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Abstract: Accumulation of cellular senescence always forebodes the initialization of 

aging and cancer. It is an irreversible process that leads to cell cycle arrest while 

senescent cells still own metabolic viability to affect tissue homeostasis. Senescent cells 

not only accelerate individual aging process, they are also the driver of age-related 

diseases such as cancer, osteoarthritis, atherosclerosis, and Alzheimer’s diseases. 

Senescent phenotype shows heterogeneity in different cell lines under diverse triggers, 

and blurred traits with non-senescent cells make it difficult to identify senescence 

precisely. It is very necessary to identify robust shared markers, senescence-specific 

pathways and biological processes across different senescence models. Recently the 

emerging role of non-coding RNA in senescence and aging has been noticed due to its 

ability to control cell cycle at post-transcriptional level. Usually the highly proactive 

secretome from senescent cells, termed the senescence-associated secretory phenotype 

(SASP), can result in age-related process through intercellular communication, whereas 

only a number of factors have been identified in very specific scenarios and the role of 

secreted extracellular RNAs (exRNAs) is not well understood. Detection of exRNAs 

protected by EV membrane uncovered the fact that most of extracellular mRNAs are 

fragmentation, along with small non-coding RNAs (sncRNAs), such as miRNAs, piRNA 

and tRNA fragments. Therefore it is promising to uncover the role of extracellular 

sncRNA in aging related dysfunction during cell-cell interaction.  

To better understand the nature of cellular senescence and its corresponding human aging 

process at transcriptome level, RNA sequencing data from different cell types and 

senescence inductions were collected, and significantly shared gene markers and 

pathways among multiple senescence models were determined through meta-analysis and 

machine learning-based logistic regression methods. Extensionally, the function of 

identified senescence associated long non-coding RNAs (lncRNAs) during cell cycle 

were verified through short interfering RNAs (siRNAs) knock-down treatment in lung 

fibroblasts (IMR-90). In parallel, the abundance of extracellular sncRNAs from healthy 

people aged 20 to 99 was quantified using 446 small RNA sequencing datasets. The 

expressional trends of each sncRNA subspecies were detected with age and a sncRNAs-

based age predictors was established using high performance ensemble machine learning 

strategy. 
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CHAPTER I 

 

REVIEW OF LITERATURE 

GENERAL INTRODUCTION 

Cell proliferation with equal chromosome segregation into two daughter cells happens at 

Mitosis or M phase during cell cycle (Barnum & O'Connell, 2014). Mitosis requires accurate 

arrangement of cellular contents, duplicated DNA, chromosome repair, and cell cycle 

checkpoints play important roles in surveillance process to ensure the order, integrity, and 

fidelity of cell division. Checkpoint genes function as cell cycle dependencies for inspecting 

cell size, DNA damage, DNA replication, DNA repair and mitotic spindle during growth 

phases (G1 and G2), synthesis (S phase) and M phase (Giono & Manfredi, 2006). DNA 

damage elicits cell cycle arrest for DNA repair before entering into subsequent phases of the 

cell cycle. For cells with irreversible defects that cannot be fixed, checkpoint genes 

transactivate the expression of cyclin-dependent kinase inhibitors and prolong cell cycle arrest, 

triggering either cell apoptosis or senescence (Carvajal & Manfredi, 2013). 

Cellular senescence (CS) is a state of permanent cell cycle arrest, which can be observed after 

a certain number of cell divisions during cell culture. This type of senescence (called 

proliferative exhaustion) was first described by Hayflick and Moorhead upon observation in 

normal diploid fibroblasts (Hayflick & Moorhead, 1961). After that, other studies revealed 

that other sources of DNA damage, including oxidative stress, DNA damage, ionizing 
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radiation, or the expression of oncogenes, can also trigger CS (Campisi, 2013; V. Gorgoulis et 

al., 2019). Non-coding RNAs, including long non-coding RNA (lncRNA) and small 

non-coding RNA (sncRNA), have been demonstrated that they are associated with many 

biological processes including cell proliferation, cell fate decision, apoptosis, differentiation, 

stem cell maintenance and division in any transcriptional, post-transcriptional, translational or 

post-translational level. Some studies illustrated that non-coding RNAs play roles in CS with 

specific context (Abdelmohsen & Gorospe, 2015; Puvvula, 2019). With growing number of 

senescence models in cell and animal model level, however, senescence heterogeneity was 

recognized when senescent cells showed varying degrees of response to senolytics (Cohn, 

Gasek, Kuchel, & Xu, 2022). This heterogeneity is particularly exposed when we discuss 

transcriptomic profiles of diverse senescent cell populations, including different senescence 

inducers, cell types, and stages of the senescence process (Hernandez-Segura et al., 2017). 

CS plays vital roles in maintaining tissue homeostasis and embryonic development (Yun, 

Davaapil, & Brockes, 2015), wound healing (Demaria et al., 2014) and tumor prevention by 

limiting proliferation of dysfunctional, damaged or transformed cells (Ovadya & 

Krizhanovsky, 2018; B. Wang, Kohli, & Demaria, 2020). Meanwhile, deleterious effects of 

CS have long been known to cause physiologically and pathologically age-related process due 

to accumulation of senescent cells, depletion of stem/progenitor cell compartments and 

secretion of senescence associated secretory phenotype (SASP) (Campisi, Andersen, Kapahi, 

& Melov, 2011; Coppe, Desprez, Krtolica, & Campisi, 2010). Age-related diseases have been 

documented to be associated to stagnant senescent cell elimination, and accumulated 

senescent cells can induce age-related inflammation, chronic diseases and tumor progression 
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(McHugh & Gil, 2018). Therefore, investigation of CS hallmarks for senescent cells targeting 

is essential for detection and removal of senescent cells in different age related pathologies, 

allowing prevention or delaying age-related tissue dysfunction to extend life span and 

improve health span (Baker et al., 2016; Hashimoto et al., 2016; Y. Zhao et al., 2018). 

 

FUNCTIONAL REGULATION OF NON-CODING RNA 

The discovery of non-coding RNAs (ncRNAs), transcribed from genomic regions without 

protein coding potential, has started from transfer RNA and ribosomal RNA in the 1950s 

(Palazzo & Lee, 2015). Over 70 years, the number of new and putative characterized ncRNAs 

is greatly expanded, and especially the advent of high-throughput sequencing excites the 

identification of genome-wide transcription (Menet, Rodriguez, Abruzzi, & Rosbash, 2012). 

There are different RNA types are classified based on the size and functional attributes, 

including small non-coding RNAs (sncRNAs) (Bissels et al., 2009; Castle et al., 2010; J. U. 

Guo, Agarwal, Guo, & Bartel, 2014; Waldron & Lacroute, 1975) and long non-coding RNAs 

(lncRNAs) (Quek et al., 2015). Multiple studies found that almost all of the mammalian 

genome is transcribed at some level, with the ENCODE consortium claimed that “80% of the 

genome has biochemical functions” by DNA elements annotation (Consortium, 2012). Under 

the criticisms, these “junk RNAs” have been proven that some of them have specific function 

based on various criteria ranging from their expression levels and splicing to conservation. 

The properties and corresponding functional investigation of lncRNAs and sncRNAs will be 

discussed below. 

Long Non-coding RNA and Its Biological Function 
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With extensive identification of genome transcription, the products longer than 200 

nucleotides that are not translated into functional proteins are defined as long non-coding 

RNAs (lncRNAs) (Uszczynska-Ratajczak, Lagarde, Frankish, Guigo, & Johnson, 2018). 

There are multiple RNA polymerases can transcribe lncRNAs, with RNA polymerase II (Pol 

II) plays the major role in lncRNA biogenesis. It is presumed that lncRNA shows similar 

pre-processing steps as mRNA, while recent studies revealed diverse transcription, processing, 

export and turnover of lncRNAs, which are closely linked with their cellular fates and 

functions (Statello, Guo, Chen, & Huarte, 2021). Compared to mRNAs, there is a higher 

proportion of lncRNAs retaining in the nucleus (C. J. Guo et al., 2020), since there are rapid 

degradation (Schlackow et al., 2017), U1 small nuclear RNA binding (Y. Yin et al., 2020), 

less efficient splicing (Zuckerman & Ulitsky, 2019). Through interacting with DNA, RNA and 

proteins, lncRNAs can regulate epigenetic modification, chromosomal structure and function, 

gene transcription, RNA splicing, stability and translation efficiency (Bonetti et al., 2020; 

Jiang et al., 2013; West et al., 2016; Q. F. Yin et al., 2012).  

As participating in gene regulation, lncRNAs are associated with different aspects of 

biological processes, from cell proliferation, differentiation, apoptosis, stem cell homeostasis 

and division, to key roles in the nervous, muscular (Fatica & Bozzoni, 2014), cardiovascular 

(Fatica & Bozzoni, 2014), adipose (Sun & Lin, 2019), haematopoietic and immune systems 

(Chen, Satpathy, & Chang, 2017) and their corresponding pathologies. For example, 

BACE-AS is an antisense lncRNA of protein coding gene β-site amyloid precursor protein 

cleaving enzyme 1 (BACE1; also known as β-secretase 1). By binding specific microRNA, it 

can protect BACE1 from degradation and increase severity of neurotoxic amyloid plates 
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within Alzheimer disease individuals (Faghihi et al., 2010). In a chromatin structure level, 

lncRNA colon cancer associated transcript 1-long (CCAT1-L) can improve proto-oncogene 

MYC expression by forming a long-range enhancer-MYC chromatin looping (J. F. Xiang et 

al., 2014). Also, there is growing number of lncRNAs that modulate cancer initiation and 

progression in curated databases such as Lnc2Cancer (Gao et al., 2019) or the Cancer 

LncRNA Census (Carlevaro-Fita et al., 2020). 

Apart from RNA itself, some lncRNAs had small open reading frames (sORF, length <300 nt) 

that could produce steady short peptides with biological functions (Bi et al., 2017; D'Lima et 

al., 2017; Huang et al., 2017), which challenge the definition of lncRNAs. 

Small Non-coding RNA and Its Biological Function 

Small non-coding RNAs (sncRNAs) are series of ncRNAs less than 300 nucleotides in length, 

(Santosh, Varshney, & Yadava, 2015), and based on their biogenesis, cellular location and 

correspond function, they are categorized as microRNA (miRNA), piwi-interacting RNAs 

(piRNAs), small nucleolar RNAs (snoRNAs), transfer RNA (tRNA), transfer-derived RNAs 

(tRFs) and small nuclear RNAs (snRNAs) (Vickers, Roteta, Hucheson-Dilks, Han, & Guo, 

2015). From previous studies we are realizing that sncRNAs are involved in the regulation of 

numerous transcriptomic, epigenetic and proteomic events, thereby in cancer and other 

chronic human diseases, they are gradually employed as biomarkers for clinical utility, 

including subtype classification, diagnosis, and prognosis (Jacovetti, Bayazit, & Regazzi, 

2021; Z. Zhang, Zhang, Diao, & Han, 2021). Due to the low reads load in high-throughput 

sequencing and extensive post-transcriptional modification, there are sncRNAs specific 

methods, including sequencing strategies (Y. Xiang, Ye, Zhang, & Han, 2018; Zheng et al., 
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2015) and computational approaches (Isakova, Fehlmann, Keller, & Quake, 2020; Xing et al., 

2006), are developed for detecting their abundance. 

 

MECHANISMS OF CELLULAR SENESCENCE 

Inducers of Cellular Senescence 

Cells can be induced into senescence by multiple intrinsic and extrinsic stimuli, including 

proliferative exhaustion, radiation, oxidative and genotoxic stress, epigenetic changes, 

mitochondrial dysfunction and oncogene activation (Di Micco et al., 2006; Mikula-Pietrasik, 

Niklas, Uruski, Tykarski, & Ksiazek, 2020; Pazolli et al., 2012; Wen & Klionsky, 2016). 

These factors can be classified into telomere dependent replicative senescence and 

non-telomeric stress-induced premature senescence, for which there are more type of stress 

included in senescence-related process (Dierick et al., 2002). DNA damage response (DDR) 

shows a persistent activity once irreparable DNA damage is triggered by either intrinsic or 

extrinsic stimuli (Fumagalli et al., 2012). In human somatic cells lacking functional subunit of 

telomerase due to exhausted cell division, DRR will be triggered when shortened telomeres 

don have end protection (Shay & Wright, 2019). During oncogene-induced senescence (OIS), 

hyperactivity of oncogene will activate the mitotic signals and DDR will be initiated to 

prevent progression of damaged cells when chromosomal dysfunction is sensed (V. G. 

Gorgoulis & Halazonetis, 2010). Under chemotherapeutic drugs or oxidative stress, 

PARP-1/ATM/ NF-κB signaling cascade is activated to cause senescence mediated cell cycle 

arrest, and chemokine CCL2 from secretome will increase invasiveness of escaped melanoma 

cells (Ohanna et al., 2011). 
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Prolonged Cell Cycle 

Phenotypically, multiple studies have reported that there is a reduced proliferative capacity 

during the senescence establishment (Y. M. Kim et al., 2013; Nassrally et al., 2019; Ponten, 

Stein, & Shall, 1983), with prolonged cell cycle duration after an increased population 

doubling level (Ogrodnik, 2021). The accompanying decline in proliferation rate may be 

partially explained by the averaged senescence measurements in the mixed population of cells, 

from which the gradual reduction of proliferative capacity correlates to proportion of 

non-proliferating, senescent cells in total cells (Ogrodnik, 2021). Also, based on long-term, 

live-cell imaging system (time-lapse cinematography), Absher et al. reported that WI-38 

fibroblasts had a gradually growing doubling time (from 16.8 hours to 32.0 hours) between 

passage 28 and 53 (Absher, Absher, & Barnes, 1974). Therefore, there is a developing idea of 

gradual changes of cell cycle time and clonal capacity in human fibroblasts and it helps us 

identify the continuous process of cellular aging before eventual senescence (non-dividing) 

phenotype. 

Increased Cell Soma 

In addition to decline proliferative capacity before senescence, there is an enlargement of cell 

soma during aging process. Due to the decreased/stagnant cell division rate, aging/senescent 

cells show expanded cell size with an increase in organelle content and flatly spread 

cytoplasm (Neurohr et al., 2019; Ogrodnik, Salmonowicz, & Gladyshev, 2019). Consistent 

with gradually decreased replicative capacity, there is a continuously increased cell volume 

due to the accumulation of cellular material (Angello, Pendergrass, Norwood, & Prothero, 

1987; Y. M. Kim et al., 2013). Based on the negative relation between soma size and 
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proliferative capacity, Angello et al. utilized real-time cell culture and demonstrated that 

primary cell lines lost their replicative potential when there was an increase in cell soma size 

by 50-100% (Angello et al., 1987). This correlation was also validated in in vivo study that 

overgrown mice by injection of growth hormone showed decreased cell proliferative capacity 

(Pendergrass, Li, Jiang, & Wolf, 1993). In primary cell lines, Neurohr et al. applied 

palbociclib, which is a kind of cell cycle inhibitor, to reduce replicative potential and increase 

cell size simultaneously (Neurohr et al., 2019). During cell culture experiment, it is very 

necessary to mention that appropriate nutrition and growth factor can extend the times of cell 

passages and excessive serum concentration may induce premature aging of treated cells 

(Neurohr et al., 2019). 

Senescence-associated Metabolic Activities 

Even though active metabolism can be observed in senescent and aging cells (Sabbatinelli et 

al., 2019), there are few studies about metabolic dynamics during cellular aging on a 

single-cell level. Yi et al. utilized nuclear magnetic resonance (NMR) analysis to identify the 

intracellular metabolites during proliferative exhaustion process of human primary cells, and 

observed metabolites changes were associated with impaired energy metabolism and inhibited 

protein synthesis (Yi et al., 2020). A further metabolic profiling is necessary for us to better 

investigate whether the dynamic of different metabolites is related to the requirements for cell 

cycle process. The increased glycolytic enzymes activity and more absorption of glucose were 

detected in senescent cells (Unterluggauer et al., 2008). In contrast to positive correlation 

between glycolysis and lactate production (Lunt & Vander Heiden, 2011), a decreased lactate 

contents were observed in CS and recent studies demonstrated that aging cells use increased 
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glutamate for stimulating mammalian target of rapamycin (mTOR), which is a vital pathway 

for cell maintenance and growth (S. G. Kim et al., 2013; Ogrodnik, 2021). Another metabolic 

shift during cellular aging is a decreased NAD+ concentration in cell culture medium and this 

is in consistency with the positive feedback relationship between NAD+ concentration and 

pyruvate to lactate conversion (Verdin, 2015), and supplementation of NAD+ can increase 

proliferative activity of primary cell lines (Lim, Potts, & Helm, 2006). 

The Senescence Associated Secretory Phenotype 

As one of key hallmarks of CS, senescence associated secretory phenotype (SASP) shows 

secretory activities of multiple senescence contexts, which can affect biological behavior of 

non-senescent cells (Mohamad Kamal, Safuan, Shamsuddin, & Foroozandeh, 2020). The 

establishment of SASP is monitored by several key factors, IGFBP3, IGFBP4 and IGFBP7, 

which can induce senescence through paracrine senescence pathway (Ozcan et al., 2016). 

IGFBP3 is a downstream target of plasminogen activator inhibitor-1 (PAI-1) system (Elzi et 

al., 2012), and PAI-1 can induce proliferative senescence via PI (3) K-PKB-GSK3β-cyclin D1 

pathway (Kortlever, Higgins, & Bernards, 2006). The heterogeneity of SASP composition 

was detected across the senescence models, including the combination of senescence 

induction, strength of DNA damage, intercellular environment and cell type (Coppe et al., 

2008; Coppe et al., 2011; Maciel-Baron et al., 2016). Among them, we still observed 

conserved components of SASP, including cytokines IL-6 and IL-8, serving as 

pro-inflammatory factors to trigger intercellular inflammation (Soto-Gamez & Demaria, 

2017). Different stimuli that mentioned in inducers of CS, has different SASP contents due to 

the diverse durations of DDR (Coppe, Patil, et al., 2010). Interestingly, SASP can only be 
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detected within cells having DNA damage process, while direct p21
WAF1/CIP1

 or p16
INK4A

 

overexpression fails to form SASP (Coppe et al., 2011). For the non-genome DNA sequence, 

the dysfunction of mitochondrial activity results in distinct senescence-associated secretome 

(Wiley et al., 2016). SASP components, such as IL-6 and IL-1A, can reinforce senescence 

phenotype via autocrine pathway, while other factors, which have non-cell autonomous 

effects, can induce DDR in nearby healthy, proliferating cells (Nelson et al., 2012).  

Since DNA damage is the necessary factor to trigger SASP, some nuclear and cytoplasmic 

contents such as DNA fragments, degraded peptides, transposable elements, and toll like 

receptors (TLR) have been known to induce DDR. SASP secretion can be delivered into 

extracellular environment via different ways. For soluble protein factors, such as interleukins, 

chemokines, and growth factors, they can be directly secreted into microenvironment, while 

other molecules need membrane protection from extracellular degradation (Stow & Murray, 

2013).  

Senescence-associated Extracellular Vesicles 

Extracellular vesicles (EVs) are secretions of a variety of cells with lipid membrane, in which 

components from host cells can be released into extracellular environment (van Niel, 

D'Angelo, & Raposo, 2018). Senescent cells were reported to have more EVs production than 

proliferating cells, to release more toxic cytoplasmic DNA fragment and maintain cellular 

homeostasis (Takahashi et al., 2017). It has been demonstrated that EVs from senescent cells 

can induce senescence phenotype via paracrine senescence in healthy cells, showing their 

importance in intercellular mediation (Jeon et al., 2019). Additionally, as secretome from 

senescent cells, EVs can enhance cancer cell proliferation in a more distal manner (Takasugi 
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et al., 2017). EVs have different types of extracellular RNAs (exRNAs), including mRNA 

fragments, miRNA, snRNA, tRFs and Y RNA, and they are found to be expressional 

correlated with several age-related process (Takasugi, 2018), whereas the direct effects of 

exRNAs from cell-cell communication should be further elucidated (Gruner & McManus, 

2021). 

Telomere Shortening 

As a process accompanying DNA replication, telomere shortening is the dominant theory of 

replicative aging among primary cells (d'Adda di Fagagna, 2008). There are shortened 

telomeres by passaging, and when they are cut down to a certain “threshold” length, the 

double-strand breaks (DSBs) and cell cycle arrest pathways would be triggered (d'Adda di 

Fagagna, 2008). Meanwhile, whether telomere-associated DSBs can be repaired depends on 

their proliferative capacity (Doksani & de Lange, 2016; Hewitt et al., 2012). The dynamics of 

telomerase activity has been observed during cellular aging in vitro/vivo and corresponding 

activity is inversely correlated with senescence (Bernadotte, Mikhelson, & Spivak, 2016; 

Cheng et al., 2019).  Previous study showed that increased cell soma, prolonged cell cycle 

time and also reduced telomere length were simultaneously detected during cell aging 

(Nassrally et al., 2019). These typical phenotypes were barely observable in telomerase 

overexpressed cells, indicating the potential functions of telomerase against cellular aging 

(Nassrally et al., 2019). During the process of telomere shortening, it has been demonstrated 

that telomere-binding proteins, the “shelterins”, can protect telomere from recognition by 

DNA damage response related proteins that initialize CS (de Lange, 2018), and oxidative 

stress induced senescence can reduce shelterin levels in the nucleus (Swanson, Baribault, 
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Israel, & Bae, 2016). As one of shelterin partners, TRF2 relocates from telomere to 

non-telomeric chromatin regions during telomere shortening, to regulate DNA modifications 

and transcription (Mukherjee et al., 2018). These results indicate that progression of cellular 

aging to CS is a gradual process with gradient phenotypic changes in cell cycle time, cell size, 

metabolic shift and telomere shortening. 

Molecular Dynamic during Cellular Senescence 

Molecularly, senescent cells are characterized by high expression of Cdkn2a (p16) and 

Cdkn1a (p21), which are involved in corresponding pathways of cell cycle inhibition 

(Munoz-Espin & Serrano, 2014). Other genes involved in p53/CDKN1A (p21) and CDKN2A 

(p16)/pRB senescence induction pathways are also commonly selected as senescence markers 

using multiple protein abundance assays (R. Zhang & Adams, 2007). Also, the 

senescence-associated secretory phenotype (SASP) is induced during cellular aging process 

and secretion of some senescence-associated cytokine, chemokines, growth factors and 

proteases triggers pro-inflammation, wound healing and growth responses in the tissue 

microenvironment (Cuollo, Antonangeli, Santoni, & Soriani, 2020). With growing number of 

senescence models in cell and animal model level, however, senescence heterogeneity was 

recognized when senescent cells showed varying degrees of response to senolytics (Cohn et 

al., 2022). These two cell cycle arrest biomarkers (p16 and p21) are insufficient conditions for 

senescence detections, since some p16 highly expressing cells don’t have other necessarily 

senescent phenotype (Hall et al., 2017), and some senescent cells do not show up-regulation 

of p16 due to different cell types and inductions (Casella et al., 2019; Yosef et al., 2017). 

Hernandez-Segura et al. used genome-wide transcriptome datasets from both human and mice 
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fibroblasts across multiple senescence stages, and identified specific senescence signatures 

under different inducers and cell types (Hernandez-Segura et al., 2017). As one of 

senescence-associated lysosomal enzymes, senescence-associated β-galactosidase 

(SA-β-galactosidase) has increased activity in aging cells, while its specificity in senescence 

detection was suspected as SA-β-gal is also active in proliferative nuerons and developing 

embryos (de Mera-Rodriguez et al., 2021; Piechota et al., 2016). Senescence heterogeneity 

was also observed in context of different tissues. By using single-cell RNA sequencing 

(scRNA-seq), previous study identified the p16 and p21 highly expressing cells in adipose 

tissues from obese and aged mice, and these cells were categorized into two populations 

based on their cell types, tissue location and physiological roles (B. Wang et al., 2021; L. 

Wang et al., 2022). In healthy and young mouse livers, endothelial cells have the highest p16 

expression, and p16 is also abundant in epithelial cells of healthy and young mouse kidneys 

(Omori et al., 2020). There were different cell types (including astrocytes, pericytes, 

endothelial cells, and glial cells) from mouse retinas suffered from proliferative retinopathies 

having expression of senescence associated genes (Avelar et al., 2020). The novel senescence 

marker, Col1a1, was identified in senescent retina endothelial cells (Crespo-Garcia et al., 

2021). 

Apart from proteins participating in cell cycle arrest pathways and intercellular 

communication via SASP, non-coding RNAs show emerging roles in regulating CS 

transcriptionally, post-transcriptionally and translationally (Abdelmohsen & Gorospe, 2015; 

Puvvula, 2019). miRNAs are one type of non-coding RNAs that play vital roles in mediating 

functional activity of gene targets (Bartel, 2009). The mature miRNAs cleaved by Dicer 
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mainly bind to the 3’untranslated region (3’UTR) of target mRNA to induce mRNA 

degradation and lower translation efficiency (O'Brien, Hayder, Zayed, & Peng, 2018). Recent 

study also reported other anchor points of miRNAs within 5’UTR, coding sequence, and gene 

promoters (Broughton, Lovci, Huang, Yeo, & Pasquinelli, 2016). Several studies revealed that 

some miRNAs, including miR-34a, miR-22, miR-217, miR-138, miR-181a and miR-181b, 

induced senescence by inhibiting SIRT1 (silent mating type information regulator 2 homolog 

1) expression, which can inhibit endothelial progenitor cell senescence (Jazbutyte et al., 2013; 

Menghini et al., 2009; Rivetti di Val Cervo et al., 2012; T. Zhao, Li, & Chen, 2010). Increased 

expression of miRNAs involved in let-7 family can induce senescence by reducing 

accumulation of proteins that essential for cell proliferation such as EZH2 and HMGA2 

(Markowski et al., 2011; Tzatsos et al., 2011). Some miRNAs, including miR-25 and 

miR-30d, can directly target the 3’UTR of p53 mRNA, thus inhibit corresponding effects on 

cell cycle arrest and senescence (M. Kumar et al., 2011). On the other hand, miRNAs can 

target cyclin dependent kinase 2 (CDK2) and minichromosome maintenance complex 

component 5 (MCM5) to accumulate p53 proteins and activate downstream senescence 

associated genes (Afanasyeva et al., 2011). As another important axis of senescence induction, 

pRB/p16 pathway includes some validated miRNAs to directly or indirectly regulate the 

abundance of p16 (Overhoff et al., 2014; Philipot et al., 2014). There are 4 miRNAs, miR-15b, 

miR-24, miR-25, and miR-141, concomitantly inhibit the expression of MAPK 

(mitogen-activated protein kinase) kinase 4 (MKK4), and they were down-regulated in 

senescent human diploid fibroblasts (HDFs) (Marasa et al., 2009). When the joint reduction of 

these four miRNAs was performed, there was activated p38 regulated by increased MKK4, 
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resulting in elevated p16 and promoted senescence phenotype (Marasa et al., 2009). 

Meanwhile, long non-coding RNAs (lncRNAs), the single-stranded RNAs lacking the 

potential to encode proteins, have been reported to influence cell proliferation, differentiation, 

apoptosis, stem cell homeostasis and division in a spatiotemporally specific way (Puvvula, 

2019). Several studies revealed that senescence induction through pRb/p16 pathway was 

tightly regulated by lncRNAs (Aguilo, Zhou, & Walsh, 2011; Montes et al., 2015; Sang et al., 

2016). For example, lncRNA Urothelial Cancer-Associated 1 (UCA1) has been determined 

that it can trigger pro-senescence phenotype by avoiding the binding between heterogeneous 

nuclear ribonucleoprotein A1 (hnRNPA1) and p16 mRNA, to promote p16 mRNA retention 

and translation in both autocrine and paracrine ways (P. P. Kumar et al., 2014). Also, in 

p53/p21 pathway, long intergenic non-coding RNA-p21 (LincRNA-p21) was activated by p53 

to recruit mRNA-binding proteins hnRNP-K on the promoter of p21 and initiated CS 

(Dimitrova et al., 2014). Apart from that, other lncRNAs such as P21 Associated NcRNA 

DNA Damage Activated (PANDA), Maternally Expressed Gene 3 (MEG3), P53 Induced 

Noncoding Transcript (Pint), P53 Regulation Associated LncRNA (PRAL), LINC00673, 

Focal Amplified LncRNA On Chromosome 1 (FAL1), BRAF-Activated Noncoding RNA 

(BANCR) and Ovarian Adenocarcinoma Amplified lncRNA (OVAAL) showed functional 

association with p53/p21 pathway induced senescence by directly or indirectly regulating 

corresponding transcription or translation (Cho, Kim, Back, & Jang, 2005; Hu et al., 2014; 

Marin-Bejar et al., 2013; Puvvula et al., 2014; Roth et al., 2018; Shi et al., 2015; Su, Wang, Qi, 

Wang, & Zhang, 2017; Zhou, Zhang, & Klibanski, 2012). 

Immunosurveillance during Cellular Senescence 
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The accumulation of senescent cells in our body always correlates to individual aging. To 

efficiently eliminate exceeding amount of senescent cells, immune surveillance through 

multiple immune cells (including macrophages, NK cells, T cells, CAR-T cells and dendritic 

cells) can specifically recognize senescent cells in different pathological conditions (Song, An, 

& Zou, 2020). Due to distinctive characteristic of ligands, different types of senescent cells 

can recruit corresponding immune cells for immune surveillance. For example, senescent 

hepatic stellate cells with specific cell-surface ligands MICA and ULBP2 are targeted and 

removed by natural killer cells (Krizhanovsky et al., 2008). Macrophages are important 

players in removing senescent uterine cells for maintaining postpartum uterine function in 

wide-type mice (Egashira et al., 2017). In murine hepatocytes, CD4+ T cells can directly 

remove tumors or senescent cells by recognizing MHC II surface protein, to prevent mouse 

liver cancer (Kang et al., 2011). 

 

HUMAN AGING 

Aging is considerably the most complex phenotype that occurs in humans. People always 

suffer from different aging processes in different organs with diverse strengths. Herein, we 

summarize the usual age-related features and corresponding diseases, and also discuss the 

association between senescent cell accumulation and aging process. 

Age-related Phenome and Diseases 

During aging process, the most common phenotype we can observe is wrinkles on the skin 

and gray hair. Meanwhile, our organ systems, such as skeletal system, muscular system, 

circulatory system, respiratory system, urinary system, digestive system, immune system, 
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nervous system, and endocrine system, will encounter age-related dysfunction in diverse 

extents. For example, normal aging process including hearing loss (Davis et al., 2016), visual 

acuity (Evans et al., 2002), muscle atrophy (Dodds et al., 2017), and immunosenescence 

(Bandaranayake & Shaw, 2016) are prevalent among elderly. Also, other chronic diseases 

such as cardiovascular disease, hypertension, Parkinson’s disease, Alzheimer’s disease and 

cancer show high incidence among old individuals, as chronic inflammation persistently 

happen in multiple senescent tissues (Sanada et al., 2018). Andreassen et al. utilized text 

mining and enrichment analysis to generate a comprehensive description of the human aging 

phenotype and with further identifying the association between features, a tissue specific 

aging phenome clustering was calculated (Andreassen, Ben Ezra, & Scheibye-Knudsen, 

2019). 

Association between Cellular Senescence and Human Aging 

In old individuals, there is an increasing rate of senescent cell accumulation, and whether CS 

results in or is a consequence of age-related impairment of immune system is still debatable.  

From recent studies we know that SASP can recruit immune cells and induce immune 

surveillance dysfunction (Prata, Ovsyannikova, Tchkonia, & Kirkland, 2018), and 

extracellular matrix (ECM) remodeling of senescent cells may also hinder the access of 

immune cells (Fane & Weeraratna, 2020). Nevertheless, the precise mechanism of clearance 

of senescent cells by the immune system and corresponding impairment is still need to be 

further investigated. Human aging is an unavoidable process and indicates increasing 

susceptibility to disease and death (Lopez-Otin, Blasco, Partridge, Serrano, & Kroemer, 2013). 

Particularly, the long-term retention of senescent cells can lead to senescence stresses to other 
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proliferative cells and their interaction via chemical signaling will disrupt tissue homeostasis 

and lead to aging and age-related disease (Baker et al., 2011). Due to the heterogeneous 

human phenotype of aging that are initiated in different tissues, there are debility and 

dysfunction of diverse biological processes that related to accumulated CS. Combined with 

human aging phenome, it is therefore very necessary to determine the precursory biomarkers 

of CS and individual aging and to efficiently perform interventions for healthy aging. 

 

MACHINE LEARNING FOR BIOMARKER DISCOVERY 

With the rapid technology improvement and exponential growth of research and clinical data 

storage, there are plenty of valuable resources for us to utilize and develop approaches for 

senescence and aging related assessment and biomarker discovery. When machine driven 

methods successfully construct visible and computable data with suitable phenotypic range, 

appropriate analysis strategies can extract important features that contribute most to 

phenotype we focus on (Osborne et al., 2020). Machine learning (ML) techniques have been 

spread rapidly and used in inferring knowledge about molecular biology, physiology, 

electronic health records due to its particular ability to handle large datasets, and to make 

predictions (Chicco, 2017). Here the application of ML to CS and human aging for biomarker 

identification is discussed below. 

Image Based Biomarkers  

Based on cellular morphological dynamics during CS, Oja et al. utilized automated imaging 

system to longitudinally track mesenchymal stromal cells (MSCs) via population doubling 

numbers, and cell enlargement was important parameter to predict senescence level through 
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supervised machine learning applications (Oja, Komulainen, Penttila, Nystedt, & Korhonen, 

2018). Convolutional neural networks (CNN) based image classification for distinguishing 

cell morphology was employed after ectopically expressing senescence inducer genes and 

anti-senescence drugs was identified through predicted senescence probability (Kusumoto et 

al., 2021). A Senescence-associated morphological profiles (SAMPs) were established for 

senescence marker detection across the context of senescence and heterogeneity between 

models of senescence was explored both through cell type and induction specific 

morphological feature (Wallis et al., 2022). In clinical diagnostic, magnetic resonance images 

from healthy individuals and patients with cognitive dysfunction were used to develop a clock 

predictive of cognitive ageing with multiple regression algorithms (Vemuri et al., 2018). 

High-throughput Data Based Biomarkers 

The advent of high-dimensional data improves our understanding of genetic regulation in 

global level. Meanwhile, the complexity of generated data hinders the progress of importance 

determination. ML can narrow down the amount of input variables and retain core factors 

with more predictive power for biomarker identification (Putin et al., 2016). Collection of 

endothelial cell (EC) RNA-seq data was employed to investigate consensus features of EC 

senescence in gene and pathway level via ML-based meta-analysis, which facilitates the 

development of therapeutic targets of numerous systemic vascular dysfunction (Park & Kim, 

2021). In regression algorithms, a series of “aging-clocks” have been developed using omics 

like data (methylation (Horvath, 2015), transcriptomics (Shokhirev & Johnson, 2021), 

proteomics (Johnson, Shokhirev, Wyss-Coray, & Lehallier, 2020), metabolomics (Hertel et al., 

2016) and microbiomics (Galkin et al., 2020)), to capture dynamics that occur over age or 
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detect age-related pathologies.     

Text-based Biomarkers 

When there are plenty of studies reported with certain context of senescence models, it is 

difficult to summarize the complexity of the aging process and text mining strategies have 

been employed in biomedical research. Since the growth of clinical and research data 

publication, we should collectively and accurately identify the most related phenotype and 

treatments to the certain cases (Jensen, Jensen, & Brunak, 2012). It is an efficient way to 

determine the power of relationship between biological process and corresponding signature 

that participate in. For example, Fernandes et al. established datamining endeavors and 

revealed relationship between certain genes and age-related processes (Fernandes et al., 2016). 

Additionally, a weighted interaction network between features can be developed through 

text-mining unstructured key-word data in large cohort studies (Westergaard, Moseley, Sorup, 

Baldi, & Brunak, 2019).
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CHAPTER II 

 

META-ANALYSIS OF UNIVERSAL SIGNATURE IN CELLULAR SENESCENCE USING 

TRANSCRIPTOMIC STUDIES 

ABSTRACT 

Cellular senescence is an inevitable process of cell development and these senescent cells 

still serve as a mechanically vital part in regeneration, repair and disease progression. Cell 

senescence can be identified in multiple senescence-associated traits including 

senescence-associated protein, cell cycle arrest, DNA damage, enlarged cell area, and 

beta-galactosidase activity. Nevertheless, the heterogeneity of senescence features across diverse 

cell types and triggers of senescence arrest our further knowledge of nature of senescence. Here, 

we collected senescence-associated RNA sequencing datasets across different human cell types 

and senescence inductions to investigate the common features in a transcriptomic level. A total of 

417 differentially expressed genes (DEGs) were identified in a meta-analysis way and 34 hub 

DEGs with strong inter-gene connectivity were found in co-expression networks. Then, machine 

learning-based logistic regression model was established to extract gene-level deduced features 

and 10 genes with non-zero coefficients were eventually confirmed in the model. Also, 

pathway-level features were determined through Pathifier algorithm-calculated pathway 

deregulation score (PDS), and processed model of 18 non-zero coefficients pathways showed



 

47 
 

that pathways in histone modifications and tRNA modification in the nucleus and cytosol were 

representative in discrimination of senescent cells. Moreover, comparison analysis between 

senescent cells and cancer-associated fibroblasts (CAFs) projected consensus expressional 

changes, indicating shared transcriptome profiles may play potential roles in tumorigenesis. 

Taken together, we discovered the shared senescence-associated biomarkers in gene- and 

pathway-level analysis, and also facilitated the understanding of common properties between 

senescent cells and CAFs. These findings may enable possibilities to specifically target 

deleterious senescent cells in vivo and development of knowledge in cancer-associated cells. 
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INTRODUCTION 

Cellular senescence (CS) was thought as a state of permanent cell cycle arrest after a certain 

number of cell division in culture. This type of senescence was first described by Hayflick and 

Moorhead upon observation in normal diploid fibroblasts (Hayflick & Moorhead, 1961). CS is 

one of the vital biological processes for tissue homeostasis, embryonic development, wound 

healing and tumor prevention (Ovadya & Krizhanovsky, 2018). However, senescent cells can be 

detrimental as well and accumulate in physiologically older tissues to trigger age-related 

pathologies such as tissue degradation, tissue fibrosis, arthritis, renal dysfunction, diabetes and 

cancer (Farr et al., 2017; Ferreira-Gonzalez et al., 2018; Martin, Soriani, & Bernard, 2020; 

Milanovic et al., 2018; Song, Lam, Tchkonia, Kirkland, & Sun, 2020). Notably, intercellular 

communication through senescence-associated secretory phenotype (SASP) secretion of the 

surrounded senescent cells in vivo can establish a microenvironment that develops the 

pathogenesis of age-related diseases (Faget, Ren, & Stewart, 2019; Frey, Venturelli, Zender, & 

Bitzer, 2018; Khosla, Farr, Tchkonia, & Kirkland, 2020). 

Even though CS was mainly mirrored through cyclin-dependent kinase inhibitors and 

TP53/pRB tumor suppressor pathways (Campisi & d'Adda di Fagagna, 2007; Martinez-Zamudio, 

Robinson, Roux, & Bischof, 2017), progress to determine the common features in diverse 

senescent cells has been stagnated mainly due to the heterogeneity of cell type of origin and 

senescence triggers. Transcriptionally, significance of senescence-associated genes identified in 

meta-analysis can be masked by the variance of different cell types when data were integrated, 

even though these genes do have consistent transcriptomic alterations across senescence models 

(Casella et al., 2019; Dong, Wei, Zhang, & Wang, 2018).  

In this study, we aimed to identify consensus feature across various senescence models in 

multidimensional aspects utilizing publicly available RNA sequencing (RNA-seq) datasets. 

Collectively, there were four types of fibroblasts, two endothelial cells and one mesenchymal 
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stromal cell line under four senescence inductions included in the analysis, and RNA-seq 

Transcripts Per Million (TPM) values were processed to eliminate the variance lays upon the 

datasets. Differentially expressed genes (DEGs) were determined via meta-analysis-based 

combined probability test, and core DEGs were identified as the most contributable variables to 

CS using machine learning-based logistic regression model with least absolute shrinkage and 

selection operator (LASSO) regularization. In parallel, we determined pathway characteristics of 

CS by Pathifier algorithm. Finally, transcriptomic profile of cancer-associated fibroblasts was 

compared to senescence-associated genes, revealing a similar expressional nature, from which 

helps the understanding of tumor microenvironment. With the increasing availability of data and 

the development of computational power, of importance, our machine learning based 

meta-analysis can be employed in biomarker discovery after a series of related data integration. 

The rapid signatures’ identification through artificial intelligence methods can accelerate drug 

screening process and potent small molecules for senescent cells removal can be applied for 

treating age-related diseases caused by senescent cell accumulation.      



 

50 
 

MATERIALS AND METHODS 

Data selection 

Preliminarily, we searched the potential RNA-seq datasets on NCBI GEO (Clough & Barrett, 

2016) database with key words “cellular senescence”. Only studies using non-immortal cell lines 

and the senescent phenotype identified experimentally were selected for further analysis. In total, 

70 RNA-seq samples (35 senescent and 35 proliferating samples respectively) in three 

independent studies were included, with different cell types (including four types of fibroblasts, 

two endothelial cells and a mesenchymal stromal cell line) and senescence inductions (including 

replicative senescence, ionizing radiation, Doxorubicin and oncogene-induced senescence) 

(Table1 and Table S1). In addition, study GSE155343 was included for downstream comparison 

analysis. The complete data selection and analysis process can be viewed in Figure 1. 

Data processing 

The individual fastq file for each sample was obtained from sra file using fastq-dump in 

SRA Toolkit 2.10.9. RNA-seq data were quantified using Salmon 1.4.0 tool (Patro, Duggal, Love, 

Irizarry, & Kingsford, 2017) with indexed transcript sequences (GRCh38.p13) of H. sapiens from 

GENCODE project (https://www.gencodegenes.org/human/). Expression profile of transcripts 

was merged into the gene context and was processed through transcripts per million (TPM) 

normalization by tximport package (Soneson, Love, & Robinson, 2015) in R. 

To mitigate the inter-class effect proportion and batch effects resulted from cross-study 

datasets, we utilized class-specific quantile normalization of TPM values (Y. Zhao, Wong, & Goh, 

2020) to better preserve useful signal for further statistical feature selection. To investigate the 

relevant expressional changes in individual comparison (14 comparisons in total, Table S1), 

following formula was employed to focus on corresponding fold changes from proliferating to 

senescent status: 

𝛼 = log 2 [(𝑇𝑃𝑀′ + 1)/𝑥] 
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where TPM′ represented normalized TPM value andx indicated the weighted average 

based on the sample size of each comparison. This transformation ensured resulting values 

depicted differences caused by cell senescence (CS) in each comparison and eliminated the 

heterogeneity when using expression values across various cell types and studies.   

Differential expression analysis 

In a comparison group, samples with normalized TPM values for each gene were used to 

determine differentially expressed genes (DEGs) by Deseq2 (Love, Huber, & Anders, 2014). As a 

result, each gene obtained 14 raw p-values and whole p-vaue results were further processed in a 

meta-analysis way using fisher’s combined and inverse normal methods via metaRNASeq 

package. Genes with Benjamini Hochberg threshold less than 0.05 in both methods were 

considered as statistically significant. Additionally, genes with inconsistent expression trends 

(upregulated or downregulated) across 14 comparisons were eventually filtered out from the 

DEGs list. 

Weighted gene co-expression analysis 

To determine the CS-related gene modules, which were composed of genes with similar 

expression trends among grouped samples, weighted gene co-expression analysis (WGCNA) was 

performed via WGCNA package (v1.69.0) in R. Briefly, log2 transformed values introduced 

above were as input and a soft threshold β value was set as 7 according to the criterion of 

approximate scale-free topology (B. Zhang & Horvath, 2005) (Figure S2).  

Hub genes within CS-related module were identified with both absolute gene significance ≥ 

0.2 and absolute module membership ≥ 0.8. 

Model construction 

Under the limitation of the sample size, especially when too many variables (genes) were 

presented, it is difficult to capture generalized features through conventional statistical methods 
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(Segata et al., 2011). Thus penalized logistic regression including ridge, least absolute shrinkage 

and selection operator (LASSO) and elastic net regressions impose a penalty to the logistic model 

for high-dimension low-sample size data, and automatically shrinking coefficients of less 

contributive variables toward zero. We utilized LASSO regularization with a tuning parameter 

α=1 and true values of 0 and 1 were assigned to proliferating and senescent samples respectively 

under binomial distribution. To balance accuracy and simplicity, optimal number of genes that 

were the most contributive was selected with low mean absolute error (MAE) using leave-one-out 

cross validation (LOOCV) method (Figure S3).  

Pathway-based analysis 

To investigate the profiles of core pathways related to CS, a pathway-based analysis via 

Pathifier algorithm was performed (Drier, Sheffer, & Domany, 2013). Generally, this algorithm 

transforms gene expression-level data into pathway-level information based on deviations of 

pathway (according to known genes in pathway) among samples (assigned into multiple groups 

by phenotypes), and each sample in each pathway acquires a pathway deregulation score (PDS) 

according to the differences between case samples (senescent samples in our study) and normal 

samples (proliferating samples in our study) on principal curve. Specific principle about 

formation of principal curve and projection of each sample can be explained by Hastie and 

Stuetzle’s algorithm (Hastie & Stuetzle, 1989). 
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RESULTS 

Identification of differentially expressed genes across multiple cellular senescence subsets 

In this study, we collected RNA-seq data of non-immortal cell lines from 3 studies that 

cellular senescence (CS) phenotype had been verified through senescence tests, for example, 

senescence-associated beta-galactosidase (SA beta-gal) activity, cell cycle arrest and/or 

senescence markers detection (Table 1). A total of 70 samples were included and the individual 

experiment comparison was performed based on their cell types and senescence inductions. As a 

result, there were 14 individual differential expression comparisons conducted via Deseq2 (Table 

S1). Respective p-values from proliferating/senescent comparisons were merged in meta-analysis 

methods including Fisher’s and inverse normal combined methods. There were 17403 

differentially expressed genes (DEGs) with an adjusted p-value ≤ 0.05 in both methods. 

Furthermore, we only retained 417 genes that showed consistent expression trends across 14 

experiment comparisons (Figure 2A, Table S2). Expression profiling of senescence-associated 

genes selected from CellAge database (Avelar et al., 2020) was exhibited and there were 9 genes 

were DEGs, with one gene (PEX19) was reported to induce senescence and 8 genes (SENP1, 

EZH2, CENPA, DEK, TPR, USP1, HMGB1, DHX9) were identified to inhibit CS process (Figure 

2B). 

Also, we investigated the correlation between differentially expressed transcripts and their 

corresponding sequence conservations. Basewise and element conservation scores of human 

transcriptomic sequence compared to 20 vertebrates were obtained through PhastCons and 

Phylop computation respectively and there were 42 protein coding transcripts and 3 long 

non-coding RNAs were conserved beyond 99th percentile of the whole transcripts input (Figure 

S1, Table S3). 

Hub CS-associated genes within co-expression networks 
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Combined with DEGs related to CS, we further investigate the gene functions based on 

co-expression network construction. To avoid the genetic variance from different source of 

senescence models, we log-transformed expression values after compared with weighted average 

in each paired comparisons. After choosing 8 as an appropriate soft-threshold in weighted gene 

co-expression network analysis (WGCNA), input genes were categorized into 17 modules with 

different Pearson’s correlation coefficients between modules and senescence phenotype (Table S4 

and Figure S2). Particularly, the turquoise module had the highest correlation with CS and 

corresponding gene expressions can classify proliferating and senescent samples regardless the 

cell type of origin (Figure 3A). Hub genes within CS co-expression networks were identified 

based on threshold:  both absolute gene significance ≥ 0.2 and absolute turquoise membership 

(intra-modular connectivity) ≥ 0.8. There were 172 and 700 hub genes were up-regulated and 

down-regulated respectively (Figure 3B). Their gene ontology enrichment from Metascape 

resource (Y. Zhou et al., 2019) showed that down-regulated hub genes were enriched in pre-RNA 

processing, ribonucleoprotein complex biogenesis, nuclear transport, cell division, DNA 

replication, DNA repair and chromosome maintenance, while up-regulated hub genes were 

enriched in glycerophospholipid catabolism, myeloid leukocyte mediated immunity, lysosome, 

and cellular cation homeostasis (Figure 3C). 

To further identify differentially expressed genes with potentially core CS-associated 

function reflected by network degree (module membership), results from meta-analysis 

comparison and WGCNA were overlapped. There were 58 and 91 up-/down-regulated hub DEGs 

were found, with 2 up-regulated hub DEGs and 32 down-regulated hub DEGs having 

intra-modular connectivity ≥ 0.9 respectively (Figure 4A and 4B). Previous study suggested that 

gene expression changes were negatively related to intron retention (IR) during CS (Yao et al., 

2020), due to the unstable transcripts degradation by RNA surveillance machinery (Wong et al., 

2013; Yap, Lim, Khandelia, Friedman, & Makeyev, 2012). Thus we explored the correlation 
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between IR and expression changes and overall IR quantification was performed by IRFinder 

(Middleton et al., 2017). Intriguingly, most of up-regulated DEGs were less intron retained in 

senescent samples and genes with increased IR were more likely down-regulated (Figure 4C), 

indicating the role of precursor mRNA processing during CS. 

Feature selection of CS via model construction 

To accurately acquire a distinguishable feature of CS, a dimensional reduction of data was 

performed through supervised logistic (Binomial) regression with LASSO (least absolute 

shrinkage and selection operator) regularization. Performance of constructed model was 

evaluated and optimal regularization parameter () was determined via leave-one-out 

cross-validation (LOOCV). Based on the principle of model accuracy and simplicity, we chose 

the log of the  simultaneously having small prediction error and avoiding model over-fitting 

(Figure S3). As a result, 10 genes were identified with non-zero coefficients (Figure 5A), and 

coefficient values of 1 up-regulated gene (AL353138.1) and 9 down-regulated genes (DHX9, 

METTL17, SART3, SNX5, ELMO3, ITPRIPL1, FANCE, CDKAL1, SRSF2) are shown in Figure 

5B.  

Results of model performance from LOOCV confirmed its capability of predicting senescent 

phenotype: with 1 area under the receiver operating curve (AUROC) in overall sample 

examination, and small Binomial Deviance, misclassification error (ME), mean squared error 

(MSE) and mean absolute error (MAE) (Table 2). Also, the fitted probability for all samples 

matched their actual phenotypes (Figure 5C and Table S5). We also assessed the effectiveness of 

remained genes in discriminating senescent cells by performing principal component analysis 

(PCA), and distance between senescent and non-senescent cells (variance on the PC1 axis) 

gradually enlarged when numbers of gene decreased (Figure S4), indicating a better performance 

of data dimensionality reduction. 
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Machine learning-based pathway-level analysis 

Inspired by discriminatory pattern between proliferating and senescent cell lines in gene 

expression level, we further explored the possibility to determine universal pathway signals of CS 

across diverse cell types and senescence inductions. Logarithmic normalized data of all genes and 

pathway information from Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa & 

Goto, 2000), BioCarta (Nishimura, 2001), Pathway Interaction Database (PID) (Schaefer et al., 

2009), Reactome (Fabregat et al., 2017) and WikiPathways (Martens et al., 2021) were employed 

to integrate pathway deregulation score (PDS) through Pathifier algorithm. As a result, there were 

2719 pathways scored for each sample according to the distance between proliferating and 

senescent samples along the projected principal curve of individual pathways. After that, we used 

this pathway-level matrix to perform variables minimization by logistic regression similar to 

gene-level analysis we described and 18 pathways with non-zero coefficients were obtained via 

LASSO regularization (Figure 6A, Table S6). Notably, the two most representative pathways 

with the largest absolute coefficients were Histone modifications and tRNA modification in the 

nucleus and cytosol (Figure 6B). 

Transcriptomic features comparison with cancer-associated fibroblasts 

Next, we sought to determine if there was a similar expression profile between senescent 

cells and cancer-associated fibroblasts (CAFs), both of which are embedded in tumor 

microenvironment that associates with tumorigenesis (Liu et al., 2019; Sahai et al., 2020). We 

performed transcriptome comparison analysis between CS and CAFs from GSE155343 study 

(Table 1), and DEGs from CAFs (compared to normal skin fibroblasts) had a consistent 

expression trend during CS (Figure S5A). We further investigated relative expression fold change 

of DEGs from CS with CAFs, and intriguingly found there was a positive correlation between CS 

and CAFs based on 417 DEGs (R
2
 = 0.5253, Figure S5C). There were 115 genes that were 

differentially expressed in both CS and CAFs (Figure 7), and they were mainly enriched in cell 
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cycle related biological processes such as cell division (GO: 0051301), cell cycle phase transition 

(GO: 0044770), mitotic cell cycle phase transition (GO: 0044772), regulation of cell cycle 

process (GO: 0010564) and regulation of mitotic cell cycle (GO: 0007346) (Table 3). 

Also, we compared the expression feature between CS and colorectal cancer cells 

co-cultured normal fibroblasts (CNFs), and there was no obvious correlation (Figure S5B and D). 

We only found 5 genes were differentially expressed in both CS and CNFs (Figure S6), indicating 

a heterogeneity between CAFs and CNFs. 
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DISCUSSION 

Our study performed a quantitative meta-analysis of transcriptomic profiles in multiple 

senescence models (7 cell types and 4 senescence triggers) (Table 1) and identified consensus 

features through dimensionality reduction regression. There were 214 up-regulated and 203 

down-regulated genes among all comparison experiments (Table S2). By comparing with 

senescence-associated genes listed in CellAge (Avelar et al., 2020), there were 9 differentially 

expressed genes (DEGs) previously identified to be contributable to CS (Figure 2B). Notably, we 

took specified normalization by weighted average after individual comparisons and data were 

integrated for downstream analysis, efficiently mitigating the interfering variables from cell type 

origin (Casella et al., 2019; Dong et al., 2018).  

A total of 34 DEGs having relative high connectivity with senescence-associated phenotype 

were obtained from WGCNA and some of them have negative correlation between transcripts 

expression and intron retention (Figure 4C). For example, the down-regulated hub DEGs nurim 

(NRM) and kinesin family member 20A (KIF20A) showed higher intron retention rate in 

senescent cells while there was opportune splicing in up-regulated hub DEGs cytochrome b5 

reductase 1 (CYB5R1) and serine incorporator 1 (SERINC1). As a nuclear envelope membrane 

protein locating at the inner nuclear membrane with a six transmembrane-structure, NRM is 

slightly expressed in human brain, heart and skin tissues and plays a vital role in physiological 

process of DNA damage and repair response (Hetzer, 2010; Hofemeister & O'Hare, 2005). Also, 

NRM acts as a mediator in embryonic heart morphogenesis in mice through its alternative splicing 

variants (W. Zhang et al., 2017). Noted as a significant biomarker in several cancer lines, KIF20A 

with high-expression confers the progression of malignant phenotype (Lu et al., 2018; Ma et al., 

2019; Nakamura et al., 2020; X. Zhao et al., 2018). In drug therapeutic mechanisms of breast 

cancer cells, down-regulation of KIF20A was observed after paclitaxel treatment and cell 

senescence was achieved via mitotic catastrophe (Khongkow et al., 2016). CYB5R1 recently has 
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been identified as a necessary oxidoreductase to trigger membrane damage through phospholipids 

oxidation during ferroptosis, a form of regulated necrotic cell death.  

A machine learning-based modeling method was employed and 10 gene signals with 

non-zero coefficients were obtained for distinguishing senescent cells in simplicity and accuracy. 

The underlying function of transcriptomic features was further investigated through 

pathway-level analysis by Pathifier algorithm. Unlike other pathway enrichment analyses, 

generation of pathway deregulation score (PDS) by incorporating all included genes information 

helps to elaborate sample characteristics on multi-dimensional coordinate positioning. In our 

results, 2719 pathway information from 5 public pathway databases were reduced to 18 core 

pathways with non-zero coefficients via binomial model regression (Figure 6A, Table S6). The 

Histone modification was a pathway with the highest absolute coefficient value, and was closely 

related to microenvironment adaptation during genomic reorganization, which is initialized by 

irreparable DNA damage (Paluvai, Di Giorgio, & Brancolini, 2020). There were five histone 

modifications related genes (H3C12, H4C2, EZH2, H3C3 and SETMAR) down-regulated in our 

study and three of them (H3C12, H4C2 and H3C3) were members of histones that form core 

component of nucleosome. It is illustrious that EZH2 as a main component of polycomb repressor 

complex 2 (PRC2), which is an essential regulator of cell growth, and its high level expression 

has been verified to associate with cancer aggressiveness by silencing mostly tumor-suppressing 

genes (Chang & Hung, 2012; Sha et al., 2016). Also, oncogene-induced senescence (OIS) is 

triggered by activating tumor-suppressing genes through EZH2 repression, which leads to loosed 

methylation status on histone 3 lysine 27 (H3K27) (Paluvai et al., 2020). Notably, CDK5 

Regulatory Subunit Associated Protein 1 Like 1 (CDKAL1) is one of genes in our penalized 

model (Figure 5B) and also a member of tRNA modification in the nucleus and cytosol pathway, 

and it is a tRNA-modifying enzyme that specifically recognizes tRNALys3 to establish sufficient 

codon-anticodon binding for decoding of Lys codons (Wei et al., 2011). CDKAL1 has been 
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associated with the susceptibility to type II diabetes through impairing insulin biosynthesis, which 

can decrease insulin secretion. However, little evidence of regulatory function to the senescence 

model has been showed and further experimental investigation should be developed to clue the 

underlying mechanism of CDKAL1 in universal CS.  

We observed an interesting result that both senescence-associated genes and pathways with 

non-zero coefficients consistently showed reduced activity in senescent cells, reflected by 

negative values within logistic models (Figure 5B and Table S6). Remained genes that have 

strong recognizability between proliferating and stagnant cells should sufficiently and 

consistently exhibit expressional changes between two statuses. We found that 10 core genes in 

our regression model were considered as DEGs within more comparisons than other genes (Table 

S7). Also, 18 senescence-associated pathways were all down-regulated in senescent cells, and 

included genes were enriched in epigenomic modification and chromatin regulator. Previous 

studies mentioned that epigenetic remodeling is vital process during CS, especially resulting 

inactivation of cell cycle dependent genes (Glauche, Thielecke, & Roeder, 2011; Kargapolova et 

al., 2021; Tanaka et al., 2020). By contrast, highly expressed genes that trigger shifts of cellular 

aging are heterogeneous across different cell types, inducers and time courses, leaving diverse 

transcriptomic signatures, SASP and metabolic activity (Hernandez-Segura et al., 2017; 

Hernandez-Segura, Nehme, & Demaria, 2018; Pantazi et al., 2019). So we hypothesize that genes 

are directly related to chromosomal structure and cell cycle maintenance may show more 

consistent expression across multiple senescence models while those potential inducers of CS 

have more variations, and this should be further investigated in the future.  

Our advanced aim is to investigate the homogeneity between cancer associated fibroblasts 

(CAFs) and senescent cells. Previous studies indicated CAFs functionally promote tumorigenesis 

by angiogenesis induction and extracellular matrix (ECM) remodeling (Kalluri, 2016; LeBleu & 

Kalluri, 2018), which also mechanically applies to aging-associated cancer development by 
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senescent cells SASP secretion (Bottazzi, Riboli, & Mantovani, 2018). Expressional comparison 

was conducted and there were 36 and 79 genes both up- and down-regulated in CS and CAFs 

(Figure 7) and DEGs from CS exhibited similar tendency in CAFs (Figure S5C). Among these 

common DEGs in two statuses of fibroblasts, it is necessary to notice that two down-regulation 

genes Fanconi Anemia Complementation Group E (FANCE) and Sorting Nexin 5 (SNX5) were 

core contributors in our constructed senescence model (Figure 5B). FANCE is one of members of 

the Fanconi anemia complementation group proteins and activated in DNA repair process through 

FANC-BRCA pathway (Bouffard et al., 2015; Hodson & Walden, 2012). Recent study utilized 

prognostic model in a pan-cancer level and uncovered FANCE participated in cell apoptosis 

through the Wnt/β-catenin pathway and its up-regulation promoted the infiltration of immune 

cells (Lin et al., 2021). High expression of SNX5 is considered as a biomarker indicating poor 

prognosis in several tumor types (Ara et al., 2012; Cai et al., 2019; Q. Zhou et al., 2020), and also 

plays crucial role in insulin and glucose metabolism (F. Li et al., 2018). The advanced research is 

still needed to explore the function of SNX5 in CS and its molecular mechanism that affects 

consistently among diverse senescent cell models.  

Moreover, some identified long non-coding RNAs (lncRNAs) in our analysis provide insight 

into lncRNAs mode of action in senescence-related process. Particularly, a total of 5 lncRNAs 

(MAP4K3-DT, LINC00511, LINC01670, AC091057.1 and TMPO-AS1) obtained in both CS and 

CAFs, indicating their potential regulatory function in cell cycle arrest and further 

microenvironment construction by intercellular signaling transduction. Recent study showed that 

AC091057.1 is an immune risk signature in lung adenocarcinoma, with a positive correlation 

between expression and risk scores (Jin, Song, Chen, & Zhang, 2020). TMPO-AS1 has been 

widely studied in several tumor development and functions in cell proliferation via competing 

endogenous RNA (ceRNA) network (H. Li, Zhou, Cheng, Tian, & Yang, 2020; Mitobe et al., 

2019; Peng, Yan, & Cheng, 2020; Qin, Zheng, & Fang, 2019). Instead of high expression shown 
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in cancer cells (Agbana et al., 2020; Jiang, Xie, Bi, Ding, & Mei, 2020; Mao et al., 2019; Yu, Xu, 

& Yuan, 2019), in our study LINC00511 shows a decreased signal in CS and CAFs. 

CONCLUSION 

In closing, we took advantage of multiple computational methods to construct 

senescence-associated gene modules and pathways that consistently showed expressional 

alterations across diverse senescence experiments, while further research should be developed to 

uncover whether these core features act on CS and by what mechanisms. For biomarker discovery, 

genes and pathways identified here can describe the dynamics of senescence or abnormal 

senescence associated pathologies, and constructed classification model is still suitable for 

predicting new samples’ senescence probability. With consensus connecting CS to aging and 

cancer-related pathogenesis, the senescence model identified in this study provides potential 

molecular references for targeted tumor therapy.
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STUDY I: Figure 1 

Figure 1. A diagram of the data selection and analysis contents. GEO, Gene Expression 

Omnibus
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Figure 2. Identification of differentially expressed genes (DEGs) in meta-analysis. A. A venn diagram representing DEGs identification 

based on two meta-analysis of combined probability tests and a principle. B. Expression profile of nine example senescence-associated genes from 

CellAge database. Eight out of nine genes are roles in inhibiting senescence, with only PEX19 promotes senescence.
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STUDY I: Figure 3 
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Figure 3. Senescence-associated module in weighted gene co-expression network analysis. A. Sample clustering was conducted based on 

genes in turquoise module. Senescence annotation row with blue and red colors representing proliferating and senescent cells respectively. For cell 

type, brown, yellow and green represent fibroblasts, endothelial and mesenchymal cells respectively. B. Hub genes detection in turquoise module 

with thresholds: absoulte membership > 0.8 and absolute gene significance > 0.2.  C. Biological process in gene ontology enrichment analysis of  

down-regulated (left) and up-regulated (right) hub genes.
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Figure 4. Identification of hub DEGs. A. Venn diagrams representing the up-regulated hub 

DEGs (upper) and down-regulated hub DEGs (lower). B. Representative hub DEGs 

co-expression networks. Genes with noted names showed absolute membership > 0.9. Purple and 

orange circles represent down-/up-regulated genes respectively. C. The correlation between intron 

retention (IR) fold change and corresponding expression fold change within DEGs. 

 

STUDY I: Figure 4 
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Figure 5. Dimensionality reduction through penalized logistic regression model. A. Fitted 

plot of variable coefficients against log of penalty strength. B. Bar graph showing non-zero 

coefficients of 10 senescence-associated genes. C. Probability distribution of individual samples 

via leave-one-out cross validation (LOOCV). Samples with P and S as a suffix indicate true 

proliferating and senescent phenotypes respectively in corresponding studies.
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STUDY I: Figure 5 
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Figure 6.  Senescence-associated pathway enrichment through pathway 

deregulation score (PDS) and logistic regression model. A. 18 pathways with non-zero 

coefficients identified via PDS calculated by Pathifier algorithm. B. Examples of 

principal curves projected by the two most contributable pathways. 

STUDY I: Figure 6 
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Figure 7.  Comparison analysis between senescent cells (lower block) and cancer-associated fibroblasts (CAFs, upper block). Chords with 

orange color represent DEGs that up-regulated in both senescent cells and CAFs (with log2 (fold change) > 1 or 0~1), and chords with blue color 

represent DEGs that down-regulated in both senescent cells and CAFs (with log2 (fold change) < -1 or -1~0). 

STUDY I: Figure 7 
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Figure S1.  Transcriptomic conservation analysis of protein-coding (A) and long non-coding 

RNAs (B). Genes colored are differentially expressed protein coding/lncRNA genes and those 

conserved beyond 99
th
 percentile of the whole inputs are labeled. 

  

STUDY I: Figure 8 
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Figure S2.  Weighted gene co-expression network analysis with collected samples. A. Analysis 

of the scale-free fit index for various soft-thresholding powers (β).  B. Dendrogram of total 

genes clustered based on a dissimilarity measure (1-TOM). C. Examples of correlation between 

gene significance and module membership of genes within the three most senescence-associated 

modules. D. Sample clustering was conducted based on total genes input. Senescence annotation 

row with blue and red colors represent proliferating and senescent cells respectively. For cell type, 

brown, yellow and green represent fibroblasts, endothelial and mesenchymal cells respectively.   

 

STUDY I: Figure 9 
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STUDY I: Figure 10 

Figure S3. Mean absolute error against log of penalty strength to indentify minimum number of 

genes (upper x-axis) needed to discriminate proliferating and senescent cells in simplicity and 

accuracy.    
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Figure S4. Principal component analysis (PCA) calculated using mormalized TPM values of all 

genes (A), 417 DEGs (B) and deduced 10 genes (C) from penalized regression model. 
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STUDY I: Figure 11 
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Figure S5.  Consensus transcriptomic features between senescent cells and cancer-associated 

fibroblasts (CAFs). A. Venn diagrams representing DEGs between senescent cells and CAFs (A), 

and between senescent cells and colorectal cancer cells co-cultured normal fibroblasts (CNFs) (B). 

Expression correlation between cellular senescence (CS) and CAFs (C) and between CS and 

CNFs (D) by employing 417 DEGs.
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STUDY I: Figure 12 
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Figure S6.  Comparison analysis between senescent cells and colorectal cancer cells co-cultured normal fibroblasts (CNFs). Chords with orange 

color represent DEGs that up-regulated in both senescent cells and CNFs (with log2 (fold change) > 1 or 0~1), and chords with blue color 

represent DEGs that down-regulated in both senescent cells and CNFs (with log2 (fold change) < -1 or -1~0).  

  

STUDY I: Figure 13 



 

85 
 

Table 1. Summary of individual studies for meta-analysis. 

 

RS, replicative senescence; IR, ionizing radiation-induced senescence; DOX, Doxorubicin-induced senescence; OIS, oncogene-induced 

senescence. 

 

  

STUDY I: Table 1 

Study 
Sample 

Size N 
Title Platform Cell type(s) 

Senescence 

Factor 

Senescence 

evaluation 

GSE63577 23(45) 
RNA-seq of human fibroblasts 

during replicative senescence 

Illumina 

HiSeq 2000 

Fibroblasts (IMR-90, WI-38, 

HFF, MRC-5) 
RS 

Cell arrest, 

SA-β-gal 

activity 

GSE130727 35(37) 
Transcriptome Signature of 

Cellular Senescence 

Illumina 

HiSeq 4000, 

Illumina 

HiSeq 2500 

Endothelial cells (HAECs and 

HUVECs), Fibroblasts 

(IMR-90 and WI-38), 

Mesenchymal stromal cells 

IR, RS, 

DOX, OIS, 

SA-β-gal 

activity, 

Senescence 

markers 

GSE98440 12(26) 

Topological demarcation by 

HMGB2 is disrupted early upon 

senescence entry and induces 

CTCF clustering across cell types 

Illumina 

HiSeq 4000 

Endothelial cells (HUVECs), 

Mesenchymal stromal cells 
RS 

Cell arrest, 

SA-β-gal 

activity 

GSE155343 10(25) 

Co-cultivation of colorectal cancer 

cells and human skin fibroblasts in 

3D collagen gel and comparison of 

co-cultivated fibroblasts with CAFs 

Illumina 

NovaSeq 6000 

Skin fibroblasts, 

cancer-associated fibroblasts 
_ _ 
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Table 2. Model performance evaluation by LOOCV. 

 
Exp1 Exp2 Exp3 Exp4 Exp5 Exp6 Exp7 Exp8 Exp9 Exp10 Exp11 Exp12 Exp13 Exp14 Overall 

Binomial Deviance 2.34E-02 5.20E-03 6.54E-03 5.52E-03 1.66E-02 3.72E-02 1.23E-02 3.46E-02 1.73E-02 6.83E-02 9.41E-04 3.41E-02 5.04E-03 2.11E-02 2.02E-02 

ME 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

AUROC — — — — — — — — — — — — — — 1 

MSE 3.34E-04 1.57E-05 2.60E-05 1.93E-05 1.72E-04 8.68E-04 7.61E-05 6.48E-04 1.66E-04 2.46E-03 8.34E-07 6.99E-04 2.68E-05 5.57E-04 4.07E-04 

MAE 2.32E-02 5.19E-03 6.53E-03 5.51E-03 1.65E-02 3.68E-02 1.22E-02 3.43E-02 1.72E-02 6.70E-02 9.41E-04 3.37E-02 5.03E-03 2.08E-02 2.00E-02 

STUDY I: Table 2 

ME, misclassification error; AUROC, area under the receiver operating curve; MSE,mean squared error; MAE, mean absolute error. 
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Table 3. Gene ontology enrichment in biological process of genes that were differentially expressed in both CS and CAFs. 

GO Description Log(q-value) Hits 

GO:005

1301 
cell division -10.66532287 

CDC25B,CDC25C,CENPA,RCC1,RBL1,TOP2A,TPR,CDC7,TIMELESS,CCNB2,NCAPD

2,SMC4,KIF20A,NDC80,MAPRE3,NUSAP1,SPC25,E2F8,BORA,MYO19,MASTL,SAPC

D2 

GO:004

4770 

cell cycle phase 

transition 
-9.177431305 

CDC25B,CDC25C,CDKN2C,RCC1,EZH2,NASP,ORC1,RBL1,TFAP4,TPR,CDC7,TIMEL

ESS,CCNB2,CEP57,NDC80,E2F8,BORA,ATAD5,MASTL,TICRR,SLFN11 

GO:004

4772 

mitotic cell 

cycle phase 

transition 

-7.857466678 
CDC25B,CDC25C,CDKN2C,RCC1,EZH2,NASP,ORC1,RBL1,TFAP4,TPR,CDC7,CCNB

2,CEP57,NDC80,E2F8,BORA,MASTL,TICRR,SLFN11 

GO:001

0564 

regulation of 

cell cycle 

process 

-7.636614622 
CDC25B,CDC25C,CDKN2C,RCC1,EZH2,ORC1,RBL1,TFAP4,TPR,CDC7,CEP57,KIF20

A,NDC80,CBX5,NUSAP1,E2F8,BORA,ATAD5,MYO19,TICRR,SLFN11 

GO:000

7346 

regulation of 

mitotic cell 

cycle 

-6.345525213 
CDC25B,CDC25C,CDKN2C,RCC1,EZH2,ORC1,RBL1,TFAP4,TOP2A,TPR,CDC7,CEP5

7,NDC80,NUSAP1,E2F8,BORA,TICRR,SLFN11 

STUDY I: Table 3 
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Number cell_type treatment Phenotype Run Study 

Experi

mental 

group 

1 MRC-5 fibroblasts replicative Senescent SRR1660534 GSE63577 

Exp 1 2 MRC-5 fibroblasts replicative Senescent SRR1660535 GSE63577 

3 MRC-5 fibroblasts replicative Senescent SRR1660536 GSE63577 

4 HFF fibroblasts replicative proliferating SRR1660543 GSE63577 

Exp 2 

5 HFF fibroblasts replicative proliferating SRR1660544 GSE63577 

6 HFF fibroblasts replicative proliferating SRR1660545 GSE63577 

7 HFF fibroblasts replicative Senescent SRR1660546 GSE63577 

8 HFF fibroblasts replicative Senescent SRR1660547 GSE63577 

9 HFF fibroblasts replicative Senescent SRR1660548 GSE63577 

10 
IMR-90 

fibroblasts 
replicative proliferating SRR1660549 GSE63577 

Exp 3 

11 
IMR-90 

fibroblasts 
replicative proliferating SRR1660550 GSE63577 

12 
IMR-90 

fibroblasts 
replicative proliferating SRR1660551 GSE63577 

13 
IMR-90 

fibroblasts 
replicative Senescent SRR1660553 GSE63577 

14 
IMR-90 

fibroblasts 
replicative Senescent SRR1660554 GSE63577 

15 WI-38 fibroblasts replicative proliferating SRR1660555 GSE63577 

Exp 4 

16 WI-38 fibroblasts replicative proliferating SRR1660556 GSE63577 

17 WI-38 fibroblasts replicative proliferating SRR1660557 GSE63577 

18 WI-38 fibroblasts replicative Senescent SRR1660558 GSE63577 

19 WI-38 fibroblasts replicative Senescent SRR1660559 GSE63577 

20 WI-38 fibroblasts replicative Senescent SRR1660560 GSE63577 

21 MRC-5 fibroblasts replicative proliferating SRR2751119 GSE63577 

Exp 1 22 MRC-5 fibroblasts replicative proliferating SRR2751120 GSE63577 

23 MRC-5 fibroblasts replicative proliferating SRR2751121 GSE63577 

24 
Human Aortic 

Endothelial Cells 

ionizing 

radiation 
Control SRR9016146 

GSE13072

7 

Exp 7 

25 
Human Aortic 

Endothelial Cells 

ionizing 

radiation 
Control SRR9016147 

GSE13072

7 

26 
Human Aortic 

Endothelial Cells 

ionizing 

radiation 
Senescent SRR9016148 

GSE13072

7 

27 
Human Aortic 

Endothelial Cells 

ionizing 

radiation 
Senescent SRR9016149 

GSE13072

7 

28 
Human Aortic 

Endothelial Cells 

ionizing 

radiation 
Senescent SRR9016150 

GSE13072

7 

29 

Human Umbilical 

Vein Endothelial 

Cells 

ionizing 

radiation 
Control SRR9016151 

GSE13072

7 
Exp 8 

30 
Human Umbilical 

Vein Endothelial 

ionizing 

radiation 
Control SRR9016152 

GSE13072

7 
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Cells 

31 

Human Umbilical 

Vein Endothelial 

Cells 

ionizing 

radiation 
Control SRR9016153 

GSE13072

7 

32 

Human Umbilical 

Vein Endothelial 

Cells 

ionizing 

radiation 
Senescent SRR9016154 

GSE13072

7 

33 

Human Umbilical 

Vein Endothelial 

Cells 

ionizing 

radiation 
Senescent SRR9016155 

GSE13072

7 

34 

Human Umbilical 

Vein Endothelial 

Cells 

ionizing 

radiation 
Senescent SRR9016156 

GSE13072

7 

35 
IMR-90 

fibroblasts 
replicative proliferating SRR9016157 

GSE13072

7 

Exp 9 

36 
IMR-90 

fibroblasts 
replicative proliferating SRR9016158 

GSE13072

7 

39 
IMR-90 

fibroblasts 
replicative Senescent SRR9016161 

GSE13072

7 

40 
IMR-90 

fibroblasts 
replicative Senescent SRR9016162 

GSE13072

7 

41 WI-38 fibroblasts 
doxorubici

n 
Control SRR9016163 

GSE13072

7 

Exp 10 

42 WI-38 fibroblasts 
doxorubici

n 
Control SRR9016164 

GSE13072

7 

43 WI-38 fibroblasts 
doxorubici

n 
Senescent SRR9016165 

GSE13072

7 

44 WI-38 fibroblasts 
doxorubici

n 
Senescent SRR9016166 

GSE13072

7 

45 WI-38 fibroblasts 

Oncogene 

induced 

senescence 

(HRASG1

2V) 

Control SRR9016167 
GSE13072

7 

Exp 11 

46 WI-38 fibroblasts 

Oncogene 

induced 

senescence 

(HRASG1

2V) 

Control SRR9016168 
GSE13072

7 

47 WI-38 fibroblasts 

Oncogene 

induced 

senescence 

(HRASG1

2V) 

Senescent SRR9016169 
GSE13072

7 

48 WI-38 fibroblasts 

Oncogene 

induced 

senescence 

(HRASG1

2V) 

Senescent SRR9016170 
GSE13072

7 

49 WI-38 fibroblasts 
doxorubici

n 
Control SRR9016171 

GSE13072

7 
Exp 12 
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50 WI-38 fibroblasts 
doxorubici

n 
Control SRR9016172 

GSE13072

7 

51 WI-38 fibroblasts 
doxorubici

n 
Senescent SRR9016173 

GSE13072

7 

52 WI-38 fibroblasts 
doxorubici

n 
Senescent SRR9016174 

GSE13072

7 

53 WI-38 fibroblasts 
ionizing 

radiation 
Control SRR9016175 

GSE13072

7 

Exp 13 

54 WI-38 fibroblasts 
ionizing 

radiation 
Control SRR9016176 

GSE13072

7 

55 WI-38 fibroblasts 
ionizing 

radiation 
Senescent SRR9016177 

GSE13072

7 

56 WI-38 fibroblasts 
ionizing 

radiation 
Senescent SRR9016178 

GSE13072

7 

57 WI-38 fibroblasts replicative Senescent SRR9016179 
GSE13072

7 

Exp 14 

58 WI-38 fibroblasts replicative Senescent SRR9016180 
GSE13072

7 

59 WI-38 fibroblasts replicative Proliferating SRR9016181 
GSE13072

7 

60 WI-38 fibroblasts replicative Proliferating SRR9016182 
GSE13072

7 

61 

human umbilical 

vein endothelial 

cells 

replicative Proliferating SRR5494699 GSE98440 

Exp 6 62 

human umbilical 

vein endothelial 

cells 

replicative Proliferating SRR5494700 GSE98440 

63 

human umbilical 

vein endothelial 

cells 

replicative Proliferating SRR5494701 GSE98440 

64 
mesenchymal 

stromal cells 
replicative Proliferating SRR5494706 GSE98440 

Exp 5 65 
mesenchymal 

stromal cells 
replicative Proliferating SRR5494707 GSE98440 

66 
mesenchymal 

stromal cells 
replicative Proliferating SRR5494708 GSE98440 

67 

human umbilical 

vein endothelial 

cells 

replicative Senescent SRR5494710 GSE98440 

Exp 6 68 

human umbilical 

vein endothelial 

cells 

replicative Senescent SRR5494711 GSE98440 

69 

human umbilical 

vein endothelial 

cells 

replicative Senescent SRR5494712 GSE98440 

70 
mesenchymal 

stromal cells 
replicative Senescent SRR5494717 GSE98440 

Exp 5 

71 
mesenchymal 

stromal cells 
replicative Senescent SRR5494718 GSE98440 
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Table S1. Group information of individual samples. 

STUDY I: Table 4 

  

72 
mesenchymal 

stromal cells 
replicative Senescent SRR5494719 GSE98440 
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Table S2. Summary of differentially expressed genes.   

Biotype Upregulated in senescent cells Downregulated in senescent cells 

Protein coding 187 184 

lncRNA 20 11 

Pseudogene 6 7 

tRNA 1 0 

snoRNA 0 1 

STUDY I: Table 5 
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Table S3. Conservation score of mRNAs and lncRNAs from DEGs. 

Transcript phy_score pha_score Class 

SRSF2-210 0.860632 0.921121 DEGs_protein 

SRSF2-209 0.827105 0.908468 DEGs_protein 

SRSF2-206 0.765233 0.857697 DEGs_protein 

HNRNPH1-237 0.738281 0.8437 DEGs_protein 

TSC22D1-202 0.733067 0.888036 DEGs_protein 

SRSF2-211 0.71362 0.795004 DEGs_protein 

HNRNPR-209 0.684226 0.718123 DEGs_protein 

RPS6KB1-209 0.683355 0.9066 DEGs_protein 

SRSF2-208 0.679312 0.788096 DEGs_protein 

HNRNPH1-229 0.678444 0.791067 DEGs_protein 

SRSF2-202 0.675244 0.783137 DEGs_protein 

SRSF2-203 0.67456 0.782667 DEGs_protein 

HNRNPH1-243 0.665401 0.748022 DEGs_protein 

SRSF2-204 0.664155 0.773537 DEGs_protein 

HNRNPH1-241 0.656736 0.760172 DEGs_protein 

TTI1-205 0.63885 0.848978 DEGs_protein 

SRSF2-205 0.636194 0.754587 DEGs_protein 

SRSF4-204 0.616347 0.811764 DEGs_protein 

AMIGO1-201 0.599703 0.767536 DEGs_protein 

NDST2-204 0.594245 0.711075 DEGs_protein 

HNRNPH1-239 0.593459 0.700082 DEGs_protein 

HNRNPD-206 0.585873 0.644221 DEGs_protein 

ITPRIPL1-203 0.574443 0.776208 DEGs_protein 

HNRNPH1-227 0.568171 0.673532 DEGs_protein 

HNRNPH1-236 0.566452 0.653632 DEGs_protein 

HNRNPR-211 0.563183 0.722918 DEGs_protein 

INSYN1-201 0.562635 0.784826 DEGs_protein 

HNRNPH1-235 0.556715 0.693636 DEGs_protein 

PSIP1-207 0.543557 0.645245 DEGs_protein 

MCTS2P-201 0.539978 0.750568 DEGs_protein 

HNRNPH1-248 0.53744 0.651717 DEGs_protein 

CDKN2C-202 0.526332 0.642206 DEGs_protein 

HNRNPH1-206 0.526299 0.645861 DEGs_protein 

SLF2-205 0.526008 0.704398 DEGs_protein 

ZNF219-208 0.524834 0.646019 DEGs_protein 

ZNF219-207 0.523739 0.629575 DEGs_protein 

SOX11-201 0.522041 0.685148 DEGs_protein 

TSC22D1-208 0.520835 0.7916 DEGs_protein 

CDKN2C-203 0.506807 0.609619 DEGs_protein 

BLCAP-203 0.506098 0.646219 DEGs_protein 
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H2AC20-201 0.500655 0.696907 DEGs_protein 

HNRNPH1-247 0.487191 0.61495 DEGs_protein 

AC011603.2-201 0.785415 0.924349 DEGs_lncRNA 

AC011603.2-202 0.778402 0.918934 DEGs_lncRNA 

AC024909.1-201 0.495999 0.605128 DEGs_lncRNA 

STUDY I: Table 6 
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Table S4. Correlation between WGCNA modules and CS phenotype. 

Module Correlation P_value Number of genes included 

MEturquoise -0.86 4.00E-21 4824 

MEblack -0.73 7.00E-13 1042 

MEgrey -0.57 2.00E-07 8576 

MEpurple 0.56 5.00E-07 792 

MEtan -0.53 2.00E-06 558 

MEyellow 0.51 8.00E-06 1916 

MEblue 0.48 3.00E-05 2267 

MEgreenyellow -0.46 6.00E-05 682 

MEgreen -0.43 2.00E-04 1352 

MEbrown -0.4 6.00E-04 2200 

MEpink -0.39 9.00E-04 877 

MElightcyan 0.34 0.004 261 

MEsalmon 0.28 0.02 480 

MEmidnightblue -0.26 0.03 347 

MEmagenta 0.2 0.09 856 

MEcyan -0.19 0.1 448 

MEred -0.17 0.2 1137 

STUDY I: Table 7 
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Table S5. Model performance showed in confusion matrix. 

  
TRUE 

 

  
Proliferating Senescent Total 

Predicted 
Proliferating 35 0 35 

Senescent 0 35 35 

 
Total 35 35 70 

   
Percent Correct:  1 

STUDY I: Table 8  
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Table S6. Senescence-associated pathway analysis by Pathifier algorithm. There are18 senescence-associated pathways with non-zero coefficient values. 

Pathway Coefficient Data_source 
Number of 

genes included 

HISTONE_MODIFICATIONS -4.835926178 WP 70 

TRNA_MODIFICATION_IN_THE_NUCLEUS_AND_CYTOSOL -3.250742649 REACTOME 43 

AKT_PHOSPHORYLATES_TARGETS_IN_THE_CYTOSOL -1.827632756 REACTOME 14 

ATF4_ACTIVATES_GENES_IN_RESPONSE_TO_ENDOPLASMIC_RET

ICULUM_STRESS 
-1.63690591 REACTOME 27 

MIRNAS_INVOLVED_IN_DNA_DAMAGE_RESPONSE -1.517198898 WP 50 

CTCF_PATHWAY -1.473152695 BIOCARTA 24 

SARS_PATHWAY -1.395818678 BIOCARTA 7 

ARYL_HYDROCARBON_RECEPTOR_SIGNALLING -1.126211459 REACTOME 7 

MYC_REPRESS_PATHWAY -1.073009449 PID 63 

PENTOSE_AND_GLUCURONATE_INTERCONVERSIONS -0.533293551 KEGG 28 

UNFOLDED_PROTEIN_RESPONSE -0.507655076 WP 25 

CONSTITUTIVE_SIGNALING_BY_AKT1_E17K_IN_CANCER -0.497742696 REACTOME 26 

TNFR1_INDUCED_PROAPOPTOTIC_SIGNALING -0.424577327 REACTOME 13 

CHOLESTEROL_BIOSYNTHESIS_WITH_SKELETAL_DYSPLASIAS -0.311393491 WP 7 

INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTION -0.245089517 KEGG 48 

MUCOPOLYSACCHARIDOSES -0.235281627 REACTOME 11 

TRANSPORT_OF_INORGANIC_CATIONS_ANIONS_AND_AMINO_AC

IDS_OLIGOPEPTIDES 
-0.175521187 REACTOME 106 

METHYLATION -0.099150553 REACTOME 14 

STUDY I: Table 9 
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WP, WikiPathways database; REACTOME, Reactome Pathway database; BIOCARTA, Biocarta Pathways database; KEGG, Kyoto Encyclopedia of Genes 

and Genomes Pathways database; PID, Pathway Interaction database. 
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Table S7. Differential expression consistency among 14 experimental comparisons. 

Genes 

MS

C-5

_re

plic

ativ

e 

HFF

_repl

icativ

e 

IMR-9

0_repl

icative 

WI-3

8_repl

icativ

e 

MSC

_repli

cative 

HUVE

C_repl

icative 

HAEC_i

onizing 

radiation 

HUVEC

_ionizing 

radiation 

IMR-9

0_repl

icative 

WI-38

_doxo

rubici

n 

WI-

38_

OIS 

WI-38

_doxo

rubici

n 

WI-38_i

onizing 

radiation 

WI-3

8_repl

icativ

e 

Consi

stency 

Score 

AL353

138.1 
1 1 1 1 0 0 1 1 1 1 0 1 1 1 11 

DHX9 1 1 1 1 0 0 1 1 1 1 0 1 0 1 10 

METT

L17 
1 1 1 1 1 0 1 1 0 1 0 0 0 0 8 

SART

3 
0 1 0 1 0 0 1 1 1 1 0 0 0 0 6 

SNX5 1 1 1 1 0 0 1 1 0 1 0 0 0 1 8 

ELMO

3 
1 1 0 0 0 0 0 0 0 0 0 0 0 0 2 

ITPRI

PL1 
1 1 1 1 1 0 1 1 1 1 1 1 1 1 13 

FANC

E 
1 1 1 1 1 0 1 1 0 1 1 0 1 0 10 

CDKA

L1 
1 1 0 1 0 0 1 1 0 1 1 0 1 1 9 

SRSF2 1 1 1 1 1 0 1 1 0 1 0 0 0 0 8 

1: Considered as DEGs in this comparison; 0: Not considered as DEGs in this comparison. 
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CHAPTER III 

 

IDENTIFICATION OF NOVEL SENESCENCE-ASSOCIATED LNCRNAS BY TESTING 

CELL CYCLE REGULATION 
ABSTRACT 

Long non-coding RNAs (lncRNAs) are a class of transcripts that typically have more than 

200 bases in length without protein-coding potential. It has been demonstrated that lncRNAs can 

participate in gene regulation through interaction with DNA, RNA and proteins. Not only 

transiently changed in different types of cellular processes and diseases, lncRNAs also function as 

primary or secondary regulators for diverse pathological responses. In previous study, we 

identified 8 novel lncRNAs from integrated RNA-seq data that associated with cellular 

senescence (CS), and the underlying role of these CS-correlated lncRNAs in cell cycle related 

processes is unknown. Here, by employing Dicer-Substrate Short Interfering RNAs (DsiRNAs) 

mediated knockdowns in human primary lung fibroblasts (IMR-90), we successfully repressed 

their expression. Furthermore, we primarily investigated the effect of these lncRNAs on cell cycle 

process by measuring genes including cyclin-dependent kinases and corresponding inhibitors, cell 

proliferation assay and activity of senescence-associated β-galactosidase (SA-βGal). Repression 

of Two lncRNAs, AL353138 (Ensembl Gene ID: ENSG00000286811) and LINC01670 

(Ensembl Gene ID: ENSG00000279094) results in reduced cell proliferation activity with 

enhanced senescent phenotype. This study gives references for discovering novel lncRNAs
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regulating CS-associated cell cycle arrest and further research related to molecular mechanism 

should be developed. 
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INTRODUCTION 

Cellular senescence (CS) is generally considered an irreversible process that cells are unable 

to proliferate after the exposure to multiple stresses, which cause genomic instability and 

telomere shortening (Casella et al., 2019). In general, CS has several common features including 

stimulated activity of p53/p21 and p16/pRB pathways (Puvvula, 2019), increased cell soma 

(Nassrally et al., 2019), tendency to senescence-associated heterochromatin foci (SAHF) (Zhang 

& Adams, 2007) and senescence-associated secretory phenotype (SASP) (Basisty et al., 2020). It 

has been demonstrated that CS is beneficial for tissue homeostasis, embryonic development and 

tumor inhibition (Munoz-Espin & Serrano, 2014). However, long-term retention of senescent 

cells due to the decreased ability of immune system to recognize and eliminate these cells will 

trigger negatively age-related effects, including several pro-inflammatory and pro-tumorigenic 

processes via intercellular communication (von Kobbe, 2019). Therefore, efficiently removing 

senescent cells has been realized as important strategies to avoid CS-associated dysfunctions.  

LncRNAs are single-stranded RNAs without protein coding potential, and usually they are 

located at intronic, intergenic or antisense regions relative to the coding genes (Ponting, Oliver, & 

Reik, 2009). Compared to protein-coding genes, lncRNAs have relative low sequence 

conservation between species (Oh & Lee, 2020), and there are more spatio-temporally specific 

expression patterns that respond to certain biological process (Necsulea et al., 2014). As for 

modular principles, lncRNAs can participate in RNA-protein, RNA-DNA and RNA-RNA 

interactions via conserved regions within lncRNA genes, to bridge together distinct complexes 

and regulate biological process in a particular manner (Guttman & Rinn, 2012). Specifically, 

lncRNAs can act as “sponges” for transcriptional activators and then enhance gene expression 

(Lauer et al., 2020; Niu et al., 2020). Also, lncRNAs can serve as “decoy” to compete with 

coding RNAs (mRNAs) for binding microRNAs, therefore ensuring mRNAs stability in 

post-transcription regulation (Han, Li, Xiong, & Song, 2020; Lai et al., 2022).  
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The initiation and maintenance of CS has been studied in the past decades and corresponding 

regulatory mechanism in transcription level is gradually being explored in different cell types and 

senescence inductions. Among genes transcribed during CS, long non-coding RNAs (lncRNAs) 

were found to exhibit various roles in CS-associated processes via cell type and induction specific 

manner (Puvvula, 2019), and an increasing amount of CS-associated lncRNAs can be identified 

by integration of emerging high-throughput data.  

Previous studies have determined that lncRNAs were involved in senescence modulation via 

senescent pathways (p53/p21 and pRB/p16), as well as other senescence-associated events 

(LaPak & Burd, 2014; Venkatraman et al., 2013; Zhao et al., 2019). For instance, the lncRNA 

ANRIL is located at INK4b-ARF-INK4a locus, where encodes proteins (p15INK4b, p14ARF, 

and p16INK4a) for cell division and tumor growth (Popov & Gil, 2010). ANRIL represses INK4a 

expression by recruiting polycomb repressive complexes and increasing H3K27 methylation 

(Aguilo, Zhou, & Walsh, 2011). As a senescence-associated lncRNA, MIR31HG can affect 

senescence-triggered tumorigenesis by changing SASP contents of senescent cells, thereby 

shifting intercellular communication in cellular micro-environment (Montes et al., 2021). 

As there were growing amount of lncRNA were identified across multiple species (Li et al., 

2018; Ngoc et al., 2018; Sun et al., 2018; Yang et al., 2016), investigation of more emerging 

lncRNAs that may play roles in CS associated cell cycle arrest becomes possible. In our 

unpublished study we identified 417 common differentially expressed genes (DEGs) and 10 

universal senescence-related signatures across diverse senescence contexts, and they showed 

strong importance score in classification model for discriminating senescent cells from 

proliferating ones. Among DEGs there are 31 annotated lncRNAs constantly having expressional 

correlation with CS. Nevertheless, the actual roles of these lncRNA and whether they can directly 

mediate cell cycle process and senescence phenotype is still unknown. In this study, we 

investigate the effects of lncRNA on senescence associated gene expression and corresponding 
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phenotypic changes in human lung fibroblasts (IMR-90). Among them, there are two top ranked 

lncRNAs, LINC01670 and AL353138, their inhibition via small interfering RNA (siRNA), 

decrease cyclin gene expression. Meanwhile, reduced lncRNA expressions lead to slower cell 

proliferation activity and more senescence-associated β-galactosidase (SA-βGal) expression. This 

preliminary research opens a broad perspective for CS-associated lncRNAs identification. 
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MATERIALS AND METHODS 

Selection of senescence-correlated lncRNAs 

Based on the meta-analysis described in Chapter Ⅱ, we identified 31 differentially expressed 

lncRNAs out of 417 genes. Then senescence-associated lncRNAs were determined by integrating 

their normalized gene abundance (Transcripts Per Million, TPM) and adjusted p-value from 

fisher’s combined and inverse normal methods (Chang, Lin, Sibille, & Tseng, 2013), and their 

sum of ranks with an ascending order were used for detecting lncRNAs with relatively high 

expression and significantly different expression between proliferating and senescent cells. 

lncRNA knock-down and validation 

To investigate the effect of selected lncRNAs on cell cycle regulation, primary human lung 

fibroblasts (ATCC, cat# CCL-186) were cultured in high glucose DMEM (Gibco, cat# 10566016) 

with 10% heat inactivated FBS (Gibco, cat# 10082147) and 1% Penicillin-Streptomycin solution 

(Gibco, cat# 15140122). To avoid experimental bias caused by proliferative exhaustion of 

primary cells, all treatments were performed before population doubling level 5 (PDL5), and cells 

should come from the same experimental condition before knock-down treatment. After seeded in 

a 6-well plate for 12h, cells in each well were treated with either 10nM negative control 

Dicer-Substrate Short Interfering RNAs (DsiRNAs, Integrated DNA Technology) or 10nM 

DsiRNAs targeting the lncRNA candidate (Table S1) by Lipofectamine™ 3000 Transfection 

Reagent (Invitrogen, cat# L3000015) after 10 min incubation with 250 ul reduced serum medium 

(Gibco, cat# 31985062), and then 1750 ul 10% FBS medium was added. Another 2 ml fresh 10% 

FBS medium were refreshed after 24 h transfection. The efficiency of DsiRNA transfection was 

validated using fluorescent TYE 563 transfection control DsiRNA (Figure S1) for 24 h, and TYE 

563 labeled transfection control duplex were existed in more than 80% of total cells, indicating an 

efficient transfection reagent. The DsiRNA targeting housekeeping gene hypoxanthine 
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phosphoribosyltransferase 1 (HPRT) was used as positive control. All treatments were done with 

triplicate samples. 

RT-qPCR analyses 

Total RNA from DsiRNA treated IMR-90 cells was collected using RNAzol reagent 

(Molecular Research Center, cat# RN 190) according to the manufacturer’s instructions. cDNA 

synthesis was performed using SuperScript™ III Reverse Transcriptase kit (Invitrogen, cat# 

18080093) with manufacturer’s manual. For qPCR process, mixture including cDNA, primers of 

target genes (Table S2) and iTaq Universal SYBR Green Supermix (Bio-Rad, cat# 1725121) with 

20μl reactions under manufacturer's instructions. By employing HPRT as internal control, the 

relative expression of lncRNAs and genes related to CS and cell cycle was calculated using the Ct 

(2
-ΔΔCt

) method. All quantitative polymerase chain reaction (qPCR) analyses were performed in 

technical quadruplicates. 

Cell proliferation assay 

To assess proliferative activity of lncRNA knockdown cells, CCK-8 assay (Abcam, cat# 

ab228554) was performed based on the manufacturer’s instruction. In principle, water-soluble 

tetrazolium salt from this kit can be biological reduced by live cells, and corresponding product 

with orange formazan dye can be measured by absorbance meter at 460 nm. Cell viability was 

measured at 0h, 12h, 24h, 36h, 48 60h and 72h, with eight technical replicates at each time point.   

SA-β-galactosidase (SA-β-Gal) activity  

To assess the extent of senescent cells, β-galactosidase activity was measured after 5 days’ 

lncRNA knockdown treatment at pH 6 using SA-β-galactosidase staining kit (#9680, Cell 

Signalling Technology). Firstly growth media was removed and 2 ml 1X PBS was used to rinse 

attached cells in 6-well plate. 1 ml 1X fixative solution was added to fix cells for 10 -15 min at 

room temperature. Then cells were rinsed with 1X PBS with two times and 1 ml of the 
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β-Galactosidase staining solution was added to each well. After that cells were incubated at 37°C 

overnight (about 8 hours) and were protected from light. The development of blue color staining 

was observed under a microscope with 200X total magnification. SA-β-Gal activity was 

performed in technical triplicates. 

Statistical analysis 

All differences between two group comparisons (treatment vs. control) were analyzed via paired 

student’s t-test via GraphPad Prism 9 software (GraphPad Software, Inc., San Diego, CA, USA). 

Differences were considered significant when there is more than 95% confidence (P ≤ 0.05).
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RESULTS 

Fluctuating expression of cell cycle related gene after lncRNA inhibition 

To investigate the regulatory function of top ranked lncRNAs from our meta-analysis 

integration in Chapter Ⅱ, 5 lncRNAs were chosen as they showed detectable expression in qPCR 

analysis (data not shown). RNA was collected after 5 days’ treatment of target knockdown, and 

expression of cell cycle related genes including cyclins and corresponding kinase (CDK4), and 

hallmark of cell cycle arrest were measured. Compared to negative control transfected with 

scrambled DsiRNAs, treatment groups with lncRNA knockdown showed efficient target 

inhibition (Figure 1A-E). Treatment groups showed different expression in cyclin dependent 

kinase inhibitors, with a significantly decreased expression of p16 (CDKN2A) in AL353138-KD 

and LINC01670-KD (Figure 1F) and reduced expression of p21 (CDKN1A) in LINC01670-KD 

(Figure 1G). We also determined the mRNA expression of senescence-associated secretory 

phenotype (SASP) marker, C-X-C Motif Chemokine 1 (CXCL1), and it showed consistently 

repressed expression in all lncRNA-KD groups (Figure 1H).  

In parallel, we also measured mRNA level of cyclin families and their kinase (CDK4). 

Mitosis-involved genes G2/Mitotic-Specific Cyclin-B1 (CCNB) was not changed after inhibition 

(Figure 1I), while there was declined expression of G1/S-Specific Cyclin-D1 (CCND) within 

AC025423.4 (Ensembl Gene ID: ENSG00000257181), AL353138 and LINC01670 knockdown 

groups (Figure 1J). Interestingly, expression of G1/S-Specific Cyclin-E1 (CCNE) showed 

floating changes among different treatment groups (Figure 1K), and Cyclin Dependent Kinase 4 

(CDK4) was upregulated in AC025423.4, CU634019.5 (Ensembl Gene ID: ENSG00000280018), 

LINC01670 and LINC00511 (Ensembl Gene ID: ENSG00000227036) inhibition groups (Figure 

1L). 

Cell cycle arrest was shown after the knockdown of AL353138 and LINC01670 
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Since there were decreased expression of CCND and CCNE after the repression of 

AL353138 and LINC01670, we further identified the phenotypic alterations related to cell 

proliferation and senescence. Cell proliferation was estimated within 0-72 h post-treatment and 

significantly reduced cell viability was observed after 36h incubation in both AL353138 and 

LINC01670 knockdown groups (Figure 2A-B). Also, based on β-galactosidase activity, senescent 

phenotype was more obvious within lncRNA knockdown groups (Figure 3A-B and E-F), while 

treatment via only transfection reagent (Figure 3C and G) can cause CS to some extent compared 

to group without reagent (Blank, Figure 3D and H). 

 

  



110 
 

DISCUSSION 

In current studies, the senescence-associated lncRNAs were selected through meta-analysis 

based p-value combination and expression consistency. lncRNAs showing stable expression in all 

senescence models (inducers x cell types) were included for further analysis. To investigate these 

lncRNAs’ functional potential during CS, expression of senescence markers (p21, p16 and 

CXCL1) and mitotic coordinators (CCNB, CCND, CCNE and CDK4) was measured before/after 

lncRNA inhibition. Furthermore, the repression of two lncRNAs, AL353138 and LINC01670, 

slowed down the cell proliferation activity and more β-galactosidase activity was observed. In 

summary, even though there is no obvious change in senescence markers in transcriptome level, 

two CS-correlated lncRNA candidates may participate in cell cycle and CS via post-transcription 

or non-canonical pathways and specific mechanism needs to be further elaborated. Also, we 

provide reference list of potentially senescence-associated lncRNAs and their roles in cell cycle 

and senescence process can be investigated through more comprehensive strategies. Since the 

heterogeneity of CS it is not surprising that universal biomarkers identifying the senescence 

phenotype have been difficult to find. The discovery of senescence associated lncRNAs expands 

the understanding of senescence regulation through non-coding RNAs mechanisms, allowing us 

to pinpoint the multitude of processes driving senescence, and perhaps allowing us to remove 

senescent cells. The timely senescent cell removal improves human’s tissue homeostasis and 

reduces chronic inflammation that triggers age-related diseases.    

In previous study, there were a set of lncRNAs were validated in pRb/p16 tumor-suppressor 

and p53/p21 DNA damage response pathways (Puvvula, 2019). We didn’t observe a significant 

mRNA expression shift of senescence markers after lncRNAs knockdown, even though reduction 

of cell proliferation and elevated SA-β-gal activity were detected. We hypothesized that these 

lncRNAs may play functional roles in post-transcription or subsequent regulations during CS. For 

example, senescence-associated lncRNA 7SL has been identified that it can competitively bind to 
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3’UTR region of p53 to reduce its translation efficiency without affecting the presence of 

transcripts (Abdelmohsen et al., 2014). Similarly, Ovarian Adenocarcinoma Amplified lncRNA 

(OVAAL) is a down-regulated lncRNA under the status of cell cycle arrest, which is replaced by 

RNA-bonding protein PTBP, to promote p27 translation by binding 5’UTR regions of its 

transcripts (Cho, Kim, Back, & Jang, 2005). Whether these lncRNA candidates are involved in 

CS process as post-transcription regulators needs further verification.   

There are some limitations from our present results. We only used one type of primary cell 

line (human lung fibroblasts, IMR-90) to validate their potential function through expressional 

inhibition. Future research contents should aim to systematically understand lncRNA regulation 

in CS by including more sources of cell type in functional validation. Also, other testing methods 

that can track the senescence dynamics in post-trancription level (miCLIP, ELISA, WB, etc.) 

should be employed to specify molecular mechanism that lncRNAs participate in. Additionally, 

the toxicity of transfection reagent was observed during SA-β-gal activity measurement (Figure 

3A and B), which may directly trigger DNA damage response (DDR) mediated cell cycle arrest 

and senescence (Wang, Larcher, Ma, & Veedu, 2018). In this situation, toxicity induced 

senescence will confound the cellular metabolisms via lncRNA inhibition, making a complexity 

of explaining lncRNA-related senescence process. Advanced transfection technologies should be 

developed to avoid DDR as much as possible especially for senescence-related cellular research.  

CONCLUSION 

In summary, we propose a potential function of CS-associated lncRNAs obtained from 

meta-analysis of multiple senescent models, and their specific mechanism in affecting cell cycle 

and senescence phenotype should have detailed investigation.
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Figure 1. qPCR analysis of lncRNA targets (A-E), senescence markers (F-H), cyclin families (I-K) and their kinase (CDK4, L) after 5 days’

repression of lncRNA candidates. Significant comparisons are indicated by *P ≤ 0.05; **P ≤ 0.01. 
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Figure 2. Identification of cell proliferation activity after AL353138 (A) and LINC01670 (B) knockdown. Significant comparisons are indicated 

by *P ≤ 0.05; **P ≤ 0.01. 
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Figure 3. The senescent phenotype of AL353138 (A) and LINC01670 (B) knockdown fibroblasts assessed by monitoring SA-βGAL activity 

(micrographs, upper) and quantification of the% of β-galactosidase-positive cells compared to NC (lower). Significant comparisons are indicated 

by *P ≤ 0.05; **P ≤ 0.01.
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STUDY II: Figure 4 

Figure S1. Evaluation of DsiRNA transfection efficiency by fluorescent TYE 563 transfection 

control DsiRNA.  TYE 563 labeled transfection control duplex was existed in more than 80% of 

total cells. 
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Table S1. Information of Dicer-Substrate Short Interfering RNAs of 5 lncRNA candidates. 

Gene ID Sequence 

CU634019.5 

ENSG00000280018-1-SEQ1 

rGrUrA rCrGrU rGrCrC 

rCrUrG rUrUrU rGrCrU rGrArA 

rUrCT A 

ENSG00000280018-1-SEQ2 

rUrArG rArUrU rCrArG 

rCrArA rArCrA rGrGrG rCrArC 

rGrUrA rCrArA 

ENSG00000280018-2-SEQ1 

rGrGrA rUrCrU rGrArU 

rArArA rArCrU rGrArU rArUrU 

rGrGA G 

ENSG00000280018-2-SEQ2 

rCrUrC rCrArA rUrArU 

rCrArG rUrUrU rUrArU rCrArG 

rArUrC rCrCrA 

ENSG00000280018-3-SEQ1 

rArArU rGrCrU rArUrC 

rCrCrA rGrUrG rArUrU rGrUrA 

rCrGT G 

ENSG00000280018-3-SEQ2 

rCrArC rGrUrA rCrArA 

rUrCrA rCrUrG rGrGrA rUrArG 

rCrArU rUrCrA 

   

LINC00511 

ENSG00000227036-1-SEQ1 

rArCrU rCrUrC rArArG 

rGrUrA rGrArA rUrUrC rUrUrG 

rArUA A 

ENSG00000227036-1-SEQ2 

rUrUrA rUrCrA rArGrA 

rArUrU rCrUrA rCrCrU rUrGrA 

rGrArG rUrUrG 

ENSG00000227036-2-SEQ1 

rArUrG rGrCrA rGrArA 

rGrArC rGrCrU rUrArA rArArU 

rUrCT G 

ENSG00000227036-2-SEQ2 

rCrArG rArArU rUrUrU 

rArArG rCrGrU rCrUrU rCrUrG 

rCrCrA rUrCrA 

ENSG00000227036-3-SEQ1 rGrArU rGrGrC rArGrA 

rArGrA rCrGrC rUrUrA rArArA 
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rUrUC T 

ENSG00000227036-3-SEQ2 

rArGrA rArUrU rUrUrA 

rArGrC rGrUrC rUrUrC rUrGrC 

rCrArU rCrArU 

   

LINC01670 

ENSG00000279094-1-SEQ1 

rArCrU rUrCrA rGrUrA 

rArUrG rCrUrC rArUrU rGrUrA 

rUrUT T 

ENSG00000279094-1-SEQ2 

rArArA rArUrA rCrArA 

rUrGrA rGrCrA rUrUrA rCrUrG 

rArArG rUrArU 

ENSG00000279094-2-SEQ1 

rGrGrA rArUrC rArUrU 

rArArG rArUrU rUrCrU rArUrU 

rCrUT T 

ENSG00000279094-2-SEQ2 

rArArA rGrArA rUrArG 

rArArA rUrCrU rUrArA rUrGrA 

rUrUrC rCrUrU 

ENSG00000279094-3-SEQ1 

rArGrC rArArC rArUrA 

rUrUrG rArGrA rArCrA rGrArA 

rUrAA A 

ENSG00000279094-3-SEQ2 

rUrUrU rArUrU rCrUrG 

rUrUrC rUrCrA rArUrA rUrGrU 

rUrGrC rUrGrC 

   

AC025423.4 

ENSG00000257181-1-SEQ1 

rArArG rCrUrU rGrUrU 

rCrUrA rCrCrA rGrGrA rArUrG 

rArCA A 

ENSG00000257181-1-SEQ2 

rUrUrG rUrCrA rUrUrC 

rCrUrG rGrUrA rGrArA rCrArA 

rGrCrU rUrUrA 

ENSG00000257181-2-SEQ1 

rGrUrC rArGrA rArCrA 

rArUrU rArArA rArGrA rGrArU 

rCrAA A 

ENSG00000257181-2-SEQ2 rUrUrU rGrArU rCrUrC 

rUrUrU rUrArA rUrUrG rUrUrC 
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rUrGrA rCrArG 

ENSG00000257181-3-SEQ1 

rCrArA rGrArA rGrGrU 

rArCrU rUrUrA rArArG rUrGrU 

rCrUT A 

ENSG00000257181-3-SEQ2 

rUrArA rGrArC rArCrU 

rUrUrA rArArG rUrArC rCrUrU 

rCrUrU rGrGrC 

   

AL353138 

ENSG00000286811-1-SEQ1 

rGrGrA rArArU rGrGrG 

rArUrU rUrGrA rGrGrC rArArA 

rArCT A 

ENSG00000286811-1-SEQ2 

rUrArG rUrUrU rUrGrC 

rCrUrC rArArA rUrCrC rCrArU 

rUrUrC rCrArG 

ENSG00000286811-2-SEQ1 

rArArU rCrCrA rArArC 

rCrGrA rArArG rCrCrA rGrArA 

rGrGA A 

ENSG00000286811-2-SEQ2 

rUrUrC rCrUrU rCrUrG 

rGrCrU rUrUrC rGrGrU rUrUrG 

rGrArU rUrGrG 

ENSG00000286811-3-SEQ1 

rArArA rUrGrG rGrArU 

rUrUrG rArGrG rCrArA rArArC 

rUrAC C 

ENSG00000286811-3-SEQ2 

rGrGrU rArGrU rUrUrU 

rGrCrC rUrCrA rArArU rCrCrC 

rArUrU rUrCrC 

STUDY II: Table 1 
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Table S2. Primer pairs used in RT-qPCR analyses. 

  

Name Sequence 

HPRT-F CCTGGCGTCGTGATTAGTGA 

HPRT-R CGAGCAAGACGTTCAGTCCT 

ENSG00000280018-F GATCTGTGTCTCTCGCTGGT 

ENSG00000280018-R GGCAAAACACACCTTCTTTCC 

ENSG00000227036-F TGGCCTTGGATGGAAAGTGG 

ENSG00000227036-R CTTTCCTGGTTCAAAGCACCC 

ENSG00000279094-F GGATCTGTGTCTCTCGCTGG 

ENSG00000279094-R GGGAGGTTCTGCATCCACAT 

ENSG00000257181-F TCGGCTCTCATCCCCAACTA 

ENSG00000257181-R TGGGTTACATGGTTCCCAGC 

ENSG00000286811-F TTTGCTACATCCCAGCTCCA 

ENSG00000286811-R CAAGCCATCTGGTTCAGGCTA 

ENSG00000231312-F AAACGCCCAGACCTTCTCTG 

ENSG00000231312-R TCCAGTGGCCAGGTATCTCA 

CDKN1A(p21)-F AGGCAAAAGTCCTGTGTTCCAA 

CDKN1A(p21)-R TACTCCCCACATAGCCCGTAT 

CDKN2A(p16)-F AGACACAAAGGACTCGGTGC 

CDKN2A(p16)-R CCGGACTAGGTAGGTGGAGT 

CXCL1-F CTGGCTTAGAACAAAGGGGCT 

CXCL1-R TAAAGGTAGCCCTTGTTTCCCC 

CCND1-F CAGATCATCCGCAAACACGC 

CCND1-R AAGTTGTTGGGGCTCCTCAG 
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CCNB1-F CCCCTGCAGAAGAAGACCTG 

CCNB1-R AGTGACTTCCCGACCCAGTA 

CCNE1-F AGGGAGCGGGATGCGA 

CCNE1-R ATTGTCCCAAGGCTGGCTC 

CDK4-F TGTATGGGGCCGTAGGAACC 

CDK4-R GATCACGGGCCTTGTACACT 

STUDY II: Table 2 
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CHAPTER IV 

CHARACTERISTICS OF CIRCULATING SMALL NON-CODING RNAS IN PLASMA 

AND SERUM DURING HUMAN AGING 

ABSTRACT
 

Aging is a complicated process that triggers age-related disease susceptibility through 

intercellular communication in the microenvironment. While the classic secretome of 

senescence-associated secretory phenotype (SASP) including soluble factors, growth factors, 

and extracellular matrix remodeling enzymes are known to impact tissue homeostasis during 

the aging process, the effects of novel SASP components, extracellular small non-coding 

RNAs (sncRNAs), on human aging are not well-established. Here, by utilizing 446 small 

RNA-seq samples from plasma and serum of healthy donors found in the Extracellular RNA 

(exRNA) Atlas data repository, we successfully correlate features of human circulating 

sncRNAs with age. We observed the expression of a majority of transfer RNAs (tRNAs) 

and microRNAs (miRNAs) showed positive and negative associations with age respectively. 

We employed correlation analyses (including differential expression and maximum 

information coefficient (MIC)) and ensemble machine learning strategy to establish 

sncRNAs-based age predictors, resulting in a forecast performance where all R
2
 values were 

greater than 0.94 and root-mean-square errors (RMSE) were less than 3.7 years in three 

ensemble machine learning methods (Adaptive Boosting, Gradient Boosting, and Random
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Forest). Furthermore, age-related sncRNAs were identified based on modeling and the 

biological pathways of miRNAs were characterized by their predicted targets, including 

multiple pathways in cancer and longevity regulation. In summary, this study provides 

valuable insights into circulating sncRNAs dynamics in human aging and may lead to 

advanced understanding of age-related sncRNAs functions with further elucidation.
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INTRODUCTION 

Heterogeneity of human lifespan and health outcomes occurs due to differential aging 

process (Fleischer et al., 2018; Huan et al., 2018; Mamoshina et al., 2018). Organismal 

aging is often accompanied by dysregulation of numerous cellular and molecular processes 

that triggers age-related pathologies such as tissue degradation (Farr et al., 2017), tissue 

fibrosis (Gokey, 2021), arthritis (H. J. Lee et al., 2021), renal dysfunction (Chaib, Tchkonia, 

& Kirkland, 2021), diabetes (Palmer, Gustafson, Kirkland, & Smith, 2019), and cancer (Han, 

Li, Xiong, & Song, 2020). The highly proactive secretome from senescent cells, termed the 

senescence-associated secretory phenotype (SASP), is one of main drivers that cause age-

related pathogenesis through intercellular communication (Fafian-Labora & O'Loghlen, 

2020). SASP is mainly driven by persistent DNA damage response (DDR) (Rodier et al., 

2009), with NF-κB and C/EBPβ signaling being activated by the transcription factor 

GATA4 (C. Kang et al., 2015). Also the epigenetic changes have been known to regulate 

the SASP and reduction of the retrotransposable element line 1 (L1) increased senescence-

induced SASP (De Cecco et al., 2019). The classical SASP includes secretome of soluble 

factors, growth factors, and extracellular matrix remodeling enzymes (Coppe, Desprez, 

Krtolica, & Campisi, 2010), and it can transmit age-related information to the healthy cells 

via cell-to-cell contact. It has been reported that SASP can induce senescence in primary 

cell lines (Acosta et al., 2013) and trigger tumor progression in cancer tissues (Demaria et 

al., 2017; S. Lee & Schmitt, 2019) via paracrine senescence pathways. The good side is that 

SASP can also induce senescent cells removal in a paracrine manner, which is essential for 

tissue homeostasis (T. W. Kang et al., 2011; Xue et al., 2007).  
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As one of the emerging SASP components protected by extracellular vesicles (EVs), 

ribonucleoprotein (RNP) complexes, and lipoproteins (Gruner & McManus, 2021), 

extracellular RNAs (exRNAs) are found in many biological fluids (van Niel, D'Angelo, & 

Raposo, 2018) and can bridge the communication between „donor‟ and „recipient‟ cells 

through endocytosis, inducing paracrine senescence and pro-tumorigenic processes (Miyata 

et al., 2021; Y. Zhang et al., 2017). Deep sequencing of human plasma exRNA revealed 

more than 80% of sequencing reads mapped to small non-coding RNAs (sncRNAs) in 

human genome, including microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), 

transfer RNAs (tRNAs), small nuclear RNAs (snRNAs) and small nucleolar RNAs 

(snoRNAs) (Huang et al., 2013). Extracellular miRNA expression in plasma of mice 

changes with age and cellular senescence can affect age-related homeostasis throughout the 

body by circulating miRNA (Alibhai et al., 2020). Other studies uncovered the roles of 

circulating miRNAs in detecting age-related dysfunction such as osteogenesis imperfecta 

(Davis et al., 2017), decreased myelination (Pusic & Kraig, 2014), tumorigenesis (Abels et 

al., 2019), and cardiovascular disease (Halkein et al., 2013). It has been demonstrated that 

exRNAs can retain without rapid degradation (Skog et al., 2008) and perform in vitro 

translation in recipient cells (Ridder et al., 2015). However, whether sncRNAs can directly 

regulate aging-related process in target cells needs more investigation (Gruner & McManus, 

2021).Also, the molecular function of other circulating sncRNAs in aging and age-related 

diseases has been overlooked, and their expression profiles during human aging process 

must be further characterized.  
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To achieve this, we used 446 pre-selected small RNA-seq data from plasma and serum 

samples (age: 20-99 years). Combat batch effect correction or model fitting methods were 

used for batch effect removal, and samples showed adjusted transcriptomic feature by age 

without inter-datasets bias. Quasi-likelihood F-test and maximal information coefficient 

were employed differential expression analysis and linear or non-linear association 

measurements respectively to determine age-related sncRNAs as primary inputs for 

comprehensive machine learning modeling. Based on supervised ensemble machine 

learning models, aging estimators were created in high accuracy and sncRNAs candidates 

with top importance values in built models were considered as final age-related biomarkers. 

Additionally, pathway enrichment of targets of core miRNAs strengthens our viewpoint that 

extracellular sncRNAs change with age-related processes. This is the first study to 

systematically uncover the sncRNAs dynamics during healthy human aging process, 

providing perspective on small RNA biomarkers and small molecule therapeutics in aging 

and age-related diseases. 
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RESULTS 

Overview of integrated human small RNAs dataset 

To profile sncRNAs features during human healthy aging, we obtained small RNA-seq 

datasets from the Extracellular RNA (exRNA) Atlas data repository (https://exrna-atlas.org) 

(Murillo et al., 2019). This work includes the studies for which information on age, health 

status and gender, but only individuals having healthy aging process were retained for 

analysis. For datasets meeting the quality control standards established by the Extracellular 

RNA Communication Consortium (ERCC) (see experimental procedures), we created a 

bioinformatics procedure for reads mapping, processing, normalizing, categorizing and 

modeling (Figure 1a). As a result of these criteria, 302 plasma and 144 serum samples 

(Figure 1b) were used in this study, with a similar number of samples representing each 

gender ranging from 20–99 years old (Figure 1c). As these datasets originate from distinct 

studies with multiple sampling and library preparations, there are clear batch effects after 

Counts Per Million (CPM) normalization (Figure S1a and b). The ComBat function from 

the R package sva (v3.40.0) in Bioconductor (Leek, Johnson, Parker, Jaffe, & Storey, 2012) 

was employed to reduce or eliminate batch effect that may deviate from actual cross-study 

results (Figure S1c and d). These corrected data were used for correlation measurements and 

machine learning training described below.  

Identification of expressed sncRNAs in plasma and serum 

To determine sncRNAs expressed during aging, we considered sncRNAs with ≥ 1 

CPM in at least 30% of individuals within an age group (young (20-30), adult (31-60) and 

aged (61+) groups) as expressed sncRNAs. As a result, there were 7953 and 6476 sncRNAs 

https://exrna-atlas.org/
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observed in plasma and serum samples respectively (Figure 1a). Further, we identified 

highly expressed sncRNAs by increasing minimal CPM to 10, resulting in 1243 and 1139 

sncRNAs retained in plasma and serum samples respectively (Figure 1a, Table S1). In terms 

of distribution of sncRNAs subtypes in three age groups, miRNAs account for a high 

proportion (26.5-63.4%) of all sncRNAs in both plasma and serum, and their abundance 

consistently decreased with age (Figure 2a and b). tRNAs increased and became the 

dominant sncRNA in aged group while expression of miRNAs were reduced in older 

individuals (Figure 2a and b). The corresponding mapped reads are proportional to the 

number of each highly expressed subtype, even though miRNA showed relatively more 

sequencing reads than others in both plasma and serum (Figure 2c and d). 

Exploring the correlation between sncRNAs and human aging 

Utilizing data from batch effect corrected expressed sncRNAs, we identified 

differentially expressed (DE) sncRNAs that were up or down regulated in the aged group 

relative to either young or adult groups (FDR < 0.05). 581 plasma and 188 serum sncRNAs 

were identified as differentially expressed (Figure 3a and b), with miRNAs constituting the 

greatest number in plasma and tRNAs accounting for the greatest number in serum (Figure 

S2a and b). To understand the functional role of these DE sncRNAs, an over-representation 

analysis of targets of the DE miRNAs was performed. miRNAs were chosen as this species 

of sncRNA are the best studied of sncRNAs involved in gene regulation. Gene ontology 

(GO) biological processes of miRNA targets were detected and for plasma samples, these 

targets were enriched in melanin deposition, immune response, cell proliferation and 

metabolic homeostasis (Figure 3e). As for DE miRNAs in serum, their targets were included 
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in immune and neural system development, as well as signal transduction process (Figure 

3f). 

In parallel, we calculated the maximum information coefficient (MIC) (D. N. Reshef et 

al., 2011) to investigate both linear and nonlinear associations between sncRNAs expression 

and corresponding individual age. By employing batch-corrected data of expressed 

sncRNAs, we identified 364 and 1941 age-related sncRNAs from plasma and serum 

respectively (Figure 3c and d). Intriguingly, piRNAs became the most abundant sncRNAs in 

MIC measurement, with the number of snRNAs representing the second largest (Figure S2c 

and d). Similarly, the over-represented biological processes of miRNA targets were 

identified, and cellular response and epigenetic modification were enriched in plasma 

(Figure 3g), while biosynthetic processes were significantly observed in serum samples 

(Figure 3h).   

Core feature selection of age-related sncRNAs 

As the expression of sncRNAs changes with age, further data-driven analysis was 

conducted to construct a human aging clock. DE sncRNAs or MIC-based age-correlated 

sncRNAs were used as inputs to train regression models in plasma and serum samples. 

Compared to the linear models, including the Linear Regression (without feature selection) 

and Elastic Net (feature selection through regularization), the tree-based ensemble machine 

learning methods (including Adaptive Boosting, Gradient Boosting, and Random Forest 

regressors) showed stronger power of prediction with better performance in accuracy 

(Figure 4A), due to its great capability of learning the underlying nonlinear patterns. With 

stably ideal performance in test subsets (Table S2), all models inputting either DE sncRNAs 
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(DE_plasma and DE_serum) or age-correlated sncRNAs (MIC_plasma and MIC_serum) 

accurately predict the ages of corresponding individuals in test sets, with average R
2 
values 

greater than 0.94, root mean squared error (RMSE) values less than 3.7 years and mean 

absolute error (MAE) values less than 2 years (Figure 4).  

Notably, we also observed a gender-specific model performance. When male-only 

samples were used as training set for predicting female-only test sets or vice versa, there 

were core sncRNAs unique to one gender (Figure S3a), with slightly lower performance in 

R
2
 and RMSE values compared to the models trained in gender-mixed data (Figure S3b). 

Due to the strong generalization ability in all ensemble learning methods, core 

sncRNAs associated with aging processes were determined by combined statistics and sum 

of importance ranks in the three methods was used as the criteria for core sncRNAs 

identification. As a result, there were 293, 169, 222 and 321 core sncRNAs overlapped in all 

three methods with DE_plasma, DE_serum, MIC_plasma and MIC_serum as the inputs 

respectively (Figure S4). Particularly, 8 piRNAs, 5 snRNAs, 4 miRNAs, 2 small 

cytoplasmic RNAs and one tRNA were identified as top core sncRNAs in plasma (Table 1 

and Figure 5a), and 12 snRNAs, 4 miRNAs, 2 tRNAs, one snoRNA and one small 

cytoplasmic RNA identified as top core sncRNAs in serum samples (Table 2 and Figure 5b). 

Core miRNAs are involved in aging-related processes 

To gain further insight into extracellular sncRNAs potential functions in a 

microenvironment, we focused on miRNAs, which are well characterized in post-

transcriptional gene regulation. The targets of core miRNAs in plasma and serum were 

predicted via the integration of 8 miRNAs databases. Their expressional profile in three age 
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groups is in Figure S5 and corresponding targets are included in Table S3. As expected, 

these miRNA targets are enriched in canonical pathways such as AMPK, GnRH, FoxO and 

insulin signaling pathways, as well as cellular senescence, longevity regulation and 

tumorigenesis pathways closely related to aging process (Figure S6).  

We also investigated the association between miRNA targets and protein coding genes 

previously validated in the human aging process from Human Ageing Genomic Resources 

(Tacutu et al., 2018), and we found these targets were experimentally identified to be 

associated with cancer progression, senescence, aging and longevity (Figure 6), bolstering 

the probability that other non-miRNA sncRNAs also have functions in aging and aging 

related diseases. 

Furthermore, to uncover the heterogeneity of age-related sncRNAs between healthy 

control and diseased groups, we used plasma and serum small RNA-seq data from 

unhealthy individuals, including plasma samples from colon carcinoma (n=100), pancreatic 

carcinoma (n=6) and prostate carcinoma (n=36) patients, and serum samples of patients 

suffered from Alzheimer‟s (n=44) and Parkinson‟s (n=47) diseases. By performing principal 

component analysis, there was little variance within plasma unhealthy samples, and they 

tightly clustered when DE sncRNAs and age-related sncRNA were employed, regardless of 

age difference (Figure S7a and b). To exclude the possibility that these results result from 

the batch effects of sequencing, expressed sncRNAs (7953 in total) were used for principal 

component analysis, and samples from 3 carcinoma sets showed diffuse distribution as 

healthy controls (Figure S7c). By contrast, for the illness that has more association with age 

(occurs mainly in the elderly), samples collected from patients with Alzheimer‟s and 
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Parkinson‟s disease showed more similar profile as healthy aging individuals (Figure S8). 

We hypothesize that DE/age-related sncRNAs from healthy people showed no obvious 

signal in patients with less age-related lesions, while these sncRNAs have mild dynamics in 

gradually aging process, and further research about specific molecular difference between 

healthy and pathological aging is required.
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DISCUSSION 

Our study comprehensively profiled the relationship of extracellular sncRNAs with age 

in blood and built an aging clock of healthy individuals using DE sncRNAs or sncRNAs 

linear and nonlinear correlated with age. Previously, age predictors were developed through 

DNA methylation sites (Lu et al., 2019), transcriptome expression (Galkin et al., 2020; 

Shokhirev & Johnson, 2021), repeat elements (LaRocca, Cavalier, & Wahl, 2020), 

microRNAs (Huan et al., 2018) and protein abundance (Johnson, Shokhirev, Wyss-Coray, 

& Lehallier, 2020). This study provides the first detailed analysis of relationship between 

circulating sncRNAs and age based on regression models and core sncRNAs whose 

expression changes with age, allowing reliable age prediction. 

From previous human biofluids studies, differential composition of small RNA has 

been reported in multiple biofluids. Godoy et al. (Godoy et al., 2018) used 12 normal human 

biofluids including plasma and serum in their study and for mapping reads of corresponding 

RNA sequencing (RNA-seq), miRNA showed relative high fraction (63.8906%, median) in 

adult plasma compared to serum (36.0154%, median). However, the percentage of tRNA 

mapped reads in serum increased (42.2067%, median) and became the most abundant RNA 

biotype, while median value was 0.7759% in adult plasma. One study determined the 

diversity of small RNA in different biofluids, and tRNA showed the largest percentage of 

mapped reads (39.7%) in serum compared to plasma (5.8%) and whole blood (2.1%) (El-

Mogy et al., 2018). Also, in Max et al. study (Max et al., 2018), they characterized 

extracellular RNAs (exRNAs) from both plasma and serum samples of the same healthy 

volunteers, and interestingly they showed substantial differences of small RNA composition, 
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with higher proportion of miRNA in plasma and more tRNA reads in serum. We have some 

serum and plasma samples from the same individuals (Study_ID: EXR-TTUSC1gCrGDH-

AN) and consistent results were observed (Figure 2). They also concluded that different 

biofluid types, even though come from the same origin, plasma and serum show significant 

variable that impact exRNA profile. One of the reasons is that additional absorption and 

continuous degradation of exRNAs by retained blood clot will reduce exRNA abundance 

(Max et al., 2018). So proper exRNA isolation is essential and immediate platelet and cell 

debris depletion for plasma collection may avoid losses of exRNA characteristics as much 

as possible. 

It is of interest to identify a detectable increase of highly expressed tRNAs in aged 

individuals, and it has been reported that spleen and brain had the highest tRNA expression 

(Dittmar, Goodenbour, & Pan, 2006), which may indicate unique and differential biological 

process happen as individuals age. A previous report similarly finds tRNAs were the second 

most abundant sncRNAs in healthy adults (20 – 40 years) when small cytoplasmic RNA 

was not mentioned (Danielson, Rubio, Abderazzaq, Das, & Wang, 2017).Unlike tRNAs 

driving protein synthesis, tRNA-derived small RNAs (tsRNAs) including  tRNA derived 

fragment (tRF) and stress-induced tRNA halves (tiRNA), have been uncovered as aging 

process related sncRNAs (Pan, Han, & Li, 2021). Similar as human studies, the expression 

of tsRNAs increased during aging in Drosophila (Karaiskos, Naqvi, Swanson, & Grigoriev, 

2015),  C. elegans (Kim & Lee, 2019) and mouse brain cells (Dhahbi et al., 2013).  

Compared with healthy controls, differential expression of tsRNAs in age-related diseases 

has been employed in disease prediction such as Alzheimer‟s disease and Parkinson‟s 
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disease (S. Zhang et al., 2019), ischaemic stroke (Elkordy et al., 2019) and osteoporosis (Y. 

Zhang et al., 2018). tsRNAs have roles not only in potential biomarkers, but also in 

expressional regulation of age-related mRNAs (Pan et al., 2021). For example, 5ʹ-tRF
Tyr

 

from tyrosine pre-tRNA can silence PKM2, which is the inhibitor of p53, to cause p53-

dependent neuronal death (Inoue et al., 2020).  The number of highly expressed miRNA in 

our study displayed a decreased tendency in older group, and it has been observed in both 

plasma and serum. Seven of the top 8 core miRNAs identified by machine learning models 

were found to have reduced expression as age increased, similar to decreased expression of 

a majority of age-associated miRNAs in whole-blood (Huan et al., 2018), serum (H. Zhang 

et al., 2015) and peripheral blood mononuclear cells (Noren Hooten et al., 2010). 

It has been previously demonstrated that circulating sncRNAs from serum samples 

show strong association with human aging (Rounge et al., 2018), while the human aging 

modeling based on regression relationship was not yet built. In our study, potential function 

of core sncRNAs was predicted via miRNA target prediction, and these genes showed 

enrichment in cancer, cell cycle, and longevity regulating pathways. There are overlapping 

genes included in both cancer and longevity regulation pathways, and this result were 

consistent with early study that profiled miRNAs expression between young and old 

individuals (Noren Hooten et al., 2010). For example, increased PIK3R1 expression has 

been identified to impair anti-tumor effect through PI3K-Akt activation in breast and 

ovarian cancer chemotherapy (Chi et al., 2019; X. Li et al., 2019). Previous research 

determined that protein level of p85α, which is the subunit of PIK3R1, were elevated with 

age, and age-associated miRNAs that potentially target PIK3R1 were downregulated (Noren 
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Hooten et al., 2010). Interestingly, the expression of core miRNAs (hsa-miR-203a-3p, hsa-

miR-203b-3p, hsa-miR-129-2-3p and hsa-miR-372-3p) targeting PIK3R1 were lower in 

aged individuals (Figure S5). Studies in human aging also show that sequence variations 

within PIK3R1 gene are significantly correlated with longevity (Donlon et al., 2018), and 

individuals with different genotypes of PIK3R1 were associated with longevity through 

reduced mortality risk in cardiovascular disease (Donlon, Chen, Masaki, Willcox, & Morris, 

2021). Further, FOXO1 is associated with resistance to oxidative stress by increasing the 

antioxidant capacity, thereby maintaining reactive oxygen species (ROS) homeostasis and 

preventing pathological processes including cancer and other age-associated diseases (Storz, 

2011). The core miRNA hsa-miR-206 has been associated with chemo-resistance in breast 

cancer through inhibiting PI3K/Akt/mTOR signaling (H. Li et al., 2021) and its decreased 

expression in the aged group in our study corresponds to the tumor-prone phenotype in 

elderly group. Consistent with our study, increased hsa-miR-9-3p expression was observed 

in diabetic retinopathy patients, which further enhances abnormal angiogenesis that 

hampered vision therapy. The function of most of age-associated sncRNAs identified in this 

study is unknown and further investigation into their function may provide meaningful 

results.  

In our study we used DE or MIC-based age related sncRNAs as inputs for machine 

learning modeling, and there were limited overlapped sncRNAs between two methods in 

either plasma or serum samples (Figure S4). Interestingly, out of 8 overlapped sncRNAs in 

plasma samples (Figure S4), three of them (U5-L154, hsa-miR-9-3p and piR-37253) were 

top 10 core sncRNAs of DE_plasma (Table 1), indicating a high proportion (3/8) of top core 
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sncRNAs within overlapped sncRNAs. Also, there were three (U13-L308, hsa-miR-203b-3p 

and U4-L151) within top core sncRNAs of DE_serum (Table 1), out of 7 overlapped 

sncRNAs in serum samples (Figure S4). Since MIC calculates both linear and nonlinear 

associations between sncRNAs expression and corresponding individual age, it is possible 

but not necessary to have many overlaps between MIC and DEG-based sncRNA inputs, and 

MIC-based core sncRNAs with nonlinear relationship, including parabolic and sinusoidal 

correlations (Cao, Chen, Chen, Zhang, & Yuan, 2021), may have bigger importance score, 

while most of core sncRNAs from DEG inputs are obviously linear. 

We also observed the mild sex-dependent differences in the aging clock modeling. 

Similarly, a previous study indicated that sncRNAs differences between genders were minor 

(Max et al., 2018) and sex-specific training sets have relatively low performance score in 

prediction compared to the gender-mixed training sets. During this process, some gender-

dependent core sncRNAs were identified, including male-specific sncRNAs piR-31143 and 

piR-48977 in plasma, male-specific sncRNAs piR-33527 and piR-57256 in serum, female-

specific sncRNAs hsa-miR-3789 and U5-L214 in plasma and female-specific sncRNAs U6-

L989 and piR-30597 in serum. Further mechanistic study is needed to uncover their 

prospective role in aging and aging-related disease.  

A major limitation of our current study is the corresponding datasets utilized were 

developed by researchers for different, unique projects and with multiple RNA extraction 

protocols, which may bias extracellular RNA abundance (Danielson et al., 2017). 

Furthermore, trait information such as ethnicity, body mass and smoking habits were not 

considered in our study due to the lack of information, and a more sophisticated and 
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systematic sample processing and recording would help future research on big data-based 

human aging modeling.  

In conclusion, we provide a novel insight into the circulating sncRNAs profile of 

human aging. We developed predictive models in uncovering core sncRNAs and estimated 

age by utilizing meta-analysis based correlation measurement and machine learning 

modeling. With the constructed age predictor, the determination of transcriptome-dependent 

healthy aging changes can be captured, more importantly these models can be applied in 

detecting the age-associated pathologies when abnormal outputs appeared. Compared to 

healthy individuals, age prediction by sncRNA profiles of patients may show large 

variations with their actually chronological age. The sncRNA dynamics with age provide 

valuable references for extracellular RNA study in aging, and rapid small RNA biomarker 

detection facilitates the possibility for small molecule drug discovery to intervene aging 

related dysfunction. Practically, in both human health and animal production areas, the 

developed strategy in this study can be further employed to perform preprocessing, 

quantification, association identification and machine learning modeling for determining 

core features, for example, they can be genes, environmental factors, image data, phenotypic 

indexes or behavior notes, that are correlated most with variables we are interested in. 
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EXPERIMENTAL PROCEDURES 

Data acquisition and filtration 

Human small RNA-Seq datasets in the extracellular RNA (exRNA) Atlas data 

repository (https://exrna-atlas.org) (Murillo et al., 2019) were queried with studies filtered 

using the following requirements: 1) data were sequenced from plasma/serum samples; 2) 

samples have definitive age and gender information within each study, and 3) the donor of 

corresponding samples should have a healthy status and was selected as a control individual 

for the study. As a result, two studies (Accession ID: EXR-MTEWA1ZR3Xg6-AN and 

EXR-TTUSC1gCrGDH-AN) were included in both plasma and serum studies, and two 

studies (Accession ID: EXR-TPATE1OqELFf-AN and EXR-KJENS1sPlvS2-AN) were 

obtained with only plasma and serum samples respectively and 366 plasma and 188 serum 

samples passed preliminary filtration. To avoid genes‟ expressional bias due to the low 

sequencing reads and host genome contamination, we only retained samples that met the 

quality control (QC) standards developed by Extracellular RNA Communication 

Consortium (ERCC). Specifically, individual dataset should have a minimum of 100,000 

reads that aligned to annotated RNA transcript (including miRNAs, piRNAs, tRNAs, 

snoRNAs, circular RNAs, protein coding genes and long non-coding RNAs), and ratio of 

transcriptome reads over total sequencing reads should be more than 0.5. Consequently, 302 

plasma and 144 serum samples were retained for further analysis. 

Quantification and batch effect removal 

To generate expression matrices of sncRNAs, read adaptors and low quality bases were 

removed using the Trim Galore (v0.6.5) wrapper (Krueger, James, Ewels, Afyounian, & 
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Schuster-Boeckler, 2021) with default parameters. Clean reads were aligned and quantified 

with bowtie2 (v2.4.4) (Langmead & Salzberg, 2012) and samtools (v1.1.4) (Danecek et al., 

2021) through miRNAs and other sncRNAs annotation file from the miRBase (Release 22.1) 

and the DASHR (v2.0) (Kuksa et al., 2019) database, respectively. The raw sncRNAs 

expression results were integrated and processed in R (v4.1.1) computational environment 

for identifying age-related sncRNAs after preprocessing. To correct for actual expression 

characteristics masked by sequencing depth variability, gene read counts were transformed 

into CPM values after measuring normalized library sizes by edgeR (v3.14) package 

(Robinson, McCarthy, & Smyth, 2010). Since there were still obvious batch effects 

observed via principal component analysis (Figure S1), we conducted batch removal using 

the ComBat function in sva package (v3.40.0) (Leek et al., 2012), and processed CPM-

based data showed improved sample clustering by age (Figure S1). Batch-effect corrected 

data were used for identifying maximum information coefficient and constructing machine 

learning models described below. 

Differential sncRNAs expression with age 

To identify sncRNAs changing with age, samples were divided into three groups, 

including young (20-30 years), adult (31-60 years) and aged (61+ years), and CPM-based 

data were used for differential expression analyses by quasi-likelihood F-test in the edgeR 

package after considering different datasets as batch effect in a designed model. The DE 

sncRNAs (up-regulated or down-regulated in aged group compared to either young or adult 

group, FDR < 0.05) were utilized for machine learning modeling, starting with the batch 

effect removed data. 
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Identification of association between sncRNAs and age 

To select the sncRNAs representative for the age prediction model, the maximal 

information coefficient (MIC) (D. N. Reshef et al., 2011), which permits the identification 

of important, difficult-to-detect associations (Y. Zhang, Jia, Huang, Qiu, & Zhou, 2014), 

was used to determine and screen the linear or non-linear correlations between each 

sncRNA expression (X) and the individual‟s chronological age (Y). Reshef et al. (D. N. 

Reshef et al., 2011) reported that MIC − ρ
2
 to be near zero for linear relationships and MIC 

− ρ
2
 > 0.2 for nonlinear relationships, where ρ

2
 is the coefficient of determination (R

2
). We 

also employed total information coefficient (TIC) to evaluate the power of independence 

testing between X and Y (Y. A. Reshef, Reshef, Finucane, Sabeti, & Mitzenmacher, 2016). 

The sncRNAs with expression having both MIC and TIC values greater than 0.7 with actual 

age were retained for building models. 

Comprehensive machine learning modeling   

The expression data of sncRNAs selected from differential expression analysis and 

MIC-based correlation measurement were used for machine learning modeling. Since 

sncRNAs expression inputs could be seen as the explanatory variable  , which is a high 

dimensional vector, the modeling process was performed as a regression analysis problem 

and was formularized as: 

    ̂    (1) 

where   denotes the sncRNA inputs, y denotes individual‟s age and  ̂ denotes the fitted 

mapping function. Ensemble learning including Adaptive Boosting, Gradient Boosting and 

Random Forest were leveraged in this study, taking advantage of their strong generalization 
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ability achieved by multiple weak learners combination (Wang, 2006). Based on manual 

parameter tuning, the parameter “number of estimators”, which is the number of weak 

learners (i.e., the regression tree in this study) to be integrated in model fitting, was 

determined in each specific model based on the overall performance (RMSE, R
2
, and MAE, 

showed in Table S4). The performance of ensemble learning is compared with linear 

regression and elastic net. The corresponding importance of each sncRNA was calculated as 

impurity-based feature score (sum to 1), which can be used to determine the decisiveness of 

sncRNA that it makes contribution to decide individual age  (Louppe, 2014). Potentially 

core sncRNAs were determined by sorting the corresponding sum of ranks of their 

importance values in each ensemble learning model.  

Since the number of samples is different in each age group (young, adult and aged), 

simple k-fold cross-validation may cause uneven sampling and then trigger bad model 

performance due to over-fitting. Therefore, stratified k-fold cross-validation is a better 

option to avoid this issue by selecting approximately the same proportions of samples in 

each pre-set age group to the training set (Figure S9). In this study, we stratified 5-fold 

cross-validation based on the overall sample size. The regression modeling was conducted 

under Python 3.8.8 and scikit-learn 0.24.1 (Pedregosa et al., 2011). 

Targets prediction of age-related miRNAs 

To better understand the potential function of circulating sncRNAs changing with age, 

we primarily predicted the targets of miRNA candidates by using multiMiR R package 

(V3.14) (Ru et al., 2014), which integrates 8 microRNA-target databases (DIANA-microT, 

ElMMo, MicroCosm, miRanda, miRDB, PicTar, PITA and TargetScan). Only the top 20% 
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predicted targets with high sequence affinity in each database were considered as function 

related genes. 

Functional enrichment analyses 

Pathway enrichment analyses of gene targets of age-related miRNAs performed 

through Enrichr gene list-based enrichment analysis tool (Xie et al., 2021). We used the 

combined score, which is a combination of the P-value and Z-score, to offset the false 

positive rate caused by the different length of each term and input sets. For direct miRNAs 

functional enrichment, an over-representation analysis was performed via miRNA 

Enrichment Analysis and Annotation Tool (miEAA 2.0) (Kern et al., 2020), with expressed 

miRNA sets as the background set and P-values adjusted using Benjamini-Hochberg (BH) 

procedure (P-adj < 0.05).
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Figure 1. Identifying practical computational models of healthy aging via plasma and serum 

small non-coding RNAs (sncRNAs). (a) Flow chart of data preprocessing, normalizing, 

batch effect correcting and analyses of 446 blood samples. (b) Biofluids distribution from 
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healthy donors. (c) Summary form displaying sample trait information. Figure 1a was 

created with BioRender.com 

 

 

 
Figure 2. Highly expressed sncRNAs in plasma and serum. Subtype distribution of highly 

expressed sncRNAs, which meet the expression cutoff (≥ 10 CPM in ≥ 30% of samples) 

among young (20-30 years), adult (31-60 years) and aged individuals (≥ 61 years) in plasma 
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(a) and serum (b). Total sequencing reads of highly expressed sncRNAs among three age 

groups in plasma (c) and serum (d).  
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Figure 3. Identification of differentially expressed (DE) and age-related sncRNAs. DE 

sncRNAs (FDR < 0.05) sorted by FDR and fold change in plasma (a) and serum (b). MIC-

based age-related sncRNAs in plasma (c) and serum (d), identified by both MIC and total 

information coefficient (TIC) values ≥ 0.7. Over-representation analysis of biological 

process of DE miRNAs/ MIC-based age-associated miRNAs targets in plasma (e and g) and 

serum (f and h) (P-adjusted value < 0.05). 
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Figure 4. Performance evaluation of sncRNAs based aging clocks built by linear regression, 

elastic net, Adaptive Boosting, Gradient Boosting and Random Forest approaches. 

Summary of R
2
 value (a), root mean squared error (RMSE) (b), and mean absolute error 

(MAE) (c). (d) Model fit based on plasma DE sncRNAs. (e) Model fit based on serum DE 

sncRNAs. (f) Model fit based on plasma MIC-based associated sncRNAs. (g) Model fit 

based on serum MIC-based associated sncRNAs. All models were constructed using 

Adaptive Boosting method. 
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Figure 5. Circos plots representing top 100 core sncRNAs of human aging in plasma (a) 

and serum (b). Color bars demonstrate the integrated importance score of each sncRNA 

from MIC/DE based inputs. Top 10 core sncRNAs from MIC and DE based inputs are 

highlighted in red and green respectively. 
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b 



166 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Top core miRNAs are associated with human aging and aging-related disease. (a) 

Heatmap of top core miRNAs targets involved in Human Ageing Genomic Resources. 

Targets that have strong sequence affinity with at least 2 core miRNAs were shown. Core 

miRNAs were separated into 2 clusters (core miRNAs from plasma/serum trained model), 

and grids represented genes were not targets (white), targets involved in CellAge (blue), 

targets involved in GenAge (purple), targets involved in LongevityMap (green), targets 

involved in both CellAge and GenAge (brown), targets involved in both CellAge and 

LongevityMap (cyan), targets involved in both GenAge and LongevityMap (yellow) and 

targets in all three databases (red) of corresponding core miRNAs. (b) Over-representation 

analysis of KEGG pathways of miRNA targets included in Human Ageing Genomic 

Resources. 

a 
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Figure S1. Principal component analysis of plasma and serum samples before (a and b) and 

after sva batch correction (c and d). 
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Figure S2. RNA subtype of age-related sncRNAs based on differential expression (a and b) 

and maximum information coefficient (c and d). 
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Figure S3. Difference of gender-specific training sets in model performance. Overlap of 

core sncRNAs between male-/female-only training sets with non-zero importance values (a) 

and model performance with another gender data as test sets (b) 
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 Figure S4. Overlap of core sncRNAs from DE and MIC inputs in plasma (a) and serum (b) 

samples. 
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Figure S5. Expression profile of top core miRNAs in plasma (a) and serum (b). 
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Figure S6. KEGG pathway enrichment of top core miRNA targets in plasma (a) and serum 

(b). 
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Figure S7. Profile of plasma age-related sncRNAs in unhealthy samples. Principal 

component analysis of all plasma samples (healthy: EXR-MTEWA1ZR3Xg6-AN, EXR-

TPATE1OqELFf-AN and EXR-TTUSC1gCrGDH-AN; colon carcinoma: EXR-

TPATE1OqELFf-AN-1; pancreatic carcinoma: EXR-TPATE1OqELFf-AN-2; prostate 

carcinoma: EXR-TPATE1OqELFf-AN-3) by DE sncRNAs (a), MIC sncRNAs (b), and 

expressed sncRNA (c). (d) Performance evaluation of trained model by using unhealthy 

samples as validation set. RMSE: root mean squared error. 
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Figure S8. Profile of serum age-related sncRNAs in unhealthy samples. Principal 

component analysis of all serum samples (healthy: EXR-KJENS1sPlvS2-AN, EXR-

MTEWA1ZR3Xg6-AN and EXR-TTUSC1gCrGDH-AN; Alzheimer‟s disease: EXR-

KJENS1sPlvS2-AN-1; Parkinson‟s disease: EXR-KJENS1sPlvS2-AN-2) by DE sncRNAs 

(a), MIC sncRNAs (b), and expressed sncRNA (c). (d) Performance evaluation (average 

RMSE) of trained model by using unhealthy samples as validation set. RMSE: root mean 

squared error. 
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Figure S9. Stratified 5-fold cross-validation for the preprocessed data, which divides data 

into 3 groups according to the age range and preserves approximately relative same class 

frequencies in each train and validation fold.  
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TABLES 

 

Table 1. Top core sncRNAs associated with age in plasma. 

Model input Gene name RNA type Adaboost GB RF 
Sum of 

rank 

MIC_plasma piR-33748 piRNA 3 1 1 5 

MIC_plasma U5-L97 snRNA 1 2 2 5 

MIC_plasma HY3-L319 scRNA 2 6 3 11 

MIC_plasma U6-L1016 snRNA 7 7 4 18 

MIC_plasma hsa-miR-11181-3p miRNA 6 13 14 33 

MIC_plasma HY1-L12 scRNA 22 4 10 36 

MIC_plasma piR-61840-L3 piRNA 16 3 18 37 

MIC_plasma U7-L212 snRNA 18 17 11 46 

MIC_plasma piR-49811 piRNA 20 8 23 51 

MIC_plasma U1-L72 snRNA 36 5 26 67 

DE_plasma hsa-miR-129-2-3p miRNA 1 1 1 3 

DE_plasma hsa-miR-206 miRNA 2 2 2 6 

DE_plasma hsa-miR-9-3p miRNA 7 3 7 17 

DE_plasma 
tRNA-Ser-AGA-

4-1 
tRNA 10 6 3 19 

DE_plasma piR-48087 piRNA 3 14 8 25 

DE_plasma piR-37253 piRNA 8 7 11 26 

DE_plasma piR-57942-L2 piRNA 14 11 9 34 

DE_plasma piR-43192 piRNA 4 18 13 35 

DE_plasma piR-57942-L3 piRNA 15 8 15 38 

DE_plasma U5-L154 snRNA 9 17 12 38 

Importance ranking from three ensemble learning methods and corresponding sum of rank. 

Adaboost, Adaptive Boosting; GB, Gradient Boosting; RF, Random Forest. 
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Table 2. Top core sncRNAs associated with age in Serum. 

Model input Gene name RNA type Adaboost GB RF Sum of rank 

MIC_serum U5-L192 snRNA 2 9 6 17 

MIC_serum U6-L317 snRNA 27 4 4 35 

MIC_serum HY3-L199 scRNA 4 5 36 45 

MIC_serum U2-L87 snRNA 34 13 28 75 

MIC_serum U3-L6 snRNA 16 56 24 96 

MIC_serum tRNA-Thr-AGT-1-1 tRNA 96 18 2 116 

MIC_serum tRNA-Ala-AGC-8-1-tRF5 tRNA 37 44 71 152 

MIC_serum U2-L1053 snRNA 135 3 15 153 

MIC_serum U3-L119 snRNA 109 41 3 153 

MIC_serum U6-L1640 snRNA 136 10 13 159 

DE_serum U6-L1413 snRNA 1 1 1 3 

DE_serum hsa-miR-203a-3p miRNA 2 2 4 8 

DE_serum HBII-52-41 snoRNA 6 3 7 16 

DE_serum hsa-miR-203b-3p miRNA 9 5 13 27 

DE_serum hsa-miR-4642 miRNA 4 25 3 32 

DE_serum hsa-miR-372-3p miRNA 22 6 24 52 

DE_serum U4-L151 snRNA 12 17 29 58 

DE_serum U13-L308 snRNA 42 9 8 59 

DE_serum U3-L63 snRNA 20 16 23 59 

DE_serum U1-L127 snRNA 26 8 31 65 

Importance ranking from three ensemble learning methods and corresponding sum of rank. 

Adaboost, Adaptive Boosting; GB, Gradient Boosting; RF, Random Forest. 
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Table S1. Summary of highly expressed sncRNAs in plasma and serum. 

Source 
RNA 

Type 
Number 

Plasma 

miRNA 414 

tRNA 353 

piRNA 227 

snRNA 121 

scRNA 111 

snoRNA 17 

Serum 

miRNA 397 

tRNA 270 

piRNA 189 

snRNA 71 

scRNA 166 

snoRNA 46 
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Table S2. Model performance of each subset in 5-fold cross-validation. 

   
Subset1 Subset2 Subset3 Subset4 Subset5 Standard Deviation 

DE_Plasma 

Adaboost 

R^2 0.972856161 0.958557782 0.955292624 0.979727817 0.931393977 0.018681999 

RMSE 2.052642792 2.473452512 2.454547464 1.876055217 3.008545341 0.438816996 

MAE 1.552693598 1.550845074 1.706472075 1.377019049 1.614618294 0.120473968 

GB 

R^2 0.922643928 0.946930173 0.948839558 0.975180741 0.951220362 0.018636703 

RMSE 3.465173204 2.79901944 2.625723492 2.075820353 2.53684962 0.504239234 

MAE 1.077839731 1.193875168 1.016180732 1.166259813 1.075014154 0.072756059 

RF 

R^2 0.952388646 0.929388723 0.943467031 0.97267156 0.919782359 0.02056475 

RMSE 2.718522984 3.228636214 2.760150358 2.178225195 3.253197145 0.441615714 

MAE 0.906557377 1.332131148 0.854333333 1.016166667 1.099833333 0.188249455 

STUDY III: Table 1 

   
Subset1 Subset2 Subset3 Subset4 Subset5 Standard Deviation 

DE_Serum 

Adaboost 

R^2 0.982981969 0.9929736 0.997418573 0.96599737 0.997443135 0.013321844 

RMSE 3.139183334 2.137740287 1.366647489 5.041967245 1.289631489 1.557699223 

MAE 1.656835549 1.398204805 1.096324305 1.800079094 1.093127611 0.320945195 

GB 

R^2 0.988079615 0.992856837 0.963691636 0.978831124 0.998666293 0.013678728 

RMSE 2.627284846 2.155429332 5.125425475 3.97825547 0.931412287 1.627809088 

MAE 1.129963618 0.974648823 1.26673294 1.209130942 0.513437363 0.303065455 

RF 

R^2 0.985269037 0.989119605 0.994332098 0.972517888 0.994262637 0.008995496 

RMSE 2.920637035 2.660178889 2.025059386 4.532823585 1.931825561 1.047621817 

MAE 1.462413793 1.352413793 0.956896552 1.733103448 1.106428571 0.303898968 
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Table S2. Model performance of each subset in 5-fold cross-validation. (Continued) 

   
Subset1 Subset2 Subset3 Subset4 Subset5 Standard Deviation 

MIC_Plasma 

Adaboost 

R^2 0.991004657 0.97320321 0.990051412 0.987287646 0.982854508 0.007254339 

RMSE 1.181643857 1.988948181 1.157877379 1.485622074 1.504008918 0.33581027 

MAE 0.909150037 1.196838306 0.840967126 1.09969043 0.944299043 0.146043546 

GB 

R^2 0.988150352 0.948749192 0.985735142 0.977904304 0.959976364 0.01709871 

RMSE 1.356220981 2.75063167 1.386486269 1.958615569 2.297913661 0.598383334 

MAE 0.52631947 1.03521638 0.429025519 0.799240191 0.80097089 0.242052642 

RF 

R^2 0.987451067 0.948768897 0.983748381 0.939752798 0.97537761 0.02146928 

RMSE 1.395664834 2.75010283 1.479892451 3.234177124 1.802355866 0.817456963 

MAE 0.576229508 1.040655738 0.5685 1.108833333 0.735 0.255447132 

 

   
Subset1 Subset2 Subset3 Subset4 Subset5 Standard Deviation 

MIC_Plasma 

Adaboost 

R^2 0.978529328 0.991866732 0.99806482 0.985615433 0.996631814 0.008111834 

RMSE 3.526020564 2.299964129 1.183279329 3.279383175 1.480163669 1.044875906 

MAE 1.765579745 1.521807017 0.951935531 1.791460239 1.198641358 0.364865258 

GB 

R^2 0.990921045 0.984696695 0.981735514 0.95951974 0.979631193 0.011847712 

RMSE 2.292872816 3.154867588 3.635216719 5.501301053 3.639942522 1.174143567 

MAE 0.986595538 1.757276313 1.870085261 2.841109461 1.676481698 0.664091253 

RF 

R^2 0.994532387 0.99238682 0.990311691 0.986181343 0.985502811 0.00390218 

RMSE 1.779348001 2.225212892 2.647589014 3.214228067 3.070814806 0.594632984 

MAE 1.114827586 1.631724138 1.987931034 2.074482759 1.624642857 0.379152705 

 



181 
 

Table S3. Summary of predicted targets of 8 top core miRNAs.  

Source miRNA_ID 
Database (Number 

of targets) 
Source miRNA_ID 

Database (Number 

of targets) 

Plasma 

hsa-miR-9-

3p 

diana_microt (345) 

Serum 

hsa-miR-

206 

diana_microt (303) 

elmmo (1306) elmmo (500) 

microcosm (28) microcosm (65) 

miranda (218) miranda (125) 

mirdb (72) mirdb (79) 

pictar (3) pictar (6) 

targetscan (1) targetscan (47) 

pita (0) pita (188) 

hsa-miR-

129-2-3p 

diana_microt (131) 

hsa-miR-

372-3p 

diana_microt (334) 

elmmo (332) elmmo (890) 

microcosm (15) microcosm (87) 

miranda (40) miranda (148) 

mirdb (24) mirdb (67) 
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pictar (9) pictar (0) 

targetscan (32) targetscan (33) 

pita (22) pita (147) 

hsa-miR-

203a-3p 

diana_microt (138) 

hsa-miR-

4642 

diana_microt (49) 

elmmo (981) elmmo (0) 

microcosm (55) microcosm (0) 

miranda (237) miranda (0) 

mirdb (73) mirdb (20) 

pictar (45) pictar (0) 

targetscan (0) targetscan (0) 

pita (76) pita (0) 

hsa-miR-

203b-3p 

diana_microt (250) 

hsa-miR-

11181-3p 

diana_microt (0) 

elmmo (0) elmmo (0) 

microcosm (0) microcosm (0) 

miranda (0) miranda (0) 
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mirdb (19) mirdb (42) 

pictar (0) pictar (0) 

targetscan (0) targetscan (0) 

pita (0) pita (0) 
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Table S4. Parameter setting for ensemble learners. 

Dataset Parameter Regressor Value 

DE_plasma Num of Estimator 

AdaBoost 50 

GB 200 

RF 100 

DE_serum Num of Estimator 

AdaBoost 50 

GB 100 

RF 100 

MIC_plasma Num of Estimator 

AdaBoost 200 

GB 100 

RF 100 

MIC_serum Num of Estimator 

AdaBoost 200 

GB 200 

RF 200 
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