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1 Project Description - Remington and Justin

Research available technologies and design a hardware, software product that enables a host
computer to drive a synchro receiver, a gauge or needle in a plane cockpit using a synchro
transmitter that is controlled over an ethernet protocol. This is to help military pilots get a
more realistic feel in a simulated aircraft when they turn a dial or knob. We need the host
computer to be able to transfer/receive through a RJ45 Ethernet Cable. The transferred
information will be to tell the receiver Synchro to turn a dial or a knob to an accurate told
position. The receiving information will be to tell the host computer that the receiver Syn-
chro has turned to the correct position. Shown in the figure below is the full system, and
everything in the blue box is what we are developing, the Transceiver Synchro.

Figure 1: Everything in the blue box is what is being developed with a Beaglebone Black
(Host PC) and hardware found to mimic a Transceiver Synchro.

CymStar wants us to be able to make two to four devices with the budget they gave us
($2000). All the research we did for available on the market Synchros we found that the
prices range from $2,500-$5,000 dollars. So our personal objective is to be able to make four
devices with the budget and have left over money in the end.

The system should be:

• Reliable, less than 10 pounds, and be no more than the size as a power brick (10*5*3
inches)

• Cheap and easy to produce

• Able to work for years even after software or firmware updates happen with no issues
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2 Team Structure - All

Each member worked within their assigned tasks.

2.1 Technical Contributions

2.1.1 Christian Moser

Christian worked on Software Planning, GAANT Planning, UX Development, Software De-
velopment, Firmware Development, Networking Configuration

2.1.2 Dylan Gore

Dylan worked on Hardware Planning, Hardware Schematic Design and Testing, PCB Layout
and Routing, Researching Designs, and Testing Synchros.

2.1.3 Remington Ward

Remington worked on Software Planning, SPI Pin Configurations, SPI Code Architect, Re-
searched shifting signals with an RC circuit, Testing Synchros and recording produced sig-
nals.

2.1.4 Justin Brown

Justin worked on Hardware Block Diagram, PCB routing, Meet the team, Gantt Chart, Risk
Management.
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3 Ethical & Professional Considerations - Christian

3.1 Environmental Constraints

If incorrectly built, an electrical shock could cause health concerns. The device if built wrong
or handled wrong could shock if not powered/unplugged correctly and if the wires are too
thin they could overheat from too much current and melt the shielding causing a fire. The
device will use electricity resources to be able to function and run.

3.2 Performance Constraints

If the device is built wrong it will make the simulations not as realistic resulting in bad
training for the pilot and putting his/her life more at risk due to the device not being a 1/1
from simulation to reality.

3.3 Regulations

• IPC-2221 - Circuit Board Design Standard

• IEEE/ISO/IEC 26514-2021 - Software Development

• ISO 29.020 - Electrical Safety MIL-HDBK-225A - Military standard for synchros

3.4 Industry Standards

• IEEE 802.3 - Ethernet Cable Protocol: RJ45 Standard

• IEEE Code of Ethics

• IEEE 295-1969 - Power Transformer Standard

• IPC-2221 - Circuit Board Design Standard

• IEEE/ISO/IEC 26514-2021 - Software Development
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4 Design Constraints - Remington

• $2000 budget for 2 - 4 identical devices

• Device must work with 26V and 400Hz

• Device must be about the size of a power brick (2U Height Maximum).

• Weight: 10 pounds or less

• Dimensions: 10 * 5 * 3 inches or less

• The device should be able to input ethernet packets from Host computer and output
the electrical signals to drive the Synchro Receiver.

• The user should be able to input a position to drive the Synchro and the ethernet
packets should be sent to the Synchro device.
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5 Hardware Implementation - Dylan and Justin

5.1 Design

5.1.1 Overview

Since we’re only needing to receive data over the Ethernet protocol and act in place of a
transmitter synchro, we’re able to use a simple cape PCB on top of an Arduino Uno Rev3.
The Arduino does not have an Ethernet port, but it has enough pins for digital pins, serial
communication and power. By using the Arduino we’re able to use the built in libraries
to handle the RJ45 protocol. The Ethernet data can then be decoded to extrapolate the
desired synchro angle, then SPI control signals can modulate our PCB cape to output the
correct signals.

The first issue we came across when designing the circuit was the power constraint. While
the synchro’s in this application will pull low currents, the sine voltage peak required will be
over 30V. To handle this we decided to use an external power supply that can supply high
voltage, rail to rail op-amps with +/-40V to source the high voltage required by the synchros.

The next issue we came across is the requirement for the output voltage amplitudes to
vary from 0V to the required 11.8Vrms. Each output will be phase aligned with each other
and the rotor but the amplitudes will vary according to the desired angle. The equations
that dictate these amplitudes will be listed below.

VS1 = 16.68755 cos(θ) · sin(ωt)
VS2 = 16.68755 cos(θ + 120◦) · sin(ωt)
VS1 = 16.68755 cos(θ + 240◦) · sin(ωt)

Our method for the variable output voltages is to use digital potentiometers in a voltage
divider setup. These digital potentiometers can vary from 100 ohms to 10K ohms and can
be adjusted using an SPI protocol built into the devices. We chose to use two digital poten-
tiometers so we would be able to get more precision as well as get as close to 0V as possible.
All 6 of the digital potentiometers can be written to every 36 microseconds, meaning we can
change each of their values 69 times before the 400Hz reference voltage makes a complete
cycle. The digital potentiometers we chose each have 1024 steps in them which allows an
accuracy of 9 ohms per step. This will give us an angle accuracy of 0.03065°.

To make an accurate reference voltage we decided to use digital synthesis chips, which
can output a sine wave with a controllable phase to account for op-amp phase drift. One
caveat to the digital synthesis IC is the DC voltage bias on the output. The digital synthesis
IC can’t output a negative voltage so it is DC shifted up by 0.36V. To account for this we
use a differential amplifier circuit to remove the DC bias.
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Since there are various different sub circuits one concern was the different voltages each
circuit needed. To fix this we have two circuits that can output both +/-5V as well as
+/-2.5V for power. The 2.5V is important because that’s the maximum voltage the digital
potentiometers can drop across their terminals. Due to this constraint we have an extra
stage in our circuit to vary the amplitude using a low voltage op-amp.

The final constraint in our hardware design was making sure the signals are all phase
aligned on the output with the rotor. A non-inverting amplifier circuit’s output can’t bring
the output voltage lower than the input voltage’s amplitude due to the “1+” in the output
equation. To get around this we used an inverting amplifier to allow for a higher voltage
swing output. However, by making these signals negative, they will be phase shifted 180° to
the rotor. To fix this we use an inverting amplifier circuit for the amplification of the rotor
circuit, whereas the rest use a non-inverting. This will ensure the output voltages are all
phase aligned to each other.

5.2 Critical Sections

5.2.1 Digital Synthesis

The first issue we needed to tackle was generating a reliable sine wave, preamplification,
that we could vary the phase of. We needed to be able to vary the phase just in case our
subsequent circuit’s non-idealities pulled each signal out of phase with each other.

We tested two methods but ultimately we decided the best solution was to use a digital
synthesis IC for each of the 4 desired signals. While you could technically use one IC, we
wanted to use 4 separate IC’s to adjust for the non idealities mentioned previously.

The device we chose, the AD9833, can output a variety of waves including a sine wave.
Since aircraft operate at 400 Hz we want to generate a 400 Hz sine wave from each of the
IC’s. The IC’s use the SPI serial communication protocol which we will control via the Ar-
duino Uno. The AD9833 also has registers to allow you to control various different aspects
of the output wave which makes it the ideal choice for this project.

The output of this device is a 400 Hz sine wave with 0.72Vpp, however it has a DC offset
of 0.36V. To combat this we added a capacitor to the output of the device which will filter
the DC component out of the sine wave.

Another interesting issue we came across is the MCLK signal on the device. This signal
needs to be an accurate square wave ranging up to 25 MHz, with 25 MHz being the default
for the frequency calculations. When testing, our function generator couldn’t generate an
accurate square wave with such high frequency which caused some issues on the output. To
combat this we were able to adjust our register value according to the equation below using
a smaller reference frequency.
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Figure 2: Digital Synthesis Internal

Figure 3: Digital Synthesis IC Pinout

OutputFrequency = (FMCLK/2
28) ∗ FReg

The RJ45 ethernet to Arduino adapter outputs a stable MCLK signal so we are using
that as the MCLK input instead of a PWM signal from the Arduino.

5.2.2 Voltage Regulation

The first stage Op-Amps require a +/-5V supply, however the Arduino only provides us with
+5V. To fix this we needed a solution to transform the 5V to -5V with a common ground
between them.

To make the device as simple as possible we found a cheap IC that can give us a stable
-5V and a command ground to provide to the Op-Amps. All we needed was the IC and two
decoupling capacitors to get a steady +/-5V supply.
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The digital synthesis on the other hand requires +/-2.5 instead of the +/-5 we’ve been
using. Since we don’t already have a 2.5V supply rail but we do have a 5V rail we had to
get creative.

We used an Op-Amp, which takes in 2.5V using a voltage divider and acts as a buffer.
The output of this buffer goes to an NPN/PNP circuit which gives us a common ground.
So from the 5V rail to the common ground is +2.5V and from the common ground to the
actual ground is -2.5V.

Figure 4: 2.5V Regulator Design

5.2.3 Digital Amplitude Variation

The main problem we had when designing this device was how to vary the voltage of each of
the stators independently of each other. After exploring various techniques with MOSFET’s,
we decided on digital potentiometers.

Digital potentiometers, similar to physical ones, can be controlled to vary the resistance
between the low and the wiper pin. Unlike traditional potentiometers, with digital ones you
can vary the resistance using a serial communication protocol, in our case SPI.

While there are variations of the part we got, make sure the part being tested with is
linear as some of the variations aren’t meant to be used as a variable potentiometer.
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Figure 5: Digital Potentiometer Pinout

Figure 6: Ideal Linear Resistance Potentiometer Curve

Figure 7: Non-Ideal Non-Linear Resistance Potentiometer Curve
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Voltage Step per Degree:

16.68755cos(1)− 16.6875cos(2) = 0.00762V

Step Size:

10, 000/1024 = 9.765Ω

Inverting Op-Amp:

(−100/10, 000) + (109, 765/10, 000) = 0.0009Ω

As mentioned previously these potentiometers can only have +/-2.5V across them so an
extra stage was needed to be added in order to accommodate them.

To give us the highest possible resolution we decided on digital potentiometers with 1024
taps in each of them. This means there are 1024 different resistances that can be chosen
from which gives us high accuracy.

The larger the resistance limit the closer to zero we could get, however the less accurate
it will be. To balance these trade-offs we decided on a 10K potentiometers with 1024 steps
each. This will give us a step size of about 9 ohms per step which gives us an accuracy of
less than 0.12 degrees.

We use these potentiometers in an inverting amplifier circuit to adjust the gain from 0V
to 2.5V in the first stage.

Figure 8: Inverting Amplifier
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5.2.4 High Voltage Amplifier

The high voltage amplification section uses fixed resistors so they can handle the voltage
drop sing we will be working with 11.8 and 26 Vrms. As stated before the stator sections
will be non-inverting while the rotor will be inverting.

Gain

= 1 + (
V2

V1

)

5.3 Design Testing

Our entire design was tested in ORCad using the simulation models built in. We inputted
a reference sine voltage from what would be the digital synthesis chips and then tested the
outputs from 40mVp to 11.8Vrms. The final design being tested and the simulation outputs
will be shown below. The first two figures show the circuit at its 40mVp state and the last
two show the 11.8Vrms state.

Figure 9: OrCAD Circuit Model
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Figure 10: Circuit Waveform Output

Figure 11: Waveform output

5.4 Design Choices - Reasoning

The previous designs of a digital to synchro converter used an expensive, no longer produced
device called a Scott-T transformer. Instead of trying to source a transformer we decided to
use digital hardware instead.

After testing some implementations of a sine wave including using PWM generation from
the Arduino Uno, we decided to go with digital synthesis. We chose to use the digital syn-
thesis IC due to its easy functionality, low cost and easy phase shifting capabilities.

We decided to use the digital potentiometers because after testing some other options
with transistors this gave us the best reliability. The other circuits we tried to come up with
didn’t work reliably and due to the low cost of the potentiometers we decided on them pretty
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early in the design.

Another option we had for high power output was using transformers which would allow
us to forgo the external power supply. Due to the high cost and bulkiness we decided to go
with the op-amps. The main issue with op-amps is the reliability and possible phase shifting.
These issues didn’t change our decision in the end because all of those issues can be fixed
with software.

The final major decision we made was on the use of the Arduino Uno. We explored
other options such as a Raspberry Pi and a BeagleBone Black. We ultimately decided on
the Arduino Uno due to the high compatibility, reliability and low cost. In addition to this
we already had some Arduino Uno’s so that made it easier to test.

5.5 PCB

The first thing we had to do before routing the PCB was to create parts in KiCad since
most of them didn’t exist in the libraries. While most of the packages were standard the
schematic part had to be created from scratch.

After getting all of the parts inputted into KiCad we then connected everything according
to our design and checked everything with the design rule check built into KiCad. Certain
things we built into the schematic are multiple pages for easy readability as well as assigning
the chip select and SPI pins to each of the chips. Everything on the schematic should be
easily readable and will be included below.

After verifying our schematic and making sure everything was hooked up according to
the manufacturer specifications we started placing the components on the PCB. Each device
was placed to not only look as professional as possible but making routing as easy as possi-
ble. One issue we had was the limited size for routing due to having to fit in the Arduino
Uno shield specifications. We decided to use a 4 layer PCB so we can have 3 layers to route
traces and have a ground plane to allow for easier routing. We made sure to include plenty
of test pins on our PCB to allow for easy testing the lab to make sure everything works as
intended.

We then needed to route all of the pins, while adhering to the PCB manufacturers specifi-
cations. We decided to order through JLCPCB since their services are fast and high quality.
We started by inputting all of the design constraints JLCPCB states on their website to
make sure we don’t do anything that they can’t produce. Included this is our via sizing,
which we made as small as possible to allow for more space as well as trace size which we
sized to allow for up to 1A of current using an online trace size calculator.

The routing was one of the more difficult aspects of designing the PCB. Initially we
started by fully routing one IC at a time but it proved very inefficient with the limited space
available on the PCB. After scrapping that methodology, we decided to route the power to
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Figure 12: Arduino Uno Pins

each component first and then connect the pins of closely located components.

The first and fourth layers were used to place components on and routing pins to each
other based on the schematics. The second layer was primarily used for routing power to
components and other miscellaneous routing that could not be done on the first and fourth
layers. The third layer was used as a ground plane that every IC connected to.
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Figure 13: Arduino Uno Shield Pin Connections to Components

Figure 14: Arduino Uno Shield Pin Connections to Components 2
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Figure 15: Arduino Uno Shield Pin Connections to Components 3
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Figure 16: PCB Design in KiCAD

Page 20



ECEN 4024 CymSTAR Ethernet-to-Synchro Project

6 Software Implementation - Christian and Remington

6.1 Arduino Board - Remington

The Arduino board we went with was the Arduino Uno Rev3. The main reasons we went
with the Arduino Uno Rev3 is because it’s a smaller board compared to other Arduino’s
(2.7*2.1 inches) to help fit in the required dimensions given to us, it weighs only 25 grams,
and it has enough I/O pins for all of the digital chip components and for the Ethernet cape.
Arduino is easy to write code for as it’s all in C and the digital components we had that
needed to be written in SPI already had libraries made for them.

The Arduino Uno Rev3 operates at 5V so plugging it into a computer is optimal, but
it can almost be plugged into a small voltage supply as the recommended input voltage is
7-12V. The clock speed of the Arduino is 16MHz which is plenty fast when using the built
in clock for our chips. The Uno has 14 Digital I/O Pins and we use all 14 of the pins for our
components. We use pins 1-13 for the SPI devices and we use pin 0 for the Ethernet. We
use pin 0 for the Ethernet as it is the RX and we only need to receive information from the
host computer through the Ethernet, and we have no reason to transmit information back
to the host computer.

One problem with using the Ethernet is that we can not serial write to a terminal to check
that the values are exactly what they need to be. This is one downfall of using Ethernet
with Arduino, as we are not able to decode as easily when sending byte strings through TCP.

Figure 17: Arduino Uno Rev3 pinout.
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6.2 Ethernet Module - Remington

The Arduino Ethernet cape we went with was the HiLetgo ENC28J60 module for the RJ45
Ethernet connector. This Ethernet cape has an on-board 25MHz crystal that we utilized as
the master clock for the digital chips to make sure they all operate together with the rising-
edge. We used 6.25MHz as the master clock frequency as we found out that the higher the
master clock frequency the less reliant the digital components were at outputting the sine
waves. The recommended power supply for the module is 3.3V which is plugged into the
3V3 terminal on the PCB in section J5.

We have the Ethernet module plugged into the 3V3 terminal on the PCB (Pin VCC on
the Ethernet module), SCLK terminal (Pin SCK), MCLK terminal (Pin CLKOUT), MISO
terminal (Pin SO), MOSI terminal (Pin SI), CS terminal (Pin CS), and GND terminal (Pin
GND).

Figure 18: Ethernet Connections to the J5 PCB terminals.
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6.3 Arduino Pin Configuration - Remington

The pin configuration for the SPI digital chips does not require any cables to be plugged into
the board as it is all done with the PCB cape that was specifically made for the Arduino
Uno Rev3. All of the chips have already been defined with their own chip-select from the
Arduino pins. Below are the defined chip-select commands that are used for each digital
chip and it states which chip select pin is for what digital chip.

Figure 19: Defining chip selects for each of the pins and commenting what each select is
connected to.

Figure 20: Digital Chips, Ethernet, and SCLK pin connections.
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6.4 Equations - Christian

We utilized the following equation for determining the firmware values:

V̄s = A0 cos (θ − ¯ϕerr)

where A0 = 16.68755 and ¯ϕerr =

 0◦

120◦

240◦


Extrapolating from above, we used the following to derive step-size calculations:

Vsi+1 =
d[V̄si]

dθ
Vsi+1 − Vsi = 0.009

Thus we derived per voltage step size.
We also accounted for bias from phase measurements of real-life testing:

∆ϕ = ϕ̄− β̄

where β = 51.84◦

and ¯ϕerr = ∆ϕ =

 0◦

120◦

240◦


6.5 Firmware Libraries - Remington

We use four libraries with three of the libraries being specifically created for the digital
chips and the Ethernet module we use in our design. The one built-in library that we utilize
through Arduino is the math.h library that does not require any downloading and comes with
the Arduino IDE download. The digital synthesis chips use the AD9833.h library created by
Billwilliams1952 on GitHub (2). The digital potentiometer chips use the MAX5481.h library
created by robertfchapman on GitHub (3). The Ethernet module, HiLetgo ENC28J60, uses
the UIPEthernet.h library created by JAndrassy on GitHub (4). All three of these libraries
are available on the GitHub we made for this project and can be downloaded from there
in the “libraries” folder. When importing the libraries into the Arduino IDE click Sketch ¿
Include Library ¿ Add, and make sure the library is a .ZIP folder when adding the library.

6.6 Graphical User Interface (GUI) - Christian

6.6.1 Introduction

This section describes how to use the Synchro Digital Controller, which is a Python program
that allows you to control a device over TCP/IP. The program includes a GUI built with
Tkinter, which provides a variety of controls and visualizations for the device.
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6.6.2 Requirements

The following software packages are required to use the Synchro Digital Controller:

• Python 3.x

• Tkinter

• Matplotlib

• NumPy

• Asyncio

• PySerial

• PIL

In addition, you will need access to a copy of the ethernet-to-synchro device that can be
controlled over TCP/IP or you can override the pre-programmed TCP/IP address and port
value to create your own backend for demonstrative purposes.

6.6.3 Installation

To install the Synchro Digital Controller, follow these steps:

1. Download the source code from the GitHub repository.

2. Open a terminal or command prompt and navigate to the directory where the source
code is located.

3. Install the required packages using the following command:

1 python3 -m pip install -r requirements.txt

4. Run the program using the following command:

1 python3 main.py

6.6.4 Usage

When you run the program, a GUI window will appear that contains several controls and
visualizations for the device.
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Figure 21: Image capture of GUI with the following sections labelled

Sidebar The sidebar contains several options for configuring the program:

• Configuration: Opens a configuration dialog that allows you to set the IP address
and port for the connected device, change the starting angle, and turn on an extra
menu for programming the Arduino through the GUI.

• Appearance Mode: Allows you to select the appearance mode for the program. The
available modes are ”Light”, ”Dark”, and ”System”.

• UI Scaling: Allows you to adjust the size of the user interface. The available options
are ”80%”, ”90%”, ”100%”, ”110%”, and ”120%”.

Main Gauge The gauge displays the current angle value of the synchro device on a scale
of degrees out of 360◦.

Angle Entry Box The entry box below the gauge can be used to input any floating-point
number to change the dial value and transmit the angle to the connected device.

Device Operational Readiness Test This section utilizes an additional panel to run an
operational readiness test. This test works by incrementing the gauge by 90◦ until returning
back to 0◦ to test the accuracy and operational readiness of the connected device.

6.6.5 Troubleshooting

If you encounter any issues while using the Synchro Digital Controller application, please
consult the documentation or contact the developer for assistance.
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6.7 Serial Peripheral Interface - SPI - Remington

The SPI portion of the computer host is what drives the Digital Synthesis Chip and the
Digital Potentiometer Chip. We chose to use SPI over the other pin connections because
it gives us more control when using the Arduino Uno Rev3, and these two chips work best
with SPI.

The SPI code and TCP server code was compiled together as we need to take in the
information from the GUI through the Ethernet. The code first imports the necessary li-
braries needed to control the digital chips, get information from the Ethernet, and allow the
program to implement math equations. Next the MAC Address, IP Address and masking,
and the listen port are all defined with the pins for the digital chips and the Ethernet chip
select. The constant values under the defining pins are set to these values: The MCLK
frequency is set to 6.25MHz, and this is because the output from the crystal on the Ethernet
module is 6.25MHz. The stator frequency is set to 400Hz as we need the output sine signals
to be in 400Hz from the digital synthesis chips, and the initial resistance can be changed
in the GUI to what initial angle one wants to start at. It is default set to step 1023, the
max steps on the digital potentiometers. The minimum and maximum resistance the digital
potentiometers can be set to are also set as constants.

Figure 22: Importing necessary libraries and setting Ethernet values.
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Figure 23: Defining digital pin chip selects.

Figure 24: Defining constants for the digital chips.

We then initialize the digital synthesis and digital potentiometer chips. Digital synthe-
sis chips are initialized like: AD9833 definedName(CS number, Master clock freq). Digital
potentiometer chips are initialized like: MAX5481 definedName(CS number). After we
structure and allocate the digital potentiometers and digital synthesis chips into a struct bus
with a set array storage size depending on how many chips of each are being used: digital
synthesis are set to size 4 and digital potentiometers are set to size 6. Next in the void
function initDigitalSynths() a for loop is used to set all 4 digital synthesis chips to begin,
apply the wanted signal and set the frequency output. The void initPotentiometers() uses a
for loop to set all 6 digital potentiometers to begin and to start reading the wiper resistance.
Outside the for loop the wipers on the digital potentiometers are set to the initial resistance
variable (1023 steps).

Figure 25: Storing the digital chip calls into bus arrays.
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Figure 26: Initializing digital synthesis and digital potentiometer chips.

Figure 27: Setting constant vales to the digital synthesis and digital potentiometer chips.
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While testing, the digital potentiometers were shorted due to all of them being set to 0
steps (70 ohms). To make sure that the resistance of all the digital potentiometers would
never all be set to 70 ohms a function was created to check and if they are set all to 0 steps
then set them to 100 steps to avoid shorting. There is also a simple function made to change
degrees to radians since the math library does not automatically convert.

Figure 28: Checking to make sure the digital potentiometers are not all set to step 0 and a
function to convert degrees to radians.

Using the voltage synchro formula with the new found stator degrees: [13.5967, -0.0621,
-5.55376] are stored in a float array. Float current angle and float theta are called as global
variables. Theta is the variable that stores the degree from the GUI, and the currAngle
is saved as the current angle being used until a new theta value is added. An interrupt
is used that keeps checking to see if theta does not equal the current angle. If that is
the case then find the difference between the angles and set the new resistor values in the
digital potentiometers. The stator voltage formula is used after a new theta is given from
the GUI to determine the new digital potentiometer steps to acquire the 3 new stator signals.

Figure 29: Function that utilizes stator voltage formula to set new digital potentiometer
values.

The Ethernet is set up as a server and as a listen port since it is given new theta values
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from the host computer. A function is used setupEthernet() that uses all the defining for
the Ethernet earlier and inputs them into uint8t arrays. The Ethernet is then initialized and
set to begin and listen. The Ethernet is set to echo client to check that there is a connection
available and sends an echo to the client and gets ready to write. Another client function
clientCmdRecv() is for reading the sent data stream from the GUI and converts the stream
to a float which is saved in the theta variable.

Figure 30: Setting up Ethernet values from constants defined.

Figure 31: Setting up TCP Ethernet server and reading Ethernet port for new theta values.
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The setup() function is calling and initializing functions for the Ethernet, digital synthesis
chips, digital potentiometers, and setting SPI data mode to 0x00. Inside the loop function
theta is set equal to the clientCmdRecv() function and keeps checking to see if the theta
value changes.

Figure 32: Setting up function and looping function to check for new theta values.
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7 Tests and Experimentation

7.1 Hardware Test Plan

• We tested the synchros in the Endeavor lab for functionality 26V rms, 400Hz sine wave
on rotor, 3 oscilloscope probes on stator pins (S1, S2, S3).

• Verify PCB design in ORCAD.

• Using oscilloscope verify PCB output before connecting to synchro.

7.2 Hardware Test Results

• The Synchros were successfully tested in the Endveaor Labs to prove they work how
we expect them to.

• In the original design we found issue with the BeagleBone Black so testing helped us
decide to change to another device.

• The second revision was able to act as the rotor voltage but had some clipping issues
on the negative edge of the stator waves.

• We identified a failure mode when testing as too much current was drawn through the
digital potentiometers causing them to fail.

Figure 33: Waveforms of Synchro

Figure 34: Waveforms of Synchro
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Figure 35: Waveforms of Synchro

Figure 36: Waveforms of Synchro

Figure 37: Waveforms of Synchro

Figure 38: Waveforms of Synchro

Figure 39: Waveforms of Synchro
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Figure 40: Waveforms of Synchro

Figure 41: Waveforms of Synchro

Figure 42: Generated Sine Wave for Rotor

Figure 43: Generated Sine Wave with Clipping
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8 Project Costs - Dylan

Figure 44: Cost Breakdown

Company Shipping Cost
Digikey $6.99
JLCPCB $38.45
Mouser $7.99

Table 1: Cost per Distributor

Page 36



ECEN 4024 CymSTAR Ethernet-to-Synchro Project

9 Schedule - Christian

Below depicts different charts showcasing the velocity of our tasks on this project throughout
the length of construction. Below we display GANNT chart, burnup/burndown charts,
cumulative flows, and velocity.

9.1 GANTT Chart - Christian

Figure 45: GAANT Chart

9.2 Cumulative Flow of Stories and Features - Christian

Figure 46: Cumulative Flow of Stories and Features
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Figure 47: Cumulative Flow of Stories and Features

9.3 Burnup and Burndown Charts - Christian

Figure 48: Burnup

Figure 49: Burndown
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9.4 Velocity and Lead/Cycle Time - Christian

Figure 50: Cycle and Lead time

Figure 51: Velocity
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10 Risk Management - Dylan

10.1 Delivery

10.1.1 Scheduling

Since everyone on our team has a busy, varying schedule it is a challenge to find times
where we can all meet. To mitigate this issue we created a When2Meet poll and flexed our
schedules to allow for ample time for working. We hold regular meetings with and without
our advisor everyday of the week except for Thursday at varying times. We have found this
allows us enough time to get ahead of the schedule we created and get all of the necessary
tasks completed.

10.1.2 Online Ordering

One major issue we have run into is the increasing shipping delays for parts ordered through
Mouser and Digikey. We have had some parts take as long as two weeks just to arrive, which
puts a strain on our schedule. To mitigate this issue we have been trying to order our parts
as early as possible so just in case there is a shipping delay we won’t be behind schedule.
Shipping delays are inevitable and we are trying our best to not let it affect the final result.

10.1.3 Payment System

Another issue we came across is the payment system for part orders through Cymstar.
Cymstar has advised us that payment for parts orders can take as long as a week, which
would not be ideal for our tight schedule. To mitigate this issue, we are ordering all parts on
personal credit cards and then submitting an invoice to be reimbursed at a later date. This
has worked up until this point as we are able to order parts whenever we need to instead of
having to wait on payment first.
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11 Improvements - All

11.1 Overall

The main issue we faced overall was shipping delays. We were trying to be frugal with the
budget so we cold order multiple devices and wouldn’t waste anything but since we had
shipping delays it hurt the project. In the future ordering parts sooner rather than later will
help ensure the project doesn’t run out of time.

Another issue was documentation of the device for testing purposes. When you have
two teams working on different things it’s hard for everyone to know everything about a
device. While we did a good job with documenting there was a miscommunication which
lead to the demise of our digital potentiometers. There can never be such thing as too much
documentation!

11.2 Hardware

We’re still facing a clipping issue with the digital potentiometers. While we tested every-
thing on breakout board prior to ordering the PCB’s we never got a chance to test everything
integrated due to lack of parts. So once again if we were to do this again we would order
more things sooner rather than later.

Other than the clipping issues I don’t think we would change much more on the hardware
it performed exactly how we expected it to. One thing that could still be improved is the
reduction of noise in the signals as that was a major issue in our design.

11.3 Software/Firmware

We would’ve liked to have had more time to work on the firmware part of the project
to solidify the SPI and make the GUI look better. Everything works besides the angle
calculation for the SPI code on the Arduino. We think the problem is just a misplaced
variable in the function or a calculation wasn’t typed correctly in one of the formulas. If we
had more time we would’ve decoded the problem and would have everything functioning on
the software and firmware side.
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