this wave is applied the atoms will then undergo diffraction

to different momenta states as governed by Eq. 2.2.52. Now we discuss an important case

with the AOKR and that is where the time between the pulses are set to what is known

as quantum resonance. Applying the Floquet operator described by Eq. 2.2.50 to the wave

function of our system gives after j kicks gives the general evolution of the system

|ψ(jτ)〉 = Û j |ψ0〉. (2.2.57)

If we look again at the free evolution part of the Floquet operator we can see that if the

kick period is set to τ = n4π where n ∈ Z then this free evolution will become unity and

then the kicks will add coherently into one kick strength of i · φd. This special time period

is known as the Talbot time T . Such a condition is known as quantum resonance and the

Floquet operator then reduces to a form

F̂ = Û j
φd

= e−ijφd cos(θ̂). (2.2.58)

With this version of the Floquet operator we can now calculate the evolution of the system

after an application of j kicks starting with an initial momentum state |pm = 0〉 [26, 48]

pn =
∣

∣

∣
〈n|Û j|0〉

∣

∣

∣

2

=
∣

∣

∣
〈n|e−ijφd cos(θ̂)|0〉

∣

∣

∣

2

= J2
n(jφd).

(2.2.59)
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Now we can find the mean energy of the system [26, 48]

〈E〉 =
+∞
∑

n=−∞
n2pn

=

+∞
∑

n=−∞
n2J2

n(jφd)

=
1

2
j2(φd)

2.

(2.2.60)

These results show that after j kicks a state starting at zero momentum the mean energy

will increase quadratically which is expected from quantum resonance [101]. Such behavior

can be seen in the TOF images of panel (a) and the mean energy plot of panel (c) of Fig. 3.

Another special case to consider is if the kicking period is half of the Talbot time, T1/2 where

τ = 2nπ. Now let’s find the form of the wave function after applying the Floquet operator

with this time period [48, 26]

|ψ(τ = T1/2)〉 = e−i p̂
2τ
2 e−iφd cos(θ̂)|ψ0〉

=

+∞
∑

n=−∞
(−i)nJn(φd)e

inθ̂e−iπn2 |ψ0〉

=

+∞
∑

n=−∞
(i)nJn(φd)e

inθ̂|ψ0〉

= eiφd cos(θ̂)|ψ0〉.

(2.2.61)

We can see that the resulting phase factor will vanish with the next applied kick leading to the

atoms being placed back to the initial momentum state at each odd multiple of τ = 2π. This

occurs because two kicks possessing a period of T1/2 cancel out and lead to an oscillation in

mean energy as shown in Fig. 3. Such a condition is known as quantum anti-resonance [101]

and is shown in panel (b) of Fig. 3. The Talbot time based on the experimental parameters

is T = 103.04 µs. The AOKR setup can be used to realize a quantum version of a ratchet.

The concept of a ratchet is a device that allows motion in only one direction. The quantum

version of this is that changes of a system in momentum space is only allowed in one direction,
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Figure 3: TOF images of AOKR with quantum resonance (τ = T ) in panel (a) and quantum
anti-resonance (τ = T1/2) in panel (b). Panels (c) and (d) plot the mean energy extracted from
(a) and (b) versus kick number. Note the quadratic behavior of (c) which is characteristic
of quantum resonance in the AOKR.

i.e positive or negative momentum. If we consider that the gradient of the standing wave

behaves as a driving force on the wave function of the atoms then it can be deduced that

the wave function with greater potentials will result in a larger net force overall. This then

will lead to a higher probability of quantum ratchet behavior[85]. The overall direction of

the ratchet in momentum space is determined by the sign of the potential gradient near the

maxima of the wave function of the atoms. To realize a quantum ratchet we need to prepare

an initial state with multiple plane waves as described by [26, 87]

|ψ〉 =
∑

n

e−inφ|n〉. (2.2.62)
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Here |n〉 is the momentum state and the offset phase is given by φ which determines the

strength of the potential gradient. If φ = π/2 then this potential is at its maximum. If we

make the assumption that the BEC initially possesses a narrow width in momentum space

is[85, 26]

|ψ〉 = δ(p), (2.2.63)

where δ(p) is the width of the BEC and p is the continuous momentum. If a Fourier transform

is applied to the wave function transferring it to position space and can then be studied as

a standing wave giving rise to the distribution [26] |φ(x)| =
√

G/2π, this shows that a single

BEC cannot be used to realize a ratchet as there will be no net force on the atoms. If,

however, multiple initial states are prepared then it is possible to realize a ratchet. If we let

the wave function of these states be represented by [87]

φ(x) = A
m
∑

n

einφe
ipnx/~, (2.2.64)

where A is a normalization factor. A plot of |φ(x)|2 and the standing wave potential will

show that the peaks of the wave function correspond to locations where the derivative of the

standing wave is at maximum. Note also that if we have more initial momentum states the

wave function will become more spatially localized, i.e lowering the FWHM, after a Fourier

transformation. Thus this will lead to a more refined quantum ratchet. In realizing the

quantum ratchet we have first prepared two or more initial momentum states as mentioned

above. In all of the QW experiments we used the following initial states [26, 27]

|ψratchet〉 =
1√
2
(|n = 0〉+ i|n = 1〉) . (2.2.65)

To do this we apply a Talbot time length, low intensity pulse Bragg pulse with the AOKR

beams with the BEC starting at |n = 0〉 momentum state. This Bragg pulse will couple two
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momentum states through the following interaction matrix [26, 85, 108]

ÛBragg =







cos((ΩBτT )/2) −ieiγB sin((ΩBτT )/2)

−ie−iγB sin((ΩBτT )/2) cos((ΩBτT )/2)






, (2.2.66)

where ΩB is the Rabi frequency, τT is the pulse length set to Talbot time, and γB is the off

set phase of the applied standing wave. To obtain an equal superposition of external states

we set the phase γB = π/2 and adjust the intensity of the beam via trial and error until the

Rabi frequency becomes such that the product in Eq. 2.2.66 ΩBτT = π/2. After the Bragg

pulse is applied, AOKR pulses are then applied giving a shift in momentum with each kick

and is given by [87, 85, 108, 101]

〈∆p̂〉 = −φd

2
sin(φ)j. (2.2.67)

Eq. 2.2.67 shows that the maximum linear shift in momentum space is obtained if we set

φd ≈ 2.0 and phase to φ = π/2.

2.2.4 General Properties of the Quantum Walk

In the following discussions the states |g〉 and |e〉 will be referred to as |1〉 and |2〉 respectively.

A QW in our experiments is realized by first preparing the BEC into the initial state |ψ0〉 =
(

|n = 0〉+ e−iπ/2|n = 1〉
)

using a Bragg pulse, and then a π/2 MW pulse is applied with a

phase of χ = π as defined by Eq. 2.2.42. This process is known as the Hadamard gate and

gives an equal superposition of the initial states [26]

M̂(π/2, π)|e〉 = 1√
2
(|1〉+ |2〉). (2.2.68)

After this the first kick pulse is applied before the first coin pulse is applied M̂(π/2,−π/2).

Afterwards this process of kick followed by a coin is repeated up to t steps. Note also that

this choice of coin and gate operators results in a symmetric walk although it isn’t the
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only possible choice and as will be seen later could be interchanged to reduce an artifact of

remnant atoms that don’t participate in the QW due to the light shift effects of the kicking

beams. Throughout our experiments studying the effects of SE on the QW we have used the

standard walk sequence as first realized in [26] and we will follow that discussion here. If we

want to create a QW with t steps it is necessary to use the series of kick and MW operators

as defined earlier to create a single unitary operator to describe a single step of the QW and

this is denoted as Û step. A series of these operators after t steps is then [26, 48]

(

Û step

)t

=
[

T̂ M̂(π/2,−π/2)
]t−1 [

T̂ M̂(π/2, π)
]

, (2.2.69)

where T̂ , M̂(π/2,−π/2), and M̂(π/2, π) are the shift operator realized by the AOKR, Coin,

and Hadamard Gate MW operators respectively. The shift operator is defined as [26, 48]

T̂ =







e−iφd(1+cos(θ̂)) 0

0 eiφd(1+cos(θ̂))






. (2.2.70)

In Eq. 2.2.70 either of the diagonals will apply to one of the internal states of the atoms. It

should be noted that the signs of these diagonals are opposite of each other. This is due to

the fact that the kicking laser is detuned to a frequency between the internal states and is

thus opposite in sign to these states. Also note that the constant terms create an additional

phase due to the AC stark shift and letting φd = k it applies to either state as φ1 = −k and

φ2 = k and this creates a phase difference [26, 48]

∆φ = φ2 − φ1. (2.2.71)

This extra phase creates an additional phase that acts on the QW and increases with each

additional application of the shift operator and had to be countered with a compensating

phase added to the microwave coin pulses at each step of the walk. This modifies the coin
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pulse to be [26, 48]

M̂(π/2,
π

2
+ 2k) =

1√
2







1 ie−2ik

−ie2ik 1






. (2.2.72)

As we can see this additional phase term will cancel out the phase term due to the shift

operator. Moreover this shift operator takes on the form after compensation [26, 48]

T̂ =







e−ik cos(θ̂) 0

0 eik cos(θ̂)






. (2.2.73)

If this operator is applied with the ratchet configuration which shifts the momentum state

by ±q then becomes [26, 48]

T̂ =







eiqθ̂ 0

0 e−iqθ̂






. (2.2.74)

For the standard walk q = 1 and the shift operator can lastly be written as [26, 48]

T̂ =







|n+ 1〉〈n| 0

0 |n− 1〉〈n|






. (2.2.75)

This operator has the effect of shifting the system by ±1 in momentum space when it is

applied to a system with internal states |1〉 and |2〉. A schematic of the entire standard QW

is shown in Fig. 4 [24] (The SE pulses in panel (a) will be discussed in the following section.).

Further properties of the QW such as reversal will not be discussed here as this was not of

interest in our experiments.

2.3 Spontaneous Emission Theory

In this section we describe the effects of spontaneous emission (SE) by using the imaging light

as a readily tuneable source to intentionally induce SE events during the QW. It is important

to note that an external source of light such as the imaging beam causes SE events through
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Figure 4: Schematic diagram of the kicking and microwave pulses used in the QW. Also
shown are the SE pulses used to induce SE during the QW. Adapted from [24].

a different mechanism compared to the SE from the kicking beams themselves as we will

discuss.

2.3.1 Basics of Spontaneous Emission

It is well known that an atom in an excited state has a probability that the excited electron

will spontaneously emit a photon and decay back to its ground state. This is known as

spontaneous emission and in the QW it has the effect of causing decoherence and thus

destroying the quantum walk leading to classical behavior where the momentum distribution

approaches a Gaussian as seen in the classical walk. A simple classical model to introduce

SE is presented here which also leads to the well known Einstein coefficients and is adapted

from [42][4]. If we consider an electric dipole moment −eD with an oscillation of ω this

dipole will emit radiation with a power of [42, 4]

P =
(eDω2)2

12πǫ0c3
. (2.3.1)
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Because this electron is in harmonic motion it has a total energy of E = (meω2D2)/2 where D

is the amplitude of the motion, ω is the frequency of oscillations and me is the rest mass of

the electron. This energy decreases with a rate of [42, 4]

dE

dt
= − e2ω2

6πǫ0mec3
E = −E

τ
, (2.3.2)

where the fraction term was set to [42, 4]

τ−1 =
e2ω2

6πǫ0mec3
. (2.3.3)

Eq. 2.3.3 is known as the classical radiative lifetime and varies over a wide range depending

on the atom under consideration.

2.3.2 Spontaneous Emission Applied to Quantum Walk

In our quantum walk SE occurs in each experiment and to realize a high quality QW or other

good experiment one will wish to keep their effects to a minimum. In the standard walk a

primary source of induced spontaneous emission are due to the applied AOKR pulses used

for the shifting operator. SE in the AOKR has been known for some time [5] and its effects

have been observed in numerous experiments. In our quantum walks the SE from the AOKR

was theoretically analyzed in [50] by considering a closed three level system and describing

the SE dynamics by a Lindbladian dissipator that acts on an atomic density operator. These

Lindblad operators included the spontaneous emission rate with the projection operator from

the ground and excited states [50]

Lm =
√
γm|g〉〈e|, (2.3.4)
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with the SE rate defined in terms of our experiment as [50]

γm =
km

τpτSE∆m
. (2.3.5)

From this the total decay rates from both AOKR beams is then γ = γ1 + γ2 and this then

gives the spontaneous emission for each kick as [50]

p = γτp. (2.3.6)

When a spontaneous emission event occurs an atom in an excited state |e〉 will collapse into

one of the two ground states. Although this analysis was done with the AOKR beams in

mind and an experimental procedure was attempted with this mind, although it was not

successful in inducing very noticeable SE effects it did lead the way to introducing the idea

of using the imaging light as will be discussed.

2.3.3 Spontaneous Emission using imaging light

As was mentioned before using the AOKR to increase the rate did not have much effect on

the distribution of the QW. As a result the imaging light which is on resonance with the

|F = 2〉 to |F ′ = 3〉 hyperfine levels of 87Rb and is normally used to take images of the atoms

after an experiment is applied as a tunable SE source. Applying this light during the coin

pulses of the QW to avoid interfering with the shift operator causes the atom to decay due

to the selection rules to the state |F = 2〉 and this thus corresponds to a projection of the

atom onto the |F = 2〉 state. The laser coupling is defined as [24]

ΩC = γ

√

I

2Is
, (2.3.7)

where I is the intensity of the laser, Is is the saturation intensity, and γ is the decay rate. This

laser coupling is assumed to be small when compared to the excited state hyperfine splitting

32



between the |F ′ = 3〉 and |F ′ = 2〉 levels so it can be assumed that the |F = 2〉 → |F ′ = 2〉

transition is far too detuned to create a significant population in |F ′ = 2〉. Because the SE

pulse is long enough we can assume that the atom will reach the steady-state, i.e, the coin

pulse should not interfere with this process, meaning that the effective SE rate γeff is given

by the natural line width times the steady-state population of |F ′ = 3〉 as follows [115]

γeff =
γ

2

I/Is
1 + I/Is

. (2.3.8)

Eq. 2.3.8 can then be used to give us a modified SE rate similar to Eq. 2.3.6 with the imaging

laser in mind [24]

ρ = γefftSE. (2.3.9)

Because after the atom decays close to an equal superposition of the two ground states the

probability of the first and later decay events have to be scaled by a factor of 2. Thus

technically γeff and ρ will change during a single trajectory. Thus the rate represented by

Eq. 2.3.9 is an upper limit and is only good for a couple of microseconds after a SE event.

In our experiments we estimate that the SE rate for an applied SE power of 3 µW to be

ρ ≈ 0.35 as described in chapter 4. Because the SE light is applied at 30 µs after the start of

a coin pulse, SE events will interrupt the coin at random times and thus the coin will only

have a partial action in between two events of time delay t given by [24]

ei
πt
4T

σ̂x =







cos( πt
4T
) i sin( πt

4T
)

i sin( πt
4T
) cos( πt

4T
)






, (2.3.10)

where T is the total length of the coin pulse. As a result, the state |ψ〉 of the internal degree

of freedom after a coin sequence is dependent only upon the time of the last SE event,

t′ ∈ [0.29, 0.58]× T and thus given by [24]

|ψint〉 = cos

(

π(T − t′)

4T

)

|2〉+ i sin

(

π(T − t′)

4T

)

|1〉. (2.3.11)
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Here |1〉 and |2〉 represent the two internal states, |F = 1, mF = 0〉 and |F = 2, mF = 0〉,

respectively. From Eq. (2.3.11) we can clearly see that an SE pulse will create an imbalance

in the internal state of the atoms towards |2〉. This imbalance then gets transferred to

the atom population and results in an overall biased momentum distribution as shown in

theoretical calculations in Fig. 5 [24]. The initial external states in momentum space are
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|ψ
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Figure 5: Simulated momentum distributions of five-step quantum walks at two kicking
strengths, k = 1.45 (a) and k = 2.0 (b), averaged over 103 trajectories with ∆β = 0.025 ~G0

at various SE probability ρ. Here ∆β is the width of the quasimomentum β. Note the
increasing asymmetry as the probability ρ increases. Adapted from [24].

given by [24]

|ψext〉 = 1/
√
2(|n = 0〉+ eiφ|n = 1〉). (2.3.12)

The external degree of freedom is also affected by the SE event and thus causes a shift in

quasimomentum by random amounts. Because the SE beam is perpendicular to the axis of

the walk the induced SE effect differs from the SE caused by the kicking beams [50] (briefly

discussed in Subsec. 3.3.2.), the atom does not incur any recoil from the absorption of a

photon from the SE beam. It should be noted that the effects of SE not only cause phase

scrambling due to its affects on both the internal and external states or projection onto the

hyperfine levels, it also shifts the quasimomentum. Possible heating during the experiment

is taken into account during these simulations by considering an initial distribution of the

quasimomentum, ∆β . In the simulations possible recoil from emission itself were taken into

account. In this model the possible effects of stimulated emission were also considered along
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with absorption. When a kick is applied the atom gets excited from the kicking laser by

absorption of the light. When the atom is in the excited state it can interact further with

photons either from the AOKR beams or the applied imaging beam with energy ±~k to

return to the ground state resulting in stimulated emission.

2.4 Effects of AC Stark shift on QW due to AOKR light

In this section we will discuss the effects of the AC Stark shift on the QW due to the kicking

lasers used to realize the shift operator. As was noted in the discussion of the standard

walk the AOKR pulses induce a phase shift that is applied to the atoms as the states of the

walker evolve with each step and this was compensated by adding a countering phase to the

coin operator. However, even when this compensating phase was found at a particular step

Ûstep it could not be used universally throughout the rest of the walk for the desired steps.

As a result one has to apply fine tuning of the phase to maintain the proper distribution.

However, if we introduce the AC Stark shift into our theory of the QW with the AOKR we

are able to arrive at a more complete description. We will first briefly outline the AC Stark

shift before describing how it affects the QW.

2.4.1 AC Stark shift or Light Shift

The Stark shift was first discovered in the Balmer series of hydrogen in 1913 by J. Stark [114]

and is termed a DC shift due to the electric field being constant. The AC Stark shift wasn’t

discovered until 1969 [32, 16] after the development of lasers to realize the varying electric

fields. Before describing the AC Stark shift we present a quick review of the DC Stark shift

first. If we consider an atom in a static electric field E the electric field will induce a dipole

p = αE where α is the polarizability and cause a shift in energy [43]

E = −p · E . (2.4.1)
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If the electric field is turned on starting from zero then the change in energy is quadratic and

shifted towards smaller frequencies although with a small magnitude. Applying perturbation

theory then the change in energy of an i th state is [43]

∆Ei =
∑

i 6=i

|〈ψi|HI |ψj〉|2
Ei − Ej

. (2.4.2)

The effects of this shift on an energy diagram of a two level system [42] are shown in Fig.6.

Now let’s consider the effects of a varying electric field that gives rise to an A.C. Stark shift.
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Figure 6: Frequency shift of the energy states of a two-level system due to the Stark-shift as
the magnitude of the applied electric field increases from zero.

If we return to the optical Bloch equations and write them in the form [42]

i
d

dt







c1

c2






=







δ/2 Ω/2

Ω/2 −δ/2













c1

c2






, (2.4.3)

where Ω is the again the Rabi frequency, c1 and c2 are the energy levels of the two level

system, c̄1 = e−i(δt/2), c̄2 = ei(δt/2) and δ = ω − ω0 is the detuning of the frequency between
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the energy levels of the two level system. Solving Eq. 2.4.3 yields [42]







c1

c2






=







a

b






e−iλt, (2.4.4)

where λ are the eigenvalues [42],

λ = ±
√
δ2 + Ω2

2
. (2.4.5)

In most cases, including that of the AOKR, a light shift is more important where the fre-

quency detuning is large and off resonance. As a result, Eq. 2.4.5 approximates to [42]

λ ≈ ±
(

δ

2
+

Ω2

4δ

)

. (2.4.6)

This tells us that the states are shifted from the unperturbed positions, i.e. λ = ±δ/2,

when the electric field is zero corresponding to Ω = 0. From this the light shift of the state

associated with c̄1 is [42]

∆ωshift =
Ω2

4δ
. (2.4.7)

The effects of such a shift on the energy levels of a two level system is shown in Fig. 7 [42].

Next we will discuss how this affects the QW and how it is possible to reduce these effects.

2.4.2 Effects of light shift on the QW

When we analyze the TOF images of the QW with or without SE we notice the presence of

a central region of atoms in the images that don’t appear to respond to any of the microwave

pulses as they are used in the sequence defined in Eq. 2.2.69. The original explanation [27]

was that these atoms were a part of a residual thermal cloud of atoms that possesses a higher

amount of energy and were distributed uniformly over the quasimomentum β. Because of

this, it was thought that these atoms simply did not participate in the walk and thus moved

very little from step to step of the walk. The origin of light-shift is from the AOKR beams
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Figure 7: Diagram of eigenenergies of a two level system with AC Stark-shift versus Rabi
frequency.

during a kick in the experiment. The interaction between the ground and excited states

is [14]

Ĥint =
Ω

2
|g〉〈e| cos

(

θ

2

)

eiδt + h.c. (2.4.8)

The effective dynamics after adiabatically eliminating the excited state are then described

by the AC Stark shift of the ground state from the applied kicking laser [14]

Ĥint =
Ω

8δ
|g〉〈g| cos

(

θ̂ + 1
)

. (2.4.9)

This adiabatic approximation is valid because the excited state has a very short lifetime and

thus it can be assumed that this state is unpopulated on average and thus two ground states

remain each with an AC Stark shift. After applying the rotating wave approximation we

then have [14]

Ĥint =
Ω

8δ
σ̂z cos

(

θ̂ + 1
)

. (2.4.10)
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From Eq. 2.4.10 we can see that we now have an additional energy difference that cannot be

neglected. It is this energy difference that gives rise to the AC Stark shift. When the effects

of light-shift are considered as outlined above we can integrate into the kick operator as [14]

Ûkick,shift = e−iσzφd(1+cos(θ̂)). (2.4.11)

This gives us the previously mentioned phase shift of 2φd that arises with each applied kick

operator. Previous mitigation was done by using a counter phase and applying to the coin.

However, we could exchange the coin and gate pulses in Eq. 2.2.69 giving rise to a new

sequence
(

Û step

)t

=
[

T̂ M̂(π/2, π)
]t−1 [

T̂ M̂(π/2,−π/2)
]

. (2.4.12)

If we incorporate the effects of the light shift into the operator by applying the light shift

part of the kicking operator we have

M̂(π/2, χ)eφdσz =
e−iφd

√
2







1 e−i(χ−2φd)

−eiχ ei2φd






. (2.4.13)

From this we can see that the phase compensation using χ as was done in previous exper-

iments could not completely eliminate the light-shift effect. However, exchanging the coin

and gate operators as mentioned above are more able to achieve this due to the phase being

set to χ = π = 2φd. The effects of light shift can be further reduced by increasing the number

of initial states. This is because increasing the number of states causes, as mentioned above

in discussions around the translation operator especially Eq. 2.2.64, a more refined ratchet

which in turn leads to a cleaner walk in combination with exchanging microwave operators.
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CHAPTER III

EXPERIMENTAL SETUP

In this chapter we outline the experimental setup and procedures that was used during the

research projects. Historically, 87Rb was the first atom to be used to realize a BEC due to

its relative ease of use in creating a BEC compared with other isotopes of Rubidium and

with other atoms. It was also chosen because the physical properties of 87Rb make it ideal

to realize the Atom-Optics kicked rotor (AOKR) in our experiments. Our setup consists of

two main optical tables, the ”MOT table” and the ”Chamber table”.

3.1 MOT table

To create a BEC we have to dramatically slow the Rubidium atoms down to achieve the

necessary phase space density and critical temperature. One of the steps to this goal is the

use of a Magnetic-Optical Trap (MOT). In order to create a MOT one needs to use two main

frequency locked lasers at 780 nm for 87Rb. One laser was used to perform the cooling, optical

molasses, and imaging procedures of the experiment while the second was used for repump

to maintain the MOT. For both lasers a standard laser spectroscopy technique utilizing 87Rb

vapor test cells was used to monitor the spectroscopy signal. A detailed schematic for the

MOT table is shown in Fig. 9 (Adapted from [26, 108]). The full spectrum signal of the

hyperfine levels is shown in Fig. 8(Adapted from [26, 108]). Both of these lasers were

TOPTICA DL 100 temperature and grating stabilized diode lasers with a power output of

≈ 30mW . One of the lasers was frequency locked to between the 52S 1
2
, F = 2 ground state

and the 52P 3
2
, F ′ = 2 to F ′ = 3 crossover line in the hyper fine structure of 87Rb. This
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Figure 8: Overall laser spectroscopy signal from a DL 100 frequency locked laser. Both the
repump and MOT signals can be seen here.

transition is shown in the line diagram in Fig. 10. The location of this frequency locking

is shown in Fig. 11(Adapted from [26, 108]). As mentioned above the laser used for the

MOT generation was a TOPTICA DL 100 operating in continuous-wave mode. This laser

used a diode laser that has an elliptical beam shape that had to be made circular using a

pair of anamorphic prisms immediately placed after the aperture of the laser. These prisms

were then followed by a λ/2 wave-plate to ensure that all of the laser light passes through a

polarizing beam splitter with a rotation axis 45° to vertical. To make sure that no light was

back reflected into the laser which makes frequency locking impossible a Faraday rotator or

optical isolator was placed after the wave-plate. This isolator rotates the polarization from

45° which makes it horizontally polarized and isolating the MOT laser from interference. To

perform the absorption spectroscopy necessary for frequency locking a small amount of light

from the MOT laser was sent to a spectroscopy setup with a 87Rb vapor cell.

Because the overall output power of the MOT laser was very low it was insufficient to

directly create the MOT, with most of the power loss due to the required double pass AOM.

As a result, it was necessary to amplify the output power by the use of extra 780nm laser
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Figure 9: Schematic of the laser table optical setup. Both fibers 1 and 2 send laser light
to the chamber table. Although not shown in this figure the repump laser is on the same
optical table as this setup.

diodes as amplifiers. These ”slave” lasers used the principle of injection locking [112] to ramp

up the overall power from an input of ≈ 10mW to an output of ≈ 100mW . Three such lasers

were used with this method and for each a small amount of light (≈ 100µW ) was passed

through a 87Rb cell to monitor their signals via photodiodes (Thorlabs; DET-210, PDA-400,

PDA-36A2, or homemade FDS010, and FDS100) to ensure that these lasers were properly

following the main laser spectroscopy signal. If proper injection locking was achieved one

can observe the ”slave” lasers ”following” the absorption profile of the MOT laser on an

oscilloscope.

To create a good BEC with high signal-to-noise ratio it was crucial to have a precise con-

trol of the laser frequency. Four different frequencies were required to realize MOT creation,

optical molasses or Doppler cooling, imaging, and repumping. Each of these frequencies

were [26, 108]:

1. −15 MHz detuning from 52S1/2, F = 2 → 52P3/2, F
′ = 3 transition for MOT creation.

2. −80 MHz detuning from 52S1/2, F = 2 → 52P3/2, F
′ = 3 transition for the Doppler

cooling.
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Figure 10: 87Rb line diagram showing the MOT transition frequency along with the possible
decay transitions (blue arrows) due to power broadening which had to be addressed by the
repump laser. Frequency values for the transitions are also labeled (black arrow) [115]

3. On resonance with the 52S1/2, F = 2 → 52P3/2, F
′ = 3 transition for imaging.

4. On resonance with the 52S1/2, F = 1 → 52P3/2, F
′ = 2 transition for repumping (This

was a separate DL 100 laser).

The first three conditions were achieved by using many acousto-optic modulators (AOM)

that were controlled by a LabView computer program. The MOT laser itself was frequency

locked at 133.3 MHz below the MOT transition. Light from this laser was then injection

locked with a ”master slave” laser which was then sent to double pass AOM setup to give

better control over detuning to realize the first three frequencies listed above [26, 85]. Taking

the first order of light after a pass of the AOM in this setup gave a frequency of f = f0+2fAOM

where f0 is the incoming ”master slave” laser frequency. After the double pass setup this

light was then sent to two other laser labeled ”slave-1” and ”slave-2” respectively using the
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Figure 11: Laser spectroscopy signal of 87Rb showing the hyperfine structure where the DL
100 laser was frequency locked as indicated by the blue arrow for MOT creation.

same injection locking technique described above. The chief advantage of using a double

pass AOM setup is that this greatly reduces the deflection of the beam that occurs in a

single pass of the AOM at different frequencies [36]. To further reduce deflection a telescopic

configuration of two lenses was used to make sure that the retro-reflected first order light

after the first pass was co-propagting with the incoming light.

The laser light from both ”slave-1” and ”slave-2” were sent through another AOM(ISOMET

1205C-1) driven at a frequency of 80 MHz. After the AOM the negative first order beam

(f ′ = f − 80 MHz) was split into two beams which were then sent to the chamber table

by two polarization-preserving single-mode fibers that are referred hereafter as fiber-1 and

fiber-2. The coupling efficiency of such fibers is very dependent upon the shape and size

of the incoming beam. As a result, to maximize this efficiency two lenses in a telescope

configuration was setup prior to the fibers. To calculate the final detuning values for the

transition we use Eq. 3.1.1 [108]

δ = −133.3 MHz + 2fAOM − 80 MHz. (3.1.1)

From this equation we found that to achieve the required 99.5, 66.5, and 106.65 MHz to
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realize the MOT, Doppler cooling, and imaging the AOM frequencies had to be set to −15,

−78, and 0 MHz respectively. It is very important to note that these values often have to

be slightly changed based on the day-to-day conditions inherit in the experiment and thus

these values should be taken as approximations in practice.

A separate TOPTICA DL 100 laser was required to create a repump beam. This repump

mechanism is required because of the power broadening in the MOT beam in which there

is a probability that atoms excited to the 52P3/2, F
′ = 3 state will decay down to the

52P3/2, F
′ = 2 and F ′ = 1 levels. The electron will then decay down to the 52S1/2, F = 1

energy level and thus the MOT would quickly disappear without further intervention. To

counter this the repump laser was frequency locked on the transition from the 52S1/2, F = 1

ground state to the 52P3/2, F
′ = 2 excited state. The location of this frequency on the 87Rb

line diagram is shown in Fig. 12 (Adapted from [26, 108]). This enables us to efficiently

maintain a stable MOT to create a BEC. The absorption spectrum profile of this transition

along with the peak that was frequency locked is shown in Fig. 13 The repump laser had a

similar alignment to the MOT laser and a schematic of this optical setup is shown in Fig. 14

(Adapted from [26, 108]). This laser was also sent through a double pass AOM setup using

an ISOMET 1205C-2 AOM after which the positive first order was coupled with fiber-2 to

be sent to the chamber table along with the MOT beam.

3.2 Chamber table

The chamber table contains the vacuum chamber whereupon the BEC is created and ex-

periments are conducted, the CO2 laser system to realize the dipole trap, the kicking laser

setup, the microwave setup, and the imaging system. It is also important to note that the

imaging setup also served as the external light source to realize spontaneous emission. All

of the laser beams from the aforementioned MOT table are sent into the vacuum chamber

after exiting fiber-1 and fiber-2. The vacuum chamber also had a system of anti-Helmholtz

and nulling magnetic coils. In this section we describe each system in detail.
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Figure 12: 87Rb line diagram showing the repump transition frequency used to maintain
cycling for the MOT (red arrows).

3.2.1 MOT setup

After exiting fiber-1 and fiber-2 the MOT and repump light was delivered to the vacuum

chamber via the optics setup as shown in Fig. 15 (Adapted from [26, 108]).

The majority of the light from fiber-1 was used in creating the MOT while a very small

portion of it was picked off to be used for the imaging and spontaneous emission. The light

from fiber-2, which contained both MOT and repump beams, was first sent to a polarizing

splitter to form two separate MOT beams hereafter labeled Beam 2 and Beam 3. All MOT

beams and repump beam were expanded to ≈ 1 in. in diameter by using a combination of

expanding lenses. This light was then sent through quarter-wave (λ/4) plates so that the

light will be circularly polarized. All three of the expanded MOT beams are then sent into

the vacuum chamber and were then retroreflected back into another quarter-wave plate and
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Figure 13: Laser absorption spectroscopy signal 87Rb showing the hyperfine structure where
the repump laser was frequency locked as indication by the blue arrow to maintain the MOT.

the chamber after exiting. This extra wave-plate was necessary to ensure that the MOT

beams would have the correct σ+−σ− combinations. Such a setup enables our BEC system

to be more compact than a system using six individual counter-propagating MOT beams.

All three of the MOT beams were aligned so that each would intersect at the center of the

chamber whereupon the MOT itself would appear. During an experimental run, the imaging,

MOT, and repump beams were blocked at different times. This process was accomplished

by passing each of these beams through fast mechanical shutters (UNIBLITZ, LS2T2) that

were controlled by the LabView computer program. It should be noted that to maintain a

good and stable MOT it was crucial that the power of the beam after exiting fiber-2 exit the

splitting cube with a power ratio near one. This was done in two ways, one was to make sure

that the light entering fiber-2 was properly coupled to the fiber with the correct polarization.

The other method was by adjusting the half-wave plate after fiber-2 to achieve the proper

ratio until a stable MOT was realized.
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Figure 14: Optical arrangement for the repump laser.

3.2.2 CO2 Laser System

To realize the dipole trap a high power (≈ 50 W) continuous-wave laser beam with a wave-

length of ≈ 10.6µm was used. This laser was far off the resonance of any energy levels of 87Rb

and was thus known as the Far-Off-Resonance Trap (FORT). The FORT beam was realized

by the use of a COHERENT, GEM Select-50 CO2 laser powered by an Agilent, 6573A DC

power supply. Because the 10.6µm light from this laser has a high absorption coefficient

regarding glass and quartz the usual optics that were used for the near infrared MOT lasers

could not be used. As a result, the optics for the FORT beam were made from Zinc-Selenide

(ZnSe) which had the required lower absorption coefficient. This same material was also use

in the viewports of the chamber that accepted the FORT beam.

The schematic of the optical setup for the FORT beam is shown in Fig. 16 (Adapted

from [26, 108]).

During the BEC creation procedure it is necessary to have precise control of the power of

the FORT beam. This was achieved by the use of a water cooled AOM (IntraAction Corp.,

AGM 406-B1) that was driven by an IntraAction Modulator Driver Model GE-4030H which

was controlled by an analogue voltage signal from the LabView computer program. The first

deflected order of the FORT beam (≈ 25 W) was sent to the chamber via a combination of
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Figure 15: Schematic of MOT beam setup. Adapted from [26]

lenses while the zeroth order was directly sent to a beam dump. The first two lenses in this

combination was set up in a telescopic configuration to expand the beam. The third lens was

a focusing lens of focal length 1.5in and was installed in the vacuum chamber. The FORT

beam was delivered into the chamber through a 1in diameter viewport made from the same

ZnSe material used in the FORT optics. The overall spot size of the beam in the center of

the chamber is given by w0 = λf/ (πR) where R is the beam radius at the third lens and

f is the focal length. To achieve the loading and evaporative cooling processes necessary to

realize a BEC the waist of the beam (w0) was either set at a large or small size respectively.

To realize this the second lens of the expander was mounted onto a motorized translation

stage (Aerotech, 101SMB2-HM) that was controlled by a Soloist driver interface that was in

turn controlled by the LabView computer program.

3.2.3 Vacuum Chamber setup

Every experiment using the creation and manipulation of the BEC was conducted inside the

vacuum chamber. The vacuum chamber (MDC Vacuum Products) consisted of a stainless

steel six-way cross with an octagonal multiport chamber attached. The chamber had four

antireflection coated quartz viewports of 2.0 in. in diameter and these were used for the
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Figure 16: Schematic of the CO2 laser setup used to realize the FORT to achieve evaporative
cooling leading to a BEC.

MOT and kicking beams. There were four 1.0 in. diameter viewports for the FORT beam,

and two large 5.0 in. quartz viewports attached to the open side of the six-way cross and

the other attached to the octagonal chamber. These large viewports were used for MOT,

and imaging/spontaneous emission beams as well as the microwave radiation from a nearby

microwave horn antenna. The vacuum system was assembled previously and the chamber

was pumped in several phases to achieve a vacuum of ≈ 10−10 Torr. To maintain this vacuum

at all times an automatic Varian style 8 liters ion pump was attached to the chamber and

this was powered by a Terrenova-751 controller. The vacuum chamber was itself shielded

from the magnetic field generated from the ion pump by using µ-metal sheets attached to

the system.

The magnetic field needed for trapping of the atoms in the MOT was generated by a pair

of coils setup in an anti-Helmoltz configuration (two coils identical in diameter and windings

separated by a distance equal to their radius with currents in opposite directions) and were

referred to as the main coils. A schematic of this arrangement is shown in Fig. 17 (Adapted

from [26, 108]).

These coils were made from copper tube with a square cross-section of dimensions 0.125
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Figure 17: Main coil arrangement used to generate the anti-Helmholtz magnetic field used to
realize the MOT. The magnitude of the magnetic field in the center of such an arrangement
vanishes. The direction of the currents and the resultant magnetic fields are indicated by
the blue and green arrows.

in. externally and 0.0016 in. internally and were wrapped in a 5X5 layer of 24 turns with a

radius of 3.0 in. The main coils were mounted around the larger viewports of the chamber

with the common axis lying along the symmetry axis of the chamber. To create the MOT a

≈ 16A current was delivered to create an inhomogeneous magnetic field between these coils

≈ 16G/cm that vanished at the center. This current was supplied by a 400-A DC current

supply and controlled remotely by the LabView computer program.

Also necessary to maintain the MOT was an additional series of coils to nullify the Earth’s

magnetic field. This was done by positioning three pairs of coils on all six sides of the vacuum

chamber. These coils also had the additional affect of nullifying any magnetic fields from the

ion pump. Each of these coils had currents that flowed in the same direction supplied by a

51



separate homemade voltage-to-current converter circuit that was controlled by the LabView

computer program.

3.2.4 BEC creation

The steps to creating a BEC begin with creating a MOT of around 30 million atoms and

subjecting to the high powered FORT beam. This beam overlapped with the MOT for about

30 seconds thus loading the atoms into the FORT.

The repump beam was then reduced in power about 100 times from ≈ 2.4 mW used to

create the MOT down to ≈ 12µW to create what is known from the literature as a ”dark

spontaneous-force optical trap” or dark SPOT [67]. This step was very important as the

atoms were prepared into a state that was ”dark” to the cooling light. This thus decreased the

recoil heating and as a result increased the phase space density. The cooling light was then

detuned to −78 MHz so that atoms would experience the MOT beams negatively detuned.

This effect was realized even after considerations of the AC-stark shift on the atoms were

taken into account. After 60 ms the MOT beams and repump beam were all turned off by

the fast mechanical shutters and the magnetic field from the main coils was turned off by

setting their currents to zero. This then loaded around 3 million atoms into the dipole trap.

To further optimize the loading the waist of the FORT beam was reduced from 100µm down

to 25µm and this then increased the elastic collision rate and thus increased the efficiency

of the evaporative cooling.

The succeeding two-stage process was known as Evaporative Cooling or ”EVC1” and

”EVC2”. For EVC1 the CO2 laser was ramped-down exponentially from 25 W to around

1 W with a time constant of 2 seconds by reducing the RF power driving the CO2 AOM.

During EVC2 the laser power was further reduced in a series of short steps with increasing

time intervals in each step (The first step was around 50 ms while the final steps were around

200 ms in duration.) after which this was followed by a wait time of around 400 ms to allow

for re-thermalization. Also during this process the power of the CO2 was reduced in distinct
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stages to around 50 mW over ≈ 5 s. This process effectively removes the upper end of the

Maxwell-Boltzman distribution of the remaining atoms and thus these atoms rethermalized

to a lower temperature and a higher phase space density [74]. After EVC2 the remaining

atoms arrive at the required phase space density and critical temperature to realize a BEC

of around 50 000 atoms in the 52S1/2, F = 1 state ready for application of perturbations

relevant to the experiment to be conducted.

3.2.5 Imaging and Spontaneous Emission Setup

In order to image the BEC and experimental results a destructive imaging technique was

used. After the BEC is created the FORT is switched off and the experimental sequence is

thereafter applied after which the repump light was switched back on. This repump light

causes the atoms to be pumped to the 52S1/2, F = 2 excited state from the 52S1/2, F = 1

state. After a time-of-flight (TOF) of about 10 ms, the atoms were then subjected to a

pulse of imaging light on resonance with the 52S1/2, F = 2 → 52P3/2, F
′ = 3 transition for

about 60µs thus completing the imaging process. This imaging transtion is shown in Fig. 18

(Adapted from [26, 108]).

The optical arrangement to realize the imaging process is shown in Fig. 19 (Adapted

from [26, 108]).

A small amount of the light on resonance with the aforementioned transition was picked

off from the light from fiber-1 to be then expanded by an expander to have a diameter of

about 1 cm. This was then passed through a quarter-wave plate to make the light circularly

polarized to be then delivered to the chamber. The imaging process itself was done by an

absorption imaging technique where the on-resonant light interacts with the atoms. Once the

BEC or diffracted atoms were exposed to the light the photons are scattered and a shadow is

cast upon a high-resolution CCD camera (ANDOR DV437-BV). This camera’s temperature

and exposure time were controlled by a separate ANDOR program on a separate computer

along with the usual LabView computer program. During the experiment it was crucial to
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Figure 18: Frequency transition that was required for imaging of the atoms after an experi-
mental run. The repump was reapplied after a TOF of ≈ 10 ms to prepare the atoms into the
52S1/2, F = 2 state before the imaging light resonant with the 52S1/2, F = 2 → 52P3/2, F

′ = 3
transition was applied.

be able to monitor the MOT in real time with two security CCD cameras, one viewing the

large side port and another viewing a port at the top of the octagonal chamber. This gave

a convenient ability to view the MOT shape from two different angles.

After the imaging was done it was necessary to calculate the number atoms in order to

further calculate the mean momentum and mean energy to analyze our results. This was

done by considering the intensity, I, loss of a laser beam in the z-direction passing through

a sample of atoms. This is given by Eq. 3.2.1 [108, 26]

dI

dz
= −σnI, (3.2.1)

where n is the density of the atoms, σ = ~ωγ/2IS is the absorption cross section in which
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Figure 19: Schematic of imaging setup.

ω is the laser frequency, γ is the natural linewidth, and IS is the saturation intensity. The

solution to the differential equation given by Eq. 3.2.1 is

I (x, y) = I0e
−σñ. (3.2.2)

Here ñ is the column density which is defined as the number atoms per unit area. This

intensity was found by taking two separate images in which one was taken with the atoms

(known as ”signal” in experiment), ISig and another without (known as the ”reference”)

labeled as IRef. The intensity profile was then defined as the ratio

I(x, y) =
IRef

ISig
. (3.2.3)

Using these results the number of atoms present can then be calculating by integrating over

the column density

N = −S
σ

∑

pixels

ln(I). (3.2.4)

Here, S = (13µm)2 is the area of a pixel within the CCD camera and this sum was carried

over all of the pixels.

The imaging system also served as the method of realizing the spontaneous emission

(SE) whereupon the imaging light was switched on for very short intervals ≈ 30µs and was

engineered by the LabView computer program to apply during the microwave coin pulses only
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and avoid interfering with the kicking pulses. It is very important to note that this method

has limitations because as the power and number of such pulses increases the likelihood

of oversaturating the CCD camera also increases. However, this did not prevent us from

obtaining the necessary data for our experiments.

3.2.6 AOKR setup

To realize the AOKR system necessary for the Bragg and momentum shift operations during

the quantum walk a separate grating stabilized TOPTICA DL 100 was used to create the

necessary laser pulses. The frequency of this laser was not locked to any transition frequency

although it was set to a position halfway between the 52S1/2, F = 1 and F = 2 hyperfine

levels of the ground state to the 52P3/2, F
′ = 3 excited state. This frequency is labeled on

the energy level diagram given by Fig. 20 (Adapted from [26, 108]). This particular laser

frequency (The detuning here was ±3.4 GHz from either level of the ground state) was used

to ensure that atoms in both energy levels would experience the same kicking strengths.

Similar to the MOT laser as discussed in section 3.1, the kicking laser was injection locked

to a separate “kicking slave” homemade laser to ramp up the overall power of kicking light

to be sent to the chamber. As before, a small amount of the light from the “master kicking”

and “slave kicking” lasers was picked off to be sent to a 87Rb cell to obtain the saturated

absorption spectrum signal to ensure good injection locking. The amplified light from the

“slave kicking” laser was then sent to a splitting cube to obtain a 50-50 split of the light. Both

beams had a power of ≈ 13 mW and were sent to be passed through two separate ISOMET,

40N AOMs. After each AOM the first positive order of the diffracted light was then delivered

to the vacuum chamber via two viewports sharing a pair of MOT beams. This caused the

kicking beams to enter counter-propagating to one another in the chamber. To create the

horizontal standing wave both kicking beams were set to make an angle of 53° giving a final

wavelength of λG = λ/ (2 sin(53°)) where λ = 780 nm. Both AOMs used in the kicking

setup were driven by an RF signal supplied by a pair of programmable arbitrary waveform
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Figure 20: Frequency transition that the kicking laser was set to realize an AOKR. It must
be noted that this laser was not frequency locked to this transition and had to be maintained
to ensure that equivalent kicking strengths was delivered to both states.

synthesizers (HP8770A) before being passed through a pair of 1-W amplifiers. One AOM was

driven at a frequency of 30 MHz by one of the HP8770As (”master”) while the other HP8770A

was driven at a variable frequency (”slave”) and was phase locked to the ”master”. Both

HP8770As were programmed and controlled by a GPIB interface card (National Instruments)

that allowed for control of all RF waveform properties via the LabView computer program.

The properties of the standing wave pulses were engineered by using the HP8770As to

adjust the phase, intensity, pulse length, and frequency between the two kicking beams. The

signal was then sent to the AOMs to realize the desired standing wave for the experiment.

The standing wave nodes were displaced by a velocity given by v = 2π∆f/G where ∆f gives
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Figure 21: Schematic of the kicking setup.

the frequency difference between the beams. Because the quasimomentum, β, of the BEC

is proportional to v one can use ∆f to control β during the experiment. To ensure that

the applied kicking pulses remained in the Raman-Nath regime the duration of the kicking

pulses was adjusted to be 384 ns for all experiments. In other words, this ensures that the

distance that the atoms travel during a pulse is much smaller than the spatial period of the

potential.

3.2.7 Microwave System

To realize the gate and coin pulses necessary for the QW a microwave system was setup

according to the schematic shown in Fig. 22 (Adapted from [26, 108]). Two signals were

used to generate the MW pulses by mixing the separate signals. One of these signals was a

continuous MW signal with a constant frequency of (6.80 GHz) and the other signal was a

pulsed RF signal with an adjustable frequency of ≈ 34.682610 MHz. A reference 10 MHz

frequency was generated by a Rubidium atomic clock and was used to supply both the locking
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Figure 22: Schematic of the microwave setup.

signal for a 6.80 GHz crystal oscillator (Microwave Dynamics, PLO-4000) and an external

clock signal for a third HP8770A waveform synthesizer. The HP8770A allowed for control

of the length, phase, and frequency of the RF pulses. This HP8770A was also synchronized

with the aforementioned HP8770As used for generating the AOKR pulses to ensure the phase

and timing of the MW and AOKR pulses were set as desired for the experiments [26].

The MW signal to be sent to the chamber was realized by combining the crystal and

HP8770A signals in a frequency mixer (Marki Microwave) resulting in pulses of≈ 6.834682610

GHz. This is a frequency corresponding to the 52S1/2, F = 1, mF = 0 ↔ 52S1/2, F = 2, mF =

0 transition in 87Rb. The location of this transition is shown in Fig. 23 (Adapted from [26]).

This signal was verified using a spectrum analyzer (Agilent, E4407B). The generated

microwave signal was too weak to generate the desired pulses and thus it was sent to a

Terrasat Communications, ED-0278-4 amplifier to give an output power of ≈ 30dBm. This

amplified signal was then sent to C-band horn antenna mounted near the large viewport of

the vacuum chamber. The intensity of the MW pulses was tuned by adjusting the voltage

59



F=1

F=2

F’=0
F’=1

F’=2

F’=3

52S
1/2

52P
3/2

m
F 
=   -2     -1     0     1     2

m
F 
=           -1     0     1     

Dv
HFS

=6.834682610 GHz

780.241212 nm

Figure 23: Hyperfine level transitions for 87Rb with the frequency used to generate the
microwave pulses indicated by the red arrow. This frequency was the transition between the
|F = 1, mF = 0〉 and |F = 2, mF = 0〉 states.

sent to the amplifier which in turn adjusted the amplification of the received MW signal.

This voltage adjustment was done on the LabView computer program and had an adjustable

range of 0− 5V.
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CHAPTER IV

RESULTS AND DISCUSSION

In this chapter we will discuss and analyze the experimental results obtained from the spon-

taneous emission experiments as well as the predictions made from the new light shift model

to explain the central peak of residual atoms present in all of our QW experiment up to this

point. The discussion will first start with the initial method that was attempted to cause

an increase of spontaneous emission and that was by increasing the intensity of one of the

two kicking beams while reducing the intensity of the other to maintain the desired kicking

strength. We will then analyze these results and also show why it wasn’t able to provide

the necessary background light source to cause an increase in probability of spontaneous

emission events. Afterwards we will discuss in detail the results of the application of an

extra light source using the imaging beam. All of these results enable us to more carefully

determine the robustness of the QW so that it can be used in further applications.

4.1 Unbalanced AOKR method

In this section we will present results in which the first attempt to realize extra spontaneous

emission during the QW utilized the kicking beams themselves to increase the amplitude of

the constant term in the kicking operator Ukick. To theoretically accomplish this one can

increase the intensity of one side of the AOKR beams. This would, in effect increase the

intensity of the background radiation field that the atoms are present in during the walk and
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thus increase the spontaneous emission rate as described by[50]

γm =
φd

τpτSE∆m
, (4.1.1)

where τp, and τSE are the pulse duration and inverse of the spontaneous emission rate

respectively. Note that from Eq. 4.1.1 we might be tempted to just simply increase the

duration of the kicks but this would cause our system to exit the Raman-Nath regime and

completely change the dynamics of the system. As a result the only realistic option is to set

the amplitude of one kicking beam higher than the other and also making fine adjustments

in the amplitude of both beams to maintain proper kicking strength. We saw little change

in momentum distribution changes from one amplitude setting to another and also not

many atoms were lost beyond a normal experiment. Next attempts were done with ever

increasing amplitude difference up until the amplitude setting were reaching the limits of

the experiment and one of these results is shown in Fig. 24. The TOF images in panel (a) of

Fig. 24 show that even with a power difference of nearly 5 mW between the kicking beams

the momentum distribution still was largely unchanged aside from the effects of global phase

induced by the larger constant term in the kicking potential. In Fig. 24(b) the mean energy

was extracted from the images in Fig. 24(a) and plotted against the power difference, ∆P

between the two AOKR beams and we can see that the mean energy only differs by about

0.5 ~2G2

2
. The number of condensed atoms plotted against ∆P in Fig. 24(c) also doesn’t

show significant loss of condensed atoms as would be expected for SE. All of these results

show that attempting to utilize the kicking lasers themselves to increase the SE rate is an

inadequate procedure due to the limitations of the experiment. If one was to have a pair of

AOKR beams capable of higher intensity it may be possible to induce SE with this method

while maintaining the Raman-Nath regime. A more systematic and convenient approach

was then found in using the imaging light as an external source of spontaneous emission and

applying it during the QW as we will discuss next.
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Figure 24: (a)TOF images of a five step QW as a function of power difference in the applied
AOKR beams. The mean energy (b) and the number of condensed atoms (c) extracted from
panel (a) These results were from the unsuccessful attempts of the early experiments.

4.2 Spontaneous Emission

After the negative results of utilizing the AOKR lasers it was then decided to apply the

imaging light during the QW. This approach had the main advantages of being both readily

tunable in intensity and duration. It could also be properly timed to align at any point

during the QW. After some early attempts it was found that the most desirable timing to

apply an SE pulse with this beam was during the coin microwave pulses only. This was

done to avoid interference with the kicking pulses as this would also completely change the

dynamics of the system [100]. Because of the fact that the program controlling the imaging

light was not using one of the HP-8770a synthesizers the timing of the imaging pulses could
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Figure 25: TOF images of a BEC first prepared in the |F = 2, mF = 0〉 state before being
subjected to an imaging pulse of increasing duration.

vary by a few microseconds. To reduce the effects of this the duration of the pulses was

set to be 30 µs for each SE pulse. This also had an additional advantage of reducing the

probability of saturating the CCD camera.

It is important to note that using imaging light required additional experimental runs

on the BEC alone to obtain data that could be used to numerically calculate the effects of

the spontaneous emission. This is due to the fact that this light was of a different frequency

compared with the kicking light. This allowed us to calculate the SE probability rate ρ by

using the measured exponential decreases in atom population in 50 µs intervals and SE power

of 3 µW after the BEC was initially prepared in the F = 2 states using a π MW pulse [24].

The results of this are shown in Fig. 26 and the condensate fraction in Fig. 27 [24] This

exponential fit enabled us to accurately estimate an effective SE rate ρ ≈ 0.35. With this

estimate in mind we ran a five step QW with a kick strength of φd = 1.45 and increasing

the SE rate up to ρ = 5.38 and the TOF images and momentum distributions of this are

shown in Fig. 28 and Fig. 29 [24]. This shift in momentum states confirms the numerical
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Figure 26: Measured number of atoms after a BEC subjected to SE pulses of increasing
duration in 50 µs intervals. This was also fitted with an exponential function to calculate
the effective SE rate.

simulations because the SE light induces an imbalance of the internal state of the atoms

towards the |F = 2〉 state and thus creating a bias in the momentum distribution because

the projection of |F = 2〉 moves into the direction of positive momenta. This momentum

shift can also be observed in the calculated mean momentum extracted from the TOF images

and the momentum distributions. The results of this analysis are shown in Fig. 30. After this

result it was decided run a similar experiment but with a more properly compensated QW.

We also noted that from the uncompensated results that the effects of SE are well noticeable

at an SE rate of around ρ = 2.48 and thus in the compensated experiment we ended the SE

scan with this setting. This QW was also done with a higher kick strength of φd = 2.0 to

widen the momentum distribution so that the behavior could be more clearly observed. The

TOF images and momentum distributions are shown in Fig. 31 and Fig. 32 [24]. We can see

that similar to the results of the non-compensated walks the momentum distributions will

shift to the positive momentum states. This thus further verifies the theoretical predictions

and it also shows that the positive shift will occur regardless if the QW is compensated for

phase or not. These results showed us the imaging light clearly can be used as a convenient

tunable external source of spontaneous emission and opened the opportunity to study another
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Figure 27: Condensate fraction calculated from TOF images in Fig. 25. Adapted from [24].

important phenomenon of the QW and that was the quantum-to-classical transition. One of

the most important questions that appears when studying a QW is: What is the threshold

between quantum and classical behavior? This is especially important if one wishes to use

a QW in applications. As a result, more SE experiments on the QW were conducted with

this in mind. In this experiment SE was applied over the QW at each step and the SE rate

was measured for each iteration. The mean energy of this data was then extracted from

each step and then plotted against the number of QW steps. The results of this along with

theoretical simulations are shown in Fig. 33. This data was then fitted using a linear fit in

order to estimate the rate of change in mean enegy R and the results are tabulated along

with theoretical data in Table 3. This quantity shows that as the SE rate increases the

R for the mean energy will decrease starting with a maximum value when no SE light is

present. These observations are in good agreement with the predicted quantum-to-classical

walk transition. This also shows that as the SE rate is tuned the QW will make a gradual

transition to classical behavior possessing less mean energy which is more characteristic

of a classical walk with a Gaussian distribution. This is because the SE rate eventually

becomes strong enough to annihilate the entanglement of the internal spin states. These

experimental observations were also verified with the theoretical predictions which showed

similar behavior. The results of this experiment indicate that the rate of the mean energy

66



SE probability ρ

M
o

m
en

tu
m

 S
ta

te
 (

ℏ
G

)

0 0.32 0.53 1.10 2.48 5.38

0

3

6

-3

-6

Figure 28: TOF images of five step QW with φd = 1.45 without phase compensation. Note
the dramatic shift of atom population to positive momentum states. Adapted from [24].

SE Probability Experimental Rate R Theoretical Rate R

ρ = 0 0.58 0.84
ρ = 0.24 0.53 0.68
ρ = 0.35 0.52 0.64
ρ = 0.54 0.51 0.58

Table 3: Rate R calculated from the experimental and theoretical data of Fig. 33. Adapted
from [24].

could be used to more precisely locate the SE rate that can give rise to classical behavior

especially with QWs at smaller numbers of steps. We can also see that our QW is quite

robust at smaller numbers of steps before being destroyed by the SE rate.

4.3 Predicted effects of Light shift on the QW and possible corrective

techniques

In this section we present some numerical data illustrating the effects that the AC stark

shift from the AOKR as described in Chapter 2 has on the QW. We will also describe some

possible techniques that could be used to help mitigate these defects in our QW experiments
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Figure 29: Momentum distributions of the TOF images in Fig. 28. Note the shift towards
positive momentum as the SE rate increases. Each distribution curve was offset for added
clarity. Adapted from [24].

which will in turn help with further applications [14]. As was noted before the AOKR induces

a phase shift which is due to the AC stark shift from the kicking lasers. In past experiments

including the SE experiments this phase shift was countered by a trial-and-error method

of scanning the χ phase of the M̂(θ, χ) coin microwave operator at a particular number

of steps until the proper momentum distribution was observed. The chief problems of this

approach was that it was time consuming and that it didn’t completely counter the phase

issue and thus requiring a further fine adjustment if the QW was to be conducted beyond

the step in which the phase compensation was found. This is simply due to the fact that

each additional QW step added to the contributions of this shift. These issues unfortunately

cause some limitations for using the QW to realize further and more complicated applications

such as realizing topological phenomena or quantum search algorithms. As a result of the

recent theoretical model outlined in Chapter 2 in which the Stark shift plays more of role

in the QW two major possible mitigation techniques have been proposed that could be

attempted in an experiment without too much difficulty. If we were to swap the coin and

Hadamard gate operators that have been applied in each experiment up to this point, then

according to the numerical results of Fig. 34 [14] the predicted distribution better approaches
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Adapted from [24].

an ideal symmetric QW. The left panel of Fig. 34 [14] shows that even a straightforward

of exchanging the coin and gate operators results in a QW that reduces the central region

of atoms fairly well while also increasing the characteristic “horns” of the QW. The initial

state experimentally implemented was expressed by Eq. 2.2.68 with two involved momenta.

As described in [27, 24], the state is constructed to be concentrated in position space at

the rising (falling) flanks of the potential where the force impulse towards the left (right)

is maximal. It is exactly this effect that leads to directed ratchetlike motion. The more

momentum states that are included in the initial state, the more densely peaked is the wave

function in position (angle) space. For a highly dense wave function in position space, the

directed motion works with minimal dispersion. This dispersion is a specific problem in our

AOKR walk with respect to an ideal quantum walk. Hence, it is indeed not too surprising

that the AOKR QWs become more similar to ideal QWs when using “better” ratchet initial

states. This is seen in Fig. 34 [14] for the walk with the new Hadamard coin ĜH during

the evolution steps. The artificial clumping at the center of the momentum distributions

disappears when more momentum classes are included in the initial states (see Fig. 34).

It is known that an ideal quantum walk does not display a central peak from the start,

independently of the initial state (see Ref. [63]). The consequence is that an ideal walk does
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Figure 31: TOF images of a compensated five-step QW with a φd = 2.0 and maximum
SE rate of ρ = 0.85. The atom populations again shift toward positive momentum states.
Adapted from [24].

not display any difference between the various implementations using the different balanced

coins described above. In the end, the dominant central peak, displayed when using the

ĜH coin, can be seen as an artifact from AOKR realization when using the simplest initial

state. This central peak disappears when adding more momentum classes to the initial

state as seen in Fig. 34 [14]. This provides a clear prediction that could easily be checked

in future experiments. In other words, the experimentally observed residual central peak

is actually a relic of the AOKR dynamics. This behavior is expected when in the walk

protocol due to light shift effects the effectively implemented coin during the walk is ĜH

and not Ŷ , as initially intended. Even when this is the case, the central peak is only

visible for an initial ratchet state sufficiently narrow in momentum space. An additional

possible technique that can be applied, in addition to swapping operators, is to increase the

number of initial states to be used in the QW. The results of this are shown on the right

panel of Fig. 34 for initial states up to five. The results of this show that the momentum

distribution of the QW would be improved dramatically to where the central region of atoms

nearly vanishes with three additional states. Such an improvement is due to the fact that

increasing the number of initial states causes the wavefunction to be more densely peaked

in position space. This in effect creates a better quantum ratchet that leads to a QW
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Figure 32: Momentum distributions from the TOF images of Fig. 31 with similar offset
applied to each curve for clarity. Note that the positive shift in momentum is well observed.
Adapted from [24].

resembling more ideal behavior. The properties of multiple Bragg pulses and their affects on

the quantum ratchet have been studied in previous experiments and thus this technique could

be attempted. However, it should be noted that increasing the number of initial states is

not trivial as the multiple Bragg pulses each have to be tuned to result in states with equal

populations to avoid bias in the QW. To ensure that such a new explanation still agrees

with the QW experiments conducted in the past it was necessary to perform some further

simulations that compared the original phase-compensated QWs with that of the swapping

of the coin operators. Each of these were done at different quasi-momentum values and the

results are shown in Fig. 35 [14]. We have put forward an alternative way of understanding

the central peaks around zero momentum in the experimental implementations of the AOKR

quantum walks. To simulate experimental systems, we must include the finite width in the
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Figure 33: (a) Mean energy extracted from TOF images plotted as a function of the QW
steps at various SE probability ρ and k = 1.4. Note that difference in the mean energy among
various SE probability ρ remains relatively constant at a lower number of steps but begins to
decrease at six steps, indicating a transition from a QW to a classical walk. (b) Theoretical
predictions based on the experimental conditions for the data shown in Panel (a). The solid
lines in both panels represent the linear fitting functions. Adapted from [24].

initial quasimomentum distribution of the spinor BECs mentioned in chapter 2. This is

best done numerically by averaging over a reasonable ensemble of quasimomenta β [48].

Nonresonant β induces a phase scrambling [101, 128], making the walks less ballistic with

the effect of reducing the population in the ballistically moving side peaks. The value of

β, drawn from a Gaussian distribution of a certain width βFWHM , was estimated in the

experiments as βFWHM ≈ 0.025 (see Refs. [26, 24]). The numerical walks are obtained

as an average over 1000 realizations, with each realization involving a value of β being

randomly drawn from the corresponding Gaussian. In the left panels of Fig. 35 [14], the

walks are implemented by the ĜH coin, while the right panels feature the implementation

of Eq. 2.4.13. In other words, while the left panels show the walk that we argue to be

responsible for the experimentally observed momentum distributions, the right panels show

theoretical predictions using experimental parameters based on the originally proposed Ŵ

coin and an incorrectly chosen compensation phase (see Eq. 2.4.13) with χ = π and k = 1.45.

As anticipated, the latter two protocols given by Eqs. 2.4.12 and 2.4.13 essentially lead to

the same momentum distributions for all choices of βFWHM = 0 in Figs. 35(a) and 35(b),

βFWHM = 0.01 in Figs. 35(c) and 35(d), and βFWHM = 0.025 in Figs. 35(e) and 35(f).

With increasing βFWHM , the side peaks and the central regions become less and less distinct

and the ballistic side peaks tend to fade out. Similar behavior is seen in our experimental
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Figure 34: Predicted QW distributions after 20 steps. In panel (a) the Hadamard gate and
coin operators were exchanged. Panel (b) also has the operators swapped but each curve
represents an increasing number of initial states. Adapted from [14].

data [27, 24]. Fig. 36 (a) [14] shows a typical experimental result adapted from Ref. [26]. We

find good theory-experiment agreements by comparing Fig. 36(a) with Fig. 36(b) that shows

the predictions of our current model (see Eq. 2.4.12). First, we observe in both panels (a) and

(b) in Fig. 36 a central part that does not evolve far away from the origin and the two side

peaks that evolve ballistically away from their initial position in momentum space. Second,

the observed and predicted rates of the spread of these side peaks in momentum space

with increasing number of steps appear comparable. Our current interpretation shown in

Fig. 36(b) would also be in reasonable agreement with the originally guessed temperature of

the BEC with βFWHM ≈ 0.025, when the fading of the side peaks is considered. Figure 36(c)

shows momentum distributions of the QW given by the previous theoretical model (see

Chapter 2) after a residual thermal cloud of atoms is added into the BECs. The thermal

cloud was originally assumed as a possible solution for the appearance of the prominent

central region. Thermal atoms essentially will not follow the kicking evolution [101, 128]

and hence remain close to the center. The experimentally intended Ŷ protocol does not

display this behavior, as can be seen from Fig. 35. However, the QWs shown in Fig. 36(c)

appear to be different from our experimental observations, i.e., the predicted QWs lack

the significantly contributing central region and the structures of the side peaks are of a
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quite different shape. The mean energies of the present and original theoretical models were

calculated and compared with experimental data in Fig. 37 [14]. It can be seen that the

energy using ĜH coin increases faster than that of the previous model. The increase in mean

energy for the Ŷ coin has a linear form, while the ĜH coin increases more quadratically.

Note that quantum resonant AOKR walks possess a quadratic increase in mean energy,

corresponding to a ballistic motion in momentum space. In the presence of a strong off-

resonant β distribution like the residual thermal cloud from the original theory, the energy

increases only linearly [101]. The data shown for a small number of up to 15 steps maximum

show that the asymptotic regimes are rarely met. The experimentally obtained energy

increases with more quadratic than linear behavior, which is more consistent with current

theory and contradicts the presence of a thermal cloud as originally hypothesized. The

comparison is yet more complicated since the experimental suffered from a series of well-

known issues [27]. The effect most relevant in our context is the fading out of the ballistic

peaks in the experimental momentum distributions due to atom number fluctuations and

small atom losses. Each time slice is obtained from a new experimental run, and hence

also the relative normalization of the atomic density might be an issue. All this may have

consequences on the second moment of the distribution that is proportional to the energy

plotted in Fig. 37 [14]. Counting less in the tails of the distribution typically leads to an

underestimation of the mean energy [128]. The simulations in Fig. 35 [14] show that aside

from the gradual loss in atoms at β = 0.025 the QWs are essentially equivalent. This then

tells us that including the light shift into to QW is a good and more complete model to use

in future experiments. We also wished to compare this model with the original explanation

of the residual remaining atoms that were explained due to the thermal cloud from hotter

atoms surrounding the BEC. This comparison is shown in Fig. 36 [14]. As we can see the

predicted QWs differ dramatically and this thus shows that the light shift model is indeed

more descriptive of the QW phenomena. This model also suggests methods as outlined above

that can be used to obtain good experimental results and show that our QW utilizing the
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AOKR is actually a good platform that can be used in further studying quantum information.

4.4 Topological phase transitions in a double-kicked quantum rotor

One future project that could utilize our setup is the possible detection of topological phase

transitions in a double-kicked quantum rotor (DKQR) and detailed calculations and simula-

tions have been carried out to study the possible outcomes of such experiments. The studies

of such topological phases are of great interest as they have found many applications such

as topological insulators [92, 58, 55, 72, 82]. The system under consideration as a candidate

to experimentally realize topological phase transitions is a DKQR with internal spin-1/2

degree of freedom [135, 49]. The DKQR is a gapped Hamiltonian system characterized by

an energy gap between the ground and first excited states. In this system a quantity known

as the winding number1 ν is topologically invariant under a wide range transformations[135].

The preservation of topological winding numbers requires preservation of chiral symmetry

and the band gap [135, 49]. Permanently containing this chiral symmetry results in the

topological invariant being able to change when the system is changed to a configuration

in which the band gap closes. Such closure not only makes the phase undetermined but

also allows for direct experimental control by scanning a system parameter. For the DKQR,

the quasienergy spectrum is itself periodic and the gaps can be controlled by the driving

parameters. The DKQR is based on the same AOKR described in section 2.2.3 in chapter 2

and is described by the Hamiltonian [15]

Ĥ =
p̂⊗ 1

2
+ k1 cos(θ̂)⊗ σ̂x ·

∞
∑

n=0

δ(t− 2nτ) + k2 sin(θ̂)⊗ σ̂y ·
∞
∑

n=0

δ(t− (2n+ 1)τ), (4.4.1)

where p̂ and θ̂ are the momentum and angular position operators, respectively, τ is the

duration between two kicks of different kicking strengths k1 and k2, and the Pauli matrices σ̂x

and σ̂y act on the internal spin-1/2 degree of freedom. The on-resonance condition where τ =

1See the texts by Apostol and Courant for more about winding numbers from a mathematical stand-
point [7, 25].

75



4π corresponds to a full revival at Talbot time. The resulting quasiperiodicity of the system

can lead to a Hofstadter butterfly-like quasienergy spectrum and resolving a band structure

rich in diplaying topological properties. The topological winding number is an abstract

quantity and thus cannot often be measured directly. Instead, a separate quantity, the mean

chiral displacement (MCD), is introduced as a measurable quantity in the experiment. In

the DKQR the MCD describes the difference between momentum distributions of the two

internal states that evolve under the operator Û , is defined as [15]

C(t) = 〈ψt|n̂⊗−σ̂z|ψt〉

= 〈ψ0|Û−1(n̂⊗−σ̂z)|ψ0〉.
(4.4.2)

The average of this MCD over several discrete steps t converges to half of the topological

winding number ν [15]

C̄(t) =
1

t

t
∑

ti

→ ν

2
. (4.4.3)

To measure the topological phase transitions, it is necessary to repeat the application of

the sequence for a series of different configurations of k1 and k2 where the results of the

experiment can be compared with the ideal data in the phase diagram as reported in Zhou

et. al. [135]. The proposed sequence as optimized for the experiment reduces the number of

operations necessary by making the |2〉 symmetric in momentum space to give the complete

evolution Û t [15]

Û t = M̂

(−π
2
,
π

2

)

K̂
1/2
2 M̂

(π

2
,
π

2

)

·
[

M̂

(−π
2
, 0

)

K̂1M̂

(−π
2
,
π

2

)

M̂

(−π
2
,
π

2

)

K̂2M̂
(π

2
,
π

2

)

]t−1

× M̂

(−π
2
, 0

)
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(−π
2
, 0

)

M̂

(−π
2
,
π

2

)

K̂
1/2
2 M̂

(π

2
,
π

2

)

. (4.4.4)

The predicted momentum distributions after five applications of Eq. 4.4.4 is shown in

Fig. 38 [15]. The stability of this proposed sequence was also considered in the simula-
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tions. The unavoidable experimental limitations that were considered were the uncontrolled

phases of the MW pulses, unwanted deviations from quantum resonance in the DKQR and

the relative energy shift between the two internal states. This leads to a relative dynam-

ical phase in the experiment that must be corrected. The phase noise was modeled as a

random walk within an additional dynamical phase of the MW pulses. The results of this

modeling are shown in Fig. 39 [15] Similar to QWs the light shift will also have to be

taken into consideration in the experiments and properly compensated to detect the phase

transitions. If this light-shift is not properly compensated then the topological phase will

change and imply instabilities, making it impossible to distinguish between topological phase

transitions and such instabilities. A proper compensation of this light shift using the same

proposed techniques regarding QWs should increase the likelihood of successfully detecting

phase transitions in the DKQR as shown in Fig. 40 [15].
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Figure 35: Numerical predictions of the QW up to 15 steps. Panels (a) and (b) were with
β = 0. Panels (c) and (d) with β = 0.01. Panels (e) and (f) with β = 0.025. Note that
the left hand panels were with a Ŵ coin and the right with a balancing phase. Adapted
from [14]
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Figure 36: Numerical simulations of the QW with panel (a) with a gate coin and panel (b)
showing the QW with original thermal cloud model.
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Figure 37: Comparison of mean energies calculated from the walks in Fig. 36 with βFWHM =
0.025. The inset plots the energies on a double logarithmic scale where the power-law
exponents extracted from the fits (solid lines). Giving 1.8± 0.2(Eexp), 1.7± 0.1 (EĜH

), and
1.3±0.1 (EŶ ) for the experimental and theoretical data respectively. Notice that the apparent
better agreement between Eexp and EĜH

confirms the better scaling of the model. Also, note
that the asymptotic exponent of 2 expected for a ballistic walk is hardly approached for
QWs with only 15 steps. Adapted from [14].

Figure 38: Predicted momentum distributions after 5 applications of the proposed sequence
Eq. 4.4.4. Note that the |2〉 state is symmetric in momentum space. Adapted from [15].
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Figure 39: Predicted topological phase diagram with dynamical phase transitions. The
black curve represents the predicted ideal MCD topological phase diagram. The red curve
represents a phase noise of φ = π/3. For both curves β = 0 (Adapted from [15])

Figure 40: Averaged MCD plotted as a function of step number t scanning the kicking
strength k2. Note that the averaged MCD converges to the predicted phase transitions
(black curve) as the number of steps t increases. Adapted from [15].
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CHAPTER V

CONCLUSION

We have studied the possibility of utilizing the discrete quantum walk of a 87Rb BEC in

momentum space based on the use of an AOKR for various possible applications such as

quantum search algorithms, and quantum computing. The main focus was to find out how

robust the walk would be when subjected to external sources of spontaneous emission that

could have negative effects on the system.

This was first attempted by using the two counter-propagating beams that generate the

AOKR pulses by creating an intensity imbalance that in turn creates an increase of the

background laser radiation that should increase the probability of an SE event. Multiple

experimental runs were attempted with this in mind by changing the applied amplitude

while also maintaining the proper kick strength. The results of this failed to show significant

atomic losses as well as any transition towards classical behavior within the capabilities of

our experimental apparatus. As a result, a solution was found in the possibility of using the

imaging beam on resonance with the |F = 2〉 to |F ′ = 3〉 transition as it had the advantages

of being easily tunable and well controlled in intensity and duration. Using this, several

experiments were conducted testing different pulse parameters until a suitable method was

found to induce controllable SE probabilities. It was found that quantum walks at less than

five steps were very robust under even high SE pulse intensities in that they maintained their

quantum behavior. It was also shown that the imaging light causes a notable shift in the

momentum distribution towards positive momenta states of the quantum walks regardless

of compensation confirming a theoretical prediction that SE causes an imbalance of internal
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states of the atoms towards the |2〉 state because projection of this state moves towards

positive momentum.

The quantum-to-classical transition behavior was also observed with increasing SE prob-

ability rate. This was done by measuring the mean energy over eight steps with increasing SE

probability and the results fitted to obtain a quantity R. This rate was shown to be higher

with lower SE probabilities which was also shown to be in good agreement with theoretical

predictions. These results show that it is possible to quantitatively measure the quantum-

to-classical behavior. This also showed that SE is a weak form of quantum measurement in

which many such events necessarily will have a larger effect as this causes a bias of the walk.

We also presented more theoretical results by revisiting the original QW data and explor-

ing a more complete theoretical model that explains the noticeable central cloud region as

being more due to the light shift from AC-Stark shift rather than a cloud of atoms possessing

higher energy. This theory also presented some possible mitigation techniques that could be

readily applied in an experiment by increasing the number of initial states to be used in the

ratchet as well as an exchange of coin and gate operators to further reduce the phase offset.

Both of these techniques can potentially greatly reduce the time consuming trial and error

method of phase compensation.

All of these results tell us that the AOKR based QW is reliable and robust to external

perturbations at up to about 15 steps and with some modifications can be refined to more

closely resemble ideal QW behavior. Future experiments with quantum search algorithms

and topological phenomena should be relatively feasible in 87Rb BEC systems. Recent the-

oretical investigations indicate that such topology experiments are feasible after considering

the light shift, spontaneous emission, and relative phase typical for our system. In such an

experiment, a double kicked quantum rotor (DKQR) is applied where two kicks of differing

strengths are applied within a single Talbot time period. Between each kick multiple mi-

crowave pulses are applied for multiple rotations to observe the topological phase transitions

in the mean chiral displacement. It is predicted that if the phase noise is kept to a minimum
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and the light-shift is compensated such a DKQR could be used successfully to observe such

transitions. The possible results of this experiment could provide an alternative method to

predict the behavior of special materials that are studied in condensed matter physics such

as topological insulators. Such an experiment further illustrates the exciting possibilities of

this still new and rapidly growing field of quantum information.
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APPENDIX A

In this appendix I discuss the theory of laser cooling and trapping which is crucial to realize

a Bose-Einstein Condensate (BEC).

To create BECs one must first cool atoms down to the critical temperature and to achieve

the necessary phase space density. One of these critical steps is the creation of a Magnetic-

Optical Trap (MOT) which cools a sample of atoms down to 10−6K and a speed of ≈

10 cm s−1. The realization of a MOT is itself dependent upon the technique and theory of

laser cooling. In this chapter I will summarize and derive those parts of laser cooling theory

that are necessary for our system.

Photon Recoil and Bloch Equations

Introduction

To realize a BEC one must take a gas of atoms at room temperature (25° C or 298.15 K)

where the average speed1 is ≈ 671.331 m/s and cool them down to around 170 nK with a

speed of just a few thousands of µm/s. Such a difference represents a nearly 106 factor in

reduction of speed and also shows the challenges that were present in realizing a BEC and

lead to a series of Nobel Prizes for the scientists for the various crucial steps to this goal.

Although it had been speculated by Kepler [66] regarding comet tails pointing away from

the sun and experimentally known since the early twentieth century that electromagnetic

radiation exerts a force on matter [75], it was only in the 1970s after advent of lasers did the

1For nitrogen (N2) at T = 298.15K, the average speed c̄, is given by c̄ =
√

8kBT
πm where kB = 1.380 ·10−23

is the Boltzmann constant. This average speed formula is derived in any text on statistical thermodynamics
or physical chemistry[20].
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idea of using light to decrease the momentum of atoms [130, 53, 88] suggest the feasibility

of directly cooling a gas of neutral atoms. Shortly afterwards, W. D. Phillips demonstrated

that on resonance laser light could deflect a beam of neutral sodium atoms [89] leading to

further advances in laser cooling.

The general idea behind laser cooling is quite simple as it involves using laser light to

slow down a moving atom in a gas. This occurs because the photons in the laser light has

lower energy than the moving atom and when the photon bounces off of the atom energy is

transferred and the atom slows down. This laser cooling was first demonstrated by Steven

Chu in 1986 [8, 93] who also received the Nobel Prize in Physics in 1997 for this work [23].

Because individual photons possess a very small amount of energy, the use of photons

to slow an atom down from the hundreds of meters per second down to tenths of meter per

second is similar to using a ping-pong ball to slow down a train. However, in theory it is

possible to change the speed and direction of such a train if enough ping-pong balls are used.

In a similar manner we can use photons to kick atoms in the opposite direction of the photon

before it is absorbed by the atom. However, only photons of a certain frequency are able to

do this as we will see.

Basics of Photon Recoil

Here we outline the basic idea of photon recoil that forms the basis of laser cooling as detailed

in Refs. [33, 42]. If we consider an atom of rest mass m0 possessing an energy Ei, initial

velocity vi and momentum pi = m0vi. If this atom is then subject to a photon of energy

~ωik = Ek − Ei and momentum ~k it will be excited to the state Ek. As a result, the atom

then has a momentum change of pk = pi + ~k. Now, consider the relativistic momentum of

the photon in terms of the two levels given in Eq. A.1 [33]

~ωik =

√

p2kc
2 + (m0c2 + Ek)

2 −
√

p2i c
2 + (m0c2 + Ei)

2. (A.1)
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Expanding Eq. A.1 as a Taylor series we obtain Eq. A.2[33]

ωik = ω0 + k · vi − ω0
v2i
2c2

+
~ω2

0

2m0c2
+ · · · . (A.2)

The first term in this series is the frequency ω0 = Ek − Ei is the absorption frequency. The

second and third terms are the linear and quadratic Doppler terms respectively. The fourth

term here represents the photon recoil energy due to conservation of momentum. Combining

this with a similar result for emission gives us the resulting relative frequency shift [33]

∆ω =
~ω2

0

m0c2
. (A.3)

These results show us that a laser beam of a certain[33] frequency can cause an atom expe-

rience a change in energy through photon recoil and thus could indeed be slowed down in

velocity. The theory behind such a procedure can be found in the optical Bloch equations

which we will outline next.

Bloch Equations

Now that we have some idea of how photons can cause a change in the momentum and

energy of an atom we can now derive the optical Bloch equations necessary to understand the

creation of the Magnetic Optical Trap (MOT). If we consider the force from light applied to

an atom we express this as the expectation value of the force operator in quantum mechanics

[84] in Eq. A.4

F̂ = 〈F〉 = d

dt
〈p〉. (A.4)

Because this is a time varying operator the time derivative of such an operator is given by

[17] Eq. A.5

d

dt
〈A〉 = i

~
〈[H,A]〉. (A.5)
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Applying Eq. A.5 to the momentum, p, we have Eq. A.6 where p = −i~∂H
∂z

[H, p] = i~
∂H
∂z

. (A.6)

From this we can now write [84] the force on the atom as in Eq. A.7

F = −
〈

∂H
∂z

〉

= −∇H. (A.7)

Now noting that the total Hamiltonian is given byH = H0+H
′(t), whereH0 andH

′(t) are the

time-independent and time-dependent Hamiltonians respectively, we write the expectation

value of Eq. A.7 as given by Eq. A.8 where ρ is the density matrix [84]

〈F〉 = Tr(ρF ). (A.8)

The time evolution of the density matrix using Eq. A.5 is

d

dt
〈ρ〉 = i

~
[H, ρ] . (A.9)

The time independent Hamiltonian, H0, has eigenvalues and eigenfunctions given by En =

~ωn and φn(r) respectively. These eigenfunctions are also linearly independent and form

a complete set. To find the force on the atoms we apply the time dependent Schrodinger

equation, Eq. A.10 [84]

Hψ(r, t) = i~
∂ψ(r, t)

∂t
. (A.10)

Because of the completeness of the eigenfunctions we can expand ψ(r, t) in terms of φn(r)

as in Eq. A.11 [84]

Hψ(r, t) = [H0 +H ′(t)]
∑

k

ck(t)φk(r). (A.11)
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Multiplying both sides of Eq. A.11 by the complex conjugate φ∗
j (r) and integrating over all

space we obtain [84]

i~
dcj(t)

dt
= cj(t)Ej +

∑

k

ck(t)H
′
jk(t), (A.12)

where we have H ′
jk(t) = 〈φj|H ′(t)|φk〉. Eq. A.12 represents a general solution for any number

of excited states. For the case of only two states, g (ground) and e (excited), this becomes

a two state atom and is well known as the Rabi two-level atom. From this we arrive at a

coupled system involving two differential equations [3]

i~
cg(t)

dt
= cg(t)(Eg +H ′

gg) + ce(t)H
′
ge(t)

i~
ce(t)

dt
= ce(t)(Ee +H ′

ee) + cg(t)H
′
eg(t).

(A.13)

The interaction terms, H ′
ge(t) and H

′
eg(t), are related by H ′

ge(t) = H ′∗
eg(t) and are defined as

H ′
ge(t) = −µ ·E(r, t), (A.14)

where E(r is the electric field and µ = q〈e|r|g〉 is the dipole moment [10] of the atom with

electric charge, q, and position, r. Because H ′ possesses odd parity2 only the opposite parity

states of the atom can couple through this dipole interaction H ′
ee(t) = H ′

gg(t) = 0 giving the

matrix form of the Hamiltonian as

H =







0 −µ ·E∗(r, t)

−µ ·E(r, t) ~ωe






. (A.15)

Now we can find the time evolution of the density matrix by substituting Eq. A.15 into

Eq. A.9 to obtain the resultant matrix equation







˙ρgg ˙ρ∗eg

˙ρeg ˙ρee






= i







Ω∗(r, t)ρeg − Ω(r, t)ρ∗eg ωeρ
∗
eg − Ω∗(r, t)u

−ωeρeg + Ω∗(r, t)u −Ω∗(r, t)ρeg + Ω(r, t)ρ∗eg






, (A.16)

2Odd parity arises if, e.g ψ(x) = −ψ(−x). See any modern physics[97] or quantum mechanics[103] text.
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where the Rabi frequency is defined as Ω(r, t) = µ ·E(r, t)/~ and the population difference

u = ρgg−ρee. If the system is closed the total population will be conserved, thus ρee+ρgg = 1

and ρeg = ρ∗ge. With this we can now write the optical Bloch equations [84]

dρeg(t)

dt
= −γ

2
ρeg − iωeρeg + iΩ(r, t)u

du

dt
= γ(1− u) + i(Ω∗(r, t)ρeg − Ω(r, t)ρ∗eg).

(A.17)

Here the spontaneous emission rate, γ, is defined as γ =
ω3
ℓµ

2

3πǫ0~c3
where ωℓ is the laser frequency.

The first term in Eq. A.17 was introduced to take the effects of spontaneous emission into

account during the time evolution of the density matrix. Now if we let ρeg = σege
−iωℓt and

E(r, t) = E(r) cos(ωℓt) then Eq. A.17 becomes [84, 108]

dσeg
dt

= −(γ/2− iδ)σeg +
iuΩ∗(r)

2
du

dt
= γ(1− u) + i(Ω∗(r)σeg − Ω(r)σ∗

eg).

(A.18)

The higher frequency 2ωell terms where ignored because they average to zero, this is known

as the rotating wave approximation [42]. Also, the laser detuning from the atomic transition

is given by δ = ωℓ − ωe. The steady state solutions (i.e. dσeg

dt
= 0 and du

dt
= 0) of Eq. A.18

are given by [84, 108]

σeg =
2Ω(−δ + iγ

2
)

γ2
[

1 +
(

2δ
γ

)2

+ 4
(

Ω
γ

)2
]

u =
1 +

(

2δ
γ

)2

[

1 +
(

2δ
γ

)2

+ 4
(

Ω
γ

)2
] .

(A.19)

Now we are able to calculate the force operator using the conservation of population and the

fact that we can calculate ρgg and ρee. If we consider the case of an electric field produced

by a traveling wave in the z-direction given by E(z) = E0 cos(kz − ωℓt) we can write the
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force operator as [108]

F =







0 µ∂E∗(z)
∂z

µ∂E(z)
∂z

0






. (A.20)

Now we can write Eq. A.8 as

〈F〉 = Tr(ρF )

= µ
∂E

∂z
σ∗
ege

iωℓt + µ
∂E∗

∂z
σege

−iωℓt.
(A.21)

Substituting σeg from Eq. A.19 into Eq. A.21 yields the force on a stationary atom [108]

F =
~kγs

2

[

1 +
(

2δ
γ

)2

+ s

] , (A.22)

where the saturation parameter is defined as s =
(

2Ω
γ

)2

or, in terms of intensity as s = I/Is

where I, Is = πhc
3λ3τ

are respectively the intensity of the laser light and saturation intensity

with upper state lifetime τ . Now, let’s consider an atom moving with a velocity v and apply

these results. Such an atom will experience a Doppler shift of ±kv in the frequency of the

applied laser. Here, the plus or minus sign represents an atom moving toward or away from

the direction of the beam respectively. As a result, this atom will experience a detuned laser

frequency, δ ± kv, and thus the overall force on the moving atom is then [84]

F = ± ~kγs

2

[

1 +
(

2(δ∓kv)
γ

)2

+ s

] , (A.23)

where again the plus and minus sign represent the force on an atom moving toward or away

from the laser beam. Now, if we have an atom in two counter propagating beams along the
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z-direction the net force then becomes [84, 108]

F =
~kγs

2

[

1 +
(

2(δ−kv)
γ

)2

+ s

] − ~kγs

2

[

1 +
(

2(δ+kv)
γ

)2

+ s

] . (A.24)

If we consider the limit where the Doppler shift is small compared to δ, Eq. A.24 then

becomes F = −βv where β represents the damping coefficient and is defined as [84, 108]

β =
8~k2sδ

γ

[

1 +
(

2δ
γ

)2

+ s

]2 . (A.25)

Interpreting Eq. A.25 tells us that if we have laser light with a frequency detuned below the

resonant frequency (i.e δ < 0) atoms that move toward the light source will experience a

Doppler shift closer to atomic resonance (blue shift) whereas atoms moving away from the

source will experience a Doppler shift (red shift) further away from resonance. As a result,

the atoms will absorb more photons from the counter-propagating beams and result in a

decreased velocity. If three pairs of such counter-propagating beams are used in orthogonal

directions to each other the atoms will then experience a damping force in all three dimensions

regardless of the direction of the atoms’ velocity. Because this force is dependent on the

velocity of the atoms it is thus non-conservative. The force from this optical setup utilizing

laser beams where the frequency is detuned below atomic resonance is what served as the

basis for laser cooling techniques and eventual realization of a MOT.

Limitations of Laser Cooling

Until very recently [123, 105], the ability to cool atoms down by purely using the damping

force was limited due to the random nature of the photon scattering process used to create the

optical molasses. Such a random process caused a diffusion of the atoms in momentum space

and thus the temperature of the atoms would actually increase. As a result, a steady state is
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eventually reached whereupon the limiting temperature, known as the Doppler temperature

TD, is reached and is defined as

TD =
~γ

2kB
, (A.26)

where γ is the natural line width. For 87Rb atoms this Doppler temperature is 146µK.

However, in 1988 [76] it was discovered during laser cooling experiments involving Sodium

that a temperature below the Doppler temperature could be obtained. This became known

as sub-Doppler cooling and it was realized by W. Phillips and his co-workers that the multiple

energy levels in the atoms were not considered in the two-level system and thus contributed to

further reduce the temperature. This sub-Doppler cooling also became known as polarization

gradient cooling as this cooling is due to the gradient in the polarization of the laser beams.

This effect was then used by the Cohen-Tanoudji group the following year [28] to reach a

further temperature limit determined by the energy from a single photon recoil Er = ~
2k2

2m

where this new temperature limit is known as the recoil temperature and is given by [84]

Tr =
~
2k2

mkB
. (A.27)

The recoil temperature 87Rb is then 360nK.

Magneto-Optical Trap (MOT)

The Magneto-Optical Trap or MOT is one of the most widely used methods to trap neutral

atoms and it utilizes both optical and magnetic fields. The first successful MOT was realized

in 1987 by E. L. Raab and co-workers [93]. A working MOT depends upon two components,

an inhomogeneous magnetic field and near-resonant laser beams arranged appropriately. One

of the main advantages in using a MOT is that it is a robust setup as it doesn’t rely on precise

balance of the counter-propagating beams nor upon a high degree of their polarization. To

understand the basic theory behind a MOT let’s consider a simple atomic transition scheme

with Jg = 0 → Je = 1 subjected to an external linearly inhomogeneous magnetic field
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B = B(z) = B0z. The magnetic field then causes a Zeeman split of the excited states into

three components Me = −1, 0, and +1 as diagrammed in Fig. 41 (Adapted from Metcalf et

al. [84]). Now, two counter-propagating laser beams possessing opposite circular polarization

and detuned below the atomic transition without the magnetic field are applied and thus

completing the MOT setup.

The applied magnetic field with B > 0 causes a Zeeman shift where the excited states,

Me = +1 and Me = −1, are shifted up and down respectively. This shift is reversed to

Me = ∓1 if the field is reversed to B < 0. As a result, at a position z′ in Fig. 41 the applied

magnetic field will tune the ∆M = −1 and ∆M = +1 transitions closer and further away

to the resonance respectively [84]. If we let the polarization of the right laser beam be σ−

1

1 -1

0

M
e

0

-1

z’ +Z

s
-

s
+

BB

d-

d+

Figure 41: Energy level diagram of a one-dimensional MOT.

and the polarization of the left beam be σ+ then the atoms will scatter more light from the

former beam rather than the latter. This action thus causes the atoms to be driven towards

the center of the MOT where the magnitude of the magnetic field is zero. For the other side

of the trap the applied magnetic field causes a reversed situation of the right side where the
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∆M = +1 transition is tuned closer to the resonance. This situation thus causes atoms in

the σ+ beam to scatter more light and as a result the atoms are driven towards the center of

the trap. The damping force in the optical molasses due to the Doppler effect affects atoms

in velocity space while the MOT setup operates in position space. As a result, using the

laser light possessing a frequency detuned below resonance and in tandem with the B-field

obtains compression and cooling of the atoms. Thus far, this MOT scheme has been in

one-dimension but it can easily be extended to three dimensions with the addition of three

pairs of such counter-propagating beams. The detuning from each applied laser beam in the

presence of the magnetic field is [84]

δ± = δ ∓ k · v ± µ′B/~. (A.28)

Here, the effective magnetic moment is defined as µ′ = µB(gEMe − ggMg) where µB is

the Bohr magneton and g is the Lande’ g-factor. As a result, the net force on the atoms

becomes [84]

F± = ±~kγ

2

s0
[

1 + s0 +
(

2δ±
γ

)2
] . (A.29)

Here, s0 =
(

2|Ω|
γ

)2

= I
Is

Evaporative Cooling Theory

To achieve the BEC transition it is necessary for the phase space density, ρ = nλ3dB, to

become greater than 2.612 where n is the density of the particles and λdB is the de Broglie

wavelength3. At room temperature the value of this phase space density is ρ ≈ 10−6 and for

an atomic beam this becomes ρ ≈ 10−10. In Sec. 2.2 it was shown that only very recently

that solely using laser cooling to cool atoms was limited by the Doppler and recoil limits. The

phase space density at these limits are between ρ = 10−5 and ρ = 10−4. Using the traditional

3See the appendix, ”Bose-Einstein Statistics”, for a more thorough derivation of Bose-Einstein Conden-
sation.
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laser cooling techniques it is possible to achieve temperatures in the microKelvin range

without much loss of atoms. This thus increases the density of the atomic gas. Increasing

this density leads to a dilemma in which an increase in the collision rate of the atoms with

one in an excited state within the gas, known as S+P collisions. Because these collisions are

inelastic an energy exchange occurs and thus leading to an increase of heating of the atoms.

Because of this effect it is necessary to avoid using near resonant light to attempt to cool

atoms further to achieve a BEC. A possible solution to this problem was realized by the use

of evaporative cooling and thus leading to an increase in the phase space density. The idea of

evaporative cooling was first proposed to be applied to atomic Hydrogen in 1985 by Harald

Hess [56]. The idea of evaporative cooling is to preferentially remove atoms from an atomic

gas that posses a higher than average energy. Removal of these atoms would then cause

a rethermalization of the remaining atoms due to elastic collisions. Because the remaining

atoms in the cloud now possess lower temperature and occupy less space the overall phase

space density increases. This concept was first applied to alkali atoms with laser cooling in

1994 [129].

Evaporative cooling techniques have been achieved using either magnetic fields or a far-

off-resonant optical light source. In our lab the latter was used and its theory of operation

will be described for the remainder of this section. The Far-Off-Resonant-Trap or FORT is

based on the idea that a laser off atomic resonance creates a potential that is attractive or

repulsive depending on whether the light is red or blue detuned from the atomic transitions.

The depth of such a trap is dependent upon the intensity of laser and its detuning by[84]

U ≈ ~I

4δℓ
. (A.30)

However, the spontaneous scattering rate of the FORT dependent upon the square of the

detuning in the following way

U ≈ Γ~I

4δ2ℓ
, (A.31)
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where Γ is the spontaneous emission rate of the atoms. This results in an advantage of using

the FORT because it is possible to achieve a trap with a potential well depth with a reduced

scatter rate.

There have been many different models for evaporative cooling developed over the years

but we will follow the model proposed by Davis et. al. [31] as it is relatively easy to

follow. The trap depth in this model is first lowered to a finite energy ηkBT , afterwards the

atoms thermalize due to collisions and then the effect of this on the usual thermodynamic

quantities volume, density, and temperature are calculated. The ratio of the atoms remaining

in the trap after this cooling process is given by ν = N ′

N
and the quantity γT

4 measures the

temperature of the remaining atoms after the hot atoms are removed. This quantity is

defined as [31]

γT =
log(T ′/T )

log(ν)
. (A.32)

The values after cooling are represented here by the primed quantities. With this we can

now state the scaled thermodynamic quantities, N ′ = Nν, T = TνγT , and V ′ = V νγT ξ

where the quantity, ξ is dependent upon the type of potential under consideration. If, for

example, the trap is a linear potential such as a spherical quadrupole trap then ξ = 3. If

the potential is harmonic such as in an optical trap then ξ = 3/2. The phase space density

using the defined quantities becomes scaled as ρ′ = ρν [1−γT (ξ+3/2)] and the collision rate also

as k′ = k[1−γT (ξ−1/2)]. This re-scaling allows us to utilize the parameters γT , ξ, and ν given

a value of η we can calculate the evolution of the thermodynamic quantities. For atoms

trapped in a trapping potential U(x, y, z) the density of states is [31]

D(E) =
2π(2M)3/2

~3

∫

V

√

E − U(x, y, z)d3r. (A.33)

4Davis et. al. used γ in their paper but we are adding a subscript T here to avoid confusion with the
natural linewidth, γ.
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The fraction of atoms remaining in the trap after lowering its depth to ηkBT is given by [31]

ν =
1

N

∫ ηkBT

0

D(E)e
−E−µ

kBT dE, (A.34)

where the chemical potential is given by µ and the exponential term is due to the Maxwell-

Boltzmann distribution of these atoms. Now if we define the reduced energy by ǫ = E
kBT

and

the reduced density of states as ∆(ǫ) = ǫξ+1/2

Γ(ξ+3/2)
with Γ(x) being the gamma function then

Eq. A.34 can be recast [31] as

ν =

∫ η

0

∆(ǫ)e−ǫdǫ. (A.35)

The total energy of the atoms after this lowering is [31]

α(η) =

∫ η

0

ǫ∆(ǫ)e−ǫdǫ. (A.36)

In terms of kBT the average total energy by atom is then α(η)
ν(η)

. If we let η → ∞ then

α(η)
ν(η)

= (3/2 + ξ) and thus the ratio of the temperature becomes [31]

T ′

T
=

α(η)/ν(η)

α(∞)/ν(∞)
. (A.37)

Using Eq. A.37 the quantity defined by Eq. A.32 then becomes [31]

γT =
log

(

α(η)
ν(η)α(∞)

)

log (ν(η))
. (A.38)

The above average excess energy that has been carried away by the evaporated atoms is

measured by the quantity defined by Eq. A.38. The value of this quantity can be determined

if we know the specific type of potential under consideration. If, for example we consider a

harmonic trap where ξ = 3/2 then we have [31]

ν(η) =
1

Γ(3)

∫ η

0

ǫ2e−ǫdǫ = 1− 2 + 2η + η2

2eη
, (A.39)
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and

α(η) =
1

Γ(3)

∫ η

0

ǫ3e−epsilondǫ = 3− 6 + 6η + 3η2 + η3

2eη
, (A.40)

where the gamma function is defined by Γ(n) = (n− 1)! [19]. We can see that as ξ increases

the phase space density also increases which is due to the volume shrinking faster than the

decreasing temperature (i.e T ∝ V ξ). This process also has the additional effect of increasing

the rate of elastic collisions which also increases the rethermalization process. This in turn

speeds up the cooling process which eventually reaches the critical phase space density and

temperature necessary to create a BEC [6, 30].

Bose-Einstein Statistics

Introduction

Our research in quantum information utilizes a special state of matter known as the Bose-

Einstein condensate (BEC) as a basis. This state of matter is governed by the theory

of Bose-Einstein statistics which was first formulated by Satyendra Nath Bose and Albert

Einstein in 1924 although the first BEC of neutral atoms with dilute gases wasn’t realized

until 1995. For more on this fascinating history with Bose and Einstein one should consult

some of the well-written works covering this [60, 98]. The BEC offers some advantages in this

work as it is larger than purely atomic systems and can be rapidly generated to efficiently

conduct repeated experiments. In this appendix we will describe some of the general theory of

Bose-Einstein condensation first starting with a derivation of the Bose-Einstein distribution

before showing how condensation is predicted at very low temperatures and high phase space

density.

Bose-Einstein distribution

We consider a collection of ni particles that can be partitioned into gi discrete states or cells

divided by gi − 1 partitions. Note that Bosons are particles that posses integer spin and
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unlike Fermions, multiple particles can occupy a given state. This number of particles is

also known as the degeneracy of the state because Bosons are indistinguishable. A simple

example of this is shown in Fig. 42. The number of ways that these objects, ni + gi − 1, can

Figure 42: Example of states and particles governed by Bose-Einstein statistics. Here ni =
12, gi = 8, and gi − 1 = 7. Note that this is just one possible arrangement of the total
objects, ni + gi − 1 = 27.

be arranged is given by

(ni + gi − 1)!. (A.41)

However, because the particles are identical and indistinguishable all of the permutations that

differ by the ordering of the particles only are the same. Thus we have to divide Eq. (A.41)

by ni!. This same observation also holds true for the permutations of the divisions and

thus we must also divide Eq. (A.41) by (gi − 1)!. This then gives us for the total possible

permutations [4]

(ni + gi − 1)!

ni!(gi − 1)!
. (A.42)

The total partition probability for all possible permutations among the energy levels is

obtained by the product of each expression given by Eq. (A.42) for each energy level

P =
∏

i

(ni + gi − 1)!

ni!(gi − 1)!
. (A.43)

Now we need to find the most probable partition by the use of Lagrange multiples and

considering the maximum of ln(P ). Taking the logarithm of Eq. 3 we have

ln(P ) =
∑

i

[ln((ni + gi − 1)!)− ln(ni!)− ln((gi − 1)!)]. (A.44)
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Applying Stirling’s formula, ln(x!) = x ln(x)− x, we have [81]

ln(P ) =
∑

i

[(ni + gi − 1) ln(ni + gi − 1)− ni ln(ni)− (gi − 1) ln(gi − 1)]. (A.45)

Now we set δ ln(P ) = 0 and obtain

−δ(ln(P )) =
∑

i

[− ln(ni + gi − 1) + ln(ni)] = 0. (A.46)

Applying the Lagrangian multipliers α
∑

i δni = 0, and β
∑

i ǫiδni = 0 to Eq. 6 where ǫi is

an energy level. This then gives

∑

i

[− ln(ni + gi − 1) + ln(ni) + α + βǫi] = 0. (A.47)

The equilibrium condition is reached if the term in brackets is equal to zero, i.e.

− ln(ni + gi − 1) + ln(ni) + α+ βǫi = 0. (A.48)

Since ni + gi − 1 ≫ 1 we can drop the one and obtain

− ln(ni + gi) + ln(ni) + α + βǫi = 0. (A.49)

Solving this equation for ni gives us the Bose-Einstein distribution

ni =
gi

eα+βǫi − 1
. (A.50)

As we will see this distribution will exhibit very interesting behavior at very low temperatures

giving rise to the famous BEC.
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Bose-Einstein Condensation

As mentioned above the Bose-Einstein distribution describes the behavior of particles that

are Bosons. Examples of Bosons include alpha particles, photons, and deuterons. Also

included here are neutral atoms where the sum of the spins of their particles are an integer

multiple. In our case for 87Rb the total number of particles is 124 and thus has an integer

spin allowing for its use in creating a BEC. It is also interesting to note that prior to 1995

with the realization of the first BEC the behavior of Bosons at very low temperatures was

only observed in supercooled 4He [80, 57]. In Eq. 10 we let the chemical potential be defined

as α = −µβ where β = 1
kT

giving us

ni =
gi

eβ(ǫi−µ) − 1
. (A.51)

The Boson distribution in continuous form can be written as [118]

N =

∫ ∞

0

D(ǫ)

eβ(ǫi−µ) − 1
dǫ, (A.52)

where the density of states, D(ǫ), is defined as

D(ǫ) =
V

4π2

(

2m

~2

)
3
2

ǫ
1
2 . (A.53)

Combining Eq. 12 and Eq. 13 we have

N =

∫ ∞

0

V

4π2

(

2m

~2

)
3
2

ǫ
1
2

1

eβ(ǫi−µ) − 1
dǫ. (A.54)

Now let x = βǫ to get

N =
V

4π2

(

2m

~2

)
3
2

(kBT )
3
2

∫ ∞

0

x
1
2

e−βµex − 1
dx. (A.55)
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Let λ = eβµ a quantity defined as the fugacity. We can see that because µ < 0 this fugacity

must have the condition λ−1 > 1. Inserting this parameter into Eq. 15 we have

N =
V

4π2

(

2m

~2

)
3
2

(kBT )
3
2

∫ ∞

0

x
1
2

λ−1ex − 1
dx. (A.56)

Eq 16 is very significant regarding the behavior of the gas of Bosons because when the

temperature, T , is reduced the term T
3
2 also reduces. However, because the total number

of particles is constant this means that the integral will have to increase to compensate.

Because the only parameter in the integral that can vary is the fugacity this fugacity would

have to in turn decrease to increase the overall value of the integral. However, we noted

above that the fugacity cannot decrease below one. If the integral was divergent as λ → 1

this would not be an issue, however this integral is convergent for x = 0 and λ = 1. The

value of this integral is

∫ ∞

0

x
1
2

ex − 1
dx =

√
π

2
ζ

(

3

2

)

= 1.306
√
π = 2.315. (A.57)

Here ζ
(

3
2

)

is the Riemann zeta function. This analysis shows us that the integral cannot be

correct below a certain critical temperature TC and thus we set the integral to its maximum

possible value

N = 2.315
V

4π2

(

2m

~2

)
2
3

(kBTC)
2
3 . (A.58)

Solving for kBTC gives us

kbTC =

(

2π~2

m

)(

N

2.612V

)
2
3

. (A.59)

For temperatures below the critical temperature the equation for the total number of particles

has to be modified to include the number of particles in the zero energy state ǫ = 0. This

is because Eq. 16 doesn’t have a solution for temperatures below the critical temperature.

This problem arises from the fact that Eq. 12 is no longer valid at temperatures below TC .

To modify Eq. 12 we only need to add the number of Bosons that occupy the lowest energy
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level ǫ = 0 by adding the term N0

N = N0 +

∫ ∞

0

D(ǫ)

eβ(ǫi−µ) − 1
dǫ. (A.60)

Using this new distribution Eq. 16 then becomes

N = N0 +
V

4π2

(

2m

~2

)
3
2

(kBT )
3
2

∫ ∞

0

x
1
2

λ−1ex − 1
dx. (A.61)

When the temperature is above the critical temperature the occupation of N0 is much lower

than N and thus can be neglected. Below the critical temperature N0 becomes comparable

to N . The transition at the critical temperature is known as the Bose-Einstein condensation.

Below the critical temperature we can write the total number of particles as

N = N0 +N

(

T

TC

)
3
2

. (A.62)

Solving this for N0 gives us

N0 = N

[

1−
(

T

TC

)
3
2

]

. (A.63)

Eq. 23 shows that as T → 0 the occupation number N approaches the occupation of the

ground state N0 giving the Bose-Einstein condensate.

Floquet Theory

In our research with optically kicked BECs the problem of a second-order differential equation

with periodic coefficients arises when one applies the Schrodinger equation to the system.

A similar situation also occurs in solid state physics when one considers an electron in a

periodic potential due to the crystal structure of a solid, giving rise to what are known as

Bloch functions [54]. Such equations are a special case of a class of differential equations

known as Mathieu’s equations. These equations historically first appeared during the latter

half of the 19th century due to analysis of a vibrating elliptical membrane and of the orbit
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of the Moon [70]. In 1883 Gaston Floquet published the first paper describing the complete

solution and description of the properties of an nth order linear differential equation with

periodic coefficients [41]. Such differential equations arise in electrical engineering, solid

state theory, and in orbital mechanics. In spite of such applications an elementary detailed

solution of this equation is not readily easy to find. Some older differential equations books

contain detailed solutions as well as a few articles in The American Journal of Physics.

However, most publications in our research that introduce Floquet theory for the AOKR

simply state the solution while referring to previous works. If one follows these references

back to S. Fishman’s original 1982 paper they will find that this refers to a PhD thesis from

1965 studying the quantum dynamics of a system under a strong oscillating field [106, 40].

Another line of explanation is through the use of Bloch theory from solid state physics. This

method is applicable because the periodic potential in time can be projected onto a line,

thus allowing the use of Bloch theory. In this appendix we will outline in detail solving this

differential equation using a more “brute force” approach. Other methods involve group

theory which can be found in any solid state physics text. We will first introduce and solve

the classical kicked rotor as understanding it will help in solving the case in the quantum

regime.

Classical kicked rotor

The classical kicked rotor was first introduced in the late 1970s by Chirikov [22] and it

consists of a point mass m constrained to a circle of radius R subjected to a periodic force

f or ”kicks” as shown in Fig. 43. The Hamiltonian for this system can be written as

H =
L2

2I
+ fRcos(θ)

∞
∑

n=1

δ(t− nT ), (A.64)
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q

m

f

R

Figure 43: Classical kicked rotor where a periodic force or ”kick” is applied to a mass m.

where L, I, and T are the angular momentum, moment of inertia, and period respectively

of the system. Applying Hamilton’s equations we have

θ̇ =
∂H
∂L

=
L

I
, (A.65)

and

L̇ = −∂H
∂θ

= fRsin(θ)

∞
∑

n=1

δ(t− nT ). (A.66)

Integrating these equations over one period from nT to (n+ 1)T we obtain

θn+1 − θn =

∫ (n+1)T

nT

L

I
dt =

Ln+1T

I
, (A.67)

and

Ln+1 − Ln =

∫ (n+1)T

nT

fRsin(θ)
∞
∑

n=1

δ(t− nT )dt = fRsin(θn). (A.68)

If we let Ĺ = LT
I

then we obtain the standard map

´θn+1 = ´Ln+1 + θn, (A.69)
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and

´Ln+1 = Ĺn + ksin(θn), (A.70)

where k = fRt
I

is the “kicking strength”. The standard map in this form allows us to readily

plot the results in MATLAB for various values of the respective parameters [39]. The results

for a few values of k after 1500 iterations are shown in Fig. 44,45,46. From these figures

Figure 44: Standard map for k = 0.5.

Figure 45: Standard map for k = 1.0.

we can see that the system becomes more chaotic as the kick strength is increased and the

”islands of stability” gradually vanish. The properties of the classical Chirikov system have

been studied extensively over the last few decades.
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Figure 46: Standard map for k = 2.0.

Quantum Kicked Rotor

The above discussion of the classical kicked rotor gives us a good starting point to consider

the quantum mechanical case. The form of the Hamiltonian is mostly unchanged other than

the use of a modulus function to project the system onto a line. The Hamilton for the AOKR

in our experiments is

H(X̂, P̂ , t) =
P̂ 2

2M
+ ~φd cos(GX̂)

t
∑

q=0

δ(t− qT ). (A.71)

Here, φd = Ω2∆t
8δL

is the kicking strength in terms of the Rabi frequency, time duration of

the light pulse, and detuning of the laser from the atomic transition. Letting H = MH
~2G2 ,

t′ = 2πt
T 1

2

, p̂ = P̂
~G

, τ = 2πT
T 1

2

, and x̂ = GX̂ where T 1
2
= 2πM

~G2 is the half Talbot time we obtain

the Hamiltonian in dimensionless form for convenience in our analysis

H(x̂, p̂, t′) =
p̂2

2
+ φd cos(x̂)

t
∑

q=0

δ(t′ − qτ). (A.72)

We now apply the time dependent Schrodinger equation to this Hamiltonian to obtain

− i

~

∂

∂t
|ψ(t)〉 = H|ψ(t)〉. (A.73)
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The solution to the time-dependent Schrodinger equation is found by the use of the unitary

operator for time evolution. This gives us a general solution for the equation

|ψ(t)〉 = [exp(− i

~

∫ t

0

H(t′)dt′)]+|ψ(0)〉 = U(t, 0)|ψ(0)〉. (A.74)

Here the “+” subscript is for correct time ordering. With this we can write

U(t, 0) = U(t, s)U(s, 0). (A.75)

We are now able to apply this form of the unitary operator to our Hamiltonian over one

period τ , separating the period over an infinitesimal time ǫ

U(τ) = U(τ − ǫ, ǫ)U(τ + ǫ, τ − ǫ), (A.76)

yields

U(τ) = exp(−i
∫ τ−ǫ

ǫ

H(t)dt)exp(−i
∫ τ+ǫ

τ−ǫ

H(t)dt). (A.77)

The first integral is easy to see because the limits of the integral are outside of the delta

function in the potential term. This gives us e−
ip̂2τ
~2 and this known as the “free evolution”

operator due to the presence of the time parameter τ . The second integral becomes inde-

pendent of time due to the presence of the delta function term. This then gives us e−iφdcosx̂.

This is known as the “kick” operator as it is dependent upon the kicking strength. With

these operators we can write the complete Floquet operator

U(τ) = UfreeUkick = e−
ip̂2τ
~2 e−iφdcosx̂. (A.78)

From this result follows the general wavefunction solving the Schrodinger equation

|ψ(t)〉 = U(τ)|ψ(0)〉. (A.79)
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This above method of solution is useful for a single cycle of the quantum kicked rotor.

However, in our experiments the QKR is repeated multiple times and is thus periodic. This

periodic behavior enables us to project onto a line with θ = x̂mod(2π) and thus allowing us

to use Bloch’s theorem to find the wavefunction. In the following a proof of this theorem is

presented. A similar although more terse treatment can be found in Magnus and Winkler [78]

as well as in the work by Kaplan [61]. We start with Schrodinger’s equation for a periodic

potential U(x) where U(x+ na) = U(x) [54]

d2ψ(x)

dx2
+ U(x)ψ(x) = 0. (A.80)

Because this equation is a second order differential equation, we know that two solutions

exist; ψ1 and ψ2. We also know that these solutions will also satisfy the above equation,

giving us the following two equations

ψ′′
1 + Uψ1 = 0, (A.81)

and

ψ′′
2 + Uψ2 = 0. (A.82)

If we multiply both of these by ψ1 and ψ2 we have

ψ′′
1ψ2 + Uψ1ψ2 = 0, (A.83)

and

ψ′′
2ψ1 + Uψ2ψ1 = 0. (A.84)

Subtracting these equations then yields

ψ′′
2ψ2 − ψ′′

2ψ1 = 0. (A.85)
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This result is the derivative of the Wronskian

dW

dx
= 0, (A.86)

where W is the determinant

W =

∣

∣

∣

∣

∣

∣

∣

ψ1 ψ2

ψ′
1 ψ′

2

∣

∣

∣

∣

∣

∣

∣

. (A.87)

The periodic property of the potential also allows us to show that

d2ψ(x+ a)

dx2
+ U(x+ a)ψ(x+ a) = 0, (A.88)

yielding

d2ψ(x+ a)

dx2
+ U(x)ψ(x+ a) = 0. (A.89)

With this periodicity in mind we can write our two solutions in the following form

ψ1(x+ a) = Aψ1(x) +Bψ2(x), (A.90)

and

ψ2(x+ a) = Cψ1(x) +Dψ2(x). (A.91)

Writing this system of equations in determinant form

∣

∣

∣

∣

∣

∣

∣

Aψ1 +Bψ2 Cψ1 +Dψ2

Aψ′
1 +Bψ′

2 Cψ′
1 +Dψ′

2

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

ψ1 ψ2

ψ′
1 ψ′

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A C

B D

∣

∣

∣

∣

∣

∣

∣

. (A.92)

Because the Wronskian is a constant not equal to zero we conclude that the determinant of

coefficients be equal to one
∣

∣

∣

∣

∣

∣

∣

A C

B D

∣

∣

∣

∣

∣

∣

∣

= 1, (A.93)
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or

AD − BC = 1. (A.94)

These results allow us to write the solution in the following form

ψ(x+ a) = ∆ψ(x), (A.95)

and

ψ(x) = αψ1(x) + βψ2(x) (A.96)

ψ(x+ a) = αψ1(x+ a) + βψ2(x+ a). (A.97)

Using Eqs. (A.96) and (A.97) we have:

ψ(x) = α(Aψ1(x) +Bψ2(x)) + β(Cψ1(x) +Dψ2(x))

= α[Aψ1(x) +Bψ2(x)] + β[Cψ1(x) +Dψ2(x)]

= (αA+ βC)ψ1(x) + (αB + βD)ψ2(x).

(A.98)

Notice that the last line of Eq. A.98 resembles the form of Eq. A.97 and so we can write:

ψ(x+ a) = ∆αψ1(x) + ∆βψ2(x). (A.99)

This result then gives us the following system of equations:

αA+ βC = ∆α

αB + βD = ∆β,

(A.100)

or in matrix form:






A−∆ C

B D −∆













α

β






= 0. (A.101)
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Nontrivial solutions exist only if the determinant of the coefficients is zero

∣

∣

∣

∣

∣

∣

∣

A−∆ C

B D −∆

∣

∣

∣

∣

∣

∣

∣

= 0, (A.102)

and simplifying this yields

(A−∆)(D −∆)− CB = 0

∆2 − (A+D)∆ + 1 = 0

∆− (A+D) = −∆−1

∆+∆−1 = (A+D).

(A.103)

Now if we take the Wronskian matrix







A C

B D






and let its eigenvalues represented by ∆+ and

∆− and using the theorem that the trace of a matrix is equal to the sum of the eigenvalues

we find that







A C

B D






= A+D

= ∆+ +∆−
−.

(A.104)

This result then implies the following

∆+ +∆−1
+ = A+D, (A.105)

∆− +∆−1
− = A+D, (A.106)

and

∆+ +∆− = A+D. (A.107)
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From these equations we can see that

∆+ = ∆−1
− . (A.108)

The results of implies that ∆ is represented by the exponential function

∆+ = eb, (A.109)

and

∆− = e−b. (A.110)

This result implies that we can write the linearly independent solutions ψ1
i satisfying

ψ1
1(x+ a) = ebψ1

1(x)

ψ1
2(x+ a) = ebψ1

2(x).

(A.111)

Real values for b are forbidden as wavefunctions because x→ ±∞ and so we let b = ika for

k ∈ R. Now we can write without the subscripts

ψ(x+ a) = e±kaψ(x). (A.112)

Since we have

ψx = eikau(x), (A.113)

we finally arrive at

u(x+ a) = u(x). (A.114)

Thus proving Bloch’s theorem.
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We have realized a quantum walk in momentum space with a rubidium spinor Bose-Einstein condensate by
applying a periodic kicking potential as a walk operator and a resonant microwave pulse as a coin toss operator.
The generated quantum walks appear to be stable for up to ten steps and then quickly transit to classical walks
due to spontaneous emissions induced by laser beams of the walk operator. We investigate these quantum to
classical walk transitions by introducing well-controlled spontaneous emissions with an external light source
during quantum walks. Our findings demonstrate a scheme to control the robustness of the quantum walks and
can also be applied to other cold atom experiments involving spontaneous emissions.

DOI: 10.1103/PhysRevResearch.3.043062

I. INTRODUCTION

Quantum walks (QWs) have been actively studied in
many experimental systems, such as photons, lattice-confined
atoms, and trapped ions, since the first theoretical model was
introduced in 1993 [1–7]. Possessing spin degrees of freedom,
spinor Bose-Einstein condensates (BECs) have also been sug-
gested as ideal candidates for QW implementation [8]. Two
important components of QWs are a walk operator to shift
a walker in positions or momentum space and a coin toss
operator to determine the direction that the walker shifts in
each step [9]. In this work, a rubidium spinor BEC subjected
to a series of periodic optical pulses, which can be described
as an atom-optics kicked rotor, is utilized to create a QW in
momentum space [10–13]. These periodic pulses construct
one-dimensional optical lattices and act as a walk operator
in momentum space. Resonant microwave pulses, entangling
two hyperfine spin states, are the coin toss operator. In contrast
to classical random walks with Gaussian distributions, QWs
distribute ballistically because atoms conducting QWs can be
in a superposition state [1,10,11]. Other advantages of QWs
studied in this paper include hitting target points faster than
classical walks, fast propagation, and entanglement between
internal and external degrees of freedom [1,14]. QWs thus
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‡yingmei.liu@okstate.edu

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

have many proposed and realized applications in various re-
search fields including quantum information, metrology, and
topological phenomena [15].

In this work, we demonstrate that quantum walks generated
in momentum space can be stable for up to 10 steps and then
quickly transit to classical walks due to spontaneous emission
(SE) induced by the laser beams imprinting a momentum
change. The SE effects have been observed in our previous
experiments and are pervasive in other experiments utilizing
atom-optics kicked rotors [16–18]. In principle, the SE effects
could be inherently present in most experiments involving a
quantum system and the impact of these effects on quantum
measurements increases as the duration of the experiment in-
creases. To better understand the SE effects, we investigate the
SE-tuned quantum to classical walk transitions by introducing
well-controlled SE events with an additional laser which does
not interfere with the kick or shift laser used in our QW exper-
iments. Those effects are manifold since SE acts as projective
measurement in the internal electronic spin degree of freedom
of the atom. On the other hand, SE has the twofold effect on
the external center-of-mass degree of freedom of the atoms
in our BECs: First, it changes the quasimomentum and hence
the conditions of being in the QW or not, see Refs. [10,11],
and, second, it biases the QW toward the direction of the
ground state into which the electronic degree is projected.
This is also contrary to previous experiments [16] with just
one effective internal state in which SE only had an influence
on the quantum-resonance condition and hence on the external
degree of freedom. In our experiments, the probability of a SE
event and the induced decoherence appear to increase with the
evolution of time, i.e., with the number of steps in a QW. We
also confirm the SE events lead to a biased momentum dis-
tribution, which agrees well with our numerical simulations.
Our findings demonstrate a scheme to control the robustness
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of quantum walks and can also be applied to other cold atom
experiments involving spontaneous emissions [19,20].

II. THEORETICAL PREDICTIONS

Similarly to our previous works, we describe each QW step
with an operator Ûstep = T̂M̂ [10,11]. A unitary walk operator
T̂ implemented by atom-optics kicked rotors entangles the
internal (i.e., spin) and external degrees of freedom, which
leads to a momentum change of pm = mh̄P0 [10–13]. Here
P0 is the wave vector of the one-dimensional lattice, h̄ is the
reduced Planck’s constant, and m is an integer number. The
coin operator M̂, created by a microwave pulse resonant with
the transition between |F = 1, mF = 0〉 and |F = 2, mF = 0〉
states of 87Rb atoms, produces a superposition of these two
internal states. We apply a controlled amount of SE during a
QW sequence using an independently controlled laser, which
excites atoms from the |F = 2〉 ground state resonantly to

the |F ′ = 3〉 excited state. The laser coupling � = γ
√

I
2Is

is

small compared to the excited state hyperfine splitting be-
tween |F ′ = 3〉 and |F ′ = 2〉, so that the |F = 2〉 → |F ′ = 2〉
transition can be assumed to be too far detuned to create a
significant population in |F ′ = 2〉. Here I is the intensity of
the laser, Is is the saturation intensity, and γ is the decay
rate [21]. Due to selection rules, the atom can only decay from
|F ′ = 3〉 back to |F = 2〉, corresponding to a projection of
the atom onto |F = 2〉. The SE pulse is long enough that we
can assume the atom reaches the steady state (the coin pulse
should not interfere with that) meaning that the effective SE
rate γeff is given by the natural line width times the steady-
state population of |F ′ = 3〉 as follows [21],

γeff = γ

2

I/Is

1 + I/Is
, (1)

from which we get the probability of a SE event per pulse

ρ = γefftSE. (2)

Technically, γeff and ρ change during a single trajectory. The
probability of the first decay overall and in each further decay
has to be scaled down by a factor 2 since the atom will be
either exactly or close to an equal superposition of the two
ground states. So the given rate represents an upper limit, good
only for a couple of microseconds after a SE event. We esti-
mate ρ ≈ 0.35 for a SE power of 3 μW for our experimental
system, as elaborated in Sec. IV.

Since the SE light is introduced 30 μs after the start of the
coin, SE events will interrupt the coin pulse at random times,
the partial action of the coin operator in between two events
of time delay t is

ei πt
4T σ̂x =

[
cos

(
πt
4T

)
i sin

(
πt
4T

)
i sin

(
πt
4T

)
cos

(
πt
4T

)
]
, (3)

where T is the total length of the coin pulse.
This means that the state ψ of the internal degree of free-

dom at the end of the coin sequence is only determined by
the time of the last SE event t ′ ∈ [0.29, 0.58] × T and thus

given by

|ψint〉 = cos

[
π (T − t ′)

4T

]
|2〉 + i sin

[
π (T − t ′)

4T

]
|1〉. (4)

Here |1〉 and |2〉 represent the two internal states, |F =
1, mF = 0〉 and |F = 2, mF = 0〉, respectively. Equation (4)
clearly shows that SE creates an imbalance in the internal
state of the atoms toward |F = 2〉, which gets transferred to
the populations and results in a biased momentum distribution
(see our simulations in Fig. 1). The initial external states in
momentum space are given by

|ψext〉 = 1/
√

2(|n = 0〉 + eiφ|n = 1〉). (5)

Each SE event also affects the external degree of freedom by
shifting the quasimomentum q by a random amount. Contrary
to SE induced by the kicking beams [12], the atom does
not incur any recoil from the absorption of a photon from
the SE beam due to its perpendicular alignment to the walk
axis. Note that SE is not only a phase scrambling because it
affects both the internal (projection on to hyperfine levels) and
external (shifting of the quasimomentum) degrees of freedom.
Possible heating during the experiment is taken into account
during these simulations by considering an initial distribution
of the quasimomentum, 	q. This quasimomentum represents
the distribution of the BEC and is selected to best represent the
experimental conditions. Also, possible recoil from emission
is taken into account in the theoretical model.

In our simulations, we draw up to three Poisson-distributed
times and perform the partial coin operator from the largest
time that is still inside the coin duration. We also add the
corresponding amount of random recoil (here taken to be
uniformly distributed). Typical simulation results for five-step
quantum walks at two kicking strengths k are shown in Fig. 1,
which clearly show transitions from quantum walks to classic
walks as the SE probability ρ increases.

III. EXPERIMENTAL PROCEDURES

Each experimental sequence starts with a BEC of approx-
imately 4 × 104 87Rb atoms at the |F = 1, mF = 0〉 state.
The BEC is then subjected to Bragg, walk operator kicking,
and microwave pulses. A schematic outlining of the pulse
sequences is shown in Fig. 2. The walk operator kicking
pulse and Bragg pulse are realized with the same two counter-
propagating laser beams that intercept on the BEC, although
the Bragg pulse has a longer duration to drive the BEC into the
state |ψext〉 = 1/

√
2(|n = 0〉 + eiφ|n = 1〉) [10,22]. We con-

trol populations of the two internal states |1〉 and |2〉 using
the microwave (coin toss) pulses resonant with the |1〉 to |2〉
transition.

The standard QW of i number of steps is created with
a sequence of pulses described by the operator (Ûstep)i =
[T̂M̂(π/2,−π/2)]i−1[T̂M̂(π/2, π )]. To ensure that the QW
is symmetric the first coin pulse in the sequence is a
Hadamard gate, which prepares the initial internal states as
M̂(π/2, π )|1〉 = 1/

√
2(|1〉 + |2〉). For the standard QWs in

our experiments an additional phase offset is applied to the
coin microwave pulses to cancel out a global phase that acts
on the QW due to the kicking pulses [10,23]. A QW that has
the proper phase offset is referred to as phase compensated.
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FIG. 1. Simulated momentum distributions of five-step quantum walks at two kicking strengths, k = 1.45 (a) and k = 2.0 (b), averaged
over 103 trajectories with 	q = 0.025 h̄P0 at various SE probability ρ. Here 	q is the width of the quasimomentum q. Note the increasing
asymmetry as the probability ρ increases.

During the coin toss pulses a SE light with a pulse duration
of 30 μs is added to induce well-controlled SE effects onto
the QW. A walk operator kicking pulse is then applied as the
walk operator in momentum space followed by a coin toss
microwave pulse. This coin toss pulse acts on the internal
states to entangle the internal and external degrees of freedom.
To avoid interfering with the walk operator kicking pulses, the
SE pulses are set to apply only during the microwave coin
pulses. This sequence of a coin toss pulse followed by a delta
pulse is then repeated until QWs for i number of steps are
recorded and time-of-flight images are taken via the standard
absorption imaging method [10,23].

IV. RESULTS AND DISCUSSIONS

Figure 3 shows the effects of SE on a five-step QW in
which the phase of the walk is noncompensated although the
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FIG. 2. Schematic diagram showing the sequence of various
optical and microwave pulses used in our experiments. (a) The
sequence of SE pulses each with a duration of 30 μs. (b) The se-
quence of the walk operator kicking pulses. (c) The sequence of the
Hadamard gate and coin toss microwave pulses. The time duration
of each of these pulses is 103.04 μs. (d) The sequence of the Bragg
pulse with a duration of 103.04 μs. Axes are not to scale.

phase of the microwave pulses is held constant throughout the
data run. The walk operator kicking pulse strength during the
noncompensated QWs is kept at k = 1.45, which has been
proved to yield ideal QWs [10,23]. The time-of-flight images
shown in Fig. 3(a) indicate that the population of the atoms
shifts toward the positive momentum states as the SE prob-
ability ρ increases. This observation confirms the prediction
of Fig. 1, i.e., SE creates an imbalance in the internal state of
the atoms toward the |2〉 state leading to a biased momentum
distribution because the projection of the |2〉 state moves in
the direction of positive momenta. This shift in momentum is
quantitatively analyzed in Fig. 4(c). In addition, the overall
population of atoms present also decreases as ρ increases.
The effective decay rate of the QW is estimated from the
observed exponential atom losses as ρ increases [see the solid
lines in Fig. 3(b) and Fig. 3(c)]. A typical example of our SE
calibrations is shown in Fig. 3(c) which plots the condensate
fraction of a BEC versus the duration of a single SE pulse
at a fixed SE power of 3 μW. The BEC is first prepared in
the F = 2 state before being subjected to a SE pulse of light
increasing in 50-μs intervals. The exponential fitting of this
data indicates that the probability of SE events at this power
is ρ = 0.35, as shown in Fig. 3(c).

We repeat the above experiment with a properly compen-
sated QW generated at a higher kicking strength of k � 2 to
ensure that the QW distribution is broader than those created
with the lower kicking strength. We scan the SE probability up
to ρ = 0.84 with an average of eight runs per power setting.
The observed distribution of the QWs does not show notice-
able differences beyond this ρ value. Typical time-of-flight
images of the compensated QWs are shown in Fig. 4(d), which
indicate that the atoms in the compensated walks also shift
toward the positive momentum states as the SE probability ρ

increases. The decay of the QW distribution can be more eas-
ily discerned from the momentum distributions, as displayed
in Figs. 4(a) and 4(b). We also extract the mean momentum
and mean energy from the noncompensated and compensated
QW data, and respectively show them as a function of the SE
probability ρ in Fig. 4(c) and Fig. 4(e). A positive shift in the
mean momentum as the SE pulses become more powerful is
confirmed in Fig. 4(c) for both compensated and noncompen-
sated QWs. In the case of the compensated QWs the mean
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FIG. 3. (a) Time-of-flight images of a phase noncompensated five-step QW under various SE probability ρ at the kicking strength k = 1.45
and the SE pulse duration of 30 μs. (b) The number of condensed atoms versus ρ in the noncompensated QWs shown in panel (a). (c) The
condensate fraction versus SE pulse duration for a single BEC subjected to a pulse of SE light with a power of 3.0 μW. Solid lines in panel
(b) and panel (c) are exponential fits (see text).

momentum is initially negative due to the phase of the applied
microwave coin pulses being larger than 2π thus causing an
initial bias toward negative mean momentum. For a standard
QW in our experiments this phase on the coin microwave
pulses is normally below (2k + π ) to cancel out a global
phase that acts on the QW due to the kicking pulses [10,23].
Although this bias can adversely affect the momentum dis-
tribution of a QW that evolves in time, it does not prevent

the observation of the positive shift in mean momentum as
the SE probability ρ increases. This is because the same
microwave coin phase is applied throughout an experiment as
the SE probability is scanned. On the other hand, Fig. 4(e)
implies the mean energy remains constant for the compen-
sated QWs as the SE probability ρ increases within the range
of 0 to 0.85, which agrees with our simulations shown in
Fig. 5(b).
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Our data in Fig. 3 and Fig. 4 indicate that the quantum to
classical walk transitions happen at around ρ = 0.58, much
lower than the maximum SE probability studied in this paper.
To clearly demonstrate the transition of walks from displaying
quantum to classical behaviors under the applied SE pulses,
we conduct similar experiments on walks of various num-
bers of steps. For each step, the kicking strength is kept at
k = 1.4 to reduce the probability of extra SE events induced
by the kicking beams. The mean energy extracted from these
experiments is plotted as a function of the QW steps for
various ρ in Fig. 5(a), which shows that the mean energy
increases with increasing number of steps at a rate R. Each
data set in Fig. 5(a) is fit with a linear function and the
rate R is calculated and tabulated in Fig. 5(c). The rate R
appears to increase as ρ reduces and reach the largest value
at ρ = 0, as shown by the red markers in Fig. 5(a) and in
Fig. 5(c). Our observations shown in Fig. 5 agree well with
a predicted signature of quantum to classical walk transitions,
i.e., QWs have larger mean energy than classical walks at a
given step because QWs distribute ballistically while classical
walks follow Gaussian distributions [1,10,11]. Figure 5 thus
indicates that the QWs gradually transit to classical walks with
less mean energy as the applied SE effect becomes powerful
enough to destroy the entanglement of the two internal spin
states. These results suggest that the rate R could potentially
be used as a good indicator for the quantum to classical walk
transitions especially if only small numbers of walk steps
are achievable. We also conduct theoretical simulations using
similar parameters and typical simulation results are shown
in Fig. 5(b) and Fig. 5(c). These simulations confirm that the
rate R reduces as the SE probability ρ increases, leading to
an increased difference in the mean energy among simulated
data taken under various ρ at a high-enough step, as clearly
demonstrated by the six-step and eight-step data in Fig. 5(b).
Good theory-experiment agreements demonstrated in Fig. 5

thus suggest that the rate R can be an observable to quantify
quantum to classical walk transitions. Figure 5 also shows that
QWs are able to maintain their robustness when the number
of steps is lower than five.

V. CONCLUSIONS AND OUTLOOK

We have presented quantum to classical walk transitions
tuned by spontaneous emissions. The SE rate is derived from
the observed atom losses during QWs. We have demonstrated
that the addition of the SE light yields quantum to classical
walk transitions and leads to biased momentum distributions,
which can be well explained by our numerical simulations
in both the compensated and noncompensated QWs. Our
findings suggest a scheme to control the robustness of the
quantum walks and demonstrate that the effects of the SE
light are intrigue. While a SE event acts as a projective
measurement on the internal spin degree of freedom, its effect
on the external motion, that is the actually observed quantity,
is direct by a change of the necessary resonance conditions
for the QW, but also indirect since the motion becomes biased
into the direction into which the ground state likes to move.
Hence, for the center of mass of our atoms, SE is not a strong
but rather a weak form of quantum measurement, with the
internal state acting as an ancilla that is actually strongly
measured. Many SE events will then necessarily have a larger
effect than just one SE event since they bias more the walk
into one direction of the external motion. Similar ideas have
been put forward, e.g., in Ref. [24]. In conclusion, our results
open further possibilities of utilizing the tunable SE light
to engage on the theory of measurements in experimentally
easily accessible quantum systems.
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Over the last decade there have been many advances in studies of quantum walks (QWs) including a
momentum-space QW recently realized in our spinor Bose-Einstein condensate system. This QW possessed
behaviors that generally agreed with theoretical predictions; however, it also showed momentum distributions
that were not adequately explained by the theory. We present a theoretical model which proves that the coherent
dynamics of the spinor condensate is sufficient to explain the experimental data without invoking the presence
of a thermal cloud of atoms as in the original theory. Our numerical findings are supported by an analytical
prediction for the momentum distributions in the limit of zero-temperature condensates. This current model
provides more complete explanations to the momentum-space QWs that can be applied to study quantum search
algorithms and topological phases in Floquet-driven systems.

DOI: 10.1103/PhysRevA.106.033307

I. INTRODUCTION

Quantum walks (QWs) have been under intensive inves-
tigation over the last two decades since they can outrun
classical algorithms for many practical problems [1–3]. For
example, the Grover search algorithm may be viewed as a
quantum walk algorithm [2]. Due to quantum interference
of various passes during quantum walks, they exhibit quite
different features when compared to their classical counterpart
for which, in contrast, randomness and stochasticity play a
crucial role [1]. Similar to classical random walks there are
essentially two types of quantum analogs: discrete-time and
continuous-time quantum walks. In contrast to the latter, an
additional coin degree of freedom characterizes the former,
where the state of the coin determines the walker’s direction
in the next step.

We apply a theoretical model to the discrete-time quantum
walk implemented in our previous works [4–6] with spinor
Bose-Einstein condensates (BECs), consisting of 87Rb atoms
with an internal spin- 1

2 degree of freedom. In contrast to most
other experimental realizations [7–23], this QW occurs in
quantized momentum space due to time-periodic kicks ap-
plied to the condensate. The experiments in Refs. [4–6] used
the two ground-state Zeeman sublevels |F = 1, mF = 0〉 and

*yingmei.liu@okstate.edu
†sandromarcel.wimberger@unipr.it

|F = 2, mF = 0〉 of a Rubidium BEC to form an effective
spin- 1

2 system. The BEC is periodically subjected to pulses
of standing-wave light generated by a laser tuned between the
two ground states and a third excited level. The underlying
description is that of the atom-optics kicked rotor (AOKR) as
described in Refs. [24,25], whose Hamiltonian is

Ĥ = 1

2
p̂2 + kcos(θ̂ )

∞∑
j=−∞

δ(t − jτ ). (1)

Here, p̂ and θ̂ represent the momentum and (angular) position
operators, respectively, while k is the strength of the laser kick
and τ the time delay between consecutive pulses. Since the
experiment is performed in a periodic lattice potential, we
resort to Bloch’s theorem to arrive at the angle description
above. This necessitates the introduction of a dimensionless
quasimomentum β ∈ [0, 1). The width of the Gaussian-like
quasimomentum distribution is experimentally given by the
initial temperature of the BEC, where, e.g., a BEC at zero
temperature would correspond to a fully resonant system with
β = 0 for all atoms. The typical value of the width of the β

distribution in our experimental system is of the order of a few
percent in the Brillouin zone, i.e., βFWHM ≈ 0.025.

The evolution during one period τ is then described by the
following Floquet operator:

Û = Ûf Ûk = e−iτ p̂2

2 e−iσ̂zk cos(θ̂ ), (2)
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which factorizes into a free evolution Ûf and kick operator
Ûk. Since p = n + β, with integer (quantized angula) mo-
menta n, the free evolution equals the identity in quantum
resonance conditions, i.e., for an evolution corresponding to
a full Talbot time τ = 4π and β = 0. Under these resonance
conditions, the atoms move ballistically in momentum space,
i.e., their momenta increase linearly with the number of ap-
plied kicks [25,26].

Because the kicking laser is detuned exactly between the
two internal ground states [4,6], the potential felt by the two
states is identical in size but opposite in sign, which reflects
the σ̂z Pauli matrix. The latter fact models a quantum walk
whose direction in each step depends on the internal coin
state. There is an important difference between our AOKR
quantum walk and an ideal quantum walk as defined, e.g.,
in Ref. [1]. In the latter at any step of the walk a certain
position of the walker only couples to the nearest-neighbor
positions, while in the AOKR quantum walks the coupling to
other momentum classes is given by matrix elements which
are Bessel functions of the first kind [6]. A priori, both internal
states would see the same evolution due to the kicks, i.e., they
would move symmetrically under the AOKR evolution. To
break this symmetry in the coupling, we use a ratchet effect
imposed by an appropriate choice of the initial condition in
the walker’s space. Those ratchet states are a superposition
of at least two neighboring momenta with a relative phase of
eiπ/2, i.e.,

|ψR〉 = 1√
S

∑
s

eisπ/2 |n = s〉 , (3)

where S is the total number of involved momentum classes de-
noted by s. Such initial states can be generated experimentally
via Bragg pulses [27,28]. The mean momentum transfer to
individual states depends on the sign of the kicking potential
that is different for the two internal states, as shown by Ûk

in Eq. (2) [25,29,30]. It turns out to be of crucial importance
that for larger number S in Eq. (3) less dispersion occurs in
the directed kicking [27,28]. Hence, the best correspondence
to an ideal quantum walk is found for large S � 3, while for
S = 2 differences from ideal walks are visible in the central
part of the walker’s probability distribution [31].

The coin operator is realized by a Rabi coupling between
the two internal states of the atoms. This coupling is medi-
ated by resonant microwave (MW) pulses, inducing a unitary
rotation on the Bloch sphere given by

M̂(α, χ ) =
(

cos
(

α
2

)
e−iχ sin

(
α
2

)
−eiχ sin

(
α
2

)
cos

(
α
2

)
)

, (4)

where α and χ are real angles. An additional σ̂z rotation is
implementable by an accessible third angle that was not con-
sidered in Refs. [4,6,31] and will also not be considered in this
paper. The experimental QWs in Ref. [4–6] were described by
the following sequence of unitary operations:

Û j
step = [ÛŶ ] jÛŴ , (5)

realizing j ∈ N steps of the walk applied to an initial state
expressed by Eq. (3). Here

Ŵ = M̂
(π

2
, 0

)
= 1√

2

(
1 1

−1 1

)
(6)

and

Ŷ = M̂
(π

2
,−π

2

)
= 1√

2

(
1 i
i 1

)
(7)

are two different coins that initialize and execute the walk, re-
spectively. It is important that the two coins must be different
in order to guarantee a symmetric evolution of the walker (see
Ref. [1]). The kick strength on the order of k ≈ 1.5 proves
to resemble well an ideal walk with only nearest neighbor
couplings [4–6,31]. For example, the experiments reported
in Refs. [4–6] used k = 1.2, k = 1.45, and k = 1.8. After j
steps, the momentum distribution of both internal states is
measured using the standard absorption imaging procedure
to yield the final observable P(n, j) = P|1〉(n, j) + P|2〉(n, j).
Note that all the experimental realizations so far implemented
walks with only S = 2, e.g., an initial ratchet state of the form

|ψR〉 = 1√
2

(|n = 0〉 + i |n = 1〉). (8)

Numerical simulations of the walk given by Eq. (5) showed
a good resemblance to the ideal quantum walk [31], with
ballistically moving side peaks and little probability at the
center around n = 0. However, the experiments observed a
large nonvanishing part of the momentum distribution that
stayed close to n = 0 throughout the entire evolution of up to
j = 15 steps [4–6]. This observation was initially explained
in Ref. [4] by a rather large residual thermal atomic cloud
that would make up about 10% to 15% of all the measured
atoms. A thermal cloud would correspond to much hotter
atoms uniformly distributed across the entire Brillouin zone
β ∈ [0, 1). All nonresonant quasimomenta (β �= 0) essentially
do not respond to the kicks and hence will move little and
not contribute at all to the expected ballistic flanks in the
distribution. In this paper we suggest a more complete the-
oretical interpretation of the experimental data, not involving
a thermal cloud but based on the concurrence of a sequence
of effects that resulted in a deviation of the experimentally
measured walks from the theoretical expectation. These ef-
fects include a different choice of the phase angle χ in Eq. (4)
and the specific form of the ratchet initial state in Eq. (8), both
reflecting the fact that we are dealing with an AOKR quantum
walk. Note that residual peaks at low momenta observed in the
AOKR quantum walk would not appear in an ideal quantum
walk.

II. THEORETICAL MODEL

A. Theory of the light shift

The physical explanation is based on the additional light
shift that starts playing a role in the spinor AOKR, described
in detail in Refs. [32,33]. For clarity of the argument, we shall
briefly present its origin here.

During a kick, the dynamics of the standard AOKR are
described by interaction terms between the ground and excited

033307-2
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state of the form

Ĥint = �

2
|g〉〈e| cos

(
θ̂

2

)
ei�t + H.c., (9)

where � is the detuning and � the Rabi frequency of the laser.
The effective dynamics obtained after adiabatically elimi-

nating the excited state are described by an AC-Stark shift of
the ground states |g〉 from the coherent drive of the kicking
laser, i.e.,

Ĥeff = �2

8�
|g〉〈g|(cos(θ̂ ) + 1), (10)

where we used cos2 θ
2 = 1

2 (cos θ + 1) and the rate corre-
sponds to the kick strength before the time integration over
the duration of the kick pulse τp, e.g. k = �2

8�
τp.

In the standard AOKR this constant offset (term with no
cos θ -dependence) can be disregarded as there is only a single
level. In our spinor AOKR, after the adiabatic elimination of
the excited state, two ground states remain, each with such
an AC-Stark shift (of opposite sign due to opposite detuning).
Transitions between the two ground states can get discarded
in rotating wave approximation. Thus, we are left with

Ĥeff = �2

8�
σ̂z(cos(θ̂ ) + 1), (11)

and effectively we have an additional energy difference or
light shift between the two ground states which can no longer
be discarded.

B. Light-shift compensation in the experiment

As just introduced and shown in full detail in Refs. [32,33],
the Hamiltonian for an AOKR with two different internal
states contains an additional constant AC-Stark shift [34]
between the two energy levels. Comparing the physically
effectively implemented Hamiltonian from Eq. (11) with the
QKR-Hamiltonian from Eq. (1), this light shift induces a
phase whenever a kick is applied, giving an effective kick of
the form

Ûk,eff = e−iσ̂zk(1+cos(θ̂ )). (12)

This means that there is a relative phase of 2k for each
application of the kick operator, i.e., for each step of the
walk. This light-shift phase needs to be compensated in the
experiment since it would lead to a different evolution with
respect to the theoretical prediction [note that the new terms
in Eq. (12) would adversely affect the phase evolution in the
internal degree of freedom changing the overall interference
pattern]. A compensation with a σ̂z phase gate with a third
Bloch angle γ = k by an additional MW pulse would be
possible. The experiments reported in Refs. [4–6], however,
used the phase χ of Eq. (4) as a free parameter in order to
best compensate the light shift phase. Several runs were made
for various choices of χ and finally the value, with which the
walk was most symmetric around n = 0, was used in all other
experiments in Refs. [4–6]. The absolute value of χ as well
as a possibly present third Bloch angle γ were under limited
experimental control, and the aforementioned compensation
procedure seemed to make this fact irrelevant.

The experiments may have, for instance, easily exchanged
the coin Ŷ by the coin ĜH in the walk, effectively resulting in
a new sequence, e.g.,

Û j
step = [ÛĜH] jÛŶ , (13)

The Ŷ and ĜH curves in Fig. 1(a) show that such an exchange
of the two coins indeed has dramatic effects on the quality of
the walk. The operator ĜH is the Hadamard gate defined as [6]

ĜH = 1√
2

(
1 1
1 −1

)
. (14)

While momentum distributions of the QWs represented by
Eqs. (13) and (5) are mirror symmetric around n = 0 since
both coins are perfectly balanced (all giving unbiased walks),
the actual final distributions look very different. Assuming
that only a MW pulse expressed by Eq. (4) was applied as
stated in Refs. [4–6] with α = π/2 fixed, the combined effect
of a MW pulse and the light shift could have been of the form

M̂
(π

2
, χ

)
e−ikσ̂z = 1√

2

(
e−ik e−i(χ+k)

−ei(χ−k) eik

)
(15)

= e−ik

√
2

(
1 e−i(χ−2k)

−eiχ ei2k

)
. (16)

In the last step we extracted a global phase e−ik that is not
important for the following discussion. Generally, the phase
χ cannot fully remove the effect of the light shift phase here.
The quantum walk can, however, still be made symmetric
around n = 0 by the choice χ = 2k = π mod (2π ), which
would yield an effective MW operation. Hence, the afore-
mentioned swapping of the two different coin operators could
have occurred in the experiments. For example, with a kick
strength of k ≈ 1.5 the light shift phase gives a value close
to 2k ≈ π [see Eq. (7)]. Small deviations from the condition
for 1.2 < k < 1.8 appear not to change the global picture, as
will be later shown in more detail in Sec. II F. In that sense,
the light-shift and its experimentally incomplete compensa-
tion is the physical reasoning for the potentially implemented
sequence from Eq. (13).

C. Alternative MW pulse: Hadamard gate

We have just seen that the actually implemented MW
pulses in the experiment may be close to Hadamard gates ĜH.
In contrast to the original Ŵ pulses, ĜH pulses have the minus
sign on the diagonal. Both pulses, however, are completely un-
biased leading to walks with sidepeaks moving symmetrically
outwards in a ballistic manner. We find that the difference
in the signs of Ŵ and ĜH matrix elements has no conse-
quence for an ideal quantum walk with just nearest-neighbor
couplings. For our AOKR walks, however, the different sign
induces significantly different behavior. Figure 1(a) shows
a numerical example derived for a perfectly resonant walk
(β = 0). Our simulation results for the here proposed QW
[see Eq. (13)] clearly indicate that the bulk of its momentum
distributions has a larger probability to remain in the center
(n = 0), as shown by the black curve in Fig. 1(a).
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FIG. 1. The walker’s distributions are shown after j = 20 steps for an AOKR discrete-time quantum walk. The kick strength is set at
the experimental value k = 1.45. In (a) different walk protocols are shown. The distributions are computed by evolving the initial state in
momentum space given by Eq. (8). The label Ŷ resembles the walk that is initialized by Ŵ and the evolution is executed with the Ŷ coin. Ŵ
and ĜH are initialized by the Ŷ coin and then their respective walk is executed by Ŵ or ĜH. Ŷ and Ŵ produce the same momentum distributions
for all times. The AOKR walks in (b) are implemented by the Ŷ coin and executed by the ĜH coin. The different labels denote the momentum
classes included in the initial state, as denoted by s in Eq. (3). The broader the initial state is in momentum space, the more the peak in the
central region vanishes. One should remember that only the state expressed by Eq. (8) (solid black line) was experimentally implemented in
Refs. [4–6].

D. Initial-state dependence

As described previously, an important difference between
an ideal quantum walk and the AOKR walks discussed in this
paper are the initial states in the walker’s space [4]. The initial
state experimentally implemented was expressed by Eq. (8)
with two involved momenta. As described in Refs. [27–30],
the state is constructed to be concentrated in position space
at the rising (falling) flanks of the potential where the force
impulse towards the left (right) is maximal. It is exactly this
effect that leads to directed ratchetlike motion. The more
momentum states that are included in the initial state, the
more densely peaked is the wave function in position (angle)
space. For a highly dense wave function in position space, the
directed motion works with minimal dispersion. This disper-
sion is a specific problem in our AOKR walk with respect to
an ideal quantum walk. Hence, it is indeed not too surprising
that the AOKR QWs become more similar to ideal QWs when
using “better” ratchet initial states. This is seen in Fig. 1(b) for
the walk with the new Hadamard coin ĜH during the evolution
steps. The artificial clumping at the center of the momentum
distributions disappears when more momentum classes are
included in the initial states [see Fig. 1(b)].

It is known that an ideal quantum walk does not display a
central peak from the start, independently of the initial state
(see Ref. [1]). The consequence is that an ideal walk does not
display any difference between the various implementations
using the different balanced coins described above. In the
end, the dominant central peak, displayed when using the ĜH

coin, can be seen as an artifact from AOKR realization when
using the simplest initial state. This central peak disappears
when adding more momentum classes to the initial state [see
Fig. 1(b)]. This provides a clear prediction that could easily
be checked in future experiments.

In other words, the experimentally observed residual cen-
tral peak is actually a relic of the AOKR dynamics. This
behavior is expected when in the walk protocol due to light

shift effects the effectively implemented coin during the walk
is ĜH and not Ŷ , as initially intended. Even when this is the
case, the central peak is only visible for an initial ratchet state
sufficiently narrow in momentum space.

E. Analytic solution

A comparison between the numerical implementation of
the walk given by Eq. (13) and the corresponding analytical
solution derived from Eq. (17) is shown in Fig. 2. The full
calculation for the analytical expression is somewhat lengthy
and reveals little insight as it closely follows Refs. [32,33].
Therefore, we only present here the final result for the momen-
tum distributions, while the calculation in full detail can be
found in the Supplemental Material [35]. The final momentum

FIG. 2. Comparison between numerical implementation of the
walk and its analytical solution, as derived from Eq. (17). As ex-
emplary cases we show the final momentum distributions for j = 15
and j = 25 steps, with a kick strength k = 1.45. The initial state in
momentum space is given by Eq. (8).
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distribution is

P(n, j) = P|1〉(n, j) + P|2〉(n, j) = 1

2 j+1S

⎡
⎣(

N∑
l=0

∑
s

al,1(−1)sJ(n−s)((N − 2l − 1)k)

)2

+
(

N∑
l=0

∑
s

al,2(−1)sJ(n−s)((N − 2l + 1)k)

)2

+
(

N∑
l=0

∑
s

al,1(−1)sJ(n−s)( − (N − 2l − 1)k)

)2

+
(

N∑
l=0

∑
s

al,2(−1)sJ(n−s)( − (N − 2l + 1)k)

)2
⎤
⎦. (17)

Here Jα (x) are Bessel functions of the first kind and the coefficients al,1/2 are given by

al,1 = 1

2N

N/2∑
u=0

l∑
m=0

((
N

2u

)
−

(
N

2u + 1

))(
u

m

)(
N − 2m

l − m

)
(−1)N−l+m 8m

+ 1

2N
2

N/2∑
u=0

l−1∑
m=0

(
N

2u + 1

)(
u

m

)(
N − 2m − 1

l − m − 1

)
(−1)N−l+m 8m

− 1

2N
2

N/2∑
u=0

l∑
m=0

(
N

2u + 1

)(
u

m

)(
N − 2m − 1

l − m

)
(−1)N−l+m 8m (18)

and

al,2 = 1

2N

N/2∑
u=0

l∑
m=0

(
N + 1

2u + 1

)(
u

m

)(
N − 2m

l − m

)
(−1)−l+m8m, (19)

with N ≡ j − 1. The sum over s in Eq. (17) denotes the sum
over the involved momentum classes in the initial state given
by Eq. (3). Note that the momentum distribution is found to
be of the same analytical form as those discussed in Ref. [33].
The coefficients only differ from previous results by a factor
(−1)−l within the sums. These additional factors change the
interference patterns in such a way that the different walk pro-
tocols, as discussed in Sec. II C, lead to different momentum
distributions. Since the result above is valid for an arbitrary
number of walk steps, we arrived at a full understanding of
the two different QWs with the two coins Ŷ and Ŵ (or rather
ĜH) interchanged.

F. Comparison between theoretical explanations

We have put forward an alternative way of understanding
the central peaks around zero momentum in the experimental
implementations of the AOKR quantum walks. To simulate
experimental systems, we must include the finite width in the
initial quasimomentum distribution of the spinor BECs men-
tioned in Sec. I. This is best done numerically by averaging
over a reasonable ensemble of quasimomenta β [33]. Nonres-
onant β induces a phase scrambling [25,26], making the walks
less ballistic with the effect of reducing the population in the
ballistically moving side peaks. The value of β, drawn from a
Gaussian distribution of a certain width βFWHM, was estimated
in the experiments as βFWHM ≈ 0.025 (see Refs. [4,6]). The
numerical walks are obtained as an average over 1000 real-
izations, with each realization involving a value of β being
randomly drawn from the corresponding Gaussian.

In the left panels of Fig. 3, the walks are implemented by
the ĜH coin, while the right panels feature the implementation

of Eq. (16). In other words, while the left panels show the
walk that we argue to be responsible for the experimentally
observed momentum distributions, the right panels show the-
oretical predictions using experimental parameters based on
the originally proposed Ŵ coin and an incorrectly chosen
compensation phase [see Eq. (16)] with χ = π and k = 1.45.
As anticipated in Sec. II B, the latter two protocols given by
Eqs. (13) and (16) essentially lead to the same momentum dis-
tributions for all choices of βFWHM = 0 in Figs. 3(a) and 3(b),
βFWHM = 0.01 in Figs. 3(c) and 3(d), and βFWHM = 0.025 in
Figs. 3(e) and 3(f). With increasing βFWHM, the side peaks
and the central regions become less and less distinct and the
ballistic side peaks tend to fade out.

Similar behavior is seen in our experimental data [4–6].
Figure 4(a) shows a typical experimental result adapted from
Ref. [4]. We find good theory-experiment agreements by com-
paring Fig. 4(a) with Fig. 4(b) that shows the predictions of
our current model [see Eq. (13)]. First, we observe in both
Figs. 4(a) and 4(b) a central part that does not evolve far away
from the origin and the two side peaks that evolve ballistically
away from their initial position in momentum space. Second,
the observed and predicted rates of the spread of these side
peaks in momentum space with increasing number of steps ap-
pear comparable. Our current interpretation shown in Fig. 4(b)
would also be in reasonable agreement with the originally
guessed temperature of the BEC with βFWHM ≈ 0.025, when
the fading of the side peaks is considered. Figure 4(c) shows
momentum distributions of the QW given by the previous
theoretical model [see Eq. (5)] after a residual thermal cloud
of atoms is added into the BECs.

The thermal cloud was originally assumed as a possible
solution for the appearance of the prominent central region.
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FIG. 3. Numerical simulations of AOKR quantum walks with
k = 1.45 and different quasimomentum distributions with βFWHM =
0 (a,b), βFWHM = 0.01 (c,d), and βFWHM = 0.025 (e,f), all averaged
over 1000 values of β. Left panels: implemented with the ĜH coin.
Right panels: executed with Eq. (16) at χ = π . It can be seen that
despite the small deviations, as discussed in Sec. II B, both protocols
essentially follow the same behavior, making both likely to corre-
spond to the actual experimental data.

Thermal atoms essentially will not follow the kicking evo-
lution [25,26] and hence remain close to the center. The
experimentally intended Ŷ protocol does not display this be-
havior, as can be seen from Fig. 1. However, the QWs shown
in Fig. 4(c) appear to be different from our experimental
observations, i.e., the predicted QWs lack the significantly
contributing central region and the structures of the side peaks
are of a quite different shape.

The mean energies of the present and original theoretical
models were calculated and plotted as a function of time in
Fig. 5 for comparison. It can be seen that the energy using
ĜH coin increases faster than that of the previous model. The
increase in mean energy for the Ŷ coin has a linear form, while
the ĜH coin increases more quadratically. Note that quantum
resonant AOKR walks possess a quadratic increase in mean
energy, corresponding to a ballistic motion in momentum
space. In the presence of a strong off-resonant β distribution

FIG. 4. AOKR quantum walks with k = 1.45. (a) Experimental
data adapted from Ref. [4]. (b) Numerical simulation derived from
our current theoretical model [see Eq. (13)] with βFWHM = 0.025
and using initial Ŷ rotation and ĜH coins. (c) Numerical simulation
derived from the previous theoretical model [see Eq. (5)] by adding
a cloud of thermal atoms to the BEC part (see text).
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FIG. 5. Comparison between the mean kinetic energies calcu-
lated from the walks seen in Fig. 4 with βFWHM = 0.025. The energy,
Eexp, is extracted from the experimental walk data from Fig. 4(a).
EĜH

and EŶ denote the mean energy for the walk executed by the
ĜH coin [Fig. 4(b)] and the Ŷ coin [Fig. 4(c)], respectively. The inset
shows the energies on a double logarithmic scale with power-law
exponents extracted by the fits (solid lines), giving 1.8 ± 0.2 for
the experimental data and 1.7 ± 0.1 (EĜH

) and 1.3 ± 0.1 (EŶ ) for
the two theoretical models. The apparent better agreement between
the fits for Eexp and EĜH

confirms the better scaling of the model.
The asymptotic exponent of 2 expected for a ballistic walk is hardly
reached for quantum walks with just 15 steps.

like the residual thermal cloud from the original theory, the
energy increases only linearly [25,26]. The data shown for
a small number of up to 15 steps maximum show that the
asymptotic regimes are rarely met.

The mean energy extracted from experimental data pre-
sented in Fig. 4(a) is also plotted in Fig. 5. The experimentally
obtained energy increases with more quadratic than linear
behavior, which is more consistent with current theory and
contradicts the presence of a thermal cloud as originally hy-
pothesized. The comparison is yet more complicated since the
experimental suffered from a series of well-known issues; see
Ref. [6]. The effect most relevant in our context is the fad-
ing out of the ballistic peaks in the experimental momentum
distributions due to atom number fluctuations and small atom
losses. Each time slice is obtained from a new experimental
run, and hence also the relative normalization of the atomic
density might be an issue. All this may have consequences on

the second moment of the distribution that is proportional to
the energy plotted in Fig. 5. Counting less in the tails of the
distribution typically leads to an underestimation of the mean
energy [26].

In the Supplemental Material [35], we also show fur-
ther comparisons between our current theoretical model [see
Eq. (13)] and the previous experimental data, in particular
similar plots as in Fig. 4 for other values of the kick strength
and a more direct matching of the momentum distributions for
a specific case.

III. CONCLUSION

We have introduced a more complete theoretical explana-
tion for the peculiar behavior observed in the discrete-time
quantum walks implemented with the AOKR platform in
Refs. [4–6]. We argue that the coin operations acting on the
internal states of the atoms may have been different from the
original proposal discussed in [31]. This difference, induced
by the experimental calibration of the coin parameters to-
gether with an additional AC-Stark shift present in the setup,
may have led to less efficient quantum walks with a large
population remaining close to the starting site of the walker.
Our hypothesis may be checked in future experiments by
either controlling much better the MW phases at compensated
light shift or using ratchet states with less dispersion [28] as
initial states for the walks.

The understanding of the experimental results is of im-
portance for further applications of walks realized with the
AOKR platform. Our analysis implies that the realized walks
may have had a higher quality than expected in the following
manner: the central population seemingly not participating in
the walker’s evolution is actually an artificial interference ef-
fect induced by a nonoptimal coin and therefore an ingredient
of the system itself. This effect makes the AOKR platform
look even better for the quantum simulation of nontrivial
walks and the investigation of applications such as quantum
search algorithms [36] or of topological phases in Floquet-
driven systems [37].
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We present a concrete theoretical proposal for detecting topological phase transitions in double kicked
atom-optics kicked rotors with internal spin-1/2 degree of freedom. The implementation utilizes a kicked
Bose-Einstein condensate evolving in one-dimensional momentum space. To reduce the influence of atom loss
and phase decoherence, we aim to keep experimental durations short while maintaining a resonant experimental
protocol. Experimental limitations induced by phase noise, quasimomentum distributions, symmetries, and
the ac-Stark shift are considered. Our results thus suggest a feasible and optimized procedure for observing
topological phase transitions in quantum kicked rotors.
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I. INTRODUCTION

Studies of topological phases have found many applica-
tions, including revealing topologically protected edge states
in topological insulators [1–5]. Stabilities of topological in-
variants are translated upon these edge states, enabling them to
be stable against a great variety of perturbations. This robust-
ness to decoherence makes topological phenomena intriguing
for many potential applications, e.g., in quantum computing
[6] and quantum walks [7].

Topological effects can be simulated by periodically driven
systems in a well-controlled manner [7–9]. A double kicked
quantum rotor (DKQR) with internal spin-1/2 degree of free-
dom is an example of such a system and therefore a potential
candidate to experimentally realize topological phase transi-
tions [10,11]. In the DKQR system a quantity known as a
winding number ν is topologically invariant under a wide
range of transformations [10]. A similar phenomenon occurs
in solid-state systems where holes are preserved under certain
transformations due to geometrical topology [12]. Preserva-
tion of topological winding numbers requires preservation of
chiral symmetry and the band gap [10,11]. A consequence of
permanently containing chiral symmetry is that the topolog-
ical invariant can only change when the system is changed
to a configuration in which the band gap closes. This closure
not only makes the phase undetermined but also allows for its
direct experimental control by scanning a system parameter
through it.

*gil.summy1@gmail.com
†yingmei.liu@okstate.edu
‡sandromarcel.wimberger@unipr.it

The same is true for periodically driven systems with Flo-
quet spectra, as in our case of the DKQR [10]. Here, the
quasienergy spectrum itself is periodic, and gaps can be con-
trolled by the driving parameters. Floquet topological states
were observed in different experimental settings, including
ultracold atom [13,14], photonic [15–17], and phononic and
acoustic systems [18–20]. To understand which topological
phases the system has, one examines its spectral symmetries
and the related “protected gaps” in the quasienergy spectrum
of the Floquet Hamiltonian; see, e.g., Refs. [7,21,22]. In our
DKQR systems, the gaps and the phases can be tuned by the
kicking strengths, as described in detail in Ref. [10].

The experimental setup under consideration as described in
Ref. [23] consists of a Bose-Einstein condensate (BEC) with
two Zeeman hyperfine states |1〉 and |2〉 participating in the
dynamics, effectively forming a spin-1/2 system. The DKQR
is based on a singly quantum kicked rotor (QKR) [24,25] and
is described by the Hamiltonian

Ĥ = p̂2 ⊗ 1
2

+ k1cos(θ̂ ) ⊗ σ̂x ·
∞∑

n=0

δ(t − 2nτ )

+ k2sin(θ̂ ) ⊗ σ̂y ·
∞∑

n=0

δ(t − (2n + 1)τ ). (1)

Here, p̂ and θ̂ are the momentum and angular position op-
erators, respectively, τ describes the duration between two
kicks of different kicking strengths k1 and k2, and the Pauli
matrices σ̂x and σ̂y act on the internal spin-1/2 degree of
freedom. Under the on-resonance condition of τ = 4π

[26–32], corresponding to a full revival (at the Talbot time)
of the free evolution of the momentum degree of freedom,
the quasiperiodicity of the system can lead to a Hofstadter
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butterflylike quasienergy spectrum [33–35], resolving a band
structure rich in displaying topological properties [10].

The previously proposed experimental sequences for
achieving topological phase transitions in DKQRs include a
sequence of resonant microwave (MW) and standing-wave
kicking laser pulses [10,11]. Similar sequences have been
successfully conducted on QKR systems, including ours con-
sisting of 87Rb BECs [23,36,37]. For observing the predicted
topological effects, the experimental procedure needs to be
carefully designed to overcome a number of experimental
challenges. In particular, phase noise arising from random
phase fluctuations in the MW pulses and a finite quasimo-
mentum distribution of the BEC must be considered. In this
paper we demonstrate how to transform the proposals for
detecting topological phases in DKQRs [10,11] into a feasi-
ble experimental procedure by presenting solutions to some
experimental limitations or challenges that appear in the BEC-
based quantum walk and DKQR setups [23,36,37].

II. PREVIOUS THEORETICAL PROPOSALS

We briefly review previous proposals for the measurement
of the topological phases in the DKQR setup [10,11]. In
these proposals, the MW operations correspond to a Rabi
coupling between the two internal states |F = 1, mF = 0〉 and
|F = 2, mF = 0〉 of the atoms and are expressed as a unitary
rotation on the Bloch sphere:

M̂(α, χ ) =
(

cos( α
2 ) e−iχ sin( α

2 )
−eiχ sin( α

2 ) cos( α
2 )

)
. (2)

The kicking laser is detuned between these internal states in
such a way that the potential is equal in strength but opposite
in sign, as expressed by a σ̂z matrix. The kick operators K̂1 and
K̂2, differing only by a shift of θ = π/2 in position space, are
defined as

K̂1 = e−ik1cos(θ̂ )σ̂z , (3)

K̂2 = e−ik2sin(θ̂ )σ̂z . (4)

As discussed in detail in Ref. [10], the system consists of
two chirally symmetric time frames expressed with two Flo-
quet operators, Û1 and Û2, possessing chiral symmetry. These
operators are best realized as a sequence of MW and kick
operators on the atoms’ initial wave function, e.g., |ψin〉 =
|n = 0〉 ⊗ |2〉, and take the following form:

Û1 = M̂
(
−π

2
, 0

)
K̂

1
2

1 M̂
(π

2
, 0

)
M̂

(
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2
,
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2

)
K̂2M̂

(π

2
,
π

2

)
· M̂

(
−π

2
, 0

)
K̂

1
2

1 M̂
(π

2
, 0

)
, (5)

Û2 = M̂
(
−π

2
,
π

2

)
K̂

1
2

2 M̂
(π

2
,
π

2

)
M̂

(
−π

2
, 0

)
K̂1M̂

(π

2
, 0

)
· M̂

(
−π

2
,
π

2

)
K̂

1
2

2 M̂
(π

2
,
π

2

)
, (6)

with

K̂1/2
1,2 ≡ K̂1,2

(
k

2
, θ

)
. (7)

Due to the structural similarity of both operators we will
further focus on the discussion of Û2, referred to hereafter as

Û in this paper. Analogous reasoning can be found for Û1 but
is not explicitly shown here.

As an abstract quantity, the topological winding number
is not often directly measurable. Instead a quantity, the mean
chiral displacement (MCD), is introduced in this context [10].
In DKQRs the MCD, describing the difference between mo-
mentum distributions of the two internal states that evolve
under Û , is defined as

C(t ) = 〈ψt |n̂ ⊗ −σ̂z|ψt 〉
≡ 〈ψ0|Û−t (n̂ ⊗ −σ̂z )Û t |ψ0〉. (8)

The average of the MCD over several discrete evolution steps
t converges to half of the topological winding number ν [10]:

C̄(t ) = 1

t

t∑
ti=1

C(ti )
t�1−−→ ν

2
. (9)

To observe the topological phase transitions, it is necessary to
repeat application of Eq. (6) for a series of configurations of
k1 and k2 where the empirical results can be compared with
the ideal phase diagram computed in Ref. [10].

III. OPTIMIZED EXPERIMENTAL SEQUENCE

The first and last MW rotations within Eq. (6) are inverses
of each other. If Û is applied subsequently for a larger num-
ber of evolution steps t ∈ N, this sequence of MW rotations
and kicks can be simplified as demonstrated in full detail in
Appendix A. Considering the full evolution of the system, an
alternative expression of Û t is therefore found as

Û t = M̂
(
−π

2
,
π

2

)
K̂

1
2

2 M̂
(π

2
,
π

2

)
·
[
M̂

(
−π

2
, 0

)
K̂1M̂

(π

2
, 0

)

×M̂
(
−π

2
,
π

2

)
K̂2M̂

(π

2
,
π

2

)]t−1

· M̂
(
−π

2
, 0

)
K̂1M̂

(π

2
, 0

)
M̂

(
−π

2
,
π

2

)
K̂

1
2

2 M̂
(π

2
,
π

2

)
.

(10)

Although this new expression looks more complex, rewriting
the sequence in this form significantly reduces the number
of operations necessary to realize the complete evolution Û t .
This is indeed of great interest because it shortens experi-
mental durations, reducing the impact of atom loss and other
sources of decoherence (see, e.g., Ref. [23] for a short sum-
mary of these effects).

So far each application of the MW operator is assumed to
be infinitely short in time corresponding to a fully quantum
resonant atom-optics kicked rotor [25,38]. However, this as-
sumption does not apply to typical experiments since every
MW rotation has a finite duration T . A free-evolution operator
thus needs to be added after each MW operator as follows:

M̂(α, χ ) → e−i p̂2

2 T M̂(α, χ ). (11)

Experimental durations can be further reduced by keeping
T as short as possible. When T = 4π , the free-evolution
operator reduces to unity and thus reflects a full Talbot pe-
riod. This in turn corresponds to an on-resonance atom-optics
kicked rotor [25,38]. In a specific case of Eq. (10), it is

043318-2



DETECTING TOPOLOGICAL PHASE TRANSITIONS IN A … PHYSICAL REVIEW A 106, 043318 (2022)

possible to produce a resonant configuration with T = π , cor-
responding to a good MW signal with a quarter Talbot period.
In this paper, we consider T = π and free evolution of the

form e−i p̂2

2 π ≡ P̂π . In Appendix B the free-evolution operator
is identified with the shift operator T̂ (θ̂ ) = ein̂θ̂ , where θ = π

in position space; thus P̂2
π = T̂ (π ). As a consequence of in-

troducing the free evolution P̂π , every second kick operator
experiences an effective inversion:

Û t → P̂πM̂
(
−π

2
,
π

2

)
K̂

1
2

2 M̂
(π

2
,
π

2

)
×

[
M̂

(
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2
, 0

)
K̂−1

1 M̂
(π

2
, 0

)

· M̂
(
−π

2
,
π

2

)
K̂2M̂

(π

2
,
π

2

)]t−1

· M̂
(
−π

2
, 0

)
K̂−1

1 M̂
(π

2
, 0

)
× M̂

(
−π

2
,
π

2

)
K̂

1
2

2 P̂πM̂
(
−π

2
,
π

2

)
. (12)

More calculation details can be found in Appendix C. Al-
though this free-evolution effect is undesired, it fortunately
does not affect the measurement of topological phase tran-
sitions as discussed in Sec. III A. Note that this induced
inversion symmetry [see Eq. (12)] simplifies the observation
of topological phase transitions in our 87Rb system where the
required π pulse has a duration of ≈26 μs achievable via a
high-power MW amplifier [23,36,37,39]. If Û t is computed
for a MW rotation of T = π without the simplification us-
ing Eq. (10), the resultant operator sequence is antiresonant
inducing periodic oscillations in momentum space. This is un-
derstood analytically and verified with numerical calculations.
Therefore a combination of our proposal [see Eqs. (10) and
(12)] and setting T = π is needed for an optimized experi-
mental sequence for realizing topological phase transitions in
DKQRs.

A. Inversion symmetry

A finite duration T = π of each MW rotation results in
every second kick operator being effectively inverted (see
Appendix C), i.e.,

K̂1 = e−ik1cos(θ̂ )σ̂z → e+ik1cos(θ̂ )σ̂z , (13)

K̂2 = e−ik2sin(θ̂ )σ̂z → e−ik2sin(θ̂ )σ̂z . (14)

Instead of a relative shift of θ = π/2 in position space in
between the two kicks [see Eqs. (3) and (4)], Eqs. (13) and
(14) indicate that the relative shift is θ = −π/2. This is
equivalent to an inversion in position or angle space around
the zero angle. As a result, momentum distributions of the
internal states evolve along opposite directions. This causes
the expectation value of momentum for each internal state
respectively to change sign, as illustrated in Fig. 1.

Equations (8) and (9) also indicate that the topological
curves computed from the average MCD change their signs
due to introducing the finite MW duration of T = π . This
does not change the underlying physics, and thus the expected
phase transitions are still visible although with a change in
sign. This undesired effect can be compensated by changing

FIG. 1. Momentum distributions of the internal states after t = 5
applications of Û for k1 = π

2 and k2 = 2.5π . The initial state is
|ψin〉 = |n = 0〉 ⊗ |2〉. T = 0 corresponds to fully resonant condi-
tions, while T = π specifies MW pulses with the finite duration. If
T = π is chosen, the momentum distributions of the internal states
are mirrored respectively to the ideal case. Note that the initial state
|2〉 evolves symmetrically in momentum space, thus not contributing
to the MCD.

several phase angles of the MW operators. For instance, we
find that

M̂
(
−π

2
, 0

)
e−ik1cos(θ̂ )σ̂z M̂

(π

2
, 0

)
= M̂

(π

2
, 0

)
eik1cos(θ̂ )σ̂z M̂

(
−π

2
, 0

)
. (15)

This change in the phases within the MW rotations causes a
change in sign in the exponent and thus compensates for the
aforementioned change of the two internal states.

B. Initial state dependence

Momentum distributions are good observables in
QKR and quantum walk experiments, as shown in
Refs. [23,36,37], where the complete momentum distribution
P(t ) = P(t )|1〉 + P(t )|2〉 is measured over one experimental
cycle. The momentum distributions for the two internal states,
P(t )|1〉 and P(t )|2〉, however, need to be measured separately
to compute the MCD using Eq. (8). This may double
the experimental effort, because one MCD measurement
requires two consecutive experimental cycles with one
cycle addressing one individual state in systems similar to
those shown in Refs. [24,25]. The presence of additional
symmetries can ease this requirement because a state
symmetrically evolving in momentum space has a zero
mean momentum and no contribution to the MCD. Therefore,
if one of the internal states is symmetric in momentum space,
the information of the topological winding number can be
conveniently extracted from the momentum distributions of
the other internal state. As a result this effectively reduces the
number of experimental measurements in practice. A good
example is illustrated in Fig. 1.

IV. STABILITY

Some experimental imperfections, for example, fluctua-
tions in kicking strengths and pulse durations, have little effect
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on the MCD measurements [10] because the kicks can be
timed with good precision and resonant atom-optics kicked
rotors are intrinsically stable with respect to such imperfec-
tions [25]. In this section we focus on three unavoidable
experimental limitations impacting phase evolutions of the
system. First, we will investigate the most crucial problem of
uncontrolled phases of the MW pulses. There are many MW
pulses during a single experimental cycle [see Eq. (12)]; thus
these phase errors would accumulate quickly. Second, differ-
ent quasimomenta result in coherent but unwanted deviations
from quantum resonance in atom-optics kicked rotors. It is
necessary to verify whether the typical spread in momentum
reported previously [23,36,37] has some impact on the mea-
surement of topological phases. The third problem arises from
a relative energy shift between the two internal states. This
leads to a relative dynamical phase in the evolution that must
be corrected.

A. Phase noise

One major source of perturbation originates from fluctua-
tions in the precise timing of the internal MW rotations across
the ensemble [23]. This effectively leads to fluctuations in the
phase parameter χ in the MW rotation operator M̂(α, χ ) [see
Eq. (2)] as follows:

M̂(α, χ ) → M̂(α, χ + �χ ), (16)

modeled numerically as a time-dependent random walk
within an additional dynamical phase �χ = ∑l

i=1 δχ,i. Here,
δχ,i ∈ uniform[−φ, φ] is drawn individually for each MW
application, and l counts the number of subsequent MW ap-
plications.

DKQRs are much more complicated than a single kicked
atom-optics kicked rotor (see Refs. [24,25]); however, our
experimental system is capable of generating DKQRs with
t ≈ 5 steps [23,36,37]. Figure 2 shows our numerical results
of the MCD using Eq. (8) with 1000 noise trajectories, and
topological diagrams using Eq. (9) with a time average over
up to t = 5 applications of Û . Similar to Ref. [11], our sim-
ulations keep the kick strength k1 at π/2 while scanning k2

within a range of k2 ∈ [0, 2.5π ]. Here, both kick strengths
are expressed in dimensionless units. Scanning k2 reveals
topological phase transitions for each configuration of the kick
strengths where the band gap in the Floquet spectrum closes
[10]. A typical example is shown in Fig. 2, which indicates
that the signature of the topological phase transitions decays
continuously as φ increases but remains visible for φ � π/3
[see the red curves in Fig. 2). Therefore the MW phase noise
should be kept within φ < π/3 in experiments.

B. Finite quasimomentum distributions

The periodicity of the kicking potential enables the use of
Bloch’s theorem with the momentum expressed as p = n + β.
Here, n is an integer, and β is the dimensionless quasimo-
mentum. Up to this point, we have exclusively discussed the
case of T = π and β = 0; however, experiments with BECs
usually start at a momentum close to n = 0 with a finite width
�β in the Brillouin zone. For example, �β is found to be 0.025
in Refs. [23,36,37]. To model this finite quasimomentum dis-

FIG. 2. (a) and (b) The predicted MCD and topological phase
diagrams as a function of the noise strength φ when β = 0 (a) and
�β = 0.025 (b) derived for our proposed sequence equation (12) at
T = π . The change in sign is compensated using Eq. (15), and the
MCD is computed exploiting the symmetry of the initial state |ψin〉 =
|n = 0〉 ⊗ |2〉 as discussed in Sec. III B. The red curves correspond
to φ = π/3, the maximum phase noise acceptable for observing
topological phase transitions. (c) The thick black dotted curve and
thin black dashed curve with crosses represent cuts at φ = π/9 from
(a) and (b), respectively, and the red solid curve corresponds to a
cut at φ = π/3 from (a). While the steps are visible at small noise
strength φ (see the black curves), they get washed out as φ becomes
larger than π/3. For each k2, the topological number is averaged over
1000 noise trajectories in all cases (see text).

tribution, a Gaussian distribution with zero mean value and
full width at half maximum (FWHM) �β = 0.025 is used in
our calculations. Figure 2 shows topological phase transitions
as a function of the phase noise φ when different quasimo-
mentum distributions are considered. Comparisons between
Fig. 2(a) and Fig. 2(b) indicate that the quasimomenta present
in experiments have little effect on the topological diagrams.

C. Light-shift compensation

Our system has two internal hyperfine states; the kicking
potential created by a virtual transition to a third state thus
creates an additional energy gap between the two states. In our
system, an atom-optics kicked rotor with two internal states,
this light (or ac-Stark) shift effectively changes the kicking
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FIG. 3. (a) The winding number and (b) values of the function cos(K1)cos(K2) derived from Eqs. (18) and (19), respectively, when
light-shift effects are not compensated. (c) The winding number and (d) values of the function cos(K1)cos(K2) derived from Eqs. (20) and
(21), respectively, when light-shift effects are effectively compensated. In (c), the averaged MCD converges to the predicted phase transitions
(black solid curve) as the evolution step t increases. If the cos(K1)cos(K2) function changes sign, the topological phase changes thus implying
instabilities. This is satisfied everywhere in (b) while only at specific points in (d); see the text.

potential to [40–42]

K̂ ≡ 2k · cos2

(
θ̂

2

)
= k(cos(θ̂ ) + 1), (17)

where the constant term independent of the angle θ repre-
sents the shift of the internal states. The total energy shift to
be corrected for is thus 2k for a single kick of the kicking
strength k in our atom-optics kicked rotor systems and the
quantum walk experiments [23,36,37], because the second
internal state effectively sees a kick with an opposite sign.

To observe topological phases, it is important to have a
relative shift of �θ = π/2 in position space between the two
kicks K̂1 and K̂2 [see Eqs. (3) and (4)]. The effective kick
operators are then

K̂1,eff = e−ik1σ̂z (cos(θ̂ )+1) ≡ e−iσ̂zK̂1 , (18)

K̂2,eff = e−ik2σ̂z (sin(θ̂ )+1) ≡ e−iσ̂zK̂2 . (19)

The effective kick potentials are described by K̂1 and K̂2.
No topological phase transitions are observed if these oper-
ators are implemented without compensating light shifts as
shown in Fig. 3(a). This is because a topological winding
number can only change if cos(K1)cos(K2) = ±1 corre-
sponding to a closing band gap (see Ref. [10]). Figure 3(b)
shows that this condition is always fulfilled within the sim-
ulated range of k2; thus it becomes impossible to distinguish
between topological phase transitions and possible instabil-
ity, if light shifts are not compensated. This suggests that
compensation of light shifts is necessary for observation of
topological phase transitions in experiments.

In walk experiments as reported in Refs. [23,36,37], com-
pensation of light shifts was done by adjusting the phase of
MW pulses. Such a procedure is necessary for each kick in
the DKQR system, where two kicks have different kicking
strengths. Our simulations, however, indicate that compensat-
ing one of the two kicking pulses is sufficient. For example, a
simpler method of compensation can be conducted by correct-
ing the light shift originating from k1; therefore the kicking
operators are

K̂1,eff → e−ik1σ̂zcos(θ̂ ) ≡ e−iσ̂zK̂′
1 , (20)

K̂2,eff → e−ik2σ̂zsin(θ̂ )e−i(k2−k1 )σ̂z ≡ e−iσ̂zK̂′
2 , (21)

where the effective kick dynamics described by K̂′
1 and K̂′

2

are partially compensated. This compensation may not re-
move light-shift effects completely; however, it is adequate for
observing topological phase transitions as shown in Figs. 3(c)
and 3(d). Our calculations show that the number of topological
phase transitions doubles in the same range of k2 when the
light shift is compensated. This implies that it may be possible
to observe topological phase transitions by scanning k2 even in
a smaller range after light shifts are effectively compensated.

V. CONCLUSION

We have investigated the feasibility of measuring topo-
logical phase transitions with the DKQR platform and
demonstrated how impacts of decoherence and experimental
durations can be minimized by setting the duration of each
MW rotation at T = π corresponding to a quarter of the
Talbot period. A proper choice of initial states possessing an
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inversion symmetry is found to further simplify experimental
realizations.

Our results have suggested that a successful protocol for
observing topological phase transitions must minimize the
phase noise to φ � π/3 and at least partially compensate the
light-shift effects. Compensating light-shift effects can also
facilitate experiments as it doubles the number of expected
topological steps within the same k2 scanning range. Our

findings have thus confirmed that the DKQR is a promising
platform to realize and measure topological phases in a time-
dependent Floquet setup.
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APPENDIX A: SIMPLIFICATION OF ORIGINAL PROPOSED SEQUENCE

For the evolution operator Û the first and the last MW rotation are inverse to each other:

M̂
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2
, 0
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−π

2
, 0

)−1
, M̂

(
−π

2
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2
,
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)−1
. (A1)

When Û is applied subsequently, this can be exploited to reduce the amount of necessary MWs and kicks in Û . It is sufficient to
study this effect for Û2.

Û2 =
(

M̂
(
−π

2
,
π

2

)
K̂

1
2

2 M̂
(π

2
,
π

2

)
M̂

(
−π

2
, 0

)
K̂1M̂

(π

2
, 0

)
M̂

(
−π

2
,
π

2

)
K̂

1
2

2 M̂
(π

2
,
π

2

))2

(A2)

= M̂
(
−π

2
,
π

2

)
K̂

1
2

2 M̂
(π

2
,
π

2

)
M̂

(
−π

2
, 0

)
K̂1M̂

(π

2
, 0

)
M̂

(
−π

2
,
π

2

)
K

1
2

2 (A3)

·K̂
1
2

2 M̂
(π

2
,
π

2

)
M̂

(
−π

2
, 0

)
K̂1M̂

(π

2
, 0

)
M̂

(
−π

2
,
π

2

)
K̂

1
2

2 M̂
(π

2
,
π

2

)
(A4)

= M̂
(
−π

2
,
π

2

)
K̂

1
2

2 M̂
(π

2
,
π

2

)
M̂

(
−π

2
, 0

)
K̂1M̂

(π

2
, 0

)
M̂

(
−π

2
,
π

2

)
K̂2M̂

(π

2
,
π

2

)
(A5)

·M̂
(
−π

2
, 0

)
K̂1M̂

(π

2
, 0

)
M̂

(
−π

2
,
π

2

)
K̂

1
2

2 M̂
(π

2
,
π

2

)
. (A6)

APPENDIX B: CONDITIONS NECESSARY FOR SEQUENCE RESONANCE CONSIDERATIONS

We consider the free-evolution operator P̂ = e−i p̂2

2 T for a quarter Talbot time T = π . Using Bloch’s theorem, we can
decompose momentum p̂ into an integer and a quasimomentum β: p̂ = n̂ + β, with β ∈ [0, 1). In the following we choose
resonant values for β, for instance, β = 0 [25], to simplify the discussion. We can identify similarly to Refs. [38,43] the
free-evolution operator with the shift operator in momentum space:

P̂2
π = (e−i n̂2

2 π )2 = e−in̂2π =
{

1 n = 2 j
−1 n = 2 j + 1 ≡ e−in̂π ≡ T̂ (π ). (B1)

T̂ (π ) can thus denote the shift operator in angular momentum space for θ = π . The free-evolution operator for the two-state
system commutes with the microwave operators since the entries of the MW matrix are scalar values.

P̂ = e−i (n̂+β )2

2 τ⊗1 = e−i (n̂+β )2

2 τ · 1 (B2)

⇒ P̂M̂(α1, χ1)P̂M̂(α2, χ2) = M̂(α1, χ1)M̂(α2, χ2)P̂2 (B3)

= M̂(α1, χ1)M̂(α2, χ2)T̂ (π ). (B4)

The translation operator affects the kick operators K̂1 and K̂2 as follows:

T̂ (π )K̂1,2(k, θ ) = K̂1,2(k, θ + π ) = K̂1,2(−k, θ ) ≡ K̂−1
1,2 , (B5)

T̂ (2π )K̂1,2(k, θ ) = K̂1,2(k, θ + 2π ) = K̂1,2(k, θ ). (B6)
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APPENDIX C: INTRODUCTION OF FREE EVOLUTION

The free-evolution operator P̂π for T = π after neglecting quasimomentum is not unity. When each MW rotation is considered
to have a finite duration, this affects the evolution of the system described by Û t in the following way:
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Therefore every second kick operator (here, K̂1) effectively experiences an inversion.

[1] D. Y. H. Ho and J. Gong, Topological effects in chiral symmet-
ric driven systems, Phys. Rev. B 90, 195419 (2014).

[2] X.-L. Qi and S.-C. Zhang, Topological insulators and supercon-
ductors, Rev. Mod. Phys. 83, 1057 (2011).

[3] M. Z. Hasan and C. L. Kane, Colloquium: topological insula-
tors, Rev. Mod. Phys. 82, 3045 (2010).

[4] J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and
phase transitions in two-dimensional systems, J. Phys. C: Solid
State Phys. 6, 1181 (1973).

[5] N. D. Mermin, The topological theory of defects in ordered
media, Rev. Mod. Phys. 51, 591 (1979).

[6] A. Kitaev and C. Laumann, Topological phases and quantum
computation, arXiv:0904.2771.

[7] T. Kitagawa, Topological phenomena in quantum walks: el-
ementary introduction to the physics of topological phases,
Quantum Inf. Process. 11, 1107 (2012).

[8] P. Leboeuf, J. Kurchan, M. Feingold, and D. P. Arovas, Phase-
Space Localization: Topological Aspects of Quantum Chaos,
Phys. Rev. Lett. 65, 3076 (1990).

[9] A. Eckardt, Colloquium: Atomic quantum gases in periodically
driven optical lattices, Rev. Mod. Phys. 89, 011004 (2017).

[10] L. Zhou and J. Gong, Floquet topological phases in a spin-1/2
double kicked rotor, Phys. Rev. A 97, 063603 (2018).

[11] C. Groiseau, A. Wagner, G. S. Summy, and S. Wimberger,
Impact of lattice vibrations on the dynamics of a spinor atom-
optics kicked rotor, Condens. Matter 4, 10 (2019).

[12] J. Cayssol and J.-N. Fuchs, Topological and geometrical aspects
of band theory, J. Phys. Mater. 4, 034007 (2021).

[13] M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J. T.
Barreiro, S. Nascimbène, N. R. Cooper, I. Bloch, and N.
Goldman, Measuring the Chern number of Hofstadter bands
with ultracold bosonic atoms, Nat. Phys. 11, 162 (2015).

[14] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger,
D. Greif, and T. Esslinger, Experimental realization of the
topological Haldane model with ultracold fermions, Nature
(London) 515, 237 (2014).

[15] W. Hu, J. C. Pillay, K. Wu, M. Pasek, P. P. Shum, and Y. D.
Chong, Measurement of a Topological Edge Invariant in a Mi-
crowave Network, Phys. Rev. X 5, 011012 (2015).

[16] S. Mukherjee, A. Spracklen, M. Valiente, E. Andersson, P.
Öhberg, N. Goldman, and R. R. Thomson, Experimental obser-
vation of anomalous topological edge modes in a slowly driven
photonic lattice, Nat. Commun. 8, 13918 (2017).

[17] T. Kitagawa, M. A. Broome, A. Fedrizzi, M. S. Rudner, E.
Berg, I. Kassal, A. Aspuru-Guzik, E. Demler, and A. G. White,
Observation of topologically protected bound states in photonic
quantum walks, Nat. Commun. 3, 882 (2012).

[18] R. Süsstrunk and S. D. Huber, Observation of phononic helical
edge states in a mechanical topological insulator, Science 349,
47 (2015).

[19] R. Fleury, A. B. Khanikaev, and A. Alù, Floquet topological
insulators for sound, Nat. Commun. 7, 11744 (2016).

[20] M. Xiao, G. Ma, Z. Yang, P. Sheng, Z. Q. Zhang, and C. T.
Chan, Geometric phase and band inversion in periodic acoustic
systems, Nat. Phys. 11, 240 (2015).

[21] J. K. Asbóth and H. Obuse, Bulk-boundary correspondence for
chiral symmetric quantum walks, Phys. Rev. B 88, 121406(R)
(2013).

[22] J. K. Asbóth, Symmetries, topological phases, and bound states
in the one-dimensional quantum walk, Phys. Rev. B 86, 195414
(2012).

[23] S. Dadras, A. Gresch, C. Groiseau, S. Wimberger, and G. S.
Summy, Experimental realization of a momentum-space quan-
tum walk, Phys. Rev. A 99, 043617 (2019).

043318-7

https://doi.org/10.1103/PhysRevB.90.195419
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1103/RevModPhys.51.591
http://arxiv.org/abs/arXiv:0904.2771
https://doi.org/10.1007/s11128-012-0425-4
https://doi.org/10.1103/PhysRevLett.65.3076
https://doi.org/10.1103/RevModPhys.89.011004
https://doi.org/10.1103/PhysRevA.97.063603
https://doi.org/10.3390/condmat4010010
https://doi.org/10.1088/2515-7639/abf0b5
https://doi.org/10.1038/nphys3171
https://doi.org/10.1038/nature13915
https://doi.org/10.1103/PhysRevX.5.011012
https://doi.org/10.1038/ncomms13918
https://doi.org/10.1038/ncomms1872
https://doi.org/10.1126/science.aab0239
https://doi.org/10.1038/ncomms11744
https://doi.org/10.1038/nphys3228
https://doi.org/10.1103/PhysRevB.88.121406
https://doi.org/10.1103/PhysRevB.86.195414
https://doi.org/10.1103/PhysRevA.99.043617


NIKOLAI BOLIK et al. PHYSICAL REVIEW A 106, 043318 (2022)

[24] M. G. Raizen, Quantum chaos with cold atoms, Adv. At. Mol.
Opt. Phys. 41, 199 (1999).

[25] M. Sadgrove and S. Wimberger, A pseudo-classical method for
the atom-optics kicked rotor: From theory to experiment and
back, Adv. At. Mol. Opt. Phys. 60, 315 (2011).

[26] C. Ryu, M. F. Andersen, A. Vaziri, M. B. d’Arcy, J. M.
Grossman, K. Helmerson, and W. D. Phillips, High-Order
Quantum Resonances Observed in a Periodically Kicked
Bose-Einstein Condensate, Phys. Rev. Lett. 96, 160403
(2006).

[27] I. Talukdar, R. Shrestha, and G. S. Summy, Sub-Fourier Char-
acteristics of a δ-Kicked-Rotor Resonance, Phys. Rev. Lett. 105,
054103 (2010).

[28] F. L. Moore, J. C. Robinson, C. F. Bharucha, B. Sundaram,
and M. G. Raizen, Atom Optics Realization of the Quantum
δ-Kicked Rotor, Phys. Rev. Lett. 75, 4598 (1995).

[29] J. F. Kanem, S. Maneshi, M. Partlow, M. Spanner, and A. M.
Steinberg, Observation of High-Order Quantum Resonances in
the Kicked Rotor, Phys. Rev. Lett. 98, 083004 (2007).

[30] A. Ullah and M. D. Hoogerland, Experimental observation of
Loschmidt time reversal of a quantum chaotic system, Phys.
Rev. E 83, 046218 (2011).

[31] I. Dana, V. Ramareddy, I. Talukdar, and G. S. Summy,
Experimental Realization of Quantum-Resonance Ratchets
at Arbitrary Quasimomenta, Phys. Rev. Lett. 100, 024103
(2008).

[32] M. Sadgrove, M. Horikoshi, T. Sekimura, and K. Nakagawa,
Rectified Momentum Transport for a Kicked Bose-Einstein
Condensate, Phys. Rev. Lett. 99, 043002 (2007).

[33] D. R. Hofstadter, Energy levels and wave functions of Bloch
electrons in rational and irrational magnetic fields, Phys. Rev. B
14, 2239 (1976).

[34] M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes,
and I. Bloch, Realization of the Hofstadter Hamiltonian with
Ultracold Atoms in Optical Lattices, Phys. Rev. Lett. 111,
185301 (2013).

[35] H. Miyake, G. A. Siviloglou, C. J. Kennedy, W. C. Burton,
and W. Ketterle, Realizing the Harper Hamiltonian with Laser-
Assisted Tunneling in Optical Lattices, Phys. Rev. Lett. 111,
185302 (2013).

[36] S. Dadras, A. Gresch, C. Groiseau, S. Wimberger, and G. S.
Summy, Quantum Walk in Momentum Space with a Bose-
Einstein Condensate, Phys. Rev. Lett. 121, 070402 (2018).

[37] J. H. Clark, C. Groiseau, Z. N. Shaw, S. Dadras, C. Binegar, S.
Wimberger, G. S. Summy, and Y. Liu, Quantum to classical
walk transitions tuned by spontaneous emissions, Phys. Rev.
Res. 3, 043062 (2021).

[38] S. Wimberger, I. Guarneri, and S. Fishman, Quantum reso-
nances and decoherence for delta-kicked atoms, Nonlinearity
16, 1381 (2003).

[39] A. Alberti and S. Wimberger, Quantum walk of a Bose-Einstein
condensate in the Brillouin zone, Phys. Rev. A 96, 023620
(2017).

[40] C. Groiseau, Discrete-time quantum walks in momentum space,
Master’s thesis, Heidelberg University, 2017.

[41] C. Groiseau, A. Gresch, and S. Wimberger, Quantum walks of
kicked Bose-Einstein condensates, J. Phys. A: Math. Theor. 51,
275301 (2018).

[42] N. Bolik, C. Groiseau, J. H. Clark, A. Gresch, S. Dadras, G. S.
Summy, Y. Liu, and S. Wimberger, Light-shift-induced behav-
iors observed in momentum-space quantum walks, Phys. Rev.
A 106, 033307 (2022).

[43] A. Wagner, Topology in 1D quantum walks, Bachelor’s thesis,
Heidelberg University, 2018.

043318-8

https://doi.org/10.1016/S1049-250X(08)60218-9
https://doi.org/10.1016/B978-0-12-385508-4.00007-3
https://doi.org/10.1103/PhysRevLett.96.160403
https://doi.org/10.1103/PhysRevLett.105.054103
https://doi.org/10.1103/PhysRevLett.75.4598
https://doi.org/10.1103/PhysRevLett.98.083004
https://doi.org/10.1103/PhysRevE.83.046218
https://doi.org/10.1103/PhysRevLett.100.024103
https://doi.org/10.1103/PhysRevLett.99.043002
https://doi.org/10.1103/PhysRevB.14.2239
https://doi.org/10.1103/PhysRevLett.111.185301
https://doi.org/10.1103/PhysRevLett.111.185302
https://doi.org/10.1103/PhysRevLett.121.070402
https://doi.org/10.1103/PhysRevResearch.3.043062
https://doi.org/10.1088/0951-7715/16/4/312
https://doi.org/10.1103/PhysRevA.96.023620
https://doi.org/10.1088/1751-8121/aac5d5
https://doi.org/10.1103/PhysRevA.106.033307


VITA

Jerry Clark

Candidate for the Degree of

Doctor of Philosophy

Thesis: QUANTUM WALKS OF A RUBIDIUM BOSE-EINSTEIN CONDENSATE AND
THEIR APPLICATIONS

Major Field: Physics

Biographical:

Education:

Completed the requirements for the Doctor of Philosophy in Physics at Oklahoma
State University, Stillwater, Oklahoma in December, 2022.

Completed the requirements for the Bachelor of Science in Physics, Chemistry, and
Mathematics at Arkansas State University, Jonesboro, Arkansas in December, 2012.

Professional Membership:

American Physical Society


	Dissertation 121422
	Quantum to classical walk transitions tuned by spontaneous emissions (my 1st!)
	Light-shift-induced behaviors observed in momentum-space quantum walks
	Detecting topological phase transitions in a double kicked quantum rotor



