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Abstract: The first essay considers Bayesian Kriging (BK), which provides a way to 
estimate spatially varying coefficient regression models where the parameters are 
smoothed across space. The problem is that previous methods are too computationally 
intensive when estimating a nonlinear production function. The first essay sought to 
increase the computational speed by imposing restrictions on the spatial covariance matrix. 
Two correlation matrices that are sparse in the precision matrix: conditional autocorrelation 
(CAR) and simultaneous autocorrelation (SAR), were considered. In addition, a new 
analytical solution is provided for finding the optimal nitrogen value with a stochastic 
linear plateau model. A comparison among models in the accuracy and computational 
burden shows that the restrictions reduced the computational burden by 90% (CAR) or 
89% (SAR) and led to models that better predicted the missing values.  
The second essay starts to deal with the experimentation problem for on-farm 
experimentation when we know that spatial heterogeneity exists. Nearly Ds-Optimal 
allocation designs are obtained for an experiment that provides data from estimating the 
parameters of a linear SVC model in the second essay. This nearly optimal design is far 
more informative than standard designs such as Latin square (36%), simple random 
allocation (32%), and randomized strip-plot designs (69%).  
The third essay aims to determine the optimal location of treatments when the yield 
response function is an SVC linear plateau model. The optimal locations are found when 
the researcher decides to experiment on a portion of the field in addition to when using the 
whole field. A pseudo-Bayesian approach is taken here because the field's site-specific 
optimal nitrogen value is unknown and local optimality is impossible. The resulting designs 
are more efficient than classic Latin square (29%), strip plot (63%), or completely 
randomized designs (59%) when the underlying yield response directly models field 
heterogeneity. 
In the second and third essays, treatment levels and their corresponding replications are 
considered predetermined. In the fourth essay, we consider the farmers' net present value 
over eight years of experimentation and find the optimal levels of treatments, their 
corresponding replications, the number of experimenting plots, and the quit year for 
experimenting. Optimal on-farm experimentation is addressed using fully Bayesian 
decision theory. Of the designs considered, experimenting on 15 plots of a field with 
treatment levels of 35, 130, 165, and 230 with 2, 3, 5, and 5 replications maximized the 
farmers' profit over several years. The third year was the best time to quit experimenting.
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CHAPTER I 
 

Site-Specific Nitrogen Recommendation: Fast, Accurate, and Feasible Bayesian Kriging 

Abstract 

Bayesian Kriging (BK) provides a way to estimate regression models where the parameters are 

smoothed across space. Such estimates could help guide site-specific fertilizer recommendations. 

One advantage of BK is that it can readily fill in the missing values that are common in yield 

monitor data. The problem is that previous methods are too computationally intensive to be 

commercially feasible when estimating a nonlinear production function. This paper sought to 

increase the computational speed by imposing restrictions on the spatial covariance matrix. 

Previous research used an exponential function for the spatial covariance matrix. The two 

alternatives considered are the conditional autoregressive (CAR) and simultaneous 

autoregressive (SAR) models. In addition, a new analytical solution is provided for finding the 

optimal value of nitrogen with a stochastic linear plateau model. A comparison among models in 

the accuracy and computational burden shows that the restrictions significantly reduced the 

computational burden and led to models that better predicted the missing values.  

 

Key Words: Bayesian Kriging, fertilizer, Gaussian spatial process, linear plateau, optimal 
nitrogen, spatially varying coefficients    
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1. Introduction 

Precision fertilizer application essentially requires finding a production function for each field 

piece. There are several interesting papers in this field of research (Anselin, et al., 2004; Evans, 

et al., 2020; Griffin, et al., 2008; Hurley, et al., 2005). Several methods exist to handle the data's 

spatial behavior. There is a tradeoff between the accuracy and complexity of a model and the 

ability to estimate it. The objective of the research reported here was to find a precise optimal 

input value for each part of a field. The specific objective was to find an efficient computational 

way to make BK feasible for data with a large number of locations. The primary hypothesis of 

interest was that respecifying the covariance matrix can lead to a model that can be solved more 

quickly and leads to more accurate forecasts. In addition, an analytical solution for obtaining the 

optimal nitrogen value for the random-parameter linear plateau model is provided.  

There is a rich literature from Heady and Pesek (1954) and Spillman (1933)  to the most 

recent articles (Archontoulis, et al., 2020; Mencaroni, et al., 2021) on finding the optimal value 

of fertilizer for a given response variable. Early spatial approaches sought to estimate a 

production functions with the parameters constant for clusters in the data set. A dummy variable 

was then added for each cluster (Lambert, et al., 2004; Liu, et al., 2006). The dummy variable 

approach has drawbacks. It requires prior knowledge about how to form the clusters or 

predefined clustering system. It assumes parameters vary discretely rather than smoothly across a 

field. Finally, this method could suffer from a lack of degrees of freedom or multicollinearity if 

the number of variables that should be considered dummies increases which could affect the 

inference significantly.  

The second approach, which is widely used, is geographically weighted regression 

(GWR). GWR usually uses a neighboring system (with a different number of neighbors) to find 
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the model's spatial weights (Evans, et al., 2020; Lambert and Cho, 2022; Trevisan, et al., 2021). 

Although this model can fit the data well, it suffers from the lack of statistical theory for 

optimality behavior (Dambon, et al., 2021). Wheeler (2014) argues that “GWR is more 

appropriately viewed as an exploratory approach and not a formal model to infer parameter 

nonstationary.” 

  The third approach is Bayesian Kriging (Park, et al., 2016). Several papers have been 

published to compare the GWR and spatially random coefficient models. Wheeler and Calder 

(2007) showed that the spatially random coefficient model provides more accurate parameter 

estimates than GWR through a simulation study. Wheeler and Waller (2009) used a public health 

data set and showed that spatially random coefficient models provide more robust regression 

coefficients in the moderate to high multicollinearity situation. Finley (2011) compared these 

two models with several criteria. He concluded that although the GWR was faster and useful in 

fitting the data, the spatially random coefficient model has a significantly smaller prediction 

mean square error.  Besides, in the GWR, the weight is fixed (a grid search across weights can be 

done), while in Bayesian Kriging, the optimal weight is estimated simultaneously. The methods 

from first to last become more complicated and time-consuming. The Bayesian Kriging method 

has mostly been used with a dense continuous correlation matrix. The integrated nested Laplace 

approximation (INLA) can only handle models that are linear in the parameters (Rue, et al., 

2017) and so it cannot be used with a linear plateau model. Park et al. (2018) used Bayesian 

Kriging and an exponential covariance matrix to find optimal nitrogen recommendations based 

on a linear plateau model. However, they only estimate the plateau spatially and restrict the 

number of locations to 160 to reduce computational time. The model is very time-consuming 

when the number of random coefficients or sites increases. Hence, finding a method that is not 
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only feasible for any data but also accurate is essential if Bayesian Kriging is to be competitive 

with GWR. In this situation, sparsity in the precision matrices (covariance inverse) could make 

the code faster. Firstly, the code does not need to compute the inverse of a large covariance 

matrix. Both the CAR and SAR models have sparse precision matrices. 

We use Bayesian Kriging to estimate a linear plateau model with spatially varying 

coefficients and use it to estimate each location's optimal nitrogen level. Both the intercept and 

plateau parameters vary across the field and each has their own spatial correlation matrix. 

Calculations involving the spatial correlation matrix are a major reason for the slow computation. 

Models were estimated with different spatial correlation functions and then compared using 

computer time and the accuracy of the models to predict the missing values in the data.  

Linear plateau models were estimated using the corn (Zea mays L.) nitrogen response 

data from Bongiovanni and Lowenberg-DeBoer (2000). While there is only one observation for 

each location, the estimated intercept and plateau differ for each location. The Hamiltonian 

Monte Carlo (HMC) algorithm, provided by Rstan was used to estimate the posterior density 

function. The optimal N value at each site was obtained by maximizing the expected profile 

using the posterior density.  

 

1. Bayesian Linear Plateau model 

The end goal is to find the optimum amount of nitrogen at each location. A common and 

effective data generating process for this purpose is a linear plateau model (Llewelyn and 

Featherstone (1997); Tembo, et al. (2008)). The innovation is assuming that the parameters in 

these models vary by location. The proposed model is  
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 𝑦𝑦𝑖𝑖 = min(𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑁𝑁𝑖𝑖 ,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖) + 𝜖𝜖𝑖𝑖 (1) 

where 𝑦𝑦𝑖𝑖 and 𝑁𝑁𝑖𝑖 are the yield and the amount of nitrogen input in location 𝑖𝑖; 𝑎𝑎𝑖𝑖is the intercept 

and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 is the plateau parameter. The effect of nitrogen (b) is fixed over space to reduce 

the computational burden and 𝜖𝜖𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝜖𝜖2). Let 𝒂𝒂 = (𝑎𝑎1,𝑎𝑎2,⋯ , 𝑎𝑎𝑛𝑛)𝑇𝑇and 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 =

(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2,⋯ ,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛)𝑇𝑇 are the 𝑛𝑛 × 1vector of parameters follow a Gaussian 

random process with spatial correlation matrices of 𝚺𝚺0 and 𝚺𝚺𝑝𝑝. Hence,  

 𝒂𝒂 ~𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛼𝛼𝟏𝟏,𝚺𝚺0) 

𝑏𝑏 ~𝑁𝑁( 𝛽𝛽,𝜎𝜎𝑏𝑏2) 

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 ~𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀�𝑝𝑝𝟏𝟏,𝚺𝚺𝑝𝑝� 

(2) 

 

where 𝛼𝛼,𝛽𝛽,𝑝𝑝 are the mean parameters, 𝟏𝟏 is an 𝑛𝑛 × 1vector with all elements equal to one, 𝜎𝜎𝑏𝑏2is 

the variance component for the slope. The parameters 𝑎𝑎𝑖𝑖 and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 are assumed to vary 

across locations, and parameters are spatially autocorrelated. Hence, 𝚺𝚺0, and 𝚺𝚺𝑝𝑝are the 𝑛𝑛 × 𝑛𝑛  

covariance matrices of the multivariate Gaussian process (MVGP) that depicts this behavior in 

the parameters. The covariance matrices in the MVGP can have varied structures.  

2.1 Optimal nitrogen level recommendation 

Assume that all other inputs are fixed, the optimal level of input nitrogen is selected to maximize 

expected profit:  

 max
𝑁𝑁𝑖𝑖

𝐸𝐸(𝜋𝜋𝑖𝑖|𝑁𝑁𝑖𝑖) = max
𝑁𝑁𝑖𝑖

�[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(min(𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑁𝑁𝑖𝑖,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖)) − 𝑟𝑟𝑁𝑁𝑖𝑖]𝑓𝑓(𝜳𝜳)𝒅𝒅𝒅𝒅 (3) 
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where the 𝜳𝜳 contains all the parameters which should be estimated, and f is the posterior 

distribution function of parameters. Since the price and cost do not depend on the parameters, the 

integration is calculated only on the profit equation's production function.  

Tembo et al. (2008) (2008) consider a plug-in method to find nitrogen's economic 

optimal value for a stochastic linear plateau. This method is not applicable in the current 

situation due to uncertainty in both parts of the linear plateau model.  

Ouedraogo and Brorsen (2018) used a grid search and found the expectation using the Monte 

Carlo sample of the posterior distribution. This method could be used to find the optimal value 

for each location; however, the grid search method in large data sets would be time-consuming.  

The posterior distribution of the parameters converges in limit to the multivariate normal 

distribution (Van der Vaart (2000)). The analytical solution to find the optimal value is based on 

the normality assumption of the posterior distribution.  

In the problem at hand, one goal is to calculate 

𝐸𝐸(min(𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑏𝑏,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖)) 

Nadarajah and Kotz (Nadarajah and Kotz (2008)) provide the distribution and moment 

generating function of the minimum and maximum of two jointly normal random variables.  

Let  

 
 (𝑋𝑋1,𝑋𝑋2)𝑇𝑇~𝑁𝑁2 �(𝜇𝜇1, 𝜇𝜇2)𝑇𝑇 , � 𝜎𝜎12 𝜌𝜌𝜎𝜎1𝜎𝜎2

𝜌𝜌𝜎𝜎1𝜎𝜎2 𝜎𝜎22
�� (4) 

and  𝑌𝑌 = min(𝑋𝑋1,𝑋𝑋2) then 

𝑓𝑓𝑌𝑌(𝑦𝑦) = 𝑓𝑓1(𝑦𝑦) + 𝑓𝑓2(𝑦𝑦) 
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where 

𝑓𝑓1(𝑦𝑦) =
1
𝜎𝜎1
𝜙𝜙 �

𝑦𝑦 − 𝜇𝜇1
𝜎𝜎1

�Φ(
𝜌𝜌(𝑦𝑦 − 𝜇𝜇1)
𝜎𝜎1√(1− 𝜌𝜌2)

−
(𝑦𝑦 − 𝜇𝜇2)

𝜎𝜎2√(1− 𝜌𝜌2)
) 

𝑓𝑓2(𝑦𝑦) =
1
𝜎𝜎2
𝜙𝜙 �

𝑦𝑦 − 𝜇𝜇2
𝜎𝜎2

�Φ(
𝜌𝜌(𝑦𝑦 − 𝜇𝜇2)
𝜎𝜎2√(1 − 𝜌𝜌2)

−
(𝑦𝑦 − 𝜇𝜇1)

𝜎𝜎1√(1− 𝜌𝜌2)
) 

and the mean of Y is 

  𝐸𝐸(𝑌𝑌) = 𝜇𝜇1Φ�
𝜇𝜇2 − 𝜇𝜇1

𝜃𝜃
� + 𝜇𝜇2Φ(

𝜇𝜇1 − 𝜇𝜇2
𝜃𝜃

) − 𝜃𝜃𝜇𝜇1𝜙𝜙(
𝜇𝜇2 − 𝜇𝜇1

𝜃𝜃
) (5) 

where 𝜙𝜙, and Φ are the PDF and CDF of normal distribution respectively, and 𝜃𝜃 =

�𝜎𝜎12 + 𝜎𝜎22 − 2𝜌𝜌𝜎𝜎1𝜎𝜎2. 

Assuming that the  𝑎𝑎𝑖𝑖, 𝑏𝑏, and 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 are independent, and the posterior distribution of 

the parameters is  

𝑎𝑎𝑖𝑖~𝑁𝑁�𝑎𝑎𝚤𝚤� ,𝜎𝜎𝑎𝑎𝑖𝑖
2 � 

𝑏𝑏~𝑁𝑁�𝑏𝑏�,𝜎𝜎𝑏𝑏2� 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖~𝑁𝑁�𝑝𝑝𝚤𝚤� ,𝜎𝜎𝑝𝑝𝑖𝑖
2 � 

then 

𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑏𝑏 ~𝑁𝑁�𝑎𝑎�𝑖𝑖 + 𝑏𝑏𝑏𝑏,𝜎𝜎𝑎𝑎𝑖𝑖
2 + 𝑁𝑁2𝜎𝜎𝑏𝑏2� 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 ~𝑁𝑁�𝑝𝑝𝚤𝚤� ,𝜎𝜎𝑝𝑝𝑖𝑖
2 � 

so, the expected value of 𝑌𝑌 = min(𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑏𝑏, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖) is  
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𝐸𝐸(𝑌𝑌) = (𝑎𝑎� + 𝑏𝑏�𝑁𝑁)Φ�

𝑝̅𝑝 − 𝑎𝑎� − 𝑏𝑏�𝑁𝑁
𝜃𝜃

� + 𝑝̅𝑝Φ(
𝑎𝑎� + 𝑏𝑏�𝑁𝑁 − 𝑝̅𝑝

𝜃𝜃
) − 𝜃𝜃(𝑎𝑎�

+ 𝑏𝑏�𝑁𝑁)𝜙𝜙(
𝑝̅𝑝 − 𝑎𝑎� − 𝑏𝑏�𝑁𝑁

𝜃𝜃
) 

(6) 

𝜃𝜃 = �𝜎𝜎𝑎𝑎2 + 𝑁𝑁2𝜎𝜎𝑏𝑏2 + 𝜎𝜎𝑝𝑝2 

where the index i is dropped, for simplicity. The optimization seeks the N value to maximize 

equation (3).  The first-order diffrentioation for this profit function in every location is  

 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑏𝑏�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 �1 −Φ�
𝑎𝑎� + 𝑏𝑏�𝑁𝑁 − 𝑝̅𝑝

𝜃𝜃
�� − 𝑟𝑟 − 𝜙𝜙 �

𝑎𝑎� + 𝑏𝑏�𝑁𝑁 − 𝑝̅𝑝
𝜃𝜃

�. (7) 

The root of equation (7) cannot be obtained analytically. Hence the "optimize" function in R 

(Team, 2013) was used to find the optimal value.  

Some might argue that the intercept, slope, and plateau part cannot be independent in a 

real situation. By increasing the intercept, the slope will decrease. The plateau part in equation 

(1) may depend on the linear model, and the independence is questionable. Equation (6) can be 

adjusted for correlation. Suppose that the parameters are correlated and  

𝑽𝑽 = �
𝑎𝑎
𝑏𝑏

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
�~𝑀𝑀𝑀𝑀𝑀𝑀(�

𝑎𝑎�
𝑏𝑏�
𝑝̅𝑝
� ,�

𝜎𝜎11 𝜎𝜎12 𝜎𝜎13
𝜎𝜎12 𝜎𝜎22 𝜎𝜎23
𝜎𝜎13 𝜎𝜎23 𝜎𝜎33

�) 

then, the vector (𝑎𝑎 + 𝑏𝑏𝑏𝑏,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) is equal to  𝐴𝐴𝑇𝑇𝑉𝑉 where A is  

𝑨𝑨 = �
1 0
𝑁𝑁 0
0 1

� 

and  𝐴𝐴𝑇𝑇𝑉𝑉 follows a multivariate normal distribution with mean and variance equal to 
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𝝁𝝁 = (𝑎𝑎� + 𝑏𝑏�𝑁𝑁, 𝑝̅𝑝) 

𝜮𝜮 = �𝜎𝜎11 + 𝑁𝑁2𝜎𝜎22 + 2𝑁𝑁𝜎𝜎12 𝜎𝜎13 + 𝑁𝑁𝜎𝜎23
𝜎𝜎13 + 𝑁𝑁𝜎𝜎23 𝜎𝜎33

� 

Rewriting the covariance matrix as (4), gives 

𝜮𝜮 = � 𝜎𝜎11∗ 𝜌𝜌𝜎𝜎1∗𝜎𝜎2∗
𝜌𝜌𝜎𝜎1∗𝜎𝜎2∗ 𝜎𝜎22∗

� 

where 𝜌𝜌 = 𝜌𝜌13𝜎𝜎1𝜎𝜎3+𝜌𝜌23𝑁𝑁𝜎𝜎2𝜎𝜎3
𝜎𝜎1𝜎𝜎3+𝑁𝑁𝜎𝜎2𝜎𝜎3

, 𝜎𝜎11∗ = (𝜎𝜎1 + 𝑁𝑁𝜎𝜎2)2, 𝜎𝜎22∗ = 𝜎𝜎33. Hence the expectation of the linear 

plateau model is equal to (6) with 

 
𝜃𝜃 = �(𝜎𝜎1 + 𝑁𝑁𝜎𝜎2)2 + 𝜎𝜎33 − 2

𝜌𝜌13𝜎𝜎1𝜎𝜎3 + 𝜌𝜌23𝑁𝑁𝜎𝜎2𝜎𝜎3
𝜎𝜎1𝜎𝜎3 + 𝑁𝑁𝜎𝜎2𝜎𝜎3

(𝜎𝜎1 + 𝑁𝑁𝜎𝜎2)𝜎𝜎3. (8) 

 

The first-order condition calculation is complicated and unnecessary because equation (6) is 

maximized with the new 𝜃𝜃, given in equation (8), directly.  

For the switching regression model of Paris (1992), 𝑦𝑦𝑖𝑖𝑖𝑖 = min(a + 𝑏𝑏𝑏𝑏 + 𝜅𝜅𝑖𝑖𝑖𝑖, 𝜇𝜇𝑚𝑚 + 𝜔𝜔𝑖𝑖𝑖𝑖), 

the two random variables, 𝜅𝜅𝑖𝑖𝑖𝑖 and  𝜔𝜔𝑖𝑖𝑖𝑖 have marginal normal distributions. They do not 

necessarily have a joint bivariate normal distribution (the copula for the joint distribution is 

unspecified). So to use this approach in the Paris stochastic linear plateau would require an 

additional assumption of joint normality that is not imposed in the estimation.  

2.2 Spatial correlation matrices and their behavior 

The linear plateau model was considered as the data generating procedure. The coefficients vary 

across space and locations that are closer together have parameters that are more alike. This 
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behavior can be explained with a spatial covariance function and the normal distribution. Two 

well-known autoregressive precision matrices (covariance inverse) are the SAR and CAR. The 

term ‘conditional’ in the CAR structure shows conditional independence in the distribution of 

each element dependent on neighbors' values; however, the simultaneous form mostly 

emphasizes regressing the random part on themselves simultaneously (Hooten, et al. (2014)). 

Conditional independence between the element 𝑖𝑖 and 𝑗𝑗 can be easily seen in the precision matrix 

(𝑞𝑞𝑖𝑖𝑖𝑖 = 0).  

The CAR model is usually presented as a conditional distribution 

𝛽𝛽𝑖𝑖|𝜷𝜷−𝑖𝑖~𝑁𝑁(�𝑐𝑐𝑖𝑖,𝑗𝑗𝛽𝛽𝑗𝑗,𝑚𝑚𝑖𝑖,𝑖𝑖)
𝑛𝑛

𝑗𝑗=1

 

where  𝜷𝜷−𝑖𝑖 is the vector of all elements of vector 𝜷𝜷 except 𝛽𝛽𝑖𝑖, 𝑐𝑐𝑖𝑖,𝑗𝑗 are the ith and jth element of 

spatial weight matrix C and 𝑴𝑴 is a diagonal matrix with positive diagonal elements of 𝑚𝑚𝑖𝑖,𝑖𝑖. 

Following Besag (Besag (1974)), if (𝑰𝑰 − 𝑪𝑪)−1𝑴𝑴 is a positive definite matrix then the CAR 

model can be written as   

 𝜷𝜷~𝑁𝑁(𝟎𝟎,𝚺𝚺𝐶𝐶𝐶𝐶𝐶𝐶) (9) 

where 𝚺𝚺𝐶𝐶𝐶𝐶𝐶𝐶 , the covariance matrix is (Ver Hoef, et al. (2018)) 

𝚺𝚺𝐶𝐶𝐶𝐶𝐶𝐶 = (𝑰𝑰 − 𝑪𝑪)−1𝑴𝑴. 

 In practice, usually 𝚺𝚺𝐶𝐶𝐶𝐶𝐶𝐶 = 1
𝜏𝜏2

(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑾𝑾𝑾𝑾) − 𝜌𝜌𝑐𝑐𝑾𝑾)−1 is used where 𝑾𝑾 is contiguity matrix, 𝟏𝟏 is 

a vector of ones, and 𝜌𝜌𝑐𝑐 is the amount of dependency between neighbors (Ver Hoef, et al. 

(2018)).  
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In the SAR model, an  𝑛𝑛 × 𝑛𝑛 weight matrix, 𝐵𝐵, relates the vector of parameters to themselves. In 

contrast to the CAR model, the SAR model can directly define the complete distribution of 

vector. Define  

𝜷𝜷 = 𝑩𝑩𝑩𝑩 + 𝝑𝝑 

where the matrix B is a 𝑛𝑛 × 𝑛𝑛 spatial weight matrix and 𝝑𝝑~𝑀𝑀𝑀𝑀𝑀𝑀(𝟎𝟎,𝛀𝛀), so then  

 𝜷𝜷~𝑁𝑁(𝟎𝟎,𝚺𝚺𝑆𝑆𝑆𝑆𝑆𝑆). (10) 

In the SAR model, the 𝚺𝚺𝑆𝑆𝑆𝑆𝑆𝑆 = (𝑰𝑰 − 𝑩𝑩)−1𝛀𝛀(𝑰𝑰 − 𝑩𝑩𝑡𝑡)−1, where 𝑩𝑩 is not necessarily a symmetric 

matrix since 𝚺𝚺𝑆𝑆𝑆𝑆𝑆𝑆 is symmetric even if 𝑩𝑩 is not symmetric. In the SAR model, it is enough for 

(𝑰𝑰 − 𝑩𝑩)  to be a non-singular matrix, 𝛀𝛀 be a diagonal matrix with positive values and 𝑏𝑏𝑖𝑖𝑖𝑖 = 0. In 

practice, usually consider 𝑩𝑩 as a row standardized non-symmetric contiguity matrix. So the 

covariance matrix is  𝚺𝚺𝑆𝑆𝑆𝑆𝑆𝑆 = (𝜏𝜏(𝑰𝑰 − 𝜌𝜌 𝑾𝑾∗′)(𝑰𝑰 − 𝜌𝜌 𝑾𝑾∗))−1 where 𝑾𝑾∗ is the row standardized 

contiguity matrix.  

Another common framework in geostatistics modeling is considering the correlation 

matrix as an elementwise decreasing function of distance among locations. Suppose that  

𝜷𝜷~𝑁𝑁(𝟎𝟎,𝚺𝚺)  

where 𝚺𝚺𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑐𝑐�𝛽𝛽𝑖𝑖,𝛽𝛽𝑗𝑗� = 𝜎𝜎2𝑒𝑒−
𝑑𝑑𝑖𝑖𝑖𝑖
𝜌𝜌   is a positive definite covariance matrix, 𝑑𝑑𝑖𝑖𝑖𝑖 is the Euclidean 

distance between location i and j, 𝜌𝜌 is the effective range and 𝜎𝜎2 is the sill. The exponential 

covariance matrix implies that the observations near each other are highly correlated while the 

far observations are nearly independent. Although this model uses the correlation matrix directly 
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and is straightforward to interpret, the researcher needs to specify a point to represent each unit, 

and for an extensive data set, fitting this model could be time-consuming.   

Although the precision matrices in the CAR and SAR models are sparse, which leads to 

faster computing, the related covariance matrix is dense. So although a structure was assumed on 

the covariance matrices, no extra independence was considered between the locations. Besides, 

in both CAR and SAR covariance matrices, the correlation between them decreases by 

increasing the distance between two places.  

2.3 Model fitting and layer specification in the Bayesian framework 

The spatial behavior parameters need to be estimated, and there is uncertainty about their actual 

value. A hierarchical Bayesian perspective implies that some uncertainty may exist in the mean 

and correlation structures of the prior in the data generating process. The proposed model in the 

previous section contains three layers: likelihood, process (priors), and hyper prior level. The 

response variable was assumed to follow a linear plateau model in the likelihood layer, a non-

linear model. Also, the parameters in this model were assumed to follow a multivariate Gaussian 

process. The dependency between the parameters in this model handles the Gaussian process's 

correlation structures. The third layer contains the hyperparameters priors which assure that the 

covariance matrix is positive definite. Based on the Bayesian framework, the posterior distribution 

of the parameters as 

 𝑓𝑓( 𝚯𝚯1,𝚯𝚯2,𝚯𝚯3| 𝒀𝒀)  ∝  𝑓𝑓(𝒀𝒀| 𝚯𝚯1,𝚯𝚯2) × 𝑓𝑓(𝚯𝚯𝟐𝟐|𝚯𝚯𝟑𝟑) × 𝑓𝑓(𝚯𝚯3)  

where 𝑓𝑓(𝒀𝒀| 𝚯𝚯1,𝚯𝚯2),𝑓𝑓(𝚯𝚯𝟐𝟐|𝚯𝚯𝟑𝟑), and 𝑓𝑓(𝚯𝚯3) are the likelihood layer, process layer, and hyper 

prior layer, respectively. 𝚯𝚯1 = (𝑎𝑎1,𝑎𝑎2,⋯ ,𝑎𝑎𝑛𝑛, 𝑏𝑏,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2,⋯ ,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛,𝜎𝜎𝜖𝜖) is the set 
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of parameters for the likelihood layer, 𝚯𝚯2 = (𝛼𝛼,𝛽𝛽,𝑝𝑝,𝜌𝜌0,𝜌𝜌𝑝𝑝, 𝜏𝜏0, 𝜏𝜏𝑝𝑝), and 𝚯𝚯3 is the set of all 

hyperparameters in the distributions of the 𝚯𝚯2. The likelihood layer is  

 
       𝑓𝑓(𝒀𝒀| 𝚯𝚯1,𝚯𝚯2) = (

1
�2𝜋𝜋𝜎𝜎𝜖𝜖2

)𝑛𝑛exp
(𝒚𝒚 − 𝝁𝝁)′(𝒚𝒚 − 𝝁𝝁)

2𝜎𝜎𝜖𝜖2
  

where  𝒚𝒚 is the vector of yield data, 𝝁𝝁 is the vector with the elements equal to E(min(𝑎𝑎𝑖𝑖 +

𝑏𝑏𝑁𝑁𝑖𝑖,𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖) + 𝜖𝜖𝑖𝑖), n is the number of observations, and 𝜎𝜎𝜖𝜖2 is the variance component of 𝜖𝜖.  

The process layer deals with the model's spatial structure and finds a specific estimate for 

each location. The correlation matrix plays a vital role in the spatial structure of the data. 

Different parameters have been defined in the three mentioned methods, which should be 

determined in this layer. In the CAR and SAR model, the parameters are 𝜏𝜏, and 𝜌𝜌, and in the 

exponential model, the parameters are 𝜎𝜎, and 𝜌𝜌.   

The stochastic spatial process in this model has distribution    

𝑓𝑓(𝚯𝚯2|𝚯𝚯3) =
1

�(2𝜋𝜋)𝑛𝑛�𝚺𝚺𝑝𝑝�
exp �−

1
2

(𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 − 𝑷𝑷�)′𝜮𝜮𝑝𝑝−1(𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 

− 𝑷𝑷�)�   
1

�(2𝜋𝜋)𝑛𝑛|𝜮𝜮0|
exp �−

1
2

(𝒂𝒂 − 𝒂𝒂�)′𝜮𝜮0−1(𝒂𝒂 − 𝒂𝒂�)�   
1

�(2𝜋𝜋)𝑛𝑛𝜎𝜎𝑏𝑏2
exp �−

1
2𝜎𝜎𝑏𝑏2

(𝑏𝑏

− 𝑏𝑏�)2� 

where 𝑷𝑷�, and 𝒂𝒂�, are 𝑝̅𝑝𝟏𝟏, 𝑎𝑎�𝟏𝟏; respectively. The covariance matrix in this layer could be any of the 

covariances defined in the previous section.   

The hyper prior layer contains the priors for all the parameters in the process layer and 

some from the likelihood layer. The priors for 𝑝𝑝, 𝛼𝛼, and 𝛽𝛽 are normal, with large variances to be 
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non-informative. The priors for the variance components are inverse gamma with parameters 

𝛼𝛼 = 2 ,𝛽𝛽 = 1 for the 𝜏𝜏. The covariance matrix in the normal distribution must be positive 

definite. Since the value of 𝜌𝜌 could affect the positive definity of the covariance matrix, a careful 

selection of prior seems necessary. In practice, the restriction  1
𝜆𝜆1

< 𝜌𝜌 < 1
𝜆𝜆𝑛𝑛

 should be imposed 

with the prior where the 𝜆𝜆𝑖𝑖 is the eigenvalue of the W; however, the restriction turns to  1
𝜆𝜆1

< 𝜌𝜌 <

1 when the row standardized form of  W is used (Haining, 1993). Spatial  autocorrelation was 

restricted to be positive, 0 < 𝜌𝜌 < 1, by using a standard uniform prior. The improper prior 

proportional to the inverse of standard error for the variance component of 𝜎𝜎𝜖𝜖 was considered in 

all three models. The prior for the sill and range parameter in the exponential correlation function 

consider being an improper distribution of 𝑓𝑓(𝜌𝜌,𝜎𝜎) ∝ 1
𝜎𝜎
. Fuglstad, et al. (2015) showed that this 

improper prior has stable results and can be used widely.  

2. Data Analysis   

The data used were the corn yield response to nitrogen from Bongiovanni and Lowenberg-

DeBoer (2000) and Lambert and Cho (2022). The data were collected from a strip plot design in 

"Las Rosas" farm in Cordoba's southwestern corner of Argentina. Six different levels of 

nitrogen, namely 0,19,53,66,106, and 131.5 kg ha-1, were applied to the farm based on a strip 

plot design. The highest nitrogen rate was higher than the value of nitrogen that was expected to 

maximize the response. The yield data and the selected nitrogen levels are given in Fig.1 and 

Fig.2, respectively. The original data contain 1738 locations that were digitalized as polygons. 

The centroid point was generated and considered as a data point in each area. 486 plots of the 

fields were selected from the data set such that all six levels of nitrogen were chosen, and the 

data were unbalanced for each level.  
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To estimate the linear plateau model in the Bayesian framework, the HMC algorithm was 

employed through the Rstan package in R. HMC algorithm in Stan uses a dynamic Hamiltonian 

Markov Chain to reduce the time of calculation and increase the chance of convergence. 

Different iteration and warmup values were employed for models to meet the convergence 

criteria for each model. The number of iterations and warmup for each model are given in 

Table1.1 (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 × 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎). Different convergence criteria such as 

Gelman-Rubin statistics (Rhat) showed the ratio for the variance of parameters when the chain's 

data were pooled, and the number of effective samples were considered. The Trace and Trunk 

plots, which show the Markov property of the data and mixing chain property of chains, 

respectively, were also monitored to ensure convergence of the estimates.  Models with SAR and 

an exponential correlation matrix converge with less iterations. However, these criteria in the 

CAR correlation matrix model were not met entirely like the two other models. The amount of 

time needed to run this model is given in Table 1.1. The site-specific estimates of  𝑦𝑦𝑖𝑖 are given in 

figure 1.3. 

Table 1.1 shows the estimated values for the parameters and their related Gelman-Rubin 

statistics (Rhat) for all three models. The estimated correlation parameters emphasize the spatial 

behavior's existence in the model's parameters that should be considered in the data analysis. The 

posterior likelihood value for the models can be compared since they have the same number of 

parameters. The time for getting an effective sample indicates that although the CAR model was 

far faster than the SAR model for creating an iteration, it needs more iterations and hence more 

time to converge. Also, the Rhat statistics show that the CAR model does not converge as well as 

the SAR model even with more iterations. The exponential correlation matrix model is not 
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feasible for a more extensive data set due to the computational burden. The SAR model was 

faster than the two other models in simulating an effective sample. 

The optimal nitrogen value was calculated based on the posterior distribution of the 

parameters for every specific part of the field.  The posterior distributions of each 𝑎𝑎𝑖𝑖, 𝑏𝑏 and 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 were estimated, then the results plugged into equation (6), and the optimal value for 

nitrogen was obtained. The results are given in figure 1.4. There are some substantial differences 

in nitrogen recommendations. Such differences are typical of models like this due to the limited 

number of observations. To provide more robust estimates, future research should explore 

imposing restrictions such as using informative priors, not allowing the intercept to vary across 

space, as well as estimating with additional years of data. 

An out-of-sample test was used to calculate the accuracy of the models. One hundred 

randomly selected locations were removed from the data set. Then the posterior distribution was 

used to predict the missing values based on the nitrogen value and the location of the site. The 

Diebold and Mariano (2002) test was used to test the null hypothesis of no difference in 

prediction accuracy. Let 𝑦𝑦𝑖𝑖 be the actual yield and let 𝑦𝑦�1𝑖𝑖 and  𝑦𝑦�2𝑖𝑖 be two forecasts based on two 

different methods. The Diebold-Mariano test statistic is  

√𝑛𝑛(𝑑̅𝑑 − 𝜇𝜇)
𝑑𝑑
→𝑁𝑁(0,2𝜋𝜋𝑓𝑓𝑑𝑑(0)) 

where 𝑑̅𝑑 is the average of loss (square error) differential between two forecasts, 𝜇𝜇 = 𝐸𝐸(𝑑𝑑), 

𝑓𝑓𝑑𝑑(0) = 1
2𝜋𝜋

(∑ 𝛾𝛾𝑑𝑑(𝑘𝑘))∞
𝑘𝑘=−∞ , and 𝛾𝛾𝑑𝑑(𝑘𝑘) is the autocovariance of the loss differential at lag 𝑘𝑘. 

Table 1.2 shows the results of the Diebold-Mariano accuracy test for forecasting the missing 

values in the data set. Package multDM in R was used for Diebold-Mariano test (Drachal, 2018). 

Results in Table 1.2 show no significant difference between the CAR and SAR models, and 

between the SAR and exponential covariance matrices in forecasting the missing values. 
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However the CAR has significantly less error than the exponential covariance matrix. The values 

for the mean squared errors were 84.64, 91.70, and 95.02 for the CAR, SAR and exponential 

covariance matrices, respectively.   

3. Conclusions 

In this paper, intercept and plateau parameters in the plateau model can be determined 

specifically for each location. Three different correlation matrices were considered.  

In this application, all three models perform well in fitting the data set. In the CAR and 

SAR model, the neighbors' covariance is considered equal without attention to the distance 

between these two points. In the example at hand, the neighbors have a similar distance. 

However, in general, the distance between every neighbor could be far different. Table 1.1 shows 

that the CAR and SAR models were far faster than the exponential covariance model. They can 

be more easily used for large datasets due to the precision matrix's sparsity. If the number of 

locations is large and the data have some well-defined equally distant regions, the CAR and SAR 

models are feasible. Simultaneously, the exponential correlation function cannot be used in large 

data sets due to the computational burden of calculating the inverse and determinant of an 

extensive dense matrix. The exponential model was also less accurate in out-of-sample 

forecasting. Both the CAR and SAR offer speedier computations than the exponential model 

with no loss in out-of-sample accuracy. 
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Table 1.1. Parameters Estimation and the Rhat Value in Three Models for the Yield 

 

a Desktop PC with Intel Core i5-9500 CPU @ 3.00 GHz and 32 GB DDR4 

 

Parameters  CAR (Rhat) SAR (Rhat) Exponential (Rhat) 

𝑎𝑎�  60.86 (2.01) 58.85 (1.01) 58.69(1.01) 

𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖  0.97 (1.00) 0.97 (1.00) 0.04(1.00) 

𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖  0.35 (1.01) 0.25(1.00) 10.17(1.00) 

𝑏𝑏�  0.11(1.10) 0.13(1.00) 0.11(1.01) 

𝑝̅𝑝 69.35(2.25) 68.17(1.01) 70.15 (1.01) 

𝜌𝜌𝑝𝑝  0.89 (1.91) 0.96 (1.00) 1.29 (1.00) 

𝜏𝜏𝑝𝑝  0.35 (1.18) 0.28(1.00) 0.60 (1.01) 

Max time for  

effective sample 

(parameter) 

21481 

 (𝑝̅𝑝) 

348.52 

(𝑎𝑎�) 

108952 

(lp) 

Time(hours)a 30.96 25.58 268.55 

Iteration 600000 435000 60000 

Warmup  300000 120000 35000 
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Table 1.2. Diebold-Mariano Test Results 
  

Comparison Statistics  P-value 

CAR-SAR 1.437 0.150 

SAR-EXP -1.214 0.225 

CAR-EXP -1.985 0.048 
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Figure 1.1. The Amount of Applied Nitrogen (kg ha-1) 
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Figure 1.2. Value of Actual Yield (t ha-1) 
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Figure 1.3. The Fitted Value (t ha-1)for Exponential, SAR, and CAR Model 
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Figure 1.4. The Optimal Nitrogen Value (kg ha-1) for Exponential, SAR, and CAR Model 
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CHAPTER II 
 

Nearly Ds-Optimal Assigned Location Design for a Linear Model with Spatially Varying 
Coefficients  
 

Abstract  

Spatially varying coefficient (SVC) models are an increasingly popular approach for modeling 

spatial heterogeneity. One topic that has not been well addressed is how best to design 

experiments when the data are to be used to estimate a SVC model. The applied problem that 

motivated this study is that agronomists have begun conducting whole-field experiments on 

farmers’ fields as an alternative to small-scale experiments on experiment stations. The goal is to 

guide the precision application of nutrients, such as nitrogen fertilizer. The research reported 

here seeks to optimally allocate treatments to the farm’s plots by leveraging information from 

model designs. Nearly Ds-Optimal allocation designs are obtained for an experiment that 

provides data from estimating the parameters of a linear SVC model. This nearly optimal design 

is far more informative than standard designs such as Latin square, simple random allocation, 

and randomized strip-plot designs; all of which could also be used to generate data for SVC 

models. Furthermore, the suggested method does not need a regular plot shape for the 

experimental design, which is necessary for Latin square or strip plot designs.  

Keywords: Locally D-optimal Design, On-Farm Experimentation, Spatially Varying Coefficients. 
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1. Introduction 

Due to the increasing computational power of computers and new, faster algorithms, estimating 

spatially varying coefficients (SVC) models with georeferenced data have become more and 

more common (Gómez-Rubio, 2020; Rue and Held, 2005; Rue, et al., 2009; Semelhago, et al., 

2020). These methods, however, have usually used observational data or nonoptimal 

experimental designs for collecting and analyzing spatially referenced data from on-farm 

experiments (Trevisan et al., 2020; Lambert and Cho, 2022). This paper develops a method to 

determine the optimal placement and location of treatments on plots with pre-trial knowledge on 

the functional form and treatment levels used to estimate crop response to inputs. The example 

uses an SVC model, but the approach is generalizable to models with spatially stationary 

coefficients. The work is motivated by a desire to increase, in terms of cost and precision, the 

efficiency of whole-field agronomic experiments that are used to guide the precision application 

of nutrients. 

The experimental design literature originated from the implementation of agronomic field 

trials (Batchelor and Reed, 1918; Maat, 1850). The original purpose of an experimental design 

was to collect data to estimate treatment differences on crop yield. The introduction of 

production function estimation pioneered by Heady, et al. (1960) linked data generated from 

experimental designs to the analysis of economically optimal input use. Heady and Dillon’s work 

was important in that it made a crisp distinction between biologically and economically optimal 

input management. Experimental designs for agronomic trials continue to play a prominent role 

in determining economically and biologically optimal input recommendations for a number of 

crops and a variety of fertilizer nutrient e.g. (Ali, 2020; Hatam, et al., 2020; Tamene, et al., 2017; 

Walsh, et al., 2018). 
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For decades, researchers relied on data from small-plot experiments to determine optimal 

nitrogen recommendations. Through advancements in technology, it is now feasible to conduct 

on-farm experiments where the experiment is conducted across the entire field. Early work 

analyzing the effects of spatial correlation on yield response to fertilizer used strip plot 

experimental designs (Anselin, et al., 2004). Today, the ability to link global positioning systems 

with fertilizer applicators makes it much easier to change quickly the amount of fertilizer 

applied, which allows increased flexibility in the design and implementation of agronomic 

experiments in terms of spatial granularity, the number of replications, and the placement of 

treatments.  

On-farm experimentation has been suggested as a way to guide precision nitrogen 

applications, but has not yet produced unambiguously positive net returns because using non-

optimal values of nitrogen in field experiments can reduce yield (Ng’ombe and Brorsen, 2022). 

Li, et al. (2021) concluded that randomly assigning treatment levels is not optimal, but judicious 

allocation of treatment locations could improve model estimation efficiency. Selecting plot 

locations that maximize the information gained from an experiment is a step toward making on-

farm experimentation profitable. 

Butler, et al. (2008); Eccleston and Chan (1998) considered linear models with a spatially 

correlated error term. They found that an A-optimal design was superior to other designs when 

model residuals are spatially correlated within the rows and columns of the design. These studies 

assumed that experimental rows and columns were independent, and that population effects were 

spatially stationary. 

Mieno and Bullock (2017) and Bullock and Mieno (2017) suggested choosing treatment 

locations randomly. Ng’ombe and Brorsen (2022) also considered optimal experimental design 
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for on-farm trials. These studies ruled out a priori the effects of spatial dependence on the 

experimental design, so the location of plots did not matter.  

Li, et al. (2021) did consider an SVC model in their examination of optimal plot 

locations. They compared the performance of a few specific designs based on a Monte Carlo 

simulation. They demonstrate the potential improvement in estimation efficiency from 

experimental designs, but do not attempt to find general optimal designs. 

Alesso, et al. (2021) conducted a simulation study on the design of experiments for on-

farm experimentation. Their research used a linear geographically weighted regression model to 

determine model-based experimental designs for three treatment randomization scenarios. Their 

measure of accuracy measure was the difference between the estimated and true values of the 

model parameters. They concluded that treatment randomization and the location of plots play an 

important role in increasing the accuracy of model estimates. 

The optimal design of experiments usually involves selecting a set of design points, 

𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛, and their corresponding weights, 𝑤𝑤1,𝑤𝑤2,⋯ ,𝑤𝑤𝑛𝑛, to fulfill a specific goal, such as 

the efficient estimation of a model’s parameters. For spatially explicit models, the locations of 

design points need to be incorporated into the design of the experiment. A common criterion for 

obtaining an optimal design is to maximize the determinant of the information matrix, which 

equivalently minimizes the volume of the vector of parameter estimates’ confidence ellipsoid. In 

this paper, since the final goal is to estimate a site-specific value for an optimal fertilizer rate, the 

D-optimal criterion appears to be a completely reasonable design approach. Estimating SVC 

parameters from a D-optimal experimental design should increase the precision of estimates for 

the optimal application of nitrogen. Sometimes a researcher is more interested in a subset of the 
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model parameters; in this situation, the determinant of a submatrix of the information matrix is 

considered as the optimality criterion. This criterion is the Ds optimality criterion.  

The information matrix does not usually depend on unknown parameters when 

determining the optimal design for a linear model. This means there is a closed-form solution for 

optimal designs for linear models. However, for linear models with SVC, the information matrix 

depends on the unknown parameters. This complication results in a chicken-and-egg situation. 

We want to find a design to estimate SVC parameters efficiently, but the design depends on 

unknown parameters. To handle this problem, the researcher can make an initial guess for true 

parameter values, which leads to locally optimal designs (Chernoff and Haitovsky, 1990; 

Poursina and Talebi, 2014). Locally optimal designs for general linear models are not robust 

against the misspecification of the true parameter values (Dette, et al., 2008; Dette, et al., 2008; 

Wiens, 2015). Alternative solutions include pseudo-Bayesian minimax approaches, which 

declare distributions for parameters rather than informed guesses (Chaloner and Verdinelli, 1995; 

Dette and Sahm, 1998; King and Wong, 2000; Pukelsheim, 2006).  

This paper demonstrates that a ‘nearly optimal’ allocation of treatment locations 

significantly increases the information obtainable from a model-based design space. The 

experimental designs are evaluated in terms of their relative efficiency and precision. Stated 

differently, the parameter estimates using data generated from comparatively efficient designs 

have smaller standard errors. The robustness of locally optimal designs to poor guesses about 

true parameters values is also investigated. We find a locally nearly Ds optimal design for a 

4 × 4, and 10 × 6 field with equal weights for four nitrogen levels, namely, 20, 50, 100, and 150 

units per area. Latin square and strip plot designs are also feasible for 4 × 4 designs, but when 

plots are arranged in a 10 × 6 configuration, these two designs cannot be used. The suggested 
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method in this paper can handle any shape field. The relative efficiencies of standard randomized 

strip plot designs, sample random assignment, and Latin square benchmarks against which the 

proposed procedure is compared. The robustness of the local nearly-Ds-optimal designs is 

demonstrated since inaccurate prior guesses of parameters do not practically affect treatment 

locations assigned by the locally optimal design  

2. Linear Model with Spatially Varying Coefficients 

In some agricultural applications (Park, et al., 2019; Xu and Zhang, 2021), the regression 

coefficients may vary at locations or subregional levels, and the vector of parameters are 

correlated with each other. Under the assumption of normality, spatial dependency can be 

modeled as a Gaussian process that models covariance as a function that decreases as the 

distance between two locations increases (Cressie, 1993). SVC models are very flexible and 

capable of modeling the behavior of a response variable in a given region 𝐷𝐷 with spatially 

correlated random coefficients.  

Assume that the true model is  

 𝐲𝐲(𝒔𝒔) = 𝛍𝛍(𝒔𝒔) + 𝐖𝐖(𝒔𝒔) + 𝛜𝛜(𝒔𝒔) (1) 

where 𝛍𝛍(𝐬𝐬) = 𝐗𝐗𝐗𝐗; 𝛜𝛜(𝐬𝐬) is white noise with 𝛜𝛜(𝐬𝐬)~𝑁𝑁(𝟎𝟎, 𝜏𝜏2𝐈𝐈); and 𝐖𝐖(𝐬𝐬) is a second-order 

stationary process with mean zero and a valid positive definite variance-covariance matrix. 

Gelfand, et al. (2003) showed that a hierarchical spatial model aptly represents model (1). If a 

quadratic SVC yield response model is assumed to be the true yield response function, then (1) 

becomes:  

 𝐲𝐲(𝐬𝐬) = 𝛽𝛽0 + 𝛃𝛃0(𝐬𝐬)+(𝛽𝛽1 + 𝛃𝛃1(𝐬𝐬)) ∙ 𝑵𝑵(𝐬𝐬) + (𝛽𝛽2+𝛃𝛃2(𝐬𝐬)) ∙ 𝑵𝑵2(𝐬𝐬) + 𝛜𝛜(𝐬𝐬) (2) 

where (𝛃𝛃0(𝐬𝐬), 𝛃𝛃1(𝐬𝐬), 𝛃𝛃2(𝐬𝐬)) are random effects and the 𝛽𝛽𝑘𝑘’s are population level effects.  
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Assume next that the distribution of the vector of spatial parameters 𝛃𝛃(𝐬𝐬) follows the 

distribution: 

 𝑓𝑓(𝛃𝛃𝑟𝑟(𝐬𝐬)|𝚿𝚿𝑟𝑟)~𝑁𝑁(𝟎𝟎,𝚿𝚿𝑟𝑟) (3) 

where 𝚿𝚿𝑖𝑖 is a covariance matrix that describes the spatial behavior of the 𝑖𝑖th parameter. 

The parameters in (2) and (3) are not estimated here since it is unnecessary to estimate 

them to determine the optimal design locations. Maximum likelihood (ML) could be used to 

estimate the population level effects 𝛽𝛽0, 𝛽𝛽1, 𝛽𝛽2, and 𝚿𝚿𝑖𝑖. Alternatively, Bayesian hierarchical 

methods could be used to estimate the spatial parameters 𝛃𝛃𝑖𝑖(𝐬𝐬), which might lead to a different 

optimal design. 

We can integrate over the 𝛃𝛃𝑖𝑖’s and find the marginal likelihood of 𝐲𝐲 to calculate the 

information matrix for the data. The marginalized likelihood over the 𝛃𝛃𝑖𝑖’s under the 

independence assumption of spatial processes for 𝛃𝛃0(𝑠𝑠), 𝛃𝛃1(𝑠𝑠), and 𝛃𝛃2(𝑠𝑠) is 

 
𝐿𝐿(𝛽𝛽0,𝛽𝛽1,𝛽𝛽2, 𝜏𝜏2,𝚿𝚿0,𝚿𝚿1,𝚿𝚿2; 𝐲𝐲) = |𝚿𝚿0 + 𝐃𝐃𝑁𝑁𝚿𝚿1𝐃𝐃𝑁𝑁 + 𝐃𝐃𝑁𝑁2𝚿𝚿2𝐃𝐃𝑁𝑁2 + 𝜏𝜏2𝐈𝐈|−

1
2 

𝑒𝑒− 12�𝒚𝒚−𝛽𝛽0𝟏𝟏−𝛽𝛽1𝑵𝑵−𝛽𝛽2𝑵𝑵
2�𝑇𝑇�𝚿𝚿0+𝐃𝐃𝑁𝑁𝚿𝚿1𝐃𝐃𝑁𝑁+𝐃𝐃𝑁𝑁2𝚿𝚿2𝐃𝐃𝑁𝑁2+𝜏𝜏

2𝑰𝑰�−1(𝒚𝒚−𝛽𝛽0𝟏𝟏−𝛽𝛽1𝑵𝑵−𝛽𝛽2𝑵𝑵2)  

(4) 

where 𝐃𝐃𝑁𝑁 and 𝐃𝐃𝑁𝑁2 are the diagonal matrices with diagonal elements of 𝑵𝑵(𝒔𝒔) and 𝑵𝑵2(𝒔𝒔), 

respectively. The 𝟏𝟏, 𝑵𝑵, and 𝑵𝑵2 are a vector of ones, nitrogen rates, and the square of nitrogen 

rates.  

Since the marginal likelihood of the response variable can be written as (3) and the model 

is linear with a normal distribution, the Fisher information matrix for this SVC model is 

 𝐌𝐌 = �𝐌𝐌11 0
0 𝐌𝐌22

� = �𝐗𝐗
𝑇𝑇𝛀𝛀−1𝐗𝐗 0

0 𝐌𝐌𝑉𝑉
� (5) 
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where the 𝐌𝐌11 is a partitioned matrix related to the parameters in the mean, and 𝐌𝐌22 is the 

partitioned matrix related to the variance parameters. The matrix 𝐗𝐗 is the design matrix, and 𝛀𝛀 =

𝚿𝚿0 + 𝐃𝐃𝑁𝑁𝚿𝚿1𝐃𝐃𝑁𝑁 + 𝐃𝐃𝑁𝑁2𝚿𝚿2𝐃𝐃𝑁𝑁2 + 𝜏𝜏2𝐈𝐈 is the covariance matrix of the marginal distribution for the 

observation vector 𝐲𝐲. The matrix 𝐌𝐌𝑉𝑉 is the Fisher information matrix for the 𝚿𝚿 matrix of 

parameters and 𝜏𝜏. The format of 𝐌𝐌𝑉𝑉 depends on the spatial covariance function. The 𝐌𝐌11, and 

𝐌𝐌22 can be investigated separately because the off-diagonal elements of the Fisher information 

matrix are zero. If we do not consider spatial heterogeneity for a subset of the parameters, the 

covariance matrix components of those parameters vanish. 

3. Optimal Design Theory 

An optimal design is a set of points and related weights that ensure the efficient estimation of a 

model; however, when spatial covariance is introduced into the experiment, treatment locations 

need to be codetermined with points and weights in the optimal design. Efficiency defined here 

is based on a utility (or loss) function, which is based on an experimenter’s objective. Classical 

experimental design theory uses the Fisher information matrix as an optimality criterion. In other 

words, the objective function for a classical optimal design is arg max
𝝃𝝃

𝜙𝜙(𝛏𝛏,𝛉𝛉,𝐘𝐘), where the 𝛏𝛏 are 

design points and their associated weights (the number of replications in each point) and 

locations, 𝛉𝛉 are model parameters, and 𝐘𝐘 is the response vector. The function 𝜙𝜙 is usually 

determined by the experimenter’s goal. For example, suppose the objective is to estimate the 

model’s parameters with the highest degree of accuracy possible. In this case, 𝜙𝜙 is the 

determinant of the covariance matrix inverse for the estimated parameters. This optimality 

criterion is called D-optimal, which is a frequently used experimental design criterion.  

Sometimes a researcher is interested in a subset of model parameters, with a primary 

objective of minimizing the volume of the confidence ellipsoid for a subset of the parameters. In 
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this case, the information matrix partitioned based on the vector of parameters and the variance-

covariance of a subset of the parameters is considered. Suppose that the Fisher information 

matrix for a vector of parameters 𝚯𝚯 = (𝚯𝚯1,𝚯𝚯2) could be partitioned as  

𝐌𝐌(𝛏𝛏,𝚯𝚯) = �
𝐌𝐌11(𝛏𝛏,𝚯𝚯) 𝐌𝐌12(𝛏𝛏,𝚯𝚯)
𝐌𝐌21(𝛏𝛏,𝚯𝚯) 𝐌𝐌22(𝛏𝛏,𝚯𝚯)� 

where 𝚯𝚯2 is the subset containing the parameters of interest. The resulting covariance matrix is:  

[𝐌𝐌22(𝛏𝛏,𝚯𝚯) −𝐌𝐌21(𝛏𝛏,𝚯𝚯)𝐌𝐌11
−1(𝛏𝛏,𝚯𝚯)𝐌𝐌12(𝝃𝝃,𝚯𝚯)]−1 

Since the off-diagonal elements of the Fisher information matrix given in (5) are 𝟎𝟎, it suffices to 

maximize the determinant of 𝐌𝐌11 in equation (5) in order to maximize the information pertaining 

to the 𝛃𝛃𝑖𝑖’s.  

3.1 Nearly Ds Optimal Design for SVC Models 

The Ds optimality criterion based on the information matrix in (5) depends on the covariance 

parameters that model the heterogeneity of spatial parameters. We obtain a locally optimal 

design based on an initial best guess for the true parameter values. Extending this design with the 

Bayesian framework is straightforward (Chaloner and Verdinelli, 1995; Pukelsheim, 2006) and 

requires maximizing the expectation, given a prior for the information matrix determinant.  

Assume that the researcher’s budget predetermines the range of treatment levels and the 

number of replications for each level. In this situation, the only choice variable for a locally 

optimal design is the location of each treatment level in the field. Three different correlation 

matrices are considered; namely an exponential decay function, a conditional autoregressive 

(CAR) process (Besag, 1994), and a Simultaneous Autoregressive (SAR) process (Anselin, 

1988). The functional form for the exponential correlation matrix is  

 
cov(𝛽𝛽𝑟𝑟(𝑠𝑠′),𝛽𝛽𝑟𝑟(𝑠𝑠′′)) = 𝜎𝜎𝑟𝑟2exp �

𝑑𝑑𝑠𝑠′𝑠𝑠′′
𝜌𝜌

� , 𝑟𝑟 = 0,1,2 (6) 
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where 𝑑𝑑𝑖𝑖𝑖𝑖 is the distance between location 𝑖𝑖 and 𝑗𝑗, 𝜎𝜎𝑟𝑟2is the sill, and 𝜌𝜌𝑟𝑟 is the effective range for 

the 𝑟𝑟th parameter.  

The covariance matrix for the SAR process is1  

 𝚺𝚺𝑟𝑟𝑆𝑆𝑆𝑆𝑆𝑆 = 𝜎𝜎𝑟𝑟2((𝐈𝐈 − 𝜌𝜌𝑟𝑟  𝐖𝐖∗)(𝐈𝐈 − 𝜌𝜌𝑟𝑟  𝐖𝐖∗′))−1 , 𝑟𝑟 = 0,1,2 (7) 

where 𝜎𝜎𝑟𝑟2 is the common variance for the 𝛃𝛃𝑟𝑟(𝐬𝐬) parameters, 𝐖𝐖∗ is a row standardized contiguity 

matrix, and 𝜌𝜌𝑟𝑟 is the degree spatial dependence. As 𝜌𝜌𝑟𝑟  increases and it is positive, then spatial 

dependence increases.  

The covariance matrix for the CAR process is  

 𝚺𝚺𝑟𝑟𝐶𝐶𝐶𝐶𝐶𝐶 = 𝜎𝜎𝑟𝑟2�(𝐃𝐃 − 𝜌𝜌𝑟𝑟𝐁𝐁)�
−1

 , 𝑟𝑟 = 0,1,2 (8) 

where 𝐃𝐃 is the summation of the row of contiguity matrix of neighbors and 𝐁𝐁 is a contiguity 

matrix. Different assumptions about parameter spatial heterogeneity can be modeled by changing 

parameter values and contiguity assumptions in the correlation matrix. Therefore, the 𝛀𝛀 matrix 

for model (1) with SAR, CAR and exponential correlation functions can be obtained by 

substituting (6), (7) or (8) for 𝚿𝚿 in equation (3). 

Suppose we have K levels of fertilizer and N different plots to which we want to assign a 

fertilizer amount. Assume that the number of replications for each level is predetermined and 

equal to 𝑛𝑛1,𝑛𝑛2,⋯ ,𝑛𝑛𝐾𝐾  such that ∑ 𝑛𝑛𝑖𝑖𝐾𝐾
𝑖𝑖=1 = 𝑁𝑁. Obtaining the best location for a fertilizer rate that 

maximizes information is a discrete optimization problem with 𝑑𝑑 = 𝑁𝑁!
𝑛𝑛1!𝑛𝑛2!⋯𝑛𝑛𝐾𝐾!

 possible 

permutations since changing the location of similar levels does not change the amount of 

 
1 It is worth noting that CAR and SAR were originally designed to model spatial dependence, and not spatial 
heterogeneity. CAR and SAR deal with spatial covariance structures, but originally assumed population effects to be 
spatially stationary. The SVC approach taken here hybridizes spatial heterogeneity models, such as GWR and 
previous SVC approaches Anselin, L. (1988). Spatial Econometrics: Methods and Models: Springer Science & 
Business Media, LeSage, J., and R.K. Pace. (2009). Introduction to Spatial Econometrics: Chapman and Hall/CRC. 
with spatial process models designed to explicitly model spatial covariance.  
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information. The number of all permutations could be a large number (nearly one 

Septendecillion for 100 locations) and calculating the information matrix for all permutations is 

impossible, especially for many plots in the field. To address this problem, a nearly optimal 

design can be determined based on the following algorithm and the distribution functions 

defining the information matrix’s determinant.  

Suppose that 𝑈𝑈 is the set of all possible designs includes permutations of the matrix 𝝃𝝃𝑖𝑖, 

which contains the nitrogen levels, the number of plots with the specific nitrogen level, and the 

location of these plots in a field with 𝑁𝑁 plots, namely 𝝃𝝃1, 𝝃𝝃2,⋯. Also, assume the matrix of 

random variables, 𝐗𝐗, is the determinant of the information matrix related to the designs that 

follow the distribution 𝐹𝐹. Elements in this matrix of random variables are bounded by 𝑎𝑎 and 𝑐𝑐. 

Without loss of generality, suppose that 𝑎𝑎 < 𝐗𝐗 < 𝑐𝑐. It follows then that design 𝝃𝝃∗ maximizes the 

determinant of the information matrix over all designs, and that this design has a finite 

determinant of information value 𝑐𝑐 < ∞. Assume that distribution of 𝐗𝐗 has a very thin tail where 

𝑃𝑃(𝐗𝐗𝑖𝑖 < 0.95𝑐𝑐) ≤ 1 − 𝛼𝛼, where 𝛼𝛼 is a very small positive number. In this situation, the sample 

size for reaching a maximum in the domain of distribution F can be obtained based on the 

following lemma. 

Lemma 1: Suppose that 𝑋𝑋~𝐹𝐹, 𝑎𝑎 < 𝑥𝑥 < 𝑐𝑐 and 𝐹𝐹 has a very thin tail. Let 𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛, be 

a random sample from 𝐹𝐹 and 𝑥𝑥(𝑛𝑛) is the 𝑛𝑛th order statistics of this sample. If the number 

of samples is larger than ln(1−𝑝𝑝)
ln(1−𝛼𝛼)

, then the nearly optimal allocation will occur with 

probability 𝑝𝑝.  
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Proof:  

Assume that 𝑥𝑥(𝑛𝑛) provides the largest determinant of the Fisher information matrix 

among all of samples from 𝑈𝑈. That is:  

𝑝𝑝�𝑋𝑋(𝑛𝑛) > 0.95𝑐𝑐� = 1 − 𝑝𝑝(𝑋𝑋1 < 0.95𝑐𝑐,𝑋𝑋2 < 0.95𝑐𝑐, … ,𝑋𝑋𝑛𝑛 < 0.95𝑐𝑐) 

= 1 − (1 − 𝛼𝛼)𝑛𝑛 

If we assume that 𝑝𝑝�𝑋𝑋(𝑛𝑛) > 0.95𝑐𝑐� ≥ 𝑝𝑝, then  

1 − (1 − 𝛼𝛼)𝑛𝑛 > 𝑝𝑝, and 

 𝑛𝑛 >
ln(1 − 𝑝𝑝)
ln(1 − 𝛼𝛼)

 (9) 

Equation (9) can be used to find a minimum number of samples required to achieve a desired 

accuracy in estimating the largest order statistic of a distribution with a boundary. The number of 

samples for 𝛼𝛼 = 10−6 and 𝑝𝑝 = 0.999 is 6,907,752 samples, which can be processed easily and 

quickly.  

4. Application and Results 

For the first application of the suggested method, suppose we are looking for the best-assigned 

locations of a 4 × 4 plot. The number of permutations for these plots with four replications of 

each level of nitrogen is 16!
4!4!4!4!

= 63,063,000, which requires 8.1 gigabytes of RAM to store the 

matrix of all possible permutations. Calculating all possible permutations for these combinations 

was done with the RcppAlgos package in R (Wood, 2021). We consider the spatial behavior just 

on the intercept with the CAR and SAR covariance functions, assuming rook contiguity between 

plot locations. We assume that the true value of 𝜌𝜌0 = 0.8, 𝜏𝜏0 = 20, and 𝜎𝜎 = 1.  

Figure (2.1) shows the Ds optimal design for this simple situation. The obtained Ds 

optimal design for an SVC intercept model under SAR and CAR covariance assumptions and 
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rook contiguity is a Latin square. The number of neighbors for each treatment level was also 

calculated. Results show that treatment levels for pairs (20, 50; 50,100; 100, 150) are neighbors 

two times, while the values for treatment with more distance between the levels (e.g., 20,100; 50, 

150) are neighbors eight times. In addition, no treatment is a neighbor with itself, which is a 

property of Latin square designs. When the exponential covariance function is used, the resulting 

design is not a Latin square (Figure 2.2). This happens because there is no longer only row and 

column dependency.  

For obtaining the local optimal design when all parameters are spatially varying, we 

consider guesses that are equal to the true values. We calculate the determinant of the Fisher 

information matrix for each permutation with 0.8, 0.9, and 0.8 as values for 𝜌𝜌0, 𝜌𝜌1, and 𝜌𝜌2 in 

equation (7) for SAR and equation (8) for CAR, respectively. The value of 𝜏𝜏 and 𝜎𝜎 were also set 

as 20, 10, 30, and ‘1’ for 𝜏𝜏0, 𝜏𝜏1, 𝜏𝜏2, and 𝜎𝜎2. Figure 2.3 shows the best allocation for this 

experiment, the given CAR parameters and rook contiguity. The number of neighbors for each 

treatment level are also calculated for the optimal design and the Latin square with maximum 

information. The number of neighbors shows that when we consider the CAR covariance matrix 

with rook contiguity, lower-valued treatment are neighbors, while higher-value treatment levels 

are not. The maximum efficiency for the queen contiguity scenario occurs when all treatment 

levels are neighbors with themselves exactly two times. This arrangement differs from the Latin 

square that is maximally efficient.  

We repeated all steps mentioned above with the exponential correlation function with 

values of 4, 3, and 5 for 𝜌𝜌0, 𝜌𝜌1, and 𝜌𝜌2, respectively (equation 6). The sill parameter values are 

set to 0.1, 0.5, 1, and 1 for 𝜎𝜎02, 𝜎𝜎12, 𝜎𝜎22, and 𝜎𝜎2, respectively. Figure 2.4 depicts the best-obtained 

allocation with the exponential correlation function and the given parameters. A nearly optimal 
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allocation design was also calculated for the same scenarios. Figures 2.5 and 2.6 illustrate the 

nearly optimal design with six million samples out of all possible permutations. The RcppAlgos 

package in R was used to randomly select samples from all possible permutations.  

Suppose that the 𝛏𝛏∗ is the optimal allocation on all possible permutations, and 𝛏𝛏 is any 

other allocation of the nitrogen levels. The relative efficiency of design 𝛏𝛏 with respect to the 

𝛏𝛏∗can be defined (Poursina and Talebi, 2014) as: 

 𝐸𝐸 =
|𝑀𝑀(𝜉𝜉,Θ)|
|𝑀𝑀(𝜉𝜉∗,Θ)| (10) 

Extending equation (10) for comparing any two designs is straightforward. We calculate 

the average efficiency for the obtained nearly optimal designs for the CAR, SAR, and 

exponential correlation matrices and compare with the average and maximum efficiency for 

commonly used designs. For this purpose, we consider three different designs, namely a design 

that randomly assigned the locations to nitrogen levels, a strip plot design that assigns nitrogen 

levels in rectangular strips, and a Latin square design that assigns nitrogen levels such that each 

level of nitrogen is assigned only once in any row and column. The Magic package in R (Hankin, 

2018) is used to select a random Latin square for each simulation. We then calculate the 

efficiency for each selected design and compare it to the optimal design that was calculated for 

all possible permutations, 𝛏𝛏∗. The results are reported in Table 2.1. We considered 10,000 

different random designs, calculated the efficiency of each design, and report the average 

efficiency score. For the random strip plot and random Latin square designs, the number of all 

possible combinations is 24 and 576, respectively, and the efficiency is calculated each. Since 

the nearly optimal design is not unique for the suggested method, we obtained this design 100 

times to calculate an average efficiency. Table 2.1 shows the average and maximum efficiency 
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for each situation. Strip plot designs are one of the most common experimental designs for 

whole-farm experiments conducted in the past. However, the randomized strip plot design only 

had a 31 percent efficiency for estimating an SVC model. The Latin square and randomly 

assigned location designs have 50 to 60 percent efficiency on average for an SVC model. The 

maximum efficiency for strip plot design can be as low as 51 percent for the exponential. 

However, some Latin squares could be up to 96 percent efficient, and searching for them is 

relatively fast and easy.  

Rectangular Configuration 

The initial guesses for the true parameters value given by equations (6), (7), and (8) are 

considered fixed at the previous values of the precision and variance parameters, and the plot 

was extended to a 6 × 10 grid. Results for nearly optimal allocation with 30 million samples are 

given in Figures 2.7-2.9 for the CAR, SAR, and exponential correlation functions, respectively. 

There is no clear pattern in these optimal designs and the designs are not unique.  

One important issue that should be addressed in this situation is the robustness of the 

optimal designs. Here, we assumed that the true value of the variance parameters are known. In 

practice, this assumption is unrealistic. Table 2.2 reports the efficiency of the optimal designs 

based on the counterfactual values of the parameters. Two scenarios are considered: small and 

large misspecification. For the small misspecification scenario, we assume that the guess for the 

parameters is 0.75, or 4
3
 of the true values. For the large misspecification scenario, we assume 

that the experimenter’s guess is 0.1 and 10 times the true values. For both cases, we change the 

parameters in the variance matrix to allow more variance and less information. Hence, for the 

SAR and CAR covariance structures, we consider 0.75 and 0.1 as a multiplier of the true 

parameters as an initial guess. For the exponential covariance form, we assume 4
3
 and 10 as 
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multipliers. Table 2.2 reports the results. The optimal design for the SVC model is robust against 

initial parameter guesses. Designs are more sensitive with respect to the variance parameters in 

𝛽𝛽0. However, the minimum efficiency is nearly 95 percent for the obtained designs. 

The flexible method for finding the nearly optimal allocation design can be used for any 

irregularly shaped field. For the usual Latin square design, the number of plots must be a 

multiple of the levels of treatments. For strip plot designs, the number of strips must be a 

multiple of the treatment levels. However, the method suggested in this paper has no limitations 

in terms of the number of rows and columns of a design or the shape of the field.  

5. Conclusion 

For years, small-plot agronomic experiments were the source of information for farm 

management. Since the data were small and fields were heterogeneous, the results varied form 

one field to the next. In addition, the parameter estimates exhibited significant variability. Now, a 

movement toward large-scale on-farm experiments has begun. We assume the researcher decides 

about the levels of nitrogen and their replications based on a project budget, so the total number 

of experiments and the nitrogen levels are fixed. The optimal design is determined by 

maximizing the determinant of the Fisher information matrix for a linear SVC model. The Fisher 

information matrix for linear SVC models depends on the unknown parameters of the spatial 

behavior in contrast with the usual linear models. We use the locally Ds-optimal criterion to find 

the best possible spatial allocation of plots. For a large field with a large number of plots, 

considering all possible permutations is impossible. Selecting a reasonable number of 

permutations can guarantee a nearly optimal design with good efficiency. With current 

technology, changing the locations of the treatment levels does not impose an extra cost on the 

project; however, it could significantly increase the amount of information compared to 
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traditional strip or Latin square designs. The suggested method in this paper also has no 

limitations on the number of plots and the shape of the field, which is a common drawback in 

traditional experimental methods.  
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Tables 

Table 2.1. Efficiency of Designs for 16 Locations All Coefficients Spatially Varying 

Design of 
experiment 

Number 
of 

designs 

Average 
Efficiency 
for SAR 
queen 

Average 
Efficiency 

for 
Exponential 

Average 
Efficiency 
for CAR 

rook 

Maximum 
efficiency 
for SAR 
queen 

Maximum 
efficiency 

For 
Exponential 

Maximum 
efficiency 
for CAR 

rook 

Latin 

Square 

576 51.2 61.8 81.9 93.1 91.2 83.2 

Randomly 

Assigned 

10000 60.2 65.01 80.5 94.1 96.0 98.9 

Strip plot 24 30.2 28.9 68.54 0.56 0.51 82.2 

Nearly 

Optimal 

100 98.5 97.7 96.3 - - - 
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Table 2.2. Robustness of Nearly Optimal Designs Against Misspecification 

Model Parameter Efficiency Parameter Efficiency 

CAR 𝜌𝜌0 = 0.6 

𝜌𝜌1 = 0.675 

𝜌𝜌2 = 0.6 

𝜏𝜏0 = 15 

𝜏𝜏1 = 7.5 

𝜏𝜏2 = 22.5 

𝜎𝜎𝜖𝜖 = 1.33 

1 

1 

1 

1 

1 

1 

1 

𝜌𝜌0 = 0.08 

𝜌𝜌1 = 0.09 

𝜌𝜌2 = 0.08 

𝜏𝜏0 = 2 

𝜏𝜏1 = 1 

𝜏𝜏2 = 3 

𝜎𝜎𝜖𝜖 = 10 

0.95 

1 

1 

0.97 

1 

1 

1 

SAR 

𝜌𝜌0 = 0.6 

𝜌𝜌1 = 0.675 

𝜌𝜌2 = 0.6 

𝜏𝜏0 = 15 

𝜏𝜏1 = 7.5 

𝜏𝜏2 = 22.5 

𝜎𝜎𝜖𝜖 = 1.33 

𝜎𝜎𝜖𝜖 = 1.33 

1 

1 

1 

1 

1 

1 

1 

𝜌𝜌0 = 0.08 

𝜌𝜌1 = 0.09 

𝜌𝜌2 = 0.08 

𝜏𝜏0 = 2 

𝜏𝜏1 = 1 

𝜏𝜏2 = 3 

𝜎𝜎𝜖𝜖 = 10 

0.96 

1 

1 

0.95 

1 

1 

1 

Exponential 

𝜌𝜌0 = 5.33 

𝜌𝜌1 = 4 

𝜌𝜌2 = 6.66 

𝜎𝜎0 = 0.13 

𝜎𝜎1 = 0.66 

𝜎𝜎2 = 1.33 

𝜎𝜎𝜖𝜖 = 1.33 

1 

1 

1 

1 

1 

1 

1 

𝜌𝜌0=40 

𝜌𝜌1 = 30 

𝜌𝜌2 = 50 

𝜎𝜎0 = 1 

𝜎𝜎1 = 5 

𝜎𝜎2 = 10 

𝜎𝜎𝜖𝜖 = 10 

1 

1 

1 

0.99 

1 

1 

1 
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Figures  

 

Figure 2.1. Optimal Allocation for SV Intercept with Conditional Autoregrresive  and 
Simultaneous Autoregrresive Rook Behavior 

 

Figure 2.2. Optimal Allocation for SV Intercept with Exponential Covariance 
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Figure 2.3. Best Allocation for Conditional Autoregrresive Covariance for All Coefficients With 
Rook Contiguity (All Permutations) 
 

  

Figure 2.4. Best Allocation for Exponential Correlation Function (All Permutations) 
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Figure 2.5. Nearly Optimal Design Conditional Autoregrresive Correlation, Rook Contiguity 

 

Figure 2.6. Nearly Optimal Design Exponential Correlation 
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Figure 2.7. Nearly Optimal Design with the Simultaneous Autoregrresive Correlation Function, 
Queen Contiguity 

 

Figure 2.8. Nearly Optimal Design with the Conditional Simultaneous Covariance Function, 
Rook Contiguity 
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Figure 2.9. Nearly Optimal Design with the Exponential Correlation 
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CHAPTER III 
 

 

Optimal Treatment Placement for On-Farm Experimentation 

Abstract 

The costs of conducting on-farm experiments have decreased with recent technological advances 

in collecting, storing, and processing geospatial field data. A common Production function for 

this data is a linear plateau. The ultimate goal is to estimate the linear plateau model with 

spatially varying coefficients (SVC). A question that has not been well addressed is what spatial 

experimental design is best to well the goal is to estimating such model. This paper aims to 

determine the optimal location of treatments when the yield response function is an SVC linear 

plateau model, and the goal is a D-optimal experimental design. A pseudo-Bayesian approach is 

taken here because the field's site-specific optimal nitrogen value is unknown. Pseudo-Bayesian 

D-optimal designs are generated, assuming a fixed number of replications for each treatment 

level. The resulting designs are more efficient than classic Latin square, strip plot, or completely 

randomized designs.  

 

Keywords: Linear Plateau Model, On-Farm Experimentation, Pseudo D-optimal Design, 

Spatially Varying Coefficients.
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1. Introduction 

Advances in collecting, storing, and processing high-resolution spatial data have lowered the 

costs of on-farm experimentation. A key innovation is the development of on-the-go applicators, 

which can precisely deliver treatments to specific plots over a large area. The main goal of this 

kind of experiment is to obtain accurate, site-specific fertilizer or chemical rates. The data 

provided from geospatial data layers collected over multiple growing seasons may be 

voluminous but can provide more information if the treatment locations are selected optimally. 

An unanswered question for on-farm experimentation is how the treatments should be allocated 

across space so that the appropriate model can be precisely estimated. The optimal experimental 

design can vary depending on the assumed data-generating process. Here the yield response to 

nitrogen is assumed to follow a linear plateau model with spatially varying coefficients (SVC). 

The objective is to determine where to put the plots to maximize the information gained from the 

experiment.  

Poursina and Brorsen (2022) obtained a Ds-Optimal experimental design assuming that 

the response model was linear in SVC parameters. They showed that the optimal allocation of 

treatments based on this criterion was more informative than standard completely randomized 

designs or randomized strip plots. The Ds-Optimality criterion used by Poursina and Brorsen 

maximizes the determinant of the Fisher information matrix for a subset of parameters. For crop 

yield, however, a linear plateau (LP) with spatially varying coefficients is a promising model 

which is non-linear; hence, the linear response function used by Poursina and Brorsen does not 

apply. This study examines the performance of an LP with SVC in determining an optimal 

experimental design for a whole field experiment. 
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Xiaofei, et al. (2021) conducted a Monte Carlo study to evaluate the performance of 

several classic experimental designs. They demonstrated that designs based on the random 

assignment of treatment locations could be improved. Their study used a quadratic plateau yield 

response model, so they considered non-linearity. They could only select the optimal design 

from a small set of designs that they chose to simulate. They proposed using blocks such as Latin 

squares as a practical way to improve over a completely randomized design.  

Using the LP model to determine an optimal experimental design creates two problems. 

First, the LP is a nonlinear, non-differentiable function. Therefore, the information matrix cannot 

be derived directly from the model's marginal likelihood function. Secondly, the Fisher 

information matrix for the LP depends on the model's parameters; however, these parameters are 

unknown. This paper uses a two-step approximation to obtain the Fisher information matrix. The 

LP model is first approximated with a differentiable model. The differentiable model assumes a 

known true value for optimal nitrogen levels. Next, the function is linearized to find the Fisher 

information matrix. We employ a pseudo-Bayesian optimal design approach for the second 

problem, which considers the parameters as best initial guesses with known distributions. 

Finally, we assess the robustness of the obtained design by substituting true parameter values for 

incorrect ones.  

Fast algorithms and computational power make SVC models feasible for large data sets 

(Gelfand, et al., 2003; Mu, et al., 2018; Murakami, et al., 2019). Unfortunately, there is little 

literature about experimental design when the goal is to estimate SVC models. There is, 

however,  an established literature where parameters are not spatially varying on experimental 

design (Casler, 2015; Clewer and Scarisbrick, 2013). The main goal of experimental design is to 

select the levels and number of replications for each treatment such that the production function 
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is estimable at the highest precision possible (Hanrahan and Lu, 2006). Classical optimal designs 

assume independence of the observations (e.g., completely randomized designs) or independence 

within a block (e.g., randomized complete block designs). In practice, these independent 

assumptions are questionable for most agronomic experiments and are violated when the 

response follows SVC models. 

Optimal experimental designs for LP models have been previously considered, but they 

did not consider spatial dependence or heterogeneity and its influence on the optimal design. 

Atkinson and Haines (1996) showed that the optimal design for aspatial LP models has three 

treatment levels for zero rates (check plots), three for biologically optimal values, and one point 

for the plateau. Brorsen and Richter (2012) obtained the optimal design of an experiment for a 

stochastic LP model. Their findings were similar to Atkinson and Haines results, concluding that 

only three design points were required. Furthermore, both studies were locally optimal designs 

since they assumed the plateau switch point was known. Ng’ombe and Brorsen (2022) used a 

Bayesian sampling system to overcome the optimal design problem for the stochastic LP model. 

They concluded that conducting experiments on a small portion of the field for up to 6 years 

produced economically optimal outcomes.  

The previous research did not consider the potential for model parameters exhibiting 

spatial structure. The scope and magnitude of the underlying spatial structure affect the amount 

of information that could be obtained from data. The location of the treatment levels also affects 

information content and quality, the required number of treatment levels, and the number of 

replications. These features of SVC models and their extension to optimal experimental design 

methodology highlight the importance of the role of spatial context in the placement and 

replication frequency of treatments.  
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This research considers two scenarios. First, we assume that the experiment is conducted 

on all potential plots on a farm ('whole farm experimentation'). For this scenario, we obtain 

nearly optimal designs for 4 × 4 square and 8 × 12 rectangular fields. Four equally weighted 

levels of nitrogen equal to 20, 50, 100, and 150 are considered, each with a uniform prior on the 

optimal nitrogen value between 90 to 110. We adjusted the method suggested by Poursina and 

Brorsen (2022) to identify pseudo-Bayesian D optimal designs. Their study showed that the 

recommended approach is feasible for any field shape. Optimal designs are far more informative 

than standard experimental designs. They do not impose any extra cost on the application system 

(assuming that the applicator can switch nitrogen levels between plots). Completely random 

designs only have 50% efficiency on average. Inefficient designs like strip plots made sense 

when machinery could not easily apply nutrients and seeds at different levels within a field. 

Much more is learned from an experiment when more care is given to the placement and 

replications of treatments. 

In a second scenario, we assume that the researcher is interested in conducting 

experiments on a portion of the farm's fields, for example, 20 percent of the area. Several papers 

have suggested maximizing the minimum distance between the experimental units to address this 

issue (Husslage, et al., 2011; Marengo and Todeschini, 1992; Royle and Nychka, 1998). These 

previous papers did not discuss a coherent approach for allocating treatment levels in an optimal 

spatial pattern. In this paper, we also find the D-optimal design for allocating treatment levels 

when locations of plots were selected based on a max-min distance algorithm. We show that, in 

this situation, the locations of the treatment levels are essential. For both scenarios, we consider 

two possibilities regarding the spatial structure and spatially varying response patterns. First, we 

assume that all parameters are spatially varying. For the second scenario, we assume that only 
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the plateau part of the model exhibits spatial heterogeneity. The intercept and marginal response 

to fertilizer are assumed to be the same for all locations.  

 

2. Information Matrix for the SVC Linear Plateau Model  

When applied to nitrogen applications, von Liebig (1855) 's 'law of the minimum' suggests that 

nitrogen applications will increase yield up to a point, after which additional nitrogen 

applications have no effect on yield. The LP model reflects this relationship and has been widely 

used in agricultural applications (Dhakal, et al., 2019; Harmon, et al., 2016; Hermesch, et al., 

1998; Tembo, et al., 2008). Bayesian methods have proven helpful in estimating LP models 

(Moeltner, et al., 2021; Ouedraogo and Brorsen, 2014). Tembo et al. (2008) argue that the 

plateau term might vary across fields and years. Poursina and Brorsen (2021) and Lambert and 

Cho (2022) have previously estimated SVC-LP models.  

The SVC-LP model is  

 𝑦𝑦𝑖𝑖 = min(𝛽𝛽0𝑖𝑖 + 𝛽𝛽1𝑖𝑖𝑥𝑥𝑖𝑖 ,𝑃𝑃𝑖𝑖) + 𝜖𝜖𝑖𝑖 (1) 

where 𝑦𝑦𝑖𝑖 is the yield at location 𝑖𝑖, 𝛽𝛽0𝑖𝑖, and 𝛽𝛽1𝑖𝑖 are location-specific intercepts and slopes, 

respectively, and 𝑃𝑃𝑖𝑖 is a spatially varying plateau. Assume too that 𝝐𝝐~𝑁𝑁(0,𝜎𝜎2𝐈𝐈). The function  

 (𝜽𝜽𝑟𝑟|𝚿𝚿𝑟𝑟)~𝑁𝑁(𝝁𝝁𝒓𝒓𝟏𝟏,𝚿𝚿𝑟𝑟) , 𝑟𝑟 = 1, 2, 3 (2) 

describes the spatial behavior for each group of parameters in the vector 𝜽𝜽 = (𝜷𝜷0,𝜷𝜷1, 𝑷𝑷), with 

𝚿𝚿𝑟𝑟 as a covariance matrix. We use Bayesian methods to estimate the parameters in (1).  

The inverse of the Fisher information matrix can estimate the asymptotic variance of the 

parameters. The information matrix for the model 

 𝑦𝑦 = 𝜂𝜂(𝑥𝑥,𝜽𝜽) + 𝜖𝜖 (3) 
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is  

 
𝐈𝐈 =

𝜕𝜕𝜕𝜕(𝑥𝑥,𝜽𝜽)
𝜕𝜕𝜽𝜽

 𝛀𝛀 �
𝜕𝜕𝜕𝜕(𝑥𝑥,𝜽𝜽)
𝜕𝜕𝜽𝜽

�
𝑇𝑇

 
(4) 

where 𝜕𝜕𝜕𝜕(𝑥𝑥,𝜽𝜽)
𝜕𝜕𝜽𝜽

 are partial derivatives of the production function with respect to its parameters, and 

𝛀𝛀 is the covariance matrix of the response variable 𝑦𝑦 after integrating out the parameters of the 

model. We can calculate the information matrix with equation (4). Before doing so, an additional 

step is required because the LP is not differentiable at the biologically optimal value.  

Optimal design requires a well-defined positive definite information matrix for a compact 

set of design spaces. However, Hooshangifar et al. (2022) showed that the design space remains 

compact when we remove one point from the design area. This allows us to sum over individual 

information values for each design point to calculate the design's total information. Hence, the 

following lemma can be used to calculate the information matrix for the LP model. 

Lemma 1: The approximation of the min of a vector (𝑋𝑋1,𝑋𝑋2,⋯ ,𝑋𝑋𝑛𝑛) is 

     

min (𝑋𝑋1,𝑋𝑋2,⋯ ,𝑋𝑋𝑛𝑛) = lim
𝑘𝑘→−∞

(1
𝑛𝑛
∑ 𝑋𝑋𝑖𝑖𝐾𝐾𝑛𝑛
𝑖𝑖=1 )

1
𝑘𝑘  

For the linear plateau model in each site, we have  

min(𝐴𝐴,𝐵𝐵) = lim
𝑘𝑘→−∞

(0.5 ∗ 𝐴𝐴𝑘𝑘 + 0.5 ∗ 𝐵𝐵𝑘𝑘)
1
𝑘𝑘 

The first derivatives of this function are  

𝜕𝜕
𝜕𝜕𝜕𝜕

= lim
𝑘𝑘→−∞

0.5(0.5 ∗ 𝐴𝐴𝑘𝑘 + 0.5 ∗ 𝐵𝐵𝑘𝑘)
1−𝑘𝑘
𝑘𝑘 𝐴𝐴𝑘𝑘−1 

𝜕𝜕
𝜕𝜕𝜕𝜕

= lim
𝑘𝑘→−∞

0.5(0.5 ∗ 𝐴𝐴𝑘𝑘 + 0.5 ∗ 𝐵𝐵𝑘𝑘)
1−𝑘𝑘
𝑘𝑘 𝐵𝐵𝑘𝑘−1 
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Solving one of the limits yields additional, similar information about the other limit. Define 𝑣𝑣 =

1
𝑘𝑘
, so 𝑣𝑣 → 0−. We have  

lim
𝜈𝜈→0−

0.5 �0.5 𝐴𝐴
1
𝑣𝑣 + 0.5 𝐵𝐵

1
𝑣𝑣�

𝑣𝑣−1
𝐴𝐴−

𝑣𝑣−1
𝑣𝑣  

lim
𝜈𝜈→0−

0.5��0.5 𝐴𝐴
1
𝑣𝑣 + 0.5 𝐵𝐵

1
𝑣𝑣�𝐴𝐴−

1
𝑣𝑣�

𝑣𝑣−1

 

lim
𝜈𝜈→0−

0.5(0.5 + 0.5 �
𝐵𝐵
𝐴𝐴
�
1
𝑣𝑣

)𝑣𝑣−1 

The solution for this limit is  

�
0 𝐴𝐴 > 𝐵𝐵 > 0
1
2

𝐴𝐴 = 𝐵𝐵 > 0
1 0 < 𝐴𝐴 < 𝐵𝐵

 

■ 
Hence, if biologically optimal nitrogen values are known a priori, then the derivative of the 

linear plateau is 

𝜕𝜕𝜕𝜕(𝑥𝑥,𝜽𝜽)
𝜕𝜕𝜽𝜽

=

⎣
⎢
⎢
⎢
⎢
⎡

1 𝑥𝑥 0
1 𝑥𝑥 0
⋮

0
0

⋮
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥∗
�⎯⎯⎯⎯⎯�

0
0

⋮

1
1 ⎦
⎥
⎥
⎥
⎥
⎤

. 

After linearizing the LP model and integrating out the parameters, the variance of the 

vector 𝑦𝑦 is approximated by  

 𝛀𝛀 = 𝑉𝑉𝑉𝑉𝑉𝑉(𝒀𝒀) = �𝑫𝑫1𝚿𝚿0𝑫𝑫1 + 𝑫𝑫𝑥𝑥𝚿𝚿1𝑫𝑫𝑥𝑥 + 𝑫𝑫𝑝𝑝𝚿𝚿2𝑫𝑫𝑝𝑝 + 𝜏𝜏2𝑰𝑰� (5) 

where 𝑫𝑫1,𝑫𝑫𝑥𝑥 and 𝑫𝑫𝑝𝑝 are diagonal matrices with elements equal to the columns of 𝜕𝜕𝜕𝜕(𝑥𝑥,𝜽𝜽)
𝜕𝜕𝜽𝜽

. 

  



62 

3. Optimal Design 

The optimal design of experiments has rich literature from the early 20th century (Smith, 1918). 

However, the theory of optimal design was developed in a paper by Kiefer (1974). Assume that 

the experimenter can run 𝑁𝑁 experiments. The theory of optimal design deals with selecting not 

necessarily distinct 𝑁𝑁 treatment levels. Most classical experimental designs usually assume 

independence to fit the production function. When production function parameters exhibit spatial 

heterogeneity, the location of the experiments must also be judiciously selected. Hence, we want 

to maximize the information an experiment can provide by selecting optimal treatment locations. 

In the statistics literature, a standard criterion is a D-optimal design, which maximizes the 

determinant of the Fisher information matrix. Maximizing the Fisher information matrix's 

determinant is equivalent to minimizing the volume of the confidence ellipsoid of the estimated 

parameters. Thus, an objective function criterion for the experimental design is required; for 

example 

max
𝜉𝜉

𝜙𝜙(𝑌𝑌,𝜽𝜽, 𝜉𝜉) 

where 𝑌𝑌 is a response variable, 𝜽𝜽 is the vector of parameters, 𝜉𝜉 is an experimental design, and 𝜙𝜙 

is a selection criterion. 

The Fisher information matrix does not depend on the unknown model parameters for 

linear models. So, the experimental designs have closed forms for these models, like factorial 

designs where treatment levels are selected at the minimum and maximum values of a treatment. 

However, the Fisher information matrix for nonlinear SVC models does depend on the model 

parameters. Hence, a chicken and egg situation occurs. The main goal is finding the optimal 

design to estimate model parameters, but the design depends on these parameters. One solution 

for this situation is to assume that the parameters are known and then find locally optimal 
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designs (Chernoff, 1953; Yang and Stufken, 2012). Pseudo-Bayesian methods offer an 

alternative solution by considering prior distributions for unknown parameters while maximizing 

the expected value of the Fisher information matrix (Chaloner and Verdinelli, 1995; Dette and 

Neugebauer, 1997). Pseudo-Bayesian designs are robust to designs when the true values for the 

parameters are unknown. For example, while the true biologically optimal nitrogen level is 

unknown, a researcher can specify a prior distribution for model parameters based on results 

from previous experiments. The following section investigates the robustness of the approach to 

inaccurate guesses of the initial values for the parameters of the mean response function.  

We consider two spatial covariance matrices: a spatial autoregressive (SAR) covariance 

matrix (Anselin, 1988) and a Spatial Gaussian process (SGP) covariance with negative 

exponential decay. The SGP exponential covariance function is   

 
cov�𝛽𝛽𝑟𝑟(𝑠𝑠𝑖𝑖),𝛽𝛽𝑟𝑟(𝑠𝑠𝑗𝑗)� = 𝜎𝜎𝑟𝑟2 exp�−

𝑑𝑑𝑖𝑖𝑖𝑖
𝜌𝜌𝑟𝑟
�   , 𝑟𝑟 = 0,1,2 (6) 

where 𝑑𝑑𝑖𝑖𝑖𝑖 are distances between location 𝑖𝑖 and 𝑗𝑗, 𝜎𝜎 is the sill, and the 𝜌𝜌 is the effective range of 

spatial covariance. The SAR covariance function is  

 𝚺𝚺𝑟𝑟𝑆𝑆𝑆𝑆𝑆𝑆 = 𝜎𝜎𝑟𝑟2((𝑰𝑰 − 𝜌𝜌𝑟𝑟  𝑾𝑾∗′)(𝑰𝑰 − 𝜌𝜌𝑟𝑟 𝑾𝑾∗))−1  , 𝑟𝑟 = 0,1,2 (7) 

where 𝜎𝜎𝑟𝑟2 is a common variance for the r'th parameter, 𝑾𝑾∗ is a row-standardized contiguity 

matrix, and 𝜌𝜌𝑟𝑟 the degree of spatial dependence. 

4. Application and results 

Assume that the treatment level and the number of replications are fixed, and we want to select 

the treatment location for 16 experiments in a field. Firstly, we assume that the field is portioned 

into a 4 × 4 square. Next, we consider a larger field with an 8×12 rectangular shape in the 

second scenario. The researcher wants to run 16 experiments with the four levels of treatments 
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given and four replications for each treatment level (a balanced treatment). We first consider a 

model with only the plateau varying over space and then generalize the model to have the 

intercept and slope parameters vary according to location. The information matrix given in 

equation (4) depends on the unknown parameters of spatial covariance as well as the optimal 

nitrogen value. We apply the pseudo-Bayesian method to overcome this problem. For the 

pseudo-Bayesian method, we assume that true values of the covariance parameters are known 

(locally optimal) and a uniform prior distribution between 90 and 110 for the optimal nitrogen 

values. With this prior distribution, we can be sure that there is at least one point on the plateau 

and one point in the range of possible optimal nitrogen rates. 

Suppose we want to allocate four equally weighted treatment levels in a 4 × 4 square. 

There are more than 63 million possible permutations that require 8.1 gigabytes of RAM to store. 

All possible permutations are calculated using the RcppAlgos package (Wood, 2020). We 

assume that the true values of the spatial covariance parameters are known and equal to 𝜌𝜌1 =

0.8, 𝜎𝜎12 = 20, 𝜌𝜌𝑁𝑁 = 0.9, 𝜎𝜎𝑁𝑁2 = 10, 𝜌𝜌𝑝𝑝 = 0.8, and 𝜎𝜎𝑝𝑝2 = 30 for the SAR model. These values for 

the SGP covariance structure are 4, 0.1, 3, 0.5, 10, and 1. The value for 𝜎𝜎𝜖𝜖2 = 1 for both 

covariance matrices.  

Figure 3.1 shows the optimal allocation when only the plateau is spatially varying. The 

result is the same for both SAR and SGP covariance functions. In this allocation, higher levels 

are spread out as much as possible and the lower levels, which are not spatially correlated, clump 

together in the middle of the field. Figures 3.2 and 3.3 show the optimal allocation for the SAR 

and SGP covariance structures when all parameters vary across space. This situation has no clear 

pattern when all parameters exhibit spatial variability. Hence, optimal designs could vary by 

field depending on the number of plots and the spatial correlation parameters. 
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To determine the efficiency of the obtained designs, we use relative efficiency as in 

Poursina and Talebi (2014). Relative efficiency (𝐸𝐸) of two designs 𝜉𝜉1and 𝜉𝜉2 can be calculated as   

 𝐸𝐸 =
|𝐼𝐼(𝜉𝜉1,𝛩𝛩)|
|𝐼𝐼(𝜉𝜉2,𝛩𝛩)|. (8) 

Since for classic designs like Latin square, strip plot, and randomly assigned designs, 

more than one allocation is possible, we consider the average efficiency of these designs over all 

possible Latin square (576) and strip plot (24) designs. Table 3.1 illustrates the efficiency of the 

classic designs relative to the optimal allocation of the locations.  

An important issue that should be addressed here is the robustness of obtained designs 

against bad guesses about the values of the variance parameters. We consider two different 

scenarios. First, the assumption is that misspecification is not severe and the 𝝂𝝂𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =

3
4
𝝂𝝂𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 or 𝝂𝝂 = 4

3
𝝂𝝂𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  where 𝝂𝝂 contains all variance parameters. In another scenario, we 

consider the severe misspecification where 𝝂𝝂𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 1
10
𝝂𝝂𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 or 𝝂𝝂𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 10𝝂𝝂𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 . In both 

scenarios, we change the parameters to have more variance or less information about the field. 

Table 3.2 shows the results of the robustness check against the misspecification. In most cases, 

the optimal design does not change with these assumptions. Even when it does, the lowest 

efficiency found was still 96%. 

Research by Ng'ombe and Brorsen (2021) finds that it is economically optimal to 

experiment on only a small portion of a field. Several papers consider the selection of a portion 

of the field when there is spatial behavior in the model (Husslage, et al., 2011; Lin and Tang, 

2015; Pronzato and Müller, 2012). We use this past research to decide the plot locations, but we 

must still allocate the treatment levels to these locations. In the nonspatial case, Ng'ombe and 
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Brorsen (2022) find that the economic optimum is to experiment on only a portion of the plots, 

so optimal design on only a portion of the plots is essential to consider. 

For this purpose, we consider an 8 × 12 field where the researcher decides to run 16 

experiments over this field with the same treatment levels and the number of replications as 

before. We use the maximin package in R (Sun and Gramacy, 2021), which provides a space-

filling design based on the maximin distance criterion to maximize the information gained from 

experiments to select the location of the experiments. The spatial covariance matrix is calculated 

for the whole farm. We selected the portion of the matrix that depicts the covariance matrix for 

the selected plots based on the maximin criterion. The final covariance matrix is 16 × 16; 

however, the initial covariance matrix was 96 × 96. We use the same values and distribution for 

the model parameters and biological plateau-level nitrogen.  

The optimal designs are given in figures 3.4 and 3.5. In figure 3.5, with the exponential 

covariance function, the largest nitrogen levels are placed farther apart, much like the case where 

only the plateau is random. Figure 3.4 shows a more even allocation of treatment levels with the 

SAR covariance function. If we divided the field into four big plots, we have all levels of 

nitrogens in each plot. Since the spatial correlation decreases between the plots with more 

distance, relative efficiency for randomly assigned treatment levels with SAR covariance 

function increases from 41 percent to 58 percent. In comparison, the relative efficiency surged 

from 51 to 64 percent for the exponential covariance function. Hence, the locations of the 

treatment levels do not affect the information as much as before; however, they still play a vital 

role in gaining information.  
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5. Conclusion and disscusion  

In this paper, we consider a non-differentiable production function (LP). The researchers' budget 

predetermines the treatment levels and the number of replications of each level. The optimal 

location for the treatment levels is found based on the D optimal criterion that maximizes the 

determinant of the Fisher information matrix for the LP model with spatially varying 

coefficients. Current technology lets us apply different levels of treatment without extra cost. So, 

finding the optimal location for the treatments helps to increase the amount of information 

gained from an experiment without imposing an extra cost on the project. The obtained designs 

are far more informative than the classical designs like Latin square, strip plot, and random 

designs. These designs also are robust against the misspecification of the parameters, but optimal 

designs are obtained, assuming that LP is the true functional form and it is assumed that the 

spatial covariance functional form is also known. 
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Tables 

Table 3.1. Relative Efficiency of Designs Based on Different Correlation Matrices for 
Whole-Farm Experimentation 
 

  Average Efficiency Maximum Efficiency 

Design of 

Experiment 

Number of 

Designs 

SAR Exponential SAR Exponential 

Latin Square 576 71.29 61.81 0.94 0.91 

Random 1000 40.85 51.01 0.48 0.96 

Strip plot 24 37.59 28.89 0.56 0.51 
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Table 3.2. Robustness of Nearly Optimal Designs Against Misspecification in Variance 

Parameters 

Model Parameter Efficiency Parameter Efficiency 

SAR 

𝜌𝜌1 = 0.6 1 𝜌𝜌1 = 0.08 0.96 

𝜌𝜌𝑁𝑁 = 0.675 1 𝜌𝜌𝑁𝑁 = 0.09 1 

𝜌𝜌𝑝𝑝 = 0.6 1 𝜌𝜌𝑝𝑝 = 0.08 1 

𝜏𝜏1 = 15 1 𝜏𝜏1 = 2 0.95 

𝜏𝜏𝑁𝑁 = 7.5 1 𝜏𝜏𝑁𝑁 = 1 1 

𝜏𝜏𝑝𝑝 = 22.5 1 𝜏𝜏𝑝𝑝 = 3 1 

𝜎𝜎𝜖𝜖 = 1.33 1 𝜎𝜎𝜖𝜖 = 10 1 

Exponential 

𝜌𝜌1 = 5.33 1 𝜌𝜌1=40 1 

𝜌𝜌𝑁𝑁 = 4 1 𝜌𝜌𝑁𝑁 = 30 1 

𝜌𝜌𝑝𝑝 = 6.66 1 𝜌𝜌𝑝𝑝 = 50 1 

𝜎𝜎1 = 0.13 1 𝜎𝜎1 = 1 0.99 

𝜎𝜎𝑁𝑁 = 0.66 1 𝜎𝜎𝑁𝑁 = 5 1 

𝜎𝜎𝑝𝑝 = 1.33 1 𝜎𝜎𝑝𝑝 = 10 1 

𝜎𝜎𝜖𝜖 = 1.33 1 𝜎𝜎𝜖𝜖 = 10 1 
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Figures  

 

Figure 3.1. Optimal Allocation for Simultaneous Autoregrresive and Exponential when 
Only the Plateau Is Spatially Varying 

 

Figure 3.2. Best Allocation for exponential Covariance with Whole-Field 

Experimentation 



74 

 

Figure 3.3. Best Allocation for Simultaneous Autoregrresive Covariance and Whole-

Field Experimentation 

 

Figure 3.4. Best Allocation for 16 Selected Locations with Simultaneous Autoregrresive 
Covariance 
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Figure 3.5. Best Allocation for 16 Selected Locations with Exponential Covariance 
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CHAPTER IV 
 

 

Fully Bayesian Economically Optimal Design for Spatially Varying Coefficient Linear 

Stochastic Plateau Model in Several Consecutive Years 

Abstract 

Experimentation to guide optimal fertilizer selection is moving toward on-farm 

experimentation due to the uncertainty of small on-station experiments. However, there is 

no agreement on the optimal way to conduct on-farm experimentation, which motivated 

this paper. Optimal on-farm experimentation is addressed using fully Bayesian decision 

theory. Monte Carlo integration was used, assuming a linear stochastic plateau model 

with spatially correlated plateau parameters. The spatially varying coefficient model can 

be used to guide the application of site-specific nitrogen. The actual economic optimal 

nitrogen values vary from 130 to 180 for different plots based on the data-generating 

process used for simulation. Of the designs considered, the results show that 

experimenting on 15 plots of a field with treatment levels of 35, 130, 165, and 230 with 

2, 3, 5, and 5 replications maximized the farmers' profit over several years. The third year 

was the best time to quit experimenting.  

Keywords: Linear stochastic plateau, Profit function, Simulated based Bayesian design, 

Spatially varying coefficients, Utility function.  
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1. Introduction 

Next-generation precision agriculture technologies could contribute more than $47 billion 

to the economy (US Department of Agriculture, 2019). One crucial goal of precision 

agriculture is applying a site-specific amount of nitrogen fertilizer. Improving nitrogen 

efficiency can save farmers lots of money and help reduce environmental emissions 

(Matson, et al., 1998). Computer scientists and engineers have developed the technical 

ability to apply site-specific nitrogen. However, a significant hurdle to adoption has been 

acquiring information on which to base site-specific recommendations. On-farm 

experimentation is a promising source of information (Bullock, et al., 2019; Paccioretti, et 

al., 2021; Tanaka, et al., 2022). The question addressed here is, what is the expected profit-

maximizing way to use on-farm experimentation to guide precision nitrogen 

recommendations?  

 There is a vast literature on optimal nitrogen fertilizer value over the last two 

centuries. Researchers relied on small experiments conducted on agricultural stations for 

more than a century (Colyer and Kroth, 1968; Hanumantha, 1965; Huelsen, 1932; Singh 

and Sharma, 1968). Although small experiments provide valuable information, the 

uncertainty regarding the results and heterogeneity between different fields make these 

results unreliable for many farmers (Bullock and Mieno, 2017; Rodriguez, 2014). Sellars, 

et al. (2020) showed that farmers use a higher nitrogen rate than the maximum return to 

nitrogen (MRTN) which is a rational way of responding to the uncertainty about the results 

of small experimentations for their field.  
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Large-scale on-farm experimentation can overcome the uncertainty of small 

experiments (de Oliveira Ferreira, et al., 2021; Evans, et al., 2020; Lacoste, et al., 2022). 

However, there are two extreme points of view on conducting on-farm experimentation. 

Lambert and Cho (2022) run a geographically weighted regression (GWR) on a strip plot 

design that contains the zero nitrogen rate in a part of the field, which could cause a 

significant cost to farmers due to yield loss. On the other hand, Trevisan, et al. (2021) 

reduced the variation in nitrogen levels. They considered seven levels of nitrogen rate from 

154 to 235 (kg ha-1), where they believe the optimal value is in this range. There is a trade-

off between the information gained from the experiments by varying the nitrogen levels 

more and the cost of conducting the experiments due to reduced yield. This paper 

determines what nitrogen levels and how much replication for each level is optimal to 

maximize the net present value of farmers' profit over the years.   

Ng’ombe and Brorsen (2022) obtained an optimal Bayesian simulated design for 

on-farm experimentation. They considered a linear stochastic plateau model and found the 

best time to quit the experiment based on the net return value. In addition, they suggested 

using a portion of the field to reduce the cost and increase the net present value of the 

experimentation. This research, however, has two significant limitations. First, they 

consider the level of nitrogen and their replications fixed and predetermined. In addition, 

they ignored the spatial behavior for on-farm experimentations, so they had to use uniform 

optimal nitrogen rates. In this paper, we address both limitations and find the optimal 

levels, replications, and the portion of the field needed for the experiment for a linear 

stochastic plateau model with a spatially varying plateau parameter that can provide site-
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specific optimal nitrogen values. In addition, we also consider the year when it is optimal 

to quit the experimentation.  

This paper will answer an essential question in experimental design and agricultural 

economics literature. The first question is: "do we need to experiment on all fields when 

doing on-farm experimentation to find the optimal economic value for the fertilizer?" If 

the answer to this question is no, then how many plots are needed to maximize the farmer's 

profit over some consecutive years? We need an optimal proportion of plots to conduct the 

experimentation. The second necessary question is: "what treatment levels and replications 

can provide this information?" The last question we will answer in this paper is: “if we use 

the optimal levels and replications, in which year should we quit the experimentation?” 

This paper uses a two-step procedure to answer these questions. In the first step, we 

simulate the data for different designs considering all scenarios. In the second step, we 

consider a surface on the simulated design and find the design that maximizes the utility 

function. This optimization results in a fully Bayesian optimal design based on the farmers' 

profit for  T periods of time. 

2. Spatially Varying Coefficient Stochastic Linear Plateau   

The linear plateau (LP) model is a well-known production function in agricultural 

applications (Dhakal, et al., 2019; Poursina and Brorsen, 2021; Villacis, et al., 2020). The 

LP models reflect the yield behavior when the fertilizer response increases to a certain 

point and gets flat. Bayesian estimation is a reliable and efficient way to estimate LP 

models (Cho, et al., 2020; Moeltner, et al., 2021; Ng'ombe and Lambert, 2021). Tembo, et 

al. (2008) argued that the plateau function could vary across different years and within 
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fields. Lambert and Cho (2022); Park et al. (2018); Sarkar and Lupi (2022) consider the 

spatially varying plateau function, which shows the popularity and acceptability of 

spatially varying stochastic plateau.  

 The LP model for several years with stochastic plateau and spatial behavior can be 

presented as  

(1)    𝑦𝑦𝑖𝑖𝑖𝑖 = min(𝛽𝛽0 + 𝛽𝛽1𝑁𝑁𝑖𝑖𝑖𝑖,𝑃𝑃𝑖𝑖 + 𝜈𝜈𝑡𝑡) + 𝜙𝜙𝑡𝑡 + 𝜖𝜖𝑖𝑖𝑖𝑖 

where 𝑦𝑦𝑖𝑖𝑖𝑖 depicts the yield in plot 𝑖𝑖 at time 𝑡𝑡, 𝛽𝛽0, and 𝛽𝛽1 are intercept and slope, 𝑃𝑃𝑖𝑖 is the 

plateau value for each plot, 𝜈𝜈𝑡𝑡 is the plateau year random effect, and 𝜙𝜙𝑡𝑡 is the intercept year 

random effect. Also, assume that 𝝐𝝐~𝑁𝑁(0,𝜎𝜎2𝐼𝐼),  𝝂𝝂~𝑁𝑁(0,𝜎𝜎𝜈𝜈𝐼𝐼), and 𝑷𝑷~𝑁𝑁(𝟎𝟎,𝚿𝚿) where 𝚿𝚿 is 

the covariance matrix that describes the spatial behavior of the plateau, and all random 

parts are independent of each other.  

3. Methodology  

Muller (1999) first defined Monte Carlo Bayesian simulation-based optimal designs as a 

decision problem. Bayesian decision methodology now dominates the optimal 

experimental design for complicated non-standard classical optimality criteria (Ng’ombe 

and Brorsen, 2022; Overstall and Woods, 2017; Ryan, et al., 2015; Ryan, et al., 2015; 

Seeger, et al., 2007). Consider the experimental design problem as a decision problem that 

can be explained by a utility function of 𝑈𝑈(𝒅𝒅,𝜽𝜽,𝒚𝒚) where 𝒅𝒅 is the design of the experiment, 

𝜽𝜽 contains the model parameters, and 𝒚𝒚 is the observable data. Here 𝒅𝒅 is the experimental 

design, and we are looking for a design that maximizes the expected utility function over 

all possible scenarios of the parameters and observable response through the probability 

density function 𝑝𝑝𝒅𝒅(𝜽𝜽,𝒚𝒚). We assume that the decision maker is risk neutral, so the 
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decision maker is a rational person who selects an action (design of experiment) that 

maximizes the expected profit averaging all relevant unknown values of the model.  

 Consider the general form of a decision problem based on a given utility function 

𝑈𝑈(𝒅𝒅,𝜽𝜽,𝒚𝒚) and the probability model 𝑝𝑝𝒅𝒅(𝜽𝜽 ,𝒚𝒚) = 𝑝𝑝(𝜽𝜽)𝑝𝑝𝒅𝒅(𝒚𝒚|𝜽𝜽). Müller (2005) formulated 

an optimal design as  

(2)      𝒅𝒅∗ = arg max
𝒅𝒅

𝑈𝑈(𝒅𝒅) 

where 𝑈𝑈(𝒅𝒅) = ∬𝑈𝑈(𝒅𝒅,𝜽𝜽,𝒚𝒚)𝑝𝑝(𝜽𝜽)𝑝𝑝(𝒚𝒚|𝜽𝜽)𝑑𝑑𝜽𝜽𝑑𝑑𝒚𝒚 is the expected utility. Usually, the target 

function 𝑈𝑈(𝒅𝒅) cannot be calculated in a closed form, especially when the model is non-

linear. However, this function can be approximated by a Monte Carlo integration since the 

prior distribution 𝑝𝑝(𝜽𝜽), and the sampling model 𝑝𝑝𝒅𝒅(𝒚𝒚|𝜽𝜽) are available. Hence, we can 

generate the Monte Carlo sample for the �𝜽𝜽𝑗𝑗 ,𝒚𝒚𝑗𝑗�, 𝑗𝑗 = 1, … ,𝑀𝑀 and obtain the approximated 

𝑈𝑈�(𝒅𝒅) = 1
𝑀𝑀

 ∑𝑈𝑈(𝒅𝒅,𝜽𝜽,𝒚𝒚).  

Optimal design is an optimization problem. So, the next step to finding the design 

of the experiment is to maximize the approximated utility function. One solution to this 

problem is looking at the whole surface for all simulated designs. Hence the next step is to 

find a surface all over the obtained utility functions and find the optimal design of the 

experiment.  

To find the optimal design for the spatially varying stochastic linear plateau model, 

we simulated on-farm field trials over 𝑇𝑇 periods for each farm. So, the objective is to 

maximize the farmer's net present value (NPV) over 𝑇𝑇 years of the experimentations. 

Therefore, the optimal design is 
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𝑑𝑑∗ = arg max
𝑑𝑑

𝑈𝑈(𝑑𝑑) = arg max
𝑑𝑑

�𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡

𝑇𝑇

𝑡𝑡=1

(𝑑𝑑) 

where 𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 is the 𝑡𝑡th period 𝑁𝑁𝑁𝑁𝑁𝑁. So the 𝑁𝑁𝑁𝑁𝑁𝑁 is the discounted expected profit over the 

years and can be calculated as    

𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡(𝑑𝑑) = ��
𝜋𝜋𝑖𝑖𝑖𝑖𝑖𝑖

(1 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)𝑡𝑡

𝐼𝐼

𝑖𝑖=1

𝐹𝐹

𝑓𝑓=1

= ��𝑝𝑝
𝐼𝐼

𝑖𝑖=1

𝐸𝐸�𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖�𝑑𝑑,𝜃𝜃�
(1 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)𝑡𝑡

−
𝑟𝑟𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖

(1 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)𝑡𝑡

𝐹𝐹

𝑓𝑓=1

 

where 𝑖𝑖 shows the plots in farm 𝑓𝑓 , 𝑝𝑝 is the price of output, 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 is the selected level of 

fertilizer in location 𝑖𝑖 for farm 𝑓𝑓 at time 𝑡𝑡, 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖is the production function for the spatially 

varying coefficient stochastic plateau model, and 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is the interest rate. 

The maximizing problem involves the treatment levels and their replications in addition 

to the proportion of a field used for experimenting. In this paper, we restrict the number of 

treatment levels to four but do not specify the treatment level values and their 

corresponding replications. In addition, we consider three different percentages of 

experimentation for the first year and reduce the number of experiments over the years. 

The rest of the farm is filled by the farmer's optimal value for the first year. Then, the site-

specific optimal values are calculated for the following years based on the posterior 

distribution. The site-specific optimal nitrogen value can be obtained from  

𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑖𝑖𝑖𝑖

𝐸𝐸�𝜋𝜋𝑖𝑖𝑖𝑖|𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖� = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖

∫[𝑝𝑝(𝑚𝑚𝑚𝑚𝑚𝑚(𝛽𝛽0 + 𝛽𝛽1𝑁𝑁𝑖𝑖𝑖𝑖,𝑃𝑃𝑖𝑖 + 𝜈𝜈𝑡𝑡)) − 𝑟𝑟𝑁𝑁𝑖𝑖𝑖𝑖]𝑓𝑓(𝜳𝜳)𝒅𝒅𝒅𝒅  

where the 𝜳𝜳 contains all the parameters which should be estimated, and f is the 

posterior distribution function of parameters. Since, in this problem, both sides in the 
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plateau model are random, we use the analytical solution given by Poursina and Brorsen 

(2021) to find the site-specific optimal nitrogen value for each plot in each farm.  

4. Monte Carlo Simulation 

We simulate 30 farms with similar spatial behavior with 100 plots over eight years where 

treatment levels and replications are selected randomly. We assume the plot sizes are 

large enough for the machines to easily switch the nitrogen rate from one plot to the next. 

The true simulated production function is given in (1). Since the model is extraordinarily 

complex, simulation and fitting models are time-consuming. Simulating eight years of 

data for each design point takes three days for 30 farms. Hence, we simulate forty designs 

for every proportion (70%, 30%, and 15%). The proportion was reduced by 10 percent of 

the total number of experiments for each consecutive year. So, the number of plots for 

experimentation starts from 70 for the first year and is reduced to 46 for the last year in 

the first simulation. These numbers are 30 and 20 for the second scenario; and 15 and 10 

for the last scenario. The experimented plots are selected based on the maximin optimal 

criterion on the filling space experimental design, which maximizes the minimum 

distance between two selected plots to maximize the gained information through the 

maximin package in R (Sun and Gramacy, 2021). Figure 4.1 depicts the simulation 

process for one farm over eight years. This process ran for 30 farms to consider all 

possible randomness in the data-generating process. Each design point which contains 30 

farms takes three days to simulate and find the optimal nitrogen value on a desktop 
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computer with a i-5 9500 and 32 gigabytes of RAM. Hence, we simulated 40 designs for 

each selected proportion. 

 The true model for Monte Carlo simulation is given in 1. Poursina and Brorsen 

(2021) argued that the conditional autocorrelation function for spatial behavior in LP 

models could fit and predict better in the spatial data when the distance between the 

plots’ centers is fixed. In addition, this model is much faster to estimate than decreasing 

correlation functions such as the exponential. Hence, the simulated model for all of the 

designs is  

(3)    𝑦𝑦𝑖𝑖𝑖𝑖 = min(105 + 0.7𝑁𝑁𝑖𝑖𝑖𝑖,𝑃𝑃𝑖𝑖 + 𝜈𝜈𝑡𝑡) + 𝜙𝜙𝑡𝑡 + 𝜖𝜖𝑖𝑖𝑖𝑖 

𝑃𝑃~𝑁𝑁(194,
1

0.003
(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑾𝑾𝑾𝑾) − 0.5𝑾𝑾)−1) 

𝜈𝜈~𝑁𝑁(0,400) 

𝜙𝜙~𝑁𝑁(0,25) 

𝜖𝜖~𝑁𝑁(0,9) 

where 𝑾𝑾 is the contiguity matrix of the field, and 𝟏𝟏 is a vector of ones. To reduce the 

variation in the model, the antithetic method is used for simulating the year random effect 

in both plateau and intercept year random effect . The corn price is $4.5 bu-1, and the 

nitrogen price is $0.45 kg-1, so the expected profit function is  

𝐸𝐸(𝜋𝜋) = ���4.5𝐸𝐸�𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖� − 0.45𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖

𝐼𝐼

𝑖𝑖=1

𝐹𝐹

𝑓𝑓=1

𝑇𝑇

𝑡𝑡=1

 

where the yield function is given in (3).   
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When the corn yield is simulated on each plot, we use the Hamiltonian Monte 

Carlo (HMC) algorithm provided by Rstan (Carpenter, et al., 2017) to fit a hierarchical 

Bayesian model and find the posterior distribution of the parameters. We consider a 

normal distribution with large variance (non-informative) as priors for the intercept and 

plateau to make sure that the experimentation can provide information. The priors are  

𝛽𝛽0~𝑁𝑁(100, 2500),𝛽𝛽1~𝑁𝑁(0,4),𝑃𝑃~𝑁𝑁 �𝑝̅𝑝,
1
𝜏𝜏

(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑾𝑾𝑾𝑾) − 𝜌𝜌𝑾𝑾)−1� 

𝑝̅𝑝~𝑁𝑁(100,2500),𝜌𝜌~𝑈𝑈(0,1), 𝜈𝜈~𝑁𝑁(0,𝜎𝜎𝜈𝜈),𝜙𝜙~𝑁𝑁�0,𝜎𝜎𝜙𝜙� 

 𝜖𝜖~𝑁𝑁(0,𝜎𝜎𝜖𝜖),𝜎𝜎𝜖𝜖~ℎ𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑦𝑦(3,6),𝜎𝜎𝜙𝜙~𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 

𝜎𝜎𝜈𝜈~𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢, 𝜏𝜏~𝑈𝑈(0,1). 

The only informative prior is the 𝛽𝛽1since there is a vast literature on the effect of 

nitrogen on yield. Still, this prior also considers an extensive range concerning the values 

gained for this effect on many papers (Alotaibi, et al., 2018; Boyer, et al., 2013; Vetsch 

and Randall, 2004).  

 We use four chains with 5000 iterations and 2000 warmups in each Bayesian 

estimation process. Since the HMC is more efficient (Girolami and Calderhead, 2011; 

Ng'ombe and Lambert, 2021) than the usual MCMC methods, this method is used to 

fitting the models on simulated data. The convergence Gelman-Rubin criterion 𝑅𝑅� 

(Gelman and Rubin, 1992) and trace plots are checked to confirm the convergence of the 

Bayesian method.  
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5. Optimal Experimental Design 

The next step for finding the optimal design is to analyze the simulated data and consider 

a curve over the possible conducted designs. Figure 4.2 shows three field proportions' 

(15%, 30%, 70%) empirical cumulative density function (ECDF). Based on Figure 4.2, it 

is clear that the 15% experimentation dominates the two others in first-order stochastic 

dominance (FSD). Hence, we do not need to conduct experiments over a significant part 

of the field to maximize the farmers' profit. In other words, increasing the experimentation 

could not provide enough information to cover the cost of these designs. 

 The site-specific optimal nitrogen values and the locations of the experimentation 

plots change from years 1 to 8 since the number of experiments reduce over time.  Figures 

4.3 to 4.6 illustrate the NPV versus the nitrogen levels for 15 plots of field 

experimentations. The labels across the borders indicate the number of replications for each 

point. Based on Figures 4.3 to 4.6, we can select the optimal nitrogen values and 

replications for each level. The optimal nitrogen values for making the experimentation are 

35 with 2 plots replication, 130 with 3 plots replication, 165 with 5 plots replication, and 

230 with 5 plots replication. Two values of the nitrogen selected at the beginning and the 

end of linear part, one level is in the plateau change point domain, and one nitrogen valu 

at the plateau. 

 Figure 4.7 depicts the farmers’ eight-year NPV when the best designs are selected 

for experimentation. There is always a significant surge in the first year of experimenting 

since the prior knowledge of the site-specific optimal nitrogen is very off (optimal average 

is 160.46 and the farmers optimal is 300). Figure 4.7 shows farmers' NPV maximizes at 
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the third year of experimentation. The experimentation can be quit after this year if the 

design is selected wisely by the researcher in the first place.  

 Figure 4.8 depicts the actual (left) and the average estimated (right) site-specific 

optimal nitrogen values for the optimal selected design. This Figure demonstrates that the 

average optimal design coverage to the actual optimal values. Table 4.1 shows the mean 

squared error (MSE) value for 8 consecutive years.    

 Table 4.2 shows the Bayesian estimation of the parameters for model 1 based on 

the third year of simulation for one of the best-selected experimental designs. For all 

these parameters, the model converges nicely. The results show that the estimated 

parameters and the actual values are close when the profit maximizing design is selected.   

 

6. Conclusion  

There is no optimal experimenting system for on-farm experimentation, which motivated 

this paper. This research assumes an LP model with year stochastic behavior and spatial 

plateau. A fully Bayesian decision approach is used. We consider three different 

scenarios for the proportion of fields on which to make the experimentation. Forty 

different designs for each scenario are simulated with a random selection of nitrogen 

levels and replication for eight years. The number of experimentations is reduced by ten 

percent for the following years to cover the cost of losing yield for the extensive 

experiments.  

Results show that experimenting on 15 plots of the field FSD dominated the two 

scenarios that experimented on more of the field. The optimal levels of nitrogen for 
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experimenting are 35, 130, 165, and 230, with corresponding replications of 2, 3, 5, and 5 

plots, respectively. The best year for quitting the experiment is the third year since the 

marginal revenue is almost zero adjusted for the year's random effect.  

This study has several limitations. First, since the optimal percentage happened in 

the lowest value of the experiment plots (boundary point), the results may vary if a lower 

proportion was considered. Another limitation is the reduction in the experiment 

percentage for the following years. We consider this value fixed. Continued 

experimentation might have been profitable if the number of plots had decreased more 

quickly.  
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Tables 

Table 4.1. Mean Square Error for Optimal Nitrogen Value for Selected Optimal Design 

Year  1 2 3 4 5 6 7 8 

MSE 950.86 1062.33 688.77 1030.92 804.19 794.75 648.68 750.32 

 

Table 4.2. Parameters and Their Estimates for One of the Best-Selected Designs in the 
Third Year 

Parameters  True value Estimate (SD) Gelman- Rubin Statistics 

𝛽𝛽0  105 102.71 (0.315) 0.998 

𝛽𝛽1  0.7 0.71 (0.020) 0.998 

𝑝̅𝑝  194 202.5 (0.600) 1.012 

𝜏𝜏  0.003 0.003 (0.000) 1.000 

𝜌𝜌  0.5 0.46 (0.008) 1.001 

𝜎𝜎𝜈𝜈 20 9.8 (3.456) 1.003 

𝜎𝜎𝜙𝜙  5 10.3 (3.871) 1.002 

𝜎𝜎𝜖𝜖 3 3.47 (0.115) 1.003 
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Figures 

 

 

Figure 4.1. Flowchart for Simulation of One Farm 
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Figure 4.2. Empirical Cumulative Distribution Function for Farmers' Profit ($1000) Over 
Eight Consecutive Years Based on Field Experimentation Proportion 
 

 

 

Figure 4.3. Total Farmers' Profit ($1000) Over Eight Consecutive Years vs. the First 
Level of Nitrogen 
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Figure 4.4. Total Farmers' Profit ($1000) Over Eight Consecutive Years vs. the Second 
Level of Nitrogen 

 

Figure 4.5. Total Farmers' Profit ($1000) Over Eight Consecutive Years vs. the Third 
Level of Nitrogen 
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Figure 4.6. Total Farmers' Profit ($1000) Over Eight Consecutive Years vs. the Last 
Level of Nitrogen 

 

Figure 4.7. Farmers' NPV ($1000) vs. Year for Best-Selected Designs 
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Figure 4.8. Actual (Left) and Estimated (Right) Optimal Nitrogen Values for the Profit 
Maximizing Design in the Third Year  
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