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Abstract 
 

Turbulence is characterized by irregular movement in pressure and flow 

velocity. Better understanding of turbulent flow will help in the understanding of air 

movement including wind currents, dissipation of pollutants and storm formation. 

Although much research has been done on the nature of turbulence in the 

atmosphere, less work has been focused on humidity turbulence in supersaturated 

conditions. Supersaturation turbulence is found in clouds and plays a major role in 

the formation of precipitation. In an effort to better understand LES and the closure 

problem for turbulence fluctuations of supersaturation, temperature was monitored 

within a cloud chamber while turbulence was being induced. Several measurements 

were made with a thermistor array at various temperature differences and spacings. 

The data gathered was used for a priori testing. Two models, a scale-similarity 

model and a Gradient model, were tested with the data gathered. The scale-

similarity showed to be very promising with correlation coefficients around 0.7. The 

Gradient model had correlation coefficients around 0.2. Although one of the models 

performed slightly better at the smallest horizontal spacing, there didn’t appear to 

be any significant patterns between horizontal spacing or temperature difference 

and how well the models performed. A posteriori tests will need to be performed in 

the future to better test how well the scale-similarity model behaves in various 

circumstances. Supersaturation LES models will further scientists’ understanding of 

the humidity turbulence present during the formation of clouds and precipitation.
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Chapter 1 

Introduction 

 
1.1: Turbulent Flow 

Turbulent flow is when the attributes of the flow (e.g. temperature, momentum, 

saturation) are irregular rather than consistent. In turbulent flow, fluids undergo 

irregular flow patterns which induce mixing. Turbulent flow is characterized by many 

swirling eddies (Pope, 2000). Often, when turbulence is studied, it is done so in 

reference to these eddies. If the swirling motion of a turbulent fluid can be 

understood or modeled, the overall motion of the turbulence can be understood and 

modeled. For this reason, much of studying turbulence begins with studying the 

large-scale and small-scale swirling motion (Sagaut, 2001). 

 
The largest of these eddies is often the size of the barrier the flow is interacting with. 

The eddies get increasingly smaller until it is deemed molecular motion instead of 

kinetic motion.  

 
The Navier-Stokes equations are equations originally crafted in the 1800s showing 

the motion and momentum of turbulent flow (equation 1). They are based on 

conservation of mass, Newton’s second law and the assumption that stress in the 

fluid is the sum of the diffusing viscous term and pressure term. However, they are 

not completely integrable (Pope, 2000). In order to use the Navier-Stokes, the fluid 
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must be treated as a continuous substance, ignoring the properties of individual 

molecules. 

 

   
𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
= −

1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+ ν

𝜕2𝑢𝑖

𝜕𝑥𝑗
2         (equation 1) 

 
Though the Navier-Stokes equations are accurate, the larger the area of turbulence 

being simulated and the more complex that turbulence is, the more computationally 

expensive simulations become. Most turbulent flows that scientists are interested 

in, especially meteorologists, are fairly large. Storms can easily reach 25 kilometers 

in diameter, or larger. This means, when cloud formation or storms need to be 

numerically simulated, options are limited. 

 
The most straightforward method is direct numerical simulation (DNS). This is when 

the Navier-Stokes equations are used for the entire system. The fluid is treated as 

a continuous system and even the finest turbulent eddies are resolved for every time 

step. Understandably, a supercomputer must be used to perform even the smallest 

of numerical simulations. The amount of computational power needed is enormous. 

Because of this, scientists developed the method of large eddy simulation. 

 
LES, large eddy simulation, is a combination of the Navier-Stokes equations and 

statistical analyses. As addressed earlier, turbulence is made of many swirling 

eddies. In LES, these flows are divided into grid-scale turbulence and subgrid-scale 

turbulence. The grid-scale turbulence is the larger, more regular flow which is 
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simulated explicitly. The subgrid-scale turbulence is not simulated but rather it is 

modeled using statistics and models crafted from experimental data. The grid-scale 

turbulence is then simulated using a variation of the Navier-Stokes equations which 

takes the statistics of the modeled, less periodic flow into account. 

 

            
𝜕𝑢𝑖̃

𝜕𝑡
+ 𝑢𝑗̃

𝜕𝑢𝑖̃

𝜕𝑥𝑗
= −

1

𝜌

𝜕𝑝̃

𝜕𝑥𝑖
+ ν

𝜕2𝑢𝑖̃

𝜕𝑥𝑗
2 −

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
       (equation 2) 

 

In this variation of the Navier-Stokes momentum equation (equation 2), the 

coefficients expressing pressure and movement are altered to represent the 

average over larger areas. The term that represents dissipation of energy to 

viscosity, is negligible at the high Reynolds numbers found in turbulent flow. It is 

replaced with a term that represents dissipation of energy into subgrid eddies. It is 

this variable which is referred to as the subgrid scale stress tensor, because it is a 

representation of how the turbulent energy behaves on a subgrid scale. 

 
LES is computationally reasonable and gives valuable and reliable results. 

However, its accuracy is dependent on the accuracy of the subgrid-scale model. 

 
The basis of most of these subgrid-scale models still used in LES is the 

Smagorinsky model (Smagorinsky, 1963). This simple model was proposed by 

Smagorinsky in 1963. It’s a linear eddy-viscosity model (generally represented with 

𝝉) used to relate the residual stress to the filtered rate of strain. Equation 3 shows 

the equation for this 𝜏. 
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       𝜏𝑖𝑗
𝑟 = −2𝑣𝑟𝑆𝑖𝑗̃          (equation 3) 

       𝑣𝑟 = 𝑙𝑆
2𝑆̃ = (𝐶𝑆Δ)

2𝑆̃        (equation 4) 

 

 𝑣𝑟 is the eddy viscosity of the residual motion. 𝑣𝑟 is found by multiplying the 

characteristic filtered rate of strain by the Smagorinsky length scale squared 

(equation 4). The Smagorinsky length scale is the product of the filter width and the 

Smagorinsky coefficient (equation 4). In the Smagorinsky model, and all models 

based off of it, energy transfer occurs everywhere from the filtered motions to the 

residual motions. Also, there is no backscatter, meaning energy and momentum are 

never modeled to come up from the subgrid-eddies to create more grid-scale eddies 

(Smagorinsky, 1963).                

 
Smagorinsky’s model is still recognized by many as the original functional LES 

model (equation 5).  

 

           𝑣𝑡 = (𝐶𝑆Δ)
2(𝑆𝑖𝑗̃𝑆𝑖𝑗̃)

1/2
              (equation 5) 

 

However, models have been developed since to try to compensate for its 

shortcomings. In the Smagorinsky model, the Smagorinsky coefficient can change 

drastically depending on the Reynolds number. This means that fluid flowing near a 

wall is simulated with a different coefficient than fluid flowing in the center, even 
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though all other factors are the same. Inconsistencies like this can make it difficult 

to simulate an entire system with a single LES (Sagaut, 2001). 

 
In 1991, Germano et al. attempted to fix this shortcoming by proposing the dynamic 

model (Germano et al. 1991). The dynamic method tries to overcome this difficulty 

by having two filters of different filter widths, the grid LES filter and the test LES filter. 

One shortcoming of the eddy viscosity subgrid-scale stress models used in large-

eddy simulation at the time was their inability to represent, with a single universal 

constant, different turbulent fields. These flows included rotating and shear flows, 

near solid walls and in transitional regimes. Germano et al. suggested a new eddy 

viscosity model which would alleviate many of these drawbacks. The model 

coefficient was computed dynamically as the calculation progressed, rather than 

input a priori. The model was based on an algebraic identity between the subgrid‐

scale stresses at two different filtered levels and the resolved turbulent stresses. 

The subgrid‐scale stresses obtained using the proposed model vanished in laminar 

flow and at a solid boundary, and had the correct asymptotic behavior in the near‐

wall region of a turbulent boundary layer. The results of large‐eddy simulations of 

transitional and turbulent channel flow that used the proposed model were in good 

agreement with the direct simulation data. 

 
In 1980, Bardina, Ferziger and Reynolds proposed a model often called the scale-

similarity model. In this model, the stress term is decomposed into the Leonard 

stress, the cross stress and the SGS Reynolds stress. Because the large-scale 
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velocity is known, Leonard stress can be evaluated. After analyzing various models 

for the subgrid-scale turbulence, they came to the conclusion that there was enough 

information in the resolved scales to allow some of the characteristics of the 

complete flow field to be determined. They decomposed the kinetic energy of the 

small-scale motions into two parts: correlated and uncorrelated. From this, they 

crafted a two-component eddy-viscosity model. They found that the “production 

equals dissipation” argument did not hold for the small scales in the decay of 

turbulence because it did not account for the uncorrelated component. If the two-

component model is reduced to a single-component model, similar to the ones that 

had been used previously, it shows many of the same flaws as the previous models 

did. Their model was based on the argument that the exchange between the large 

and small scales takes place mainly between the smallest of the large scales and 

the largest of the small scales. They also proposed a new length scale for use with 

anisotropic filters (Bardina, 1980). 

 
All of these models were crafted in an effort to better represent the statistically 

relevant motion of the subgrid-scale models. If the effect of the subgrid turbulence 

can be accurately represented, simulations can be made for large scale fluid flows, 

such as clouds and storms, with much greater accuracy. This will help scientists 

better understand the nature of turbulence and how it changes in different 

circumstances. This will also help meteorologists better foresee and predict storms, 

precipitation and changes in weather. 
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1.2: Forming Models for LES 

First, a model of subgrid motion is conceived for a particular turbulent flow. In many 

equations the model is referred to as 𝜏 (see equation 2). Generally, the model is 

based on knowledge of fluid mechanics and small-scale turbulence. However, there 

are variables and coefficients in the model which remain unknown. In order to find 

the value of these, scientists perform a priori testing (Meneveau, 2000). Data is 

gathered from either DNS or laboratory experiments of the same configuration the 

model was designed for. The subgrid-scale data is then filtered out and used to 

calculate 𝜏𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑. 𝜏𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 is compared to the modeled 𝜏. Through this 

comparison, it can be found mathematically what the best values for the coefficients 

and variables are. Through this a priori testing, the model, 𝜏, can then be completed. 

 
In order to form and test models for LES, it is required that both a priori and a 

posteriori testing are done. A priori testing is done first. It is the calculation of 

subgrid-scale models using data from DNS or experimentation. After the models are 

validated, a posteriori testing is performed. This is the implementation of the subgrid-

scale model into LES and the comparison of the data provided by the model to the 

data shown in experimentation. A similar method has been used in many other 

papers including Sullivan et al. (2003), Porté-Agel et al. (2001), Keating (2004) and 

Kleissl, et al. (2003). 

 
Traditionally, Low-Reynolds-number DNS is used for SGS model evaluation (Ma, 

2011). This is because it contains the necessary three-dimensional spatial 
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information to generate SGS fluxes and resolved field gradients. The ability to 

acquire multi-dimensional turbulence data in laboratory and field studies has, 

however, improved sufficiently allowing a priori testing to be performed with high 

Reynolds number measurements. There are many suggested SGS closures for 

LES, but not all have been thoroughly tested. In the Sullivan et al. paper, the HATS 

(The Horizontal Array Turbulence Study) dataset was used to evaluate aspects of 

SGS models typical of those implemented in working LES of the PBL, many of which 

were eddy-viscosity-based parameterizations (Sullivan, 2018). 

 
It should be noted that a priori tests, as shown in this paper, are only a first step in 

judging a SGS model. A posteriori tests with LES are required to ascertain the full 

interactions between resolved motions and the model. Good performance of an 

SGS model in a priori tests does not always translate into acceptable LES. 

 
After the model is developed, it is combined with the filtered Navier-Stokes 

equations to create an LES (see equation 2). A posteriori tests are then performed 

to test how well the model works. The LES is compared statistically to turbulence 

data gathered from DNS or laboratory testing of similar configuration to what the 

model was designed for. Through a posteriori testing, it can be seen how well the 

model works when applied to the simulation. 

 
All of these models, therefore, are based on applying an appropriate filtering system. 

There are many ways to filter turbulence into subgrid-scale and grid-scale 
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turbulence. The filtering types used in this research involve converting the 

turbulence measured to wavenumber space using the Fourier transform.  

 

Data is transformed into spectral space which shows the frequency of the eddies. 

The frequency spectrum is put through a filter. Then, the filtered frequency spectrum 

is taken through the inverse Fourier transform. The result is the representation of 

the grid-scale turbulence (See figure 1). Eddies with frequencies that are not filtered 

out will be simulated. But the eddies with frequencies that are filtered out must be 

modeled with 𝜏. 

 
There are several ways to filter turbulence in spectral space. The first is the box 

filter. This takes the turbulence in wavenumber space and cuts it off at a certain 

frequency. This has the effect of taking the average of pockets of turbulence and so 

“smoothing it out.” However, though the turbulence is cut-off sharply in physical 

space, it adds a slight oscillation to the turbulence data in spectral space. Often, this 

slight oscillation is inconsequential, but it can lead to inaccurate interpretations if 

analysts are not careful. 
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Figure 1. On the right is shown a representation of swirling eddies in turbulence. On 

the left is a graph of the turbulence in wave space. In this example, the red eddies 

are being modeled while the blue eddies are being simulated. The red portion of the 

line on the wavenumber versus energy graph shows what wavenumbers are being 

modeled and which are being simulated. The red portion of the line corresponds to 

the red eddies, which have higher frequency. This is also shown on the equation on 

the bottom. The blue portions of the equations calculate the simulated eddies while 

the red term is the model term. 

 
 
In an effort to eliminate the oscillatory effects of the box filter in spectral space, the 

sharp-spectral filter was proposed. This gives a sharp cut-off in spectral space, 

which can make it easier to analyze and work with. However, this means the 

turbulence is not averaged in the same way in physical space. 

 

The third common filter is a filter which tries to balance averaging out the spectral 

space and the physical space. This is the Gaussian filter. This filters the data 

through a Gaussian curve in spectral space. Unlike previous filters, there is not a 

dramatic suppression of high-wavenumber components, but rather a gradual cut-
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off. This filter is often chosen as the best one to use when analysts are interested in 

the behavior of turbulence both in spectral space and physical space. 

 

Many other filters are used, but these are the three most common (Pope, 2000). 

Though they are each trying to represent a separation of grid-scale and subgrid-

scale turbulence, it is difficult to know which one truly represents real-world 

outcomes the best. The different filters work better depending on what model you 

are using them for. Each has their advantages and disadvantages, which is why it 

is advisable to do a priori testing with multiple of them. 

 

 
1.3: Turbulence in Clouds 

Clouds are localized areas of saturated or supersaturated air. Due to lifting, the air 

has reached its dew point and the water has begun to condense. Because of this, 

the density of clouds is higher than the surrounding air. Often clouds form around 

frontal passages, mountain wave activity, thermals, temperature inversions and 

other atmospheric disturbances (Wyngaard, 1992). Taking these things into 

account, it is easy to see why the flow of fluids in clouds is different, and generally 

more turbulent, than in clear skies. 

 
Clouds form when an air pocket that is saturated or close to saturated is lifted and 

cooled. This is generally caused by a combination of atmospheric behavior and 

topography. The moisture in the air pocket condenses from a large volume into a 
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relatively small volume of rain, snow, hail and sleet. As water droplets form, potential 

energy is converted into kinetic and thermal energy. This creates eddies and swirling 

motions of varying sizes and intensities throughout clouds. 

 
It is highly important in studying weather and climate to understand the interactions 

of aerosols, cloud droplets, ice crystals and trace gasses within the atmosphere. 

Many of these interactions happen within clouds. Therefore, the study of the internal 

workings of clouds is of great significance to the meteorology community. However, 

what remains especially vexing is that clouds are constantly in a state of turbulence 

(Bodenschatz, E., et al., 2010). Therefore, thermodynamic and compositional 

variables, such as water vapor supersaturation, fluctuate in space and time. 

 
Turbulence often arises from buoyant forces, mechanical forces or some 

combination of the two. It is how a fluid in the atmosphere efficiently transports heat, 

mass and momentum as more kinetic and thermal energy is added to the system. 

The rate at which energy is being transferred from larger eddies to smaller eddies 

and then down to viscosity is often considered the intensity of the turbulence (Silva, 

2014). LES has been used to study this cloud turbulence for over thirty years now 

(Deardorf, 1980). 

 
It has been found that, on shorter time scales, fluctuations in supersaturation are 

generated by turbulent fluctuations of temperature and water vapor concentration 

(Siebert, 2017). It’s also been shown that turbulence plays a large role in 

precipitation formation in clouds (Devenish, 2012), especially in the initiation of 
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warm rain in cumulus clouds (Grabowski, 2013). A substantial part of rain droplet 

formation is collision and coalescence. This is the process of smaller droplets being 

whipped around and running into each other, which would be heightened in a more 

turbulent environment. Thermodynamic and fluid-mechanical interactions between 

droplets and the surrounding air also play a large role in microscale properties in 

clouds, which affects the clouds interactions with atmospheric radiation and 

chemicals (Shaw, 2003). Therefore, to better understand cloud behavior, it is 

important to understand many types of turbulence within supersaturated conditions. 

 

The presence of two prominent variables in cloud turbulence, humidity and 

temperature, makes it more complicated than most turbulence simulated. For the 

temperature ranges considered in this paper, it has been found that the water 

vapor’s contribution to buoyancy is overpowered by the thermal contribution 

(Chandrakar, 2018). Therefore, we will be focusing on studying thermal turbulence 

induced by a difference in temperature.  

 

Furthermore, supersaturation turbulence in clouds plays a large role in the creation 

of precipitation. In a paper done by Siebert and Shaw in 2017, it was mathematically 

shown that the variance of temperature and variance of water vapor are large 

contributors in supersaturation variance (Siebert, 2017). In most Rayleigh-Benard 

turbulence, variations in temperature are strongly correlated with variations in 

supersaturation. This suggests that it is likely possible to use turbulent temperature 
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fluctuations as a viable replacement for turbulent supersaturation fluctuations under 

certain conditions. This will allow the community to better simulate the formation of 

precipitation in clouds.  

 

 
1.4: Pi Chamber at Michigan Tech 

There is a cloud chamber at Michigan Technology University (Michigan Tech) 

known as the Pi Chamber. Due to its cylindrical wall boundary having a diameter of 

2 meters and a height of 1 meter, it has an inner, working volume of 3.14 𝑚3 (hence 

the name). In the cloud chamber at Michigan Tech, turbulence is induced by heating 

the floor and cooling the ceiling, thus creating Rayleigh-Benard turbulence (see 

figure 2). 

 

This Pi chamber is capable of pressures ranging from 1,000 to -60hPa. It can sustain 

temperatures from -55°C to 55°C, which spans the temperature range of most 

tropospheric clouds. Through aerosol generators, droplets ranging from 5µm to 

40µm can be added to the chamber. This induces cloud growth. Through the 

manipulation of these variables, the Pi Chamber can produce clouds in a controlled 

environment which are very close to clouds found in nature (Cheng, 2016). 

Turbulent humidity fluctuations are measured with an open-path gas analyzer (Licor 

LI7500) which gives the average over a ~10 cm path. (Anderson, 2021) 
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The difference in temperature between the floor and the ceiling is what creates 

turbulence in the Pi chamber. The air close to the floor is warmed and so begins to 

rise. The ceiling is kept at a cooler temperature than the floor. When the air reaches 

the ceiling, it cools and so begins to sink. This constant upward and downward 

motion generates turbulence. The turbulence created is made up of eddies of 

varying sizes, including a large eddy roughly the size of the Pi Chamber. This is the 

dominant circulation in the Pi Chamber (Anderson et al., 2021). It can be monitored 

using resistance temperature detectors (RTDs) and a sonic anemometer. 

 
This chamber has been used in many experiments and has been the center of many 

papers over the past seven years. Its ability to control variables such as temperature 

and humidity makes it invaluable when studying cloud behavior. When used with 

RTDs, lasers and other measuring devices, the Pi chamber has given much insight 

into cloud turbulence and how to model it. 

 
Experiments can be run for both dry and wet conditions. Wet conditions are created 

by moistening a paper lining on both the ceiling and the floor. Wet conditions are 

further divided into moist and cloudy conditions. In cloudy conditions, there is the 

presence of sodium chloride aerosol particles which, if supersaturated conditions 

are achieved, lead to cloud droplet formation. They are not present for moist 

conditions. 

 
In 2018, a paper was published showing the effects of various variables on 

turbulence in the clouds formed in the Pi chamber (Niedermeier, 2018). In the study, 
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both small-scale and large-scale flow properties of turbulent Rayleigh-Benard 

convection were investigated. It was found that the addition of water vapor 

influenced the turbulent flow. In all cases, the turbulent kinetic energy dissipation 

rate increased with increasing temperature difference, but the slopes were different 

for wet and dry convection. No clear difference between moist and cloudy conditions 

was observed. It was believed that this was due to low liquid water content which 

did not allow for complete cloud formation. Similar variations were found with the 

first normalized characteristic oscillation frequency which increased with increasing 

temperature difference and changed slope shape between wet and dry conditions 

but not between moist and cloudy conditions. It would appear that the sloshing or 

torsional mode of the large-scale circulation and the turbulent flow or energy 

dissipation rate seems to be influenced by the same mechanism additional to the 

effect of buoyancy alone. These observational results provide supporting evidence 

that the large-scale circulation is insensitive to phase composition or interfacial 

physics and rather depends only on the strength of the turbulence. 

 
Recently, the Pi Chamber has been involved in several cutting-edge experiments 

and research developments (Desai, 2018; Thomas, 2019). Something that has long 

been considered as a mechanism for bridging the cloud droplet growth gap between 

condensation and collision–coalescence is diffusional growth of droplets by 

stochastic condensation and a resulting broadening of the size distribution. Some 

studies have shown that fluctuations in supersaturation can lead to changes in 

droplet size distribution at the condensational stage of droplet growth. However, few 
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studies took into account possible fluctuations in the phase relaxation time of a cloud 

parcel. To help better understand these possible oversights, the Pi Chamber was 

used to study steady-state cloud conditions. Clouds were created under monitored 

conditions and digital inline holography was used to directly observe the variations 

in local number concentration and droplet size distribution. It was found that the 

variability in integral radius is primarily driven by variations in the droplet number 

concentration and not the droplet radius (Desai, 2018). 

 
The Pi Chamber at Michigan Tech offers the opportunity to study aerosol-cloud 

microphysics interactions in a turbulent environment with minimal changes to 

controlling variables such as mean temperature and mean humidity. In 2019, an 

experiment was run in which an atmospheric large-eddy simulation (LES) model 

with spectral bin microphysics was scaled down to simulate these interactions, 

allowing comparison with experimental results. To explore the effects of sidewalls 

on the bulk mixing temperature, water vapor mixing ratio and supersaturation, a 

simple scalar flux budget model was developed. The LES dynamics results were 

then compared to image velocimetry measurements from the Pi chamber. The 

simulated results and experimental results matched quantitatively. This suggests 

that the LES used is able to simulate steady-state cloud conditions and broadening 

of the cloud droplet size distribution with decreasing droplet number concentration, 

as was done in the experiments. This opened a path for further detailed 

intercomparison of laboratory and simulation results for model validation and 

exploration of specific physical processes (Thomas, 2019). 
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1.5: Purpose of Research 

Although potential LES subgrid models have been researched for many types of 

turbulence, it was generally done in dry air. There has been little research into 

models for LES in saturated and supersaturated air. However, understanding and 

modeling turbulence in supersaturated air is necessary (Brinkop, 1995). Turbulence 

plays a large role in cloud behavior and precipitation formation as precipitation is 

often stimulated and grown through turbulent behavior (Devenish, 2012). So, it is 

important to know how to model turbulence in saturated environments. 

 
Turbulent fluctuations of supersaturation are difficult to measure. They are, 

however, closely correlated to turbulent fluctuations of temperature (Chandrakar, 

2020). Temperature is a much easier scalar to measure than supersaturation. In this 

research, the turbulent temperature fluctuations are measured using 

thermistors. The humidity fluctuation is also measured using the instrumentation in 

the Pi Chamber, though not as delicately. It is measured over a path, which is 

different than temperature which is averaged at a point. 

 
Calculating models with greater accuracy for turbulent temperature fluctuations in 

saturated air will greatly improve the community’s ability in modeling the 

development of clouds. This will help in the forecasting of precipitation and storms 

and in furthering the understanding of cloud formation and behavior. 
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Chapter 2 

Methods 

 
2.1: Experiments Within the Pi Chamber 

Naturally occurring clouds are large, complex and high above the surface. They can, 

therefore, be very difficult to study directly. However, clouds can be formed and then 

studied in laboratory settings. The most common way to do this is with a cloud 

chamber. Cloud chambers can form clouds under many different conditions that 

naturally exist, and some that do not naturally exist, in the atmosphere. In these 

cloud chambers, clouds can be formed at different temperatures and different 

aerosol levels, and can be sustained for long periods of time. This makes it possible 

to study long-term averaging in what would naturally be unstable conditions.   

 

There is a particular cloud chamber at Michigan Tech University (MTU) known as 

the Pi Chamber. Due to its cylindrical wall boundary having a diameter of 2 meters 

and a height of 1 meter, it has an inner, working volume of 3.14 𝑚3 (hence the 

name). In the cloud chamber at MTU, turbulence is induced by heating the floor and 

cooling the ceiling, thus creating thermal turbulence (Chang, 2016).  
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Figure 2. Model of Pi Chamber at MTU. In this sketch, the side door is open, and 

the cylindrical panel is in place. As can be seen, the walls, ceiling and floor are set-

up for temperature and pressure control. Moisture is added by saturating a mesh 

cloth on the floor. Access ports allow for cloud nuclei to be added. (Chang, 2016) 

 

 

For the experiments performed in the Pi chamber in summer of 2022 and used in 

this thesis, resistance temperature detectors (RTDs) and a sonic anemometer were 

positioned at mid-height throughout the chamber. There were eight RTDs which 

were spaced throughout the chamber close to the wall in order to monitor the large 

scale flow of the chamber. The sonic anemometer was placed directly under the 

thermistor array so as to measure the speed of the air coming down onto the 

thermistor array. Figure 4 shows a diagram of the set-up of the Pi Chamber. The 

RTDs are on the horizontal midplane of the chamber and are spaced with π/4 



21 
 

radians between each one and its neighbors. The RTDs used were 100 𝛀, thin-film, 

platinum-resistance thermometers (Minco, S17624, 100 𝛀 ± 0.12 %).  

 
The thermistors used (see figure 3) were dissipation constant in still air within a time 

frame of 0.5 seconds. Their nominal resistance at 25° F to 77° F was 2,000𝛀 to 

8,000𝛀. Their termination material was glass to metal header. The thermistors 

consisted of two beads, each bead being mounted to a special hermetically-sealed 

header and having a 75mm lead length. (Honeywell, S115)          

 

  

Figure 3. Close up of thermistors used. Their termination material was glass to metal 

header. The beads were mounted to a special hermetically-sealed header and had 

a 75mm lead length. (Honeywell, S115) 
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Figure 4. Top view diagram of Pi Chamber. Eight RTDs are positioned at mid height 

along the walls of the chamber. The thermistor array and sonic anemometer are 

positioned along the wall close to the downdraft. (Provided by Ian Helman at 

Michigan Tech) 

 
 
The thermistor array is built from ten thermistors as shown in figure 5 (a). They were 

set up in two rows. The first row had thermistors 1 through 7. The second row had 

thermistors 8 through 10. The distance between the thermistors within the row 

(between 1 and 2, or 8 and 9), is referred to as 𝛿x. The distance between the two 

rows (between 3 and 8, or 5 and 10) is 𝛿y. The thermistors were wired to adjustable 

bread boards so their position along the array could be changed. This made 𝛿x 

adjustable. 𝛿y was held constant at ~6cm (see figure 5). 
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(a) 

 

 
(b) 

 

 
(c) 

 
Figure 5. a) diagram of thermistor array. b) Photo of thermistors mounted in the Pi 

Chamber. c) Photo of thermistor array mounted with the sonic anemometer; 

downdraft depicted. 
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2.2: Turbulence in the Chamber 

The turbulent flow within the Pi Chamber is induced by the difference in temperature 

between the floor and the ceiling. The air close to the floor is warmed and so begins 

to rise. The ceiling is kept at a cooler temperature than the floor. When the air 

reaches the ceiling, it cools and so begins to sink. This constant upward and 

downward motion creates Rayleigh-Benard turbulence. 

 
The turbulence created is made up of eddies of varying sizes, including an eddy 

roughly the size of the Pi Chamber. This is the dominant circulation in the Pi 

Chamber. It can be monitored using the RTDs and thermistor array. 

 
The thermistor array was attached to a harness which sat close to the wall above 

the sonic anemometer. The thermistors pointed towards each other facing the 

ceiling in the portion of the large eddy down-draft (see figure 5 (c)). This was done 

to diminish the effects of instrumentation on the turbulence being measured. 

 

 

2.3: Large Scale Circulation of the Pi Chamber 

In order to determine the direction of the large scale circulation (LSC) within the Pi 

Chamber, histograms of the data taken were plotted. Although the temperature of 

the Pi Chamber averages to 20°C, the ceiling is cooler, and the floor is warmer. 

Because this experiment is focusing on the turbulent fluctuations, we are less 

concerned with the mean temperature and more with the changing in temperature. 
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However, this information can be used to determine the LSC. Because of this, if the 

thermistor array is located in an updraft, the average air temperature will be slightly 

cooler than 20°C and the histogram will be positively skewed. If it is located in a 

downdraft, the average air temperature will be slightly warmer than 20°C and the 

histogram will be negatively skewed.  

 
To find the LSC, a histogram is taken of the data. If the histogram is positively 

skewed, the thermistors are in an updraft. However, if the histogram is negatively 

skewed, the array is in a downdraft, which gives cleaner data. This method is similar 

to the method used in Anderson et al. (2021). It is important that the thermistor array 

be close to the downdraft to ensure the purest representation of thermal turbulence. 

This downdraft will be used as the mean wind later on in the use of Taylor’s Frozen 

Turbulence Hypothesis. 

 

Figure 6 shows the raw data histogram for thermistor 5 of various runs. Most 

histograms showed a negative skew which is consistent with the thermistors being 

in the downdraft. However, it was noticed that the histogram plots of the data taken 

on the 8th showed the LSC changing directions for an hour or two. Figure 6 subplot 

(e) shows the LSC changing directions during the 15K run. Due to this, more 3.5cm 

spaced data was taken later. The 15K run for the 3.5cm data was replaced with the 

newer data. The newer data’s histogram is shown in subplots (g) and (h). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
Figure 6. Raw data histograms for thermistor 5 of various runs. Shown are 5K (a), 10K 

(b), 15K (c) and 20K (d) for 2 cm spacing. Also shown are 15K (e,f) and 20K (g,h) for 3.5 

cm spacing taken two different days.
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2.4: Experimentation 

For the experiment, the Pi chamber was then closed and ran for twelve hours. During this 

time, the difference in temperature was stepped up every two hours. The difference in 

temperature between the floor and the ceiling were 20k, 15k, 10k and 5k, with the average 

of the floor and the ceiling remaining at 20°C. 

 
The temperature was monitored. When it stabilized, the thermistor array gathered data 

for an hour. After the data was gathered, the temperature was changed to the next step. 

This continued for all four temperature steps. This experiment was repeated three times: 

𝛿x = 2cm, 𝛿x = 3.5cm, 𝛿x = 5cm. 𝛿y remained at ~6cm. 

 

Figure 7 shows a sample of the raw data collected. The thermistors are calibrated to 

measure temperature fluctuations, but not an accurate mean temperature. As seen in the 

data, the thermistors are biased from each other. This is not important with the 

calculations being done in this research as the average will be subtracted out.  The LSC 

periodicity can be seen in Figure 7. There is a slight periodicity to the overall highs and 

lows which is caused by the Pi Chamber’s LSC. 
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(a) 

 
(b) 

 
Figure 7. Raw thermistor data. Figure (a) shows the raw data for the entire hour-long run 
for all ten thermistors. Figure (b) is approximately ten minutes of data from only four 
thermistors.  
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2.5: Filtering for Models 

After the data was collected, the Fast Fourier Transform was used to convert it into 

frequency space. Once the data was in frequency space, it was filtered and then 

converted back into time space. This imitates how the same data would look with a larger 

grid-spacing. The data was then split into the data which was not filtered out and the data 

which was filtered out which imitates the grid-scale turbulence and the subgrid-scale 

turbulence (see figure 1). The subgrid-scale turbulence was what was used in a priori 

analyses to finish crafting the subgrid-scale turbulence models. 

 

Two filters were used in this experiment, the box filter and the Gaussian filter (Pope, 

2000). The box filter takes pockets of turbulence and effectively smooths them out 

(equation 6). Though the turbulence is cut-off sharply in physical space, it adds a slight 

oscillation to the turbulence data in wavenumber space. Often, this slight oscillation is 

inconsequential. In an effort to eliminate the oscillatory effects of the box filter in 

wavenumber space, the sharp spectral filter gives a sharp cut-off in wavenumber space 

(equation 7). Turbulence is not averaged in the same way in physical space. The 

Gaussian filter filters the data in wavenumber space through a Gaussian curve (equation 

8). Unlike previous filters, there is not a dramatic suppression of high-wavenumber 

components, but rather a gradual cut-off. 

 



30 
 

𝐺̂(𝑘) =
sin(

1

2
𝜅Δ)

1

2
𝜅Δ

                (equation 6) 

               𝐺̂(𝑘) = 𝐻(𝜅𝑐 − |𝜅|)       (equation 7) 

           𝐺̂(𝑘) = exp (−
𝜅2Δ2

24
)                              (equation 8) 

 
It can be useful when there is an interest in both wavenumber space and physical space. 

Figure 8 shows the data in physical space and wavenumber space for unfiltered, box-

filter, sharp-spectral-filter and the gaussian-filter. 

 
The filters filter frequencies of roughly 20 Hz and greater. The effects of the filters can be 

seen on the graphs on the right. The sharp spectral filter cuts out all filtered frequencies. 

On the left, it can be seen that the filter has averaged out the data, making it less extreme. 

The box filter diminishes the highest points in the data in physical space, but has little 

other effect. In wavenumber space, the oscillation caused by the box filter can be clearly 

seen in the frequencies after 20Hz. The effects of the Gaussian filter in physical space is 

very similar to the box filter. The difference can be seen in wavenumber space. Similar to 

the sharp spectral filter, the Gaussian filter eliminates the higher frequencies. However, it 

does so gradually rather than with a sharp cut. 

 
For the data which was collected summer of 2022, the turbulence in physical space was 

of more interest than the turbulence in spectral space. Because of this, only the box 

filter and Gaussian filter will be used for the research done in this thesis. 
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Figure 8. Data in physical space and frequency space for no filter and all three filters. 
Data shown is from the 15K 3.5cm run on 07 Jul, 2022. Data in physical space is zoomed 
up on for clarity. 
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Chapter 3 

Results 

 

3.1: Subgrid Scale Temperature Variance 

Using both the box-filter and Gaussian-filter filtering systems, the data is filtered in 

frequency space. This filtered data is then averaged for every time step over three 

thermistors (see figure 9). This filtered data is referred to in equations as 𝜃̃. The raw data 

is also squared before being filtered, which gives 𝜃𝜃̃. The difference between the squared 

data filtered and the filtered data squared, is 𝜏𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 (equation 9). 

        𝜏𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 = 𝜃𝜃̃ − 𝜃̃2                                  (equation 9) 

 
 𝜏 is the subgrid variance of the data, also referred to as the scalar unmixedness. It 

measures the degree of local homogeneity of the turbulence (Sagaut, 2001). 

 
After 𝜏 is calculated, it is used to find the model coefficients for the two models of interest. 

The model coefficient is found by averaging 𝜏𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 over time and dividing it by the 

time-average of the unscaled model (see equations 11 and 13). A different model 

coefficient is found for every spatial width and temperature difference. A table of all the 

model coefficients can be seen in table 1. 
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Figure 9. Representation of filtering to get 𝜃̃, 𝜃𝜃̃ and 𝜃̂̃. 𝜃̃ is the filtered data of three 

thermistors. 𝜃𝜃̃ is the average of three thermistors’ data after being squared, filtered and 

then averaged. 𝜃̂̃ is five 𝜃̃ filtered.

 
 
After the model coefficient is found, it is multiplied by the unscaled model to make the 

final model. How well this model does can be seen by comparing it to 𝜏𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 on a 

point-by-point analysis. The models were analyzed by the use of joint histograms and 

finding the correlation coefficients for each model and its corresponding calculated 𝜏. 

These joint histograms can be seen in figures 19-26. A table of the correlation coefficients 

between 𝜏𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 and the models is shown in table 2 and figure 27. 

 

 
3.2: Models Being Studied 

Generally, the models made for LES are based on knowledge of fluid mechanics and 

small-scale turbulence. However, there are variables and coefficients in the models which 
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remain unknown. To build and better understand these models, data from the Pi chamber 

experiments will be used to find these unknown coefficients. First, the subgrid-scale data 

is filtered and compared to the model. Through this comparison, it can be found 

mathematically the best values for the model coefficients. The models were then 

compared to 𝜏𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 (see equation 11 and equation 13) to determine how well the 

model works. The ways to compare the models with 𝜏𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 include histograms, joint 

histograms and correlation coefficients. 

 
In this paper, a different model coefficient is found for every horizontal spacing and every 

temperature step. Table 1 shows what these coefficients are. 

 
3.2.1 Scale-Similarity Model 

The first model of interest is the scale-similarity model (see equation 10). A scale-

similarity type model can be obtained by using the zeroth-order expansion of the 

deconvolution operator (Sagaut, 2001). 

 

                                                𝜏𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 = 𝐶𝑠𝑖𝑚((𝜃̃2)̂ − (𝜃̂̃)2)                  (equation 10) 

 

In equation 10, 𝜃̂̃ represents the filtering of five 𝜃̃s. Because each 𝜃̃ is the filtering of three 

thermistors, seven thermistors are necessary to calculate a single value for 𝜃̂̃ (see figure 

9). In this paper, 𝐶𝑠𝑖𝑚 will be calculated via equation 11. Table 1 and figure 10 show the 

values calculated for 𝐶 for both the box-filter and the Gaussian-filter.  
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⟨𝜏𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑⟩

⟨((𝜃̃2)̂−(𝜃̂̃)
2
)⟩
= 𝐶𝑠𝑖𝑚                         (equation 11) 

In the equation shown above, 𝜃̃ and 𝜃̂̃ were found using the method shown in figure 9. 

𝜏𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 was found using equation 9 and then averaged over time. The model shown in 

equation 10 was calculated and then also averaged over time. Averaging them both and 

then dividing 𝜏𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 by the unscaled model gives the average over time of 𝐶𝑠𝑖𝑚 from 

equation 11. This average 𝐶𝑠𝑖𝑚 will be used for every point in time for the same spacing 

and temperature difference.  

 
3.2.2 Gradient Model 

The other model being investigated is the Gradient model. In 1991, Germano et al. 

proposed a model which would come to be known as the Germano model. At the time, 

he argued that models of subgrid-scale eddy viscosity up to that point were unable to 

represent correctly with a single universal constant for different turbulent fields. This 

included fields in rotating or sheared flows, near solid walls, or in transitional regimes. 

Germano’s model was an attempt to fix these drawbacks. The model is based on an 

algebraic identity between the subgrid‐scale stresses at two different filtered levels and 

the resolved turbulent stresses.  

 
Mostly, the identity has been applied to closures for the subgrid-scale fluxes required in 

large eddy simulations in the bulk of turbulent flows. However, the basic ideas underlying 

the Germano identity can be applied in various other contexts. These various applications 

are explored by Meneveau, 2012. One application is the building of the Gradient model 
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used in this paper. This model is found using a dynamic procedure based on a Germano-

type identity (Meneveau, 2012). Equation 12 shows the model used. 

                 𝜏𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 = 𝐶𝑔𝑟𝑎𝑑(Δ̂)
2
|∇𝜃̂̃|

2

    (equation 12) 

 

For this model, 𝐶𝑔𝑟𝑎𝑑 will be calculated via equation 13. 

 

  
⟨𝜏𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑⟩

⟨(Δ̂)
2
|∇𝜃̂̃|

2
⟩
= 𝐶𝑔𝑟𝑎𝑑     (equation 13) 

 

In this equation, 𝜃̂̃ was found using the method shown in figure 9. ∇ denotes the gradient 

of 𝜃̂̃. The derivative in the x direction was found by comparing data from various 

thermistors within the same array. The derivative in the y direction was found by 

comparing the data from thermistors in the two arrays; because the derivative was being 

found for 𝜃̂̃, three thermistors were needed in the second array for this calculation. The 

derivative in the z direction was found using Taylor’s Frozen Turbulence Hypothesis; the 

speed of the turbulence was found using the sonic anemometer allowing for the derivative 

in the z direction to be found for each thermistor individually by comparing earlier readings 

to later readings (Schlipf, 2011).  𝜏𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 was found using equation 9 and then 

averaged over time. The model shown in equation 12 was calculated and then also 

averaged over time. The  𝐶𝑔𝑟𝑎𝑑 calculated in equation 13 was used for every point for the 

same spacing and temperature difference.  
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(d) 

 
Figure 10. Model coefficients versus difference in temperature between the floor 

and the ceiling. Figures shown are of the Scale-Similarity Model and Gradient Model 

for all three spacings for box filter (a-b) and Gaussian filter(c-d). 

 

In both equation 11 and equation 13, a single value of 𝐶 is found for every 

temperature step and change in distance spacing. The values for these model 

coefficients are shown in table 1 and figure 10.  

 

These coefficients were then inserted back into equations 10 and equation 12. The 

calculated models were then compared to the original 𝜏𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 calculated by 

equation 9. Histograms and joint histograms comparing the models to 𝜏𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 are 
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shown in figures 11-26. A correlation coefficient was calculated for 𝜏𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 and 

the scaled models. These values are shown in table 2 and figures 19-27. 

 
Figures 11-18 show the normalized histograms of modeled 𝜏 and 𝜏𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 for both 

the scale-similarity model and the gradient model. On the left are the full histograms. 

On the right are the histograms zoomed up on the peaks. The comparison of the 

histograms helps to demonstrate how well the model represents the gathered data. 

When the peaks are close together and roughly the same count, this shows that the 

modeled data is a good representation of the statistics of the gathered data. 

 

 

 
 
Table 1. Model coefficients for all three spacings, all four temperature gradients, 

both models and both filters. The model coefficient is a scaling variable between 

𝜏𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 and the models and so has no units. 
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Figure 11. Normalized histogram plots of 5K measurements at three different widths. 

On the Left is the full plot. On the right is the plot zoomed in at the peak. Gaussian-

filter was used for all plots shown. 
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Figure 12. Normalized histogram plots of 10K measurements at three different 
widths. On the Left is the full plot. On the right is the plot zoomed in at the peak. 
Gaussian-filter was used for all plots shown. 
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Figure 13. Normalized histogram plots of 15K measurements at three different 

widths. On the Left is the full plot. On the right is the plot zoomed in at the peak. 

Gaussian-filter was used for all plots shown. Data taken on the 7th was replaced 

with data taken on the 20th due to the data taken on the 7th being in the updraft 

instead of the downdraft. 
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Figure 14. Normalized histogram plots of 20K measurements at three different 

widths. On the Left is the full plot. On the right is the plot zoomed in at the peak. 

Gaussian-filter was used for all plots shown. 
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Figure 15. Normalized histogram plots of 5K measurements at three different widths. 

On the Left is the full plot. On the right is the plot zoomed in at the peak. Box-filter 

was used for all plots shown. 
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Figure 16. Normalized histogram plots of 10K measurements at three different 

widths. On the Left is the full plot. On the right is the plot zoomed in at the peak. 

Box-filter was used for all plots shown. 

 



45 
 

    
 

    
 

    
 

Figure 17. Normalized histogram plots of 15K measurements at three different 

widths. On the Left is the full plot. On the right is the plot zoomed in at the peak. 

Box-filter was used for all plots shown. Data taken on the 7th was replaced with data 

taken on the 20th due to the data taken on the 7th being in the updraft instead of 

the downdraft. 
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Figure 18. Normalized histogram plots of 20K measurements at three different 

widths. On the Left is the full plot. On the right is the plot zoomed in at the peak. 

Box-filter was used for all plots shown. 
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In the normalized histograms shown in figures 11-18, the Gradient model peaks 

sooner and higher than the subgrid scale variance. The scale similarity model shows 

closer resemblance to the true subgrid scale variance, peaking close to the same 

place and same height. This suggests that the scale similarity model does a better 

job of modeling the actual variance. However, the Gradient model tends to show 

lower values than the actual variance. This suggests that the Gradient model under-

represents the energy and momentum held in the subgrid scale turbulence. 

 

Joint histograms were also taken of the models and 𝜏𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 for both the scale-

similarity model and the gradient model. Figures 19-26 show the joint histograms. 

The joint histograms were zoomed in to the corner of greatest interest as determined 

by the level of correlation. A one-to-one line was plotted on the graphs as well to 

show how the joint histogram deviates from linear correlation. On most of the graphs 

it can be seen that the modeled 𝜏 has lower values than 𝜏𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑. The scale-

similarity model at higher differences in temperature shows a greater degree of 

linear correlation (compare figures 19 and 23 to figures 22 and 26). For the gradient 

model, however, 𝜏 continues to have much lower values than 𝜏𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 regardless 

of the change in temperature. As with the histograms, this suggests that the 

Gradient model models less energy and momentum in the subgrid scale turbulence 

than the true subgrid scale turbulence shows.  
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Figure 19. Joint-histogram plots of 5K measurements at three different widths. On 

the Left is the joint-histogram plot of the calculated variance versus the scale-

similarity modeled variance. On the right is the joint-histogram plot of the calculated 

variance versus the Gradient modeled variance. Gaussian-filter was used for all 

plots shown. 
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Figure 20. Joint-histogram plots of 10K measurements at three different widths. On 

the Left is the joint-histogram plot of the calculated variance versus the scale-

similarity modeled variance. On the right is the joint-histogram plot of the calculated 

variance versus the Gradient modeled variance. Gaussian-filter was used for all 

plots shown. 
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Figure 21. Joint-histogram plots of 15K measurements at three different widths. On 

the Left is the joint-histogram plot of the calculated variance versus the scale-

similarity modeled variance. On the right is the joint-histogram plot of the calculated 

variance versus the Gradient modeled variance. Gaussian-filter was used for all 

plots shown. Data taken on the 7th was replaced with data taken on the 20th due to 

the data taken on the 7th being in the updraft instead of the downdraft. 
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Figure 22. Joint-histogram plots of 20K measurements at three different widths. On 

the Left is the joint-histogram plot of the calculated variance versus the scale-

similarity modeled variance. On the right is the joint-histogram plot of the calculated 

variance versus the Gradient modeled variance. Gaussian-filter was used for all 

plots shown. 
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Figure 23. Joint-histogram plots of 5K measurements at three different widths. On 

the Left is the joint-histogram plot of the calculated variance versus the scale-

similarity modeled variance. On the right is the joint-histogram plot of the calculated 

variance versus the Gradient modeled variance. Box-filter was used for all plots 

shown. 
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Figure 24. Joint-histogram plots of 10K measurements at three different widths. On 

the Left is the joint-histogram plot of the calculated variance versus the scale-

similarity modeled variance. On the right is the joint-histogram plot of the calculated 

variance versus the Gradient modeled variance. Box-filter was used for all plots 

shown. 
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Figure 25. Joint-histogram plots of 15K. On the Left is the joint-histogram plot of the 

calculated variance versus the scale-similarity modeled variance. On the right is the 

joint-histogram plot of the calculated variance versus the Gradient modeled 

variance. Box-filter was used for all plots shown. Data taken on the 7th was replaced 

with data taken on the 20th due to the data taken on the 7th being in the updraft 

instead of the downdraft. 
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Figure 26. Joint-histogram plots of 20K measurements at three different widths. On 

the Left is the joint-histogram plot of the calculated variance versus the scale-

similarity modeled variance. On the right is the joint-histogram plot of the calculated 

variance versus the Gradient modeled variance. Box-filter was used for all plots 

shown. 
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Figures 19-26 also show the correlation coefficient for each 𝜏 and 𝜏𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑. These 

coefficients are also shown in table 2 and figure 27. It does appear that the scale 

similarity model more closely resembles the statistics of 𝜏𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 from the raw data, 

and scale similarity model also has much larger correlation coefficients. 

 

Both the histograms and the joint histograms suggest that the scale similarity model 

is a strong model for the true subgrid scale variance. But the Gradient model under-

represents the energy and momentum contained within the subgrid scale 

turbulence. 

 

3.3: Interpretation 

The scale-similarity model has much higher correlation coefficients than the 

Gradient model. In all cases, what filter was used appeared to have very little, if any, 

impact. Figure 27 shows a comparison of the correlation coefficients. For the scale 

similarity model, there was a slight trend between the temperature difference and 

the model’s accuracy. This suggests that the model may do better in higher 

Reynold’s number situations. This same trend can be seen in the histograms; the 

scale similarity model more closely follows the true subgrid scale variance at higher 

temperatures and follows it much less at the 5K temperature difference. If this model 

is better at representing turbulent flow than laminar flow, it would make sense that 

it is a more accurate model at higher Reynolds number. Though nothing can be said 

for sure, it is promising that this model may show better results in more turbulent 
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situations. Other than this, the only variable which consistently impacted the 

correlation coefficient is which model, which version of 𝜏, was used. 

 

 

 

Table 2. Correlation coefficients between 𝜏 and 𝜏𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑. Correlation coefficients 

shown for all three spacings, all four temperature gradients, both models and both 

filters.   
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(a) 

 

 
(b) 

 
Figure 27. Correlation Coefficients for Gradient model (a) and scale-similarity model 

(b) plotted against temperature difference between the floor and the ceiling in 

degrees Celsius. Plots show all three spacings in both filters. 
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It can be seen on figure 27 and table 2 that which filter is used when the thermistors 

were spaced 3.5cm and 5cm apart has almost no impact. Minimal impact can be 

seen when the thermistors are spaced 2cm apart, slightly favoring the Gaussian 

filter in both models. It is possible this is because the smaller the grid spacing, the 

greater impact the small differences between the filters will have. But more 

variations would have to be tested to say this for sure.  

 
It appears which filter is used has negligible impact on the efficiency of the model. 

There does not appear to be any patterns in the correlation due to changes in 

spacing or temperature difference. Scale-similarity shows mild patterns between 

higher correlation with smaller spacing width and higher correlation with higher 

temperature change. The patterns are mild and more testing would need to be 

attempted to verify either of these correlations. 
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Chapter 4 

Conclusion 

 
Turbulent flow is characterized by fluids undergoing irregular flow patterns, which 

induces mixing and pseudo-chaotic behavior. Turbulent flow is characterized by 

swirling eddies feeding off of and interacting with each other. Often, when turbulence 

is studied, it is done so in reference to these eddies. Because of this, researching 

and modeling turbulent flow is generally focused on understanding eddies’ behavior. 

 
In the case of turbulence induced in the Pi chamber at Michigan Tech, the largest 

of these eddies has a diameter roughly the size of the vertical parameter of the 

chamber. This large-scale eddy is referred to as the LSC (large scale circulation) 

within the Pi Chamber. The direction of this LSC was found by taking histogram 

plots of the data collected by the thermistors and RTDs (see figure 6). The thermistor 

array was stationed in the downdraft of the LSC for the cleanest turbulent data. 

 
The Navier-Stokes equations are equations based on conservation of mass, 

Newton’s second law, the assumption that the fluid is non-compressible and the 

assumption that stress in the fluid is the sum of the diffusing viscous term and 

pressure term. In order to use the Navier-Stokes equations, the fluid must be treated 

as a continuous substance, ignoring the properties of individual molecules. Although 

DNS (direct numerical simulation) can be used to simulate systems, it is 

computationally expensive. Generally, LES (large eddy simulation) is favored. 
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For LES, turbulence is broken into grid-scale simulated flow and subgrid-scale 

modeled flow (see figure 1). Larger eddies are simulated using the Navier-Stokes 

equations while smaller eddies and forms of motion are modeled as the variable 𝜏 

(see equation 2). In this research, the turbulence measured was divided according 

to the size of the eddies in frequency space. Two filter types were used: box filter 

and Gaussian filter. The subgrid-scale turbulence was then simulated using a 

variation of the Navier-Stokes equations which takes the statistics of the modeled 

flow into account (see equation 2). LES is computationally reasonable and gives 

valuable and reliable results. However, its accuracy is dependent on the accuracy 

of the subgrid-scale model, 𝜏. 

 
In this research, we used two models. The first model used was the scale-similarity 

model (see equation 10) which can be obtained by using the zeroth-order expansion 

of the deconvolution operator (Sagaut, 2001). The other model being investigated 

is the Gradient model, which was designed to be a workable model in many different 

situations (see equation 12). Because the gradient model was being studied, the 

thermistor array was required to have both seven thermistors on the first row and 

three on the second (see figure 5 and figure 9).  

 
Although both of these models are based on physical understanding of fluid 

mechanics, there are variables and coefficients in the models which remain 

unknown. To determine these, data was gathered in the Pi Chamber at Michigan 

Tech. Through this a priori testing, the model was then calculated. The calculation 
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of these coefficients is shown in equation 11 and equation 13. A single value of 𝐶 is 

found for every temperature difference, change in filter width, both filter types and 

both models. This gives 48 calculated coefficients in all. The values for these model 

coefficients are shown in table 1 and figure 10.  

 
These coefficients were then inserted back into equation 10 and equation 12. The 

calculated models were compared to the original 𝜏𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑, calculated by equation 

9. A correlation coefficient was calculated for 𝜏𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 and the scaled models. 

These values are shown in table 2 and figure 27. 

 
In all spacings and the higher temperature differences, the scale similarity model 

appears to have performed well with correlation coefficients between 0.6 and 0.8. 

The histograms of the scale similarity model closely resembled the true subgrid 

scale variance, particularly at high temperature differences. The joint histograms 

also show that the scale similarity model is a good statistical representation of the 

true subgrid scale variance by showing a strong one-to-one correlation across many 

values. These are promising results for LES research in cloud turbulence. 

 

The Gradient model did not perform as well. The histograms and joint histograms 

suggested that it modeled the momentum in the system lower than the actual 

variance, and the correlation coefficients were around 0.2. This is a bit surprising 

because the Gradient model tends to be more widely used than the scale similarity 
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model. However, a correlation coefficient of 0.2 is not so low in the turbulence 

community as to invalidate it as a model. 

 

No prominent patterns were observed between the correlation coefficient between 

𝜏 and 𝜏𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 and either the temperature difference or the spacing of the array. 

Scale-similarity shows mild patterns between higher correlation with smaller 

spacing width and higher correlation with higher temperature change. But the 

patterns are small. To know for sure, more tests would have to be run. 

 

This research was done in the hopes that this could help the scientific community 

better establish models for use in LES in saturated air. There is a possible 

correlation between temperature turbulence in saturated air and turbulent 

fluctuations of supersaturation (Chandrakar, 2020). Accurate models of turbulent 

temperature fluctuations in saturated air will greatly improve the community’s ability 

to create models for LES for cloud formation and behavior.  

 

Much of precipitation in saturated conditions is formed through collision and 

coalescence. These interactions between droplets are governed by the turbulence 

within the cloud. Models showing the turbulent behavior of temperature and 

saturation in saturated conditions are necessary for understanding and modeling 

clouds and precipitation. 
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For future work, these models need a posteriori testing in various experiments. To 

do this, experiments would be run in a controllable chamber such as the Pi Chamber 

at Michigan Tech. An LES would be computationally built using the models designed 

in this research with the same initial conditions as the experiment. The turbulence 

simulated by the LES would then be compared to the turbulence measured by the 

experiment. How well the LES simulates the measured turbulence would be the 

actual test in how well the models model the subgrid scale turbulence. 

 

A posteriori tests must be performed on the models to know for sure how well they 

perform in LES for actual turbulence. However, the results that were found in this 

research are promising. The scale-similarity model shows correlation coefficients 

between 0.55 and 0.8. For LES models of turbulence, these are quite high. The 

results found in this paper appear to be very promising for future turbulent research. 
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