INFORMATION TO USERS

This dissertation was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted.

The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction.

- The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity.
- 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame.
- 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again beginning below the first row and continuing on until complete.
- 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced.

University Microfilms

300 North Zeeb Road Ann Arbor, Michigan 48106 A Xerox Education Company 72-29,917 WESKE, John Seddon, 1936-THE DISTRIBUTION OF THE AVIFAUNA IN THE APURIMAC VALLEY OF PERU WITH RESPECT TO ENVIRONMENTAL GRADIENTS, HABITAT, AND RELATED SPECIES. The University of Oklahoma, Ph.D., 1972 Zoology University Microfilms, A XEROX Company, Ann Arbor, Michigan

THE UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

THE DISTRIBUTION OF THE AVIFAUNA IN THE APURIMAC VALLEY OF PERU WITH RESPECT TO ENVIRONMENTAL GRADIENTS, HABITAT, AND RELATED SPECIES

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

degree of

DOCTOR OF PHILOSOPHY

BY

JOHN SEDDON WESKE

Norman, Oklahoma

THE DISTRIBUTION OF THE AVIFAUNA IN THE APURIMAC VALLEY OF PERU WITH RESPECT TO ENVIRONMENTAL GRADIENTS, HABITAT, AND RELATED SPECIES

APPROVED BY

C Nes

- +>

DISSERTATION COMMITTEE

PLEASE NOTE:

. .

* *

Some pages may have indistinct print. Filmed as received.

University Microfilms, A Xerox Education Company

TABLE OF CONTENTS

P	age
ABSTRACT	iv
INTRODUCTION	1
DESCRIPTION OF THE AREA	3
Geography and Climate	3 7
HISTORY OF PREVIOUS RESEARCH IN THE AREA	13
METHODS	14
The Gradients Field Data Mist-netting Weights	14 15 18 22
RESULTS AND DISCUSSION	23
Elevational Distribution Patterns The Humidity Gradient Ecological Sorting Mechanisms Niche Relationships within Selected Genera Ecological Specialists	23 41 47 57 84
ACKNOWLEDGEMENTS	88
LITERATURE CITED	90
FIGURES	93
TABLES	106
APPENDIX 1	109
APPENDIX 2	126

.

ABSTRACT

Distribution patterns and ecological relationships of birds in a forested area of the eastern Andes were studied in order to shed light on problems of species diversity. Three gradients were selected: two elevational gradients in uniformly well-watered forest from 600 m to 3500 m and a moisture gradient at nearly constant elevation going from humid, evergreen forest to seasonally dry, deciduous forest. Data were gathered through mist-netting and field observation.

Along the elevational gradients, the number of species decreased with elevation. At 600 m, 162 species were present, compared to 53 at 3500 m. The percentage of suboscine species in the forest avifauna decreased with elevation, while the percentage of New World, nineprimaried oscine species increased. Lowland species appeared to have narrower vertical foraging ranges than highland ones.

Among congeneric species pairs with non-overlapping elevational ranges, the higher elevation member tended to be larger in size than its lowland congener. Statistical significance was not shown, however.

Along the moisture gradient, the number of forest species remained nearly constant. However, if species of both mature forest and riparian vegetation were considered, there was a decrease in species diversity correlated with increasing dryness. In genera where both a

iv

riparian species and a forest species occurred in the humid area, the riparian species tended to be the sole representative in the dry forest. Frugivorous species were largely absent from the dry region, but species which feed on large insects were more numerous there than in the humid area.

Niche differences between closely related species were examined. The most prevalent means of ecological segregation between congeners was elevational replacement. Along the elevational gradients, there were numerous genera with two, three, or even four species whose elevational ranges were largely or entirely non-overlapping. In other cases, congeners were elevationally sympatric but differed in habitat preference, vertical stratification, feeding behavior, or size.

v

THE DISTRIBUTION OF THE AVIFAUNA IN THE APURIMAC VALLEY OF PERU WITH RESPECT TO ENVIRONMENTAL GRADIENTS, HABITAT, AND RELATED SPECIES

INTRODUCT ION

In recent years, an increasing amount of attention has been devoted to ecological investigation of tropical avifaunas. At least two reasons for this interest can be cited. First, features of tropical biotas such as high species diversity offer worthwhile problems for study. Second, when compared to temperate regions, the stable, nonseasonal character and lack of human disturbance in certain tropical areas provide distinct advantages in reducing environmental variables.

Work to date has emphasized the ecological relationships of bird species at a single locality (Moreau, 1948; Slud, 1960; Miller, 1963), or the comparison of avifaunas at separate localities differing in such features as habitat area and isolation (Vuilleumier, 1970) or climate, elevation, and vegetation (Orians, 1969). Orians called attention to both the need for ecological study of South American avifaunas and the advantage in working along gradients, where certain potential variables can be measured and others can be considered as essentially constant. To date, the only analysis of avian distribution and ecology

along environmental gradients in the tropics is embodied in work published by Diamond (1972).

Therefore, in collaboration with J. W. Terborgh, I undertook a study of the birds along gradients in the Apurimac Valley of Peru, where the eastern slope of the Andes meets the Amazon Basin. In this area, a continuous sweep of climax humid forest on the valley's slopes affords an elevational gradient, and a more gradual gradient in humidity exists from south to north in lowland forest. The present paper seeks to: 1) describe and explain gradient-related patterns in species diversity, familial composition, and vertical stratification; and 2) analyze competitive relationships and niche differences among closely related species. Terbough (1971) published a theoretical interpretation of distribution patterns along the elevational gradient, with particular emphasis on the alternative factors which limit elevational ranges of species.

Field work in the Apurimac Valley was carried out between June and September in 1965, 1966, 1967, 1968, and 1970. In the pages that follow, the pronouns "we," "us," and "our" refer collectively to members of the various field parties, all of whom contributed to the information reported here.

DESCRIPTION OF THE AREA

Geography and Climate

The Rio Apurimac is a major tributary of the Amazon. Our base was Hacienda Luisiana (12°39' S, 73°44' W, elev 600 m) on the Apurimac's west bank in the Department of Ayacucho, Perú (Figure 1). Across from Luisiana, in the Department of Cuzco, rises the northern portion of the Cordillera Vilcabamba. This range, whose peaks are believed to be over 4000 m high, is one of the largest areas of undisturbed wilderness remaining in the tropics (Baekeland, 1964). It is bordered on the west by the Río Apurímac-Ene-Tambo river system and on the east by Río Urubamba. At the range's northern tip the Tambo and Urubamba join to form the Rio Ucayali which in turn empties into the Amazon far to the north. To the south, the range is separated from the rest of the Cordillera Vilcabamba, a section of the Andes, by a pass between the Urubamba and Apurimac Valleys which is 2000 m in elevation. Thus, the northern Vilcabamba at elevations above 2000 m is effectively an island, isolated by lowlands from corresponding elevations in the Andean cordillera. Because of the lack of accurate topographic maps, one cannot determine the area of this insular portion. The entire northern Vilcabamba covers more than 20,000 sq km.

The west slope of the Apurimac Valley is the eastern face of an unnamed range which is part of the Cordillera Oriental of the Andes. The highest peaks in this range are about 5000 m and passes are about 4000 m.

The range is contiguous with the Peruvian "Sierra," the semi-arid highland area running the length of Peru which has been under extensive human use for centuries. The forest of the west slope has not been disturbed significantly by man above the 1150 m level. The straight-line distance across the valley in the Luisiana area from the crest of the western range to the crest of the northern Vilcabamba is about 50 km.

The topography of both sides of the valley is rugged. Fast-flowing tributaries of the Apurimac descend through canyons which are as much as 1000 m deep. Adjacent canyons are separated by steep-sided ridges. In some places mountain slopes rise directly from the Apurimac. In others, there is an area of flatland forming a valley floor between the river and two mountain slopes. The land comprising Luisiana is part of one of the largest such areas of flat or gently rising land, extending up to 10 km westward from the river.

Prior to the early 1960's, the Apurimac Valley was thinly settled, because of difficult access. A sparse, indigenous population of Campa Indians lived in the valley by hunting, fishing, and limited agriculture. A few pioneer farmers of mestizo or European descent have been present since the latter part of the 19th Century. A series of rapids on the Apurimac and the great distance to major settlements on the Amazon river system made contact between the valley and downstream points difficult. Contact with towns in the Sierra required an arduous three-day trip on foot or by mule over the west range. Coca and barbasco (the source of rotenone) were exported from the valley, but settlers lived mainly by subsistence agriculture. The disturbance of the natural vegetation by man was limited and localized. In 1962 a road was completed from the

Sierra to Puerto San Francisco on the river 18 km downstream from Luisiana. During the past decade there has been a great influx of settlers, mainly Quechua Indians from the adjacent Sierra, and the population of the valley, now estimated at 50,000, continues to grow rapidly.

Luisiana has a humid tropical climate. No official weather data are available, but our own observations indicate that the average daily maximum and minimum temperatures in July and August were approximately 31° and 19°C. There was little day-to-day variation. According to Sr. José Parodi, the owner of Hacienda Luisiana, annual rainfall averages 2900 mm. The driest months are June through September. Typically, dawn at Luisiana was damp and overcast, but by 08:00 or 09:00 the clouds dispersed, and bright sunshine and clear skies prevailed for the rest of the day. Occasionally, there was a cloudy day, and showers occurred at least once a week. We experienced a week in August 1965 with rain for part of each day. There is rarely any prolonged dry period.

On the valley slopes, of course, temperatures vary with elevation (Terborgh, 1971, figure 1). At 3000 m there are occasional frosts. At the higher elevations it is typically clear at dawn, and one looks down upon the valley filled with a sea of cloud. By 08:00 clouds begin to rise up the mountain slopes, and by mid-morning elevations above 1500-1800 m are normally "socked in" with clouds and fog. Rain is nearly a daily occurrence. At higher elevations we experienced afternoon thunderstorms, and the ground was covered once with sleet. At dusk the clouds dissipate rapidly, and the nights are almost always clear. No data on annual rainfall are available for the valley slopes, but they are well-watered

at all seasons. It was our impression that in the "dry" season at least, rain was more frequent but not as heavy as at Luisiana.

Once or twice a year the valley experiences a storm, probably of temperate zone origin. These result in heavy precipitation, strong winds, and temperatures up to 6° C below normal. After one such storm the puna grassland above 3500 m on the west side of the valley was covered with snow. However, snow-cover does not normally persist in either range.

Winds at all elevations are usually very light or calm, even on exposed ridges. The only exception occurs on the valley floor after several rainless days, when convectional activity may cause moderately windy conditions even within the forest.

As one proceeds along the Apurimac downstream from Luisiana, the valley gradually broadens. At the mouth of the Río Mantaro, some 50 km north of Luisiana, the ranges to both east and west are distant and the valley is very wide. The Río Ene, formed by the waters of the Apurimac and the Mantaro, continues northward with no ranges close at hand. However, the terrain is often hilly and the river passes through a steep-sided water gap at one point. Tall, humid forest flanks the Apurimac and the upper Ene, but the lower Ene passes through a dry area perhaps 60 km in length and of unknown width where a lower, mostly deciduous forest occurs. Farther downstream, one reenters the zone of abundant rainfall, Below the confluence of the Ene and the Perene, forming the Tambo, evergreen humid forest again prevails. Settlements and farms occur along much of the lower Apurimac, but few colonists have reached the Ene. Population along this river is limited to a few Campa villages.

Vegetation

Several naturally-occurring vegetational formations can be distinguished in the Apurimac-Ene valley:

Lowland humid forest.--The climax vegetation of the valley floor is tall, humid, evergreen forest. Like forests in areas of similar climate throughout the tropics (Richards, 1966), it is characterized by four distinct "layers": the understory, the subcanopy, the canopy, and huge emergent trees 50 m or more high whose crowns exceed the canopy. The understory, where ferns, arums, and cyclanths grow abundantly, is open enough to allow a person to walk with little or no cutting. Aside from leaf-litter there is no undecomposed organic matter atop the soil. In the canopy and sub-canopy lianas are common, but other epiphytes like bromeliads and mosses are not.

<u>Matorral</u>.--Along the river in areas affected by seasonal flooding or changes in the water table, one encounters a distinctive riparian formation. Immediately adjacent to the shore it consists of canebrakes and leguminous shrubs. On higher ground grows a woodland of balsa, <u>Cecropia</u>, and leguminuous trees like <u>Erythrina</u> over-standing an often impenetrable undergrowth of vine tangles, bamboo, <u>Heliconia</u> sp, etc. This varied habitat contains an avifauna quite distinct from that of lowland forest (Terborgh and Weske, 1969).

<u>Hill forest</u>.--On the lower mountain slopes the forest resembles lowland humid forest but differs in several respects. The four-layered character is present, but in general the trees tend to be smaller. Fewer emergents are present, and the understory is somewhat thicker. A few tree ferns, absent in lowland forest, are found here. Hill forest occurs

on slopes right across the Apurimac from Luisiana. Its differences probably result from factors associated with sloping terrain like drainage and soil thickness, rather than from any elevational change. Hill forest extends upward to an elevation of about 1390 m on the Vilcabamba side and 1660 m on the west side.

Cloud forest .-- Replacing the hill forest above these elevations is cloud forest. The transition is not abrupt, and one may consider an elevational belt of 50 m on either side of the elevations given above to be the hill forest/ cloud forest ecotone. However, in view of the apparent structural uniformity of hill forest over an elevational span of several hundred meters, the change occurs in a surprisingly short distance. Cloud forest is marked by the following features: 1) presence of moss jackets on limbs and trunks of trees; 2) abundance of other epiphytes like bromeliads, climbing ferns, and orchids festooning tree limbs; 3) an accumulation of undecomposed organic detritus on the ground; 4) increase in the number of palms and tree ferns; 5) denser understory with (on the Vilcabamba side) an abundance of climbing bamboo (Chusquea sp). The cloud forest, like forests at lower elevations, contains some very large trees reaching 40 m or more in height, but the layered character of the forest is not apparent and the canopy is often more open. Cloud forest extends upward to 2500 m in the Vilcabamba and to 3300 m on the west side. It is important to note that though the features listed above occur throughout the cloud forest zone, the forest at 2200 m does not look the same as that at 1600 m. The differences are of degree 2200 m in the Vilcabamba one finds the quintessence of cloud forest: luxuriant epiphytic growth, an abundance of tree ferns, moss

jackets on trunks which make saplings appear to have thrice their actual diameter, a deep and constantly wet mat of organic matter on the ground, and lush stands of <u>Chusquea</u>. At yet higher elevations the trees tend to be shorter and more contorted, with moss-covered, above-ground root systems.

The lower limit of cloud forest coincides roughly with the lower limit of the cloud layer which forms daily on the mountain slopes. It appears that this "ceiling" forms somewhat lower on the Vilcabamba side, on the average, than on the west side, a fact we cannot explain. This feature may account in part for the higher elevation of the hill forest/ cloud forest boundary in the west side. Another explanation rests on the exposure to the drying effects of sunshine. Both slopes are normally free of cloud each day until perhaps 09:00. The west-facing Vilcabamba slope does not receive the sun's rays directly in the morning hours, but the west side does. In the afternoon, when the sun shines directly on the Vilcabamba slope of the valley, the vegetation above 1600 m is almost always shrouded by clouds. It was our impression that the cloud forests of the entire west slope are less wet and not as lush in epiphytic growth as on the Vilcabamba side. Average temperatures at the same elevations on the two slopes do not differ appreciably.

Cloud forest begins at varying elevations in other parts of the Neotropics. For example, in the Sira Range in central Perú's Department of Huánuco, where we did field work in 1969, the highest peak rises to only 2200 m and the lower boundary of cloud forest was at 1300 m. On low peaks in Panamá, Myers (1969) found cloud forest below 1000 m, an elevation where hill forest is found on taller peaks. It seems to be a general rule that the lower the range, the lower the cloud forest extends.

Elfin forest .-- At higher elevations in the Vilcabamba, the vegetational formation is elfin forest. Along our access trail to the summit, the cloud forest/elfin forest ecotone was narrow. The trail led up a wide, steep mountain slope through cloud forest to a small peak which formed the lower terminus of a ridge leading ultimately to the crest of the range. As one attained this first 2500 m summit, one experienced a pronounced change in the vegetation within 50 meters of trail. The trees decreased in height from 20 m to little more than head-high, they had a distinct shrubby character with many branches, the leaves of most were tiny and densely grouped, and the ground was covered with a deep, springy mat of sphagnum and other plants. Many of the plants were of the Ericaceae. Small trees of the genus Clusia with rather large, thick, elliptical leaves were also present. These features distinguish the elfin forest in its most extreme form, as found on exposed ridges and peaks and at timberline. On broader portions of a ridge, trees 5 to 15 m tall with crooked trunks and limbs and thick epiphyte jackets occur along with the shrubby vegetation. Walking is often treacherous because one treads on elecated root systems, not the earth, and easily puts one's leg up to the thigh through a gap in the roots.

Actually, elfin forest is a rather varied formation, and it is hard to select one elevation as the elfin forest/ cloud forest boundary. Even at 3000 m, in ravines, sheltered dips along ridges, or on steep slopes continually in contact with rising clouds, one encounters forest which closely resembles cloud forest except that the trees are somewhat shorter than at lower elevations. In general, however, the vegetation assumes a more uniformly elfin forest character with increasing elevation. Because our trail, camps, and netlines were necessarily placed on ridges,

we found it expedient to consider the area over 2500 m as the elfin forest zone. From 3280 m to the crest of the range at 3530 m, a mixture of elfin forest and grassland occurs. The grass is extremely dense and over head-high in places. Trees grow even along the crest, and there is no well-defined treeline.

On the west side the cloud forest extends to much higher elevations. It changes somewhat in character with elevation, as the average height of trees decreases and some microphyllous trees appear, but a forest of 20 m high trees forming a fairly closed canopy can be found over 3000 m. An apt term for these upper cloud forests is "moss forest." The shrubby microphyllous elfin forest occurs only at treeline proper, often as border between cloud forest and puna grassland, or as tongues of woody vegetation extending out into the puna. On this side tree-line is well-defined, and the grass is waist-high or less.

Dry, deciduous forest.--The xeric zone along the lower Río Ene, centered at about 11°20' S, 74°15' W, supports a dry forest in which more than 80 percent of the trees are without leaves during the dry season. The tallest trees do not exceed 30 m and most are considerably lower. The canopy is broken, much light reaches the ground, and the layered character of humid forest (Richards, 1966) is not apparent. Among the more conspicuous plants are arborescent cacti attaining a height of 10 m and a deciduous tree of the family Bombacaceae with smooth, reddish bark, a bulbous trunk, and very soft wood. Ferns and arums are scarce or absent, but vine tangles and terrestrial bromeliad are abundant.

Around the edges of the dry zone is a transitional type of forest which retains the layered structure of humid forest and contains

numerous trees over 30 m in height, but which clearly shows the influence of the drier climate. The understory is more open than in humid forest, and more light reaches the forest floor because of occasional deciduous trees and appreciable leaf loss among the remainder. One of the commoner small trees is a spiny palm. Terrain has a strong influence on the height and character of vegetation in this area. On flat ground close to the river grows the tall and largely evergreen forest, but slopes immediately adjacent have a lower forest that was close to 50 percent deciduous.

HISTORY OF PREVIOUS RESEARCH IN THE AREA

Prior to our expeditions, little ornithological work had been done in the Apurimac Valley, and none to our knowledge along the Ene. In the 19th Century, Jelski collected at Monterico, about 30 km northwest of Luisiana. His work led to the discovery and description of a number of new forms (Cabanis, 1873). In 1963 H.-W. Koepcke and C. Koford were attached to a National Geographic Society Expedition which sought to establish an airstrip and explore the heights of the northern Vilcabamba (Baekeland, 1964). This goal was not achieved, but the two zoologists collected at Luisiana, and Koepcke reached 1500 m elevation in the Vilcabamba by entering the range on foot along the Río Pichari. The 1963 collections were available to me.

Chapman (1921) reported on his expedition to the Urubamba Valley. In this report he applied to the birds of the Peruvian Andean slope the concepts of life zones which he had developed in the northern Andes. The area he worked lies only about 130 km southeast of Luisiana but is located in the southern portion of the Vilcabamba and appears to be a somewhat drier region than that we studied, although humid habitats like cloud forest occur. Thus, the avifauna he investigated differs in numerous respects from ours. It has nevertheless been useful to compare our results with his and test his ideas of zonation on our elevational gradients.

METHODS

The Gradients

To study avian distribution along an elevational gradient in humid forest we made transects of the Apurimac Valley's east and west slopes at the level of Luisiana. The east slope, formed by the northern Vilcabamba range, was especially advantageous for this purpose and provides an example of our tactics and methods.

A continuous sweep of well-watered, undisturbed climax forest occurs from the river to the top of the range, all within a straightline distance of 20 to 25 km. We established a series of nine wilderness camps along the transect (Figure 2). Placement depended upon the availability of water and suitable tent sites, but we attempted to locate camps at elevations roughly an equal distance apart. Entry to the range was made initially along a mountain stream, the Rio Mapitunari, but it became necessary to leave the chasm of the stream and cut a trail up the mountain slopes and along the ridges from 850 m to the summit. Travel was on foot, and all food and equipment were transported in backpacks.

The transect of the west side was made in similar fashion except for an existing trail linking the settlements of the valley with those in the Sierra. Because cargo can now be transported by road, only an occasional caravan still used the trail. It provided us with easy access to the west slope and permitted the use of mules to carry our baggage.

The forest from 1150 m to treeline is uninhabited and undisturbed by man except for one abandoned farm along the trail at 1660 m.

The lowland transect of a humidity gradient was accomplished by traveling downriver on two balsa rafts and establishing camps in forest back from the river at several convenient localities.

Field Data

Along each transect we sought to obtain the following: 1) a complete list of the species of birds present; 2) the elevational range of each species; 3) an index of the abundance of each species at points within its range; 4) information on habitat selection of each species and the stratum of the forest it uses--its foraging height; 5) data on foraging behavior; and 6) measurements of weight and wing-length of all species. Principal methods of gathering data were mist-netting and observation. In order to avoid misidentifications, we tried to secure at least one specimen of all species encountered during the study. Terborgh and I shared equally the work of netting and processing live birds, surveying the avifauna, and determining elevational ranges. He carried out most of the observational work on foraging heights and behavior, a report of which he will publish separately (although certain information is included below). I collected and prepared most of the specimens. About 1300 study skins, along with several hundred formalin specimens, were obtained. The skins are located in the American Museum of Natural History and will be the subject of a separate taxonomic report.

Virtually no avifaunal survey of a Neotropical continental area is complete, and ours is no exception. Although 598 species have been

recorded in the valley, we have a few unidentified descriptions of birds which could not be collected or which were not seen adequately. Other species elude notice entirely. In particular, because the canopy often prevents one from seeing what is flying overhead, we were unable to gain a complete familiarity with the hawks and parrots at lowland and cloud forest camps. Again, because of the poor visibility we also have a less complete knowledge of birds of the cloud forest canopy above 2000 m than of canopy birds at lower elevations.

To determine elevations we used a Thommen altimeter which was set for standard barometric prossure of 760 mm. The elevation of each camp was determined by averaging the readings obtained over a number of days under different weather conditions, and a correction was made for temperature due to differences between observed temperatures and those for the Standard Atmosphere (Byers, 1959). With camps as reference points, elevations of intermediate locations were calculated by adding or subtracting the incremental elevation from the nearest camp.

If a bird was noted at elevation A and elevation B, its range was generally considered to span the region in between. There are several qualifications to this rule. Juvenal or immature birds occasionally wander outside of the normal elevationsl range of the species, a fact particularly evident for the Pipridae. In this family one can determine the presumed elevational breeding range by the presence of adult males, which have distinctive plumages. An immature male <u>Pipra chloromeros</u>, for example was netted at 2120 m, although upper limit of the species' regular range is 1360 m. The phenomenon is not limited to manakins. We

encountered a juvenal solitaire, <u>Myadestes</u> <u>ralloides</u>, at Luisiana, more than 1000 m below the cloud forests which are its normal habitat.

Allowance must also be made for the occasional record of a lone individual considerably outside its species' otherwise well-defined range, even if juvenal wandering cannot be proved. An example is provided by the honeycreeper Diglossa glauca, which is a common and conspicuous inhabitant of cloud forest between 1520 m and 2200 m, but which turned up once at 2830 m. In rugged country an anomaly like this may easily happen if a bird temporarily leaves its usual range to cross a higher ridge to get to similar habitat on the other side. Our banding has shown that individual birds do make local movements of up to 5 km. A third consideration is the change in ranges that can result from destruction by man of the natural forest (Mayr and Gilliard, 1954). For example, we found that two warblers, Myioborus miniatus and M. melanocephalus, occupy mutually exclusive elevational ranges in undisturbed forest, but Eugene Eisenmann (pers. comm.) informs me that they occur together in second-growth near the rail depot below Machu Picchu in the Urubamba Valley. Fortunately, it was possible to do nearly all our work along the gradients in habitat unaffected by man's activities, where competitive relationships are often simpler and more easily understood. Habitat disturbance alters niches in various ways. Forest canopy birds, for instance, frequently forage much closer to the ground in second-growth, as Pearson (1971) and Orians (1969) also noted.

It may be argured that since our data on ranges were obtained in only four months of the year, when rather few birds were breeding, they

may not provide a reliable pattern of elevational distribution. However, the lack of a sharply defined breeding time for the avifauna as a whole and of any marked seasonality in the availability of resources would suggest a fairly stable situation. Although competitive pressures might be more intense during the breeding season, competition is a year-round phenomenon, and spatial relationships would always be expected to reflect its effects.

Mist-netting

The use of Japanese mist-nets to capture birds is essential to a study of avian distribution in the humid Neotropics. Otherwise, many common understory species of birds with elusive habits would be thought rare or would be overlooked altogether. On the other hand, the catch in nets is strongly biased toward understory birds. Observation is equally important in making a thorough species inventory, and since canopy birds are relatively more easily seen, the two techniques of netting and observation complement each other nicely. Most likely to escape detection by either method are shy species of the forest floor which seldom fly, such as tinamous, quail, and ant-pittas.

At each study site 14 to 52 nets, each 12 m long, were strung along lanes approximately $1\frac{1}{2}$ m wide cut through the forest understory. Northeastern Bird-Banding Association Type A nets, with four shelves and a stretched mesh size of 36 mm, were used throughout. A net is normally set so that it covers the air space between 30 cm and 2 m above the ground. Because of irregular terrain the top of a net might sometimes

be as much as 3 m above the ground, but no attempt was made to net in the canopy. Most frequently nets were placed in a simple, long line along the main access trail so that an elevational extent of up to 100 m or more might be sampled. Occasionally, nets were set along the contours in two or three parallel lines 30 to 60 m apart.

The catch in nets is greatest for the initial day or two but then decreases as birds with net-experience apparently learn to recognize and avoid nets. We returned to some camps in subsequent years in order to capture more birds and increase the size of our sample. While in operation, nets were checked several times each day. Most of the catch was banded and released, while a minority was collected. The principal reason for banding was to recognize birds which had previously been caught and counted. Banding also provided information on survirorship from year to year and, in a few cases, of movements by birds from one camp to another.

By calculating the percentage of the total catch comprised by the catch of individuals of a given species, one obtains a measure of relative abundance of the species. Particularly when comparing different species and sometimes when comparing the status of the same species at different stations, relative abundance figures are biased by a number of factors. These include the foraging height of the bird, its size, the height of the vegetation, the topography of the net-line area, and the birds' competitive relationships. As noted above, species which inhabit the understory are efficiently sampled and form a disproportionately large part of the net sample with respect to the whole avifauna.

Subcanopy and canopy species which occasionally enter the understory are inefficiently sampled, and some canopy species are not sampled at all. The mesh-size we used is perhaps the best for non-selectivity, but no mesh is equally effective for all sizes of birds (Heimerdinger and Leberman, 1966); 36 mm nets probably catch birds weighing from 15 to 40 grams most efficiently. Smaller species sometimes slip through, and larger ones, especially columbids, entangle themselves less readily and may escape. Birds of any size will occasionally bounce off the net and not get caught.

When comparing status at two different stations, the height of the vegetation must be taken into consideration. Certain tanagers which inhabit both elfin forest and cloud forest are readily netted in the former habitat but only sparingly in the latter, because they remain in the upper part of the vegetational column. Also, in areas of tall forest, a net-line situated on a ridgetop occasionally will capture canopy birds that momentarily fly close to the ground while moving from one slope to another, while a net-line at the foot of a slope almost never would.

The change in foraging height resulting from the change with elevation in a bird's competitive relationships is sometimes reflected in its net-sample abundance. Two flycatchers of the genus <u>Leptopogon</u> provide an example, which Terborgh called to my attention. <u>L. amaurocephalus</u> ranges from 340 m to 930 m and <u>L. superciliaris</u> from 685 m to 1620 m. The former species inhabits mainly the understory and is readily netted. In the elevational zone it shares with <u>L. amaurocephalus</u>, <u>L. superciliaris</u> is netted infrequently since it forages mainly in the subcanopy, above

net-level and above the stratum occupied by its congener. Over 930 m elevation, however, <u>superciliaris</u> occurs alone and inhabits both subcanopy <u>and</u> understory, and at these elevations its presence in the understory is reflected in greater relative abundance in the net-sample.

With the above-noted qualifications in mind, one can use net-catch data to measure relative abundance of the more readily netted species. The abundance figures, which can be plotted graphically, are especially useful in comparing the status of the same species or of related species at different stations on a gradient.

While mist-netting provides a measure of the relative abundance of species which enter nets, attempts to determine relative abundance and population density of all species in an area were not successful and were abandoned. Spot-mapping techniques employed in the breeding season in temperate zone areas to count and map territories of singing males were unsuitable for several reasons: 1) Only a small percentage of birds in the area were singing. Even fewer showed territorial behavior. 2) What singing did occur was largely limited to the first half-hour of daylight, when visibility was very poor in the forest. We were in some cases unable ever to identify vocalizations which were heard morning after morning because we were unable to see and collect or identify the singer. 3) Individuals of many species customarily move about in roving, mixedspecies flocks. The home ranges of members of such flocks, and thus the numbers of individuals per unit area, are exceedingly difficult to ascertain. It is possible to make a subjective estimate of whether a species is common or uncommon, based on the frequency with which it is

seen. Such estimates are biased toward species which have conspicuous habits, and this bias is shown by comparison of data obtained through observation with data obtained through net samples.

Weights

Weights of live or freshly killed birds were taken with Pesola spring balances. Up to 100 grams the weight was read to the nearest 0.1 g and over 100 grams to the nearest 0.5 g. Unfortunately, weights were not obtained in the Apurímac Valley until the 1970 expedition, because we did not previously have available balances which were both accurate enough to be useful and, on the other hand, light, rugged, and compact enough to be carried along the netlines. Therefore, we lack weight data for some species and for others have very little. Ideally, interspecific weight comparisons should be made between sizeable samples of birds of known sex. In practice, it has been necessary in many cases to use average weights of small samples of unsexed birds. Such data may provide a poor estimate of the population's average weight. Weights of juvenal birds have been excluded from calculations. For a few species where no weights from the Apurímac Valley were available, data from the Sira Range has been used. Weight information is given in Appendix 1.

RESULTS AND DISCUSSION

Elevational Distribution Patterns

Species diversity .-- The number of species of forest birds present along the elevational transect decreases with elevation (Figure 3). At 600 m, 162 species were detected, against 53 at 3500 m. These figures accord with ones for similar Costa Rican habitats, where Orians (1969) found about one-half as many species at 2000 m as at sea level. To account for this pattern, one may cite the reduced productivity of the environment at higher elevations. Connell and Orias (1964) associated species diversity with the level of productivity and considered humid lowland tropical forest to be the most productive environment. At upper elevations on the Apurimac Valley slopes, productivity would be lessened by the lower average temperature and the reduction in sunlight due to cloud cover. Probably related to reduced productivity is a lessened volume of habitat owing to the lower height of the forest. Both of these features result in a lower food supply. To sustain itself with the same amount of effort as a lowland bird, a highland bird would be expected to accept a broader variety of food items -- i.e., to be less of a specialist than a lowland bird. Consequently, one could expect that niches at higher elevations would be broader and fewer and, therefore, that fewer species would be present. Furthermore, a lower food supply would be expected to

yield a low population density of birds in general. Although we have been unable to measure density, our impression based on daily observations at various elevations supports the idea of an inverse relationship between elevation and avian abundance. Under conditions of low density, a substantial number of different species cannot continue to exist because the number of individuals of each species is reduced to the point where extinction may result due to random fluctuations in population size or to poor reproductive success because of difficulty in finding mates. An avifauna of fewer species, with the population density of the average species approximating that of the average species in species-richer environments at lower elevations, would be expected to exist. The fact that species at the higher elevations have larger elevational ranges is probably also a consequence of the relationship between population size and extinction (Terborgh, 1971).

<u>Replacement and gonation</u>.--Accompanying a progressive reduction in species diversity with increasing elevation, there is a change in species composition of the avifauna between one elevational station and the next. Biologists have long been aware of elevational differences in avifaunas of montane areas of North America and have found that the limits of the elevational ranges of many species coincide with the boundaries of the vegetational associations in which they occur (Swarth, 1914). Thus, it has been convenient to classify birds ecologically according to the vegetational zone they inhabit. A certain group of bird species would characteristically be found throughout a particular plant community. Chapman (1921) applied a broad zonal concept to the Andean eastern slope in Perú,

identifying six zones and noting which bird species were characteristic of each. Terborgh (1971), however, found that the distributions of birds in the Apurimac Valley do not conform to zonal patterns. Less than 20 percent of elevational range limits coincided with boundaries of plant associations. The remaining range limits could be attributed to competitive exclusion interactions with related species or to intrinsic responses to physical conditions like temperature which change gradually along the gradient. He found that species replacement along the gradient occurred progressively at an approximate rate of 1 percent of the avifauna for every 10 m change in elevation. There was only a slight indication of an increase in replacement at vegetational boundaries.

One reason for the difference in bird distribution between temperate and tropical mountains lies in the nature of the zones themselves. In North America, a zone is characterized by a few common species of plants which tend to make it uniform vegetationally over its entire elevational extent. Within the Navahonian biotic province in the southern Rockies, the montane "life belt" is recognized by the presence of western yellow pine (<u>Pinus ponderosa</u>) and Douglas fir (<u>Pseudotsuga menziesii</u>), the sabinal belt by pinyon pine (<u>Pinus edulis</u>) and junipers (<u>Juniperus</u> sp), etc. (Dice, 1943). On tropical mountains many more species of plants are present, and zones are defined on the basis of vegetational characteristics and structure, not by indicator species. As I have noted above, continuing, progressive vegetational change with elevation occurs within zones, and zonal boundaries are marked by more extensive changes but not by abrupt discontinuities. With these facts in mind it is easier to understand a progressive elevational replacement in the avifauna.

At the hill forest/ cloud forest ecotone, canopy and understory species of birds react differently. Among the latter group, replacement occurs at about the same rate as within the respective vegetational zones. For canopy species, however, the ecotone is a boundary between two groups of species (Figure 4). Below the ecotone, over a broad elevational range in lowland humid forest and hill forest, occur an assemblage of tanagers and honeycreepers which often form mixed-species canopy flocks. Above the ecotone, this group is replaced by another of similar familial composition and canopy-flocking habits. Only three species (<u>Cyanerpes</u> <u>caeruleus</u>, <u>Chlorophonia cyanea</u>, and <u>Tangara gyrola</u>) are found both above and below the vegetational boundary. Remarkably, there is an elevational belt from about 1300 m to 1450 m where tanager-coerebid flocks of any sort are very scarce.

Familial composition.--There are also some sharp changes with elevation in the familial composition of the avifauna (Table 1). In particular, the percentage abundance of two groups of passerine families, the suboscines and the New World nine-primaried oscines, shifts along the gradient (Figure 5). From the valley floor to 1700 m about 40 percent of the species are suboscines, but above this elevation the percentage decreases until at the top of the range less than a quarter of the avifauna is comprised by this group. Parallel to this decrease with elevation is an increase in the percentage of nine-primaried oscines. The percentage of all other species holds fairly constant. In absolute terms, the number of nine-primaried oscines declines moderately along the gradient, increasing percentage-wise as the total number of species drops, while the

number of suboscines decreases from 60 at 600 m to 12 at the crest of the range. There are several possible reasons for the pattern described. One rests upon food supply. Most suboscine species are insectivorous, while the nine-primaried group includes insect, fruit, nectar, and seed-eaters. There is a marked decrease in the number and variety of insects encountered with increasing elevation in the Vilcabamba.

Perhaps the best indication of this trend was provided by night insects. These may not be entirely available to day-flying birds, but it seems reasonable that their number and diversity reflect the situation for all insects at a locality. During evenings in camp, the glow of the pressure lantern attracted insects to the windows of our tent. In the lowlands, large numbers of moths, cicadas, etc., representing many species, collected on the cloth screening. At higher elevations insects were much fewer in number and variety, and at the crest of the range one saw only an occasional moth. On the other hand, food in the form of fruits, seeds, and flowers was available in quantity at higher elevations. Indeed, the botanists of the expedition had their greatest success in collecting plant specimens with fruits and flowers in the elfin forest, but noted a relative scarcity of plants in fruit or flower at some stations lower down. One may argue that flowering is apt to be more seasonal at lower elevations and that the tall canopy in those areas makes finding fruits and flowers much more difficult. Nonetheless, the food supply available to birds seemed to shift to the disadvantage of insect feeders as we went higher along the gradient.

In familial composition, avifaunas of montane Neotropical forests resemble those of north temperate forests (MacArthur, 1971). The avifauna

at higher elevations in the Apurimac Valley is no exception. However, contrary to MacArthur's statement that tropical mountains have temperatelike forests, the montane forests of the valley are quite unlike any I have seen in North America. Orians (1969) contrasted the stability of tropical montane environments with the strong seasonality of temperate ones and noted that these dissimilar conditions nevertheless support similar avifaunas.

Increases in the abundance of certain families are due to vegetational features present along only part of the gradient. For example, several species of furnariids (including Syndactyla subalaris, S. rufosuperciliata, and Premnoplex brunnescens) feed on insects by searching and probing into the thick growth of bromeliads, orchids, and other epiphytes which cover tree limbs. Below the cloud forest there is rather little epiphytic growth. At the lowest cloud forest station, the number of furnariids increases to 12, compared to 6 at lower stations. As one goes higher, the number decreases again, not from the lack of epiphytes that provide feeding habitat but rather perhaps because of a decrease in the quantity of insects. Similarly, three species of woodcreepers and several species of antbirds gain most of their food by capturing insects flushed by army ant swarms (see p. 86). Army ants do not occur above about 1200 m in the Vilcabamba, and the loss of ant-following niches is reflected in the decrease in formicariids and dendrocolaptid species with elevation.

In the Cotingidae, a change in niches occupied by members of the family is not reflected by any marked change in the percentage abundance

of the family. At lower elevations, most of the cotingids which occur are insectivores, but at the three highest camps the family is represented only by the frugivorous genera Ampelion and Pipreola.

The families Thraupidae and Trochilidae form a substantial portion of the avifauna all along the gradient. The same is true of one of the two common suboscine families, the Tyrannidae. At higher elevations there still appear to be niches for birds which perch and sally after flying insects, niches which no oscine species seem to be able to occupy. Also, some tyrannids, notably Mionectes, eat fruits. Orians (1969) pointed out that the Tyrannidae is also the only Neotropical suboscine family to colonize north temperate environments successfully. The valley's other most common suboscine family, the Formicariidae, shows a striking drop in species along the gradient, due in part to the disappearance of ant-following niches. The inability of antbirds to colonize high-elevation environments may also be attributable to physiological limitations such as intolerance to low temperatures. Above 2200 m only members of the rather distinct Grallariine group occur. It is conceivable that with respect to certain niches they occupy in the lowlands, antbirds are replaced by species of other families higher up. The warblers are potentially a replacing group, since these small insectivores are represented by only one species, a stream-loving specialist, in lowland humid forest where the antbirds are most abundant, but by several species where antbirds are fewer. For example, the general niches of Myrmotherula and Herpsilochmus may be taken over to some degree by Myioborus and Basileuterus (even though some species of these genera overlap). The

factors which make one form competitively superior to another in a given habitat are often subtle. Among the ant-following birds he studied, Edwin Willis (pers. comm.) has suggested that species which perch easily on vertical perches are at an advantage because horizontal perches are scarce in the understory of lowland forest. Ant-following formicariids appear to perch readily on vertical perches. If we assume that this perching ability is a characteristic of understory formicariids in general (not just ant-followers), it might be one of the evolutionary factors responsible for the diversity and abundance of formicariids in the lowlands. In cloud forest, however, the understory is denser and more varied, with no lack of horizontal perches. In this habitat one might predict that understory species of other families would compete more effectively with antbirds. I have no direct evidence that the sort of perches available has in fact influenced the diversity of antbirds or other families at different elevations, but it is this sort of environmental feature which could be operating.

A less conjectural example of elevational niche replacement of certain species of one family by species of another is provided by the Dendrocolaptidae and Furnariidae. At lower elevations, six species of dendrocolaptids occur, of which two follow ant swarms and four are typical woodcreepers, searching the bark for insects as they climb tree trunks and limbs. In the higher part of the gradient, the number of dendrocolaptid species drops. Only one occurs above 2300 m, and none above 2900 m. Above 2000 m there also occur two furnariids which, besides searching epiphytes, glean food from the surface of bark--a large species

(Pseudocolaptes boissonneautii) and a small one (Margarornis squamiger). They are far more generalized in foraging behavior than woodcreepers, reminding the North American observer at times of nuthatches and at times of titmice. However, both species occasionally move and forage along trunks or limbs in characteristic dendrocolaptid fashion. There is a narrow elevational zone around 2100 m where these two furnariids and five dendrocolaptids coexist. The vegetation in that zone is a tall varied forest of large trees. Higher up, however, where trees are smaller and arboreal habitat is reduced, the foraging opportunities for a woodcreeper are greatly lessened. With one exception, the woodcreeper niches appear to be taken over by Pseudocolaptes and Margaronis. These two species have less rigid behavior and can be "part-time woodcreepers," while foraging in a tit-like or nuthatch-like fashion at other times. The exception is an uncommon dendrocolaptid (Campylorhamphus pucheranii) with a long sickle bill which is considerably larger than the two furnariids. One would infer from its unusual bill and large size that it exploits feeding opportunities not available to the two furnariids and that it is not in strong competition with them. The other four cloud forest dendrocolaptids are more similar in body size and bill shape to the two furnariids whose elevational ranges they overlap narrowly.

<u>Vertical distribution</u>.--Although the total number of species at a locality is greatest in lowland humid forest and decreases with increasing elevation, the number of species captured in nets reaches a maximum in cloud forest at about the 1500 m level. The percentage of species present which were netted increased with elevation, rising from 32 percent at

600 m and 46 percent at 685 m to 80 percent at 3475 m (Figure 6). Because less time was devoted to netting at 600 m and a smaller sample was captured there than at any other station but one, the 32 percent figure at this elevation cannot properly be compared with the other stations. At camps between 685 m and 3300 m, however, roughly similar samples (442 to 630 individuals) were made. Also, a larger netting sample usually means more time spent at a camp and more observational time, which is reflected in a higher count of total species present at the locality.

There are several possible explanations for the trend shown in Figure 6. Trivial ones include the lower height of the vegetation at high camps and the placement of nets along ridges where birds might be captured while passing uncharacteristically close to the ground. However, the relationship holds even below 2400 m, where tall forest occurs and where nets were not placed along exposed ridge tops. It may be that in cloud forest, where the understory is denser and the canopy is somewhat more broken than in lowland and hill forest, a greater proportion of the species present actually live in the understory, and fewer in the canopy than at lower elevations. Alternatively, a higher percentage of species netted would also result from broader vertical foraging ranges in a given stand of forest. If all species present in a forest forage from the ground to the top of the canopy, all will eventually be captured in nets placed in the understory provided they are not too large or small in size to escape from the net.

This situation is closely approached in the temperate zone in eastern North America. Nets placed in the understory of tall, humid,

floodplain forest in Maryland captured 431 birds, representing 91 percent of the species known to be present (Stamm, Davis, and Robbins, 1960). Not all species are caught with equal efficiency, but it is important to note that even characteristic canopy species occasionally fly close enough to the ground to be netted. In the tropics, many more species of humid lowland forest birds have relatively narrow foraging ranges. The antbird genus <u>Myrmotherula</u> serves as an example (Terborgh and Weske, 1969). Species which confine their activities to the air space more than two meters above the ground will escape capture no matter how common they may be. My data for the slopes of the Apurímac Valley suggest that in tall forest, bird species at higher elevations tend to have broader foraging ranges than members of lower elevation avifaunas. At no point on the gradient do the data indicate that foraging zones are as broad as in the Maryland study, however.

<u>Body size</u>.--It has been shown that for a number of polytypic species, a subspecies occurring at higher elevations will average larger in size than a lower elevation subspecies (Rand, 1936; Traylor, 1950). Examples were taken from the avifauna of New Guinea and the Bolivian Andes. The results provide an illustration of Bergmann's ecogeographic rule (Mayr, 1963). One of the species which Traylor tested, the flycatcher <u>Myiarchus tuberculifer</u>, occurs in the Apurímac Valley. The race <u>tuberculifer</u> occurs in the lowlands and the race <u>atriceps</u> in cloud forest at middle elevations. This species was not recorded between 600 m and 1520 m. We do not have sufficient data to make a weight comparison, but individuals of the highland form appear larger, as one would expect

from Traylor's work. No other case of intraspecific variation in size correlated with elevation was noted. Indeed, <u>M. tuberculifer</u> is the only species we are aware of in the Apurímac Valley which is represented by elevational subspecies and the only species which has a discontinuous range between the valley floor and the crest, with two discrete populations present. Among other species with wide elevational ranges, populations are continuous, and gene flow appears sufficient to overcome any tendency that might exist for elevational variation.

However, there are numerous examples of genera with two or more species occupying different elevational ranges. Among these are 61 congeneric pairs which are wholly or almost wholly elevationally allopatric. In addition, the respective ranges of these pairs do not appreciably overlap that of any other congener. The size ratios of these pairs were computed in order to test for a pattern which was correlated with elevation. In the case of a series of three or four species (A-B-C, or A-B-C-D), the pairs selected comprised species with adjacent ranges (A-B, B-C, etc.). If appreciable range overlap existed between pair members or between another congener and a pair member, the pair was excluded from consideration. In such cases competitive interactions between coexisting congeners may influence their niches and possibly result in selection for size differences which have nothing to do with elevation. Unquestionably, competition can also occur between individuals which are not congeners and which may lack any close relationship. It is not possible to neutralize this factor completely.

Of the 61 pairs available, weights for one or both members were lacking in 32 cases, leaving 29 in which a comparison could be made

(Table 2). The ratio of average weights of each pair (the higher elevation member to the lower) was computed. Ratios ranged from 0.56 to 2.52. In a pair whose ratio exceeded 1.00 by any amount, the higher elevation member was considered heavier. This occurred in 19 cases. In the other 10, a ratio less than one indicated that the lower elevation species was larger. These results fall short of significance (0.05 $\leq P \leq 0.10$), but they do suggest that higher elevation species tend to be larger than their lower elevation congeners. More examples need to be tested in order to confirm this indication, and additional weight data for all species would give more reliable ratios. The median ratio was 1.075; a higher elevation member averages 7.5 percent heavier than its counterpart.

A statistically significant demonstration that highland Andean species are larger than their lowland relatives would be one of the few examples to extend Bergmann's rule to the interspecific level. Other investigations of interspecific size variation have usually not shown a trend. Snow (1954), for instance, found no tendency for species of <u>Parus</u> in cold climates to be greater in size than those in warmer climates. However, Hesse, Allee, and Schmidt (1951) showed that species of penguins with more southern ranges are larger than those ranging nearer the Equator.

<u>The West Side Gradient</u>.--The study of bird distribution along an elevational gradient on the Apurimac Valley's west side was undertaken for two reasons. First, we wished to compare distribution patterns on opposing valley slopes. Second, we needed a knowledge of the species composition on the slope of the Andes proper to have a standard for

evaluating the insular nature of the northern Vilcabamba in terms of endemism and species diversity.

Several difficulties arose in gathering and evaluating data from the west side. Below about 1100 m the climax forest has been largely destroyed, except for an undisturbed area about Luisiana. We were not able, therefore, to secure data on forest birds at lower elevations. At 1660 m, we had a camp at Huanhuachayo, an abandoned, overgrown coffee plantation surrounded by forest. This proved to be an excellent site, rich in birds and conveniently located at the hill forest/ cloud forest boundary. Although most of our effort was concentrated in the primary forest, we netted and observed in secondary habitats as well. It became apparent that lowland species of birds often occur above their "normal" ranges in patches of secondary growth like the Cecropia woodland which had grown up on the plantation. While this fact is itself of interest, it provided records of lowland species at elevations higher than would be expected under undisturbed conditions and tended to give a distorted picture of elevational relationships between species. Therefore, I have in the discussion that follows attempted to use only data which were obtained in primary forest.

A second problem arose because our coverage of the west side was less complete than of the Vilcabamba. In particular, we had only one netline--at 2600 m--between 1900 m and treeline. Although we took observational data along the entire gradient, some portions of it were not thoroughly covered.

There are a number of species which we located in the Vilcabamba but not in the west side, or vice versa. In these situations it is

difficult to judge if a missing species was indeed absent or merely overlooked. One can sometimes judge by the habits of the species: a canopy tanager which is commonly and conspicuously present on one side but not seen on the other is probably really absent there, while little can be said for sure about elusive and rarely encountered forms like the <u>Grallaria ant-pittas</u>.

The trends in bird distribution occurring along the west side gradient were very similar to those present in the Vilcabamba. In particular, the elevational ranges of species relative to each other showed little difference. What changes did occur often involved species whose exact limits are difficult to determine because they are uncommon or hard to detect. However, there was a general upward shift in the ranges of most species with respect to elevation. The birds which are perhaps most conspicuous and whose ranges are thus most easily determined are the canopy tanagers and coerebids. The ranges of these species on the west side are shown in Figure 7, which can be compared with Figure 4 for the Vilcabamba. There is elevational replacement of one group by another, a hiatus where flocks of neither group appear to be present, and the bridging of the hiatus by several of the same species. The upward range shift of birds is explained by the upward shift of about 270 m in vegetational zones. However, the shift in bird ranges is less than that of the hill forest/cloud forest boundary. This fact suggests that the birds are responding on the one hand to vegetational features and on the other to physical features--principally temperature--which are essentially the same at the same elevation on the two sides of the valley. In the absence

of interspecific competition, the range of a bird species would tend to be centered at the elevation which provided the best compromise between the birds' vegetational and physical optima. Superimposed upon this situation are effects from competitive interactions with other species which may result in a narrowing of the elevational range.

Not only canopy species show upward shifts. The ranges of a group of subcanopy or understory species whose ranges, I feel, are known with sufficient accuracy, are given in Figure 8. I emphasize the general area of the hill forest/ cloud forest boundary because our coverage and knowledge of this region is best.

Although for most species the populations of both sides of the valley are assigned to the same subspecies, there are a number of instances where the populations are considered racially distinct. Below 1700 m geographic isolation is apparently insufficient for differentiation of opposite slope populations to the degree usually required for subspecific designation. But two species which do have distinct forms on the east and west sides have their lower limits in the 1700-1800 m zone, the hummingbird <u>Coeligena torquata</u> and the wren <u>Cinnycerthia peruana</u>. The races of each are well-marked and separable at a glance. Isolation may even be sufficient for differentiation at the species level, since an <u>Otus</u> endemic to the northern Vilcabamba ranges down to 1730 m. However, we did not succeed in recording any <u>Otus</u> in corresponding area of the west side.

In montane areas of New Guinea, Diamond (1972) found that smaller, outlying mountain ranges have fewer bird species than the Central Range, which extends for about 1600 km. Likewise, for birds of northern Andean

páramos, species diversity is correlated with the area and degree of isolation of the paramo (Vuilleumier, 1970). The situation is similar to that for archipelagos, where the number of bird species varies positively with island size and inversely with its distance from the mainland (Hamilton, Barth, and Rubinoff, 1964; Diamond, 1969). Since the northern Vilcabamba can be seen as a large island in a sea of lowlands and the Andes proper as the "mainland," one would predict that the Vilcabamba would have fewer species than the west side. Without a truly complete survey it is difficult to make fine comparisons between localities on the two slopes, and one also is faced with compensating for the general shift in ranges mentioned in a previous paragraph. There are numerous instances of a species absent on one side and present on the other, but many involve species which were recorded only once or twice and whose true status, where they occur, is puzzling anyway. Among species common in the Vilcabamba but absent on the west side are the tanagers Creurgops dentata, Hemispingus superciliaris, and Dubusia taeniata, and the icterid Cacicus holosericeus. Missing from the Vilcabamba but present on the west side are the tanager Pipraeidea melanota and the coerebid Diglossa baritula (both conspicuous canopy flock members), the easily netted thrush Catharus dryas, and the motmot Momotus aequatorialis. The thrush Turdus nigriceps is common on the west slope but inexplicably scarce in the Vilcabamba where it may not have a resident breeding population.

An "island effect," reflected in an avifauna comprised of fewer species, would most likely be present at the uppermost elevations of the Vilcabamba, where the land area is most reduced and most isolated.

Between 3100 m and 3520 m in the Vilcabamba we noted 69 species during 31 days of work at two camps, with a netting sample of 708 birds. On the west side in similar habitat from 3370 to 3600 m we recorded 60 species while spending 10 days at two camps and netting about 320 birds. To allow a more valid comparison, the species total for the west side excludes several species of water, marsh, and puna birds, whose habitats do not exist in the portion of the Vilcabamba we studied. Clearly, the west side was surveyed less thoroughly than the Vilcabamba, and additional work would enlarge the species list for this area. It is not likely, however, that enough additions would be made to show that any substantial reduction in species diversity occurs at higher levels in the Vilcabamba. Similarly, on the basis of available data there seems to be no appreciable species deficit at middle elevations either. The prediction of lower species diversity in the Vilcabamba is not fulffilled.

There is a possibility, however, that the humid lowlands of the Apurimac Valley have a reduced avifauna compared to localities with similar habitats which are less peripherally situated in the Amazon basin. A long slender tongue of lowlands, bordered on each side by mountain ranges, connects Luisiana with the main Amazonian area. A portion of this strip has a dry climate and deciduous forest, which, as will be noted below, is unsuitable habitat for many bird species found at Luisiana. Bounded on three sides by highlands and on the fourth to at least a partial extent by drier vegetation, the humid lowlands of the upper Apurimac have an insular character. At typical Amazonian localities the lowland avifauna numbers about 400 species--for example, J. P. O'Neill (pers.

comm.) has encountered 409 during an extensive survey at 300 m elevation along the Río Curanja in Perú near the Brazilian border. At Luisiana we recorded 284 species in all habitats. Unquestionably, more field work would add to this number, since experience has shown that only a lengthy intensive study can approach completeness (Slud, 1960). And Luisiana would be expected to have a somewhat less diverse avifauna owing simply to its higher elevation. The question is how much of the substantial species deficit is attributable to coverage, how much to elevation, and how much to insularity.

The Humidity Gradient

In 1967 Terborgh made a brief raft trip down the Apurímac, Ene, and Tambo to the selva town of Atalaya. The trip was for pleasure, but it led to our awareness of the existence of the dry area along the Río Ene. For several reasons we determined to return to work on the birds of this area. First, it enabled us to work along a gradient where the principle variable and constant conditions of our elevational gradient were reversed: the avifauna could be studied at several stations with reasonably similar elevations but with markedly different annual precipitation. Second, the presence of a lowland area of strikingly different natural vegetation provided an opportunity for testing several predictions based on an earlier paper about colonization at Luisiana (Terborgh and Weske, 1969). Third, the Ene area offered the possibility of discovery of endemic forms, since the situation seemed to parallel that of the dry valley of the upper Río Maranon in northern Perú, which has a highly distinct avifauna.

Two qualifications concerning the results must be mentioned. First, it was not possible to locate study areas at constant elevations because of the gradual decrease in elevation as the river descends. The highest camp (Boca Mantaro) was situated at 470 m and the lowest (Saoreni) lay 118 km to the north-northwest at 340 m elevation. Thus, some species replacement is expected because of elevation, not humidity. At a 1 percent per 10-meter change (the figure obtained on the elevational gradient by Terborgh, 1971), one would anticipate a 13 percent change from elevation alone. Second, time was not available for a thorough survey at each site, and the lists of species obtained are clearly incomplete. However, the amount of time spent (four or five days) and, consequently, the netting and observational coverage at each of the stations were roughly the same. It is therefore reasonable to make comparisons between the absolute figures obtained at each of the stations. Additionally, ratio figures obtained at stations along the gradient are compared with corresponding figures from Luisiana, since ratios are much less influenced by the thoroughness of coverage. In part of the following discussion Luisiana is considered the southernmost station on the humidity gradient just as it was the lowest on the elevational gradient.

The Boca Mantaro camp was located in humid lowland forest. The habitat was essentially identical to Luisiana, but the elevation was 130 m lower. The Quipachiari camp was situated in tall transitional forest at 360 m. Both Chiquireni (350 m) and Saoreni (340 m) were located near the center of the dry zone in deciduous forest. Because part of the Saoreni area consisted of an impoverished hillside, the height of the vegetation

was lower and the deciduous percentage greater than at Chiquireni. However, these two areas, which are about 22 km apart, have very similar ecological conditions and avifaunas.

One might predict from the insular nature of the dry region and from the lower productivity of the environment that fewer species of forest birds would occur there than in humid forest. The data do not support this prediction, however. We recorded 66 species in the forest at Boca Mantaro, 65 at Quipachari, 67 at Chiquireni, and 50 at Saoreni. That the sharp drop in species number oscurred between the two dry region camps is surprising but attributable to the impoverished nature of the habitat at Saoreni, where avian populations were low and the netting yielded a 30 percent smaller sample than at other camps. If one considers total species in all habitats at the camps, the figure for Boca Mantaro is 92, for Saoreni 52, and the others unchanged. The jump in species at Boca Mantaro results from extensive matorral habitat there, while little or no matorral occurred at the others. Therefore, more species would be expected at Boca Mantaro simply from its greater habitat diversity. However. as we shall discuss below, a portion of the dry forest avifauna consists of species limited to matorral in humid areas; so the presence of matorral habitats there would be expected to add relatively few additional species to the total avifauna of the area. More study is needed to determine unequivocally whether the dry region is species-poor compared to the nearest humid areas.

At Luisiana nearly all species which were found in secondary habitats were also found in at least one of two primary habitats, forest or matorral (Terborgh and Weske, 1969). Species could be therefore assigned

to three groups based on the primary habitats that they inhabited: forest species, matorral species, and "generalists" (species common to both). From the colonization work at Luisiana, one could venture two predictions about that portion of the dry region avifauna which was comprised by species found also at Luisiana: 1) Generalists, in view of their apparently greater latitude in habitat requirements, would be represented in greater proportion in the dry region than species found at Luisiana in just one of the primary habitats. 2) By a similar line of reasoning, species which colonize secondary habitats would be more likely to occur in the dry region than non-colonizers. Both these predictions are fulfilled, although the second must be qualified. Seventy-eight species were recorded in the study areas at Chiquireni or Saoreni, or at both. Of these, 14 species were not found at Luisiana and the source habitat of one other species found at Luisiana is unknown, leaving 63 species common to the dry region and Luisiana. We recorded 41.4 percent (18 species) of the Luisiana generalists, but only 28.3 percent (30 spp) of forest species and 24.0 percent (16 spp) of matorral species occurring at Luisiana. Of the generalists inhabiting the dry region, 94.4 percent were also known to be colonizers. A similar high proportion (86.7 percent) of matorral species were also colonizers, but only 53.3 percent of Luisiana forest species found in the dry region had colonizing habits at Luisiana. The second prediction, then, is confirmed for general and matorral species, but not for forest species. It appears that for humid forest species, the ability to colonize secondary habitats and the ability to inhabit deciduous forest are relatively independent. A substantial

portion of the humid forest species occur in dry forest not because of their ecological versatility but rather because the particular forest habitat features necessary to them still persist there despite increased seasonality and aridity.

Although matorral and the dry deciduous forest are structurally and floristically quite different, they share certain features. Compared to humid forest, both these habitats are drier and more sunlit, and have lower vegetation. It is therefore understandable that a number of matorral species which shun humid forest do inhabit the deciduous forest. In several genera a matorral species appears to be competitively superior in the dry region to a humid forest congener, which has been excluded: the dove <u>Leptotila rufaxilla</u> has been replaced in the dry forest by <u>L</u>. <u>verreauxi</u>, the puffbird <u>Monasa morphoeus</u> by <u>M</u>. <u>nigrifrons</u>, the spinetail <u>Synallaxis cherriei</u> by <u>S</u>. <u>gujanensis</u>, the antbird <u>Myrmoborus myotherinus</u> by <u>M</u>. <u>leucophrys</u>, the becard <u>Pachyramphus marginatus</u> by <u>P</u>. <u>polychopterus</u>, and all humid forest Euphonia species by E. laniirostris.

At Boca Mantaro 47.0 percent of all forest birds recorded were netted. For the other camps the figures are: Quipachiari, 49.2 percent; Chiquireni, 59.7 percent; Saoreni, 62.0 percent. The higher percentages at the dry camps are attributable to the lower height of the vegetational column there. At the same time, the figures reveal that fewer species in this area forage exclusively in the upper strata of the forest, suggesting that vertical distribution is less specialized than in humid forest.

The familial composition of the avifauna at the gradient's stations is shown in Table 3. The most conspicuous feature is the scarcity of frugivorous birds in the dry region. No toucans were present, only one

species each of trogon and pigeon, only two parrots and three tanagers. Conversely, certain insectivorous families form a greater portion of the dry region avifauna than in humid areas, notably the Tyrannidae. We were impressed in particular by the diversity and abundance of birds that feed on large insects. Two species each of caprimulgids, motmots, and cuckoos were present, along with the Boat-billed Flycatcher, <u>Megarhynchus</u> <u>pitangua</u>. While also occurring in humid areas, small owls of the genera <u>Otus</u> and <u>Glaucidium</u> were more numerous in the dry region, and the large puffbird <u>Monasa nigrifrons</u> was ubiquitous.

Of the bird species noted in the dry region, 17.9 percent (14 spp) were not found in humid forest at Luisiana or Boca Mantaro. Besides these 14, five more species were found only in the transitional forest at Quipachiari. Of the total of 19, we know from work in the Sira that four are humid forest birds. Of the remainder, three species--the gnatcatcher Polioptila plumbea, the cotinga Casiornis rufa, and the nightjar Caprimulgus rufus--are characteristically dry forest species. The latter two were not previously known from Perú. Their populations are endemic to the Rio Ene dry region, and that of Casiornis is racially distinct. The preferred habitat of the remaining 12 species is unknown to me, but all occur elsewhere in Amazonian Perú, and most would therefore be expected to be either matorral or humid forest birds. What is clear is that the region of seasonally dry, deciduous forest shows little endemism in its avifauna, which is composed largely of species also occurring in adjacent humid areas. This result is in agreement with statements by MacArthur and Wilson (1967) on habitat islands in mainland situations.

Ecological Sorting Mechanisms

According to the competitive exclusion principle, two species which occupy the same niche cannot coexist (Mayr, 1963). One will prove to be competitively inferior to the other and will be eliminated. Niche similarities are normally greatest among closely related species because of their genetic similarities. It is therefore to be expected that competition would be most severe between sympatric congeneric species and that there would be strong selection for the evolution of differences which minimize competition (Lack, 1944). A glance at the list of species found in the Apurimac Valley (Appendix 1) shows that there are numerous genera represented by more than one species. In this section I shall examine these genera and the niche differences, called ecological sorting mechanisms by Diamond (1972), which have evolved to allow the coexistence of member species. Here and throughout this paper I follow Meyer de Schauensee (1966) on the taxonomic status of forms, except where noted otherwise. Elevational ranges and body weights of Apurimac Valley birds are found in Appendix 1, and data on relative abundance at various elevations are given in Appendix 2.

At the outset, it is important to note that the mere existence of niche differences does not prove that they arose in response to selective pressures for the reduction of competition. Selander (1971) and Mayr (1963) have emphasized this point. The ecological differences described in the pages that follow are facts, but it can only be inferred that they evolved in response to competition--other selective factors may be responsible. Some specific facets of this problem will be considered later.

Terborgh (1971) has shown that in many genera, the species occupy exclusive elevational ranges and do not, in fact, coexist with their congeners. This elevational separation occurs in more than 50 percent of the cases examined and is the most important and widespread ecological sorting mechanism in the Apurimac Valley. Others include habitat selection, vertical stratification, differences in feeding behavior and food habits, and differences in size and structure. The key features lessening niche overlap between close relatives are a high degree of spatial segregation or the exploitation of different food sources in the same habitat. For some species pairs, ecological differentiation involves one mechanism, while for others it is more complex, involving a combination of several. A discussion of the various sorting mechanisms follows.

<u>Elevational segregation</u>.--Two populations which were originally a single species may diverge genetically under conditions of geographic isolation until they are reproductively isolated. If secondary contact is established, they cannot successfully establish sympatry unless they have diverged ecologically (Lack, 1944). Otherwise, competitive exclusion will prevail. If two formerly conspecific, montane allospecies have diverged to the point where, while still similar in most ecological requirements, they have different elevational optima, it may be possible for each to invade that portion of the range of the other in which it is competitively superior. A situation very similar to the former geographic allopatry continues, for after the new ranges stabilizes, the two forms are allopatric elevationally although sympatric in the geographic sense. They come into contact only on their common elevational boundary. Competitive interactions in the area of contact would be expected to

reinforce ecological divergence. It appears that this is the sort of segregation most readily evolved by geographic isolates, since it is the mechanism most frequently illustrated by congeners.

If speciation is recent, one would expect the forms to be similar in appearance, structure, behavior, and habitat preference, and to have elevational optima which were not widely separated. Under these conditions, one would expect the abundance of the lower elevational form to increase progressively at successively higher stations along an elevational gradient. Only slightly higher than the station of maximum abundance would come the upper boundary of its range, and it would be replaced by its congener, which would be at maximum abundance in the region just above its lower boundary. At still higher points along the gradient, the abundance of the higher elevation form would drop progressively. Because the region of the boundary is near-optimum habitat for each form in the absence of the other, one would expect no broad hiatus there which is unoccupied by either. Conversely, because their ecological similarity does not allow coexistence, one would expect the ranges not to overlap.

Among Apurimac Valley species, the situation described above is most nearly illustrated by the two <u>Pseudotriccus</u> flycatchers (Figure 9) and by the woodcreepers <u>Xiphorhynchus</u> <u>ocellatus</u> and <u>X</u>. <u>triangularis</u> (Figure 10). These and other genera are discussed in greater detail below. Sometimes there is a well-defined boundary with replacement in a short elevational distance, but the respective elevations with ecologically optimum conditions for each species are further apart, as in the flycatchers <u>Ochthoeca pulchella</u> and <u>O. frontalis</u> (Figure 11).

Other species pairs for which elevation is the sole apparent ecological sorting mechanism and for which the common boundary between elevational ranges is considered to be determined by competitive interaction are Tinamus major and T. tao, Geotrygon montana and G. frenata, Malacoptila fusca and M. fulvogularis, Eubucco richardsoni and E. versicolor, Picumnus aurifrons and P. cirrhatus, Xiphocolaptes orenocensis and X. promeropirhynchus, Philydor ruficaudatus and P. erythrocercus, Xenops minutus and X. rutilans, Chamaeza campanisona and C. mollissima, Grallaricula flavirostris and G. ferrugineipectus, Scytalopus femoralis and S. unicolor, Chloropipo holochlora and G. unicolor, Myiodynastes maculatus and M. chrysocephalus, Rhynchocyclus olivaceus and R. fulvipectus, Pogonotriccus ophthalmicus and P. poecilotis, Vireo olivaceus and V. gilvus, Myioborus miniatus and M. melanocephalus, and Iridosornis analis and I. reinhardti. In each case the member of the pair with the lower elevational range is listed first. Elevational segregation appears to be present in the genera Pionus, Ciccaba, and Chalcostigma but in these genera one member of the species pair was so rare that we know little of its actual status and range.

Terborgh (1971) presented evidence that competitive interactions between congeners actually do determine elevational ranges. He showed that the larger the number of replacing species in a congeneric elevational series, the narrower the elevational range of each. The findings of Diamond (1972) in New Guinea are even more conclusive. In certain genera, two species form a replacing series on one mountain range, but on another range one of the species is absent. In such a case, the elevational range of the remaining congener is broader and includes most or all of

the gap where the missing member would have been expected to occur. Similar cases exist in the Andes (Terborgh and Weske, unpublished data).

On the other hand, one sometimes finds that the ranges of two congeners are separated by a broad elevational hiatus where neither ccours. There are several explanations for this situation. In some cases our survey may simply have failed to detect the presence of a member of the pair in the hiatus even though it occurred there. A second possibility is that the two species are prevented from expanding their ranges into the intervening area by the presence there of a competing form (or forms) which is closely related but not congeneric. The Cracidae and Momotidae seem to provide examples of such distributions. It is also possible, that the ranges are limited by competition with a less closely related species or with a group of species whose collective ecological requirements close the niche in the area of the hiatus. In such cases it is exceedingly difficult to identify which species are competitors, as relationship provides no clue. A possible example of woodcreeper niches occupied at higher elevations by furnariids was discussed earlier, although no hiatus was involved.

A final possibility for the existence of an elevational hiatus between two congeners is that their ranges are limited by factors other than competition. During geographic separation the ecological requirements of the incipient species may have diverged so markedly that they later, following the breakdown of geographic barriers, became macrogeographically sympatric without coming into actual contact. The congeners may differ greatly in their tolerance to temperature, cloudiness, or other physical features of the gradient. These differences did not arise

nor become reinforced as a response to mutual competition. Because of their differing elevational ranges, the congeners usually occur in dissimilar habitats, and it is impossible to judge whether they are responding directly to physical features of the gradient or indirectly, through preference for a particular type of vegetation. In some cases the intervening elevation may in other parts of the Andes be occupied by a third congener which because of local conditions is absent in the Apurimac Valley. Pairs of species with widely separated elevational ranges are Accipiter poliogaster and A. striatus, Buteo magnirostris and B. albigula, Claravis pretiosa and C. mondetoura, Caprimulgus rufus and C. longirostris, Dendrocincla fuliginosa and D. tyrannina, Cranioleuca curtata and C. albiceps, Lepidocolaptes albolineatus and L. affinis, Sclerurus caudacutus and S. mexicanus, Herpsilochmus rufimarginatus and H. pileatus, Drymophila devillei and D. caudata, Formicarius analis and F. rufipectus, Platypsaris minor and P. rufus, Miobius atricaudus and M. villosus, Cyanocorax violaceus and C. yncas, Thryothorus coraya and T. euophrys, and Troglodytes aedon and T. solstitialis.

In another group of genera, the species pairs are largely segregated elevationally but there is a limited overlap in ranges. The overlap zone may in some cases be attributable to the presence of wandering immature birds. In most cases of overlap, however, there is some other ecological sorting mechanism involved besides elevation.

<u>Segregation by habitat</u>.--I previously mentioned certain species which occur at different elevations and seem to have different habitat preferences as well. One example is the flycatcher genus <u>Myiobius</u>. <u>M</u>.

atricaudus occurs in matorral and second-growth on the valley floor. M. villosus inhabits hill forest. A third species, M. barbatus, which lives in lowland humid forest in other parts of Peru, was not found in the Apurimac Valley. There are a number of congeneric pairs which exist at the same elevation but are ecologically separate because of different habitat selection. In most cases one member inhabits matorral and the other the adjacent humid lowland forest on the valley floor. With the matorral species given first and the forest species second, some examples are: Leptotila verreauxi and L. rufaxilla, Monasa nigrifrons and M. morphoeus, Automolus dorsalis and A. ochrolaemus, Myrmoborus leucophrys and M. myotherinus, and Tityra inquisitor and T. semifasciata. Although occasionally seen together, the vulture Cathartes melambrotos forages mainly over undisturbed forest while C. aura soars over areas cleared for agriculture. The two Daptrius caracaras may separate ecologically in this manner also, with D. ater an open country bird and D. americanus more in the forest. The tanager Tachyphonus rufiventer is a common forest species while our lone observation of T. rufus was in sparse second-growth at the edge of a pasture. Myiornis ecaudatus is a tiny flycatcher inhabiting the subcanopy of humid lowland forest and hill forest. We also saw Myiornis albiventris once in humid forest, but it becomes abundant in the dry deciduous forest along the Río Ene where M. ecaudatus is absent. The Torrent Flycatcher, Serpophaga cinerea, is always found along rushing mountain streams, as its name suggests. Its congener, S. hypoleuca, was seen only at the edge of the Apurimac's broad sandy shore in a part of the matorral comprised of young, willow-like trees about three meters in height.

<u>Vertical stratification</u>.--Closely related species can exist together in the same habitat if their foraging tends to be confined to mutually exclusive vegetational strata. The simplest and clearest example of this segregating mechanism is provided by the vireo genus <u>Hylophilus</u> (Terborgh and Weske, 1969). <u>H. ochraceiceps</u> inhabits the understory of humid lowland forest and hill forest, while <u>H. hypoxanthus</u> is a canopy dweller in this same habitat. The vertical foraging zones of the two species appear to be entirely separate.

It is possible that vertical foraging preferences like those of <u>Hylophilus</u> greenlets evolved during allopatry and not as a result of <u>selection</u> for mechanisms that avoid mutual competition. However, Willis (1966) has demonstrated that competitive interactions do affect the vertical dimensions of the foraging domain of the woodcreeper <u>Dendrocincla</u> <u>fuliginosa</u>.

As stated in a previous section, available evidence suggests that vertical stratification is a more important factor in restricting niches and reducing competition in tropical forests than in temperate zone forests. Additional examples are cited below.

<u>Feeding behavior and food preference</u>.--A significant cause of competition is eliminated if two species exploit different food resources. Either the food itself may be different or else the same food items may be obtained in separate ways. I have few examples from the Apurimac Valley of congeners which employ this mechanism to avoid competition because I analyzed stomach contents of very few specimens. Also, an

analysis of comparative feeding behavior requires an intensive study of a few forms, rather than a study which encompasses an entire avifauna.

Observation has provided some clues to niche differences in the tanager genus <u>Tangara</u>, where there are many species and ecological relationships are complex. Most of the species seem to feed on insects and fruit by foraging in canopy foliage in what can best be described as conventional tanager fashion. <u>T</u>. <u>ruficervix</u> and <u>T</u>. <u>chrysotis</u>, two cloud forest species, often feed in this manner, but each also obtains food in a way which, in my experience, is unique for the genus. <u>T</u>. <u>ruficervix</u> makes sallies and appears to hawk flying insects, a tyrannid-like behavior seen also in <u>Lanio versicolor</u>, a lowland tanager. <u>T</u>. <u>chrysotis</u> creeps along moss-covered branches, foraging in the manner of a nuthatch (<u>Sitta</u>). Certain similar-sized dendrocolaptids avoid niche overlap through differences in feeding behavior: <u>Xiphorhynchus guttatus</u> searches the surface of bark for food, whereas <u>Dendrocolaptes</u> woodcreepers feed primarily on insects flushed by army ants.

<u>Structure and size</u>.--Congeneric species which are dissimilar in size or in bill shape may be able to exploit different food sources and coexist, even if their behavior seems similar. A larger bird has greater strength, but a smaller one is more agile. Differences in bill shape facilitate securing food from different situations. The speciation process can be considered to be completed when morphological differentiation is sufficient to allow sympatry in the very closest sense (Lack, 1944).

Size appears to be the sorting mechanism permitting coexistence of the following pairs of species. In each case the larger is listed

first, and the ratio of average weights is given if data is available: the parakeets Aratinga leucophthalmus and A. weddellii, the hummingbirds Colibri coruscans and C. thalassinus (1.76), the woodcreepers Dendrocolaptes picumnus and D. certhia (1.19), the antbirds Hylophylax poecilonota and H. naevia (1.39), the flycatchers Mecocerculus leucophrys and M. stictopterus, and the tanagers Dubusia taeniata and D. castaneoventris (1.44). Although similar in size, the finches Catamenia homochroa and C. inornata have differently shaped bills and are able to coexist. Habitat as well as size differences reduce niche overlap in the finch genus Saltator. S. coerulescens exceeds S. maximus in weight by a factor of 1.37, and both inhabit matorral and second-growth, but S. maximus is found also in forest, where S. coerulescens is absent. A similar situation concerns the the cuckoo genus Piaya, whose two species segregate by size, vertical stratification, and, partly, habitat. We lack weight data, but P. cayana is about double the size of P. minuta, with which it coexists in matorral and some second-growth formations. P, minuta lives close to the ground and is occasionally netted, but the commoner P. cayana stays high and does not enter nets. P. minuta is absent from mature forest and is strictly a lowland bird, while P. cayana inhabits various types of primary forest and ranges from the valley floor to the lower boundary of the A series of species which sort out ecologically by size elfin forest. need not be restricted to one genus. Along the lower Apurimac three kingfishers, representing two genera, occur together: the small-sized Chloroceryle americana, the medium-sized C. amazona, and the large Ceryle torquata. In Amazonia as a whole there are five species (including these

three) which form a size series (MacArthur, 1971). Certain differences in habitat preference exist, as well.

Nearly all the genera discussed so far are represented in the Apurimac Valley by two species. In the next section I discuss other genera in which niche relationships are often more complicated because three, four, or more species are present in the valley. Meanwhile, it is convenient to mention here several genera with two species for which the sorting mechanisms are not clear at present. These include the parakeets Bolborhynchus andecola and B. lineola, the quetzals Pharomachrus antisianus and P. pavoninus, the furnariids Syndactyla subalaris and S. rufosuperciliata, the flycatchers Myiozetetes similis and M. granadensis, the tanagers Ramphocelus carbo and R. nigrogularis, and the grosbeaks Pheucticus aureoventris and P. chrysopeplus. Some of the species listed above are rare in the valley and therefore poorly known to us. The hummingbirds Amazilia chionogaster and A. lactea segregate to some extent elevationally, but there is a broad zone of overlap where the niche differences are not apparent. The same situation applies to the flycatchers Mionectes striaticollis and M. olivaceus. Two honeycreepers of the lowland forest canopy, Dacnis cayana and D. lineata, may segregate on a size basis, but we lack weights for either species.

Niche Relationships Within Selected Genera

The accounts which follow illustrate the manner in which ecological sorting mechanisms lessen niche overlap in various genera represented by three or more species in the Apurimac Valley. Occasionally,

a discussion includes members of several related genera which appear to appear to interact ecologically.

<u>Crypturellus</u>.--Four species are present. In the humid lowlands, there are two small species in the forest, <u>C</u>. <u>soui</u> and <u>C</u>. <u>tataupa</u>, and one larger species, <u>C</u>. <u>atrocapillus</u>, which is in matorral and secondgrowth. All are replaced elevationally by <u>C</u>. <u>obsoletus</u>, a bird of hill forest and the lower cloud forest. How <u>C</u>. <u>tataupa</u> and <u>C</u>. <u>soui</u> segregate in lowland humid forest is not clear. In the dry forest <u>C</u>. <u>tataupa</u> and <u>C</u>. <u>atrocapillus</u> occur together and segregate by size, while <u>C</u>. <u>soui</u> is absent.

Broad elevational and habitat overlap occurs between <u>Crypturellus</u> and <u>Tinamus</u>. Sympatric forms seem to sort out by size: the larger <u>T</u>. <u>tao</u> and smaller <u>C</u>. <u>obsoletus</u> in hill forest, and the larger <u>T</u>. <u>major</u> and smaller <u>C</u>. <u>soui</u> and <u>C</u>. <u>tataupa</u> in lowland humid forest.

<u>Falco</u> (Falconidae).--<u>F</u>. <u>deiroleucus</u> and <u>F</u>. <u>rufigularis</u> coexist in humid forest and sort out by size, <u>deiroleucus</u> being the larger. <u>F</u>. <u>sparverius</u>, which was seen once, is probably a vagrant from the Sierra, where it is common.

<u>Penelope</u> and <u>Aburria</u> (Cracidae).--Three species of guans form an elevationally replacing series, the middle member of which belongs to a different genus from the end members. <u>P. jacquacu</u> inhabits the lowlands and hill forest. It is replaced in lower cloud forest by <u>A. aburri</u>, which in turn is replaced in upper cloud forest by <u>P. montagnii</u>.

<u>Odontophorus</u> (Phasianidae).--Four species form an elevationally replacing series. From lowest to highest they are <u>O</u>. <u>stellatus</u>, O.

gujanensis, O. speciosus, and O. balliviani. Members of this genus are shy and rarely encountered. We do not have a thorough knowledge of their ranges.

<u>Columba</u> (Columbidae).--The pigeons separate by habitat and elevation but there is some overlap. <u>C</u>. <u>fasciata</u> is limited to higher elevations, and <u>C</u>. <u>plumbea</u> is most common at middle elevations although it occurs also in lowland humid forest. <u>C</u>. <u>speciosa</u> is strictly a matorral species. <u>C</u>. <u>cayennensis</u> is present in both matorral and lowland forest. It is usually found in sizeable flocks, whereas <u>plumbea</u> and <u>speciosa</u> are seen singly or in groups of two or three.

<u>Ara</u> (Psittacidae).--We lack knowledge of the macaws, which occur only in the lowlands. All but <u>A</u>. <u>severa</u> are uncommon. There are two large species, <u>A</u>. <u>macao</u> and <u>A</u>. <u>militaris</u>, and two smaller ones, <u>A</u>. <u>severa</u> and <u>A</u>. <u>couloni</u>. The two larger species may segregate by nest-site preference, since <u>A</u>. <u>militaris</u> is regularly seen only in the vicinity of cliffs. How <u>A</u>. severa and <u>A</u>. couloni sort out is unknown.

<u>Amazona</u> (Psittacidae).--Two lowland species segregate by size, with <u>A. farinosa</u> larger and <u>A. ochrocephala</u> smaller. These are replaced at higher elevations by <u>A. mercenaria</u>.

The lowland parrot genera as a group form a size series comprised, from largest to smallest, of <u>Ara</u>, <u>Amazona</u>, <u>Pionus</u>, <u>Aratinga</u>, <u>Pyrrhura</u>, and <u>Forpus</u>. At higher elevations the series shortens to <u>Amazona</u> and <u>Bolborhynchus</u>.

<u>Otus</u> (Strigidae).--These small owls form an elevationally replacing series of four species with no apparent overlap. From lowest to highest

they are <u>O</u>. <u>watsonii</u>, <u>O</u>. <u>ingens</u>, <u>Otus</u> sp, and <u>Otus</u> <u>albogularis</u>. In hill forest there is a hiatus where we failed to locate an <u>Otus</u>. At this elevation in the Sira, <u>O</u>. <u>guatemalae</u> was present. We also did not find an <u>Otus</u> in matorral, a habitat occupied by <u>O</u>. <u>choliba</u> in other parts of Perú.

<u>Glaucidium</u> (Strigidae).--The pigmy-owls form a three-fold elevational series including <u>G</u>. <u>brasilianum</u> in the lowlands (principally matorral and dry forest), <u>G</u>. <u>minutissimum</u> (once in lower cloud forest), and <u>G</u>. <u>jardinii</u> (upper cloud forest and elfin forest). The situation may prove to be less neat than portrayed here since Paul Schwartz (pers. comm.) has tentatively identified a vocalization taped at night in transitional forest at 370 m as belonging to <u>G</u>. <u>minutissimum</u>. If verified, the broad overlap between <u>brasilianum</u> and <u>minutissimum</u> would need to be explained.

<u>Phaethornis</u> (Trochilidae).--Two larger species, <u>P. superciliosus</u> and <u>P. guy</u>, form an elevational series, meeting and overlapping slightly at the lowland humid forest-hill forest boundary. <u>P. guy</u> occurs in hill forest and lower cloud forest. Coexisting with <u>superciliosus</u> on the valley floor is <u>P. hispidus</u>. The two seem to segregate by a combination of size and habitat preference. <u>P. hispidus</u> is shorter-billed and somewhat lighter. Its preferred habitat is tall matorral, especially where <u>Helioconia</u> forms a part in the understory, although it is also found in forest. On the other hand, <u>P. superciliosus</u> is primarily a forest species which occasionally turns up in matorral. Both species also inhabit the dry forest. The weight and bill length ratios (<u>superciliosus</u> to <u>hispidus</u>)

are 1.17 and 1.16, respectively. The fourth member of this genus of understory hummingbirds in the Apurimac Valley is <u>P. stuarti</u>. The range of this tiny forest species overlaps those of its congeners, from which it sorts out by size. The weight ratios are 1.73 (<u>guy</u> to <u>stuarti</u>), 1.98 (<u>superciliosus</u> to <u>stuarti</u>), and 1.69 (<u>hispidus</u> to <u>stuarti</u>).

<u>Heliodoxa</u> (Trochilidae).--<u>H</u>. <u>rubinoides</u> and <u>H</u>. <u>leadbeateri</u> replace each other elevationally, with <u>rubinoides</u> having the higher range. In hill forest <u>H</u>. <u>leadbeateri</u> shares its range with <u>H</u>. <u>branickii</u>. Segregation is by size, for <u>leadbeateri</u> averages 1.59 times heavier than its smaller congener.

<u>Coeligena</u> (Trochilidae).--Three species of similar-sized hummingbirds in this genus form an elevational series, but there is substantial overlap in ranges (Figure 12). The broader overlap is between <u>C</u>. <u>torquata</u> and <u>C</u>. <u>violifer</u>, which seem to sort out by habitat preference. <u>C</u>. <u>torquata</u> is most common in upper cloud forest and <u>C</u>. <u>violifer</u> in elfin forest. Netting data indicates that their respective elevational optima are about 600 m apart. In the area where both exist, each can find its preferred habitat, for both elfin forest and cloud forest occur according to local conditions of topography and exposure. The overlap between <u>C</u>. <u>torquata</u> and the lowest member of the series, <u>C</u>. <u>coeligena</u>, is narrow, but each species is at near-maximum abundance in the presence of the other. Their elevational optima are only about 100 m apart. The sharp drop-off in the abundance of each species not far above or below its optimum elevation suggests that competitive exclusion determines elevational range limits. However, I am unaware of any differences in other aspects of the niches of

the two species which account for the fact that both coexist and are numerous from 2100 m to 2250 m.

<u>Metallura</u>.--In this genus of elfin forest hummingbirds, the same niche on opposite sides of the valley is occupied by different species. <u>M. eupogon</u> is abundant on the west side, while <u>M. aeneocauda</u>, a form similar in size and structure, occurs in the Vilcabamba and is uncommon. Coexisting with each of these allopatric species is the smaller form <u>M. tyrianthina</u>, which sorts out by size. Its weight ratio with <u>M. eupogon</u> is 1.27. We lack weights of <u>M. aeneocauda</u>.

<u>Trogon</u> (Trogonidae).--The trogons are puzzling ecologically since there is wide sympatry without conspicuous sorting mechanisms. The two species which resemble each other most, <u>T. collaris</u> and <u>T. personatus</u>, do however replace each other elevationally. We lack weights for the lowland species, but <u>T. melanurus</u> appears in skins to be larger than <u>T. curucui</u> and <u>T. viridis</u> and may segregate by size.

Momotidae.—The motmots form a three-fold elevationally replacing series in which the middle member, <u>Baryphthengus ruficapillus</u>, is generically different from the upper member (<u>Momotus aequatorialis</u>) and the lower (<u>M. momotus</u>). In the dry forest, <u>M. momotus</u> coexists with a smaller motmot, <u>Electron platyrhynchum</u>, from which it may sort out by size (weight ratio 1.71).

<u>Eubucco</u> and <u>Capito</u> (Capitonidae).--<u>E</u>. <u>richardsoni</u> and <u>E</u>. <u>versicolor</u> replace each other elevationally, as I have mentioned earlier. In the lowlands however, <u>E</u>. <u>richardsoni</u> coexists with <u>C</u>. <u>niger</u>. Both have similar feeding behavior--searching for insects in curled up, dead leaves

which have become caught in the canopy vegetation. Ecological segregation is by size, as <u>C</u>. <u>niger</u> probably weighs twice as much as <u>E</u>. <u>richardsoni</u>.

<u>Aulacorhynchus</u> (Ramphastidae).--Three toucanets of this genus comprise an elevationally replacing series, with a limited amount of overlap where ranges meet.

Picidae.--In the woodpeckers there is a pattern of elevational replacement within genera and ecological segregation by size between genera. Three-fold replacing series are comprised by <u>Veniliornis affinis</u>, <u>V. dignus</u>, and <u>V. nigriceps</u>, by <u>Piculus leucolaemus</u>, <u>P. rubiginosus</u>, and <u>P. rivolii</u>, and by <u>Phloeoceastes melanoleucos</u>, <u>P. rubricollis</u>, and <u>P. haematogaster</u>. There is, in addition, a fourth species of <u>Veniliornis</u> which sorts out by habitat preference: <u>V. passerinus</u> and <u>V. affinis</u> both occur in the lowlands, but <u>passerinus</u> inhabits matorral and second-growth while <u>affinis</u> is strictly a forest bird.

In cloud forest and hill forest, there is customarily a large woodpecker (<u>Phloeoceastes</u>), a medium-sized one (<u>Piculus</u>), and a small one (<u>Veniliornis</u>), with the particular species depending on the elevation. The weight ratio is approximately 5.0: 1.7: 1.0. Inclusion of the piculets (<u>Picumnus</u>), which weigh less than half as much as a <u>Veniliornis</u>, expands the size series to four. Correlated with the reduction in arboreal habitat, there is a reduction in number of woodpecker species at higher elevations. As one goes higher along the gradient, <u>Phloeoceastes</u> reaches its upper limit at 2150 m and <u>Piculus</u> drops out at 2830 m. Only <u>Veniliornis</u> reaches tree-line.

In the lowlands, ecological relationships are more complex, since species of <u>Centurus</u>, <u>Celeus</u>, and <u>Dryocopus</u> are present in addition to members of genera given above. Segregation is accomplished by differences in feeding behavior (Short, 1970) as well as in size and habitat selection.

<u>Xiphorhynchus</u> (Dendrocolaptidae).--Three members of this genus of medium-sized woodcreepers are found in the valley and form an elevationally replacing series. The abundance curves for <u>X</u>. <u>ocellatus</u> and <u>X</u>. <u>triangularis</u> are truncated at the elevation where the two species meet, indicating that the common boundary to their ranges is determined by competitive exclusion (Figure 10).

Synallaxis and Schizoaeca (Furnariidae) .-- All members forage close to the ground. Four species of Synallaxis occur in the lowlands. These appear to segregate on the basis of habitat and size. S. cherriei is found in the understory of undisturbed humid forest. S. cabanisi, S. gujanensis and S. albigularis are all matorral birds. Their weight ratios are 1.37: 1.12: 1.00. Although all three are found together, albigularis is not common in the denser matorral areas, as its infrequency in our netting records reveals. It prefers edge habitats and sparser vegetation and is encountered most commonly in second-growth like hedgerows and brushy pastures. S. cabanisi, in contrast, is common in the dense matorral vine tangles and thickets. It colonizes second-growth that is sufficiently dense. S. gujanensis has the widest habitat preference, being found in dense and sparse matorral, the deciduous forest down-river, and various sorts of second-growth and cultivated areas. It also appears to be the most aggressive colonizer, since we found it once

on the west slope at Huanhuachayo in the abandoned plantation, which it could reach only by passing through over a mile of unsuitable forest habitat. We netted it once in forest at 600 m about one-fourth mile from proper habitat. A pair of <u>S</u>. <u>cabanisi</u> netted in "forest" at 685 m were in reality caught next to a stream flowing through a "bright" in the forest, created by a large gap in the canopy. The thick viny growth present closely resembled the typical habitat of the species.

Above the valley floor, there is a replacing series of species. <u>S. azarae</u> occurs at cloud forest elevations but not in undisturbed forest. We found it common at 1560 m in a large open area of unknown origin which was densely grown with <u>Chusquea</u>, at 1660 m in the Huanhauchayo plantation, and in several naturally occurring areas of second-growth. One may predict that when the cloud forests of the Apurimac Valley are cut, this species will be very common in the resulting disturbed habitats. In nature its preferred habitats probably occur most commonly on steep slopes when the vegetation grows back after landslides.

S. <u>unirufa</u> replaces <u>azarae</u> at somewhat higher elevations and is a bird of upper montane elfin and cloud forests. Elfin forest may be its preferred habitat, for on the West slope, where elfin forest is absent at "proper" elevations for this species, we failed to find it.

At still higher elevations, <u>Schizoaeca fuliginosa</u> overlaps <u>unirufa</u> elevationally and ultimately appears to replace it, ranging upward to the very limit of woody vegetation. This genus is closely related to <u>Synallaxis</u>, and <u>fuliginosa</u> resembles <u>unirufa</u> in size, structure, and foraging habits. How it and <u>unirufa</u> minimize competition in the zone of overlap is not apparent.

<u>Thripadectes</u> (Furnariidae).--The three members of this genus replace each other elevationally. Their ranges do not overlap at all.

<u>Themnophilus</u> (Formicariidae).--This genus of antshrikes is large, with members which are diverse in plumage pattern and bill structure. Five species are present in the valley. The sole representative above the valley floor is <u>T</u>. <u>caerulescens</u>, which occurs in the lower portions of cloud forest. In the humid lowlands, <u>T</u>. <u>doliatus</u> occupies matorral and second-growth, while <u>T</u>. <u>schistaceus</u> and <u>T</u>. <u>murinus</u> inhabit the forest. The latter two are very similar in appearance and vocalizations, but segregate by structure and size. <u>T</u>. <u>schistaceus</u> has a decidedly heavier bill than <u>murinus</u> and outweighs it by a factor of 1.22. Niche separation is less clear-cut in the dry lowlands, where <u>T</u>. <u>aethiops</u> appears and where <u>doliatus</u> enters the forest. <u>T</u>. <u>murinus</u> continues to be present. <u>T</u>. <u>aethiops</u>, a rather large, heavy-billed species, may replace <u>schistaceus</u> in the dry region, although they coexist in the transitional forest.

<u>Thamnomanes</u> and <u>Dysithamnus</u> (Formicariidae).--On the basis of behavioral evidence communicated to him by E. Willis, Meyer de Schauensee (1966) transferred <u>T</u>. <u>ardesiacus</u> from the genus <u>Dysithamnus</u> to <u>Thamnomanes</u>. It therefore comes as a surprise--but may be only coincidental--that <u>T</u>. <u>ardesiacus</u> and <u>Dysithamnus mentalis</u> have mutually exclusive elevational ranges, suggesting replacement, while <u>Thamnomanes schistogynus</u> and <u>T</u>. <u>ardesiacus</u> occurred together in the humid lowland forest at 470 m. Willis (pers. comm.) informs me that <u>schistogynus</u> and <u>ardesiacus</u> have flycatching foraging habits and that the latter tends to feed nearer to the ground than the former. <u>T</u>. <u>schistogynus</u> has a tyrannid-like bill,

quite unlike that of <u>ardesiacus</u>, whose bill is remarkably similar to that of <u>Thamnophilus</u> <u>murinus</u>.

Myrmotherula (Formicariidae) .-- The lowland members of the genus Myrmotherula provide an excellent example of ecological segregation by vertical stratification (Terborgh and Weske, 1969). Five species coexist in lowland humid forest. M. brachyura forages in the lower canopy and upper subcanopy, M. menetriesii and M. ornata in the lower subcanopy, and M. axillaris and M. haematonota in the understory. M. brachyura and M. menetriesii were never taken in our forest nets, and M. ornata was caught M. ornata, which possesses the stoutest bill of the group, only rarely. probably sorts out by virtue of this structure and of larger body size from M. menetriesii. M. axillaris forages somewhat higher in the understory than M. haematonota although their vertical distributions overlap. M. haematonota is primarily a hill forest species and M. axillaris a bird of the flat lowlands. Where one is common, the other is scarce. A comparative behavioral study of these Myrmotherulas species might reveal additional mechanisms for segregation. Wiley (1971) has recently shown that in Panama, M. axillaris and M. fulviventris sort out by foraging behavior. M. fulviventris, a species not present in Perú, probes curled dead leaves for food, whereas axillaris gleans from live foliage or makes sallies.

In the dry forest and the transitional forest, only two species were present: <u>M. axillaris</u> in the understory and <u>M. brachyura</u> in the higher strata. The valley's sixth species, <u>M. schisticolor</u>, is a cloud forest bird whose range lies entirely at elevations above those of the other five.

<u>Grallaria</u> and <u>Myrmothera</u> (Formicariidae).--Our information on elevational ranges indicates a replacing series of six species of antpittas, the largest series in the valley. There is no <u>Grallaria</u> in lowland humid forest, but an ant-pitta of the closely related genus <u>Myrmothera</u> (<u>M. campanisona</u>) is present there. Then, in order with increasing elevation, come <u>Grallaria guatimalensis</u> (in hill forest), <u>G</u>. <u>squamigera</u> (lower cloud forest), <u>G. erythroleuca</u> (upper cloud forest), <u>G. rufula</u> (elfin forest), and <u>G. andecola</u> (on west side only in isolated copses in the puna). Because ant-pittas are shy and because they are so terrestrial that they seldom enter nets, they are infrequently noted. A more thorough knowledge of their ranges might indicate some overlap, particularly between <u>G. squamigera</u> and <u>G. erythroleuca</u>, which were recorded at elevations not far apart. If they coexist, these two species could sort out on a size basis, since <u>G. squamigera</u> is the largest <u>Grallaria</u> in the valley.

At middle elevations, species of <u>Grallaria</u> coexist with <u>Grallaricula</u> ant-pittas. Besides being much smaller, members of <u>Grallaricula</u> (at least <u>G. flavirostris</u>) seem to be much less terrestrial, judging from the higher frequency of capture in nets.

<u>Pipreola</u> (Cotingidae).--Four species of these heavy-bodied, fruiteating cotingas inhabit the valley's middle and upper elevations. They appear to form two elevational series of two replacing members each. <u>P. frontalis</u> and <u>P. intermedia</u> comprise one series, and <u>P. pulchra</u> and <u>P. arcuata</u> the other. There is no overlap in ranges between members of each species pair. However, <u>pulchra</u> and <u>frontalis</u> occur together at

middle elevations, as do <u>arcuata</u> and <u>intermedia</u> higher up. The coexisting congeners sort out by size. The weight ratio for <u>pulchra/frontalis</u> is 1.30 and for <u>arcuata/intermedia</u> it is 1.99. <u>Pipreolas</u> are much commoner on the west slope than in the Vilcabamba, except for <u>P. arcuata</u>, which is fairly numerous in both areas.

<u>Pachyramphus</u> (Cotingidae).--In this genus there is a three-fold elevational series of forest species whose ranges are exclusive and have rather wide hiatuses between. A fourth species, <u>P. polychopterus</u>, inhabits matorral and second-growth on the valley floor, remaining spacially separate by habitat preference from <u>P. marginatus</u>, the humid lowland forest species. In the dry forest, <u>marginatus</u> drops out and is replaced by <u>polychopterus</u>.

Coexisting at some stations with a <u>Pachyramphus</u> is a larger becard of the genus <u>Platypsaris</u>. The two genera are structurally similar, but size differences allow ecological segregation. <u>Platypsaris rufus</u> and <u>Pachyramphus albogriseus</u> occur together in cloud forest, and <u>Platypsaris</u> <u>minor and Pachyramphus marginatus</u> probably do in the lowlands. I lack weights for some of these species, but a ratio of about 2:1 is indicated in each case.

<u>Pipra</u> and <u>Machaeropteryx</u> (Pipridae).--The manakins also segregate by size and elevational distribution. The larger members of the genus <u>Pipra</u> form a three-fold replacing series. Distributional limits coincide fairly closely with the boundaries of habitat zones. <u>P. pipra</u> is found in cloud forest, <u>P. chloromeros</u> in hill forest, and <u>P. fasciicauda</u> in lowland forest, where it is exceedingly abundant. As remarked previously, young manakins wander widely. Because of these wanderings, the ranges of

the species appear to overlap broadly. There is, however, almost no overlap in the elevational ranges of the adult males, a fact which suggests mutually exclusive breeding ranges.

Over its entire range, <u>P. pipra</u> coexists with the much smaller <u>P. caeruleicapilla</u>. The ratio of their weights is 1.54. In other parts of Peruvian Amazonia, such as the Sira range, <u>P. caeruleicapilla</u> is replaced at lower elevations by a very similar congener, <u>P. coronata</u>, which is found with <u>fasciicauda</u> and <u>chloromeros</u>. <u>P. coronata</u> is inexplicably absent from the Apurímac Valley. On the valley floor, however, another small manakin, <u>Machaeropteryx</u> pyrocephalus, shares the forest understory with <u>P. fasciicauda</u>. The latter is 1.61 times heavier.

<u>Myiotheretes</u> (Tyrannidae).--The members of this genus of large, highland flycatchers are uncommon, and our knowledge of their distribution may be incomplete. The sole species found in the Vilcabamba, <u>M</u>. <u>fumigatus</u>, was not found on the west slope. Three species do occur on that side of the valley, however--<u>M</u>. <u>fuscorufus</u> in cloud forest and, at the elfin forest/puna border, <u>M</u>. <u>erythropygius</u> and <u>M</u>. <u>striaticollis</u>. How the latter two segregate is not evident. <u>M</u>. <u>erythropygius</u> perches on exposed branches of shrubs or trees at the very fringe of forest and makes long flights or sallies over the puna.

<u>Ochthoeca</u> (Tyrannidae).--The niches of the <u>Ochthoeca</u> flycatchers show nearly all of the available sorting mechanisms. The two most closely related species, probably comprising a superspecies, are <u>O. pulchella</u> and <u>O. frontalis</u>. In appearance they differ only in the details of head and wing markings. Both are rarely seen inhabitants of the dimly-lit interior of dense vegetation. They form a two-fold elevational series, without

overlap and with replacement occurring over a short distance (Figure 11). <u>O. pulchella</u> is the lower elevation member, present in cloud forest understory and in elfin forest, while <u>O. frontalis</u> is in elfin forest at higher elevations. <u>O. rufipectoralis</u> shares the ranges of these two species down to the lower limit of elfin forest. It is of similar size, but unlike the other two it forages in the well-lit outer portions of the vegetation where it is readily seen. Coexisting in low abundance with <u>rufipectoralis</u> and <u>pulchella</u> is <u>O. cinnamomeiventris</u>, a species whose niche differences are unknown but which may also involve aspects of habitat selection. The one time I saw <u>O. cinnamomeiventris</u> other than in a mist-net was in a rather dry area at 2100 m along the access road to the valley, where the habitat was less humid and lush than any encountered at similar elevations along our transects.

The fifth member of the genus in the valley is <u>0</u>. <u>fumicolor</u>, which occurs where elfin forest mixes with or meets grassland above 3200 m on both slopes. Like <u>0</u>. <u>rufipectoralis</u>, which resides in this same area, it perches and forages on the outer branches of trees and shrubs. However, it also feeds on the ground, dropping from a perch in a manner remarkably like bluebirds of the genus <u>Sialia</u>. In size it is the largest of the valley's Ochthoecas, with a weight ratio to 0. rufipectoralis of 1.47.

<u>Myiarchus</u> (Tyrannidae).--<u>M</u>. <u>ferox</u> and the lowland race of <u>M</u>. <u>tuber</u>-<u>culifer</u> (nominate <u>tuberculifer</u>) are found together in matorral and sort out by size. (The <u>ferox/tuberculifer</u> weight ratio is 1.32.) The larger highland race of <u>tuberculifer</u> (<u>M</u>. <u>t</u>. <u>atriceps</u>) and the species <u>M</u>. <u>cephalotes</u> occupy the cloud forest. Although the former has a broader range and

occurs at higher elevations in the absence of <u>M</u>. <u>cephalotes</u>, the two species have considerable elevational overlap. How their niches differ is not evident.

<u>Myiophobus</u> (Tyrannidae).--The flycatchers of this genus form a five-fold elevational series in the Vilcabamba consisting from lowest to highest of <u>M. fasciatus</u>, <u>M. roraimae</u>, <u>M. inornatus</u>, <u>M. flavicans</u>, and <u>M. ochraceiventris</u>. However, since <u>M. fasciatus</u> is not a forest bird and may be present only as a migrant or winterer, it is perhaps best to exclude it from the series. The range of <u>M. inornatus</u> is very narrow, with its population seemingly squeezed between those of <u>roraimae</u> and <u>flavicans</u>. On the west side, we failed to find <u>inornatus</u>, and the ranges of <u>roraimae</u> and <u>flavicans</u> apparently meet and overlap in this area.

<u>Platyrinchus</u> (Tyrannidae).--The two commoner flat-bills, <u>P</u>. <u>platyrhynchos</u> and <u>P</u>. <u>mystaceus</u>, replace each other elevationally with the former a lowland bird and the latter a hill forest and cloud forest form. The third species, <u>P</u>. <u>flavigularis</u>, is puzzling with respect to its general status and its ecological relationship to <u>P</u>. <u>mystaceus</u>. It occurred just once, in a net, at a locality within the range of <u>mystaceus</u>.

<u>Tolmomyias</u> (Tyrannidae).--These three lowland flycatchers form a size series consisting, from largest to smallest, of <u>T</u>. <u>assimilis</u>, <u>T</u>. <u>flaviventris</u>, and <u>T</u>. <u>poliocephalus</u>. The weight ratio of the trio is 1.61: 1.24: 1.00. They differ in habitat preference as well as size. <u>T</u>. <u>assimilis</u> is a canopy species in heavy, humid forest and is the only member not colonizing secondary habitats and not present in the dry forest along the Río Ene. <u>T</u>. <u>flaviventris</u> occurs in forest but is most abundant along the forest edge, in tall second-growth woodland, and in the crowns of coffee plantation shade trees. The primary habitat of <u>T</u>. <u>poliocephalus</u> in the humid lowlands is unknown, but it is found in the same secondary habitats as <u>T</u>. <u>flaviventris</u>, which seems to forage somewhat higher above the ground than poliocephalus.

<u>Todirostrum</u> (Tyrannidae).--The tody-flycatchers avoid contact through differences in vertical stratification and habitat selection (Terborgh and Weske, 1969). <u>T. chrysocrotaphum</u> lives in the forest canopy and subcanopy. Both <u>T. latirostre</u> and <u>T. cinereum</u> occupy the lower strata of matorral, but the former is a thicket bird, found in dense, dimly-lit vegetation. <u>T. cinereum</u>, on the other hand, inhabits the edges and sparser portions of matorral. It is particularly common in secondary habitats like citrus groves and fallow pastures where woody composites have invaded.

Lophotriccus and Idioptilon (Tyrannidae).--L. pileatus and I. granadense provide an example of a two-fold elevational series whose members are of different genera. Both are tiny, short-winged flycatchers which forage at lower levels in the forest. Along the gradient, <u>Idioptilon</u> replaces <u>Lophotriccus</u> above 2000 m.

Elaonia (Tyrannidae).--Of five species of Elaenia in the valley, only three have resident breeding populations. The other two (\underline{E} . <u>albiceps</u> and \underline{E} . <u>spectabilis</u>) nest in the South Temperate Zone and winter in the tropics (Zimmer, 1941). <u>E. spectabilis</u> was found only once, well above ground in matorral. <u>E. albiceps</u> is common at lower and middle elevations, particularly in second-growth, where it often feeds on small fruits. The resident species are <u>E. pallatangae</u>, a small forest <u>Elaenia</u> of middle and

higher elevations, and two lowland birds, \underline{E} . <u>flavogaster</u> and \underline{E} . <u>gigas</u>. The latter two occur together in sparse matorral, young second-growth, and cultivated habitats. I have insufficient weight data, but they seem to sort out by size, with <u>gigas</u> the larger as its name would suggest.

<u>Tyranniscus</u> (Tyrannidae).--Two species, <u>T</u>. <u>nigrocapillus</u> and <u>T</u>. <u>uropygialis</u>, are very similar in appearance and habits. They form an elevational series--the former in cloud forest and the latter in elfin forest. The third member of the genus, <u>T</u>. <u>bolivianus</u>, has a wide range which bridges that of its two congeners. Differences in feeding behavior provide a means for segregation. <u>T</u>. <u>bolivianus</u> perches motionless on exposed branches and sallies after insects, while <u>T</u>. <u>nigrocapillus</u> seemed to me to feed like a kinglet (<u>Regulus</u>), with active hops or flights from branch to branch. I have no observations of <u>T</u>. <u>uropygialis</u>.

<u>Leptopogon</u> (Tyrannidae).--There is a three-fold elevational series in this genus, with broad overlap in ranges of the lower member, <u>L</u>. <u>amaurocephalus</u>, and the middle one, <u>L</u>. <u>superciliaris</u>. At higher elevations, <u>L</u>. <u>taczanowskii</u> replaces <u>L</u>. <u>superciliaris</u>. Their ranges are mutually exclusive.

In a previous section I described vertical partitioning of the habitat by <u>L</u>. <u>amaurocephalus</u> and <u>L</u>. <u>superciliaris</u> in the area of range overlap. Where its congener is absent, the vertical foraging range of <u>L</u>. <u>superciliaris</u> is broader.

<u>Notiochelidon</u> (Hirundinidae).--The valley's three species of <u>Notiochelidon</u> swallows do not come in contact. <u>N. cyanoleuca</u> is found on the valley floor in cleared areas. At higher elevations in the

Vilcabamba <u>N. flavipes</u> is present, but at treeline on the west side <u>N</u>. <u>murina</u> occurs--a case of allopatric replacement similar to that in the hummingbird genus <u>Metallura</u>.

Troglodytidae .-- The niches of the wrens seem fairly well differentiated. Ten species are present in the valley. In the lowlands there are three: a mainly terrestrial forest species (Microcerculus marginatus), a large matorral species (Thryothorus coraya), and a small matorral species (Troglodytes aedon). In the cloud forest, one encounteres a medium-sized understory wren (Henicorhina leucophrys), two large understory wrens which do not overlap elevationally (Cyphorhinus thoracicus and Cinnycerthia peruana), a small arboreal wren which forages among hanging vines and other epiphytes (Troglodytes solstitialis), and a small arboreal species (Odontorchilus branickii) which forages along limbs in the manner of the nuthatch Sitta pusilla. Thryothorus coraya ranges upward to the lower cloud forest but is strictly limited to second-growth vegetation in clearings. At higher elevations there is a grassland species (Cistothorus platensis) and a large Thryothorus (T. euophrys) about which we know little since it was recorded just once. Troglodytes solstitialis inhabits elfin forest, but Cinnycerthia peruana and Henicorhina leucophrys are present at higher elevations only where cloud forest vegetation persists.

<u>Turdus</u> (Turdidae).--Four members occur in the valley. <u>T</u>. <u>ignobilis</u> occupies matorral in the lowlands. To our surprise, there appears to be no robin in the lowland forest. <u>T</u>. <u>nigriceps</u> is a bird of hill forest and lower cloud forest, replaced at higher elevations by <u>T</u>. <u>fuscater</u> and <u>T</u>. <u>serranus</u>, which overlap broadly. These two species sort out by size,

for <u>fuscater</u> is very large and outweighs <u>serranus</u> by a factor of 1.78. There is one other robin present, <u>Platycichla leucops</u>, which is occasionally placed in the genus <u>Turdus</u> and which coexists with <u>T. nigriceps</u> on the west side. Other than rather modest differences in body size and bill structure, I am not aware of niche differences between <u>leucops</u> and nigriceps.

<u>Psarocolius</u> (Icteridae).--The oropendolas segregate by elevational range and habitat preference, although occasionally two or even all three species are found together. <u>P. decumanus</u> and <u>P. angustifrons</u> share the lowlands, but the former is more a forest species and the latter more a bird of matorral and second-growth. It is the nests of <u>angustifrons</u> that one sees hanging from solitary large trees that are left standing after land is cleared for cultivation, and it is <u>angustifrons</u> which causes occasional depredations on bananas and papayas. The third species, <u>P. atrovirens</u>, is the elevational replacement in cloud forest.

<u>Cacicus</u> (Icteridae).--Three canopy-dwelling caciques which form an elevational series are <u>C</u>. <u>cela</u>, <u>C</u>. <u>uropygialis</u>, and <u>C</u>. <u>leucoramphus</u>. In the lowlands, <u>C</u>. <u>cela</u> comes in contact with <u>C</u>. <u>solitarius</u>, a species of the matorral understory, but the two avoid niche overlap by their differing vertical distribution. A somewhat similar relationship prevails at higher elevations where the ranges of <u>C</u>. <u>leucoramphus</u> and <u>C</u>. <u>holosericeus</u> overlap. The latter forages in dense vegetation near the ground and, in addition, is smaller than <u>leucoramphus</u>, with a differently shaped bill. Their ranges suggest elevational replacement (Terborgh, 1971), but that situation is probably coincidental, since their niches appear to be quite distinct otherwise.

Basileuterus (Parulidae) .-- Of five species of the genus in the valley, one stands ecologically apart. This is the stream-side specialist B. rivularis, which in actions, appearance, call notes, and habitat closely resembles the North American waterthrushes of the genus Seiurus. The other four Basileuterus warblers occupy more similar niches in forest vegetation and form an elevational series. Occurring successively higher along the gradient are <u>B</u>. chrysogaster, <u>B</u>. tristriatus, <u>B</u>. coronatus, and B. luteoviridis (Figure 13). There is considerable range overlap between adjacent pairs of the latter three--only the lowest member, B. chrysogaster, has an exclusive range. Coexistence between tristriatus and coronatus is accounted for by differences in size and vertical distribution. Although both occur in the understory, tristriatus commonly forages in the subcanopy as well. B. coronatus outweighs it by a factor of 1.26. Both B. coronatus and B. luteoviridis are large warblers of the dense cloud forest understory, with the latter also inhabiting the elfin forest. Their netting abundance curves are skewed toward the elevations where their ranges come together, indicating that competitive interactions compress these ranges (Terborgh, 1971). It is perplexing that from 2100 m to 2200 m, each species is quite common in the presence of the other. If, or how, they segregate ecologically in this zone is unknown. The situation for this species pair is comparable to that for the hummingbirds Coeligena coeligena and C. torquata, whose ranges meet at the same elevations.

<u>Conirostrum</u> (Coerebidae).--The species of this genus reduce niche overlap by elevational replacement and differential habitat selection.

C. speciosum, in the lowlands, and C. albifrons, a cloud forest bird, C. sitticolor, C. ferrugineiventre, and C. have exclusive ranges. cinereum are found in elfin forest and are sometimes seen together. C. sitticolor inhabits solid stands of elfin forest and ranges to a lower elevation than the other two, while C. ferrugineiventre is an edge species found only at treeline where elfin forest and grassland meet. C. cinereum also occurs at treeline and is common in patches of sparse, low shrubbery surrounded by puna. However, cinereum is really a characteristic species of the Sierra (the "Arid Temperate Zone" of Chapman, 1921), and its population at the crest of the valley's west slope can be considered a spillover from the adjacent Sierra. C. cinereum was not found in the Vilcabamba, where no dry highland habitat is nearby.

<u>Diglossa</u> (Coerebidae).--Like <u>Conirostrum</u>, <u>Diglossa</u> is a mainly highland genus which is well-represented in the valley. As many as four species may coexist, sorting out by size and habitat preference. At the risk of oversimplification, I offer a capsule description of the niche of each: 1) <u>D</u>. <u>glauca</u> is a small species of cloud forest canopy and subcanopy. 2) <u>D</u>. <u>albilatera</u> is a small species of upper cloud forest and elfin forest--the elevational replacement for <u>glauca</u>. 3) <u>D</u>. <u>carbonaria</u>, another small species, replaces <u>albilatera</u> and inhabits the elfin forest/ puna ecotone. 4) <u>D</u>. <u>caerulescens</u>, a medium-sized cloud forest species overlaps <u>glauca</u> and is uncommon in the valley. From the Sira Range we know that this is an abundant species in the elfin forest that occurs around 2000 m. The elfin forest does not come that low in the Apurímac Valley, but <u>caerulescens</u> probably finds sufficient elements of that type

of vegetation to maintain a population and sort out from glauca by habitat preference. 5) D. baritula is a very small species found only on the west side in cloud forest at middle elevations. No weight data are available, but one may conjecture that <u>baritula</u> segregates ecologically by size from the somewhat larger species glauca and caerulescens, with which it coexists. 6) D. lafresnayii is a larger species whose range is strictly determined by the presence of shrubby, microphyllous elfin forest vegetation. It ranges down to 2500 m in the Vilcabamba but is found only near treeline on the west slope, where low elfin forest is limited to high elevations. 7) D. cyanea, the largest and most wideranging member, is common in upper cloud forest and elfin forest. This species and lafresnayii coexist commonly over a broad span, are fairly close in size, and are occasionally seen together. D. lafresnayii seems usually to be solitary, but cyanea is normally a member of mixed-species tanager-honeycreeper flocks. D. cyanea occurs in shrubby elfin forest but is even more a species of taller trees and the unbroken forest. It is not found in the scattered low copses of the puna edge where D. lafresnayii, D. carbonaria, and Conirostrum cinereum are abundant.

Segregation by size occurs between these combinations of coexisting species: <u>cyanea/albilatera</u> (weight ratio = 1.46), <u>cyanea/caerulescens</u> (1.22), <u>cyanea/glauca</u> (1.40), <u>lafresnayii/albilatera</u> (1.31), and <u>lafresnayii/carbonaria</u> (1.27).

Our records of <u>D</u>. <u>carbonaria</u> in the Vilcabamba are of only two individuals, both immatures, suggesting that there may be no breeding population there. Like <u>Conirostrum cinereum</u>, <u>D</u>. <u>carbonaria</u> is a species

of the Sierra whose range barely extends into the upper fringe of the humid Apurimac Valley.

Euphonia (Thraupidae) .-- Seven species of euphonias occur in the E. chlorotica and E. laniirostris are matorral birds which sort valley. out by size and structure, for the latter is larger and has a stouter E. chlorotica is especially numerous in rather open cultivated bill. habitats--citrus plantations, Hibiscus hedgerows, and scattered trees in pastureland. There are four lowland forest species whose niche differences are unknown, although there are some size differences: E. chrysopasta, E. xanthogaster, E. rufiventris, and E. minuta. E. minuta is exceedingly similar to E. chlorotica in appearance and small size but remains separate by habitat selection. E. xanthogaster has a broad range which extends from the valley floor well into the cloud forest. In the latter habitat it bridges the range of E. mesochrysa, a smaller species from which it sorts out by size.

<u>Tangara</u> (Thraupidae).--A full explanation of the ecological relationships of the members of this genus of canopy tanagers must await an intensive analysis as done by MacArthur (1958) on the <u>Dendroica</u> warblers of eastern North America. Seventeen <u>Tangaras</u> are found in the valley; frequently, four of five species will be seen in the same flock feeding in the same tree. I call attention to niche differences which so far have become evident. The elevational replacement between a lowland group and a middle elevation group was mentioned earlier (See Figure 4.), as was specialized feeding behavior in <u>T</u>. <u>chrysotis</u> and <u>T</u>. <u>ruficervix</u>. There can also be segregation by size and structure: <u>T</u>. <u>pardzudakii</u> is probably the largest of the cloud forest group and outweighs T. nigroviridis,

a species with which it often associates, by a factor of 1.7; <u>T</u>. <u>callophrys</u> has a longer, more slender bill than its congeners. <u>T</u>. <u>schrankii</u> was the only lowland <u>Tangara</u> to be netted, and it was occasionally seen in the C-story (subcanopy) of lowland forest. Others of the genus seem to remain in the canopy. <u>T</u>. <u>punctata</u> and <u>T</u>. <u>xanthogastra</u> may form a superspecies; they are very similar in plumage pattern and in their small size, and they seem to replace each other elevationally.

<u>Anisognathus</u> (Thraupidae).--Three members of this genus of mountain tanagers are present in the valley. <u>A. flavinucha</u> is a common species of the forest canopy and subcanopy at middle elevations. Its elevational range does not overlap those of <u>A. lacrymosus</u> and <u>A. igniventris</u>, which coexist broadly at higher elevations and often join the same mixed-species feeding flocks. Segregation between the latter two is partly by size: <u>igniventris</u> outweighs <u>lacrymosus</u> by a factor of 1.12. There are, in addition, differences in habitat preference and elevational range. <u>A. lacrymosus</u> has a somewhat lower range and was found in the upper cloud forest but not in the elfin forest at treeline on the west side. Conversely, <u>A. igniventris</u> was never seen below the elfin forest zone, but it ranged to the upper limit of woody vegetation in the elfin forest / puna ecotone.

The <u>Anisognathus</u> tanagers coexist throughout the cloud and elfin forest with tanagers of the genus <u>Iridosornis--A</u>. <u>flavinucha</u> with <u>I</u>. <u>analis</u>, and <u>A</u>. <u>lacrymosus</u> and <u>A</u>. <u>igniventris</u> with <u>I</u>. <u>reinhardti</u>. These five colorful species are among the most abundant tanagers in the valley.</u> Respective members of the two genera sort out by size, for the two

<u>Iridosornis</u> are about 25 percent smaller. Also, <u>A</u>. <u>flavinucha</u> and <u>I</u>. <u>analis</u> differ in vertical stratification. The former forages higher and usually stays above net level, but the latter feeds in both subcanopy and understory, and is regularly netted.

<u>Chlorospingus</u> (Thraupidae).--In this genus of tanagers there appear to be two pairs of species whose members are ecologically similar and replace each other elevationally. <u>C. ophthalmicus</u> replaces <u>C. canigularis</u>, and <u>C. parvirostris</u> replaces <u>C. flavigularis</u>. Segregation between the two pairs is by habitat selection. <u>C. parvirostris</u> and <u>C. flavigularis</u> seem to prefer vegetation bordering or near mountain streams, while <u>C. ophthalmicus</u> and <u>C. canigularis</u> are found in cloud forest not necessarily near water. <u>C. ophthalmicus</u> was abundant in elfin forest around 2000 m in the Sira Range, where this forest type is found lower than in the Apurimac Valley. Its status parallels that of the coerebid <u>Diglossa</u> <u>caerulescens</u>.

<u>Hemispingus</u> (Thraupidae).--Another genus of tanagers which is well-represented in the valley is <u>Hemispingus</u>. Terborgh pointed out to me that one member, <u>H</u>. <u>xanthophthalmus</u>, has a distinctive behavior which sets it off from the rest. In search of food, it walks about on the tops of leaf clusters of small elfin forest trees.

The species with the lowest elevational range is <u>H</u>. <u>frontalis</u>, which occupies the subcanopy in lower cloud forest. It shares this range with <u>H</u>. <u>melanotis</u>, an uncommon species which I have never seen aside from four occasions when it was netted. How <u>frontalis</u> and <u>melanotis</u> sort out is unknown. At somewhat higher elevations, <u>frontalis</u> is replaced by two coexisting species, <u>H</u>. <u>superciliaris</u> and <u>H</u>. <u>atropileus</u>, which in turn are

replaced above 3300 m in the Vilcabamba by <u>Hemispingus</u> sp. Segregation between <u>atropileus</u> and <u>superciliaris</u> is by size: the weight ratio of the former to the latter is 1.62. On the west side, the distributional picture at higher elevations is altered. <u>Hemispingus superciliaris</u> and <u>Hemispingus</u> sp are absent from that side of the valley. A species not found in the Vilcabamba, <u>H. trifasciatus</u>, is the allopatric replacement for <u>H. superciliaris</u>, which closely resembles it in plumage details and size. <u>H. trifasciatus</u> coexists with the larger <u>H. atropileus</u>, and, in the absence of <u>Hemispingus</u> sp, this species pair ranges up to the limit of trees. The ecological evidence and morphological similarity would suggest that <u>superciliaris</u> and <u>trifasciatus</u> may be conspecific, but they appear to be sympatric in southeastern Peru, where field study should be undertaken to clarify their elevational and ecological relationships.

<u>Sporophila</u> (Fringillidae).--Four seedeaters inhabit matorral and cultivated areas in the lowlands. Along with <u>Volatinia jacarina</u> they form mixed flocks. How they avoid extensive niche overlap is by no means entirely clear, but they differ somewhat in size and structure. The bill of <u>S</u>. <u>obscura</u> has a straighter culmen than that of the other <u>Sporophilas</u>. P. A. Schwartz, Jr. (pers. comm.) feels that this species may properly belong in <u>Tiaris</u>, a genus of grassquits with wide tropical distribution but unrepresented in the valley. There are modest differences in average weight between the other three species: <u>S</u>. <u>luctuosa</u>, <u>S</u>. <u>nigricollis</u>, and <u>S</u>. <u>castaneiventris</u> (listed from largest to smallest). The weight ratios are 1.51: 1.15: 1.00. In addition, <u>S</u>. <u>luctuosa</u> is uncommon in the lowlands and is probably marginal there. It appears to be primarily a species of

middle elevations--we were surprised to capture three in cloud forest at 2600 m on the west side. <u>S. castaneiventris</u> and <u>S. nigricollis</u> are strictly lowland species in the valley.

<u>Atlapetes</u> (Fringillidae).--The four members of this genus of forest understory finches segregate by size and elevational distribution. Below about 2400 m, a larger, white-bellied species (<u>A</u>. <u>brunneinucha</u>) and a smaller, yellow-bellied one (<u>A</u>. <u>tricolor</u>) occur together. Above that elevation, the coexisting pair consists of <u>A</u>. <u>torquatus</u> (large and whitebellied) and <u>A</u>. <u>rufinucha</u> (small and yellow-bellied). The situation is analagous to that which prevails in the cotinga genus <u>Pipreola</u>. The coexisting species sort out by size, with a weight ratio of 1.58 for <u>brunneinucha / tricolor</u> and of 1.52 for <u>torquatus / rufinucha</u>. Elevational replacement in both the white-bellied and yellow-bellied species pairs occurs without overlap in ranges.

Ecological Specialists

Defining the niches and explaining the ecological relationships of all the species of birds which coexist in a given habitat is a far greater problem than dealing with the niches of congeners. The sorting mechanisms operating among closely related species are probably those which apply to the members of entire avian communities, but a greater variety in physiological, structural, and behavioral adaptations leads to less clear-cut differences in spatial relationships like vertical and elevational distribution or habitat preference. Characterizing the niches of even a part of the community, such as the canopy flock members, becomes very complex. In this section I discuss some species for which a certain

ecological factor seems to be of overriding importance. In that sense such a species is a specialist, but a narrow dimension for one feature often leads to a broad tolerance in another, such as elevational distribution. Foremost among these species are habitat specialists. Along with <u>Basileuterus rivularis</u> and <u>Serpophaga cinerea</u>, which were mentioned above, there are other species which are always or usually found along streams. These include the dipper <u>Cinclus leucocephalus</u>, the phoebe <u>Sayornis</u> <u>nigricans</u>, the furnariid <u>Lochmias nematura</u>, and the hummingbird <u>Heliothryx</u> <u>aurita</u>. The antbird <u>Percnostola leucostigma</u> inhabits dense leafy undergrowth which surrounds and sometimes covers small woodland brooks in the lowlands.

Other bird species are seldom found far from a particular sort of vegetation. Both species of <u>Drymophila</u> favor stands of bamboo of the genus <u>Chusquea</u>. The relative scarcity of <u>D</u>. <u>caudata</u> in the west slope seems directly attributable to the scarcity of <u>Chusquea</u> in the lower cloud forest. On the Vilcabamba side both the plant and the bird are common at these elevations. The antbirds <u>Cymbilaimus lineatus</u> and <u>Cercomacra nigrescens</u> are normally found in hanging tangles of lianas and vines in the lowland and hill forest subcanopy. The antbird <u>Cercomacra nigrescens</u> and the furnariid <u>Synallaxis azarae</u> are common understory species in "brights" in the cloud forest where blowdowns or landslides have removed part of the forest vegetation and where second-growth has taken hold. Both of these species are occasionally encountered in forest understory; their occurrence there seems related to the transitory nature of secondgrowth habitat and the consequent evolutionary necessity that they wander

widely and thus increase the possibility of stumbling on newly created areas that are suitable for them. Also associated with cloud forest clearings are the flycatchers <u>Pyrrhomyias cinnamomea</u> and <u>Contopus fumigatus</u> which sally out for insects in the open area from perches in trees at the clearings' edge.

Another group of specialists are the ant-followers. Several species of formicariids occasionally join ant-following flocks, but <u>Pithys</u> <u>albifrons and Rhegmatorhina melanosticta</u> are habitual ant-followers (Willis, 1969). Also feeding mainly on insects flushed by army ant swarms are three species of woodcreepers-<u>Dendrocincla fuliginosa</u>, <u>Dendrocolaptes</u> <u>certhia</u>, and <u>Dendrocolaptes picumnus</u>. The adaptation to perching on vertical surfaces which is essential to the bark-foraging habits of other dendrocolaptids is equally usoful for these ant-followers. They can sally out from perches on tree trunks in the forest understory to capture flying insects.

Several other species possess distinctive structural features which may provide a competitive advantage while leading, in some cases, to a rather specialized niche. The most obvious example is <u>Eutoxeres</u> <u>condamini</u>, a hummingbird with a sickle-bill. This species is never very common but has an elevational range of over 2000 m. Its low abundance would reflect a relative scarcity of its probable food source, flowers with curved corollas, but its broad range would result from an absence of other species having the structural adaptations to compete effectively for this resource. Another hummingbird, <u>Doryfera ludoviciae</u>, which has an unusually straight, long bill, is also present but uncommon over a wide

range. It may also be adapted to feeding at flowers of a particular shape and may illustrate a situation paralleling that for <u>Eutoxeres</u>. Not every wide-ranging species can be accounted for in this manner, however. The hummingbird <u>Amazilia chionogaster</u> is found over a span of 3000 m from the deciduous forest of the Río Ene to the crest of the Vilcabamba, yet morphologically it is a "typical" hummingbird, with no apparent structural or behavioral specializations.

Other than the Trochilidae, there are at least two species whose wide ranges may be attributed to unique features. One is the flycatcher <u>Mionectes striaticollis</u>, which is present from the valley floor to treeline and is probably the most common bird in the valley. From field observation of it and from its characteristically reddish or purplish excrement we know this species feeds on fruit as well as insects, a habit which gives it great ecological versatility compared to most other tyrannids. The Squirrel Cuckoo, <u>Piaya cayana</u>, is another highly successful species which is distinctive in both morphology and behavior. Aside from its congener, <u>P. minuta</u>, whose niche differences were already discussed, there would seem to be no species in the valley which is even potentially a close competitor.

ACKNOWLEDGMENTS

This study could not have been made without the kindness and cooperation of many people. For their aid and good spirit I wish to thank my expedition partners: John W. Terborgh, Theodore R. Dudley, John S. Knox, Michael Madison, John P. O'Neill, and William C. Russell. Special mention is due to John Terborgh for his capable leadership in the field and his interest and counsel during preparation of this report. I am deeply grateful to José Parodi V. and his wife, Goya, for their hospitality at Hacienda Luisiana and for innumerable favors. Indispensible to the expeditions were the loyalty, campcraft ability, and physical stamina of our Peruvian assistants, especially Klaus Wehr N., Manuel Sánchez S., Erasmo Guerra G., Humberto Santana, and Girardo Cavalcante.

Use of the collections and facilities in their care was graciously granted by Dean Amadon of the American Museum of Natural History, Ramón Ferreyra of the Museo de Historia Natural "Javier Prado," J. Keever Greer of the University of Oklahoma's Stovall Museum, and Frank B. Gill of the Academy of Natural Sciences of Philadelphia.

I am indebted to Gary D. Schnell, Gerald Braver, George J. Goodman, Howard B. Haines, and Loren G. Hill for their critical reading of the manuscript. Jared M. Diamond, Eugene Eisenmann, and Wesley E. Lanyon made helpful suggestions during the study. Hans-Wilhelm Koepcke,

Grace M. Russell, George M. Sutton, Dorothy B. Weske, and John R. Weske gave assistance in various ways. I particularly appreciate the aid and encouragement received from the late Maria Koepcke, who shared with me her knowledge of Peruvian birds.

Support for the expeditions was generously provided by the Frank M. Chapman Memorial Fund of the American Museum of Natural History, the National Geographic Society, and the National Science Foundation (Grant no. GB-12378).

LITERATURE CITED

Baekeland, G. B. 1964. By parachute into Peru's lost world. National Geographic, 126: 268-296.

Byers, H. R. 1959. General meteorology. New York, McGraw-Hill.

Cabanis, J. L. 1873. Neue peruanische Vögel des Herrn C. Jelski. J. f. Ornithol., 21: 64-68.

- Chapman, F. M. 1921. The distribution of bird life in the Urubamba Valley of Peru. Bull. U.S. Nat. Mus., 117: 1-138.
- Connell, J. H., and E. Orias. 1964. The ecological regulation of species diversity. Amer. Naturalist, 98: 399-414.
- Diamond, J. M. 1969. Avifaunal equillibria and species turnover rates on the Channel Islands of California. Proc. Nat. Acad. Sci. 64(1): 57-63.
- Diamond, J. M. 1972. The avifauna of the Eastern Highlands of New Guinea. Publ. Nuttall. Ornith. Club (in press).
- Dice, L. R. 1943. The biotic provinces of North America. Ann Arbor, University of Michigan Press.
- Hamilton, T. H., R. H. Barth, Jr., and I. Rubinoff. 1964. The environmental control of insular variation in bird species abundance. Proc. Nat. Acad. Sci., 52(1): 132-140.
- Heimerdinger, M. A., and R. C. Leberman. 1966. The comparative efficiency of 30 and 36 mm mesh in mist nets. Bird-Banding, 37(4): 280-285.
- Hesse, R., W. C. Allee, and K. P. Schmidt. 1951. Ecological animal geography. New York, John Wiley and Sons, Inc.
- Lack, D. 1944. Ecological aspects of species-formation in passerine birds. Ibis, 86: 260-286.
- MacArthur, R. H. 1958. Population ecology of some warblers of northeastern coniferous forests. Ecology, 39: 599-619.

- MacArthur, R. 1971. Patterns of terrestrial bird communities. Pp. 189-221 in Avian biology (D.S. Farner and J. R. King, Eds.). New York, Academic Press.
- MacArthur, R. H., and E. O. Wilson. 1967. The theory of island biogeography. Princeton, Princeton University Press.
- Mayr, E. 1963. Animal species and evolution. Cambridge, Harvard University Press.
- Mayr, E., and E. T. Gilliard. 1954. Birds of central New Guinea. Bull. Amer. Mus. Nat. Hist., 103: 311-374.
- Meyer de Schauensee, R. 1966. The species of birds of South America and their distribution. Narberth, Pa., Livingston Publ. Co. 577 p.
- Miller, A. H. 1963. Seasonal activity and ecology of the avifauna of an American equatorial cloud forest. Univ. Calif. Publ. Zool., 66(1): 1-78.
- Moreau, R. E. 1948. Ecological isolation in a rich tropical avifauna. J. Animal Ecology, 17: 113-126.
- Myers, C. W. 1969. The ecological geography of cloud forest in Panama. Amer. Mus. Novit., 2396: 1-52.
- Orians, G. H. 1969. The number of bird species in some tropical forests. Ecology, 50: 783-801.
- Pearson, D. L. 1971. Vertical stratification of birds in a tropical dry forest. Condor, 73(1): 46-55.
- Rand, A. L. 1936. Altitudinal variation in New Guinea birds. Amer. Mus. Novit., 890: 1-14.
- Richards, P. W. 1966. The tropical rain forest. Cambridge, Cambridge Univ. Press.
- Selander, R. K. 1971. Systematics and speciation in birds. Pp. 57-147 <u>in</u> Avian biology (D. S. Farner and J. R. King, Eds.). New York, Academic Press.
- Short, L. L. 1970. Notes on the habits of some Argentine and Peruvian woodpeckers (Aves, Picidae). Amer. Mus. Novit., 2413: 1-37.
- Slud, P. 1960. The birds of Finca "La Selva," Costa Rica: a tropical wet forest locality. Bull. Amer. Mus. Nat. Hist., 128: 1-430.
- Snow, D. W. 1954. Trends in geographical variation in Palearctic members of the genus <u>Parus</u>. Evolution, 8: 19-28.

- Stamm, D. D., D. E. Davis, and C. S. Robbins. 1960. A method of studying wild bird populations by mist-netting and banding. Bird-Banding, 31(3): 115-130.
- Swarth, H. S. 1914. A distributional list of the birds of Arizona. Pacific Coast Avif., 10: 1-133.
- Terborgh, J. 1971. Distribution on environmental gradients: theory and a preliminary interpretation of distributional patterns of the avifauna of the Cordillera Vilcabamba, Perú. Ecology, 52(1): 23-40.
- Terborgh, J., and J. S. Weske. 1969. Colonization of secondary habitats by Peruvian birds. Ecology, 50(5): 765-782.
- Traylor, M. A. 1950. Altitudinal variation in Bolivian birds. Condor, 52: 123-127.
- Vuilleumier, F. 1970. Insular biogeography in in continental regions. I. The northern Andes of South America. Amer. Naturalist, 104: 373-388.
- Wiley, R. H. 1971. Cooperative roles in mixed flocks of antwrens (Formicariidae). Auk, 88(4): 881-892.
- Willis, E. O. 1966. Interspecific competition and the foraging behavior of Plain-brown Woodcreepers. Ecology, 47(4): 667-672.
- Willis, E. O. 1969. On the behavior of five species of <u>Rhegmatorhina</u>, ant-following antbirds of the Amazon Basin. Wilson Bull., 81(4): 363-395.
- Zimmer, J. T. 1941. Studies of Peruvian birds, no. 36. Amer. Mus. Novit., 1108: 1-23.

Figure 1. Map of the Río Apurímac and Río Ene, Peru.

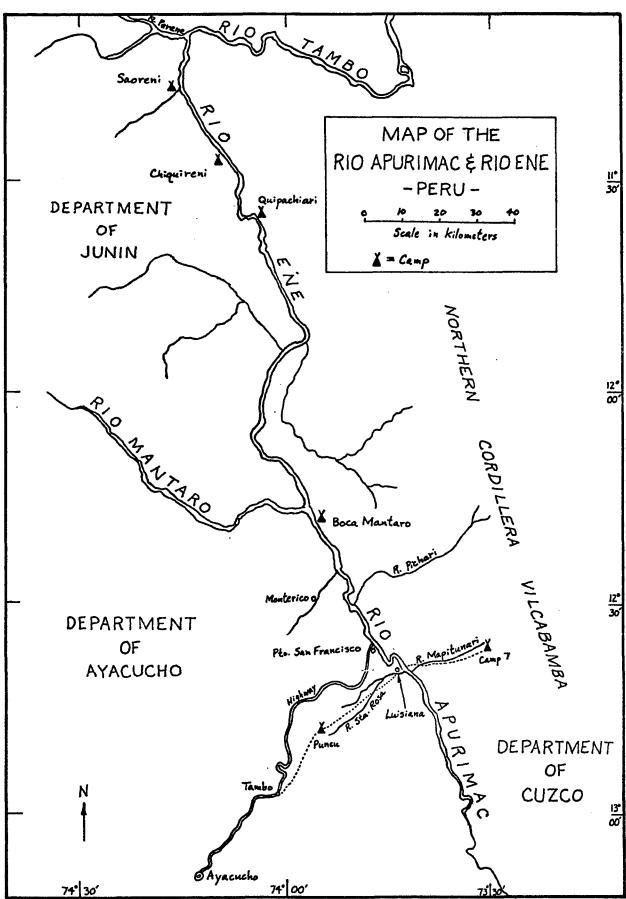


Figure 2. Schematic cross-section of the Apurímac Valley.

۰.

.

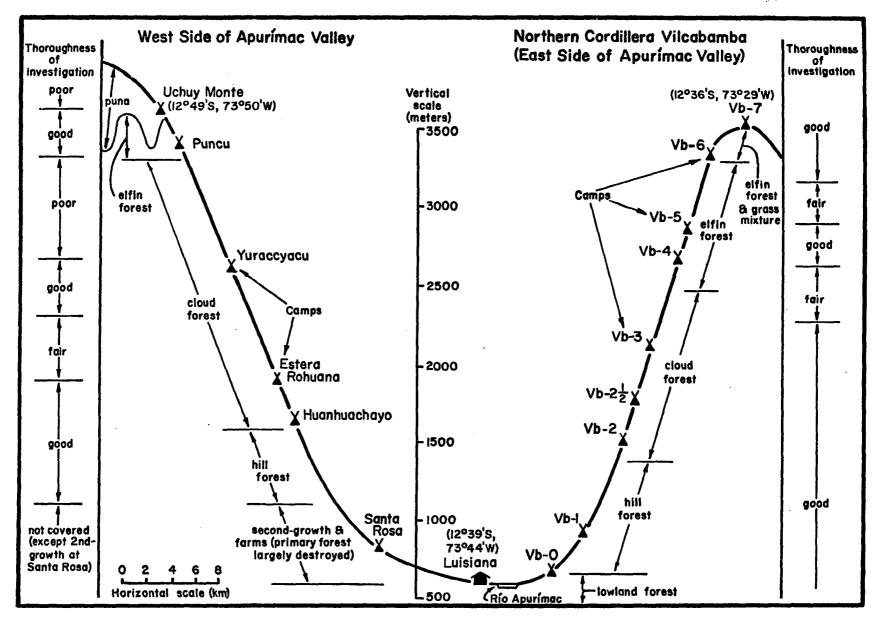


Figure 3. Number of forest species present at stations on the Vilcabamba gradient. Linear regression on elevation explains

• . •

96.99% of the variation in species number.

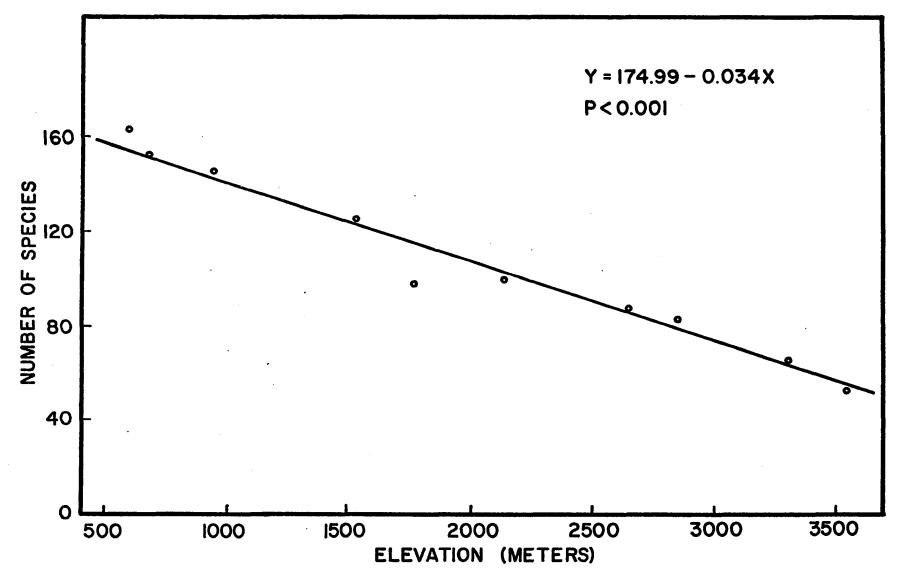


Figure 4. Elevational ranges in forest of canopy flock species on the Vilcabamba gradient.

.

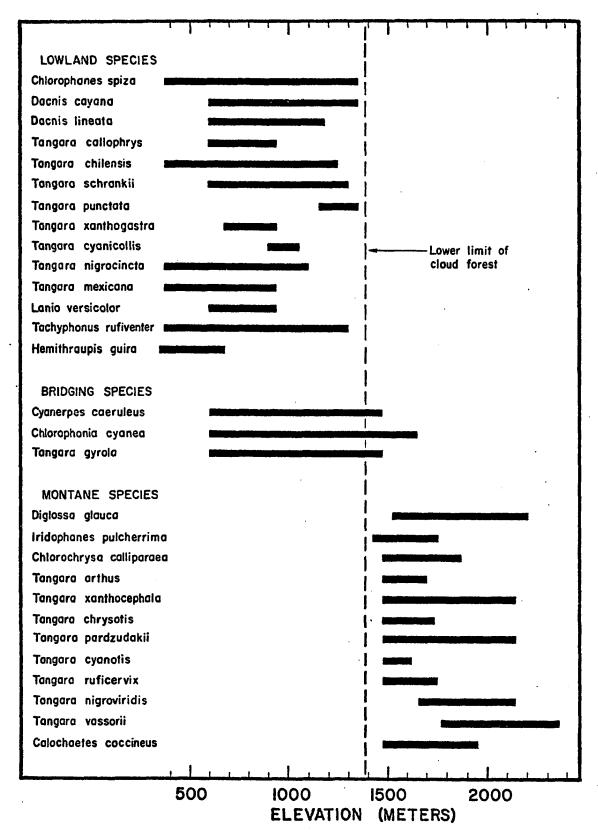


Figure 5. Number of sub-oscine species and New World nine-primaried oscine species as a percent of the total forest avifauna on the Vilcabamba gradient.

ï

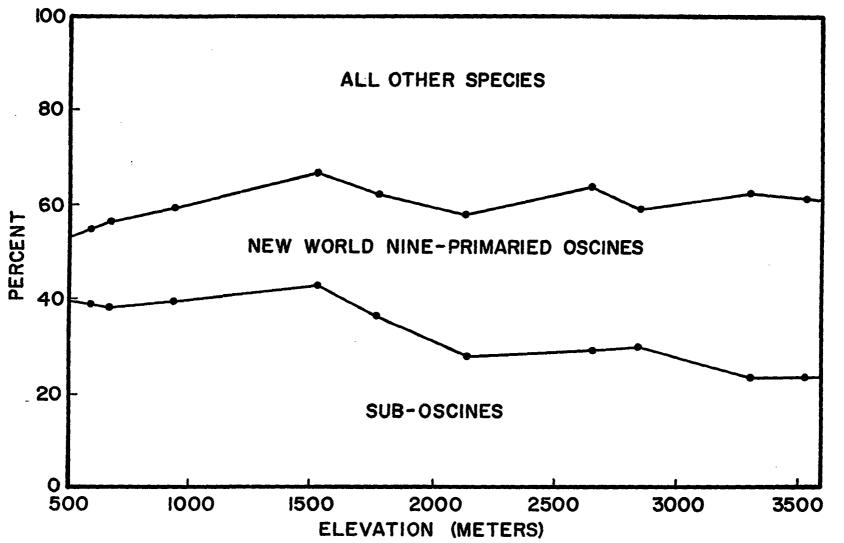


Figure 6. Number of forest species captured in nets at stations on the Vilcabamba gradient as a percentage of the total forest avifauna. Linear regression on elevation explains 93.35% of the variation in percent of species netted.

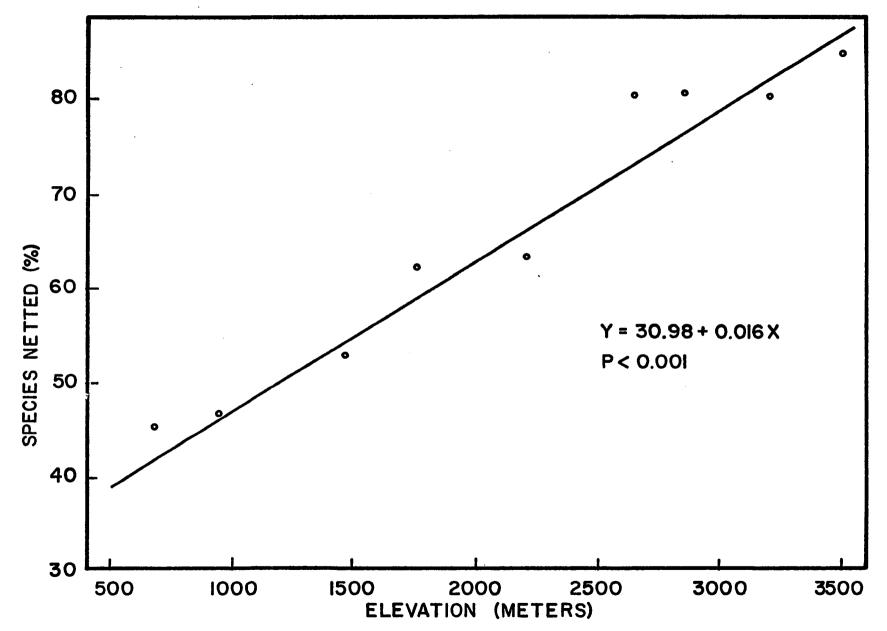


Figure 7. Elevational ranges in forest of canopy flock species on the West Side gradient.

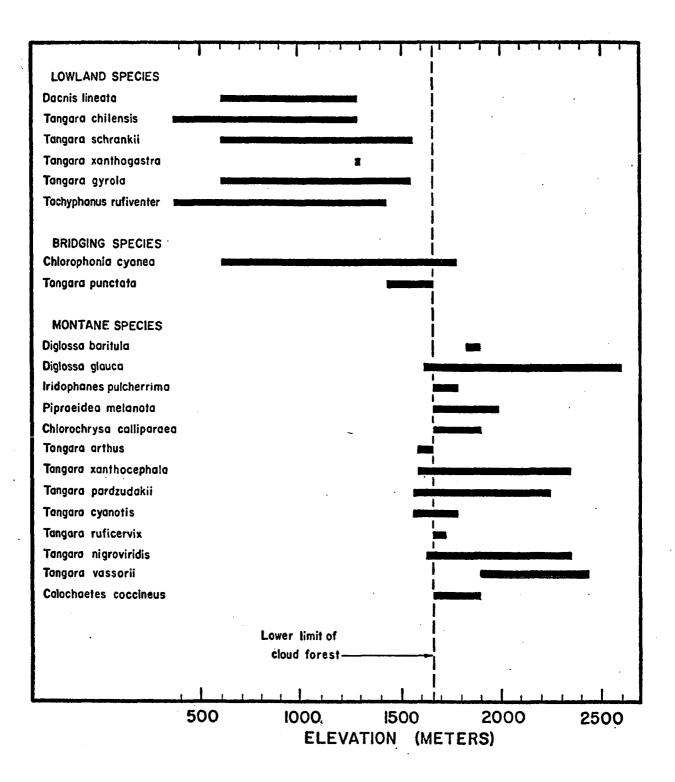


Figure 8. Elevational ranges of selected understory and subcanopy species on two elevational gradients. The range of each species on the Vilcabamba gradient is given by the upper bar and on the West Side gradient, by the lower bar. A tendency for higher distributional limits on the West side is evident. "S" and "U" following names of species denote subcanopy and understory species, respectively.

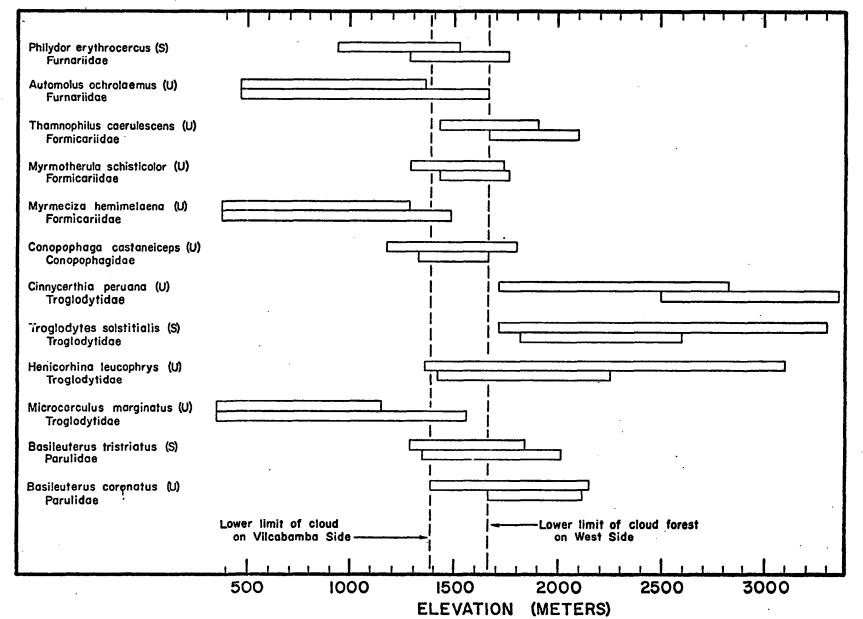
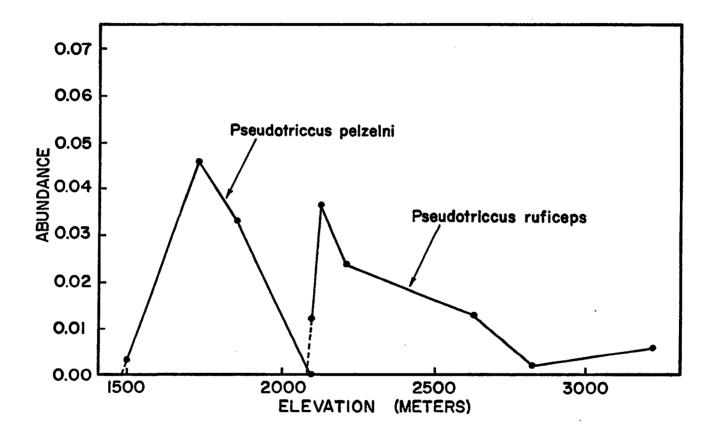
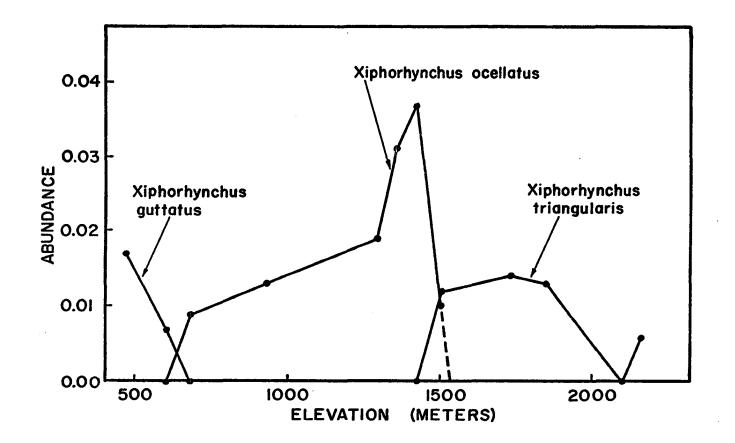




Figure 9. Relative abundance curves for flycatchers of the genus <u>Pseudotriccus</u>. The proportional occurrence of each species in net samples is plotted along the ordinate (see Appendix 2).

.

Figure 10. Relative abundance curves for the woodcreeper genus <u>Xiphorhynchus</u>.

۰.

.

. . .

Figure 11. Relative abundance curves for two Ochthoeca flycatchers.

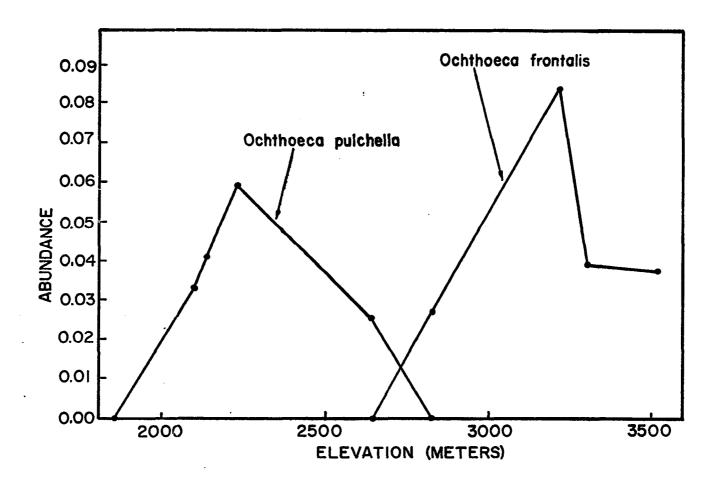


Figure 12. Relative abundance curves for <u>Coeligena</u> hummingbirds.

.

,

.

.

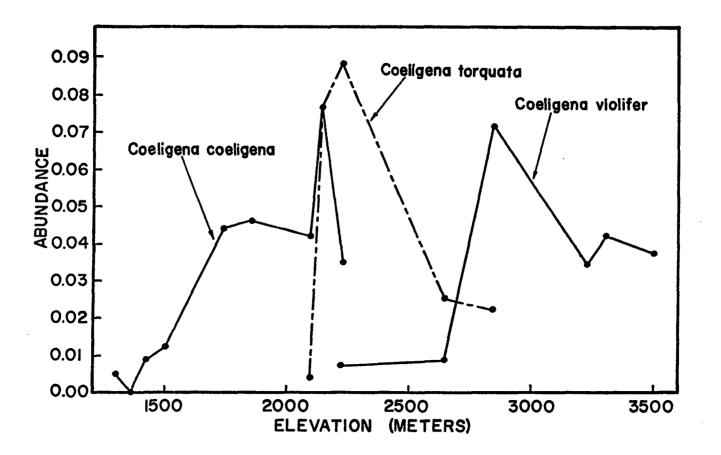
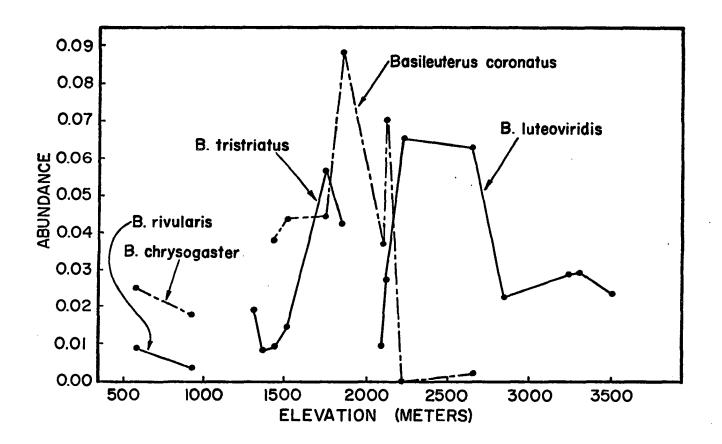



Figure 13. Relative abundance curves for wood-warblers of the genus <u>Basileuterus</u>.

•

Table 1.	Familial composition of the forest avifauna on the Vilcabamba
	elevational gradient. The number of forest species of each family
	is given for each of the stations on the gradient. Percentage
	figures give the proportion of the total forest avifauna comprised
	by certain major assemblages of families.

.

.

.

.

Do-11-	{	1	Eleva	ation	on gi	adier	nt (m	eters)					Elev	vation	non	gradie	ent (r	neter	3)	
Family	600	685	930	1520	1760	2130	2640	2830	3300	3520	Family	600	685	930	1520	1760	2130	2640	2830	3300	3520
Tinamidae	3	2	2	1							Dendrocolaptidae	6	6	5	2	2	5	1	1		
Cathartidae	4	3	1	1	1	1					Furnariidae	6	6	6	12	10	4	5	6	5.	3
Accipitridae	6	4	4	3	3	3	1	3	2	2	Formicariidae	21	17	14	9	5	6	2	1	1	1
Falconidae	3	2	1	1				Ì			Conopophagidae	1	1	1	1	1					
Cracidae	2	2	3	1	1	1					Rhynocryptidae	1	ł		1		1	1	1	1	1
Phasianidae	}	1	{		1	1					Cotingidae	7	6	4	5	2		3	2	2	2
Scolopacidae									1	1	Rupicolidae		1	1	1	1					{
Columbidae	4	3	3	2	1	2	12	1	1	1	Pipridee	3	5	7	6	3	2				1
Psittacidae	9	3	3	2		1	2	13	2	1	Tyrannidae	17	16	21	18	13	10	14	14	7	6
Cuculidae	1	1	1	1	1	1						60	58	59	55	37	28	26	25	16	12
Tytonidae	1	1	1	1	1						All suboscines	38%	38%	40%		38%	29%	30%	30%	247.	23%
Strigidae	1	1	2	3	1	2	2	2	2	2	· · · · · · · · · · · · · · · · · · ·	┟┈──	┣		· · · ·					·	
Steatornithidae									1		Hirundinidae			1				1	1	1	1
Caprimulgidae							2	2			Corvidae	1	}		1	1	2				
Apodidae	2	2	2	2	2	2	2	2	2	2	Troglodytidae	11	1	1	2	4	3	3	4	1	1
Trochilidae	12	12	11	9	7	11	12	11	9	8	Turdidae		1	11	1	3	3	3	3	2	2
Trogonidae	2	1	2	1	·2	3					·····	<u> </u>	 								
Momotidae	1	1	1								Vireonidae	4	4	4	1	1		·	•		i i
Galbulidae	1	1	1								Icteridae	3	4	3	2	2	3	1	1	1	1
Bucconidae	3	5	2	2	1						Parulidae	1	2	4	4	3	3	2	2	2	1
Capitonidae	2	2	2	1	1						Coerebidae	5	4	4	3	4	4	5	5	5	5
Ramphastidae	5	6	4	2	1	2	1			i i	Thraupidae	15	15	16	19	14	15	14	11	12	6
Picidae	6	5	4	3	3	2	2	2	1	1	Catamblyrhynchidae	Ì					1	1	1	1	1
	68	58	50	36	27	32	25	26	21	18	Fringillidae	3	4	3	1	2	4	5	3	4	5
passerines	43%	38%	34%	29%	28%	33%	29%	32%	327	35%	All New World	31	33	34	30	26	30	28	23	25	19
-											9-primr. oscines	19%	22%	23%	247.	27%	31%	337	28%	38%	37%
											Total species	160	151	146	125	98	98	86	82	66	52

Species pair	Ave. wt.	Ratio	Species pair	Ave. wt.	Ratio
Geotrygon frenata montana	326.25 128.67	2.540	Thripadectes holostictus melanorhynchus	43.9 48.8	0.899
Otus albigularis sp	185.0 148.0	1.250	Sclerurus mexicanus caudacutus	28.3 41.8	0.677
Otus sp ingens	148.0 152.0	0.973	Dysithamnus mentalis ardesiacus	16.5 19.0	0.821
Otus ingens watsonii	152.0 120.8	1.258	Drymophila caudata devillei	11.92 10.3	1.157
Momotus aequatorialis momota	167.0 108.07	1.550	Grallaricula ferrugineipectus flavirostris	18.0 17.13	1.051
Aulacorhynchus coeruleicinctis derbianus	208.5 194.0	1.075	Scytalopus unicolor femoralis	17.6 22.58	0.779
Aulacorhynchus derbianus prasinus	194.0 146.25	1.326	Myiobius villosus atricaudus	14.03 10.10	1.389
Piculus rivolii rubiginosus	86.0 76.75	1.120	Rhynchocyclus fulvipectus olivaceus	25.5 23.88	1.068
Veniliornis nigriceps. dignus	45.3 45.8	0,989	Pseudotriccus ruficeps pelzelni	11.96 10.86	1.101
Dendrocincla tyrannina fuliginosa	60.17 47.15	1.280	Pogonotriccus poecilotis orbitalis	7.0 7.93	0.883
Xiphorhynchus triangularis ocellatus	46.78 35,07	1.333	Troglodytes solstitialis æedon	11.81 11.1	1.064
Xiphorhynchus ocellatus guttatus	35.07 62.39	0.562	Vireo gilvus olivaceus	12.0 12.82	0.936
Lepidocolaptes affinis albolineatus	31.5 28.9	1.090	Myioborus melanocephalus miniatus	10.75 10.53	1.021
Cranioleuca albiceps curtata	20.44 16.8	1.220	Iridosornis reinhardti anslis	23.98 27.42	0.875
Thripadectes scrutator holostictus	66.3 43.9	1.510			

Table 2. Weight ratios of elevationally replacing congeneric pairs. In each case, the congener with the higher elevational range is listed first, and the weight ratio given is that of the higher to the lower.

÷

.

٠.

			Stat	ion						Stat:	ion		
Family	Chiq	eni and uireni: forest		chiari: itional est	Hu	isiana: umid prest	Family	Saoreni and Chiquireni: Dry forest		Quipachiari: Transitional forest		Luisiana Humid forest	
Tinamidae Cathartidae Accipitridae	2 1 2	(3%) (1%) (3%)	1	(2%)	3 4 6	(2%) (2%) (4%)	Dendrocolaptidae Furnariidae Formicariidae	3 1 11	(4%) (1%) (14%)	5 1 8	(8%) (2%) (13%)	6 6 21	(4%) (4%) (13%)
Falconidae Cracidae Columbidae	2	(3%) (1%)	1 2	(2%) (3%)	324	(2%) (1%) (2%)	Cotingidae Pipridae Tyrannidae	4 1 14	(5%) (1%) (18%)	6 1 5	(9%) (2%) (8%)	7 3 17	(4%) (2%) (10%)
Psittacidae Cuculidae	2	(3%) (3%)	22	(3%) (3%)	9 1	(6%) (1%)	All suboscines	34		-	(41%)	60	
Tytonidae Strigidae Caprimulg idae Apodidae	2 2 1	(3%) (3%) (1%)	3	(5%)	1 1 2	(1%) (1%) (1%)	Corvidae Troglodytidae Sylviidae	1 2 1	(1%) (3%) (1%)	1	(2%) (2%)	1	(1%)
Trochilidae Trogonidae Momotidae Galbulidae	7 1 2	(9%) (1%) (3%)	5 1 1	(8%) (2%) (2%)	12 2 1	(7%) (1%) (1%) (1%)	Vireonidae Icteridae Parulidae	2 2	(3%) (3%)	3		4 3 1	(2%) (2%) (1%)
Garburuae Bucconidae Capitonidae Ramphastidae	1	(1%)	1 1 2	(2%) (2%) (3%)	3 2 5	(2%) (1%) (3%)	Coerebidae Thraupidae Fringillidae	1 3 2	(1%) (4%) (3%)	2 7 1	(3%) (11%) (2%)	5 15 3	(3%) (9%) (2%)
Picidae All non-	2	(3%)	1	(2%)	6	(4%)	All New World 9-prim, oscines	10	(13%)	13	(20%)	31	(19%)
passerines	30	(38%)	23	(36%)	68	(43%)	Total species	78	(100%)	64	(100%)	160	(100%

Table 3. Familial composition of the forest avifauna at stations on the humidity gradient. Figures for each station give the number of species present and the percentage of the species total comprised by each family.

.

.

٠

• .

.

108

s,

Appendix 1. List of Apurímac Valley species with their elevational ranges and average body weights. (1/17)

All species known to occur in the valley are listed. A number assigned to each species for reference purposes precedes its name. Species whose names are followed by a plus sign (+) are included on the basis of sight records only. Specimens from the Apurímac -Ene Valley of all other species have been deposited in the American Museum of Natural History or, when collected by H.-W. Koepcke, in the Museo de Historia Natural "Javier Prado" in Lima. The column headings are explained as follows:

Elevational range (meters)

- Vilcabamba side: Species' elevational range on the Vilcabamba
 (= east) side of the valley, including its range on the
 valley floor, if any. The figures give lower and upper
 elevational limits in meters.
- Valley floor: Species' elevational range, if limited to the valley floor. (The column is marked "x" if the species occurs on the valley floor and on one or both of the valley slopes.)
- West side: Species' elevational range on the west side of the valley, including its range on the valley floor, if any.

Body weight (grams)

 $\overline{\mathbf{X}}$ = average weight of all birds, unsexed

 \overline{X}_{m} = average weight of males

 \overline{X}_{f} = average weight of females

 $\overline{x}_{c} = (\overline{x}_{m} + \overline{x}_{f})/2$ = average of male and female averages

S.D. = standard deviation

n = number of individuals in the sample for that column

Appendix 1 (2/17)

		Elevation	al range	(meters)		Body weight (grams)						
Species		Vilcabamba side	Valley floor	West side	x ((S.D., n)	x̄ _m (S.D., π)	\overline{X}_{f} (S.D., n)	x			
1 Tinamus tao		685-1050		1660								
2 Tinamus major	+		600					1				
3 Crypturellus soui		370-685	x		220.0	(, 1))				
4 Crypturellus obsoletus		750-1520				· · · ·		1				
5 Crypturellus atrocapillus			x	340-1200								
6 Crypturellus tataupa			340-600					206.0 (, 1)				
7 Podiceps occipitalis	+	•		3660-3750)	1						
8 Phalacrocorax olivaceus	+		600		ł			1				
9 Ardea cocoi	+		500-600					1 - 1				
10 Casmerodius albus	+		600		1							
11 Egretta thula	+		600					·····				
12 Florida caerulea	+		600					1				
13 Butorides striatus	+		600	•				[
14 Tigrisoma fasciatum	+	550-860	x		1							
15 Mesembrinibis cayennensis	+		600			1		1 1				
16 Anas flavirostris	+			3370								
17 Merganetta armata	+	860										
18 Cairina moschata	+		600									
19 Oxyura jamaicensis	+			3370-3750				1				
20 Sarcoramphus papa	+	500-2130	x									
21 Coragyps atratus	+	500-685	x			1						
22 Cathartes aura	+		340-600									
23 Cathartes melambrotos	1	600-685	x]						
24 Elanoides forficatus	+ '	600-2130	x					1				
25 Harpagus bidentatus		600-950	x					1				
26 Ictinia plumbea	+		600									
27 Accipiter poliogaster	+		600									
28 Accipiter striatus		1320~3520		1900-2350		ł						
29 Buteo magnirostris		340-930	x	340-1600	265.0	(, 1)						
30 Buteo albigula		2100										
31 Leucopternis albicollis	+		600					<u> </u>				
32 Oroactus isidori	+	2830-3520										
33 Spizastur melanoleucus	+	2830										
34 Spizaetus tyrannus	+	350-1760	x	350-1865								
35 Circus cinereus	+]	•		3600								
36 Pandion haliactus	+		370-470			1						
37 Herpetotheres cachinnans	+		600					· ·				
38 Micrastur ruficollis		685-1710		1660					•			
39 Daptrius ater	+)		500-600					l Ì				

Appendix 1 (3/17)

,

		Elevations	1 range ((meters)			Body weight (gr	ams)	
Species		Vilcabamba side	Valley floor	West side	x (s.	D., n)	\overline{X}_{m} (S.D., n)	\overline{X}_{f} (S.D., n)	x _c
40 Daptrius americanus		370-685	x	370-800					
41 Milvago chimachima	+		600						
42 Phalcobaenus megalopterus	+			3370-3750					
43 Falco deiroleucus	+		600		1				
44 Falco rufigularis	+		340-600		1		1		
45 Falco sparverius	+	·	600		1				نييسنى بينى يريني
46 Ortalis guttata			x	340-1620					
47 Penelope jacquacu		685-1415							
48 Penelope montagnii		1990-2415		2500-3370	1		460.0 (, 1)		
49 Pipile cumanensis	+		470-600		ł		(
50 Aburria aburri		1450-1760*		1490-1760	1	•			
51 Mitu mitu		350-1240	x	350-1360					
52 Odontophorus stellatus	+		470		1				
53 Odontophorus gujanensis		685-750							
54 Odontophorus speciosus		1790		1630					
55 Odontophorus balliviani		1940-2260							
56 Rallus nigricans	+		600		1				
57 Aramides cajanea			x	600-800	1				
58 Eurypyga helias	+	650-860			}				
59 Hoploxypterus cayanus			500-600						
60 Charadrius collaris			500-600						
61 Tringa flavipes	+	2830	430						
62 Tringa melanoleuca			600	:	1				
63 Actitis macularia	+		340-600						
64 Gallinago gallinago	+			3480			l .		
65 Gallinago stricklandii	+			3600	· · · · · · · · · · · · · · · · · · ·				
66 Gallinago imperialis		3300-3520							
67 Sterna superciliaris	i		470-600		{				
68 Columba fasciata		2620-3520		2850	[
69 Columba speciosa			600	1					
70 Columba cayennensis			x	600-800	1				
71 Columba plumbea	·	370-2170	x	370-2300	1				
72 Columbina talpacoti			350-600		1				
73 Claravis pretiosa	+		x	350-800	}				
74 Claravis mondetoura		2190		1660	· ·		100.25 (, 2)		
75 Leptotila verreauxi			340-600		145.75 (1	6.62.4)			
76 Leptotila rufaxilla		470-1070	x	470-1660	161.29 (1				

* also once at 840 m

i

Appendix 1 (4/17)

		Elevation	al range	(moters)		Body weight (grams)						
Species		Vilcabamba side	Valley floor	West side	X (S.D., n)	x̄ _m (S.D., n)	x _f (S.D., n)	x				
77 Geotrygon montana		370-1070	x		128.67 (, 3)							
78 Ceotrygon frenata		1360-1730		1630*	326.25 (15.46, 4)							
79 Ara militaris			×	360-1660								
80 Ara macao	+		470-600					1				
<u>81 Ara severa</u>			470-600									
82 Ara couloni			x	600-800								
83 Aratinga leucophthalmus	+		x	350-800		1		[
84 Aratinga weddellii		600-930	x	600-800				Í				
85 Pyrrhura picta		370-1620	x	370-1660			67.0 (, 1)					
86 Bolborhynchus lincola		1940-3300		1660	l	52.0 (, 1)		1				
87 Bolborhynchus orbygnesius		2830										
88 Forpus xanthopterygius			600	1		1						
89 Hapalopsittaca melanotis	+	1970]								
90 Pionus menstruus		340-1480	×									
91 Pionus tumultuosus	+			3370								
92 Amazona ochrocephala	+		370-600									
93 Amazona mercenaria		2640-3520		2000-3370			340.0 (, 1)					
94 Amazona farinosa	+	í	600									
95 Piaya cayana		340-2515	x	340-1750								
96 Piaya minuta			x	600-800	48.40 (, 2)							
97 Crotophaga ani			x	600-800								
98 Dromococcyx phasianellus			340-470		76.15 (, 2)		· ·					
99 Tyto alba		600-1760	x				1					
100 Otus ingens		1370-1520		1660-1900	1	152.0 (, 1)						
101 Otus watsonii			340-600		120.80 (7.19, 5)							
102 Otus albogularis		2650-3520		2600-3380		[185.0 (, 1)					
103 Otus sp		1730-2240]		148.0 (, 1)							
104 Pulsatrix perspicillata	+	685-1500	ł	1660								
105 Glaucidium minutissimum	•.		x	370-1660		64.0 (, 1)						
106 Glaucidium jardinii		2100-3520	1 "	3370-3520	60.50 (2.16, 4)							
107 Glaucidium brasilianum			340-600		67.33 (, 3)		····					
108 Ciccaba virgata	+	900										
109 Ciccaba huhula	+	1480			1							
110 Steatornis caripensis	•	3300										
111 Nyctibius griseus	+		x	550-1660	ł		1					
112 Chordeiles rupestris			400-600									
113 Nyctidromus albicollis		350-685	x	350-800		60.0 (, 1)						
LIS AYCLIGIONUS ALDICOIIIS		1	<u> </u>		l		L	L				

* also a juvenal once at 800 m

. 112

ί.

Appendix 1 (5/17)

•

	Elevation	nal range	(meters)	Body weight (grams)							
Species	Vilcabamba side	Valley floor	West side	x (s.D., n)	x _m (S.D., n)	\overline{X}_{f} (S.D., n)	x.				
114 Caprimulgus rufus +		350-420									
115 Caprimulgus longirostris	2640-2900			•		36.4 (, 1)					
116 Hydropsalis climacocerca		600									
117 Uropsalis segmentata	2250-2830		2600-3370		42.0 (, 1)	43.35 (, 2)	42.6				
118 Streptoprocne zonaris	600-3520	the second s	600-800				<u> </u>				
119 Cypseloides rutilus 120 Chaetura sp +	600-3520	x 340	600-800				1				
	1280-2830	340	1700 1000	SE 00 (0.25 ()	}		1				
121 Doryfera ludovicae 122 Glaucis hirsuta	1200-2030	350-370	1700-1900	5.90 (0.35, 6)							
123 Threnetes leucurus	470-685	330=370 x		5.80 (, 2) 5.77 (0.42, 9)	1						
124 Phaethornis guy	685-1520	^	1425-1660	5.01 (0.29, 8)							
125 Phaethornis superciliosus	340-930	x	340-800	5.74 (0.48, 23)	•						
126 Phaethornis hispidus	540-550	340-600	340-000	,4.90 (0.47, 22)	1						
127 Phaethornis stuarti	340-930	x	340-800	2.90 (, 2)	}]				
128 Eutoxeres condamini	470-2640	x	470-1660	9.12 (0.94, 11)							
129 Campylopterus largipennis	350-685	x	470-1000	8.49 (0.75, 7)							
130 Florisuga mellivora	600-930	x				· · · · ·					
131 Colibri thalassinus	2100-3300	^		5.0 (, 1)							
132 Colibri coruscans	600-3520	x	600-3370	8.8 (, 1)	1						
133 Lophornis delattrei		600			1		1				
134 Chlorostilbon mellisugus		x	600-800		2.5 (, 1)						
135 Thalurania furcata	370-1435	x			4.50 (, 2)	3.95 (0.34, 5)	4.2				
136 Hylocharis cyanus		600									
137 Chrysuronia ocnone	600-930	×					1				
138 Amazilia chionogaster	350-3520	. x	350-1790	5.00 (, 3)							
139 Amazilia lactea		340-600		4.72 (0.37, 10)							
140 Adelomyia melanogenys	1520-2160		1660-2350	3.46 (0.29, 15)			[
141 Heliodoxa rubinoides	2100-2160										
142 Heliodoxa leadbeateri	930-1735		1620-1780		9.0 (, 1)	7.23 (0.60, 8)	8.1				
143 Heliodoxa branickii	910-1290			5.10 (, 3)			<u> </u>				
144 Pterophanes cyanopterus			3370-3600		10.60 (, 2)	9.8 (, 1)	10.2				
145 Cocligena coeligena	1290-2220		1660-1900	6.70 (0.60, 18)							
146 Coeligena torquata	2100-2830		1780-3100	6.72 (0.36, 12)			1				
147 Coeligena violifer	2250-3520		3270-3600		7.78 (0.21, 4)	6.55 (, 2)	7.1				
148 Ensifera ensifera	3300-3520		3600								
149 Boissonneaua matthewsii	1960-2830		1760-2090		8.3 (, 1)						
150 Heliangelus amethysticollis	2230-3520	1	2100-3380		5.78 (0.26, 11)	4.83 (0.25, 13)	5.3				
151 Eriocnemis luciani	2830-3520		3370-3600	6.21 (0.34, 7)							
152 Ocreatus underwoodii	1480-1950		1500-2090		2.8 (, 1)	3.03 (, 3)	2.9				

113

. .

Appendix 1 (6/17)

•

· · ·	Elevation	nal range	(meters)		Body weight (g	grams)	
Species	Vilcabamba side	Valley floor	West side	X (S.D., n)	\overline{X}_{m} (S.D., n)	\overline{X}_{f} (S.D., n)	xc
153 Metallura aeneocauda	3190-3520		1				
154 Metallura eupogon			3370-3600	4.56 (0.34, 10)	l	1	
155 Metallura tyrianthina	2640-3520		3370-3600	3.58 (0.41, 9)			
156 Chalcostigma ruficeps	2640-2830			3,8 (, 2)			
157 Chalcostigma stanleyi			3750				
158 Aglaiocercus kingi	1830-2210	ł	2100-2240			1	
159 Schistes geoffroyi	1390	}	1660	3.58 (0.47. 5)			
160 Heliothryx aurita	685-900	1		5.70 (, 3)			
161 Heliomaster longirostris		600	(
162 Calliphlox amethystina		600				1	
163 Acestrura mulsant	2620		[3.2 (, 1)	
164 Pharomachrus antisianus +			1	1			
165 Pharomachrus auriceps	1630-2160		1680-2010]]	1	
166 Trogon melanurus +		340-470		1			
167 Trogon viridis		470-600					
168 Trogon collaris	700-1520		1610-1780			· · · · · · · · · · · · · · · · · · ·	
169 Trogon personatus	1630-2230		1660-3350			60.3 (, 1)	
170 Trogon curucuí	600-1260	x					
171 Ceryle torquata +		340-500					
172 Chloroceryle amazona +		470-600		1		i i	
173 Chloroceryle americana		470-600					
174 Electron platyrhynchum		350		63.15 (, 2)			
175 Baryphthengus ruficapillus	685-1430		1360-1660	160.0 (, 1)			
176 Momotus momota		340-600		108.07 (7.06, 7)			
177 Momotus aequatorialis			1660-1940			167.0 (, 1)	
178 Galbula cyanescens	470-1290	x	470-1720	25.28 (1.60, 6)			
179 Malacoptila fusca	600-930	x					
180 Malacoptila fulvogularis	1400-1840	1	1790			65.0 (, 1)	
181 Micromonacha lanceolata	685-800		1660			22.0 (, 1)	
182 Nonnula ruficapilla	470-1520	x					
183 Monasa nigrifrons	340-860	x	340-890	80.71 (5.05, 15)			
184 Monasa morphoeus +	685						
185 Chelidoptera tenebrosa	1	340-600				۰ ۱	
186 Capito niger	600-1100	x		1			
187 Eubucco richardsoni	370-940	<u>x</u>				<u> </u>	
188 Eubucco versicolor	1150-1760		1300-1760		37.80 (, 3)	33.0 (, 1)	35.40
189 Aulacorhynchus derbianus	1520-1735		1620-2150	194.00 (29.00, 5)		}	
190 Aulacorhynchus prasinus	370-1520	x	370-1660	146.25 (2.06, 4)			
191 Aulacorhynchus coeruleicinctis	1680-2160		1900-2050	208.5 (, 2)			

114

Appendix 1 (7/17)

· ·	Elevation	al range	(meters)	Body weight (grams)						
· Species	Vilcabamba side	Valley floor	West side	X (S.D., n)	x _m (S.D., n)	\overline{X}_{f} (S.D., n)	x _c			
192 Pteroglossus castanotis	370-920	x	370-800							
193 Pteroglossus mariae	600-1370	x	1660	165.13 (, 3)						
194 Pteroglossus beauharnaesii +	685		ĺ							
195 Selenidera reinwardtii	470-1390	x		ļ			ł			
196 Andigena hypoglauca	2150-2640		2600		330.0 (, 1)	300.5 (, 2)	315.25			
197 Ramphastos cuvieri +	470-685	×								
198 Picumnus aurifrons	600-930	x		10.3 (, 1)			ļ			
199 Picumnus cirrhatus +			1660				1			
200 Colaptes rupicola +]	3530	}	}					
201 Piculus rivolii	2100-2830	ļ	2350-2700			86.0 (, 1)	ļ			
202 Piculus rubiginosus	1285-1940]	1580-2300			76.75 (, 2)	1			
203 Piculus leucolaemus	600-930	×					1			
204 Coleus granmicus +	800						[
205 Dryocopus lineatus	•	600					1			
206 Melanerpes cruentatus	340-685	X	340-1100				L			
207 Veniliornis passerinus		x	600-800	32.45 (, 2)						
208 Veniliornis affinis	600-930	x					1			
209 Veniliornis dignus	1480-2100		1660-1980		45.8 (, 1) 45.3 (, 1)		1			
210 Veniliornis nigriceps	2640-3520	1			45.3 (, 1)					
211 Phlococeastes melanoleucos		x	350-1085				L			
212 Phlococeastes rubricollis	685-910			216.0 (, 1)			F			
213 Phloeoceastes haematogaster	1425-2150		1425-1660							
214 Dendrocincla tyrannina	1850-2150		2270	60.17 (, 3)			[
215 Dendrocinela fuliginosa	370-930	×		47.15 (2.07, 15)						
216 Deconychura longicauda	685		1660		28.9 (, 1)	28.0 (, 1)	28.45			
217 Sittasomus griseicapillus	350-1390	×	350-1660	16.23 (1.24, 6)						
218 Clyphorhynchus spirurus	470-1300*		470-1290	15.13 (0.63, 4)						
219 Dendrexetastes rufigula	1.000 0000	370			76.5 (, 1)					
220 Xiphocolaptes promeripirhynchus	1720-2230		1780			114.0 (, 1)				
221 Xiphocolaptes orenocensis	930									
222 Dendrocolaptes certhia	1	370		66.65 (, 2)						
223 Dendrocolaptes picumus		340-600		79.30 (4.29, 4)						
224 Xiphorhynchus ocellatus	685-1520		1420-1660	35.06 (1.92, 7)						
225 Xiphorhynchus guttatus		470-600		62.39 (3.46, 19)						
226 Xiphorhynchus triangularis	1520-2160		1660-2140	46.78 (2.62, 6)						
227 Lepidocolaptes affinis	2100-2230	1	1660-2240		31.5 (, 1)					
228 Lepidocolaptes albolineatus	600-685	×		28.90 (, 2)						

.

* also once at 1425 m

115

.

. .

•

Appendix	1	(8/17)
----------	---	--------

	Elevation	al range	(meters)		Body weight (gr	ams)	
Species	Vilcabamba side	Valley floor	West side	X (S.D., n)	x _m (S.D., n)	\overline{X}_{f} (S.D., n)	, x _c
229 Campylorhamphus pucheranii	2130-2830		2600		70.5 (, 1)		
230 Synallaxis azarae	1300-1990	1	1660	16.35 (, 2)			1
231 Synallaxis cabanisi	470-685	x	470-800	22.67 (1.49, 22)	1	ł	1
232 Synallaxis albigularis		x	470-800	16.55 (1.00, 4)			· ·
233 Synallaxis gujanensis	350-685	x	350-800*	18.08 (1.28, 12)			
234 Synallaxis unirufa	2200-3230			17.61 (0.76, 7)			
235 Synallaxis cherrici	470-600	x				19.8 (, 1)	
236 Cranioleuca curtata	1520	[1660-1810		16.8 (, 1)		
237 Cranioleuca albiceps	2640-3400	ł		20.44 (1.34, 9)			i i
238 Schizoaeca fuliginosa	2830-3520		3370-3600	18.23 (1.47, 7)			
239 Asthenes flanmulata			3500-3780			26.2 (, 1)	
240 Margarornis squamiger	2100-3520		2600-3600	17.26 (1.40, 17)			
241 Premnornis guttuligera	1290-1830	1	1660-2100	15.89 (1.12, 15)			
242 Premnoplex brunnescens	1290-2230	1	1660	16.28 (0.98, 18)			
243 Pseudocolaptes boissonneautii	1720-3400		2295-3370	47.67 (2.01, 6)			
244 Hyloctistes subulatus	600-685	x		31.00 (, 2)			
245 Syndactyla rufosuperciliata	1300-1830	ł	1660-1900	27.72 (1.11, 9)			
246 Syndactyla subalaris	1360-1830		1660-2100	28.94 (1.25, 14)			
247 Anabacerthia striaticollis	1420-1735*	1	1660-1900	24.78 (1.26, 18)			1
248 Philydor erythrocercus	930-1520		1290-1760				<u> </u>
249 Philydor ruficaudatus	600-1050	x					
250 Automolus dorsalis		600		35.37 (5.02, 7)			
251 Automolus ochrolaemus	470-1360	x	470-1660	34.99 (2.11, 13)		1.	
252 Thripadectes holostictus	1735-1830	1		43.90 (, 2)			
253 Thripadectes mclanorhynchus	1290-1520		1660	48.80 (2.24, 5)			
254 Thripadectes scrutator	2100-3520		2600		66.3 (, 1)		
255 Xenops ruti	1480-1780		1560-1790				· ·
256 Xenops min	470-1400	x	470-1420	12.94 (0.68, 8)			
257 Sclerurus a anus	1290-1830		1660-1900	28.30 (0.88, 4)		1	
258 Sclerurus caudacutus		370				41.8 (, 1)	
259 Lochmias nematura	685-1740			29.33 (, 3)			
260 Cymbilaimus lineatus	470-1000	×					1
261 Taraba major		x	340-800		60.50 (2.14, 4)	60.10 (3.24, 5)	60.3
262 Thamnophilus doliatus	· ·	x	340-1250		31.5 (, 1)	27.83 (, 3)	29.6
263 Thamnophilus aethiops	1	340-370			25.7 (, 1)	29.50 (, 3)	27.6
264 Thamnophilus schistaceus	370-685	x		1	21.60 (, 3)	20.60 (, 2)	21.2

.

116

.

Appendix 1 (9/17)

· · · · · · · · · · · · · · · · · · ·	Elevation	Elevational range (meters)			Body weight (grams)				
Species	Vilcabamba side	Valley floor	West side	x (s.D., n)	x _m (S.D., n)	\overline{x}_{f} (S.D., n)	x _c		
265 Thamnophilus murinus		340-600			18.00 (, 3)	16.58 (1.09, 4)	17.29		
266 Thamnophilus caerulescens	1420-1900		1660-2100		22.40 (0.96, 4)	22.45 (0.86, 4)	22.43		
267 Thamnistos anabatinus	980-1420		1340-1660				1		
268 Dysithamnus mentalis	930-1480		1660-1790		15.6 (, 1)	14.0 (, 1)	14.80		
269 Thamnomanes ardesiacus	600-685	x			19.0 (, 1)				
270 Thamnomanes schistogynus		470			20.20 (, 3)	17.8 (, 1)	19.00		
271 Myrmotherula brachyura	350-685	x		7.0 (, 1)					
272 Myrmotherula haematonota	600-930	× 470-600			10.0 (, 1)				
273 Myrmetherula ernata 274 Myrmetherula axillaris	340-930	470-000 x			10.5 (, 1)	0 22 (0 70 12)	0 / 0		
274 Myrmotherula schisticolor	1290-1735*		1425-1760	{	8.46 (0.73, 12) 9.8 (, 2)	8.33 (0.79, 13) 9.9 (, 1)	8.40 9.85		
276 Myrmotherula menetriesii	470-685	x	1423-1700	[9.0 (, 2)	,,,,,	3.05		
277 Dichrozona cineta	930	^							
278 Herpsilocimus pileatus	1480-1620		1420-1670	•					
279 Herpsilochmus rufimarginatus	+104 +024	600	+100 +HIM						
280 Drymophila devillei		350			10.3 (, 1)				
281 Drymophila caudata	1390-2230*		1660-2110		12.40 (, 2)	11.60 (, 3)	12.00		
282 Cercomacra cinerascens	350-1150	x							
283 Cercomacra nigrescens	685-1740		1660-1790		19.60 (, 3)	19.74 (1.63, 5)	19.67		
284 Pyriglena leuconota	1290-2100		1660		35.55 (, 2)				
285 Myrmoborus leucophrys		x	350-800		22.05 (1.32, 11)	20.52 (1.44, 12)	21.29		
286 Myrmoborus myotherinus		600					1		
287 Hypocnemis cantator		x	340-800		13.44 (0.92, 5)	12.61 (0.87, 7)	13.03		
288 Perenostola leucostigma	685-930#	(1660	24.25 (1.17, 4)					
289 Myrmeelza hemimelaena	370-1290	x	370-1480		15.97 (0.69, 9)	16.03 (1.25, 9)	16.00		
290 Pithys albifrons	470-930	x	470-800	20.82 (1.17, 19)					
291 Rhegmatorhina melanosticta	(470-600		36.60 (, 2)					
292 Hylophylax naevia	470-930	×			14.27 (0.71, 18)	14.02 (1.28, 6)	14.15		
293 Hylophylax poecilonota	470-930	×			19.30 (1.23, 7)	20.14 (0.85, 8)	19.72		
294 Chamaeza campanisona	1330-1520		1660	91.32 (2.28, 5)					
295 Chamacza mollissima	1830-2230			60 20 1/ 07 1/3			1		
296 Formicarius analis	350-1170	x	1660	60.39 (4.07, 14)					
297 Formicarius rufipectus	1630-1700		1660	17 10 /0 16 0					
298 Grallaricula flavirostris	1455-2190		1660-2110	17.13 (2.16, 9)	10 0 / 11				
299 Grallaricula ferrugineipectus	2260-2640	600	·		18.0 (, 1)				
300 Myrmothera campanisona				I	[L		

* once also at 2170 m * once also at 1295 m # once also at 1500 m

117

•

.-

Appendix 1 (10/17)

• .

	Elevational range (meters)			Body weight (grams)					
Species	Vilcabamba side	Valley floor	West side	X (S.D., n)	X _m (S.D., n)	\overline{X}_{f} (S.D., n)	x _c		
301 Grallaria squamigera	1830-2140								
302 Grallaria guatimalensis	685-1460		1						
303 Grallaria erythroleuca	2150-2200			1					
304 Grallaria rufula	2640-3175	Į	3000-3600.		1	38.0 (, 1)			
305 Grallaria andecola			3750						
306 Conopophaga castaneiceps	1170-1800		1315-1660	4	27.57 (, 3)	27.55 (2.45, 4)	27.56		
307 Corythopis torquata	685-1350			17.25 (, 2)					
308 Scytalopus unicolor	1960-3520		2600-3600	17.60 (1.66, 4)	:				
309 Scytalopus femoralis	1290-1735		1250-2160	22.58 (1.27, 6)					
310 Laniisoma elegans		370				47.0 (, 1)	I		
311 Ampelion rubrocristatus	2830-3520		2850-3600						
312 Pipreola intermedia	2660		2140-2930	1	50.0 (, 1)				
313 Pipreola pulchra	1710	1	1660-2150		51.2 (, 1)	57.5 (, 1)	54.35		
314 Pipreola frontalis	1520-1630	{	1630-1790		41.80 (, 3)	41.84 (1.81, 5)	41.82		
315 Pipreola arcuata	2640-3520		2850-3370	· · · · · · · · · · · · · · · · · · ·	95.5 (, 1)	103.00 (, 2)	99.25		
316 Attila spadicous		600				1	·····		
317 Casiornis rufa		340-350		24.76 (2.70, 15)					
318 Rhytipterna simplex		470-600*		36.80 (3.61, 5)					
319 Lipaugus vociferans +		350-600	Ĩ				[
320 Pachyramphus versicolor	2640		1660						
321 Pachyramphus polychopterus		340-600			20.70 (1.17, 5)	21.78 (1.58, 4)	21.24		
322 Pachyramphus marginatus +	470-685	х	1						
323 Pachyramphus albogriseus	1520-1780		1660-1860						
324 Platypsaris rufus	685-1710		1760						
325 Platypsaris minor		370			40.2 (, 1)				
326 Tityra semifasciata	370-1620	x	370-1660						
327 Tityra inquisitor		370-600			1		1		
328 Querula purpurata +	600-685	x					[
329 Cephalopterus ornatus	685-970		1				ł		
330 Gymnoderus foctidus		600			1				
331 Rupicola peruviana	685-1950		1610-1920		-				
332 Pipra fasciicauda	340-685	x	ł	15.91 (0.82, 106)	16.02 (0.90, 24 [@])				
333 Pipra chloromeros	685-1360%	х	800-1340#	15.32 (0.77, 9)	15.73 (, 3 [@])		1		
334 Pipra pipra	930-1730 ¹		1590-1900	13.43 (0.65, 12)	$13.15 (0.66, 4^{\circ})$				
335 Pipra caeruleicapilla	930-1730		1660-1900	9.15 (0.78, 19)	8.55 (0.43, 6 [@])				

* also once at 930 m and once at 1520 m * also once each at 470 m, 600 m, and 2120 m # also once each at 470 m, 600 m, and 1660 m ! also once each at 2130 m and 2160 m

@ sample comprised of fully adult males only

Appendix 1 (11/17)

.

	Elevational range (meters)			Body weight (grams)				
Species	Vilcabamba side	Valley floor	West side	X (S.D., n)	\overline{X}_{m} (S.D., n)	x _f (s.d., n)	x _c	
336 Machaeropterus pyrocephalus		x	600-1260*		9.9 (, 1)			
337 Chloropipo unicolor	930-1830		1660-1900	15.49 (0.91, 27)				
338 Chloropipo holochlora	685-930	1	}					
339 Piprites chloris	470-1520	x	470-1760	1			1	
340 Schiffornis turdinus	685-1520	i i		28,40 (, 2)				
341 Muscisaxicola fluviatilis		×	470-800					
342 Myiotheretes striaticollis			3600		64.0 (, 1)		1	
343 Myiotheretes fumigatus	2640-3520							
344 Myiotheretes fuscorufus			2350-2540		32.2 (, 1)			
345 Myiotheretes erythropygius +			3370-3600					
346 Ochthoeca fumicolor	3300-3520		3370-3750		17.8 (, 1)	14.0 (, 1)	15.90	
347 Ochthoeca rufipectoralis	2620-3520	}	3370-3520	10.83 (0.45, 6)				
348 Ochthoecs cinnamomeiventris	2100-2830			11.9 (, 1)				
349 Ochthoeca frontalis	2830-3520	}	3370	10.72 (0.58, 5)				
350 Ochthoecs pulchella	2100-2670	ł	2600	12.27 (0.89, 6)				
351 Snyornis nigricans	600-900	x		20.67 (, 3)				
352 Colonia colonus		500-600						
353 Pyrocephalus rubinus +		340						
354 Ochthornis littoralis		600						
355 Tyrannus melancholicus	470-930	x	470-1660					
356 Legatus leucophaius		600				· · · · · · · · · · · · · · · · · · ·		
357 Conopias cinchoneti	860-940		1660		1		1	
358 Megarhynchus pitangua +		340-370						
359 Mylodynastes maculatus	600-930	x						
360 Myiodynastes chrysocephalus	930-1480							
361 Myiozetetes granadensis	•	x	600-800					
362 Mylozetetes similis	470-700	x	470-800				l I	
363 Pitangus sulphuratus 🔶 🕂		330-600					1	
364 Myiarchus ferox		x	600-800	27.8 (, 1)			}	
365 Myiarchus cephalotes	1480-1675		1660	26.95 (, 2)				
366 Myiarchus tuberculifer	1520-2170	350-600	1650-2600	21.0 (, 1)				
367 Contopus fumigatus	1520-2130	1	1550-1660					
368 Empidonax euleri	470-1350	x	470-800	9.7 (, 1)			ł	
369 Cnemotriccus fuscatus	470-685	x		15,00 (, 2)			1	
370 Mitrephanes phaeocercus	1480-1760		1660-1780	9.85 (, 2)			l	
371 Terenotriccus erythrurus	350-930	×		7.04 (0.27, 8)				
372 Myiobius villosus	930-1400	-	1660		15.05 (, 2)	12.0 (, 1)	13.53	

* also once at 1900 m * also three times between 2200 m and 2250 m

119

÷

Appendix 1 (12/17)

	Elevational range (meters)			Body weight (grams)				
Species	Vilcabamba side	Valley floor	West side	x (s.D., n)	\overline{X}_{m} (S.D., n)	\overline{X}_{f} (S.D., n)	x,	
373 Myiobius atricaudus	1	x	600-800	10,11 (1.25, 7)				
374 Myiotriccus ornatus	910-1730			13.5 (, 1)				
375 Pyrrhomias cinnamomea	1480-2830		1620-2130	10.50 (, 2)			1	
376 Mylophobus flavicans	1730-1830	{	1660-2270	12.70 (0.94, 15)			1	
377 Myiophobus inornatus	1520-1620							
378 Myiophobus ochraceiventris	2830-2930							
379 Myiophobus fasciatus		x	600-800		1			
380 Myiophobus roraimae	1320-1520		1560-1900	13.60 (, 2)				
381 Onycorhynchus coronatus		350-370		14.98 (1.65, 4)				
382 Platyrinchus platyrhynchos	685-930							
383 Platyrinchus mystaceus	930-1830		1660-1900	11.33 (, 3)				
384 Platyrinchus flavigularis	1520							
385 Tolmomyias assimilis	470-930	x	470-1230	17.8 (~-, 1)			Ì	
386 Toluomyias poliocephalus		340-600		11.04 (0.69, 5)				
387 Tolmonyias flaviventris	340-725	x	340-1000	13.67 (, 3)				
388 Rhynchocyclus olivaceus	685-1080			23.88 (3.52, 4)				
389 Rhynchocyclus fulvipectus	1420-1840			25.50 (, 2)				
390 Ramphotrigon fuscicauda		350		19.52 (0.95, 5)				
391 Todirostrum chrysocrotaphum	370-1285	x	370-1430					
392 Todirostrum cinercum		x	600-800	7.0 (, 1)				
393 Todirostrum latirostre	······································	x	350-800	8.09 (0.71, 22)				
394 Idioptilon granadense	2100-2830		2280-2600	7.87 (0.42, 9)				
395 Lophotriccus pileatus	870-1830		1310-1660	8.23 (0.60, 9)				
396 Myiornis auricularis		340-600		5.30 (0.36, 9)				
397 Myiornis ecaudatus	370-980	x						
398 Pseudotriccus pelzelni	1520-1880		1660-1900	10.86 (0.82, 22)				
399 Pseudotriccus ruficeps	2100-3190		2600-3370	11.96 (, 3)				
400 Pogonotriccus poecilotis			1560-1900	7.0 (, 1)				
401 Pogonotriceus orbitalis	685-930		1425	7.93 (, 3)				
402 Phylloscartes ventralis	1480-1760		1560-2150	7.85 (, 2)				
403 Pseudocolopteryx acutipennis		x	600-800	······································				
404 Anairetes sp +			3600					
405 Uromyias agraphia	2640-3520				9.9 (, 1)	9.9 (, 1)	9.85	
406 Serpophaga hypoleuca		~-600						
407 Serpophaga cinerea	600-900	x	600-700					
408 Mecocerculus leucophrys	2830-3520		3370-3600	13.93 (1.34, 6)				
409 Mecocerculus stictopterus	2660-2830		3600					
410 Elaenia flavogaster		x	600-800					
411 Elaenia spectabilis		600						
412 Elacnia albiceps	1	x	340-1780	15.89 (2.54, 9)				

Appendix 1 (13/17)

	Elevation	nal range	(meters)	Body weight (grams)				
Species	Vilcabamba side	Valley floor	West . side	x (S.D., n)	\overline{X}_{m} (S.D., n)	\overline{X}_{f} (S.D., n)	x _c	
413 Elaenia gigas		x	470-800		31.0 (, 1)			
414 Elaenia pallatangae	2640	1	1660					
415 Myiopagis gaimardii	340-1150	x		11.95 (0.88, 8)				
416 Phaeomyias murina		x	600-800		f .			
417 Camptostoma obsoletum		600		•				
418 Phy lomyias griseiccps		350			7.4 (, 1)			
419 Tyranniscus uropygialis	2640-2830		2500			8.7 (, 1)		
420 Tyranniscus nigrocapillus	1830-1920		2300-2350					
421 Tyranniscus bolivianus	1390-2830		1610-1860		11.9 (, 1)	10.0 (, 1)	10.95	
422 Tyrannulus clatus		400-600				8.1 (, 1)		
423 Ornithion inerme	470-940	x			7.0 (, 1)			
424 Leptopogon superciliaris	685-1620		1340-1660	13.84 (0.92, 5)				
425 Leptopogon amaurocephalus	340-930	x	340-800	11.68 (0.87, 27)				
426 Leptopogon taczanowskii	1735-2640							
427 Mionectes striaticollis	600-3300	x	1660-3370	15.01 (1.69, 89)				
428 Mionectes olivaceus	470-1430	x	1290-1660	13.78 (1.13, 28)				
429 Pipromorpha macconnellii	470-685	x	470-800	12.53 (0.98, 22)				
430 Tachycineta albiventer		400-600						
431 Phacoprogne tapera		470			34.5 (, 1)]		
432 Notiochelidon murina			3370					
433 Notiochelidon cyanoleuca		x	600-890					
434 Notiochelidon flavipes	2640-3520				1	1		
435 Atticora fasciaca		500-600			j			
436 Neochelidon tibialis +	700-900							
437 Stelgidopteryx ruficollis			470-800	1	1	15.8 (, 1)		
438 Cyanolyca viridicyana	2075-2200 -	Î	2600-2900		127.0 (, 1)	113.0 (, 1)	120.00	
439 Cyanocorax violaceus +		340-350		1				
440 Cyanocorax yncas	1270-2150		1625-1760					
441 Cinclus leucocephalus	685-890							
442 Odontorchilus branickii	1300-1760		1560-1760			10,2 (, 1)		
443 Cinnycerthia peruana	1710-2830		2500-3370	19.61 (1.77, 8)				
444 Cistothorus platensis	3500	1	3530-3600			11.0 (, 1)		
445 Thryothorus euophrys	2830	1			1			
446 Thryothorus coraya	350-1600	x	350-1660	23.85 (2.52, 10)				
447 Troglodytes aedon		x	470-1100*			11.1 (, 1)		
448 Troglodytes solstitialis	1710-3300		1815-2600	11.81 (0.74, 9)				
449 Henicorhina leucophrys	1360-3100	1	1410-2250	15.73 (1.23, 26)				
450 Microcerculus marginatus	340-1150	x	340-1560	17.32 (0.81, 17)		· ·		
	1	<u> </u>			l	1		

*

* also once at 1660 m in second-growth

Appendix	1	(14/	17)
----------	---	------	-----

Species	Elevation	Elevational range (meters)			Body weight (grams)				
	Vilcabamba side	Valley floor	West side	X (S.D., n)	\overline{X}_{m} (S.D., n)	\overline{X}_{f} (S.D., n)	x _c		
451 Cyphorhinus thoracicus	1300-1410		1660			· ·			
452 Donacobius atricapillus		600					1		
453 Myadestes ralloides	1735-2230*		1660-2600	27.73 (1.66, 17)					
454 Entomodestes leucotis	2100-2830		1660-3370	57.93 (2.05, 6)					
455 Catharus dryas			1660	35.90 (2.50, 7)					
456 Platycichla leucops	1400		1660-1900	61.48 (4.39, 5)					
457 Turdus fuscator	2620-3520		2600-3750	146.50 (, 2)					
458 Turdus serranus	1750-3520		3370	82.3 (, 1)			[
459 Turdus nigriceps	685-930		1660		54.15 (, 2)	50.41 (2.46, 7)	52.28		
460 Turdus ignobilis		x	470-800	59.62 (4.12, 12)					
461 Polioptila plumbea		340-370				6.5 (, 1)			
462 Cyclarhis gujanensis		x	600-900#						
463 Smaragdolanius leucotis	600-1150	x					1		
464 Vireo olivaceus	340-1300	×	340-1290#	12.82 (0.62, 27)					
465 Vireo gilvus	1480-1760		1560-2040		12.0 (, 1)		[
466 Hylophilus hypoxanthus	600-1100	x	600-1460			· · · · · · · · · · · · · · · · · · ·			
467 Hylophilus ochraceiceps	600-930	x		13.20 (, 3)					
468 Scaphidura oryzivora		×	600-800						
469 Psarocolius decumanus	600-1100	×	600-1250 [#]						
470 Psarocolius atrovirens	1480-2150		1625-1900						
471 Psarocolius angustifrons	600-950	x	600-800#			188.0 (, 1)			
472 Cacicus cela	340-930	x	340-800			10010 (, 1)			
473 Cacicus uropygialis	1270-1840	<u>^</u>	1660-1900	89.7 (, 1)					
475 Cacicus leucoramphus	1810-2160		2500	07.7 (, 1)					
474 Cacicus feucorampnus 475 Cacicus solitarius	1010-2100	600	2500		94.5 (, 1)	67.5 (, 1)	81.00		
475 Cacicus solitarius 476 Cacicus holosericeus	2100-3520			47 75 (0)	94.5 (, 1)	07.5 (, 1)	01.00		
	600-685			47.75 (, 2)					
477 Icterus cayanensis	940-1620	x	1410-1900				1		
478 Parula pitiayumi	930-1780		1290-2020	10.53 (0.57, 4)			l		
479 Myioborus miniatus 480 Myioborus melanoceph alus	1990-3300	1	2350-2600	10.75 (, 2)					
481 Basileuterus luteoviridis	2100-3520	 	2500-3370						
	685-940		2300-3370	16.47 (1.40, 19)			1		
482 Basileuterus chrysogaster		1	1260 2010	12.10 (0.80, 6)			l		
483 Basileuterus tristriatus	1290-1830	l	1340-2010	12.74 (1.22, 22)					
484 Basileuterus coronatus	1390-2150 [@]	ł	1660-2110	16.04 (1.25, 23)					

* also once each at 600 m, 930 m, and 1285 m * also once at 2120 m # also once at 1660 m in second-growth @ also once at 2640 m

122

.

. . .

Appendix	1	(15/17)
----------	---	---------

.

•

Species	Elevational range (meters)			Body weight (grams)				
	Vilcabamba side	Valley floor	West side	X (S.D., n)	x̄ _m (S.D., n)	\overline{X}_{f} (S.D., n)	x _c	
485 Basileuterus rivularis	600-930	x	600-800*	16.08 (0.65, 4)				
486 Coereba flaveola		x	470-800	10.58 (0.69, 4)				
487 Conirostrum speciosum	1	340-600						
488 Conirostrum cinercum			3520-3600		10.1 (, 1)	9.0 (, 1)	9.55	
489 Conirostrum ferrugineiventre	3520		3370-3750			13.0 (, 1)	· ·	
490 Conirostrum sitticolor	2640-3520		3370-3600	10.35 (, 2)				
491 Conirostrum albifrons	1950-2200		2140			10.0 (, 1)		
492 Diglossa caerulescens	1735-2100		1850-1900	14.96 (, 5)				
493 Diglossa baritula +			1820-1900			1		
494 Diglossa lafresnayii	2500-3520		3370-3600	15.84 (1.26, 26)			1	
495 Diglossa carbonaria	3300-3520		3370-3750		13.1 (, 1)	11.85 (, 2)	12.48	
496 Diglossa albilatera	2140-3300		2110-2150		12.60 (0.49, 5)	11.50 (, 2)	12.05	
497 Diglossa glauca	1520-2200		1610-2600	13.02 (0.81, 17)			1	
498 Diglossa cyanea	1735-3520		1660-3580	18.19 (1.25, 43)]			
499 Cyanerpes caeruleus	600-1480	x	600-1660					
500 Chlorophanes spiza	370-1360	x	370-1660	18.15 (, 2)	1		1	
501 Iridophanes pulcherrima	1425-1760		1660-1780					
502 Dacnis cayana	600-1360	x	•		1		1	
503 Dacnis lineata	600-1180	x	600-1290	t .			1	
504 Xenodacnis parina	4		3750	1	13.0 (, 1)	12.0 (, 1)	12.50	
505 Tersina viridis		x	600-1660	}			1	
506 Chlorophonia cyanea	600-1630	x	600-1790				1	
507 Euphonia xanthogaster	600-2130	x	600-1990	1	14.36 (0.54. 5)	13.34 (0.79, 5)	13.85	
508 Euphonia minuta	-	600					1	
509 Euphonia chlorotica		x	600-800					
510 Euphonia laniirostris		340-600			15.8 (, 1)	15.2 (, 1)	15.50	
511 Euphonia rufiventris	370-980	x				(, -,	1	
512 Euphonia mesochrysa	1100-1760		1290-1800					
513 Euphonia chrysopasta	470-930	x					ł	
514 Pipracidea melanota			1660-1990	21.0 (, 1)				
515 Chlorochrysa calliparaea	1480-1875		1660-1900	<u>) -/ -/ -/ -/ -/ -/ -/ -/ -/ -/ -/ -/ -/ </u>			t	
516 Tangara callophrys	600-930	x		1				
517 Tangara chilensis	370-1250	x	370-1290				1	
518 Tangara schrankii	600-1300	x	600-1560	21.5 (, 1)			1	
519 Tangara punctata	1150-1350	~	1425-1660				1	
520 Tangara xanthogastra +	685-930		1290				1	

* also once at 1660 m in second-growth * also once at 2830 m

Appendix 1 (16/17)

	Elevation	n al rang e	(meters)		Body weight (g	rams)	
Species	Vilcabamba side	Valley floor	West side	X (S.D., n)	x _m (S.D., n)	x _f (s.D., n)	x _c
521 Tangara arthus	1480-1700		1590-1660		23.3 (, 1)		1
522 Tangara xanthocephala	1480-2130		1590-2350	· ·		Ì	1
523 Tangara chrysotis	1480-1730						[
524 Tangara pardzudakii	1480-2130		1560-2240	1		28.00 (, 2)	
525 Tangara cyanotis	1480-1620	l	1560-1780				1
	900-1050		1660		1		1
527 Tangara nigrocincta	370-1100	x	1				1
528 Tangara ruficervix	1480-1760	-	1660-1720		17.15 (, 2)		1
529 Tangara mexicana	370-930	x					· ·
530 Tangara gyrola	600-1480	x	600-1550		1		
531 Tangara nigroviridis	1650-2130		1620-2350	16.55 (, 2)			
532 Tangara vassorii	1770-2360		1900-2430				
533 Iridosornis analis	1320-2100		1660-1900	27.43 (1.07, 15)			[
534 Iridosornis reinhardti	2080-3520		2430-3520	23.98 (1.72, 23)			1
535 Anisognathus igniventris	2620-3520		2850-3600	35.78 (2.54, 14)	ł	1	
536 Anisognathus lacrymosus	2200-3520		2280-2600	31.84 (1.67, 17)			
537 Anisognathus flavinucha	1370-1950	{	1640-2150	44.27 (, 3)		· ·	{
538 Buthraupis montana	2100-3300		2300-3520	99.50 (, 2)	-		
539 Dubusia castaneoventris	2130-3520		2130-2600	28.30 (, 3)			1
540 Dubusia taeniata	2170-3300	ļ		40.73 (3)	1		
541 Thraupis virens		x	600-1660	40.73 (, 3)			
542 Thraupis palmarum		· x	600-1230				
543 Thraupis cyanocephala	1950-2720		2300-2350	40.35 (3.72, 4)	ſ		1
544 Thraupis bonariensis			1660-3600		35.0 (, 1)		1
545 Ramphocelus carbo	470-685	x	470-1290		28.47 (1.21, 20)	27.63 (1.87, 17)	28.05
546 Ramphocelus nigrogularis		600					
547 Calochaetes coccineus	1480-1950		1660-1900				1
548 Piranga leucoptera	1480-1540		1575-1660				
549 Habia rubica	600-950	x			35.2 (, 1)	35.7 (, 1)	35.45
550 Lanio versicolor	600-930					18.5 (, 1)	
551 Tachyphonus rufus			800				1
552 Tachyphonus rufiventer	370-1300	x	370-1425		18.0 (, 1)	17.5 (, 1)	17.75
553 Creurgops dentata	1480-2150				19.60 (, 2)		
554 Trichothraupis melanops	1150-1520		1660				
555 Hemithraupis guira	350-685	x			12.3 (, 1)		
556 Thlypopsis sordida		470-600		15.95 (1.30, 6)			{
557 Thlypopsis ornata	3320	1					1
558 Thlypopsis ruficeps	2620		3600		10.6 (, 1)		
559 Chlorospingus ophthalmicus	1735-2640		1760-2430	24.51 (2.54, 7)			1

124

e - 1

Appendix 1 (17/17)

	Elevation	al range	(meters)		Body weight (g	cams)	
Species	Vilcabamba side	Valley floor	West side	X (S.D., n)	x _m (S.D., n)	\overline{X}_{f} (S.D., n)	x _c
560 Chlorospingus flavigularis	880-1520						
561 Chlorospingus parvirostris	1500-1740						
562 Chlorospingus canigularis			1630-1660				
563 Cnemoscopus rubirostris	2100-2830		2130-2600		21.50 (0.41, 4)	16.35 (0.90, 4)	18.93
564 Hemispingus atropileus	2640-3300		2600-3370	22.45 (3.23, 4)			
565 Hemispingus superciliaris	2100-3300			13.85 (, 2)			
566 Hemispingus frontalis	1460-1790		1660-1900	18.06 (1.52, 14)			
567 Hemispingus melanotis	1710-2230		1660			14.6 (, 1)	
568 Hemispingus sp	3190-3520						
569 Hemispingus xanthophthalmus	2640-3520		2500-2580				
570 Hemispingus trifasciatus			3370		•		
571 Chlorornis riefferii	2100-3300		2140-2600	55.13 (, 3)	·		
572 Cissopis leveriana	350-685	x	350-800	73.77 (, 3)			
573 Catamblyrhynchus diadema	2100-3520		3370	16.4 (, 2)			•
574 Saltator maximus	600-930	x	600-1250	45.00 (1.92, 6)			
575 Saltator coerulescens		x	600-800	61.7 (, 1)			
576 Pitylus grossus	370-930	x		53.3 (, 1)		·	
577 Paroaria gularis +		600					
578 Pheucticus chrysopeplus	2100-2640		1660-3520			56.5 (, 1)	
579 Pheucticus aureoventris	2140		1660-2430		· · · · · · · · · · · · · · · · · · ·	65.5 (, 1)	
580 Cyanocompsa cyanoides	470-1290	x	470-800		27.93 (2.11, 4)	24.43 (, 3)	26.18
581 Volatinia jacarina	340-600	x	340-800	9.80 (, 3)			
582 Sporophila luctuosa	600-2830	x	600-2600	12.48 (0.55, 4)			
583 Sporophila nigricollis		x	600-800	9.50 (, 2)			
584 Sporophila obscura	350-2100	X	350-1660	11.16 (0.84, 29)			
585 Sporophila castaneiventris	· ·	x	470-800	8.27 (, 3)			
586 Oryzoborus angolensis	685			13.47 (, 3)			
587 Catamenia inornata	3520		3600	15.5 (, 2)	-		
588 Catamenia homochroa	3230-3520					•	
589 Phrygilus unicolor			3370-3750	21.80 (, 2)			
590 Haplospiza rustica	1740-3520		1660-2600	15.65 (1.02, 13)			
591 Atlapetes rufinucha	2520-3520			25.7 (, 1)			
592 Atlapetes tricolor	2100	1	1660			29.5 (, 1)	
593 Atlapetes brunneinucha	1320-2250		1660-1900	46.62 (3.29, 14)			
594 Atlapetes torquatus	2640-2830		2600-3370	38.95 (2.14, 4)			
595 Lysurus castanciceps	1410						
596 Myospiza aurifrons	470-685	x	470-800				
597 Zonotrichia capensis	3300-3520		3370-3600				
598 Spinus magellanicus	2650-3180	x	600-1660	1			

Appendix 2. List of Apurímac Valley species with figures for relative abundance based on netted samples. (1/12)

- Part A gives information on the net-lines and associates each netline with a column in Part B. The total number of species and individuals in each sample is noted.
- Part B gives relative abundance figures. Only those species of birds which were netted are listed. The reference number assigned to each species in Appendix 1 precedes the species' name on this list. The proportional occurrence of a species in a sample is expressed as a decimal fraction. The decimal in front of the three-digit figure has been omitted. The actual number of individuals of a given species which were caught in any sample can be calculated by multiplying the figure for proportional occurrence by the sample size given in Part A.

:***** .

Column on Part B	Net-line	No. of species caught	Total indiv. caught	Elevation (meters)	Max. no. nets	Dates	Vegetation
1	Luisiana forest	51	284	600	15	11 Aug - 2 Sep 1965 20-22 Aug 1966	Lowland humid forest
2	Vb-0	69	442	685	27	30 July - 7 Aug 1968 10-16 June 1970	Lowland humid forest
3	Vb-1	68	605	910-950	20	28 June - 14 July 1966 11-16 June 1967 12-20 June 1968	Hill forest
4	Vb-2: lower lower	57	207	1270-1330	11	28 July - 9 Aug 1966	Hill forest
5	Vb-2: middle lower	42	130	1330-1390	11	28 July - 9 Aug 1966	Hill forest / cloud forest transition
6	Vb-2: upper lower	42	109	1390-1470	12	1-9 Aug 1966	Hill forest / cloud forest transition
7	Vb-2: upper upper	67 .	419	1480-1540	15 ·	16-31 July 1966 23-27 June 1967	Cloud forest
8	Vb-2½: lower	72	498	1700-1760	12	12-21 Aug 1967 22-30 June 1968 20-27 June 1970	Cloud forest
9	Vb-2½: upper	56	307	1770-1930	18	12-21 Aug 1967 22-30 June 1968 20-27 June 1970	Cloud forest
10	Vb-3: lower	73	337	2070-2120	12	8-19 July 1967 3-5 Aug 1968	Cloud forest
11	Vb-3: middle	53	328	2130-2190	13	11-17 Aug 1966 28 June - 19 July 1967	Cloud forest

:

Appendix 2 (2/12). Part A: Net-line information. The net-lines preceded by numbers 2 through 17 were located on the Vilcabamba transect, 19 through 26 were on the West Side transect, and 27 through 31 were on the Apprimac - Ene transect.

127

:

.

Column on Part B	Net-line	No. of species caught	Total indiv. caught	Elevation (meters)	Max. no. nets	Dates	Vegetation
12	Vb-3: upper	47	170	2190-2260	13	29 June - 19 July 1967	Cloud forest
13	Vb-4	69	630	2620-2660	16	16-23 July 1967 3-10 July 1968 25-30 June 1970	Elfin forest
14 .	Vb-5	66	451	2820-2840	14	21-31 July 1967 9-13 July 1968	Elfin forest
15	Vb-6: lower	35	178	3170-3300	12	31 July - 11 Aug 1967 12-25 July 1968	Elfin forest
16	Vb-6: upper	49	311	3290-3340	16	31 July - 11 Aug 1967 12-25 July 1968	Mixed elfin forest and grassland
17	Vb-7	44	219	3450-3525	27	16-31 July 1968	Mixed elfin fo rest and grassland
18	Luisiana matorral	41	231	600	16	8 Aug - 2 Sep 1965 15-19 June 1970	Matorral
19	Santa Rosa	39	204	800	21	13-18 Aug 1968 8-12 July 1970	Second-growth
20	Iluanhuachayo coffee	41	100	1660	5	18-22 Aug 1968 12-18 July 1970	Overgrown coffee plantation
21	Huanhuachayo purma	41	97	1660	6	18-22 Aug 1968 12-18 July 1970	Tall second-growth
22	Huanhuachayo forest	67 [.]	368	1660	12	18-22 Aug 1968 12-18 July 1970	Cloud forest
23	Estera Rohuana	40	143	1900	20	14-18 July 1970	Cloud forest
24	Yuraccyacu	24	93	2600	22	19-23 July 1970	Cloud forest

.

Appendix 2 (3/12). Part A

•

•

128

.

÷.

Column on Part B	Net-line	No. of species caught	Total indiv. caught	Elevation (meters)	Max. no. nets	Dates	Vegetation
25	Puncu	40	231	337 0- 3390	21	23-28 Aug 1968 25-29 July 1970	Mixed elfin forest and cloud forest
26	Uchuy Monte	16	90*	3600	8	28-29 July 1970	Mixed elfin forest and puna grassland
27	Boca Mantaro matorral	24	65	460	10	6-11 Aug 1970	Matorral
28	Boca Mantaro forest	31	124	470-480	35	6-11 Aug 1970	Lowland humid forest
29	Quipachiari	32	151	370	51	13-18 Aug 1970	Transitional forest
30	Chiquireni	40	143	350-370	51	20-23 Aug 1970	Dry deciduous forest
31	Saoreni	31	99	340-400	51	24-28 Aug 1970	Dry deciduous forest

Appendix 2 (4/12). Part A

.

* Birds netted at Uchuy Monte were not banded, and no exact count of individuals was kept. The listed total of 90 is approximate. Species captured in this net-line are indicated in Part B by "X".

Sp.																	colum	n														
no.	Species	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
	Crypturellus soui																													007		
4		004		00	5								·																			
25	Accipiter striatus	1004			005		1								004			005			[
29					005		ł					1			004			005	004													
30							1—		·····	<u></u>	003								004													
38			002				1		002													C	03									
66							1		00/2									005														
68												1						005														
74		1										1	006							0	10	C	03									
75	Leptotila verreauxi																														021	02(
76	Leptotila rufaxilla		014									l I							052	0	10								016			
77	Geotrygon montana	004	005	01:	5											1														007		
	Geotrygon frenata	1							002								~ •															
86		- 					ļ				006	<u> </u>					010															
87												1			011	1					- 1										1	
93							I								002				013	0.05	1											•
96																			013	005	- 1							015				010
98						008		005													1	010						013				010
100	Otus ingens Otus watsonii			_		000	<u></u>	003													- 	/10		_						013	007	6.77
101 103	Otus sp						1		002	010	000	015	012																	012	307	050
105	Glaucidium jardinii								004	010	009		012	006	002	011		005								004 I					1	
107	Glaucidium brasilianum										000			000	002			005			1					Ĭ					007	020
110																	003															
113	Nyctidromus albicollis															-					-+										007	
115							ļ							002	002						1											
117	Uropsalis segmentata												012	005												009					1	
121					005		009		012	003	003	009	006	003	002																ł	
122						_														_	- 1									007	007	
123	Threactes leucurus	014										[022										008			
124					. 039	015		010								1					50 (021 0	08									
125		032	027	003	l i														004	005	1.									013		
	Phaethornis hispidus						1												048				•						800	086		
127	Phaethornis stuarti	004						<u></u>												005								015				010
128	Eutoxeres condamini		011	007	·	008		002	006	003	003	009	006	003					004	010 04	۰ula	10 0	19					015	01.0		i	
129	Campylopterus largipennis		002								~ ~			005	000		006		004									013	040		1	
131 132	Colibri thalassinus Colibri coruscans							002			015 012	ł		005	016		010	مەم			1					004					- 1	
134								002			012				010		010	003		005											1	
	Thalurania furcata		000	007	005		018										<u> </u>				+									020	-	
137	Chrysuronia oenone	007			~~J		1010					1																			ł	
138	Amazilia chionogaster			005	005	015	1	002	002		036			002			006	009	004	01	10										007	
139	Amazilia lactea		505			313	ł	202			555								013	•••								1	016	013		010
140								005	020	042	018	006								01	lolo	021 0	16	028							1	
141	Reliodoxa rubinoides				-							009		·							1											
142	Heliodoxa leadbeateri			003	010		ł	002	006											01	0	021 0	22								1	
143	Heliodoxa branickii				014		1															-										
	Pterophanes cyanopterus	1										l													(009	X					

Appendix 2 (5/12). Part B: Relative abundance data

-

130

. .

Appendix 2 (6/12). Part B

• 1

.

Sp.																	Colu									_						
no.	Species	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	3
45	Cocligena cocligena				005		009	012	044	046	042	076	035								020	031	011	028								
146	Coeligena torquata										003	076	088	025	022								_	028	022							· ·
147	Coeligena violifer													008		034	042	037								026	x					í.
148	Ensifera ensifera														5° T			018									l x					1
149	Boissonneaua matthewsii						1				009			002	007																.	1
150	Heliangelus amethysticollis						1							048		006	029	014							097	022						-
151	Eriocnemis luciani														004	•••		018							•71	013	x				- 1	ł
152	Ocreatus underwoodii						1	002	008	003							1				1			021		•13	"					
153	Metallura acneocauda															006		014						~~~			ł –					
	Metallura eupogon	1						•																		043	Y I					i
155	Fetallura tyrianthina			· · ·			<u> </u>							002	018	000	084	073					_			056					-	_
156	Chalcostigma ruficeps													005		0,0	004	0.5				•				0.00	^					
158	Aglaiocercus kingi										015		006	005																		
159							i				013		000								04.0	010	008									
160	Heliothryx aurita		009				1														040	010	000									į
163	Acestrura mulsant		009				h							002													<u> </u>		_			
168	Trogon collaris							002						002													1					i
169							i i	002		010	003		006									010		007			1					
174	Electron platyrhynchum									010	003		000				1				1	010		007)14	
75	Baryphthengus ruficapillus		005	00	5 014	009																010									/14 p	
76	Nomotus monotus	007		00.	5 014	000	 															010					<u> </u>	015	000	867 7	121	አ
		1007																					003					013	000	007	~~l	. U.
177	Momotus acquatorialis		007	00	7 014		{												026	005			ευυ									
178	Galbula cyanescens	004		01			1												020	005											- 1	
179	Malacoptila fusca Malacoptila fulvogularis	004		UL.	2		018			003																	1					i
180	Maraceptina Infoogularis	 	002				1010			005																						-
		014			005	000		002																								
182	Nonnula ruficapilla	014			005	000	1	002											009								1			013 (200	~
83	Monasa nigrifrons				005														009				003				1			013 1	20	
88		1			005		1		002														011									
189	Aulacorhynchus derbianus						1		002											A1 6			011				┣──					
90	Aulacorhynchus prasinus				010						A1 F	017								015			008				1					
.91	Aulacorhynchus coeruleicinctis	!				•			002	010	015	012															1					
.93	Pteroglossus mariae		005				t i																				1					
95		004		002	2 005		1																				1					
.98	Picumnus aurifrons		002				<u>}</u>							0.00				· · ·								_	 					_
101	Piculus rivolii										006			002	002						1						1					
02	Piculus rubiginosus	1					ļ		002												- 1						i i					
07	Veniliornis passerinus	1																	017								1				- 1	
10	Veniliornis nigriceps													002	002	011	010	005								004	í –					
13	Phlococcastes hacmatogaster						ļ			003		003															 				_	_
14	bendrocincia tyrannina		.		-					010	006	018								~~-							1		AE /	~~~	1	
15	Dendrocincla fuliginosa	021	014	00	Σ.		l I													005								4	056	52	- 1	
16	Deconychura longicauda		002				ŀ									j						010									<u> </u>	
17	Sittasomus griseicapillus				5 014						ļ											010					ł			007 (21	
	Glyphorhynchus spirurus	007	009	046	5 024		<u> </u>	002									<u> </u>		004								<u> </u>		800			-
19	Dendrexetastes rufigula																										ł			007	1	
20	Xiphocolaptes promeripirhynchus									007		006	005														ł				- 1	
22	Dendrocolaptes certhia						ł																				ł			D13		•
23	Dendrocolaptes picumuus	1					ł												004								i i				07	U

131

- · · _

Appendix 2 (7/12). Part B

•

.

•

.

	6															(Colum	m													
Sp. no.	Species	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30 3
224	Xiphorhynchus occllatus		009	013	019	031	037	010														093									T
225	Xiphorhynchus guttatus	007	•																								l		016 (73 0	7 07
226	Xiphorhynchus triangularis						[012	014			006									- 10	021 (003	014			1		-		
227	Lepidocolaptes affinis										012		006														ĺ				
229	Campylorhamphus pucheranii												006		002										011_		I				
230	Synallaxis azarae				005				002	003											10										
231	Synallaxis cabanisi		005																113	039							1 '	046			
232																			026		1							015			
233		004																	030	078 0	20							062		0	4
	Synallaxis unirufa						L					I	006	025	002	006								_							
235		021																									[800		
236								002														. (003				1				
237							1					1		038	004												i				
238							i i								027											043	x				
	Margarornis squamiger	L									003	006	006	021	016	039	035	014							054	091					
241		1			005			019															022	049			l				
242	Prenmoplex brunnescens				014	015	018			078											- 19	010 (D22				ł				
243	Pseudocolaptes boissonneautii								004	003	033	027	041	016	011	022									032	009	1				
	Hyloctistes subulatus	1	005									[1				
245		 			005		018					ļ										021 (J				
246	Syndactyla subalaris	1				008	018			020		1								0		052 (1				
247	Anabacerthia striaticollia	1		002				012	020												- 19	041 (035	014							
248	Philydor erythrocercus			002	048	023	1	002				1									1						i i				
249 250	Philydor ruticaudatus		002	002															~~~								1				
251	Automolus dorsalis Automolus ochrolaemus	1001	0/ 6	016	010	022													030_				203						016		-+
251		1004	045	020	010	023			008	A1A											- 1		203						016		
253		ŀ			014			017	000	010																					
253	Thripadectes melanorhynchus Thripadectes scrutator				014			017			002	006	004	002				005			- 19	010 0	114		011		1				1
	Xenops minutus	010	016	025	024	015	000				005		000	002		1		003							011		ł		032		
257	Sclerurus mexicanus	1010	010	02.5	005	015	003	012	004	003													008	007					22		+
258	Sclerurus caudacutus				005				004	005												•	.00				1			07	
259	Lochmias nematura		007						002																		l				
261			007						001		-								035								i i			01	4 02
262	Thamophilus doliatus											[- 1			013 (320	- [- 1	4	015		••	01
263	Tharmophilus acthiops			·								<u> </u>											· · · ·				<u>`</u>			20	101
264		014	005																								1	4	016 0		1
265	Thamnophilus murinus	004	•••																								1			20	04
266	Thamnophilus caerulescens	1						012	020	036										0	40			014		1	1		•		1.
267	Thannistes anabatinus				010		009													•							1				
268	Dysithamnus mentalis			036	019			005												0	200	10 (008								
269	Thamnomanes ardesiacus	025	020																	•											
270		1	•																									(032		
271	Myrmotherula brachyura															- 1														00	7
272	Nyrmotherula haematonota	007	007	025	• •						1	l ·														1	i -				
273	Myrmotherula ornata	014														i													800		
274	Myrmotherula axillaris		018	002																	1						1 1			79 01	4 02
275	Myrmotherula schisticolor	1			024	008	055	041	002			003									1	C)19				i				
277	Dichrozona cincta	ł		008			1-2-2																				1				

Appendix 2 (8/12). Part B

6	Species															Colu	111													
Sp. no.	Species	1	2	3	4	5	6	7	8	9	10	11	12	13	14~ 1	5 16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
281	Drymophila caudata							012	028	042	036	073	065										014		1					
283	Cercomacra nigrescens	1	002	2		031			024			1								040	010	014								
284	Pyriglena leuconota				010	031	009	019	004		009									020		011								
285	Myrmoborus leucophrys	004										-						074	034								154		C	335
286	Myrmoborus myotherinus	014																												
287	Hypocnemis cantator	021											_			1		013	005							_			C	149
288	Percnostola leucostigma		018	005																		003								
289	Myrmeciza hemimelaena	102	025	026	024											ł											ł	048	946	
290	Pithys albifrons	021	050	040															005								(040		
291		004																									1	015	_	
292	Hylophylax naevia			030														_										097		
293	Hylophylax poecilonota	011	038	051																							(048		
294	Chamaeza companisona					008	009	007														016								
295	Chamaeza mollissima	1								003	003		012			Ι.				1										1
296	Formicarius analis		025	003																							(032	013 0	/07
297	Formicarius rufipectus								002													003								T
298	Grallaricula flavirostris						009	014	024	046	003		006			1						800	007							
99	Grallaricula ferrugineipectus												006 (002																
00	Myrmothera campanisona	004														1														
01										003		003				I		_												
02	Grallaria guatimalensis	T	007	002			009							•																
303	Grallaria crythroleuca	1					ł					006				1									1					
104	Grallaria rufula						• •						(002										0	09					1
306	Conopophaga castanciceps							029	022	003										020	021	014								- 1
307	Corvthopis torquata	1	005	017		008																								
308	Scytalopus unicolor										009	018	041	008 (007 022	003	005							C	17					T
309	Scytalopus femoralis	[010		[002	005	003						1				020	010	008	007		1					- 1
310	Laniisoma elegans	1					})07	- 1
311	Ampelion rubrocristatus	1													002	003								0	09					1
312	Pipreola intermedia												(002		<u> </u>														
913	Pipreola pulchra								002		1					ł						008								
14	Pipreola frontalis						1													010	010									
15	Pipreola arcuata										-			008	007 006	003						•		0	04					
16	Attila spadiceus	007																												
17	Casiornis rufa					_	L									ļ														70 0
18	Rhytipterna simplex	004						002								ł											015	(07 0	07 ј (
20	Pachyramphus versicolor													003						010									_	
21	Pachyramphus polychopterus															1													0	56 0
31	Rupicola peruviana			008		008				003												003								
	Pipra fasciicanda	331										·				 		017							_				58 1	2610
33	Pipra chloromeros		025		005						003							004				003					0	008		
34	Pipra pipra				029							003	006		•	1					062									
	Pipra caeruleicapilla			021	019	038	018	029	002							1				010	041									
136	Machaeropterus pyrocephalus	035																004					007							
37	Chloropipo unicolor	 			014	031	028	014	008	007			018			 				020	113	052	056							-+
338	Chloropipo holochlora			003												1								•						
39	Piprites chloris	ł	002		005		009	002			.]					1					010									
40	Schiffornis turdinus		007	012				012								1														
43	Myiotheretes fumigatus	1											(005		1	005								1					

Appendix 2 (9/12). Part B

•

Sp.	Species																Column													
no.		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16 17	/ 18	19	20	21	22	23	24	25	26 2	72	8 2	30	2
346				_													013 023								022	x				Ţ
347	Ochthoeca rufipectoralis	1												024	040	011	019 059)		- 1					017					1
348	Ochthoeca cinnamomeiventris	1									006		012				ł													
349	Ochthoeca frontalis						ł								027	084	039 037	1							048					Į
350	Ochthoeca pulchella										033	040	059	025										032					•	
364	Myiarchus ferox	1					1											004	010											1
365	Myiarchus cephalotes	1						010									l			030										1
366	Myiarchus tuherculifer						1		002		024	006					1				010								007	1
368	Empidonax euleri			012	005	008													010	Į					- 1	01	5			
	Cnemotriccus fuscatus	1																								03				
	Mitrephanes phacocercus	1							002	003																				1
	Terenotriccus crythrurus	018		010																								031	021	i
	Myiobius villosus	1				015	009			•										1		005		•				•••		1
	Myiobius atricaudua						1											026	015			005			E					
374	Nyiotriccus ornatus	1				008		014	004								•	020	015						ł					
375	Pyrrhomias cinnamomea				· · · ·			002	004	003	006	001	006		007						010	003	••.							-
	Myiophobus flavicans							001	018	005	000	005	000									005	~~~							1
	Myiophobus inornatus							005	010	010	1											005	005							
	Mylophobus ochracciventris	1					1	005							002										- 1					į
200	Myiophobus roraimae	1			005		0.27	007			1				002					010			007							1
	Cnycorhynchus coronatus	+			003		037	007	<u>.</u> .											010			007						01/	2
		004		002													•											01.	014	۰.
	Platyrinchus platyrhynchos	004				A1 6	000	~~~		000															- 1					1
	Platyrinchus mystaceus	1		007	013	013	009		002	003												005	007		ļ					ł
	Platyrinchus flavigularis			005			ł	002						•											- 1					1
	Tolmomyias assimilis		005	005			ļ										· · · · · · · · · · · · · · · · · · ·							_						_
	Tolmomyias poliocephalus						1																						028	5
	Tolmonyias flaviventris	1					1											004		- 1										
	Rhynchocyclus olivaceus		023	017																1					1					
	Rhynchocyclus fulvipectus		•				018	005	006	010															1					
		1																											042	2
	Todirostrum cinercum																		005											
	Todirostrum latirostre						1		•									061	025						1	04	5	013	042	4
	Idioptilon granadense						1				003			029	016	1				- 1			(054						
	Lophotriccus pileatus			005	024	046	018	029	026	003										030	010	011			- 1					
396	Myfornis auricularis																												021	L
198	Pseudotriccus pelzelni							002	046	033											010	030	007							1
	Pseudotriccus ruficeps										012	037	024	013	002 (006							(011 (004					
00	Pogonotriccus poecilotis						1							-						1		(007							1
01	Pogonotriccus orbitalis		020	015							1																			
	Phylloscartes ventralis	1							002													(007							
	Uromyias agraphia	1					1							024	002 (039	003 027													1
	Mecocerculus leucophrys	ł					1										029 018			- 1					048					1
	Mecocerculus stictopterus	1					1								009															į
	Elsenia albiceps	1																	064										021	1
	Elaenia pallatangae	1			·		1							003					004										~ 1	1
	Myiopagis gaimardii	1																								· · · · ·			049	5
	Tyramiscus uropygialis	1					1							003	002					- 1									V49	1
	Tyranniscus bolivianus	1												005		1														
		1		010	0/.0	01.E		000						000	002					010		~~~			- 1					ł
/ LA	Leptopogon superciliaris	1	ULL	018	V40	040		022									1			030I		800								

Appendix 2 (10/12). Part B

Sp.	Species				_												Colum	m		_												
n o.		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	3
	Leptopogon amaurocephalus		04:	5 02	5															005							1	015	032	C	70	02
426												015															i i					
	Mionectes striaticollis	00			5 135				062	059	060	046	065	086	062	006	026				160	082	155	119	011	004	l					
	Mionectes olivaceus				1 014		009					}										010					l		008			
-29		03	5 014	•			1					<u> </u>							052	098									008			
434	·····														004		010										ł					
37																			004	005							i i					
38		ŀ									018		012														i i					
40							1		002			003															i i					
43									024	033	015	021	053	005											022			<u> </u>				_
45	Thryothorus enophrys														002					~~ /												
	Thryothorus coraya				053	015	1	012				[069								i i	031		0	07	
47	Troglodytes acdon																				010				~~~	1	i i				- 1	
	Troglodytes solstitialis								006			009		013	004		003							028	022		i i				1	
49	Henicorhina leucophrys	-				008	028	012	030	039	003	037	018					<u> </u>			010		032	063			<u> </u>	0.11	~ ~ ~		_	61
50	Microcerculus marginatus	1014	6 032	: 01			009																005				i	031	040 (20	- 1	"
51	Cyphorhinus thoracicus	1		~~	2 014		1003		0.07			007	~~~									031		~~~			i				1	
54	Myadestes ralloides Entomodestes leucotis	1		00	2 010		1		034	072		027	000		~~/						010		011		011	004	i i					
55											003	ł		002	004							021		007		004	i					
	Platycichla leucops						009														010			007			_ 				\rightarrow	
57		1					1003					1					003	000				1	ULL	007		017	i.					
	Turdus serranus	1								010	022	014	024	002	011		003									013	I					
59	Turdus nígriceps		002	00	3					010	003	1034	024	002			005	009			050	041	04.3			013	l I					
60		1	002								005	1							043		0.00	~~ I .					1	046			1	
62	Cyclarhis gujanensis						<u> </u>		-		·								004	000								0.10	• • • •		-+	
64	Vireo olivaceus						1												004								i			C	70	16
67	Hylophilus ochraceiceps	011	016	01	D		ł –					ł]	ł			-	· · ·	
70		1		•	-		1	002				Į –															i				- [
71	Psarocolius angustifrons		002				I I	•••													i						l					
73	Cacicus uropygialis	1					1	002									_						003								-	-
74	Cacicus leucoramphus							•••		007	012	018															1					
75	Cacicus solitarius						1												009		Ì						l					
76	Cacicus holosericeus						[006	015	024	800		006	,	005					•				l l					
79	Myjoborus miniatus	1		002	2			005	006											(030 l		005									
80	Myioborus melanocephalus	1									042	006	018	016	002		003								022						T	_
81	Basileuterus luteoviridis						1				009	027	065	062	022	028	029	023			- 1				075	052	i					
82	Basileuterus chrysogaster	1	025	018	3																						1					
83	Basileuterus tristriatus				019	008	009	014	056	042										(020	010	022	049			ł					
84	Basileuterus coronatus						037	043	044	088	036	070		002									008	084			L					_
85	Basileuterus rivularis	1.	009	00	3															005 (010											
86	Coereba flaveola		-																013									015				
88	Conirostrum cinereum	1					1																				X					
89	Conirostrum ferrugineiventre																	018								004	1					
90	Conirostrum sitticolor													002	011		019	009								009						_
92	Diglossa caerulescens								002	007	009																				T	
94	Diglossa laíresnayii											[035	075		077									134	X					
95	Diglossa carbonaria						ł					[003									004	X				1	
96	Diglossa albilatera	1					1					009	018	014	002		006										i				- 1	

Appendix 2 (11/12). Part B

s-	Sanatas															(Colu	m														
Sp. no.	Spacies	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	3
497								010	0 016	020					002						050		019	007	011							
498		1							002		024	021		057	080	017	042	018					003	049	161	048						
499		1						002	2																							,
500						008															i i									013	1	
501							009																									
502	Dacnis cayona	1				008																										
507	Euphonia xanthogaster		011	02	5 019	015	018	026	5 016	023	006										010		011									
510																					1									013		
515		1					1	002	2 002																							
	Tangera schrankii	_	002																													
531											015										j										Í	
	Tangara vassorii						1			002																						
533	Iridosornis analis				005	008	018	069	9 024	020													005									
534	Iridosornis reinhardti										006	009.					100								065	039					- 1	
	Anisognathus igniventris						<u> </u>							021	027	079	080	073								082	X					
536	Anisognathus lacrymosus													049	056	062	029	005			ĺ				054						- 1	
537	Anisognathus flavinucha								006													010										
538	Buthraupis montana	1									015			003			003															
539	Dubusia castancoventris											003					006	005														
540	Dubusia tacniata						 			_		003		014		006	006		_											_	_	
541	Thraupis virens	1					1													005												
543	Thraupis cyanocephala	1									003	003		006																	i i	
544	Thraupis benariensis																										x				i	
545	Ramphocelus carbo	004																	104	182								077				
<u>549</u> 550	llabia rubica	018					<u> </u>						_															····-				
	Lanio versicolor	1000	007																												- 1	
552	Tachyphonus rufiventer	1004	005							~~-																					- 1	
553	Creurgops dentate						000	~~~	008	007	009	006		•																		
554	Trichothraupis melanops				029	008	009	026	•														005									
<u> 555</u>	Hemithraupis guira	· · · · · ·					<u> </u>																							007		_
556	Thlypopsis sordida																		009									077				
557	Thlypopsis ornata																003									1						
558		1					1		00/	~ ~ ~		007		002	•								•			1						
559 560		1			005		046	007	004	013	012	000		002							1			035								
561	Chlorospingus flavigularis Chlorospingus parvirostris				005		1040	007	002												_								<u>.</u>		-	_
562							[002							1							005			1						
563											AAA	009	006	A11	000	,							005		043							
564	Hemispingus atropileus										009	009		027		í	003									009						
	liemispingus superciliaris	1									012			017		006									022	009						
	Hemispingus frontalis						000	0/.9	038		012			017	010	000	005	•				···	024	014				÷		·		-
567	Remispingus melanotis	1					1003	VH0	002		003		006			1						010	024	014		1					- 1	
568	Hemispingus sp	1					1		002		003		0			017	019	۸n«				010					ĺ				- 1	
	Hemispingus xanthophthalmus	1					1							002			013	003														
	Hemispingus trifasciatus						ł							UUZ	011	000										043					- 1	
570	Chlorornis riefferii	<u>+</u>					 				026	018	004	010	016	006	003							· · · · · ·		<u>, (m</u>					+	-
572	Cissopis leveriana	1									030	010	000	013	010	000	003		004	005	!										1	
	Cataablumburahua Atatawa	1									003	<u>^^</u>		019	nn/ -	l		005	004	003						009						
573	Catamblyrhynchus diadema	1000	A1/				1				003	000		019	004	01/		000		<u> </u>						009						
574	Saltator maximum	004	UI4				1				- 1									029	1					- 1					- 1	

.

Sp. no.	Species	Column																													
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
575	Saltator cocrulescens		-							_									004	005			_								Τ
576	Pitylus grossus	004																											008		
578	Pheucticus chrysopeplus	-F					[003													007							
579	Pheucticus aureoventris											003							۰.		į										
580	Cyanocompsa cyanoides	032	011	013	005															005									024		
	Volatinia jacarina						I													005										0	07 0
582	Sporophila luctuosa																			005					032						1
583	Sporophila nigricollis																		,	015											
584	Sporophila obscura								002		003						•			162		021	003							0	14
	Sporophila castanciventris						1				_								004	015							l				
586	Oryzoborus angolensis		005																												
587	Catamenia inornata	1														1		009									x				
588	Catamenia homochroa	1					{								(022	045	174									1				1
589	Phrygilus unicolor															- 1										009	X				
590	Haplospiza rustica	1							002	003	074	027	129_	014	040 (003		118		i				
	Atlapetes rufinucha													011			003	005													
592	Atlapetes tricolor										003										020						1				
593	Atlapetes brunneinucha	1	•		005	023	018	014	030	036	021	030										021	022	007							1
594	Atlapates torquatus												(008 ()02										011	004	1				
	Lysurus castaneiceps						009																								
597	Zonotrichia capensis																003	005								004	X				- T

Appendix 2 (12/12). Part B