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Abstract

Aerosol-deep convective cloud (DCC) interactions remain a frontier in the study

of water cycles, energy budgets, climate models, and air quality, partly because it can

be difficult to disentangle aerosol impacts from the impacts of variations in the tem-

perature, moisture, and wind fields that strongly affect the structure and evolution of

DCCs. Theoretical and observational studies have shown that increased aerosol con-

centration ingestion by DCC updrafts can promote their invigoration by delaying the

warm rain process and increasing latent heat release at the freezing level through a

narrowing of the drop size distribution. This mechanism, known as the aerosol invig-

oration effect (AIE), increases a convective precipitating updraft’s strength and alters

microphysical structures throughout its lifetime. However, other recent studies refute

claims that the AIE increases updraft strength and instead claim that increased aerosol

loading can weaken updrafts and/or reduce precipitation intensity. This study seeks

to examine the impact of the AIE on DCCs by using a bulk statistical framework with

a sample size of 2500 DCCs observed by ground-based radar observed in the vicinity

of Houston, TX in the months of June, July, and August between 2013 – 2021. The

vicinity of Houston was chosen for this investigation as regular summertime sea-breeze

triggered DCCs occur in low-shear environments and weak synoptic-forcing conditions,

with large aerosol concentration differences on varying days. Data are obtained from

the Houston-Galveston WSR-88D (KHGX), ECMWF Reanalysis v5 (ERA5), Modern-

Era Retrospective analysis for Research and Applications, version 2 (MERRA-2), and

Texas Commission for Environmental Quality (TCEQ). DCC tracking was completed

using the Multi-Cell Identification and Tracking (MCIT) algorithm using radar data

from KHGX. Results from a spatial analysis of DCC locations using 2D kernel density

estimates show that their locations, initiation times, and aerosol regime are largely

governed by the direction and strength of the sea-breeze. Composite difference con-

toured frequency by altitude diagrams (CFADs) are used to uncover differences in the

xvi



vertical structure of dual-polarization radar signatures and show that under certain me-

teorological conditions, differences in radar data consistent with the AIE are present

across many DCCs within specific meteorological regimes. These regimes have been

shown to promote the AIE by previous work, such as environments with moderate to

high instability, low shear, and high free tropospheric relative humidity. Additionally,

some meteorological regimes promote inhibition of updraft and precipitation intensity

for DCCs under high aerosol mass loading, mainly within an anthropogenic aerosol

regime.
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Chapter 1

Introduction

Aerosols emitted into Earth’s atmosphere provide the necessary particles that allow

for condensation of water vapor to occur at relative humidities just above saturation.

Without them, liquid clouds would not be able to form under the conditions they cur-

rently do. Given aerosol prevalence across the globe and their effects on the climate

system, and the modification of these effects due to human activities, the importance

of understanding their impacts on radiative forcing through cloud interactions is in-

creasing. Due to the difficulty in separating meteorological influences from aerosol in-

fluences, aerosols’ exact physical influence on all types of clouds and the precipitation

they produce remains poorly known. To measure the interactions between aerosols and

clouds, detailed in-situ data collected via aircraft across many different types of mete-

orological environments, aerosol regimes, and cloud types can aid in a process-oriented

understanding of how aerosol impact clouds, which compliments understanding gained

from satellite remote sensing and modeling studies.

Throughout the 20th and early 21st centuries, technological advancements in re-

mote sensing instruments such as weather radars have allowed new methodologies for

studying microphysical interactions between aerosols and clouds. This has occurred

because of the capability of retrieving microphysical properties of clouds and the large

spatio-temporal scales at which radar data exist compared to in-situ data. Weather
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radars measure the backscattered signal from the interaction of the transmitted elec-

tromagnetic field with hydrometeors, which can be used to estimate hydrometeor con-

centrations and diameters within a sampling volume, typically assuming liquid com-

position and Rayleigh scattering. One of the most commonly used products derived

from the returned signal is the radar reflectivity factor (Z) and is typically determined

using horizontal polarization and displayed in decibel units or dBZ. For spherical hy-

drometeors for which the Rayleigh approximation is appropriate, Z is proportional to

the 6th-moment of the drop size distribution (DSD) within a sampling volume of the

radar and given by

Z =

∫ ∞

0

N(D)D6dD, (1.1)

where N(D) is the number distribution function, which is dependent on drop diameter

D.

The advancement of dual-polarization radar technology for use in weather radar

applications has opened new frontiers for retrieving the microphysical properties of

clouds. In particular, differential reflectivity (ZDR) (Seliga and Bringi, 1976) and co-

polar correlation coefficient (ρHV ) (Balakrishnan and Zrnic, 1990) are two heavily used

dual-polarization radar variables. ZDR is defined as the logarithmic ratio of the Z

measured at the horizontal polarization (Zh) and the Z measured at the vertical po-

larization (Zv), given by

ZDR = 10 logZh/Zv, (1.2)

where Zh and Zv are in linear units (mm6/m3). The ρHV at lag-0 can be defined as

ρHV (0) =
< Si

HS
i∗
V >

[< |Si
H |2 >< |Si

V |2 >]0.5
, (1.3)

2



where <> indicates time-average quantities and * is the complex conjugate operator.

Si
H (Si

V ) is the scattering coefficient of the ith hydrometeor within the sampling volume

at the horizontal (vertical) polarization and is given by

SH,V = π3KwD
3/2λ2, (1.4)

where Kw describes the refractive index of water and λ is the wavelength of the radar.

ZDR provides information on the typical shape of hydrometeors within the sampling

volume, with higher ZDR meaning more oblate or horizontally oriented particles. Ad-

ditionally, ZDR is Z-weighted, meaning that particles that produce higher Z will dom-

inate the ZDR returns. ρHV is typically used to identify if the scatterers within a

sampling volume are uniform in composition and thus can be a good indicator of me-

teorological targets versus other scatterers such as bugs and debris (Balakrishnan and

Zrnic, 1990). Additionally, it can provide information about mixed-phase regions of

clouds such as melting layers.

Many studies have taken advantage of dual-polarization technology to study cloud-

aerosol interactions, and these are thoroughly discussed in Chapter 2. This study seeks

to add to knowledge gained from these previous works by using dual-polarization radar

observations of convective clouds within a large bulk statistical framework to study

aerosol-cloud interactions. Specifically, this study seeks to uncover aerosol impacts on

mixed-phase deep convective clouds (DCCs) within the Houston, Texas region using

the operational S-band WSR-88D NEXRAD radar KHGX to answer the following:

1. What is the spatial distribution of convection around Houston under differing

aerosol regimes?
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2. Can aerosol effects on deep convection be seen using an operational NEXRAD

radar considering the vertical resolution and coverage of operational scanning

strategies may be sub-optimal and incomplete for such a task?

3. If aerosol effects are observed, what are these effects on the vertical radar profiles

of DCCs? Are the effects of aerosols consistent with invigoration or inhibition of

convection? Do meteorological influences mediate the aerosol effects?

The remainder of this thesis consists of chapters as follows. Chapter 2 presents

background information on important convective cloud microphysical processes that

aerosols might impact; past studies on aerosol effects on convective clouds are also

summarized. Chapter 3 presents the methodology behind the construction of the bulk

statistical framework used to investigate aerosol impacts on convective cloud proper-

ties. Chapter 4 presents results found from the statistical analysis and interprets those

results. Chapter 5 presents important conclusions regarding aerosol effects on convec-

tive clouds, limitations of those results, and offers suggestions for future research.
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Chapter 2

Background

2.1 Aerosols & CCN

2.1.1 Origin and effects of CCN

Aerosols consist of substances that are in a solid or liquid state, and typically micro-

scopic. They can range in diameters from less than 20 nm up to millimeters. This wide

range of diameters warrants specific delineations of size ranges to categorize how dif-

ferent sizes behave in Earth’s atmosphere. The nucleation mode is defined as aerosols

with diameters less than 20 nm, Aitken mode with diameters between 20 nm and 100

nm, accumulation mode with diameters between 100 nm and 1 µm, and coarse mode

with diameters above 1 µm.

Sources of aerosols include particles scavenged by the wind from the ground, conden-

sation of gases in the atmosphere, and anthropogenic emissions (Seinfeld, 1986). These

three broad mechanisms can lead to two distinct formation processes for aerosols, pri-

mary and secondary. A primary aerosol is defined as an aerosol that has been directly

emitted from its source. For example, sea salt that is ejected into the atmosphere by sea

spray at the ocean surface, lofting of dust particles by wind, or ash from a volcano. A

secondary aerosol is a product of condensing gases in our atmosphere and is typically

organic in nature or contains sulphates and nitrates, with large production regimes
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originating from anthropogenic sources (Lewis, 2018). With the arrival of the Indus-

trial Revolution in the late 19th century, proportions of these types of aerosols have

increased (Yang et al., 2022) and cause concern for adverse health effects across many

large urban areas (e.g., Nel, 2005). Additionally, these secondary processes are difficult

to infer information about and model due to their complex and heterogeneous nature.

Consequently, many resources from governments and private entities from across the

globe have been utilized to understand how these aerosols affect the atmosphere and

determine their atmospheric lifetime (e.g., Miskell et al., 2017; Morawska et al., 2018;

Olalekan et al., 2018). In addition to health concerns, aerosol emissions have long been

established as a notable driver to climate change from both direct radiative and indi-

rect microphysical effects (e.g., Boer et al., 2000; Charlson et al., 1992; IPCC, 2007;

Kondratyev et al., 2006; Rotstayn and Penner, 2001; Schwartz, 1996). For large tem-

poral scales, net cooling through the direct effects of aerosols from absorption of short

wave radiation in the atmosphere can have a profound impact on long-term climate

both regionally and globally (Andreae, 2001; Andreae et al., 2005; Menon et al., 2002).

Additionally the semi-direct effect, from the absorption of solar radiation by carbona-

ceous aerosols, can impact cloud formation and depends on the vertical distribution

of aerosols (e.g., McFarquhar and Wang, 2006) as well as their concentrations and

compositions.

A largely unresolved consequence of aerosols on climate is their effects on cloud

microphysical properties. Not all aerosols within the atmosphere serve as embryos for

cloud drops but the subset that does covers a wide range of sizes and chemical composi-

tions (Twomey, 1959) and are referred to as cloud condensation nuclei (CCN). The size

and chemical composition of an aerosol along with ambient supersaturation determine

the ability of an aerosol to activate as nucleation embryos for water vapor to condense

onto and hence to be defined as CCN (Köhler, 1921). Common CCN originate from
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biomass burning, sea salt, dust, fossil fuel emissions, and volcanic activity (Andreae

and Rosenfeld, 2008, among others) and typically have sizes in the accumulation mode

with diameters between 0.1 and 5 µm. Giant CCN (GCCN) are a subset of CCN

that have diameters of about 5 µm or larger and can activate at lower supersaturations

according to Köhler theory. GCCN are mainly formed from sea spray across ocean sur-

faces (Feingold et al., 1999) and mineral dust (Levin et al., 1996; Wurzler et al., 2000),

but can also be produced by biomass burning (Adler et al., 2011). Other CCN that

cover a wider range of sizes are composed of primary biogenic and secondary organic

aerosols (SOAs). Primary biogenic aerosols include organic debris, viruses, fungi, and

bacteria and are thus a difficult type to identify sources for in a reliable manner (Bauer

et al., 2003; Diehl et al., 2001; Franc and DeMott, 1998; Levin and Yankofsky, 1983;

Möhler et al., 2007; Sattler et al., 2001; Schnell and Vali, 1976). These types can act as

GCCN given the correct environmental conditions but also can serve as ice nucleating

particles (INPs) if their surface properties are adequate (Bauer et al., 2003; Sharma

and Rao, 2002). SOAs are formed through secondary aerosol formation processes that

are both biogenic and anthropogenic. SOA precursors are typically biogenic but can

be catalyzed by anthropogenic emissions due to increased oxidation products in the

condensed phase and rate of oxidation (Kanakidou et al., 2000).

2.1.2 Effects of CCN on mixed-phase clouds

The impact of variations in the number concentrations of CCN on DCCs is the ultimate

focus of this study given that these clouds have sufficiently large drops to be detectable

by operational S-band NEXRAD radars. Below these clouds, updraft parcels initialize

in or slightly above the boundary layer and extend several kilometers above the en-

vironmental freezing level (Hall, 1980), thus ingestion of boundary layer aerosols into

updrafts is assumed. A majority of the CCN population is activated at or immediately
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above cloud base where the maximum supersaturation with respect to water is typi-

cally reached (Rogers and Yau, 1989), with larger maximum supersaturations leading

to activation of CCN with smaller diameters. Fan et al. (2018) explored the possibility

of higher supersaturations being attained higher in the updrafts which would lead to

the activation of smaller ultra-fine aerosol particles, and subsequent invigoration of

convection. After activation the drops continue to grow by condensation, however the

drop size distributions (DSDs) narrow as the radial vapor diffusion growth rate de-

creases with drop size. Once these DSDs broaden by a poorly understood process, the

collision-coalescence process will produce larger drops and the onset of precipitation

(e.g., McFarquhar, 2022, and references therein).

Increases in CCN number concentration lead to an increased number concentration

of cloud droplets. An increase in cloud droplet concentration given a fixed liquid water

path leads to increased cloud optical thickness (Twomey, 1977). This is simply due to

the increased surface area of the smaller cloud droplets, allowing for more scattering

of shortwave radiation and is known as the first aerosol indirect effect on clouds.

The second indirect effect or the Albrecht effect (Albrecht, 1989) describes how

increased number concentrations of CCN leads to precipitation suppression and hence

clouds with longer lifetimes, higher cloud fractions, and thus more net scattering of

shortwave radiation. Increases in CCN concentrations mean that more numerous cloud

drops form at the lifting condensation level (LCL) and above within the DCC’s up-

draft, and hence reach smaller sizes due to the competition for condensate. The less

broad DSD and small drop sizes decreases the probability for precipitation development

through the collision-coalescence process (Gunn and Phillips, 1957; Squires, 1958).

However, it has been hypothesized and modeled that the presence of hygroscopic

GCCN, which are frequent near coastal locations due to sea spray or where mineral dust

particles are abundant (Kuba and Murakami, 2010), can overcome the inhibition of the
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warm rain process from increased CCN concentrations and instead produce broader

DSDs (Saleeby and Cotton, 2004). More broad DSDs can then initiate the collision-

coalescence process. This raises complexities when interpreting increased CCN number

concentration effects on DCCs if size distributions of the CCN are not known.

How aerosols impact DCCs, through the Albrecht effect, is what this study in-

vestigates and specifically if increased CCN number concentrations lead to stronger

and longer lasting DCCs with more intense precipitation. This process is deemed the

aerosol invigoration effect (AIE) and is hypothesized to act in DCCs that precipitate

and whose updrafts reach above the freezing level. The AIE is defined as a ther-

modynamic invigoration of a DCC’s updraft through the microphysical mechanisms

discussed above (Rosenfeld et al., 2008). When there is a narrower DSD and smaller

drop sizes, more condensate reaches the EFL and consequently more freezing takes

place at and above the EFL, increasing the updraft buoyancy. Interestingly, compet-

ing effects can take place at the EFL when CCN concentrations are perturbed within

a DCC. At first instance, more freezing and associated latent heat is released because

condensate is available since there has been less precipitation. Alternatively, freezing

is delayed because the cloud drops are smaller. Thus, an initially stronger updraft may

be necessary to take advantage of the dormant latent heat that could be released by the

more numerous but smaller supercooled droplets for perturbed CCN conditions (Khain

et al., 2005; Rosenfeld et al., 2008). Ice nucleation events can also complicate the im-

pact of varying CCN concentrations. For example, if there are sufficient INP number

concentrations within updraft parcels then heterogeneous freezing mechanisms such as

immersion, contact, or deposition can be more efficient to produce ice at temperatures

closer to 0°C than at about -40°C where homogeneous freezing takes place.

A second mechanism of the AIE can increase cloud fraction through the thermo-

dynamic enhancement of cold pools (Koren et al., 2010; Rosenfeld et al., 2008). Here,
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increased number concentrations of ice crystals that are small with slower fall speeds

than raindrops have more time to sublimate below cloud, especially if shear is present,

and thus increase net latent cooling. Stronger downdrafts from increased latent cooling

can then lead to increased chances of triggering more DCCs along stronger surface cold

pool boundaries (Rosenfeld et al., 2008).

Much work has quantified the AIE in different meteorological environments. The

capability of the AIE to invigorate DCCs can be drastically affected by three main

meteorological variables: relative humidity throughout the depth of the troposphere,

bulk shear, and convective available potential energy (CAPE) (Dagan et al., 2015; Fan

et al., 2009; Khain et al., 2008; Koren et al., 2010). In brief, humid environments with

weak wind shear and moderate instability are ideal in fostering aerosol invigoration for

mixed phase convection because these clouds are better able to withstand entrainment

at the cloud periphery (Dagan et al., 2015) and have higher precipitation efficiency

due to the lack of strong shear and instability available to loft condensate mass to the

freezing level (Khain et al., 2008).

Although the AIE plays a major role in the climate feedback system of Earth, it is

poorly understood and represented in global climate models (Ghan and Schwartz, 2007)

because aerosol-cloud interactions occur on microscopic scales but their effects cascade

up to the larger spatial and temporal scales simulated by climate models. In general,

the AIE directly affects the hydrologic cycle and redistributes precipitation and energy

throughout the troposphere (e.g., Ramanathan et al., 2001). For example, Nishant

et al. (2019)’s modeling study found that there could be a 4 ± 3.8 % decrease in the ratio

of rain to cloud water when CCN number concentration is doubled, leading to enhanced

cloud top cooling. Further, an increase in CCN loading can weaken the hydrologic cycle

if cold pool-triggered convection occurs less frequently increasing the residence time of

water vapor (Ramanathan et al., 2001). The weakened hydrologic cycle from warm
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rain suppression by the AIE may be most prominent in the northern hemisphere where

anthropogenic and continental aerosols are numerous over land (Ramanathan et al.,

2001). The climate system response to a weakening hydrologic cycle varies on global

to regional scales. Globally it seems that climate response is negligible from disruption

of the water cycle (Hansen et al., 2000; Ramanathan et al., 2001), but regionally it

impacts surface precipitation trends significantly. For example, a shift in precipitation

towards low latitudes partly due to aerosol impacts has been noted (Allen et al., 2015)

and other studies point to long term impacts of precipitation suppression in areas such

as the Pearl River Delta, Houston, TX, and the Amazon rain forest (Guo et al., 2018;

Martin et al., 2017; Shepherd and Burian, 2003). In summary, aerosol perturbations

and the AIE change the global and regional climate in a complex manner necessitating

the need for more detailed modeling and observational studies to further quantify the

anthropogenic and natural impacts on water resources. This study uses observations

to examine these impacts of aerosols on DCCs in the vicinity of Houston, TX.

2.1.3 Applications to Houston, TX

Sections 2.1.1 and 2.1.2 present a general overview of the AIE and interactions with

DCCs. In this section, the objectives of this study to examine the impact of the AIE on

DCCs in the Houston, TX region are introduced along with background information

regarding the sources of CCN in the Houston area.

The Houston metropolitan area sits upon many marshes, forested lands, swamps,

and prairies within the Gulf Coastal Plain biome (Blair, 1950). Some of the major

geographic characteristics of the city are the Trinity and Galveston Bays which sit

just to the southwest of the main urban area. These bays support a multitude of

shipping and fishing routes near the metropolitan area which makes them major ports

for intercontinental trade and commerce and supports the ever-growing population of
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Houston. Schadewald (1999) found that throughout the 20th century Houston had a

population growth rate of 4,000%, number one in the country during that period. This

population growth was coincident with the vast economic development of the energy

and oil industries in Houston (Cash, 2013). Houston has two of the top four largest U.S.

oil refineries and exports feedstocks, fuel and chemical products, plants, and animals

at one of the highest levels in the country (Sectors, 2022). Houston’s increase of

urbanization and industrialization in the recent century has undoubtedly increased

the aerosol burden in the regions around southeast Texas (Dzubay et al., 1982). In

fact, Houston now regularly exceeds the Environmental Protection Agency’s National

Ambient Air Quality Standards (Daum et al., 2004; Lei et al., 2004) and frequently a

threat due to high tropospheric ozone is posed (Levy et al., 2013). The net impact of the

emitted aerosols, whether meteorological or health related, varies greatly depending on

their types, sizes, concentrations, and current air mass conditions. To quantify aerosol

impacts, a multitude of studies and field projects have been conducted on the climate,

meteorology, and human health around southeast Texas (Carrió et al., 2011; Hu et al.,

2019a; Jin et al., 2005; Lance et al., 2009; Shakya et al., 2011; Shepherd and Burian,

2003). This study seeks to quantify the impact of the AIE on Houston DCCs using

PM2.5 mass concentrations as a proxy measure of CCN number concentrations. PM2.5

is defined as particulate matter with diameters of 2.5 µm or smaller and is typically

produced by incomplete combustion of fossil fuels, biomass burning, fine dust or sea

salt particles, and SOA processes (Sullivan et al., 2013).

Yoon et al. (2020) recently reviewed carbonaceous aerosol data from the Deriving

Information on Surface conditions from Column and Vertically Resolved Observations

Relevant to Air Quality (DISCOVER-AQ) field experiment conducted in September

of 2013 in the Houston area. They found that there was a significant diurnal cycle of

elemental and organic carbon mass concentrations. In the morning with a low-altitude
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boundary layer and increases in motor vehicle usage, black, elemental, and organic

carbonaceous aerosols increased in mass concentration. Thus, primary aerosol sources

dominated within the morning hours and more active SOA formation occurred in the

afternoon from photochemical reactions. Second, they concluded that most of the car-

bon found was emitted from present anthropogenic sources as opposed to fossils using

14C analysis, especially when isolating PM2.5. Dai et al. (2019) also highlighted the

importance of the diurnal cycle on the types and concentrations of aerosols within

Houston and found a stark contrast of diurnal aerosol mass loading between summer

and winter. For the summer, low-oxidized oxygenated aerosols exhibited about 54% of

organic aerosol mass and contributed heavily to SOA formation in the summer when

compared to winter. This mechanism along with the efficiency of photochemical re-

actions was found to be influenced mainly by relative humidity. Specifically at night,

increasing relative humidity led to enhanced aqueous-phase production of SOAs and

contributed to increased organic aerosol mass concentrations. SOA formation is an-

other mechanism that promotes PM2.5 concentrations and is frequently observed in

Houston (Levin et al., 1996). Al-Naiema et al. (2018) found that SOA PM2.5 typically

forms from primary fossil sources with biomass burning contributing little and sulfates

from vehicle emissions contributing significantly to the overall PM2.5 mass concentra-

tions. They also found a large difference in anthropogenic and biogenic sources of these

SOA precursors, with anthropogenic SOA vastly outweighing biogenic volatile organic

compounds (VOCs) and biomass burning particles. Sea salt aerosol mass concentra-

tions around the Houston area are largely constant on the seasonal/monthly scale (Song

et al., 2021) and dust PM2.5 mass concentrations can become elevated during Saharan

dust transport episodes (Bozlaker et al., 2013). In general however, the typical number

concentration of these aerosols are highly variable which adds difficulty in using PM2.5

mass concentration to approximate aerosol number concentration.
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Over the Houston region, there is a lack of observations of explicit CCN size dis-

tributions near DCCs for the time and spatial scales this study uses. Thus, in this

study the mass concentration of PM2.5 is used as a proxy to quantify the loading of

common-sized CCN particles. Although in general increased air pollution leads to

increased CCN number concentrations (e.g., Duan et al., 2018; Lance et al., 2009),

this relationship is not linear because the number of CCN that can activate under a

given supersaturation can be highly variable since not all particles, even within the

PM2.5 category, are equally effective at activating. Duan et al. (2018) reported in the

Guangzhou region that a general elevation of CCN number concentration occurred

with increased PM2.5 mass concentration, but was not easily predicted. To reduce the

complexity of these interactions it is usually assumed that the most important factor

for determining if a particle can act as CCN is its size (Saxena and Hildemann, 1996)

even though particle composition can also have an impact. This assumption follows

from the Kelvin-Köhler-Junge equation (Köhler, 1921), given by

s(r) = [1 +
2σ

ρlRvTr
][1− 3imoMw

4ρlMor3
], (2.1)

where s(r) is the supersaturation along the droplets surface, σ is the surface tension

of the droplet, ρl is the density of water, Rv is the specific gas constant for water

vapor, T is the temperature of the air, r is the radius of the droplet, i is the Van’t-

Hoff disassociation factor, mo is the dry mass of the dissolved aerosol, Mw is the

molecular weight of water, and Mo is the molecular weight of the dissolved aerosol.

The resulting Köhler curves typically show that if the diameter of a solution droplet is

below about 1 µm, depending on chemical composition, Raoult’s Law (Guggenheim,

1937) dominates because the r3 located in the second term’s denominator has a bigger

effect than the r located in the first term’s denominator, meaning s(r) < 1, so that
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saturation over a plain surface of water has not been achieved and the droplet has

not been nucleated. This means the solution droplet is a haze droplet whose size is

controlled by the humidity, but unimpeded growth via condensation does not occur

because the supersaturation needed to overcome the increase in energy to form the

droplet surface is not available. For aerosol particles large enough to act as CCN

at the LCL the ambient supersaturation within the cloud is greater than the critical

supersaturation, which is the maximum value of s(r) in Eq. (4.1) which occurs at the

critical radius of the droplet. Further increases in r lead to reductions in the Gibbs

free energy of the droplet as the reduction in energy from the condensation of liquid is

greater than the increase in energy associated with the larger surface. However, Lance

et al. (2009) found the organic carbon present in Houston impacts the ability of aerosol

particles to activate as CCN in Houston, regardless of size. This means that while the

size of an aerosol is typically the dominant characteristic for CCN criteria there are

some instances where it is important to account for composition and its effects on CCN

activation through the solute term.

It is recognized that PM2.5 mass concentration is not an ideal proxy for CCN num-

ber concentration and is incapable of accounting for the complex processes of CCN

activation. However, other studies which use imperfect aerosol proxies such as PM2.5

mass concentration to deduce AIE impacts (e.g., Chen et al., 2021; Fuchs et al., 2015)

show that these data are viable for estimating periods of high and low CCN number

concentrations. Further, the availability of these data for the large time period of this

study is crucial for constructing a large dataset and performing the statistical analysis,

since direct measurements or retrievals of CCN concentration are not available.
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2.2 Previous studies of the AIE

2.2.1 Observations of the microphysical effects of the AIE

In general, in-situ observational studies that have found evidence of the AIE in DCCs

point to a narrowing of DSDs (Rosenfeld and Lensky, 1998) and a reduction of cloud

droplet effective radius in the presence of high aerosol loading at temperatures above

0◦C (e.g., Andreae et al., 2004; Koren et al., 2005; Matsui et al., 2004; Rosenfeld and

Woodley, 2000) impacting the evolution of DCCs. For example, due to narrower DSDs

within the warm region, Lindsey and Fromm (2008), Sherwood (2002), and Sherwood

et al. (2006) all showed smaller ice particles above the freezing level with the increased

aerosol loading. Increased number concentrations of supercooled drops have also been

observed in continental aerosol regimes (higher aerosol number concentrations) com-

pared to maritime regimes (lower aerosol number concentrations) by Rosenfeld and

Woodley (2000). Further, the narrower DSD can reduce the precipitation efficiency

and delay precipitation formation to higher altitudes within DCCs, sometimes well

above the freezing level (Rosenfeld and Woodley, 2000; Williams et al., 1999). How-

ever, the impacts of aerosol loading on the total amount of precipitation observed at

the surface is less clear. Huang et al. (2009) found that aerosols reduced the amount

of total precipitation in agreement with other studies conducted by Jirak and Cotton

(2006) and Givati and Rosenfeld (2004). But, other studies such as Bell et al. (2008),

Koren et al. (2012), and Li et al. (2011) show larger accumulations of precipitation

in mixed phase clouds under high aerosol loading. The uncertainty in the impact of

high aerosol loading on precipitation accumulation can be attributed to the complex

nature of thermodynamic and microphysical feedbacks that occur in deep mixed-phase

convection, and the ability of further convection to be triggered along outflow bound-

aries. Freezing processes occurring within the mixed-phase region of DCCs are highly
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sensitive not only to the number of cloud droplets being transported above the freezing

level, but also to the number concentrations of INPs, humidity, instability, and wind

shear. Outflow boundary strength is also susceptible to meteorological influences af-

fecting the viability of cold pools to support further DCC initiation in cloud systems

and thus increases in total precipitation amount. These effects however are hard to

disentangle in observational studies alone.

2.2.2 Modeling of the AIE

Modeling studies that examine the influences of aerosols on DCCs can better attribute

causality of aerosol impacts rather than the correlations noted in observations due to

the ability to examine impacts from a single variable or process. However, it is im-

portant that simulations be evaluated against observational data to determine if they

are representative of natural clouds and can hence evaluate hypotheses on the role of

different processes. For example, Khain et al. (2005) conducted aerosol/DCC interac-

tion experiments using the spectral bin Hebrew University Cloud Model (HUCM) and

found that the effects of aerosol loading within the boundary layer were non-linear and

dependent upon a maritime or continental aerosol regime. Continental aerosol regimes

(higher CCN number concentrations) typically had decreased precipitation efficiency

compared to the maritime regimes (lower CCN number concentration), but there were

cases when rain-rates were larger in continental regimes. In fact, they found that larger

rain rates could occur within continental DCCs given sufficient instability, high free

tropospheric relative humidity, and moderate wind shear. Further, Fan et al. (2009),

using the System for Atmospheric Modeling (SAM) cloud resolving model, found that

aerosol loading can affect isolated DCCs differently depending on the wind shear and

relative humidity profiles. Similar to Khain et al. (2005), they showed increased shear

17



could allow for stronger downdrafts and thus could increase the probability of out-

flow boundaries triggering convection/squall line development even though the initial

invigoration could be limited in high shear environments.

Carrió et al. (2010) ran multiple simulations using the Regional Atmospheric Mod-

eling System (RAMS) non-hydrostatic model to simulate a case of urban pollution

around the Houston area to understand sensitivities of convection to urban aerosol

intensities. They concluded that CCN concentration significantly affected the total

volumetric precipitation in storms that were in polluted air near the Houston urban

area, with the precipitation at the ground increasing up to some threshold of CCN

loading (2000 cm-3). But, they found a non-monotonic behavior of CCN loading on

surface precipitation, which they attributed to changes in the size distributions of su-

percooled drops and ice crystals that affected riming efficiencies and cold rain processes.

Carrió et al. (2011) conducted additional simulations with varying CAPE, finding that

although the peak value of CCN concentration that yielded the maximum precipitation

and supercooled mass changed, there was no change in the non-monotonic variation

of precipitation intensity with CCN concentration. They thus concluded that the su-

percooled water mass resulting from differing aerosol regimes was the main precursor

of how much precipitation was occurring at the ground. Ilotoviz et al. (2018) explored

the consequences of increased CCN ingestion into updrafts on the microphysics and

dynamics of a DCC using the HUCM with typical mid-latitude environmental charac-

teristics. When they increased the CCN concentrations from 100 cm-3 to 3000 cm-3,

they found increases in the concentration and sizes of supercooled droplets in the first

few kilometers above the freezing level which enhanced the wet growth of hail allow-

ing it to reach very large sizes. In the low CCN concentration case the accretion of

supercooled droplets onto hail and freezing drops was extremely inefficient. It was

also found that higher vertical velocities occurred in the higher CCN case from the
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increased latent release associated with the diffusional growth of drops from the higher

supersaturations achieved and increased riming of super cooled droplets onto hail and

other frozen particles.

Within these modeling studies, common themes arise which include increased su-

percooled liquid mass above the freezing level in more polluted environments and the

modulation of this mechanism to invigorate DCCs by meteorological factors such as

instability, shear, and humidity. In fact, this is largely consistent with the “ideal”

scenario where aerosol invigoration takes place which is summarized by Altaratz et al.

(2014). Namely, that there should be a deep warm region of the DCC occurring in a

relatively unstable environment with humid conditions and weak shear. These types of

environments are frequent in the summertime over southeast Texas, where conditions

are analyzed for the current study allowing for appropriate selection of cases as dis-

cussed in chapter 3. Additionally, the use of the dual-polarization Houston-Galveston

NEXRAD WSR-88D radar (KHGX) permits detection of increased amounts of liquid

above the freezing level through analysis of contoured frequency by altitude diagrams

(CFADs) (Yuter and Houze Jr, 1995) of Z and ZDR. The ability of an operational

NEXRAD radar to detect AIE impacts can then be compared to what has been re-

ported by some of the previous modeling and in-situ observational studies. .

2.2.3 Uncertainties in the AIE

Many studies have claimed that the impact of the AIE on DCCs is observable (e.g.,

Altaratz et al., 2014; Andreae et al., 2004; Chen et al., 2021; Fuchs et al., 2015; Guo

et al., 2018; Hu et al., 2019a; Ilotoviz et al., 2018; Khain et al., 2005, 2008; Li et al.,

2011; Mansell and Ziegler, 2013; Rosenfeld et al., 2008, 2014; Tao et al., 2007, 2012;

van den Heever et al., 2006, 2011; Wang et al., 2011; Yuan et al., 2011). Some of

the observational studies that claim to uncover influences of the AIE on DCCs have
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used remote sensing data from satellites (e.g., Koren et al., 2005, 2010; Lin et al.,

2006). Such studies were constrained to examining cloud properties such as cloud top

temperature and cloud fraction, which only allow for limited conclusions about the mi-

crophysical structure to be made. In general, these studies found that increased aerosol

optical depth (AOD) leads to increased cloud fraction and lower cloud top tempera-

tures, even when meteorological influences are accounted for. They hypothesized that

this is occurring due to the increased aerosol loading leading to invigoration of DCCs

through the AIE (causing colder cloud tops) with subsequent convection triggered from

stronger cold pools and outflow boundaries (higher cloud fractions). However, there is

some ambiguity about the conclusions due to the potential contamination of satellite

retrieved AOD from atmospheric moisture and high-altitude cirrus clouds that lead

to strong meteorological/AOD correlations that are impossible to separate (Altaratz

et al., 2013; Chand et al., 2012; Chew et al., 2011; Gryspeerdt et al., 2014; Mauger and

Norris, 2007; Omar et al., 2013; Zhang et al., 2005).

Additional studies examining the AIE include modeling simulations (e.g., Ilotoviz

et al., 2018; Khain et al., 2005; Lebo and Seinfeld, 2011; Storer and Van den Heever,

2013) and analysis of retrievals from ground-based radar remote sensing (Fuchs et al.,

2015; Hu et al., 2019a), all of whom have found evidence of aerosol invigoration. How-

ever some studies have found conflicting evidence through modeling (e.g., Boucher

and Quaas, 2013; Grabowski, 2015; Grabowski and Morrison, 2016; Morrison and

Grabowski, 2011; Morrison, 2012; White et al., 2017) and these discrepancies show

inherent limitations of modeling with potential biases depending on the microphysical

schemes, initialized data, boundary conditions, resolution, and other parameteriza-

tions, such as those of the boundary layer, used (White et al., 2017).

Ground-based radar retrievals provide more information about the vertical pro-

file of microphysical properties than can be obtained by satellite, but can be limited
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by vertical resolution, update times, attenuation, uncertain retrievals, and radar sig-

nal sensitivity that complicate observations of small-scale microphysical properties in

DCCs. Additionally, some ground-based radar studies have found conflicting results

of aerosol invigoration (Altaratz et al., 2013; Chand et al., 2012; Chew et al., 2011;

Gryspeerdt et al., 2014; Omar et al., 2013; Wall et al., 2014; Yuter et al., 2013; Zhang

et al., 2005), pointing to the importance of carefully disentangling meteorological im-

pacts from aerosol impacts on DCCs.

Veals et al. (2022) presented a large statistical framework using data from the

Cloud, Aerosol, and Complex Terrain Interactions (CACTI) field campaign to deter-

mine aerosol effects on DCCs. They showed that univariate statistics were not a viable

method to determine aerosol effects on DCCs, but bivariate methods found that aerosol

number concentrations were negatively correlated with DCC intensity when account-

ing for meteorological influences. Through multiple linear regression and a machine

learning random forest model, positive correlations between aerosol and condensation

nuclei number concentrations with cloud top temperatures were found. However, the

study did not consider the life cycle of the observed cells nor their convective mode and

relied on data from a small area in the Andes mountains. Another study by Varble

(2018) used data from an Atmospheric Radiation Measurement (ARM) site located in

Oklahoma to compare to the findings of Li et al. (2011), who found evidence of the

AIE. Varble (2018) found conflicting results due to the improper treatment of correla-

tions between aerosol measurements and meteorological influences such as instability

by Li et al. (2011). Studies such as Varble (2018) and Veals et al. (2022) both point out

the obvious and difficult problem when studying the AIE using observations: aerosols

produce second order effects on DCCs and thus can be extremely difficult to separate

from meteorological effects.
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The project presented here using data collected over the Houston area seeks to

overcome some of the main problems put forth by Varble (2018), Veals et al. (2022),

and others mainly by increasing statistical significance and separating meteorologi-

cal influences from aerosol effects. For example, sample sizes from studies similar in

methodology to this one, where individual DCCs are tracked or analyzed (e.g., Fuchs

et al., 2015; Hu et al., 2019a; Varble, 2018; Veals et al., 2022), range between 140 to

2300 individual DCCs. While some of these sample sizes were shown to yield statis-

tically significant results, the current study uses a total sample size above this range

of upwards of 2400 DCCs which aids in the ability to sort into stricter meteorological

conditions while maintaining significant sample sizes in subsetted data. This reduces

the first-order effects of meteorological variability more than some previous studies,

and allows for second-order aerosol effects to be uncovered more robustly. To quan-

tify the presence of aerosols, AOD is not used but rather model-derived PM2.5 mass

concentration is used as a proxy for CCN number concentration. Additionally, simple

correlation analysis is used to explore the relationship between PM2.5 mass concen-

tration and DCCs because they can be cataloged according to meteorology, with a

distinction between the sea-breeze circulation over land and the Gulf of Mexico. The

Houston area also provides an ideal environment consisting of low wind shear, high

tropospheric humidity, and instability, as well as the presence of isolated cumulus cells,

for investigating the AIE.
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Chapter 3

Data & Methods

3.1 Case selection

While a plethora of convective environments occur within the southeast Texas region

in the summer season, warm-season mesoscale sea-breeze circulations are the focus of

this study. Other synoptic-scale phenomena such as cold fronts, extra-tropical cyclones,

and hurricanes, or mesoscale boundaries such as outflows, often provide stronger forcing

on the DCCs and increase the difficulty in disentangling any aerosol impacts because

they can cause differing modes of convection that can dominate vertical microphysical

structure and impact aerosol/CCN transport within the boundary layer (e.g., Varble,

2018).

Sea-breeze circulations form from the differential heating of land and water (Haur-

witz, 1947) and cause a baroclinic circulation to occur that is thermally directed. When

synoptic forcing is lacking, these sea-breezes can form regularly within the morning to

afternoon periods and trigger DCC formation if sufficient moisture, instability, and

low-level convergence is available. In Houston, sea-breeze circulations generally ex-

hibit a consistent wind direction from the southwest or southeast within the boundary

layer due to the orientation of the coastline. This regular on-shore flow can help keep

aerosol transport trends relatively constant reducing the probability of largely differ-

ent aerosol and meteorological regimes. For example, Levy et al. (2013) found that

after a cold-front passage with low humidity, species such as black carbon increase in
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mass concentration compared to southerly on-shore flow with high humidity. DCCs

in sea-breeze environments are typically ordinary and single cell in nature and lack

updrafts strong enough for large hail production due to lack of vertical shear. Given

these characteristics of the regular sea-breeze over Houston, these environments were

chosen to investigate the AIE.

Figure 3.1: Observed (a) surface METAR stations at 19:07 UTC, (b) composite radar
reflectivity at 18:55 UTC, and (c) 12 UTC 500 mb analysis from Aug. 20, 2014 over
southeast Texas.
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Manual case selection was completed by observing the meteorological environments

from the observed upper-air charts, radar reflectivity evolution from KHGX, and sur-

face METAR evolution. Figure 3.1 shows an example of a typical meteorological envi-

ronment chosen for this study using these types of data. The case day shown exhibits

a clear onshore surface flow throughout the morning and afternoon hours that triggers

isolated DCCs near KHGX in an environment with weak or negligible synoptic forcing.

Each day in the months of June, July, and August from the years 2013 – 2021 was

analyzed, and a day was chosen for subsequent analysis based on whether ordinary con-

vective cells formed within the scanning volume of KHGX in a sea-breeze environment.

Additionally, if any synoptic-scale cold fronts, tropical cyclones, or outflow boundaries

passed over the Houston area the day before, that day was not selected for further

analysis to ensure that wind influences on aerosol transport would remain as similar

as possible. A total of 256 case days were selected for this study with Table 3.1 listing

all of them along with number of DCCs sampled during each day (for description of

both datasets, refer to section 3.2.3), and period of hours when DCCs were occurring.
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Case day radar DCCs spatial DCCs Start Time End Time Case day radar DCCs spatial DCCs Start Time End Time Case day radar DCCs spatial DCCs Start Time End Time

20130608 13 24 17:00 23:59 20150709 2 10 19:00 23:59 20180614 8 21 14:00 23:00

20130610 4 8 17:00 23:59 20150710 0 6 16:00 23:59 20180615 6 14 9:00 23:59

20130611 9 25 13:00 23:59 20150711 1 8 17:00 23:59 20180616 1 10 14:00 23:59

20130620 7 10 17:00 23:00 20150717 4 10 8:00 23:00 20180628 0 1 16:00 22:00

20130622 0 8 15:00 23:00 20150721 1 9 12:00 23:59 20180710 1 5 18:00 23:00

20130623 3 11 11:00 23:59 20150722 1 1 16:00 22:00 20180712 7 10 19:00 23:59

20130624 2 11 6:00 23:59 20150727 0 4 19:00 23:59 20180713 6 12 10:00 23:59

20130703 1 3 17:00 23:59 20150804 4 10 12:00 23:59 20180714 7 11 10:00 23:00

20130707 9 33 7:00 23:59 20150805 0 2 17:00 22:00 20180715 0 6 16:00 23:59

20130708 21 39 12:00 23:59 20150815 6 11 16:00 22:00 20180730 2 7 17:00 23:59

20130709 1 3 18:00 23:59 20150817 2 7 16:00 21:00 20180804 39 76 10:00 23:59

20130719 18 47 13:00 23:59 20150818 12 50 10:00 23:59 20180805 2 15 17:00 23:59

20130720 18 57 13:00 23:59 20150822 15 32 9:00 21:00 20180806 17 43 7:00 23:59

20130721 33 96 6:00 23:59 20160610 8 29 7:00 23:59 20180807 18 44 8:00 22:00

20130722 1 2 16:00 23:59 20160611 9 28 6:00 23:59 20180808 9 17 16:00 23:59

20130804 4 7 14:00 23:59 20160620 18 40 13:00 23:59 20180809 18 48 8:00 23:59

20130810 21 51 10:00 23:59 20160621 17 46 12:00 23:59 20180810 21 45 13:00 23:59

20130811 26 63 13:00 23:59 20160622 4 5 9:00 20:00 20180815 3 8 12:00 23:59

20130812 4 4 17:00 23:59 20160624 3 6 14:00 23:00 20180816 4 5 15:00 23:59

20130820 25 45 11:00 23:59 20160625 10 28 9:00 23:59 20180820 7 13 17:00 23:00

20130821 7 20 16:00 23:59 20160626 9 12 12:00 23:59 20180826 11 19 7:00 23:00

20130822 2 11 8:00 23:59 20160627 6 11 18:00 23:59 20180827 15 24 6:00 23:59

20130823 3 9 18:00 23:59 20160701 3 18 14:00 22:00 20180828 16 39 7:00 23:59

20130825 9 22 15:00 23:59 20160702 1 8 8:00 19:00 20180830 12 32 12:00 20:00

20130826 32 77 6:00 23:59 20160708 0 1 15:00 19:00 20180831 0 14 10:00 23:00

20140601 9 29 11:00 23:59 20160709 2 3 17:00 23:59 20190615 0 0 13:00 23:00

20140616 4 13 13:00 23:00 20160717 11 31 12:00 23:59 20190616 20 6 11:00 23:59

20140619 0 5 15:00 23:59 20160718 21 54 8:00 23:59 20190622 0 0 17:00 23:59

20140620 7 15 13:00 23:00 20160719 29 57 9:00 22:00 20190623 0 0 16:00 23:59

20140621 5 23 12:00 23:59 20160720 9 18 14:00 23:59 20190626 8 1 16:00 23:59

20140624 28 57 15:00 23:59 20160723 1 2 18:00 23:00 20190627 9 2 16:00 23:59

20140626 22 48 12:00 23:59 20160724 3 6 11:00 23:59 20190628 10 6 18:00 23:59

20140627 11 37 11:00 23:59 20160729 8 11 15:00 23:59 20190701 0 0 19:00 23:59

20140702 4 12 18:00 23:59 20160730 5 13 19:00 23:59 20190702 28 70 9:00 23:59

20140704 5 20 19:00 23:59 20160731 6 16 14:00 23:00 20190703 12 37 14:00 23:59

20140705 23 47 8:00 23:59 20160805 3 10 16:00 23:59 20190708 1 4 17:00 23:59

20140706 11 24 11:00 23:59 20160819 21 54 13:00 23:59 20190717 6 11 16:00 23:59

20140707 8 17 10:00 23:59 20160823 3 12 16:00 23:59 20190720 2 4 12:00 23:59

20140708 5 6 12:00 23:59 20160824 5 9 17:00 23:59 20190722 17 38 10:00 23:59

20140710 10 27 13:00 23:59 20160825 14 33 17:00 23:59 20190727 3 16 9:00 23:59

20140711 2 6 19:00 23:59 20170602 25 54 8:00 23:59 20190728 25 53 10:00 23:00

20140712 2 7 14:00 23:59 20170603 11 20 13:00 23:59 20190729 8 23 17:00 23:59

20140713 4 15 14:00 22:00 20170611 1 6 15:00 23:59 20190802 3 10 18:00 23:59

20140714 12 17 15:00 23:59 20170612 6 37 7:00 23:59 20190803 2 6 18:00 23:59

20140720 1 4 19:00 23:59 20170613 4 12 15:00 23:00 20190804 12 22 12:00 23:59

20140726 1 1 16:00 23:59 20170705 1 6 14:00 23:59 20190805 10 40 8:00 23:59

20140804 4 10 17:00 23:59 20170706 6 18 15:00 23:59 20190806 13 31 9:00 23:00

20140805 7 11 16:00 23:59 20170707 10 24 9:00 23:59 20190807 0 5 8:00 20:00

20140806 6 15 7:00 23:59 20170708 7 22 10:00 23:59 20190808 4 6 20:00 23:59

20140809 9 21 16:00 23:59 20170711 6 23 14:00 23:59 20190816 15 42 8:00 23:59

20140810 16 37 13:00 23:59 20170712 23 52 5:00 23:59 20190817 9 17 4:00 23:59

20140815 13 30 6:00 23:59 20170713 6 15 8:00 23:59 20190818 10 19 12:00 23:59

20140816 6 13 16:00 23:59 20170714 4 22 16:00 23:59 20190819 12 25 14:00 23:59

20140818 8 22 13:00 23:59 20170719 7 22 9:00 23:59 20190820 31 51 7:00 23:00

20140820 13 28 16:00 23:00 20170720 5 10 18:00 23:59 20190821 11 19 14:00 23:59

20150611 1 9 9:00 23:59 20170721 9 14 10:00 23:59 20190822 11 35 9:00 23:59

20150612 13 61 6:00 23:59 20170726 3 12 16:00 23:59 20190823 25 65 6:00 23:00

20150619 7 18 15:00 23:59 20170801 3 8 10:00 23:00 20190826 0 1 8:00 14:00

20150620 9 16 14:00 23:59 20170805 29 73 10:00 21:00 20190827 9 19 17:00 23:59

20150625 7 19 14:00 23:59 20170810 13 31 14:00 23:59 20190829 11 27 8:00 23:59

20150626 13 36 7:00 23:59 20170811 8 18 15:00 23:59 20190830 7 27 10:00 23:59

20150627 4 19 16:00 23:59 20170815 4 19 12:00 22:00 20190831 11 26 8:00 23:59

20150629 10 17 12:00 23:59 20170820 6 13 17:00 22:00 20200601 4 4 19:00 23:59

20150701 18 32 14:00 20:00 20170821 4 20 9:00 23:59 20200603 11 32 15:00 23:59

20150703 2 6 18:00 23:59 20170822 2 8 16:00 23:59 20200604 3 5 17:00 23:59

20150704 16 47 7:00 23:59 20180609 13 35 16:00 23:59 20200605 0 0 17:00 23:59
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Case day radar DCCs spatial DCCs Start Time End Time Case day radar DCCs spatial DCCs Start Time End Time Case day radar DCCs spatial DCCs Start Time End Time

20200614 1 3 20:00 23:59 20200829 1 3 20:00 23:59 20210727 2 5 20:00 23:59

20200615 2 2 8:00 23:59 20200830 8 18 11:00 23:59 20210730 6 12 18:00 23:59

20200616 2 2 17:00 23:00 20200831 0 4 14:00 23:59 20210731 13 25 15:00 23:59

20200619 9 13 12:00 23:59 20210602 7 13 16:00 23:59 20210801 18 33 7:00 23:59

20200621 29 54 12:00 23:59 20210620 20 39 11:00 23:59 20210806 18 35 11:00 23:59

20200628 1 3 12:00 18:00 20210621 9 25 12:00 23:59 20210807 4 12 12:00 23:59

20200707 8 22 9:00 23:59 20210623 5 8 13:00 23:59 20210808 4 9 7:00 23:59

20200718 9 31 10:00 23:59 20210624 12 21 12:00 23:59 20210810 4 16 13:00 23:59

20200719 11 22 12:00 23:59 20210625 8 23 14:00 23:59 20210811 3 9 17:00 23:59

20200722 13 38 0:00 23:59 20210626 6 11 16:00 23:59 20210812 8 23 8:00 23:59

20200723 0 2 12:00 23:59 20210627 26 62 13:00 23:59 20210813 26 52 5:00 23:59

20200728 30 48 12:00 23:59 20210629 46 101 0:00 23:59 20210815 10 29 13:00 23:59

20200729 15 28 14:00 23:59 20210630 18 35 5:00 23:59 20210817 6 26 7:00 23:59

20200807 1 1 14:00 23:59 20210705 27 65 5:00 23:59 20210818 31 58 9:00 23:59

20200808 3 16 12:00 23:59 20210710 4 21 8:00 23:59 20210819 9 26 8:00 23:59

20200809 13 35 8:00 23:59 20210714 16 37 8:00 23:59 20210825 6 14 15:00 23:59

20200812 0 2 12:00 23:59 20210715 15 31 6:00 23:59 20210826 21 49 10:00 23:59

20200821 15 28 6:00 23:59 20210716 7 21 13:00 23:59 20210827 1 6 2:00 23:59

20200822 10 18 14:00 23:59 20210718 6 16 16:00 23:59 20210828 23 68 0:00 23:59

20200823 4 12 15:00 23:59 20210719 17 39 8:00 23:59 20210829 7 14 0:00 15:00

20200828 19 45 8:00 23:59 20210722 12 37 12:00 23:59 20210831 2 12 18:00 23:59

Table 3.1: Table of case days (in YYYYMMDD) with number of identified DCCs for
both the radar and spatial datasets and start/end times of MCIT in UTC.

3.2 Radar data

3.2.1 KHGX WSR-88D

KHGX is the remote-sensing radar that was used in this study to sample the DCCs.

The microphysical structure and temporal evolution was determined using Z, ZDR,

and ρHV . KHGX was upgraded to dual-polarization in early 2013, which hence marks

the earliest period for which the data can be used. The radar is located in Galveston

County, TX with an elevation of 35 m and provides radar coverage of the entire south-

east Texas region and north-western regions of the Gulf Coast. The WSR-88D volume

coverage patterns (VCPs) utilized in this study are from various precipitation modes

(VCP 11, 21, 211, 121, 212, & 12) and clear air modes (VCP 32 & 35) (Council et al.,

2002). KHGX operates using the typical NEXRAD wavelength, scanning strategies,

transmit power, pulse-repetition frequencies, and dual-polarization calibration (Coun-

cil et al., 2002).

Utilization of a WSR-88D to measure impacts of the AIE on DCCs provides advan-

tages and disadvantages. Advantages include a large sample size of individual DCCs
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as the radar is always scanning and covers a large spatial area. Further, KHGX’s

dual-polarization capability is a necessity when retrieving microphysical measurements.

The S-band frequency also provides essentially attenuation-free measurements whereas

attenuation through rain is more significant at higher frequencies. However, as the

radar wavelength increases, the sensitivity to smaller hydrometeors is decreased due to

the Rayleigh scattering regime at which weather radars operate (White et al., 2000),

which can then affect the quality of the microphysical retrievals. The largest disad-

vantage of an operational WSR-88D compared to the smaller mobile radars or other

research-focused radars that are typically used in field campaigns is the inability to use

range-height-indicator (RHI) scans that offer much better vertical coverage and reso-

lution. Instead, the VCPs used only perform planned-position-indicator (PPI) scans

that increasingly under-sample the atmosphere at higher elevation angles and, in turn,

provide quite poor vertical resolution/coverage (e.g., Figure 3.2a). Additionally, these

PPIs yield volumetric update times of 4 – 7 minutes which does not always provide

enough temporal resolution to observe the quick evolution of DCCs that may occur

due to the AIE (Oue et al., 2022). Volumetric update times when using PPI scans

can also cause problems with constructing vertical profiles as DCCs can move signifi-

cantly between adjacent elevation angles, inhibiting the ability to coherently document

features such as ZDR-columns (Snyder et al., 2015). The sub-optimal resolution of re-

constructed vertical profiles from KHGX is the main reason why the maximum domain

for DCC tracking was set at 80 km for the radar data analysis so that DCCs could

be sampled by least 7 elevation angles in the vertical, depending on the VCP (Figure

3.2b).
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Figure 3.2: Reconstructed RHIs of Z (top panels) and ZDR (bottom panels) using VCP
212 from (a) 105 km away and (b) 53 km away from KHGX on June 20, 2015 and June
1, 2017, respectively.

3.2.2 The MCIT algorithm

The Multi-Cell Identification and Tracking algorithm (MCIT) was originally described

in Hu et al. (2019b) and has been further developed at the National Severe Storms

Laboratory (NSSL) and Cooperative Institute for Severe and High-Impact Weather

Research and Operations (CIWRO); it has also been implemented in the private sector

(Cao et al., 2021). This algorithm has been shown to improve tracking capabilities

compared to centroid or cross-correlation strategies and is able to handle merging and

splitting of convective cells more accurately (Cao et al., 2021).

MCIT uses three main steps to output an objective dataset of identified individual

DCCs tracked in time and space as summarized here and discussed in more detail by

Hu et al. (2019b). The first step involves data input and pre-processing of raw level two

radar data. Then, for each volumetric scan of the radar, reflectivity is interpolated to

a 3D Cartesian field, from which vertically integrated liquid (VIL) is calculated in each

horizontal grid space. Additional smoothing techniques are used to calculate locations

of watershed-lines from a watershed algorithm (Meyer, 1994) which will provide the

29



basis for step two. Step two consists of using the VIL to calculate watershed imaging

and boundaries. Multiple cell tracking and identification is done in step three by

merging watershed segments into clusters depending on neighbor and saddle criteria.

Neighbor criteria decides whether or not to merge identified DCCs based on their

proximity to other DCCs. Saddle criteria defines the minimum threshold of VIL valleys

in which neighboring DCCs are merged into one. The neighbor and saddle criteria are

set by adjusting parameters such as the minimum valley depth of VIL, minimum cell

size, and minimum cell strength. Merging and splitting processes are handled based

on these thresholds, so that the time and space location of individual cells is output on

the per volume update time of the radar. Due to the large computational time required

by the algorithm, sensitivity tests for changing the neighbor criteria, saddle criteria,

and grid spacing were not conducted. While uncertainties due to this are difficult to

quantify, this omission may only have a minimal impact on overall conclusions since

most ordinary single-cell DCCs investigated here are not merging or connected together

like mesoscale convective or multi-cell systems are where the choice of these criteria

has a greater impact on results. The neighbor and saddle criteria used were as follows:

minimum valley depth = 2 kg/m2, minimum cell size = 50 km2, and minimum cell

strength = 5 kg/m2 while grid spacing was 1 km in both the zonal and meridional

directions. Figure 3.3 shows an example of MCIT output from July 4, 2017 along

with the domains of the radar and spatial datasets around KHGX. MCIT provides an

objective way of tracking the many DCCs observed near Houston and allows for the

creation of a large database containing the individual DCCs along with their centroid

locations, timeseries, and areal boundaries.

Further processing was conducted to ensure spurious identification of cells was

minimized. Requirements for a DCC to be used in the analysis are that it exists for at
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least 6 MCIT timesteps (about 30 minutes) and that it is within ranges described by

section 3.2.3 (Figure 3.3) for its entire lifetime.

Figure 3.3: Map of the Houston area showing MCIT cell boundaries (black solid lines)
with overlaid reflectivity (colored pixels) from the 6.4 degree elevation angle on July 4,
2017 at 200238 UTC. The black dotted circles indicate the upper and lower bounds for
the domain of the radar dataset while the red dotted circle indicates the upper bound
for the domain of the spatial dataset.

3.2.3 Treatment of radar data

Two separate datasets were created to analyze different properties of DCCs under

differing PM2.5 mass concentrations, radar and spatial. Instead of constraining the

identified DCCs by the MCIT to be between 30 – 80 km of KHGX as done for the radar

dataset, the spatial dataset includes all DCCs up to the 120 km range ring of KHGX.
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This yields a substantially larger number of cells, 5830 compared to 2412 for the radar

dataset. However, only the MCIT output, meteorological data, and aerosol data are

used for the 5830 DCCs because the radar data at different altitudes are not available

in sufficient vertical resolution past 80 km (Figure 3.2) or the entire vertical profile of

DCCs is not always attainable at distances < 30 km from KHGX, depending on the

VCP. Therefore, the spatial dataset is used to understand other properties of DCCs

around Houston such as their lifetime, diurnal variability, and geospatial distribution,

which are presented in section 4.1. Figure 3.3 illustrates the two domains respective

to KHGX.

Appropriate analysis of the radar data is essential, with the details of the method-

ology discussed in the remainder of this section. Only radar gates with ρHV ≥ 0.8 and

Z ≥ −10 dBZ were analyzed to ensure that they likely represented a weather echo,

and MCIT provided the horizontal boundaries for each DCC.

CFADs are used to visualize the vertical variability of normalized histograms of

radar returns but do not provide information on horizontal variability or distribution

(Yuter and Houze Jr, 1995). Herein, “aggregate” CFADs are presented where radar

data from all DCCs in each subset (e.g., all DCCs over land) are used to calculate

the normalized histogram at each altitude, an example of which is shown in Figure

3.4a. The y-axis is the altitude relative to the freezing level, which is determined by

the ERA5 reanalysis (Hersbach et al., 2020), in order to isolate aerosol invigoration

that typically occurs at and above the freezing level. Bins of 0.5 km are used in the

vertical. For CFADs of Z, the x-axis is binned every 2 dBZ; for CFADs of ZDR,

the x-axis is binned every 0.25 dB. One inherent problem to note of CFADs is that

the normalized frequencies can become inflated at high altitudes where there may be

fewer observations. Lastly, the composite difference of two aggregate CFADs allows

for a direct comparison of the probability of specific radar values occurring at given
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altitudes. In this study, the CFAD composite difference will typically be between

the aggregate CFADs of DCCs with high (or an anthropogenic aerosol regime) and low

PM2.5 mass concentration (or a natural aerosol regime) (discussion regarding definition

of high and low PM2.5 and anthropogenic vs. natural aerosol regime is in section 3.4.3),

unless otherwise stated.

Figure 3.4: Reflectivity CFADs for (a) all cells over land (N = 1887) and (b) Cell 140
on June 20, 2016 at the time of maximum ETH achieved by the DCCs. In (b), the red
line refers to the median values of reflectivity at each altitude bin between -1 and -4
km and the white line is the best fit for those points, yielding a ∆Z of 2.667 dBZ/km.
The same calculation for ∆ZDR can be done using a ZDR CFAD.

Kumjian et al. (2022) describe the meaning of the parameter space given by the

vertical gradients of Z and ZDR below the freezing level (∆Z & ∆ZDR, respectively)

and associates regions of the parameter space with important microphysical processes

that occur with liquid precipitation (Figure 3.5). The ∆Z and ∆ZDR for this study were

calculated for each individual DCC by first determining the median of the normalized

histogram at each altitude bin for -1 km ≤ z ≤ -4 km. This altitude range is used

to ensure only data from liquid precipitation are used, that changes due to melting

precipitation are not included, and to reduce unrealistic values from sparse datasets
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at altitudes below -4 km. A linear best fit is applied to the median values of radar

data at each altitude bin which yields a slope of km/dBZ (or km/dB) which is shown

in Figure 3.4b. The reciprocal of this slope gives a slope of dBZ/km (or dB/km) and

is then multiplied by -1 so that a positive gradient indicates an increase towards the

ground, as defined by Kumjian et al. (2022).

The top left quadrant in Figure 3.5 is known as the size sorting quadrant and is

associated with ∆Z < 0 and ∆ZDR > 0. Size sorting often occurs when updrafts are

able to keep drops with smaller sizes from falling as fast as larger ones, so larger drops

are typically found closer to the ground in smaller concentrations where smaller ones

are lofted higher in altitude in larger concentrations. This necessitates that ∆ZDR

> 0 because the mean drop diameter increases toward the ground and that ∆Z < 0

because concentrations of drops become smaller. The evaporation regime also exists

in the top left quadrant, as it can produce the same fingerprint as size sorting because

the smallest drops will evaporate first, which increases the mean-mass diameter and

leaves only the largest ones to fall closer to the ground. Kumjian et al. (2022) explain

however that typically this regime does not produce as large of a magnitude of ∆Z and

∆ZDR as size sorting, hence why evaporation occurs closer to the origin. The top right

and bottom left quadrants are both types of warm rain processes that can sometimes

occur simultaneously, producing the balance regime seen in purple text in Figure 3.5.

Collision-coalescence produces ∆Z > 0 and ∆ZDR > 0 because smaller drops collide

and produce larger drops as they fall, which keeps the amount of liquid mass in the

sampling volume constant while increasing mean drop diameter, increasing ZDR. This

also increases Z toward the ground since the concentrations of large drops increase

toward the ground, which, given that Z ∼ D6 (for spheres in the Rayleigh regime),

means ∆Z > 0. Drop breakup produces the opposite of this signature because, as

drops break apart during fallout, the mean drop diameter will decrease, yielding both

34



a decrease in Z and ZDR toward the ground. In this study, the 2D space given by ∆Z

and ∆ZDR is used in conjunction with the CFADs to supplement information regarding

microphysical signatures of the DCCs.

Figure 3.5: The parameter space of ∆Z and ∆ZDR with important microphysical
processes in liquid precipitation inferred from signs of ∆Z and ∆ZDR (colored text).
Taken from Kumjian et al. (2022).

Due to the potential impact that the AIE has on the temporal evolution of DCCs

and to ensure consistent analysis, the life cycle of each DCC is assessed. As discussed by

Kumjian (2013), Kumjian et al. (2014), and Snyder et al. (2015), ZDR-columns can be

used to approximate updraft intensity and thus stages of cell life cycle. In brief, ZDR-

columns are columnar fields of enhanced ZDR (e.g., ZDR > 1 dB) that extend above
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the freezing level within DCC updrafts. Values above 1 dB usually indicate presence

of liquid within the first few kilometers above the freezing level and are attributed to

the presence of supercooled drops, wet hail, and wet graupel (Conway and Zrnić, 1993;

Hall et al., 1984; Ryzhkov et al., 1994; Shupyatsky et al., 1990). ZDR-column depth

calculations are ideally used to approximate updraft intensity because their formation,

width, and depth have been shown to be affected by important microphysical processes

such as size sorting (Bringi et al., 1997) and warm rain onset (Tuttle et al., 1989), both

of which are affected by the AIE (Ilotoviz et al., 2018). Unfortunately, due to time

constraints and the inability to use a ZDR-column calculation algorithm provided by

NSSL on the University of Oklahoma’s Supercomputing Center for Education and

Research (OSCER) supercomputer, ZDR-columns are not used to approximate updraft

strength.

Instead, a less microphysically-sensitive approximation known as the echo top height

(ETH) is used for quantifying updraft intensity. ETHs have been used ever since

weather radars were deployed (e.g., Evans et al., 2004; Held, 1978, among others) and

are used frequently today in operational settings such as in the NEXRAD network.

Typically, ETH is computed by retrieving the highest elevation scan in which at least

an 18 dBZ echo is returned (Donaldson Jr, 1964). The height of each range gate

within that elevation is then calculated using a 4/3 earth model to account for stan-

dard atmospheric refraction of the radar beam (Doviak et al., 1994), and the half-power

beamwidth above the nominal elevation angle is used to account for the vertical extent

of the beam. However, Lakshmanan et al. (2013) proposed a slight change in method-

ology for calculating ETH since the standard method can produce over- and under-

estimates. This change was simply to interpolate the ETH based upon the elevation

scans that bracket the threshold of 18 dBZ and is the technique used in this study.
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3.3 Meteorological dataset

The meteorological fields were supplied by the ECMWF Reanalysis v5 (ERA5) reanal-

ysis model which uses a 30 km x 30 km grid, 137 vertical pressure levels, and hourly

temporal output (Hersbach et al., 2020). Variables were chosen based on relevance to

DCC initiation, dynamics, and microphysics and are shown in Table 3.2. These vari-

ables are collected to separate meteorological effects from aerosol effects and to test

the hypotheses that the strength of AIE is dependent on free-tropospheric humidity,

instability, and shear. Figure 3.6 shows the grid of the ERA5 within the domain of

this study to illustrate the spatial resolution of the model in this context.

The ERA5 reliability in representing relevant atmospheric conditions for DCCs was

investigated by Rodŕıguez and Bech (2021), who analyzed the viability of using ERA5

for retrieving MUCAPE values compared to observational soundings. They found a

lack of statistically significant differences between vertical profiles of the nearest spatio-

temporal grid points of the model to a DCC compared to a proximity-inflow method

where observed soundings were taken at slightly further ranges and several hours ear-

lier. This supports the use of the nearest spatio-temporal grid point to each DCC for

retrieving the meteorological variables used here. In addition, Hersbach et al. (2020)

notes the possibility of unrealistically large values of MUCAPE that can occur, but this

was not seen in the current study based on Figure 3.7, which shows that the highest

mean MUCAPE values for DCCs were near 5500 J/kg and are not unrealistically large

for this region and time period.

Correlation analysis is used to understand how the strength of updrafts (i.e., ETHs)

are correlated with the many meteorological variables used from the ERA5. However,

the ERA5 grid boxes are very large in area compared to the spatial scale of individual
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Variable Pressure Levels (mb)

Relative humidity (rh) 1000,975,950,925,900,875,850,825,800,775,750,700,650,600,550,500,450,400

Dew point (DEW) Surface

Precipitable water (PW) Column

Geopotential height (GH) 1000,975,950,925,900,875,850,825,800,775,750,700,650,600,550,500,450,400

Temperature (T) Surface

Divergence (D) 1000,975,950,925,900,875,850,825,800,775,750,700,650,600,550,500,450,400

U-wind (u), V-wind (v) 1000,975,950,925,900,875,850,825,800,775,750,700,650,600,550,500,450,400

Omega (ω) 1000,975,950,925,900,875,850,825,800,775,750,700,650,600,550,500,450,400

Relative vorticity (ζ) 1000,975,950,925,900,875,850,825,800,775,750,700,650,600,550,500,450,400

Magnitude of shear (sh) 1000,975,950,925,900,875,850,825,800,775,750,700,650,600,550,500,450,400

Surface pressure (SP) Surface

Boundary layer height (BLH) Column

Most-unstable CAPE (MUCAPE) Column

Surface-based CIN (CIN) Column

Freezing level height (EFL) Column

Table 3.2: Table of ERA5 meteorological variables sampled near DCCs and associated
pressure levels.

DCCs, and further the temporal output of ERA5 is every hour whereas the DCCs

are tracked every 4 – 7 minutes. Large discrepancies in both the time and space

scales increase the probability of low correlations between ETHs and the meteorological

variables, which is evident throughout the correlation analyses presented in Figure 3.8.

To reduce some of the impact of the spatio-temporal scale differences, daily means were

calculated for both ETHs and the meteorological profiles of the individual DCCs for

correlation analysis. This allowed for a more consistent correlation analysis between

the meteorological variables and the ETHs as discussed in chapter 4. However, this

method is complicated by the diurnal variability that exists in DCCs. Thus, if a

given case day is dominated by morning convection, the ETHs may very well be lower

than a day dominated by afternoon convection where diurnally driven instability may
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Figure 3.6: Map of southeastern Texas with ERA5 grid boxes (solid black squares)
overlaid.

promote stronger updrafts. It is important to consider these caveats when interpreting

the calculated correlations.
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Figure 3.7: Box and whisker plots of every DCC’s median MUCAPE (J/kg) value for
LAND and GULF locations sampled using the nearest spatio-temporal grid point from
the ERA5 reanalysis.
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Figure 3.8: Spearman correlation values for every ERA5 meteorological variable and
maximum DCC ETH for cells over LAND (N = 1887) and GULF (N = 525). Black
dots indicate the 95% confidence level using the t-statistic. Correlations are calculated
by taking the mean of the meteorological variable time series before time of maximum
ETH and correlating it with the maximum ETH for each DCC. The x-axis is labeled left
to right with ERA5 pressure levels of the respective variable in ascending pressure order
except where stated. Colored regions represent different categories of meteorological
data. The Misc. (blue) section includes: surface pressure (SP), boundary layer height
(BLH), MUCAPE, CIN, and freezing level height in order from left to right. This
correlation diagram used the radar DCC dataset.
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3.4 Aerosol dataset

3.4.1 MERRA-2

The Modern-Era Retrospective analysis for Research and Applications, Version-2 (MERRA-

2) reanalysis model is used for sampling the PM2.5 mass concentration in the vicinity

of the DCCs. The MERRA-2 uses a resolution of 0.625°×0.5° and includes hourly

data. Randles et al. (2017) discusses MERRA-2 aerosol assimilation techniques used

to calculate mass concentrations of certain aerosol species and describes the calculation

of the PM2.5 mass concentration as:

PM2.5 = DU25 +OC +BC + SS25 + SO4(132.14/96.06), (3.1)

where DU25 is dust, OC is organic carbon, BC is black carbon, SS25 is sea salt, and

SO4 is sulfate. Dust and sea salt size distributions are explicitly resolved using five

size bins that do not allow for growth or shrinking of particles and there is consid-

eration of wind driven emissions. Emissions of dust are based on a map of potential

dust sources such as deserts, and particles are sorted into size bins using methods from

Marticorena and Bergametti (1995). Sea salt is parameterized from a size dependent

number flux (Gong, 2003) with additional wind and sea-surface temperature correction

terms. Other aerosols, such as sulfate and organic carbon, are also emitted by volcanic

events, secondary processes such as terpene (Chin et al., 2002) and di-methyl sulfide

reactions, and biomass burning. Anthropogenic emissions of sulfate, black carbon, and

sulfur dioxide are all based on patterns from the Emissions Database for Global Atmo-

spheric Research (EDGAR) and AeroCom Phase II (Diehl et al., 2012) datasets from

2006 and 2008, respectively. It is worth noting that MERRA-2 tends to overestimate

sea-salt mass concentrations in coastal regions because of data assimilation bias if there

42



is an initial underestimation of AOD in polluted episodes. However, this is not a large

concern for this study as discussed further in section 3.4.3.

3.4.2 TCEQ sites

The Texas Center for Environmental Quality (TCEQ) air quality sites provide observed

hourly mean PM2.5 mass concentration observations across the state of Texas. Air

quality sites that were recording PM2.5 mass concentration at any time in the months of

June, July, and August in the years 2013-2021 in the southeast Texas region were used

to compare against the MERRA-2 analysis, not just for case days used for the MCIT.

Figure 3.9 shows the location of these sites around southeast Texas with the MERRA-

2 grid boxes overlaid, illustrating the spatial heterogeneity of the sites compared to

the model grid boxes. This inhibits the ability to use techniques involving objective

analysis of TCEQ site observations. Instead, this study uses the TCEQ dataset to

statistically compare the MERRA-2 predictions against observations over the southeast

Texas region.

3.4.3 Treatment of aerosol data

For this study that relies on model derived PM2.5 mass concentration, it is pivotal

that the MERRA-2 PM2.5 dataset be understood in terms of its ability to capture

the general evolution of the PM2.5 mass concentration in the southeast Texas region.

This section presents findings from differing correlation analysis techniques to evaluate

the validity of the MERRA-2 reanalysis. Data from all TCEQ sites are used for the

analysis with the closest spatio-temporal grid point of the MERRA-2 compared to each

site’s observation (Figure 3.9).
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Figure 3.9: Map showing MERRA-2 grid boxes (solid black squares) over southeast
Texas with locations of TCEQ sites, numbered 1 - 14. Blue dot shows location of
Houston.

Mean daily autocorrelations were calculated for both datasets so that the hourly

variability can be quantified and compared. Figure 3.10a shows the mean of all TCEQ

sites’ lag-1 autocorrelation across all days. These autocorrelations (and correlation

techniques hereafter) are calculated by using the lag-1 of the 24-hour time series from

12 AM to 11:59 PM local time each day the respective TCEQ site was recording for.

Other than for Site 11 with an autocorrelation of about 0.8, mean lag-1 autocorrelations

are generally around 0.4 – 0.5. This shows that the hour-to-hour variability can be large

for the observations of PM2.5 which is consistent with the findings of Lance et al. (2009).
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Figure 3.10b shows the daily mean lag-1 autocorrelation calculated in the same manner

for MERRA-2 predictions, except shown on a contour map. Spatially, the contour plot

seems to capture the land/ocean contrast as higher autocorrelations occur over the Gulf

of Mexico where more pristine, less variable marine air is prominent. Further, a region

of higher autocorrelations onto land can be seen just to the southwest of and extending

east of Houston. As discussed in chapter 4, this region of enhanced autocorrelations

is co-located with an enhanced probability of DCCs occurring and could be a result

of the preferred sea-breeze location. Compared to the TCEQ autocorrelations, the

magnitudes of these autocorrelations are larger by about 0.3, quantifying the degree

to which MERRA-2 does not capture the hourly variability of the observations. The

inability of MERRA-2 to capture the hourly variability well suggests the use of the

daily means of MERRA-2 to define high and low aerosol mass concentrations on a

daily basis, similar to methodology used by Guo et al. (2016). However, this would

remove the ability to quantify differing aerosol loadings diurnally which is an objective

of this study. Thus, results must be interpreted in the context of the poorly resolved

hourly variability by MERRA-2.
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Figure 3.10: Mean of (a) each TCEQ site’s and (b) MERRA-2’s lag-1 autocorrelation.
Autocorrelation was calculated by taking the 24 hour timeseries from 12 AM - 11:59
PM local time for each day and shifting forward by one hour.

The locations of the TCEQ sites (Figure 3.9) are not evenly distributed, but rather

many of sites are closest to the same MERRA-2 grid point because they are located

in more populated areas such as in Houston and Beaumont. Thus, data from the

individual sites may not be completely independent and this may skew the TCEQ

PM2.5 mass concentration distribution. The TCEQ site correlation matrix shown in

Figure 3.11 shows two main groups with elevated values of correlation, sites 2 – 8 and

sites 9 – 12. Sites 2 – 8 are located within the Houston metropolitan area and sites 9 – 12

are located in the Beaumont region. This suggests a possibility to resample the TCEQ

dataset by taking a mean of each hourly observation of PM2.5 mass concentration for

the sites in Houston (sites 2-8) and Beaumont (sites 9 - 11). Implementing resampling

did not change the shape of the TCEQ PM2.5 mass concentration probability density

function (PDF) as seen in Figure 3.12, which shows the two PDFs of the original

and resampled TCEQ distributions. In general, the MERRA-2 PDFs of PM2.5 mass

concentration show higher probabilities of larger values occurring compared to TCEQ

which is a result of large estimations of dust PM2.5 mass concentration by MERRA-2.
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This is evident in the summer timeseries by year presented in Figure 3.13 where some

of the very large peaks in the MERRA-2 PM2.5 mass concentration are coincident with

large peaks in the dust PM2.5 mass concentration estimated by MERRA-2, meaning

that MERRA-2 struggled to appropriately represent the dust constituent. This shows

then that the data assimilation bias mentioned earlier regarding sea salt is not a concern

for this study. Figure 3.13 shows that the dates of June 11, 2013, June 16, 2014, June

24, 2014, and July 16, 2021 had MERRA-2 overestimating PM2.5 mass concentration

by 30 µg/m3 compared to TCEQ and thus these days were removed from subsequent

analysis of radar and spatial datasets.

Figure 3.11: Matrix for each TCEQ site’s mean correlation calculated using the 24
hour timeseries for each day the respective site was recording for. Number pairs in
brackets on the top of each grid box refer to the two sites used for the calculation.
Shading refers to value of correlation from the colorbar.
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Figure 3.12: Histograms with fitted PDFs (black curves) for (a) TCEQ dataset, (b)
resampled TCEQ dataset, where a mean was taken for each hour for sites 2-8 and sites
9-11, (c) MERRA-2 dataset corresponding to nearest spatio-temporal grid point for
each observation in the TCEQ dataset, and (d) resampled MERRA-2 dataset corre-
sponding to the resampled TCEQ dataset.
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Figure 3.13: Hourly timeseries for each year used in the study showing PM2.5 mass
concentration from MERRA-2 (black dotted line), sea salt PM2.5 mass concentration
from MERRA-2 (blue dotted line), dust PM2.5 mass concentration from MERRA-2
(brown dotted line), and TCEQ sites observations of PM2.5 (green lines). Grey vertical
bars shows periods of MCIT runs. It should be noted that TCEQ sites can record
PM2.5 < 0 and these times are not used in aerosol calculations.

Correlations and percentage of variance explained by MERRA-2 (R2) are presented

here to quantify how well MERRA-2 represents the variance of the observed TCEQ

dataset across different lags. Figures 3.14 a and b summarize results from applying

techniques used in calculating the maximum R2 across different lags and Figure 3.14c

shows the mean of the daily maximum variance explained by MERRA-2. Site 11 is

anomalous with a high fraction of the TCEQ PM2.5 variance explained by MERRA-2

due to the low hourly variability that site 11 exhibits, whereas sites 4, 6, and 8 exhibit

mean R2 < 0.1. This is attributed to sites 4, 6, and 8 having a very short period

of records from only select days in 2021, and thus a meaningful mean of R2 was not

established. MERRA-2 overall does not explain the hourly PM2.5 well with most R2

below 50% for the remainder of the sites. This is not surprising as MERRA-2 does not

have high spatial resolution, so it may not capture the spatial heterogeneous nature

of PM2.5 sources and transport like the observed TCEQ sites show. Lag analysis was

added to this investigation because observations between the TCEQ sites and MERRA-

2 estimations differ by 30 minutes so a decision to shift estimations forward or backward

30 minutes was needed. For clarification, since MERRA-2 outputs at the bottom of

every hour and TCEQ sites validate observations at the top of every hour, MERRA-2

estimations are initially shifted forward by 30 minutes to be coincident with TCEQ.

This is then defined as lag-0 since neither timeseries is technically lagged relative to

the other. Figure 3.14c shows that on average a lag of 0 is adequate and the initial
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shift of MERRA-2 forward by 30 minutes is thus kept. This analysis has shown that

MERRA-2’s ability to capture the variability of the TCEQ sites is somewhat limited

but the spatial homogeneity is useful for sampling environments across the many years

of this study.

Figure 3.14: (a) Summer time series showing an example of the MERRA-2 and TCEQ
site 3 datasets and error by the MERRA-2. (b) Example lag-correlation analysis (blue
line) across 85 hours in positive and negative lag for the summer of 2020. Blue dotted
lines denote 95% confidence interval using a t-test. (c) Results from the analysis done
in (a) & (b) for all sites over all years. The y-axis is the mean R2 across all years
and the numbers above each bar are the mean lag that showed the largest variance
explained by MERRA-2. Negative lags equate to TCEQ leading MERRA-2 in time.

When sampling DCCs, the MERRA-2 PM2.5 mass concentration is split into either

a natural (sea salt and dust) or anthropogenic (organic carbon, black carbon, and

sulfate) regime defined by which constituents make up greater than 75% of the total
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PM2.5 mass concentration across all timesteps of a DCC’s existence. This accounts for

different types of aerosol loading on the DCCs that could play a role in how the AIE

evolves. For example, an anthropogenic regime typically equates to smaller aerosol

particles and larger number concentrations (IPCC, 2007), which could promote the

AIE, whereas natural regimes may exhibit more frequent GCCN that end up promoting

warm rain instead of delaying it, inhibiting the AIE. This is represented within the

MERRA-2 scheme as all anthropogenic species are assigned a radius of 0.35 µm and

the natural species a radius sometimes larger than 2 µm within the model. For analysis

of DCCs in chapter 4, the PM2.5 mass concentration is determined as the mean over the

DCC lifetime. Classification of DCCs with high and low PM2.5 mass concentration is

done on a per-subset basis depending on the subsetting techniques. For example, given

a distribution of PM2.5 mass concentration for all DCCs over the Gulf with MUCAPE

> 1000 J/kg in the natural aerosol regime, classification of DCCs with high and low

PM2.5 is done by using the top and bottom quartiles (Figure 3.15), except where

stated. This means that the classification of high and low PM2.5 mass concentration is

not fixed across all datasets but instead allows for a similar number of DCCs to be in

the high and low PM2.5 mass concentration classifications when subsetting, which leads

to a similar significance across high and low regimes. This is able to be done because

typically the DCC’s mean PM2.5 mass concentration is approximately distributed as

a generalized extreme value distribution, which allows for comparison of DCCs with

PM2.5 mass concentration typically < 10 µg/m3 against ones with typically > 30 µg/m3

(see Figure 4.39c in section 4.2.2.1.1 for a distribution of PM2.5 for all DCCs). However,

because of some DCCs with extremely large PM2.5 mass concentration evident in Figure

4.39c (i.e. > 60 µg/m3), a limit for all high vs. low PM2.5 analyses is set such that no

DCCs with > 60 µg/m3 will be used in the high PM2.5 subsets.
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Figure 3.15: Example histogram of mean PM2.5 mass concentration for all DCC’s over
the Gulf of Mexico within the natural aerosol regime and mean MUCAPE > 1000
J/kg. Black bars denote the 25th and 75th percentiles of the distribution and thus the
DCC’s with high and low PM2.5 mass concentration for this subset.
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Chapter 4

Results & Discussion

4.1 Spatio-temporal DCC distributions & lifetime

Before analyzing vertical radar profiles, it is important to characterize where in space

and time in the vicinity of Houston, TX DCCs occur, what aerosol regimes occur in

this area, and the aerosol loading encountered by DCCs. DCC initiation and aerosol

transport was largely driven by the sea-breeze circulation in the Houston area, but dif-

ferences in the strength and direction of this circulation occur, which must be assessed.

These differences can lead to the presence of high and low PM2.5 mass concentrations

within anthropogenic (A) and natural (NA) aerosol regimes in which DCCs occur.

This impacts the evolution and lifetime of the DCCs, as well as the development of

precipitation, which affects the water resources of southeast Texas.

4.1.1 Spatial distribution of DCCs

The analysis of DCCs presented in this section uses the spatial dataset described in

section 3.2.3. The main technique used for analyzing DCCs spatially is the compos-

ite difference kernel density estimate (KDE) on the two-dimensional MCIT x-y grid.

Figure 4.1 demonstrates this grid in southeast Texas along with the KDE of all DCC

tracks within the spatial dataset. This KDE (and others hereafter) are calculated by

using the python package scipy.gaussian kde with the “Scott” bandwidth calculation
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method (Virtanen et al., 2020). This method returns a 2D probability density estimate

in bins that are 10 km2 in area. For composite differencing, the KDE of all DCCs with

low (or NA) PM2.5 mass concentration is subtracted from the KDE of DCCs with high

(or A) PM2.5 mass concentration. The values shown in the composite difference KDEs

are thus the difference in the relative likelihood of DCC occurrence and thus it does

not show absolute probability. In other words, positive values show that high (or A)

DCCs occur in that grid box more frequently compared to the low (or NA) DCCs nor-

malized by the number of total DCCs in each subset. The normalization is important

as NA DCCs are very frequent, with a total of 3318 NA DCCs compared to only 287

A DCCs, so results should be interpreted with these sample sizes in mind. In essence,

these composite difference KDEs show relative dominance of respective DCCs subsets

at specific locations given certain meteorological and aerosol regimes.

Figure 4.1 shows that high likelihoods (> 0.35/10 km2) of DCC occurrence exist on

the east side of Houston extending toward Beaumont. Near Houston, these probabilities

are oriented along a line mostly parallel to the coastline and then transition to a large

circular area of high probabilities near Beaumont. The 0.2/10 km2 contour is mostly

oriented just along the coastline and marks the effects of DCC initiation due to the sea

breeze circulation moving in-land. Over the Gulf, DCC occurrence is low relative to

over land consistent with sinking motion from the sea-breeze circulations and lack of

frictional effects from the sea-land transition. An interesting pattern can also be seen

near Galveston Bay where there is a minimum of DCC probability density, which is

consistent with a bay-breeze circulation influence with sinking motion occurring over

Galveston Bay. This mechanism of bay-breeze influence on DCCs has been noted in

several studies such as those of Byers and Rodebush (1948), Mazzuca et al. (2019),
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Figure 4.1: A KDE for DCC paths in the spatial dataset (colored pixels). Black curve
represents the 20% probability density contour and the white dotted circle is the 120
km range ring. Each pixel is 10 km2 in area.

and others in other bay locations. Overall, this pattern of DCC occurrence captures

the expected sea-breeze circulation influence.

Figure 4.2a shows the relative spatial differences for all NA and A DCCs as a

composite difference KDE. In general, the NA and A identification from MERRA-2

grasps the expected spatial differences between NA and A DCCs as NA DCCs dominate

relative occurrence over the Gulf and A DCCs dominate relative occurrence to north

of the Gulf and over Houston. Some heterogeneities exist in the relative dominance of

A and NA DCCs near the coast, which highlights a need for further investigation of

the factors that govern aerosol transport and areas of DCC initiation in this region.
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Figure 4.2b shows windrose plots for all cells used in the composite difference KDE

calculation. A key difference between NA and A DCCs is that NA DCCs are more

likely to exhibit flow from a southerly direction with stronger speeds while easterly

flow occurs more frequently for the A DCC regime. Given that the sea-breeze is the

main influence of the spatial characteristics of DCCs and is a direct result of diurnal

heating, the diurnal distribution of DCCs needs to be assessed to understand how the

onset of the sea-breeze influences NA and A DCC occurrence.

Figure 4.2: (a) Composite difference KDE for all NA and A DCC normalized occurrence
frequencies. Positive (negative) values refer to higher probability densities for A (NA)
DCC locations. (b) Windrose plots for all A and NA DCCs used in the calculation
of (a). These are calculated as the 1000 - 900 mb mean wind for each DCC. Color
shading refers to wind speed in m/s. Bars on windrose point towards where the wind
is coming from.

4.1.1.1 Diurnally-driven differences in DCCs

Figure 4.3 shows the diurnal probability densities binned every hour for all DCCs and

split between NA and A DCCs. An increase in the occurrence frequency of all DCCs

begins at around 9 UTC with the peak of occurrence between 18 – 19 UTC (1 - 2 PM

local time). However, the NA and A distributions show key differences, namely that

the A DCCs are most likely to occur later in the day at around 20 – 21 UTC (3 - 4 PM)
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where NA DCCs are most likely to occur between 17 – 18 UTC (12 - 1 PM), with a

relative minimum of A DCC occurrence happening in the mid-morning hours (13 – 14

UTC, 8 - 9 AM local time). This period marks when the Sun begins to rise high enough

to begin heating the surface and trigger the sea breeze, when sea-salt aerosols thus begin

to advect inland and initially dominate the PM2.5 mass concentrations. This is seen in

Figure 4.4, where panel a shows that the second derivative of the latitude-mean v-wind

with respect to hour of day (d2vlat/dh
2) is near 0 and becoming positive, especially for

middle-higher latitudes within the domain. This means that the decreasing trend of

v-wind from the overnight land-breeze influence is waning and the southerly flow is

beginning to become stronger from the sea-breeze. This is accompanied in the hours

of 12 - 14 UTC (7 - 9 AM) by a quick uptick in both the NA mass concentration and

mass fraction (NA/PM2.5) in DCCs over land, seen in Figure 4.4b. Hence, when DCCs

occur during this period they are more likely to be in NA rather than A air masses.

The trend of NA DCC occurrence throughout the afternoon continues to increase, until

about 17 - 19 UTC (12 - 2 PM) when the occurrence begins to decrease substantially

due to the sea-breeze front convergence zone waning in intensity (Bao et al., 2005).

The diurnal variability of the occurrence of A DCCs is consistent with the findings

of Dai et al. (2019) and Yoon et al. (2020) who describe the diurnal variation of an-

thropogenic species in the Houston region due to transportation emissions of organic

carbon, black carbon, and sulfate. They reported that emission rates of these con-

stituents increase rapidly during morning rush-hour times and lead to increasing rates

of SOA formation during the day into the afternoon hours. The MERRA-2 captures

this trend, because beginning at 13 UTC (8 AM) in Figure 4.4b the A mass concen-

tration of DCCs over land gradually increases throughout the day and maximizes at

1 UTC (8 PM). Thus, the combination of primary transportation emissions and SOA

formation along with the sea-breeze convergence zone combine to cause an increase

58



in A DCC occurrence beginning at 14 UTC (9 AM) and waning at 23 UTC (6 PM)

(Figures 4.3b and 4.4). The hours after the peak A DCC occurrence show a large

decrease in the probability of both DCC regimes in Figure 4.3b as the sea-breeze ends,

which is also marked in Figure 4.4a between 0 - 1 UTC (7 - 8 PM) where d2vlat/dh
2 is

now near 0 again and becoming negative.

Due to the large changes in the probability of occurrence for both DCC regimes

marked by the onset and termination of the sea-breeze discussed above, two daily

periods will be used to separate DCCs so analysis of the pre- and post-sea breeze onset

spatial differences and associated factors can be completed. These periods are during

the sea breeze flow (9 AM - 7 PM local time) and after/before sea-breeze onset (7 PM

- 9 AM).

Figure 4.3: Probability densities (a) for all DCCs in the spatial dataset and (b) for all
NA DCCs (blue) and A DCCs (red) binned every hour. X-axes are presented in UTC
time.
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Figure 4.4: (a) Hourly means of latitude-mean meridional wind. Colors correspond
to latitudes of the ERA5 within the domain with warmer colors indicating higher
latitudes. Black dots illustrate important inflexion points (where d2vlat/dh

2 = 0) for
all of the ERA5 latitudes. (b) Hourly means of NA and A LAND DCC mean PM2.5

mass concentration (blue and red lines, respectively) and NA mean LAND DCC mass
fraction (purple line, right y-axis). Vertical black dotted lines in both figures mark the
average times of (from left to right) sunset, sunrise, and solar noon from June 1 to
August 31 over Houston.
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Figure 4.5a shows the composite difference KDE for NA and A DCCs that occur

between 7 PM - 9 AM local time. There is a stark contrast in the orientation of the

relative spatial dominance between NA and A DCCs in Figure 4.5a. Instead of the

difference being oriented perpendicular to the coast as in Figure 4.2a, the difference is

oriented zonally with the 95°W meridian approximating the separation boundary. A

DCC relative dominance is mostly confined to the east of 95°W while NA DCC relative

dominance is confined west of 95°W and south of KHGX. The windroses for each DCC

regime show that NA DCCs are more likely to have stronger flow from the south than

A DCCs (Figure 4.5b).

While both A and NA DCCs are dominated by flow from the south, there are about

20% of A DCCs that exhibit northerly flow (Figure 4.5b). Figure 4.6 shows locations

of initiation for A DCCs before 9 AM under northerly and southerly flow, illustrating

that A DCCs with both northerly and southerly flow occur inland, where the land-

breeze would not be as prominent. Further, all 9 northerly A DCCs occurred on two

days, August 31, 2019, and August 26, 2021, showing that this northerly flow regime

before 9 AM is very rare on sea-breeze convective days. It seems unlikely then that the

land-breeze is a mechanism for which to transport anthropogenic aerosols while also

triggering DCC initiation.

Instead, it more likely seems that the emissions from shipping vessels traveling

around Galveston Bay are responsible for the relative dominance of the A DCC regime

over the eastern half of the domain. Schulze et al. (2018) presents the shipping emissions

allocation factor (SEAF) (Wang et al., 2007) over the Gulf of Mexico that illustrates

two main large-vessel routes are used in and out of Galveston Bay daily (Figure 4.7).

These shipping routes are mainly from the south or east of the 95°W line and spatially

agree well with the region of high A DCC relative occurrence over the Gulf in Figure
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Figure 4.5: As in Figure 4.2 but for DCCs occurring before 9 AM local time.

4.5a. Because MERRA-2 takes into account international shipping emissions from

across the globe (see section 3.4.1 for further details), these emissions are accounted

for in the fields use to distinguish A and NA air masses. Further, the lack of boundary

layer mixing from diabatic heating from the Sun in the early morning hours can trap

these emissions within the boundary layer allowing for larger concentrations to remain

present. Figure 4.8 shows that the CIN for A DCCs is typically larger than that for

NA DCCs, illustrating the larger probability of trapping ship emitted aerosols over the

Gulf when A air masses occur. In addition, advection northward of these ship emission

aerosols occurs due to the preponderance of weak southerly winds shown in the A DCC

windrose (Figure 4.5b), which shows a high likelihood of A air masses and hence A

DCCs, extending further inland east of 95°W.

Lastly, Figure 4.9 shows the two KDEs for the NA and A DCCs before 9 AM

separately so that the spatial patterns of DCCs can be better visualized. Figure 4.9a

shows that NA DCC occurrence is rare farther inland than the Houston and Beaumont

cities consistent with the NA air masses not having been advected inland during the

early morning hours so that NA DCC initiation and sea-salt advection further inland
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Figure 4.6: Initiation locations of A DCCs occurring before 9 AM under northerly (red
dots) and southerly (blue dots) flow.

has not begun. For both regimes, DCCs occurring before 9 AM are likely to be impacted

by southerly boundary layer flow, but the strength of this flow and boundary layer

stability leads to either higher relative probability of NA DCCs just along the coast

and over the Gulf, or leads to higher relative probability of A DCCs east of 95°W.

The composite difference KDE for all DCCs occurring after 9 AM is shown in Figure

4.10a. The difference pattern shifts to be oriented more perpendicular to the coastline,

much like that of Figure 4.2a. As expected, the Gulf is dominated by the NA DCCs

because evaporation of sea water is more prevalent from diabatic heating and it is a
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Figure 4.7: The Automated Mutual-Assistance Vessel Rescue (AMVER) proxy of Wang
et al. (2007)’s SEAF value over the Gulf of Mexico. The vertical black dotted line is
the 95°W meridian. Adapted from Schulze et al. (2018).
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Figure 4.8: Box and whisker plots of before 9 AM NA (blue) and A (red) DCCs’ mean
CIN and 1000 - 900 mb mean relative humidity. These values are taken from the
nearest spatio-temporal grid point for each DCC from the ERA5 reanalysis.

more pristine air mass. Additionally, strong southerly flow is present when NA DCCs

occur just as before 9 AM, aiding in the advection of sea salt over the Gulf and onto

land. Further, as expected, the regions north of Houston show relative dominance of

A DCCs. Given the boundary layer wind profiles from the windroses (Figure 4.10b),

flow can be variable in direction when these A DCCs occur but is most likely from

the east, since 53% of the DCCs exhibit an easterly component. This flow regime

diminishes the sea salt aerosol advection and allows for advection of anthropogenic

emissions to dominate when DCCs occur north of Houston. Anthropogenic emissions

coming from Houston increase after 9 AM due to transportation emissions, which

promote photochemical reactions during afternoon hours, producing SOAs. The weak
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Figure 4.9: KDEs for before 9 AM (a) NA and (b) A DCC paths.

winds relative to the NA DCC speeds further promote this mechanism over Houston as

advection of these anthropogenic aerosols is minimal (Figure 4.10b). However, spatial

differences between NA and A DCCs in Figure 4.10a are more heterogeneous than those

in Figure 4.5a with high A DCC relative occurrence near the coast, surrounded by areas

of high NA DCC relative occurrence further inland which is not consistent with what

is expected based on flow from a sea-breeze. The two black boxes encompassing these

regions is shown in Figure 4.10a and mark the east and west regions that are further

investigated to understand why these differences are seen.

Figures 4.11a and b show the eastern domain KDEs for both NA and A DCCs

with boundary layer winds averaged from all hours between 9 AM and 7 PM calcu-

lated from the ERA5 on the respective days that have either NA or A DCCs overlaid.

The maximum probability of A DCC occurrence is in the southern region of the do-

main close to Galveston Bay while for NA DCCs, the maximum probability is further

north near Beaumont. Boundary layer mean wind patterns for days when A DCCs

occurred are much more easterly than on days NA DCCs occurred and Figure 4.11c

shows that the speeds are not likely to be greater than 7 m/s. This again shows that
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Figure 4.10: As in Figure 4.2 but for DCCs occurring after 9 AM local time. Black
dotted boxes in (a) refer to the east and west domains.

the advection of sea salt aerosols is inhibited for A air masses due to weak flow that is

more easterly. Advection of anthropogenic aerosols under these flow regimes can occur

due to the eastern oil refineries and factories that populate the area east of Galve-

ston Bay. Interestingly, the windrose for A DCCs also points to possible evidence of a

bay-breeze from the Galveston Bay as the second most frequent wind direction is from

the southwest. A bay-breeze can help promote A DCC occurrence through additional

low-level convergence with the sea-breeze and upward motion from the baroclinic cir-

culation. Anthropogenic aerosols from the bay-breeze would most likely originate from

ship emissions and the Houston metropolitan area, with a lack of natural aerosols due

to the relatively weak flow from the bay-breeze (Figure 4.11c). However, the ERA5

may struggle to resolve a small scale process such as the bay-breeze, and thus more

investigation would be needed in studies utilizing field campaign data to quantify this

process in terms of aerosol transport and DCC initiation. In summary, the mechanisms

behind the observed dipole of NA and A DCCs occurrence in the eastern domain are

similar to the rest of the study area with the possible addition of a bay-breeze influence.

Most significantly, the location of NA and A DCCs in this region is governed by the

direction and strength of the on-shore flow. If it is strong and southerly, NA DCCs are
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likely to form in the northern part. If the flow is weaker and easterly, then A DCCs are

more likely to form in the southern part close to Galveston Bay with influences from

the weaker bay-breeze possible.

Figure 4.11: KDEs for (a) NA and (b) A DCCs occurring in the eastern domain. Black
arrows show ERA5 1000 - 900 mb mean winds between 14 - 23 UTC for each day NA
(or A) DCCs occurred in the eastern domain. Arrows are not representing speed across
the two figures. (c) Windrose plots for all NA and A DCCs used in (a) and (b).

For the western domain, a similar pattern to Figure 4.11 is seen for the A and NA

DCC probability densities in Figure 4.12. A large difference can be seen in the flow

regime for days with A DCCs compared to days when NA DCCs occur. The windroses

show that the strength and direction of the wind is most important in determining

likelihood of NA or A DCC occurrence. A DCCs typically exhibit weak winds that are
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usually easterly where NA DCCs occur when there is stronger flow from a southerly

direction which activates sea-salt emissions and leads to dominance by sea-salt in PM2.5

mass concentrations. Locations of the maximum probability of NA and A DCCs in this

region are again dependent upon the flow regime as NA DCCs can occur frequently

in the northern part of the domain if flow is strong and southerly (Figure 4.12a) and

A DCCs can occur frequently closer to the coast if flow is weak and easterly (Figure

4.12b).

69



Figure 4.12: As in Figure 4.11 but for the western domain.

4.1.1.2 High & low PM2.5 DCCs

The composite difference KDEs for high and low PM2.5 mass concentrations for NA

DCCs occurring before 9 AM are presented in Figure 4.13, along with their windroses

showing wind speeds and direction for the environments in which DCCs occurred.

High and low PM2.5 DCCs are defined as the top and bottom quartiles of the PM2.5

distribution for NA DCCs that occurred before 9 AM, which are 20 µg/m3 and 9

µg/m3, respectively. The windroses show that stronger southerly flow generally pro-

motes higher NA PM2.5 mass concentrations (Figure 4.13b). Additionally, the DCCs

that occur within the higher PM2.5 mass concentrations are generally further inland,

which is consistent with the southerly flow initiating DCCs and advecting sea salt

70



aerosols further inland. Meanwhile, the NA DCCs with lower PM2.5 mass concentra-

tions occur more often near the coastline, likely due to the weaker southeasterly winds

that are typically present when they occur. Thus, as in the previous analysis of NA

DCCs, weaker southerly flow leads to lower natural aerosol mass loading when DCCs

occur closer to the coast, and stronger southerly flow leads to higher natural aerosol

mass loading when DCCs occur further inland. For the high (> 16 µg/m3) and low (<

11 µg/m3) A DCCs occurring before 9 AM, the sample size is very low with only 14 in

each quartile (Figure 4.14). Therefore, the windroses in Figure 4.14b do not resolve a

coherent pattern of wind direction and speed. However, the composite difference KDE

(Figure 4.14a) does show a pattern that high A DCCs tend to occur near Beaumont

while lower A DCCs occur more frequently over the Gulf. This pattern points to pri-

mary anthropogenic emissions of aerosols by oil refineries and factories east of Houston

being present for DCCs east of Houston and to shipping emissions from vessel activity

yielding lower anthropogenic mass concentrations when A DCCs occur over the Gulf.

Figure 4.13: As in Figure 4.2 but for high and low PM2.5 NA DCCs occurring before
9 AM local time.

The composite difference KDEs for high and low PM2.5 mass concentrations for NA

DCCs occurring after 9 AM are presented in Figure 4.15, along with their windroses
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Figure 4.14: As in Figure 4.2 but for high and low PM2.5 A DCCs occurring before 9
AM local time. (a) also shows the initiation locations of high (red dots) and low (blue
dots) A DCCs.

showing wind speeds and direction for the environments in which DCCs occurred. The

top and bottom quartiles for NA DCCs that occurred after 9 AM that define the high

and low PM2.5 thresholds are 21 µg/m3 and 10 µg/m3, respectively. Overall, Figure

4.15 shows that there is a stronger southerly flow, typically > 7 m/s, that leads to

higher natural PM2.5 mass concentrations and NA DCC initiation further inland. For

high (> 15 µg/m3) and low (< 9 µg/m3) A DCCs occurring after 9 AM, a unique

spatial difference pattern can be seen in Figure 4.16. Two regions of more frequent

high PM2.5 when A DCCs occur can be seen near Houston and Beaumont, while low

PM2.5 is seen when A DCCs occur closer to the coastline and northwest of Houston.

Figure 4.16b shows the main differences in wind speed and direction between the high

and low A DCCs occurring under these conditions. Stronger southeasterly flow (>

4 m/s) is present when high A DCCs occur downwind of Beaumont and Houston,

which are the main sources for these aerosols. This means that the southeasterly sea-

breeze flow regime promotes anthropogenic aerosol advection and DCC initiation in

the red areas in Figure 4.16a. However, flow that is weak (< 4 m/s) leads to a lack

of both natural and anthropogenic aerosol advection and thus the DCCs in the blue

72



areas in Figure 4.16a do not occur when large amounts of sea-salt or anthropogenic

mass concentrations are present. They instead occur with only aerosols emitted from

sources near their initiation locations that are not over the Houston or Beaumont

metropolitan areas.

Figure 4.15: As in Figure 4.2 but for high and low PM2.5 NA DCCs occurring after 9
AM local time.

Figure 4.16: As in Figure 4.2 but for high and low PM2.5 A DCCs occurring after 9
AM local time.
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Throughout this analysis the dominant factor that dictates what type of aerosol

regime under which DCCs occur has been the presence or lack of a strong southerly sea-

breeze. In the morning hours before 9 AM, flow is typically from the south regardless

of what aerosol regime is present, but the strength of the wind governs the fact that

DCCs occur in NA conditions as the sea breeze begins. Smaller wind speeds and

shipping emissions are present when A DCCs form east of Houston both in the Gulf

and further inland, consistent with the weak flow limiting sea salt aerosol advection, so

that the anthropogenic air mass dominates. After 9 AM when diurnal heating increases

and the sea-breeze flow progresses inland, the NA regime is more likely present as

the sea-salt aerosols are advected onto land. The peak likelihood of A DCCs occurs

later in the day most likely due to both the waning influences of the initial sea-breeze

surge with associated sea salt advection and peak emissions and impacts from human

activities. Further, after the sea-breeze onset the spatial relative dominance flips to the

more expected result with NA DCCs over the Gulf and A DCCs further inland over

and northwest of Houston. However, two regions west and east of Houston exhibit

differences with dipoles of high NA and A DCCs relative occurrence. Both regions

were again governed by the strength of the on-shore flow. If the flow is strong (>

4m/s) and southerly, the NA DCCs occur further inland in both regions. If the flow is

weak and easterly, then the A DCCs occur closer to the coast. For both the east and

west regions, the wind direction when A DCCs occur is more variable with the largest

likelihood being from continental flow rather than from purely on-shore southerly flow.

Figure 4.17 shows the two composite difference KDEs for the southerly and easterly

sea-breeze regimes and summarizes the main differences in the spatial distribution

between NA DCCs and A DCCs under the different regimes. Under southerly flow,

the total number of A DCCs was only 37, of which all but 1 occurred over land,

while the number of NA DCCs was 1825, which occurred throughout the domain. For
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easterly flow, A DCCs occurred 129 times compared to 522 NA DCCs. The number

and location differences of DCCs between A and NA regimes show the influence of the

sea breeze on the likely location of and type of aerosol loading on the DCCs. Finally,

whether NA or A DCCs experience high or low PM2.5 loading is heavily driven by

the strength of the sea-breeze flow regime combined with the primary sources of the

anthropogenic (Houston and Beaumont) and natural (Gulf of Mexico) aerosols.

Figure 4.17: Composite difference KDEs of NA and A DCC paths for days with (a)
southerly and (b) easterly flow. For (a), the number of NA DCCs is 1825 while for A
DCCs the number is 37. For (b), the number of NA DCCs is 522 while for A DCCs
the number is 129.

4.1.2 DCC lifetime

The first step described in the AIE is the delay of the warm rain process and thus an

increase in cloud lifetime (Albrecht, 1989; Rosenfeld et al., 2008). If the AIE is impor-

tant for DCCs around Houston, then DCC lifetime should increase with an increase in

aerosol loading. To investigate this part of the AIE, correlations between PM2.5 mass

concentration and DCC lifetime are extracted. Distinction between DCCs occurring

over land and over the Gulf is made because the meteorological and aerosol regimes can
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be vastly different, making it easier to disentangle aerosol and meteorological effects on

DCC lifetime. DCC lifetime is calculated by taking the difference between start and

end times of DCCs identified within the MCIT algorithm.

A spearman correlation analysis of the ERA5 meteorological variables with both

DCC lifetime and PM2.5 mass concentration is shown in Figure 4.18, and was calculated

using daily means of each variable as described in section 3.3. DCC lifetime over the

Gulf is most correlated with low-level relative vorticity, mid-level shear magnitude, and

400 mb omega. PM2.5 mass concentration is correlated significantly with u and v-wind

and shear magnitude. Since shear magnitude is correlated significantly with PM2.5

mass concentration and DCC lifetime, controlling for shear magnitude would lead to

difficulties in separating correlations between meteorology and aerosols. Instead, the

400 mb omega is chosen to classify DCCs by over the Gulf. The low-level relative

vorticity was not chosen to classify the DCCs as it and 400 mb omega have a pearson

correlation coefficient of -0.26 across all DCCs over the Gulf, which is significant at the

95% confidence level. This means that weaker sinking motion (less positive omega) from

the subsidence branch of the sea-breeze baroclinic circulation can correlate with less

negative low-level relative vorticity over the Gulf, which would promote longer lasting

DCCs from lack of strong subsidence. This thus suggests a coupling between omega

and low-level vorticity regarding impact on DCC lifetime. Over land, DCC lifetimes

only show a significant spearman correlation with 400 mb relative humidity and thus

this is the variable used to control for meteorological influence on DCC lifetime for land

DCCs. The lack of correlation with other meteorological variables is probably a result

of the fact that many more DCCs occur over land where the ERA5 reanalysis is unable

to capture the smaller scale meteorological environments in which these small-scale

DCCs occur.
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Figure 4.18: As in Figure 3.8 but for daily mean (a) DCC lifetime and (b) DCC PM2.5

mass concentration. This diagram used the spatial DCC dataset.

Figures 4.19 a and b show scatter plots of DCC lifetime against PM2.5 mass con-

centration for DCCs over land (Gulf) using the top and bottom quartiles of 400 mb

relative humidity (omega). The distribution of points in both plots in Figure 4.19 are

mostly parallel to the x axis showing near zero correlation between DCC lifetime and

PM2.5 mass concentration. Figure 4.20 shows similar analysis, but instead controls for

MUCAPE as previous studies have shown the AIE on DCC lifetime can be strongly

impacted by instability (e.g., Hu et al., 2019a; Khain et al., 2005, among others). No

correlation in either MUCAPE environment is easily identifiable.

To further investigate correlations between DCC lifetime and PM2.5 mass concen-

tration, additional subsetting was completed by separating anthropogenic and natural

aerosol regimes as done in section 4.1.1. First, correlation analysis was completed to

identify correlations between meteorological variables and the two aerosol regime mass

concentrations. Figure 4.21 shows that natural PM2.5 mass concentration is strongly

correlated with u and v-wind, consistent with analysis completed in section 4.1.1.

Additionally, low-level relative humidity, surface dewpoint, and MUCAPE correlate

significantly with natural PM2.5 mass concentration over land. These correlations are

consistent with physical understanding because if there are high natural PM2.5 mass
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Figure 4.19: DCC lifetime vs. mean PM2.5 mass concentration for DCCs in the top
and bottom quartiles of (a) 400 mb mean relative humidity over land and (b) 400 mb
mean omega over the Gulf of Mexico along with spearman correlation coefficients (r).
None of the coefficients were significant at the 95% level.

concentrations inland from sea salt due to a strong southerly sea-breeze, then mois-

ture and associated instability from these air masses should also be prevalent. Over

the Gulf, natural PM2.5 mass concentration correlates well with surface dew point and

shear magnitude in the low-levels, consistent with increased evaporation of sea water

and ejection of sea spray from strong flow regimes. For anthropogenic PM2.5 mass con-

centration, correlations are very weak for DCCs over land and the Gulf with the only

significant correlations occurring for land DCCs, namely with 600 mb relative humidity

and 550 mb omega. Similar scatter plots as Figure 4.19 were constructed controlling

for the meteorological variables discussed above to identify any dependence on lifetime

and are shown in Figure 4.22. Regardless of how the data are stratified, no significant

correlation with DCC lifetime can be seen for either the NA DCCs or A DCCs over

land or over the Gulf.
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Figure 4.20: As in Figure 4.19 but DCCs were binned by the top and bottom quartiles
of the MUCAPE distributions over land and the Gulf of Mexico.

Figure 4.21: As in Figure 4.18 but for daily mean DCC (a) natural and (b) anthro-
pogenic PM2.5 mass concentration. This diagram used the spatial DCC dataset.

In summary, no correlation can be found between PM2.5 mass concentration, whether

natural or anthropogenic, and DCC lifetime. This indicates that DCC lifetime is heav-

ily dependent upon many meteorological variables, and does not depend only on aerosol

amount as noted by Varble (2018). This is compounded by the fact that the reanal-

ysis data does not include all the meso- and smaller scale features that affect DCC

evolution. There is a similar problem with the MERRA-2 aerosol representation as

the grid spacing of the MERRA-2 is even larger than that of the ERA5. Lastly, the

neighbor and saddle criteria used in the MCIT algorithm can influence the analyses as
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the ability of the MCIT to detect DCCs when they are in the early or late stages of

their life cycle directly affects the resulting calculation of DCC lifetime.

Figure 4.22: As in Figure 4.19 but subset for NA and A DCCs occurring over the land
and Gulf of Mexico.

4.2 Vertical radar profiles

In this section, a comprehensive analysis of the distributions of Z and ZDR across

different altitudes in DCCs is presented. Similar to the analysis in section 4.1, DCCs

are subset based upon their geographic location, aerosol regime, and meteorological
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conditions. As discussed in section 3.2.3, composite difference CFADs are the primary

method for determining differences in microphysical structure between DCCs supple-

mented by microphysical fingerprint parameter space (MPS) plots (Kumjian et al.,

2022) that help interpret the physical meaning of the CFADs. CFADs are useful be-

cause they allow for a subset of DCCs to be quantitatively shown to have higher likeli-

hoods of an inferred microphysical signature based on altitude relative to the freezing

level, Z, and ZDR.

4.2.1 Correlation analysis of ETH

Figure 4.23 shows daily mean correlations of maximum ETH achieved by DCCs and

meteorological variables collected from the ERA5 reanalysis. MUCAPE and 550-400

mb relative humidity (RH) both show significant positive correlations with maximum

ETH for DCCs over land and the Gulf. These variables are important for this study

because they both have been shown to strongly mediate the AIE (e.g., Altaratz et al.,

2014; Carrió et al., 2010, 2011; Hu et al., 2019a, among others) and thus should be

controlled for to understand how different meteorological environments affect the AIE.

Physically, a positive correlation between maximum ETH and RH indicates that there

is less evaporation and sublimation of hydrometeors with increasing relative humid-

ity, allowing for larger hydrometeors in higher concentrations in the DCCs that will

reflect more signal power back to the radar, leading to a higher ETH. The opposite

is also valid as lower relative humidity will cause higher evaporation and sublimation

rates from entrainment and decrease the height to which an 18 dBZ echo reaches. A

positive MUCAPE correlation is also physically consistent because higher instability

equates to larger maximum vertical velocity and thus a larger acceleration of parcels,

as represented by
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w =
√
CAPE (4.1)

and

CAPE = Rd

∫ p0

p(z)

T
′

vd ln p , (4.2)

where p0 and p(z) define the lower and upper pressure levels of the layer, w is the

maximum vertical velocity that can be attained by an updraft in that layer, Rd is

the dry air gas constant, and T
′
v is the layer mean virtual temperature (Moncrieff and

Miller, 1976). Parcels with larger vertical velocities can loft larger hydrometeors further

upward as well as create higher supersaturations within the updrafts that nucleate more

particles, leading to higher altitudes of an 18 dBZ echo.

Figure 4.23: As in Figure 4.18 but for daily mean maximum ETH attained by the
DCCs. This diagram used the radar dataset.

However, there are other significant correlations in Figure 4.23 in both geographic

regimes that are important to understand and possibly account for. Including the
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variables discussed above, the highest seven spearman correlation magnitudes for DCC

maximum ETHs over the Gulf are with boundary layer height (BLH) (-0.37), RH

(0.32), 650 mb divergence (D650) (-0.25), 500 mb omega (W) (-0.25), 400 mb v-wind

(V) (0.25), 400 mb shear magnitude (SH) (-0.19), and MUCAPE (0.19). Over land,

they are with RH (0.24), MUCAPE (0.23), 650 - 550 mb geopotential height (GH)

(0.22), SH (-0.22), surface temperature (T) (0.21), 500 mb divergence (D500) (-0.21),

and surface dewpoint (DEW) (0.19).

4.2.1.1 GULF DCCs

Figure 4.24a shows the mean spearman correlation matrix for all variables introduced

above for Gulf DCCs. The spearman correlations in this figure are not calculated using

a daily mean, but rather by taking the mean of each variable across the timeseries of

each DCC. Figure 4.24a shows that D650 and W have a large spearman correlation of

0.7. Physically, this means that larger W (subsidence) occurs with larger divergence

at lower levels, which is consistent with mass continuity. Since these two variables are

highly correlated, only one needs to be chosen to classify DCCs. For this study, D650

is chosen instead of W for DCCs over the Gulf. Additionally, both of these variables

present negative correlations with maximum ETH, which can be explained by the

reasoning discussed in section 4.1.2, namely that less positive W, and thus less positive

D650, from a weaker sinking branch of the sea breeze circulation allows updrafts to

loft hydrometeors further upwards leading to higher ETHs.

The strongest correlation for maximum ETHs over the Gulf is BLH and is likely

illustrating that higher surface temperatures over the Gulf cause stronger convective

mixing, thus making the boundary layer taller (Stull, 1988). This is shown by the

spearman correlation of 0.35 between T and BLH for DCCs over the Gulf and is
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Figure 4.24: Correlation matrix for the meteorological variables that exhibit the top 6
(7) spearman correlation magnitudes from Figure 4.23 for GULF (LAND) DCCs for (a)
((b)). This figure excludes SH because SH correlates with PM2.5 mass concentration
from Figure 4.21 for Gulf DCCs. The correlations here are calculated by taking the
mean of each DCC’s timeseries for the respective meteorological variable to represent
a single point and using those points to calculate correlation.
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significant at the 95% level. A taller boundary layer over the Gulf exhibits more

stability because the lapse rate is most likely near moist adiabatic, which limits surface

instability and thus updraft buoyancy and associated ETH.

Finally, the last two correlated variables for Gulf DCC ETHs are SH and V. The

negative correlations of SH and V with maximum ETH physically mean that the rel-

atively narrow, ordinary, and isolated DCCs can be susceptible to entrainment effects

caused by shear. The spearman correlation between these two variables is -0.42 and is

significant at the 95% level. Physically, this means that a larger negative v-component

of the wind at 400 mb can typically correlate with higher shear magnitude given that

flow at the surface over the Gulf is typically southerly as discussed in section 4.1.

Therefore, since SH and V are related and SH is significantly correlated with NA

PM2.5 mass concentration for DCCs over the Gulf (Figure 4.21), SH will be removed

from subsequent analysis of DCCs over the Gulf and instead V will be used.

4.2.1.2 LAND DCCs

The strongest spearman correlation with DCC maximum ETHs over the land apart

from RH and MUCAPE is GH. This is most likely due to stronger sea breeze fronto-

genesis that is established when synoptic-scale flow opposes on-shore flow (e.g. Arritt,

1993; Bechtold et al., 1991; Estoque, 1962; Noonan and Smith, 1987; Pielke, 1974).

This opposing synoptic flow, which would be northerly or northwesterly to oppose the

sea breeze front, is usually the result of a surface high pressure system near the study

domain, meaning that GH is typically higher. The stronger frontogenesis can then lead

to stronger DCCs over land that can loft hydrometeors further upwards. SH and D500

are both negatively correlated with DCC maximum ETHs because of similar reasoning

as discussed in section 4.2.1.1. T and DEW for land DCCs are both positively cor-

related with maximum ETH because higher surface temperatures and dew points can
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lead to larger surface instability. Figure 4.24b shows the mean correlation matrix for

DCCs over land. The land correlation matrix does not show large values of correlation

between the meteorological variables as did the gulf correlation matrix. Therefore, the

highest seven meteorological variables are controlled for when analyzing LAND DCCs.

However, MUCAPE and DEW are both correlated with NA PM2.5 mass concentra-

tion for DCCs over the land (Figure 4.21) and thus are not used to classify DCCs in

NA PM2.5 regimes. A diagram depicting the breakdown of subsets for this analysis

is presented in Figure 4.25, Table 4.1 illustrates all of the subsets with their sample

sizes, and Figures 4.26 and 4.27 show the distributions for all meteorological variables

sampled for DCCs discussed above across the two geographic regimes.

Figure 4.25: Breakdown of DCC subsets classification technique across geographic
locations, aerosol regime, and meteorological conditions.
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Figure 4.26: Distributions of the LAND DCC meteorological variables controlled for
in the CFAD analysis. Vertical black dotted lines show the upper and lower terciles of
the distributions.

Figure 4.27: As in Figure 4.26 but for the GULF regime.
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4.2.2 CFADs & microphysical fingerprints

Before showing analysis of DCCs under differing aerosol conditions, a comparison of

stronger and weaker DCCs using the CFADs and MPS plots is presented so that

correct interpretation of aerosol impacts can be made. Figures 4.28 and 4.29 show

the CFADs and MPS plots for DCCs separated between geographic location and high

and low MUCAPE since MUCAPE has been shown to positively correlate with stronger

updrafts.

Below the freezing level, Figures 4.28a and 4.29a show that the difference in Z

distributions of high and low MUCAPE DCCs is similar over land and over the Gulf.

Low MUCAPE DCCs have a larger likelihood of exhibiting 25 dBZ < Z < 40 dBZ

whereas high MUCAPE DCCs are more likely to have Z in either the 0 – 25 dBZ or

40 – 55 dBZ range. Above the freezing level, Z is typically larger for high MUCAPE

DCCs. The ZDR profiles in Figures 4.28b and 4.29b show that the high MUCAPE

DCCs are more likely to have larger ZDR throughout the depth of the DCC, which

includes dominance in the region bounded by 0 - 2 km and ZDR > 1 dB, also known

as the ZDR-column region. The narrower distribution of Z and the larger likelihood

of ZDR less than 1 dB below the freezing level for low MUCAPE DCCs is consistent

with a larger probability of smaller drops in higher concentrations. This is indicative

of a larger probability of warm rain and is further corroborated by the KDE of the

MPS plots (Figures 4.28d and 4.29d). This shows that low MUCAPE DCCs have a

higher probability to occur in the upper-right quadrant, meaning that collision and

coalescence is dominant since Z and ZDR increase toward the ground. Meanwhile, the

high MUCAPE DCCs have a larger likelihood of stronger size sorting in the CFADs

because their ZDR is more likely to be > 1 dB and Z < 25 dBZ, meaning sparse

concentrations of large drops (Figures 4.28 and 4.29). The KDEs of the MPS plots
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Invigoration # of DCCs Inhibition # of DCCs Unclear # of DCCs

LAND-GULF 2412 A-NA GULF 413 NA LAND MED CAPE 356

A-NA LAND 1135 A LAND MED GH 44 NA LAND HIGH DEW 379

NA LAND 1034 A GULF 29 NA LAND MED DEW 373

NA GULF 384 A GULF LOW V 19 NA LAND MED GH 330

NA LAND HIGH CAPE 360 A GULF LOW CAPE 20 NA GULF HIGH BLH 38

NA LAND LOW CAPE 318 A LAND LOW RH 50 NA GULF LOW BLH 183

NA LAND HIGH RH 283 NA GULF MED W 109

NA LAND LOW DEW 282 NA GULF HIGH V 115

NA LAND HIGH RH 414 NA GULF MED V 109

NA LAND MED RH 329 NA GULF LOW V 160

NA LAND LOW RH 291 NA GULF HIGH D650 112

NA LAND HIGH SH 369 NA GULF MED D650 116

NA LAND MED SH 364 NA GULF LOW D650 156

NA LAND LOW SH 301 A LAND 101

NA LAND HIGH TEMP 275 A LAND HIGH D500 27

NA LAND MED TEMP 341 A LAND MED D500 32

NA LAND LOW TEMP 418 A LAND LOW D500 25

NA LAND HIGH GH 365 A LAND MED CAPE 22

NA LAND LOW GH 339 A LAND LOW CAPE 59

NA LAND HIGH D500 371 A LAND LOW GH 39

NA LAND MED D500 311

NA LAND LOW D500 352

NA GULF HIGH RH 188

NA GULF MED RH 121

NA GULF LOW CAPE 158

NA GULF LOW W 172

NA GULF MED BLH 163

A LAND HIGH TEMP 51

Table 4.1: Table listing all of the subsets generated from the techniques described
in Figure 4.25 along with the sample sizes. Classifications are made based on if the
subsets show invigoration, inhibition, or unclear impacts on DCCs from high PM2.5,
A, or LAND aerosol regimes. Some subsets generated have sample sizes < 10 DCCs
and are not listed in this table.
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Figure 4.28: (a) Composite difference Z CFAD, (b) composite difference ZDR CFAD,
(c) distribution of LAND DCC’s mean MUCAPE, and (d) composite difference KDE
of the microphysical parameter space given by ∆Z and ∆ZDR for DCCs used in the
CFAD calculations. For (c), vertical black dotted lines indicate the upper and lower
quartiles of the distribution and mark the DCCs which are used to calculate (a), (b),
and (d). Color bar in first row corresponds to both CFADs. All DCCs are analyzed at
the time of their maximum ETH. Stippling shows 95% significance using a t-test for
(a) and (b) and using a 5000 iteration Monte-Carlo simulation for (d).
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Figure 4.29: As in Figure 4.28 but for DCCs over the Gulf of Mexico.

also agree as they show higher likelihoods of high MUCAPE DCCs being in the upper-

left quadrant (Figures 4.28d and 4.29d). A more probable size sorting signature means

that the updrafts are likely to be stronger (Kumjian and Ryzhkov, 2012) and thus can

loft more supercooled liquid further above the freezing level, creating more efficient

riming and accretion processes on hail, graupel, and ice crystals, which produce higher

ZDR both above and below the freezing level. This is seen in the ZDR CFADs which

show the higher ZDR for essentially all altitudes (Figures 4.28b and 4.29b). These more

efficient mixed-phase processes then lead to heavier precipitation occurring below the

freezing level as Z is also more likely to be > 40 dBZ with ZDR > 1 dB. Therefore,
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DCCs with higher MUCAPE, regardless of geographic location, are more likely to be

stronger in updraft strength and produce heavier precipitation.

As previously mentioned, the first step in the AIE is the inhibition of warm rain

due to the increased concentration of CCN leading to smaller drops and a less efficient

collision-coalescence processes. This means that DCCs with higher aerosol loading

should exhibit less probability of warm rain compared to DCCs with lower aerosol

loading under the same meteorological conditions. The AIE causes more liquid to be

lofted above the freezing level and increase updraft strength via latent heat release

from increased freezing rates. Therefore, to understand if there is an aerosol impact on

DCCs within the Houston area, the differences in the dual-polarization distributions

below the freezing level are examined. First, subsets from Table 4.1 that exhibit clear

differences in the structure of radar data below the freezing level are discussed, followed

by a discussion of the subsets that do not show a clear difference.

4.2.2.1 Clear microphysical impacts below the freezing level

4.2.2.1.1 Stronger size sorting for DCCs under high aerosol loading

The subsets that exhibit stronger size sorting for regimes with either high aerosol

mass loading or an anthropogenic regime (i.e. DCCs over land or DCCs with the A

distinction) are discussed first. High PM2.5, LAND, or A DCCs within these subsets are

assumed to have higher number concentrations of aerosols compared to the low PM2.5

or NA DCCs. Results here are thus consistent with the first mechanism in the AIE

theory, if it is the aerosol impacts that cause the stronger updrafts. The subsets that

show the most coherent differences and that include large sample sizes are presented
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Figure 4.30: As in Figure 4.28 but for all NA LAND DCCs within the HIGH MUCAPE
tercile. Also, distinction is made between high (red pixels) and low (blue pixels) PM2.5

mass concentration, which are marked in (c) by the vertical black-dotted lines.
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Figure 4.31: As in Figure 4.30 but for NA LAND DCCs within the LOW SH tercile.
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Figure 4.32: As in Figure 4.30 but for NA LAND DCCs within the LOW GH tercile.
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and discussed thoroughly here (Figures 4.30 – 4.43). The numerous other subsets that

are within this category are shown in Figures A.1 - A.12.

Figures 4.30, 4.31, 4.32, and 4.33 show the composite difference CFADs of Z and

ZDR below the freezing level for the NA LAND HIGH CAPE, LOW SH, LOW GH,

and MED D500 subsets. They all show a narrow Z distribution that peaks around

the 20 – 40 dBZ range coupled with ZDR dominance < 1 dB for the low PM2.5 DCCs

(blue pixels). As discussed above with high and low MUCAPE DCCs, this signature

represents an increased probability of warm rain because of the more probable moderate

Z but small ZDR. This is supported by the MPS plots where low PM2.5 DCCs generally

have their distribution of points in the coalescence quadrant. For high PM2.5 DCCs,

the CFADs show that the distribution of Z is wider with higher probability that ZDR

> 1 dB and is consistent with observations found by Martin et al. (2017). For these

distributions of radar gates where Z < 20 dBZ and ZDR > 1 dB, size sorting is more

likely to occur for the high PM2.5 DCCs. This is corroborated by the MPS plots

which show higher probabilities for these DCCs in the size-sorting quadrant. In the

larger side of the Z range, where radar gates from high PM2.5 DCCs have a higher

probability of Z > 40 – 45 dBZ, heavier precipitation is more likely to occur. The more

intense precipitation may be caused by the increased buoyancy of the updrafts from

an increased transport of liquid past the freezing level and associated increased latent

heating from more efficient riming and accretion processes. This is consistent with

the AIE and with processes that were noted in modeling studies such as Carrió et al.

(2010), Carrió et al. (2011), Ilotoviz et al. (2018), and Khain et al. (2005) and through

observations by Martin et al. (2017) in which increases in transport of liquid above the

freezing level for high CCN DCCs led to higher ZDR values due to more efficient riming
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Figure 4.33: As in Figure 4.30 but for all NA LAND DCCs within the MED D500
tercile.
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and accretion which can also produce higher Z. These stronger updrafts are then able

to produce more intense precipitation, yielding larger Z below the freezing level.

Subsets NA LAND, NA LAND LOW CAPE, HIGH SH, MED SH, and LOW DEW

in Figures 4.34, 4.35, 4.36, 4.37, and 4.38 all show a similar pattern in the ZDR CFADs

to the subsets discussed above in which higher ZDR is more likely for the high PM2.5

DCCs across all altitudes. However, above and below the freezing level the NA LAND,

NA LAND LOW CAPE, HIGH SH, MED SH, and LOW DEW subsets do not exhibit

the increased precipitation pattern illustrated for the high PM2.5 DCCs. Instead, either

there is not a statistically significant difference between high and low PM2.5 DCCs for

Z > 40 dBZ (Figures 4.34a, 4.36a, 4.37a, and 4.38a) or the low PM2.5 DCCs exhibit

higher likelihood of Z > 40 dBZ (Figure 4.35a) below the freezing level. This means

while there is likely less warm rain and stronger size sorting resulting in the higher ZDR

values above and below the freezing level for the high PM2.5 DCCs, the precipitation

is not enhanced compared to low PM2.5 DCCs at the times of maximum ETH. These

patterns are consistent with findings of Fan et al. (2009) who showed that high shear can

lead to decreases in precipitation enhancement by causing increased evaporation and

sublimation through entrainment effects on high PM2.5 DCCs. Additionally, Altaratz

et al. (2014) explained that environments of low CAPE can suppress the AIE and

precipitation intensity due to the lack of vertical velocity available to loft the increased

concentrations of hydrometeors further past the freezing level to allow for more efficient

cold-phase precipitation production. Additional subset figures that are similar to these

are shown in Appendix A.
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Figure 4.34: As in Figure 4.30 but for all NA LAND DCCs.

Subsets LAND-GULF, NA GULF LOW CAPE, and MED BLH, shown in Figures

4.39, 4.40, and 4.41, all show similar Z composite difference CFADs to subsets such as

NA LAND HIGH CAPE, in which increased size sorting strength, increased precipita-

tion intensity, and increased Z above the freezing level are more likely for high PM2.5

or land DCCs. However, the ZDR CFADs show that the dominance of higher ZDR

switches to favor low PM2.5 or Gulf DCCs above the freezing level and that there is

generally a lack of statistically significant differences in the ZDR-column region. This is

consistent with the high PM2.5 or land DCCs having less efficient riming and accretion,
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Figure 4.35: As in Figure 4.30 but for all NA LAND DCCs within the LOW CAPE
tercile.
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Figure 4.36: As in Figure 4.30 but for all NA LAND DCCs within the HIGH SH tercile.
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Figure 4.37: As in Figure 4.30 but for all NA LAND DCCs within the MED SH tercile.
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Figure 4.38: As in Figure 4.30 but for all NA LAND DCCs within the LOW DEW
tercile.
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even though the probability of increased transport of liquid mass past the freezing level

via the inhibition of warm rain should be larger. The exact microphyiscal mechanisms

behind why the high PM2.5 or land DCCs in these subsets exhibit higher likelihoods

of lower ZDR above the freezing while still exhibiting higher likelihoods of stronger

updrafts illustrated by the CFADs and MPS plots is not known. In-situ observations

within DCCs at these altitudes above the freezing level along with measurements of

background aerosol characteristics would be beneficial to conclude why riming and

accretion are not as efficient for high PM2.5 or land DCCs in these subsets.

Figure 4.39: As in Figure 4.30 but for all DCCs. Distinction is made between LAND
(red) and GULF (blue) DCCs.
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Figure 4.40: As in Figure 4.30 but for all NA GULF DCCs within the LOW CAPE
tercile.
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Figure 4.41: As in Figure 4.30 but for all NA GULF DCCs within the MED BLH
tercile.
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Figure 4.42b shows that there is a lack of a dominant DCC regime within the ZDR-

column region for the NA GULF HIGH RH subset. The ZDR-column region is shown

to have a relative difference no larger than 0.5% and thus is consistent with the high

PM2.5 DCCs not exhibiting more efficient riming and accretion processes, even if the

updrafts are more likely stronger from the observed signature stronger of size sorting

(Figure 4.42d). For the altitudes above the ZDR-column region the likelihood of ZDR

> 1 dB switches toward the low PM2.5 DCCs and is statistically significant all the way

to near 3 dB, meaning that the low PM2.5 DCCs are more likely to exhibit ice crystal

habits such as needles and columns that are horizontally oriented, which produce high

ZDR high above the freezing level (Giangrande et al., 2016; Hogan et al., 2002; Sinclair

et al., 2016). Meanwhile, ZDR < 1 dB is more likely in the high PM2.5 DCCs which

indicates larger likelihood of aggregated ice crystal habits due to their more random

aspect ratios and orientations. The mechanisms behind why these different ice crystal

habits occur more frequently depending on the PM2.5 mass concentration in this subset

is not immediately clear. A plausible cause is that the high ambient relative humid-

ity allows for more efficient columnar ice production at these altitudes for both DCC

aerosol regimes. However, the high PM2.5 DCCs are more likely to have ice crystals

aggregate together because their concentrations are higher from the typical AIE mech-

anism of increased amount of droplets transported above the freezing level, which can

lead to higher number concentrations of frozen hydrometeors (Rosenfeld et al., 2008).

Once aggregates form, they can exhibit higher mean aspect-ratios and thus lower ZDR

measurements (e.g., Andrić et al., 2013; Kennedy and Rutledge, 2011; Schrom et al.,

2015). It is important to note that this process may not be as frequent for the NA

LAND HIGH RH subset because the riming and accretion processes may be more ef-

ficient for high PM2.5 DCCs over land illustrated in Figure 4.43b. This figure shows

higher ZDR for high PM2.5 DCCs above the freezing level and is consistent with more
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efficient riming and accretion, causing a smaller number concentration of ice crystals

further above the freezing level if they grow to larger sizes and precipitate out, which

is likely given that high PM2.5 DCCs exhibit higher Z above the freezing level. In-

terestingly, the NA GULF HIGH BLH subset also shows a similar pattern to the NA

GULF HIGH RH subset, where low PM2.5 DCCs dominate very large values of ZDR far

above the freezing level (Figure 4.41b). The mechanisms behind why moderate BLH

would cause this is not known and would require further data from field campaigns.

Other subsets that present unclear patterns when uncovering likely processes that lead

to updraft invigoration through aerosol impacts are shown in Appendix B.

In summary, the subsets discussed here have all shown that high PM2.5, LAND,

and A DCCs exhibit patterns consistent with stronger size sorting than the low PM2.5,

GULF, or NA DCCs as noted in the Z and ZDR CFADs and the MPS plots. This

stronger size sorting is a signature of stronger vertical velocities in updrafts, and thus

is consistent with the action of the AIE ”invigorating” DCCs through the inhibition

of warm rain. Consistent signatures are also noted in MPS plots throughout these

subsets. However, differences have been seen and analyzed in both the intensity of

the precipitation and the efficiency of cold-phase precipitation processes depending on

meteorological conditions, with exact reasons and mechanisms for this not known.

4.2.2.1.2 Stronger size sorting for DCCs under low aerosol loading

A discussion regarding subsets of DCCs that exhibit lower precipitation intensity and

updraft strength when loaded under high PM2.5 mass concentration is presented next,

with Table 4.1 listing them and their respective sample sizes. It should be noted that

the sample sizes for these subsets can sometimes be quite low, with contributions of

not more than 22 DCCs included in the calculation of the CFADs for all but one
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Figure 4.42: As in Figure 4.30 but for all NA GULF DCCs within the HIGH RH tercile.

109



Figure 4.43: As in Figure 4.30 but for all NA LAND DCCs within the HIGH RH
tercile.
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subset. Therefore, results from this section should be interpreted with the caveat

that minimal data were collected under these conditions. Nonetheless, the composite

difference CFADs and MPS plots show a trend in that the high PM2.5 or A DCCs can

have signatures of weaker updraft strength and less precipitation compared to the low

PM2.5 or NA DCCs under certain meteorological conditions.

Figures 4.44 - 4.49 show the CFADs of Z and ZDR along with the MPS plots for

these subsets, which illustrate a decreased precipitation intensity for high PM2.5 or A

DCCs. All CFADs for these subsets show the opposite trend discussed in the section

above, namely that the low PM2.5 DCCs are more likely to have ZDR > 1 dB and a

Z distribution that is wider below the freezing level. This means that stronger size

sorting and more intense precipitation are more likely present for the low PM2.5 or NA

DCCs. The MPS plots for these subsets also show that size sorting is likely stronger

for the low PM2.5 or NA DCCs as either blue pixels dominate the size sorting quadrant

or they are distributed further away from the x-axis in the size sorting quadrant. The

latter means a larger positive ∆ZDR with a similar negative ∆Z and thus equates to

only the very largest drops being able overcome the vertical velocity of the stronger

updrafts in low PM2.5 DCCs. For every subset in this category, the DCCs were under

an anthropogenic aerosol regime and the meteorological variables for four of the subsets

promoted low or moderate ETHs, namely low MUCAPE, low RH, low V, and moderate

GH.

The larger probability of decreased precipitation intensity for the high PM2.5 or NA

DCCs is likely related to both the anthropogenic aerosol regimes and meteorological

influences. An anthropogenic aerosol regime most likely consists of very high CCN
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Figure 4.44: As in Figure 4.30 but for all GULF DCCs. Distinction is made between
A (red) and NA (blue) DCCs.
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Figure 4.45: As in Figure 4.30 but for all A LAND DCCs within the MED GH tercile.
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Figure 4.46: As in Figure 4.30 but for all A GULF DCCs.
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Figure 4.47: As in Figure 4.30 but for all A GULF DCCs within the LOW V tercile.
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Figure 4.48: As in Figure 4.30 but for all A GULF DCCs within the LOW CAPE
tercile.
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Figure 4.49: As in Figure 4.30 but for all A LAND DCCs within the LOW RH tercile.
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number concentrations and thus the high PM2.5 or A DCCs in these subsets are likely

to exhibit warm rain inhibition. This is evident throughout six of the subsets in this

section where almost all high PM2.5 DCCs exist near the x-axis in both the size sort-

ing and coalescence quadrants (Figures 4.45d, 4.46d, 4.47d, 4.48d, and 4.49d). This

means that the observations in high PM2.5 DCCs are consistent with more evaporation

or weaker coalescence than for the low PM2.5 DCCs within the warm region. This

increased probability of evaporation is consistent with weaker precipitation efficiency

from high CCN loading. Relatively weak updrafts that would occur in the meteorolog-

ical conditions of low MUCAPE, low RH, low V, and moderate GH limit the impact of

the increased CCN concentration, and instead precipitation intensity is weakened. This

relationship has been found in previous studies (e.g., Fan et al., 2009; Ilotoviz et al.,

2018; Khain et al., 2005) in which low free tropospheric relative humidity increases

evaporation rates of the supercooled liquid transported above the freezing level, thus

limiting the additional latent heat release typically caused by the AIE. These studies

also found that lower instability leads to weaker transport of the supercooled liquid

above the freezing level, decreasing riming efficiencies and subsequent precipitation en-

hancement and thus the results presented here may be caused by these mechanisms.

All of these processes are consistent with trends seen throughout the CFADs as Z is

more likely to be smaller above and below the freezing level for the high PM2.5 DCCs

(Figures 4.45a, 4.46a, 4.47a, 4.48a, and 4.49a). For the A GULF, A GULF LOW V,

and A LAND MED GH subsets, ZDR is also more likely to be smaller throughout the

depth of the CFAD for the high PM2.5 or A DCCs (Figures 4.46b, 4.47b, and 4.45b).

These signatures point to the weaker updraft and precipitation intensity as discussed

in section 4.2.2 with DCCs under high and low MUCAPE. However, the A-NA GULF

and A LAND LOW RH ZDR CFADs (Figures 4.44b and 4.49b) show that ZDR is likely

higher above the freezing level for the high PM2.5 DCCs. This is consistent with more
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frequent riming and accretion processes for the high PM2.5 or A DCCs, but with the

rates of these processes not being sufficient to invigorate the updrafts to overcome the

combined effects of the meteorological environment of low free tropospheric relative

humidity and high aerosol loading.

In summary, decreases in A DCC updraft strength and precipitation intensity are

consistent with increases in PM2.5 mass concentration when meteorological conditions

do not favor stronger updrafts. The decreases in updraft strength and precipitation

intensity may be caused by the combined effects of inefficient warm and cold rain

processes and weak meteorological conditions in high PM2.5 A DCCs.

4.2.2.2 Unclear microphysical impacts below the freezing level

4.2.2.2.1 A LAND DCCs

Table 4.1 lists the A LAND DCC subsets that do not show the expected below freezing

level signature such as the reduction of warm rain and stronger size sorting in the

CFADs. Typically, the figures for these subsets show that there are not statistically

significant differences in Z or ZDR below the freezing level, or MPS plots that do not

show a coherent pattern of size sorting dominance as sample sizes in these subsets are

low (< 23). Below is a discussion of subsets that have larger sample sizes than 23

DCCs and that show a trend within the warm region, even if statistical significance

has not been achieved at the 95% confidence level.

The A LAND subset has the largest sample size but is also the one in which meteo-

rological conditions are not accounted for. Above the freezing level, Figures 4.50a and

b show that ZDR is likely > 0 dB with Z either < 15 dBZ or 30 dBZ < Z < 40 dBZ

for high PM2.5 DCCs, consistent with a larger likelihood of aggregated ice crystals,

slightly wet hail, and graupel. Low PM2.5 DCCs are more likely to have ZDR < 0 and
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20 dBZ < Z < 30 dBZ, consistent with dry conical shaped graupel and dry aggregates

in lower concentrations. However in-situ observations would be needed to definitively

characterize hydrometeor shapes. At altitudes down to -3.5 km, the high PM2.5 DCCs

exhibit a narrower ZDR distribution between 0 – 1 dB where the low PM2.5 DCCs can

exhibit greater likelihoods of negative ZDR or ZDR > 1 dB. This is coupled with a

lack of dominant probabilities over any range of Z in this region and may be a result

of a balance in returned signal power between the assumed higher concentrations of

smaller drops in high PM2.5 DCCs and assumed lower concentrations of larger drops

in the low PM2.5 DCCs. Below -3.5 km, both the Z and ZDR patterns show that the

high PM2.5 DCCs are more likely to have ZDR > 3 dB and Z < 30 dBZ. This suggests

a larger likelihood of very large drops (D > 3 mm) in sparse concentrations whereas

the low PM2.5 DCCs have a larger likelihood of slightly smaller drops, near 1 – 3 mm

in diameter, in higher concentrations. However, these probabilities are small, no more

than 1% and again are not statistically significant, and thus show that overall precipi-

tation intensity is similar between the high and low PM2.5 DCCs when not accounting

for meteorological impacts.

The A LAND LOW DEW subset (Figure 4.51b) shows that ZDR for high PM2.5

DCCs are more likely to exhibit ZDR < 0 dB above the freezing level. This is consistent

with the low PM2.5 DCCs exhibiting more efficient riming and accretion processes that

create wet small hail, graupel, and ice crystals with updraft invigoration as discussed

for the subsets in section 4.2.2.1.2. Below the freezing level, the high PM2.5 DCCs are

also more likely to have smaller ZDR and 40 dBZ < Z < 50 dBZ. The MPS plot (Figure

4.51d) is consistent with coalescence being more likely for the high PM2.5 DCCs and

size sorting more likely for low PM2.5 DCCs but the pattern is not coherent. A similar

pattern in the A LAND LOW CAPE subset can be seen in Figure 4.52, except that
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Figure 4.50: As in Figure 4.30 but for all A LAND DCCs.
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there is no clear ZDR dominance above the freezing level. It seems then that under low

surface dew point or MUCAPE conditions, A DCCs over land exhibit slightly weaker

updrafts and precipitation intensity when anthropogenic mass concentration is high.

This is consistent with less efficient riming and accretion processes associated with the

higher CCN number concentrations, similar to results discussed in section 4.2.2.1.2,

but the differences are not robust.

4.2.2.2.2 NA GULF DCCs

Sample sizes are typically higher for NA GULF DCCs compared to those of the A

LAND DCCs discussed above. This allows for more robust interpretations of patterns

that are illustrated throughout the CFADs and MPS plots. However, many subsets

within this category still show unclear differences because the differences in Z and ZDR

below the freezing level are not statistically significant. This means that conclusions

like those reached for the subsets in sections 4.2.2.1.1 and 4.2.2.1.2 are not able to be

reached here. Instead, only differences where significance is achieved are analyzed.

The MPS plots for NA GULF DCCs under high and low BLH conditions are pre-

sented in Figures 4.53d and 4.54d and show a similar pattern between high and low

PM2.5 DCCs. High PM2.5 DCCs in the high and low BLH conditions exhibit a narrow

distribution of ∆ZDR with ∆Z being more variable. This means that the high PM2.5

DCCs exhibit signatures of evaporation and weak coalescence since the distribution lies

close to the x-axis. Low PM2.5 DCCs for both subsets exhibit higher likelihoods of size

sorting, meaning that their updrafts are likely stronger. While statistical significance

is not achieved in much of the CFADs for HIGH BLH in Figure 4.53, it is achieved in

the CFADs for the LOW BLH subset (Figures 4.54a and b). Interestingly, the CFADs

do not completely agree with the MPS plot since ZDR is likely larger for the high PM2.5
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Figure 4.51: As in Figure 4.30 but for all A LAND DCCs within the LOW DEW
tercile.
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Figure 4.52: As in Figure 4.30 but for all A LAND DCCs within the LOW CAPE
tercile.
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DCCs in addition to larger Z, at least above the freezing level. The CFADs thus point

to more efficient riming and accretion process for high PM2.5 DCCs but these processes

did not seem to invigorate the convection or change the precipitation intensity as Z is

not statistically different below the freezing level.

Figure 4.53: As in Figure 4.30 but for all NA GULF DCCs within the HIGH BLH
tercile.
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Figure 4.54: As in Figure 4.30 but for all NA GULF DCCs within the LOW BLH
tercile.

When controlling for RH conditions, there is one subset within this section for NA

GULF DCCs. Figure 4.55 shows the CFADs and MPS plot for the NA GULF LOW

RH subset. Similar to the subsets discussed in the paragraph above, the Z CFAD

lacks statistically different Z patterns below the freezing level but ZDR is larger for

all altitudes for high PM2.5 DCCs. This is consistent with an invigoration of DCCs,

but the MPS plot again disagrees as the high PM2.5 DCCs are closer to the x-axis

in both the size sorting and coalescence quadrants, meaning likely more evaporation

and weaker coalescence for these cases. This suggests that even if warm rain was
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inhibited from higher aerosol number concentration for high PM2.5 DCCs leading to

more efficient riming and accretion, it did not lead to stronger updrafts and more

intense precipitation when RH < 41%.

Figure 4.55: As in Figure 4.30 but for all NA GULF DCCs within the LOW RH tercile.

When controlling for D650, the MED D650 subset lacks statistically significant dif-

ferences in Z and ZDR above the freezing level (Figures 4.56a and b). Below the freezing

level, high PM2.5 DCCs typically exhibit ZDR > 1 dB and a wider Z distribution at

altitudes below -3.5 km. This is consistent with stronger updrafts with increased size

sorting and more intense precipitation. While this is somewhat shown in the MPS plot,

there are also indications of larger likelihoods of warm processes such as coalescence
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and breakup evident in Figure 4.56d. Since differences above the freezing level are not

clear in the CFADs, it is difficult to uncover why high PM2.5 DCCs can exhibit more

variable ∆Z and ∆ZDR. The HIGH and LOW D650 subsets show similar patterns

to each other in that both their CFADs and MPS plots show Z is less and ZDR is

greater for high PM2.5 DCCs (Figures 4.57 and 4.58). This is consistent with the high

PM2.5 DCCs having higher likelihoods of evaporation since the MPS plots show most

of the high PM2.5 DCCs close to the x-axis in the size sorting quadrant. Therefore, the

precipitation and updraft intensity do not seem to be enhanced for DCCs under high

aerosol loading when D650 is high or low.

Figure 4.56: As in Figure 4.30 but for all NA GULF DCCs within the MED D650
tercile.
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Figure 4.57: As in Figure 4.30 but for all NA GULF DCCs within the HIGH D650
tercile.
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Figure 4.58: As in Figure 4.30 but for all NA GULF DCCs within the LOW D650
tercile.

High and moderate MUCAPE conditions for NA GULF DCCs both lead to similar

Z CFAD differences evident in Figures 4.59 and 4.60a. These differences consist of

Z being greater for the low PM2.5 DCCs across all altitudes. Under high MUCAPE

conditions, Figure 4.59d shows an interesting pattern in the warm region microphysics

for the high and low PM2.5 DCCs. High PM2.5 DCCs exhibit a more variable ∆ZDR in

the size sorting quadrant, consistent with more drop evaporation for DCCs close to the

x-axis or stronger size sorting when ∆ZDR > 0.5 dB/km. This large variability in the

strength of the high PM2.5 DCCs masks the expected trends of an inhibited warm rain
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signature that are usually seen in the composite difference CFADs. Instead, weaker

high PM2.5 DCCs that are closer to the evaporation regime in Figure 4.59d shift the

ZDR distribution below the freezing level toward smaller values, leaving the low PM2.5

DCCs to exhibit slightly higher probabilities of ZDR > 2 dB, although not statistically

significant. The same is seen in Figure 4.59a in which the weaker high PM2.5 DCCs

shift the distribution of Z towards smaller values, leaving Z > 40 dBZ to be more

likely from low PM2.5 DCCs. The shift in these distributions can be seen in Figure

4.61, which has the composite difference CFADs of the high and low PM2.5 DCCs after

removing high PM2.5 DCCs that have ∆ZDR < 0.5 dB/km. Z below the freezing level

is higher than 40 - 45 dBZ for the high PM2.5 DCCs while the region of ZDR > 0.5 dB

lacks a dominant DCC regime that is significant, but shows that high PM2.5 DCCs do

have higher probabilities of larger ZDR. This pattern begins to show a more typical

invigoration by higher aerosol loading as seen in section 4.2.2.1.1. High PM2.5 NA

DCCs over the Gulf in environments with MUCAPE > 2500 J/kg can thus exhibit

higher variability in their updraft strength and precipitation intensity whereas the low

PM2.5 DCCs are more consistent in their precipitation intensity and updraft strength.

Under moderate MUCAPE conditions, higher PM2.5 mass concentration seems to be

a detriment to updraft strength and precipitation as Figures 4.60b and d both show

that ZDR is likely smaller and weaker size sorting/evaporation is more likely for high

PM2.5 DCCs.
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Figure 4.59: As in Figure 4.30 but for all NA GULF DCCs within the HIGH CAPE
tercile.
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Figure 4.60: As in Figure 4.30 but for all NA GULF DCCs within the MED CAPE
tercile.
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Figure 4.61: As in Figure 4.30 but for all NA GULF DCCs within the HIGH CAPE
tercile and constraining high PM2.5 DCCs to have ∆ZDR > 0.5 dB/km.

Lastly, when controlling for V all Z CFADs do not show large regions of statisti-

cally significant differences below the freezing level (Figures 4.62a, 4.63a, and 4.64a).

Additionally, only the HIGH V subset shows significant differences in ZDR below the

freezing level and indicates that ZDR is likely > 1 dB for high PM2.5 DCCs (Figure

4.62b). Above the freezing level, Figure 4.62a does show that Z is also significantly

higher for the high PM2.5 DCCs in the HIGH V subset and that ZDR is more likely to

be 0 < ZDR < 1 dB whereas the low PM2.5 DCCs are more likely to have 1 < ZDR

< 3.5 dB above the ZDR-column region. This is consistent with patterns discussed in
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section 4.2.2.1.1 for the NA GULF HIGH RH subset in which ice crystal habits may be

different between high and low PM2.5 DCCs based upon riming and accretion efficien-

cies within the ZDR-column region. The MED and LOW V subsets show an opposite

trend in ZDR above the freezing level compared to each other. Under moderate (low)

V conditions, ZDR is likely to be > 0.25 dB for the low (high) PM2.5 DCCs. This is

consistent with increased efficiency of riming and accretion processes occurring for low

(high) PM2.5 DCCs. Interestingly, these patterns are not what is typically expected

for the low V conditions, as low V can mean higher shear magnitudes as discussed in

section 4.2.1 and thus cause aerosol effects to typically hinder convective invigoration.

Figure 4.62: As in Figure 4.30 but for all NA GULF DCCs within the HIGH V tercile.
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Figure 4.63: As in Figure 4.30 but for all NA GULF DCCs within the MED V tercile.
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Figure 4.64: As in Figure 4.30 but for all NA GULF DCCs within the LOW V tercile.

4.2.2.2.3 NA LAND DCCs

The NA LAND MED GH and MED CAPE subsets exhibit similar patterns in their Z

CFADs (Figures 4.65a and 4.66a), where Z for high PM2.5 DCCs exhibits a narrower

distribution compared to low PM2.5 DCCs. However, the region marked by Z > 35 dBZ

is statistically higher for low PM2.5 DCCs only in the MED CAPE subset. Meanwhile,

the ZDR CFADs lack statistically significant differences above the freezing level for both

subsets but exhibit significant differences below the freezing level (Figures 4.65b and

4.66b). In particular high (low) PM2.5 DCCs are more likely to have ZDR > 1 dB under
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moderate GH (MUCAPE) conditions. Given the lack of statistical significance above

the freezing level in ZDR, it is difficult to asses the differences in the microphysical

regimes that are consistent with the AIE theory.

Figure 4.65: As in Figure 4.30 but for all NA LAND DCCs within the MED GH tercile.
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Figure 4.66: As in Figure 4.30 but for all NA LAND DCCs within the MED CAPE
tercile.

Lastly, when controlling for DEW, the ZDR CFADs show a similar pattern above the

freezing level for high and moderate DEW (Figures 4.67b and 4.68b) where high PM2.5

DCCs are more likely to have ZDR > 0.25 dB, meaning that riming and accretion

may be more prevalent. However, the HIGH DEW subset shows an overall lack of

statistically significant differences of Z throughout most of the altitudes in the CFAD

(Figure 4.67a) while the MED DEW shows significant likelihoods that Z is larger for

high PM2.5 DCCs (Figure 4.68a). In addition, significant differences in ZDR below the

freezing level only occur for the MED DEW subset and show that ZDR is likely higher
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for high PM2.5 DCCs (Figure 4.68b). The lack of differences seen throughout most of

the CFAD regions in the HIGH DEW subset suggests that the effects of high surface

moisture over land dominate the impact on vertical radar data profiles rather than

the PM2.5 mass concentration. The only factor that does seem to be affected by the

PM2.5 mass concentration is ZDR above the freezing level, which is consistent with the

increased riming and accretion efficiencies that should occur from the AIE theory. The

differences seen in the MED DEW subset CFADs and MPS plots are also consistent

with slightly higher probabilities of invigoration of the high PM2.5 DCCs’ updrafts, but

do not necessarily lead to an increase in the precipitation intensity since Z > 35 dBZ

is not statistically different.
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Figure 4.67: As in Figure 4.30 but for all NA LAND DCCs within the HIGH DEW
tercile.
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Figure 4.68: As in Figure 4.30 but for all NA LAND DCCs within the MED DEW
tercile.

In summary, this section has explored differences in the vertical distributions of

Z and ZDR for subsets that do not show large statistically significant differences in

their radar profiles and thus are difficult to classify when analyzing aerosol effects. In

total, the subsets within this category can be under either of the the aerosol regimes,

either of the geographic regimes, and many different meteorological conditions. Over-

all, they point to the need of more robust in-situ and remote sensing measurements

of microphyiscal processes under differing meteorological conditions as well as model
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simulations to understand different processes that need to be evaluated against obser-

vational data. Further, an even larger statistical study is needed to get more statistical

significance in determining how the meteorological, geographic, and aerosol regimes

influence the AIE.
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Chapter 5

Summary, Conclusions, & Future Work

5.1 Summary

This study constructed a bulk statistical framework using dual-polarization radar

data from KHGX, model reanalysis data from the ERA5, and aerosol data from the

MERRA-2 to uncover effects of aerosol loading on DCCs within the Houston area.

First, this study used the dataset to identify spatio-temporal locations of DCC oc-

currence around the Houston area, while characterizing DCCs based on a natural or

anthropogenic regime. Important findings from the spatial analysis include a depen-

dence of DCC aerosol regime based upon three main factors, surface sea-breeze flow

characteristics, time of day, and location relative to large human populated areas such

as Houston and Beaumont. Second, composite difference CFADs of Z and ZDR were

used to uncover mean differences in the vertical radar profiles of DCCs under differing

aerosol loadings while constraining DCCs to similar meteorological conditions. For

DCCs under similar MUCAPE, SH, or RH conditions, CFADs of Z and ZDR show a

wider distribution of Z and larger ZDR below and above the freezing level for DCCs

under high PM2.5 conditions compared to low PM2.5 DCCs. These differences are con-

sistent with signatures of stronger size sorting and more intense precipitation for high

PM2.5 DCCs, leading to inferred aerosol induced invigoration which agree well with

much of the previous work. Below, more detailed conclusions are drawn out for the

vertical radar profile and spatial analyses.
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5.2 Conclusions

5.2.1 Meteorological mediation of aerosol effects

5.2.1.1 Most-unstable CAPE

NA DCCs with high PM2.5 mass concentration under low MUCAPE conditions over

the Gulf exhibit differences in Z and ZDR that are consistent with an invigoration

of convection through the inhibition of warm rain. The updrafts and precipitation

within these DCCs were shown to have higher probability of being more intense (Figure

4.40). However, as MUCAPE increases, the magnitude of the differences of radar data

between high and low NA PM2.5 DCCs over the Gulf wane, especially below the freezing

level (Figures 4.59 and 4.60). Therefore, MUCAPE mediates the AIE for DCCs over

the Gulf by decreasing the magnitude of aerosol effects with increasing MUCAPE.

Low and high MUCAPE regimes yield differences between high and low NA PM2.5

DCCs over land in Z and ZDR that are consistent with aerosol invigoration. Under

both MUCAPE regimes, Figures 4.35 and 4.30 show that updrafts are more likely to

be stronger for high PM2.5 DCCs. However, only under high MUCAPE conditions do

high PM2.5 DCCs exhibit more intense precipitation than low PM2.5 DCCs with this

updraft invigoration, while under low MUCAPE conditions high PM2.5 DCCs do not

exhibit more intense precipitation than low PM2.5 DCCs. Moderate MUCAPE leads

to small differences in ZDR and higher Z for low PM2.5 DCCs compared to high PM2.5

DCCs, consistent with the inhibition of updrafts and precipitation within high PM2.5

DCCs (Figure 4.66).

The sample size is limited for A DCCs over the Gulf, and thus much of CFADs do

not achieve statistical significance. The only region that does in the low MUCAPE

subset is ZDR below the freezing level and indicates that low PM2.5 DCCs are more
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likely to have larger drops than high PM2.5 DCCs (Figure 4.48). For A DCCs over

land, the low MUCAPE regime shows unclear differences between high and low PM2.5

DCCs due to inconsistent patterns seen in the CFADs and MPS plot. Namely, that

the MPS plot indicates stronger size sorting for high PM2.5 DCCs even though they are

more likely to have lower ZDR than low PM2.5 DCCs below the freezing level (Figure

4.52).

5.2.1.2 550 - 400 mb relative humidity

High and low NA PM2.5 DCCs under low RH conditions over the Gulf exhibit differ-

ences in Z and ZDR that result in unclear patterns of hydrometeor production, and

thus aerosol effects cannot be quantified (Figure 4.55). Under moderate and high RH

conditions, the statistically significant differences in Z and ZDR between high and low

PM2.5 DCCs show a pattern that is consistent with aerosol invigoration (Figures A.7

and 4.42). However, the CFADs are consistent with different processes dominating

hydrometeor production for high PM2.5 DCCs, as the differences in Z everywhere and

ZDR above the freezing level show opposite patterns in the dominant PM2.5 regime

depending on moderate or high RH. In other words, moderate RH conditions promote

higher ZDR and narrower Z distributions for high PM2.5 DCCs, where high RH condi-

tions promote this pattern for low PM2.5 DCCs. This points to the importance of RH

when analyzing the AIE for Gulf DCCs.

Over land, high and low NA PM2.5 DCCs across all three RH regimes have statis-

tically significant differences in their Z and ZDR profiles that exemplify patterns that

are consistent with aerosol invigoration for high NA PM2.5 DCCs. These patterns are

consistent with a delaying of warm rain causing formation of rain at higher altitudes,

stronger updrafts causing stronger size sorting, and increases in ZDR above the freezing
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level that are consistent with increased amounts of riming and accretion (Figures A.1,

A.10, and 4.43). This supports aerosol invigoration of NA DCCs.

High and low A PM2.5 DCCs over land under the low RH conditions exhibit in-

significant differences in their Z and ZDR CFADs due to the small number of DCCs

in the subset. Thus, an incoherent pattern is also seen in the MPS plot (Figures 4.49)

and aerosol impacts cannot be deduced.

5.2.1.3 400 mb shear magnitude

High and low NA PM2.5 DCCs over land across all three SH regimes have statistically

significant differences in their Z and ZDR profiles that exemplify patterns that are

consistent with updraft invigoration for high NA PM2.5 DCCs (Figures 4.31, 4.37, and

4.36). Additionally, more intense precipitation is observed for the high PM2.5 DCCs

compared to low PM2.5 DCCs for DCCs in the low and moderate SH regimes, but not

the high SH regime, consistent with findings by Fan et al. (2009). Therefore, SH mainly

moderates aerosol effects on DCCs by decreasing precipitation intensity for high PM2.5

DCCs compared to low PM2.5 DCCs with increasing SH.

5.2.1.4 650 mb divergence

NA DCCs under the moderate D650 regime over the Gulf show that there are only

minimal areas of significant differences in the Z CFAD between high and low PM2.5

DCCs (Figure 4.56a). Figure 4.56b also shows that there are larger likelihoods of higher

ZDR below the freezing level for high PM2.5 DCCs compared to low PM2.5 DCCs, but

this does not equate to a clear pattern of stronger precipitation intensity as the MPS

plot shows highly variable ∆Z/∆ZDR pairs (Figure 4.56d). Thus, aerosol effects are

difficult to quantify in this subset.
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5.2.1.5 Boundary layer height

Low BLH conditions for NA DCCs over the Gulf do not promote differences in Z and

ZDR between high and low PM2.5 DCCs that are consistent with updraft invigoration.

While Figure 4.54b shows higher ZDR for high PM2.5 DCCs compared to low PM2.5

DCCs, this does not mean stronger updrafts or precipitation intensity as noted in the

MPS plot (Figure 4.54d). Instead, precipitation intensity is lower for high PM2.5 DCCs

compared to low PM2.5 DCCs under low BLH conditions. Moderate BLH conditions

promote differences in Z and ZDR between high and low PM2.5 DCCs that show a

clearer pattern consistent with updraft invigoration and increases in precipitation in-

tensity (Figure 4.41). However, there is still higher probability that low PM2.5 DCCs

exhibit high ZDR above the freezing level compared to high PM2.5 DCCs and may

be a result of different ice crystal habits. High BLH conditions promote no coherent

differences between high and low PM2.5 DCCs which may be the result of a small num-

ber of DCCs sampled under such conditions (Figure 4.53). Therefore, only moderate

BLH conditions promote aerosol invigoration, while low and high BLH conditions yield

unclear aerosol impacts.

5.2.1.6 400 mb v-wind

High and low NA PM2.5 DCCs over the Gulf exhibit differences in Z and ZDR that do

not show a clear pattern consistent with aerosol invigoration under all three of the V

regimes. However, Figures 4.64b and 4.63b show significant differences in ZDR between

high and low PM2.5 DCCs above the freezing level for the low and moderate V subsets.

Low V promotes higher ZDR above the freezing level for high PM2.5 DCCs compared to

low PM2.5 DCCs while moderate V promotes higher ZDR for low PM2.5 DCCs compared

to high PM2.5 DCCs. This is somewhat consistent with Fan et al. (2009)’s findings of

stronger shear (recall, V and SH are significantly correlated and discussed in section
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4.2.1.1) decreasing aerosol invigoration due to entrainment effects which would lead to

decreased riming and accretion efficiency and hence lower ZDR values for high PM2.5

DCCs compared to low PM2.5 DCCs above the freezing level. This trend however is

not seen clearly in the high V ZDR CFAD (Figure 4.62b). Instead, the high V regime

promotes higher ZDR for high PM2.5 DCCs compared to low PM2.5 DCCs below the

freezing level, but this does not mean stronger updrafts or larger precipitation intensity

as seen in the MPS plot (Figure 4.62d).

5.2.1.7 650 - 550 mb geopotential height

High and low PM2.5 NA DCCs over the land exhibit significant differences in Z and

ZDR that are consistent with updraft invigoration under low and high GH conditions

(Figures 4.32 and A.5). However, high PM2.5 DCCs only exhibit increases in precip-

itation intensity compared to low PM2.5 DCCs under low GH conditions. Moderate

GH conditions lead to small differences in ZDR above the freezing level (Figure 4.65b)

as well as unclear patterns the MPS plot (Figure 4.65d) between high and low PM2.5

DCCs. These observations are consistent with low GH conditions promoting aerosol

invigoration of updrafts and precipitation intensity, high GH conditions promoting

only invigoration of updrafts at the time of maximum ETH, and unclear effects on the

processes for moderate GH conditions.

High PM2.5 A DCCs over the land exhibit a decrease in precipitation intensity

compared to low PM2.5 DCCs for moderate GH conditions. This is evident in Figure

4.45 where ZDR is likely larger for low PM2.5 DCCs below the freezing level and the

MPS plot shows that the high PM2.5 DCCs are likely to exhibit evaporation within the

warm region.
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5.2.1.8 Surface temperature

High and low PM2.5 NA DCCs over the land exhibit significant differences in Z and

ZDR that are consistent with updraft invigoration for all three regimes of T (Figures

A.4, A.3, and A.2). However, none of these subsets show a corresponding increase in

precipitation intensity evident in the Z CFADs. This means that T does not strongly

mediate aerosol effects on updraft and precipitation intensity for NA DCCs, since all

subsets show similar results.

While the sample size is low, differences illustrated Z and ZDR between high and low

A PM2.5 DCCs over land are consistent with updraft invigoration when T conditions

are high, as noted by the ZDR CFAD and MPS plot (Figures A.8b and A.8d).

5.2.1.9 500 mb divergence

Much like for T, high PM2.5 NA DCCs over the land exhibit an increase in updraft

strength compared to low PM2.5 NA DCCs for all three regimes of D500 while pre-

cipitation intensity is not enhanced (Figures A.6, 4.33, and A.11). The magnitude of

the differences in the Z and ZDR CFADs for high and low PM2.5 DCCs do wane with

increasing D500, consistent with positive D500 generally minimizing aerosol effects on

the vertical radar structure while stronger aerosol effects on the vertical radar profile,

especially for ZDR, are present for negative D500.

5.2.1.10 Surface dew point

A DCCs over land under low DEW conditions show differences in Z and ZDR between

high and low PM2.5 DCCs that are consistent with an unclear pattern of aerosol effects,

evident in the MPS plot (Figure 4.51d). However, the low PM2.5 DCCs do exhibit

higher ZDR below the freezing level compared to high PM2.5 DCCs, meaning that
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precipitation intensity may be somewhat decreased for the high PM2.5 DCCs under

low DEW conditions.

5.2.2 Aerosol effects

Below, conclusions that can be drawn from the subsets that do not account for meteo-

rological conditions are presented. Sample sizes are much larger for these subsets, but

the important influences of meteorology are not accounted for, and the results should

thus be interpreted with caution.

5.2.2.1 High vs. low PM2.5

For NA DCCs over the Gulf and land, differences in Z and ZDR between high and low

PM2.5 DCCs that are consistent with updraft invigoration are seen in Figures 4.34 and

A.9. For both geographical regimes, the high PM2.5 DCCs exhibit ZDR that is higher

throughout the vertical depth of the CFAD, dominance in the size sorting quadrant,

and higher Z above the freezing level compared to low PM2.5 DCCs. However, Figures

4.50 and 4.46 show that A DCCs have a nearly opposite pattern, where in general the

low PM2.5 DCCs exhibit higher or minimal differences in ZDR throughout the vertical

depth of the CFAD, dominance in the size sorting quadrant, and Z that is larger above

the freezing level or a Z distribution that is wider below the freezing level compared

high PM2.5 DCCs. These results suggest that high NA PM2.5 mass concentration

can invigorate updrafts across both geographical regimes, while high A PM2.5 mass

concentration can inhibit updrafts and their precipitation.

5.2.2.2 NA vs. A

When comparing differences of the NA and A DCCs across the Gulf and land, the

patterns in the CFADs and MPS plots shown in Figures A.12 and 4.44 are nearly
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opposite based on aerosol regime (NA or A). This means that NA (A) DCCs over

the Gulf (land) exhibit stronger updrafts consistent with higher Z and ZDR below the

freezing level and dominance in the size sorting quadrant of the MPS plot compared to

A (NA) DCCs. However, the ZDR CFADs show that ZDR is higher for A (NA) DCCs

over the Gulf (land) (Figures A.12b and 4.44b). This is consistent with condensational

invigoration within the warm region being more prominent in NA (A) DCCs over the

Gulf (land) than mixed-phase invigoration within the cold region, which was previously

seen in the model simulations of Cotton and Walko (2021).

5.2.3 Spatio-temporal conclusions

The spatial analysis presented in section 4.1 showed that there are key factors that de-

termine the likelihood of DCCs occurring in different areas, times, and aerosol regimes

around Houston. The most important factor is the diurnal cycle, with increased prob-

ability of DCCs occurring within the early morning hours and peaking in occurrence

near 18 – 20 UTC (1 – 3 PM local time) (Figure 4.3). The diurnal cycle dictates

the onset and dissipation times of the sea breeze, which are noted in Figure 4.4a as

approximately 12 -14 UTC (7 – 9 AM) and 1 UTC (8 PM) on average, respectively.

Between the hours of 8 PM – 9 AM, DCCs were found to be under mostly southerly

flow, with NA (A) DCCs more likely to exhibit flow > (<) 7 m/s (Figure 4.5). This

stronger flow should lead to stronger sea-salt aerosol advection from the Gulf, meaning

the DCCs are more likely to be classified within an NA air mass. When flow is weak and

thus sea-salt aerosols are not prominent, A DCCs may be more prevalent east of 95°W

over the Gulf and land due to shipping emissions. After sea breeze onset, NA and A

DCC occurrence is heavily dependent upon the strength and direction of the on-shore

flow. It was found that if the flow is weak and/or easterly, then A DCCs were more

likely to occur near heavily populated cities such as Houston and Beaumont. If the
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flow is stronger and southerly, then NA DCCs were likely to form in all areas south of

Houston (Figure 4.17). Finally, DCC lifetime exhibited no significant correlation with

PM2.5 mass concentration, no matter the type of aerosol (NA or A) or meteorological

influence.

5.3 Limitations, recommendations, & future work

The differences and conclusions reached for DCC subsets presented in chapter 4 are only

valid for comparing numerous DCCs. For example, differences in the vertical structure

of Z and ZDR that were uncovered under differing aerosol regimes most likely will not

be found if comparing just two individual DCCs using an NEXRAD WSR-88D, due to

both resolution of the 88D and subtle differences in meteorology that are impossible

to completely account for. Thus the AIE influences on the radar structure are only

valid in a mean sense when comparing numerous DCCs under similar meteorological

environments. Further, only differences in cloud properties, and not processes, can be

obtained from observations such as those within this study. Modeling studies that turn

on and off various aerosol processes are needed to understand reasons for the observed

differences.

There are some limitations for uncovering aerosol effects on DCCs in this study that

lead to some uncertainties, namely the coarse resolution of data, parameterizations of

MERRA-2, ERA5’s inability to resolve interactions of DCCs with one another, and the

dependency of the results on the sensitivity of MCIT. To mitigate these uncertainties,

future work should compare use of a ZDR-column algorithm with the current ETH

method to gain further insights into how aerosol loading changes temporal evolution

of ZDR-column heights in DCCs. The coarse resolution of the meteorological and

aerosol data could be dealt with by including further data, such as the use of the
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North American Regional Reanalysis (NARR), which has data available similar to

ERA5 to compare results, and the inclusion of a second aerosol dataset consisting of

satellite-retrieved CCN number concentration estimates (e.g., Hu et al., 2019a). These

estimates would also greatly improve the uncertainty caused by the parameterizations

of MERRA-2’s PM2.5 representation. With the two aerosol datasets, much work could

be done in validating MERRA-2’s ability to estimate periods of high CCN loading

and compare results of this study when using satellite-retrieved estimates. Finally, the

dependency of the results to the MCIT algorithm parameters could be quantified by

using sensitivity tests that change the MCIT thresholds such as minimum valley depth,

minimum cell size, and minimum cell depth which would allow for easier temporal

analysis of DCC evolution and the AIE.

The Experiment of Sea Breeze Convection, Aerosols, Precipitation, and Environ-

ment (ESCAPE) field campaign was conducted from May 30 to June 30, 2022 within

the southeast Texas and southwestern Louisiana regions. The goals of this campaign

consisted of characterizing DCC kinematic and microphysical vertical profiles using

rapid-scan, dual-polarization weather radars, quantifying meteorological and aerosol

impacts on DCCs, and modeling the roles of aerosols and meteorological environments

on DCCs. An integral part of ESCAPE was to quantify aerosol effects on DCCs in

Houston under similar meteorological conditions using in-situ and remote sensing mea-

surements, which is precisely what this current study examined using a bulk statistical

framework. In ESCAPE, utilization of the PX-1000, RaXPol, and SKYLER ground-

based mobile radars along with numerous airborne radars allowed for high resolution

dual-polarization radar data collection of DCCs in both the vertical and horizontal

planes. Coincident in-situ measurements using cloud microphysical probes aboard the

National Research Council Canada Convair-580 and the SPEC LearJet-35A were also

taken within DCCs. The data obtained throughout this campaign could easily be
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appended to a study such as this in which specific case studies from ESCAPE can

be analyzed and compared with bulk statistical properties found within this study to

verify or conflict with the conclusions reached.
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Andrić, J., M. R. Kumjian, D. S. Zrnić, J. M. Straka, and V. M. Melnikov, 2013:
Polarimetric signatures above the melting layer in winter storms: An observational
and modeling study. Journal of Applied Meteorology and Climatology, 52 (3), 682–
700.

Arritt, R. W., 1993: Effects of the large-scale flow on characteristic features of the sea
breeze. Journal of Applied Meteorology and Climatology, 32 (1), 116–125.

156



Balakrishnan, N., and D. Zrnic, 1990: Use of polarization to characterize precipitation
and discriminate large hail. Journal of Atmospheric sciences, 47 (13), 1525–1540.

Bao, J.-W., S. Michelson, S. McKeen, and G. Grell, 2005: Meteorological evaluation of
a weather-chemistry forecasting model using observations from the texas aqs 2000
field experiment. Journal of Geophysical Research: Atmospheres, 110 (D21).

Bauer, H., H. Giebl, R. Hitzenberger, A. Kasper-Giebl, G. Reischl, F. Zibuschka, and
H. Puxbaum, 2003: Airborne bacteria as cloud condensation nuclei. Journal of Geo-
physical Research: Atmospheres, 108 (D21).

Bechtold, P., J.-P. Pinty, and F. Mascart, 1991: A numerical investigation of the influ-
ence of large-scale winds on sea-breeze-and inland-breeze-type circulations. Journal
of Applied Meteorology and Climatology, 30 (9), 1268–1279.

Bell, T. L., D. Rosenfeld, K.-M. Kim, J.-M. Yoo, M.-I. Lee, and M. Hahnenberger,
2008: Midweek increase in us summer rain and storm heights suggests air pollution
invigorates rainstorms. Journal of Geophysical Research: Atmospheres, 113 (D2).

Blair, W. F., 1950: Ecological factors in speciation of peromyscus. Evolution, 253–275.

Boer, G., G. Flato, and D. Ramsden, 2000: A transient climate change simulation with
greenhouse gas and aerosol forcing: projected climate to the twenty-first century.
Climate dynamics, 16 (6), 427–450.

Boucher, O., and J. Quaas, 2013: Water vapour affects both rain and aerosol optical
depth. Nature Geoscience, 6 (1), 4–5.

Bozlaker, A., J. M. Prospero, M. P. Fraser, and S. Chellam, 2013: Quantifying the
contribution of long-range saharan dust transport on particulate matter concentra-
tions in houston, texas, using detailed elemental analysis. Environmental science &
technology, 47 (18), 10 179–10 187.

Bringi, V., K. Knupp, A. Detwiler, L. Liu, I. Caylor, and R. Black, 1997: Evolution
of a florida thunderstorm during the convection and precipitation/electrification ex-
periment: The case of 9 august 1991. Monthly weather review, 125 (9), 2131–2160.

Byers, H. R., and H. R. Rodebush, 1948: Causes of thunderstorms of the florida
peninsula. Journal of Atmospheric Sciences, 5 (6), 275–280.

Cao, Q., M. Knight, J. Hu, A. Ryzhkov, and P. Zhang, 2021: A novel multi-cell
identification and tracking algorithm implemented on eec radars. 101st American
Meteorological Society Annual Meeting, AMS.
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Figure A.1: As in Figure 4.30 but for all NA LAND DCCs within the LOW RH tercile.
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Figure A.2: As in Figure 4.30 but for all NA LAND DCCs within the HIGH T tercile.
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Figure A.3: As in Figure 4.30 but for all NA LAND DCCs within the MED T tercile.
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Figure A.4: As in Figure 4.30 but for all NA LAND DCCs within the LOW T tercile.
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Figure A.5: As in Figure 4.30 but for all NA LAND DCCs within the HIGH GH tercile.
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Figure A.6: As in Figure 4.30 but for all NA LAND DCCs within the LOW D500
tercile.
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Figure A.7: As in Figure 4.30 but for all NA GULF DCCs within the MED RH tercile.
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Figure A.8: As in Figure 4.30 but for all A LAND DCCs within the HIGH T tercile.
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2 Appendix B
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Figure A.9: As in Figure 4.30 but for all NA GULF DCCs.
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Figure A.10: As in Figure 4.30 but for all NA LAND DCCs within the MED RH
tercile.

182



Figure A.11: As in Figure 4.30 but for all NA LAND DCCs within the HIGH D500
tercile.
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Figure A.12: As in Figure 4.30 but for all LAND DCCs. Distinction is made between
A (red) and NA (blue) DCCs.
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