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CHAPTER I 

INTRODUCTION 

Major economic considerations have been made by the livestock and meat 

industries to limit the amount of fat deposition in cattle and pigs, and the total fat 

content in case-ready (fresh) and value-added (processed) meats. The livestock 

industry is focusing on producing animals by selection (breeding) and nutrition 

(feeding management) to accommodate the purveyor and consumer needs for 

leaner meat. Adipose tissue is an essential component to cattle and pigs because it 

serves to store energy, protects against heat loss, gives mechanical support, and aids 

to responsive hormonal and nervous stimulation. Allen et al. (1976) suggested 

about 10 to 15% of the live weight of a domestic animal is important for biological 

functions and acceptability to consumers. Reducing the fat content in animals, 

especially pigs, has partly contributed in part to the increased percentage of porcine 

stress syndrome (PSS). A trait that is directly linked to muscle development in pigs 

that are susceptible to stress which results in pigs developing pale, soft, and 

exudative (PSE) meat after slaughter (Kauffman et al., 1992; Goodwin, 1994). 

Sayre et al. (1964) and Mcloughlin (1963) reported that PSE reduces protein 

solubility in pork muscle. Meat protein solubility has a direct relationship to the 

rate of pH decline in muscle prior to rigor mortis. When muscle is PSE, protein 

solubility levels are marginal and will adversely affect water-holding capacity 

(WHC), color, yield, and texture in meat products. In addition, the binding 

characteristics of salt-soluble proteins through physical and ionic extraction are 

lowered, thus decreasing the moistness and texture of sausages and ham products. 
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Research using hot brine and ultrasonic cavitation to enhance protein 

extraction in meat systems is limited and descriptions of the physicochemical 

properties at different pH levels have not been fully investigated. The objectives of 

this study were: (1) to assess the influence of hot brine on PSE and normal pork 

muscle in sectioned and formed hams; and (2) to determine the effects of ultrasonic 

cavitation on the binding strength of pork muscle in cooked hams. 



CHAPTER II 

REVIEW OF LITERATURE 

Muscle Quality Attributes 

The relationship between diet and health has received considerable attention 

in recent years. Part of the reason for this has been the growing concern over diet's 

role in health and disease, fostered by the hypothesis originating in the 1950's that 

animal fats in the diet (as cholesterol and/ or saturated fats) might contribute to 

heart disease and cancer (Thomas, 1983). The question arises whether saturated fat 

intake, total fat intake and cholesterol intake, or a combination of these three 

causes an increase of atherosclerosia and must be answered to ensure that the 

health significance of such consumption is known by an informed public. 

Atherosclerosia is a thickening and loss of elasticity of the inner walls of arteries 

where the accumulation of cholesterol develops plaque and blocks the blood flow 

from or beyond the heart. This blockage can lead to a myocardial infarction that 

often leads to death. 

The American public has indicated that they have health concerns about 

consuming fat and cholesterol from animal tissue. However, information is not 

always conveyed properly about the facts concerning the linkage between diet and 

health. Yankelovich et al. (1985) reported that as many as nine out of ten 

consumers indicated concern about fat consumption. Changes in life styles and 

health concerns have resulted in decreased red meat consumption in America 

because of concern over animal fat and cholesterol in the diet and their 

3 
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contribution to coronary heart disease. The average daily U.S. consumption on a 

per capita basis is about 4 oz of cooked red meat, supplying 93 mg of cholesterol, 

which is less than one-third of the 300 mg standard (Williams, 1987). Total fat 

from red meat supplies 225 calories in the diet, or about 11 % of calories of a 2000 

calorie diet. 

The demand for lower animal fats in the diet has caused the meat industry to 

reduce the fat content (deposition) in livestock with more muscle development 

and leaner carcass characteristics. Consequently, the pork industry is focusing on 

producing animals by selection (breeding) and nutrition to satisfy the purveyor and 

consumer needs for leaner meat. Since approximately 65% of the carcass weight for 

pork in the U.S. is converted into processed meats compared to 12% of the beef and 

15% of lamb (The National Livestock and Meat Board, 1982), it is important for the 

pork industry to lower the fat content in pigs. In the 1960's, the lean:fat ratio in 

hogs was about 1:1 and currently a minimum of 1:0.5 is being obtained. However, 

this reduction in fat content of hogs may cause the animals to be more susceptible 

to stress, which results in hogs developing pale, soft and exudative (PSE) meat after 

slaughter. 

Pale. Soft. and Exudative (PSE) 

Muscle quality as well as quantity of muscle is an important prerequisite for 

improved consumer acceptance of pork. Currently, the pork industry is producing 

fresh pork that varies in quality with respect to visual appearance (color), shrinkage 

(drip loss), and protein functionality when converting muscle into processed 

meats. Kauffman et al. (1994) conducted a survey that indicated at least one-quarter 

of all pork produce was undesirable (16% PSE and 10% DFD), and only 16% was 

classified as ideal by the National Pork Producers Council (NPPC) standards. Some 

of these adverse quality characteristics in pork can be attributed to the genetic 

penetrance of the halothane or HAL locus and ryanodine receptor gene, which 

have been localized to pig chromosome 6 pll-9 21 (Fujii et al., 1991). The HAL 
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gene reduces backfat and muscle quality, while increasing loin muscle size and 

percent lean of the carcass. In addition, this gene is associated with malignant 

hyperthermia (MH) which triggers a reaction in the pig by inhalation of anesthetics 

or stress that causes an uncontrolled increase in glycogenolysis and heat production 

(Denborough and Lovell, 1960; Berman et al., 1970; Hall et al., 1980; Lister, 1987). In 

MH, the pig develops metabolic acidosis which is associated with porcine stress 

syndrome (PSS) that causes sudden death and the production of PSE pork (Briskey, 

1964; Cassens et al., 1975; Goodwin, 1994). 

The HAL gene can produce the same effects on muscle quality in all breeds. 

There are three possible HAL genotypes in pigs that determine carcass attributes 

relative to heritability, measurements of the proportion of the traits' variation due 

to genetics. Pigs will receive one halothane gene from each parent, thereby 

producing a progeny of NN (normal), Nn (heterozygotes), and nn (mutant) pigs. 

According to Goodwin (1994), heterozygote pigs produce more loin muscle area 

(0.38 sq in.) and higher dressing percentage (0.5%) along with paler color, increased 

toughness and increased cooking loss compared to the normal HAL genotype pigs. 

However, mutant (nn) pigs are more sensitive to sudden death or PSS and up to 

90% will produce a PSE carcass. Halothane gene heterozygotus and mutant pigs 

will consistently produce lower quality pork than pigs that are free of the halothane 

gene (NN). 

Ante-mortem treatment prior to slaughter also contributes to the variation in 

pork muscle quality. Pigs can be stressed during transportation, temperature 

fluctuations, and inappropriate handling prior to slaughter. These environmental 

stressors before death can alter the change in the pig's metabolic rate after death. 

Once the animal is exsanguinated(the removal of blood), ATP is still used for 

energy-consuming sequences but all respiration is eliminated by anaerobic 

processes and the neutral and hormonal controls are diminished; Bendall (1964) 

reported that ATP and creatine phosphate concentration are maintained in slow 
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working muscles by oxidative phosphorylation, but in fast glycolysing muscles 

where oxygen supply is restricted, ATP is synthesized by the transfer of high energy 

phosphate from creatine phosphate (CP) to ADP. When CP is limited, attempts to 

maintain ATP level occur anaerobically via the glycolytic pathway, breakdown of 

muscle glycogen to lactate and hydrogen ions (Lawrie, 1966; Bendall, 1960). The fast 

onset of rigor mortis and an extremely rapid rate of glycolysis with the 

development of low pH values ( <5.8) at temperatures above 35°C are associated 

with the production of PSE pork. Conversely, a slow glycolytic rate or when rigor 

mortis occurs at a high pH (>6.4) and/ or a low temperature, results in muscle that 

has a tendency to be dark, firm, and dry (DFD). Therefore, glycogen concentration 

level in muscle immediately prior to death will determine post-mortem chemical 

and physical properties of the muscle under certain conditions: (1) that glycogen is 

available for degradation (Lawrie, 1966) which may involve the type of chain 

length structure; and (2) when the enzyme function is inhibited through the 

accumulation of lactate by a rapid decline in pH (Bate-Smith and Bendall, 1949). 

Water-Holding Capacity (WHC) 

The rate of glycolysis in muscle will determine the overall quality 

characteristics of meat systems. Muscle pH, the negative logarithm of [H+], if 

above 6.4 and lower than 5.8, changes the WHC for meat systems by altering the 

positive and negative charges on myofibrillar proteins. Forrest et al. (1975) defined 

WHC as the ability of meat to retain water during the application of external 

pressure involved in further processing. Many of the physical properties of meat, 

including color, texture, and juiciness, are partially dependent on WHC. Water 

plays an important role in fresh and cooked meat products because of its 

interaction with proteins, fat, nonmeat ingredients, and heat processing factors. 

WHC strongly influences the yield of the finished product (Randall et al., 1976). To 

achieve product stability, whether the muscle will be used for case ready display 

(fresh meat) or converted into value-added products, the production aspect for 
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water content and yield requires good water binding capacity (WBC) of free and 

immobilized water. 

According to Hamm (1960) the chemical basis of WHC involves three types of 

water binding in muscle: type I (bound), type II (immobilized), and type III (free). 

Bound water is that directly associated with the reactive groups on myofibrillar 

proteins creating a strong molecular bond. Polar, hydrophilic side chains and 

undissociate carboxyl and amino groups of peptide bonds are responsible for 

holding this water tightly. Water in this fraction represents approximately 5% of 

the total water and can be removed only under extreme dry conditions. The 

remaining water in muscle can be either immobilized or free depending on the 

conditioning and handling of the tissue. Molecular immobilized water is a form of 

structure that has no specific orientation toward reactive charged groups. This type 

II water is influenced by the spatial structure of the muscle tissue (Hamm, 1960). 

Free water is not bound in mono- and multi-molecular layers like type I, but exists 

in a meat system as immobilized water held by surface tension or capillary forces. 

It can be removed easily by drip loss, drying, or mechanical pressure. Hamm (1960) 

believed that immobilized and free water share a continuous transition between 

types II and III in muscle tissue influenced by pH, ionic strength, and rigor factors, 

which will alter the structural integrity of myofibrillar proteins. Ninety-five 

percent of free muscle water is immobilized by electrostatic forces and capillary 

action (Offer and Trinich, 1983; Offer et al., 1984). Sponsler et al. (1940) described 

several chemical working models of hydrophilic reactive protein groups in muscle 

that are used in binding water: 

1. Carboxyl groups 

0-H K )a-H 
0--H 

or 

H 
I 

r--<;->-H l 0-H 
I o, 

H 



2. Amino and imidazole groups 

or 

3. Carbonyl groups 

{ ''~N-H 
J '-o-H H, I 

0-H 
I 

H 

O·-H/ )= 0-H 

4. Guanidine groups 

H 
\ 
0-H 

N-:::::::\ I 
~N-H 
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These side chain chemical structures of muscle molecules will bind water-

usually with hydrogen bonding involving polar groups-due to the dipolar 

character of water because the arrangement of the oxygen (negative charge) and 

hydrogen (positive charge) are not coinciding. Therefore, electrons are drawn 

toward the element with the greatest electronegativity (0) which causes a net 

polarity of the bonds in a molecule. Polar groups contribute to the binding of water 

in meat systems that involving muscle hydration, where the amount of water 

binding proteins are by mono- and multi-molecular adsorption (Hamm, 1960). 

pH--Influence on WHC 

The pH affects meat hydration by influencing the number of reactive groups 

on proteins and their availability to bind water. Post-mortem changes in muscle 
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involving the production of lactic acid, loss of ATP, and pH decline prior to rigor 

mortis along with cell structure changes will determine the level of water binding 

capacity in meat. The formation of lactic acid with subsequent pH decline prior to 

rigor mortis will cause the protein reactive groups to decrease. This change causes 

protein denaturation and loss of solubility in meat (Miller et al., 1968; Forrest et al., 

1975). Protein reactive groups that are reduced will have the tendency to approach 

the isoelectric point (pl). The pl is the pH at which the positive and negative 

charge groups on proteins are equal to zero which is known as the net charge effect. 

Net charges on proteins at zero result in the formation of a maximum number of 

salt bridges between protein chains. Once the pH approaches the pl (5.0) in a meat 

system, the reactive groups begin to attract each other and . the remaining protein 

groups are available for binding water. Consequently, WHC will be decreased in 

meat systems. 

All changes in meat WHC are not necessarily attributed to the net charge of 

proteins (Miller et al., 1968). Steric conditions that are associated with the 

breakdown of ATP, protein interactions and rigor mortis involve the attachment 

of Ca2+ and Mg2+ ions to protein reactive groups which limits the availability of 

other reactive sites from binding water. These divalent cations tend to pull protein 

charge groups together, causing steric hinderances-a lack of space for free water to 

be converted into immobilized water. Swift and Berman (1959) revealed that an 

increase in WHC involves the transition of free water to immobilized water and is 

directly related to pH values. Raw material pH values usually range from 5.8 to 6.4 

within 48 hr post-mortem for optimal utilization in cooked ham products. Meats 

with a pH below 5.8 or higher than 6.4 are not to be recommended for the 

following reasons (Kreibig, 1991): 

High pH-value 
(Over 6.4) 

= good water absorption, 
low curing salt absorption, 
mild in salt flavor, less stable cured color, and 
reduced shelf-life, especially when packed. 



Low pH-value 
(Under 5.8) 

= poor water absorption, 
intensive curing salt absorption, 
strong salt flavor, good curing color, and 
better shelf-life (meat and flavor). 

10 

Protein-protein interactions for WHC and swelling of myofibrillar proteins are 

affected by the pH level. The addition of acid (negative) groups or base (positive) 

groups can cause alteration in protein net charge by increasing the water binding 

through enlargement of interfilament spacing (April et al., 1972; Hamm, 1986). For 

the alkaline pH range, the hydrating effect of the anion is more pronounced than 

the hydrating effect of the cation because of the ion bound strength to the protein 

structure. 

pH--Influence on Solubility 

Pre- and post-rigor processes (Bate-Smith and Bendall, 1947; Cassens et al., 1963; 

Sayre et al., 1963) and the rate of post-mortem pH decline (Marsh, 1954; Bendall, 

1960; Scopes, 1963) are all associated with changing (increasing or lowering) the 

characteristics of myofibrillar and sarcoplasmic proteins in muscle. The physio­

logical and chemical condition of myofibrillar proteins in muscle prior to further 

processing alters the level of protein functionality (Camou and Sebranek, 1991). 

When the glycolytic rate in porcine tissue is accelerated with rapid pH fall prior to 

rigor mortis, this causes a high temperature in the muscle which leads to 

substantial protein denaturation. · Therefore, the protein solubility is decreased 

significantly (Sayre and Briskey, 1963). McLoughlin (1963) indicated that as pH at 45 

min post-mortem decreased, solubility also decreased. In contrast, a slow glycolytic 

rate of high pH causes the muscle to be DFD with increased protein solubility traits 

(Hamm, 1986). Muscle protein solubility and protein extractability in raw muscle 

can be augmented by the conditions of both temperature and pH, and that protein 

solubility is an essential factor affecting WHC. 

Protein functionality is the ability of solubilized myofibrillar protein to 

emulsify fat, bind water and stabilize protein-protein interactions during thermal 
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processing. Saffle (1968) and Hansen (1960) explained that the fundamental 

structure of a meat emulsion was a mixture of finely chopped particles involving a 

dispersed (fat-in-water) phase into a continuous phase of solubilized proteins. The 

salt-soluble, heat-coagulated proteins create an elaborate protein matrix around the 

fat globules along with the entrapment of water, causing the reactive groups to 

attach to the negative and positive charged groups' interface (Becher, 1965; 

Schmidt, 1986). Heating this protein-fat matrix system stabilizes the emulsion and 

thus gives the product its overall characteristic juiciness and texture. 

Schmidt (1986) suggested that emulsification is similar to the binding of meat 

chunks in luncheon hams. He believed that the major difference is that the 

emulsion sausages have no large chunks of meat. The binding between chunks 

involves the structural rearrangement of solubilized myofibrillar proteins, mainly 

myosin that binds meat pieces. Siegel and Schimidt (1979) reported that the 

interaction of myofibrillar proteins between the super thick synthetic filaments and 

heavy myofilaments extracted from the intact muscle causes meat pieces to bind in 

sectioned and formed products. 

pH--Influence on Color 

A low pH value in porcine tissue causes the muscle fibrils to open and scatter 

light which results in a paler appearance in color (Walters, 1975). Lister (1987) 

reported that in stressed pork the soluble proteins which are precipitated onto the 

structural proteins interfere with the optical properties of the surface layers and 

cause a decrease in the translucency of meat. Pork contains the lowest 

concentration of myogloblin compared to lamb and beef. Once the rapid pH 

decline occurs in pork muscle, myoglobin becomes easily oxidized into 

metamyoglobin which reflects a low color intensity (Walters, 1975). 



12 

Tumbling--Protein Extraction 

Prior to tumbling, meat is usually injected with a liquid brine consisting of 

water, salt, phosphate, nitrite, and ascorbate. The water mainly acts in three 

different ways during the tumbling process: (1) as a medium to dissolve the 

ingredients; (2) as a distribution carrier for additives and actomyosin after 

extraction; and (3) as the compensator for cooking loss. Salt and phosphates are 

ingredients used to solubilize the myofibrillar proteins by increasing the ionic 

strength of the meat system: This enhances electrostatic repulsions between 

similar chemical charged groups on the filaments, causing swelling in the muscle 

(Wierbicki et al., 1957; Hamm, 1960). Actomyosin, the main structural component 

of muscle, becomes dissociated into actin and myosin for the purpose of binding 

water, fat and meat pieces. Nitrite is used for color development and as cure 

bacteriostat. Cure accelerators, sodium ascorbate or erythorbate, are used for 

speeding up and stabilizing the color development for ham products. 

Tumbling is a process in which the meat, injected with pickle is placed in a 

container and intermittently or continuously struck by paddles or baffles through 

rotation. The result is a transfer of kinetic energy into the muscle that alters, splits, 

or bursts the fibril muscle, the actomyosin of meat. This disruption of the 

actomyosin causes a release of salt-soluble proteins, which in turn coats the meat 

chunks and is then heat coagulated by cooking. Tumbling muscle pieces enhances 

the extraction of myofibrillar proteins to adequately bind particles in chunked and 

formed products (Ockerman et al., 1978; Kreibig, 1991; Schmidt, 1986). The effects of 

tumbling and sodium tripolyphosphate on salt and nitrite distribution in porcine 

muscle was investigated by Krause et al. (1978a). Their results revealed that both 

sodium tripolyphosphate and tumbling significantly increased the migration of salt 

and nitrite, and increased cured color development. Krause et al. (1978b) showed 

that tumbled hams were rated higher by a sensory panel than nontumbled hams 

for external appearance, internal color, sliceability, taste, and aroma. 
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Ultrasonic Cavitation 

In 1894, John I. Thornycroft and Sydney W. Barnaby noticed a severe vibration 

on the British destroyer's propeller. These vibrations of propeller blades caused 

serious erosion over time. They discovered that large bubbles, gas filled cavities, 

formed by the spinning propeller will implode by water pressure. This was the 

source of the vibrations. Thornycroft and Barnaby redesigned the ship's propeller 

to reduce vibration from what came to be known as cavitation (Suslick, 1989). 

Cavitation is the term used to describe the formation and collapse of bubbles or 

cavities in liquids. Cavitation tends to occur in liquids by the passage of ultrasonic 

waves. The ultrasonic waves are propagated through a liquid medium and the 

particles of the medium oscillate back and forth. These oscillations cause regions of 

compression and rarefaction to form, which correspond to positive and negative 

pressures (Reynolds, 1977). Ultrasound waves consist of cycles of compression and 

expansion. Depending on the pressure and forces holding the liquid together, air 

or vapor bubbles and cavities can be formed at sites of negative pressure (Reynolds 

et al., 1978). The reduced pressure makes the gas in the crevice expand, resulting in 

implosion in the liquid. 

Presently, ultrasound is applied in the agricultural and medical fields for 

visual imaging and in industry for welding and cleaning materials. Ultrasonic 

cavitation has received limited research in the meat processing area. Ultrasound 

has been shown to influence protein extraction and cellular disruption. Wang 

(1975) revealed that autoclaved soybean flakes produced a 90% protein yield by 

ultrasound extraction of protein compared to the 70% protein yield using a 

conventional stir method {control treatment). Reynolds et al. (1978) reported an 

increase in binding strength in cured ham rolls using ultrasonic treatment. His 

research demonstrated changes in the micro-structure of muscle using an 

ultrasonic instrument cleaner. Zayas (1985), using a sonic hydrodynamic unit and 

mechanical homogenizer, demonstrated that ultrasonic waves can increase the 
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WHC and yield for sausage emulsions. Some studies have shown that ultrasonic 

cavitation is useful for bacteriocidal effects when organisms were treated while 

suspended in a culture medium (Stumpf et al., 1946; Davies, 1959). Most 

production failures are attributed to low pH meats and marginal protein extraction 

in raw material for manufacturing sausages and chunk and formed ham products. 

Ultrasonic cavitation under certain conditions offers the potential to increase yield 

and binding strength for meat products. 



CHAPTER III 

INFLUENCE OF BRINE TEMPERATURES AND TUMBLING 

ON PSE AND NORMAL PORK MUSCLE IN 

SECTIONED AND FORMED HAMS 

Introduction 

Consumer diet and health concerns have caused the meat industry to seek 

changes at every phase of livestock production. The pork industry has focused on 

producing animals by selection (breeding) and nutrition to satisfy consumer 

demands for leaner carcasses. The lean:fat ratio in hogs was 1:1 approximately 35 

years ago; currently a minimum of 1:0.5 is being obtained. However, this reduction 

in fat content of hogs may cause the animals to be more susceptible to stress, which 

results in hogs developing pale, soft , and exudative (PSE) meat after slaughter. 

Another contribution to the cause of PSE characteristics in muscle is the animal's 

genetic susceptibility of the halothane (or HAL) gene which was identified by Fujii 

et al. (1991). This particular gene is responsible for the animal becoming easily 

stressed by extrinsic factors involving environmental temperature fluctuations and 

ante-mortem handling of pigs prior to slaughter. If a pig has the HAL gene, it is 

more prone to having fast glycolysing muscle (accelerated breakdown of glycogen 

and a simultaneous accumulation of hexose monophosphates) prior to slaughter, 

which causes a swift decline in muscle pH. A rapid pH drop below 5.8 results in 

PSE which causes the proteins to become partially denatured and unacceptable for 

cooked hams. This form of muscle degeneration will affect protein solubility of 

pork muscle in the conversion to processed meats. Protein solubility is the 

15 
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essential component in the manufacturing of sectioned and formed meats. 

Consequently, some processors believe it is important to know the color and pH 

values of pork meat. 

According to Kreibig (1991), pH value is the standard measurement for estab­

lishing the selection of raw material for cooked ham products. Hoogenkamp (1989) 

reported that raw hams at pH 5.7 to 5.8 (borderline hams) can cause problems 

similar to PSE traits and that 30 to 40% of all raw hams processed have some PSE 

properties. Few meat processors are capable of establishing pH selection criteria for 

raw materials for cooked ham processing. The majority of processors generally 

accepts what is available to them from the open market. The pH value determines 

the water binding, color properties and microbial shelf life of the end product. 

Normally, primal sections (hams and loins) are not entirely saturated by PSE 

properties, but the protein functionality may be lowered. Kauffman et al. (1992) 

revealed that reddish, soft. exudative (RSE) pork may be of questionable quality 

because of the wide variation in appearance, shrinkage, and protein functionality 

from market hogs. The extended quality variation in pork is not always relegated 

to pale color but involves texture and water-holding capacity (WHC). Offer and 

Knight (1989) reported that WHC of meat is determined by pH, protein 

denaturation, intra- and interfascicular spacing and sarcomere length. To insure 

consistent final products, the meat processor needs alternative procedures to 

maximize quality attributes of meat sources with pH values ranging from 5.4 to 6.0 

without separating acidic meat based on color and pH before or during production . 

Historically, research efforts with PSE pork have focused on three general 

areas: (1) the reversal of protein denaturation by enzymatic reactions (chemical 

modifica-tion), (2) the incorporation of time and temperature relationships after 

slaughter, chilling carcasses at extremely cold temperatures to diminish the PSE 

properties, and (3) the process of breeding, feeding, and preslaughter treatments to 

control final pH values of carcasses. These procedures are beneficial to the meat 
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industry, but more research is needed in solving the PSE condition at the point of 

product manufacture. Research using hot brine (curing) to enhance the extraction 

of salt soluble proteins from pork meat systems is limited and descriptions of the 

physicochemical properties at different temperature levels have not been fully 

investigated. Johnson and Bull (1952) compared a conventional method of 

processing cured bacon at 6°C for 21 days to a 55° pickle at 45°C for 24 hr. They 

demonstrated that the bacon treated with hot brine (45°C) was no different in cured 

color and palatability from the dry cured treatment. Also, an injection of brine into 

prerigor carcasses will improve color, juiciness and tenderness in hams (Mullins, 

1957). In processing pork, there is an interrelationship between pH, WHC, 

temperature, and protein functionality in muscle systems that influences the 

quality characteristics of ham products. The purpose of this study was to determine 

the influence of hot brine temperatures on PSE and normal pork muscles in 

manufacturing luncheon hams. 

Materials and Methods 

Carcass Measurements 

Twenty-eight (95 to 107 kg) market gilts were slaughtered at the Oklahoma 

State University Meat Science Laboratory. All right sides of carcasses (pre-rigor) 

were subjected to thermal processing for 4 hr in an Alkar-DEC oven to an internal 

temperature of 37.7°C at 95% RH to induce pale, soft, and exudative (PSE) pork 

(McKeith, 1995). After processing, temperature and pH vlaues were measured with 

a Sentron® model 2001 electrode probe (Sentron ® Integrated and Sensor 

Technology Co., Federal Way, WA) on ham and loin sections of pork sides. These 

sides were subsequenlty chilled for 24 hr at 4°C along with the left side (control) 

carcasses. Colormetric values (L, a, and b) were taken on the longissimus dorsi 

muscle between the tenth and eleventh rib interface using a Minolta Chroma 

Meter CR-300 (Minolta Camera Co., Ltd., Ramsey, NJ). Water holding capacity 

(WHC) values were determined according to a modified procedure of Hamm 
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(1986). Duplicate 30 g portions of each raw sample were sealed in plastic bags under 

atmospheric pressure and stored at 4°C for 24 hrs. Then samples were weighed to 

calculate drip loss. 

Nuclear Magnetic Resonance (NMR) 

This quantitative method was used to assess the possibility of following the 

metabolic events connected to normal and thermal induced PSE pork and to 

categorize the quality muscle type. Four pigs were stunned, exsanguinated, and the 

M. longissmus dorsi (LD) muscle from the control and treated PSE carcasses was 

removed at O and 4 hr , respectively. The muscle extraction procedures for 

nucleotide determination were conducted according to Calkins et al. (1982). 

Extracts prepared for biochemical analysis were diluted with HzO to an average pH 

of 8.5. Phosphorus -31 NMR spectra of muscle extraction was recorded at 161.9 

MHz on a Varian XL-400 NMR Spectrometer (Palo Alto, CA). Chemical shifts for 

31P-NMR were reported in ppm from 85% H3R)4 (0 ppm) as a reference with 

upfield shifts given as negative signs. A 5 mm probe was used with spectra width 

100,000, scans 10,000, and delay 0.5 s to a recycle time of 0.66 s, and all spectra were 

acquired at -15°C with a total time of 110 min per spectrum. Energy metabolites 

were determined by peak enhancement of each component with muscle extraction. 

Manufacturing Procedures 

Pork carcasses were segmented into lean primal cuts. Loins and hams were 

selected and were subsequently trimmed to remove all skin, subcutaneous fat, and 

connective tissue. Manufacturing procedures (Figure 1) involved triplicate batches 

for each treatment. Boneless hams and loins were macerated and injected 

(Fomaco®) at 20% with a cold (13°C) or hot (38°C) brine formulation. Processing 

consisted of sectioning loin and ham (top and bottom) muscle pieces into 4.5 x 4.5 

cm chunks. These lean pork chunks were subjected to a tumbling time of O and 8 

hr, continuous 4 hr run and 4 hr rest interval, respectively, and further processed 



Thermal induced PSE Control I Normal 

Meat Sources 
pork carcasses pork carcasses 
(28 right sides) (28 left sides) 
pH (5.4 - 5.7) pH (5.8 -6.0) 

Cold Brine (13.0°C) Hot Brine (38.0°C) 
Tumbling Tumbling 

/ ' / ' O hrs 8 hrs o hrs 8 hrs 
/"- /"- /"- /"-Normal PSE Normal PSE Normal PSE Normal PSE 

/1\ /I\ /I\ /1\ /1\ /I\ /1\ /I\ 
Replications 1 2 3 1 2 3 1 2 3 1 2 3 123 123 1 2 3 1 2 3 

I I I I I I I I I I I I I I I I I I I I I I I I 
Batch Weight/ 151515 151515 151515151515 151515 151515 151515 151515 
Replication (kg) Total =360 kg 

Meat Preparation 
Boneless Sectioned and Formed Hams 

Brine formulation for processed hams. 

Maceration 
Ingredients Percent of Brine Kilograms of Brine 

Pickle Injection 

Tumbling 

Mixing 

Stuffing 

Molding 

Thermal Processing 
Smokehouse 

Cooling-Packaging 

Water 15.2001 % 
Nitrite 0.0152% 
Erythorbate 0.0557% 
Phosphates .3378% 
Salt (NaCl) 2.1956% 
Corn Syrup Solids(CSS) 2.1956% 

40.8233kg 
.0408kg 
.1497kg 
.9072kg 

5.8967kg 
5.8967kg 

Kilograms of brine prepared: 
Percent of brine injection: 

53.7144kg 
20.0% 

Processing schedule - Steam cooked cycle 

Time Iemgeratyre %R.H. 
Dry Wet 

1 hr 49.0°C 49.0°C 100% 
1 hr 60.0°C 60.0°C 100% 
Hold until the 
internal temp. 
reaches 67°C 77.0°C 77.0°C 100% 

Smoke 

Off 
Off 

Off 

Product was showered with cold water for 60 min. Hams were 
chilled and stored at 4.0°C. 

Figure 1. Processing Procedures for Sectioned and Formed Hams. 
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for 10 min using a Leland mixer (Leland Detroit Mfg. Co., Detroit, Ml). After 

mixing, the meat was placed in a Vemag® stuffer (Reiser Inc., Canton, MS) and 

stuffed into polylined stainless steel molds (Charles Abram, Inc., Philadelphia, PA) 

with rectangular dimensions of 8.5 x 8.5 x 68 cm. A conventional cooking cycle of 4 

hrs was used to achieve an internal temperature of 67.0°C. These molds were then 

showered for 60 min and chilled for approximately 12 to 14 hr in a 4°C cooler. 

Hams were removed from molds and one-half of each batch was sliced (8 mm 

thick) and vacuum packaged, while the remainder was used for electron 

microscopy analysis and binding evaluation. 

Chemical Analyses and Protein Extraction 

Proximate analysis (moisture, fat, and protein) was determined on raw and 

cooked product samples according to procedures outlined by the AOAC (1992). The 

protein extractions were measured by the Biuret method (Gornall et al., 1949). 

Meat samples were frozen in liquid nitrogen and blended to form a powdered 

consistency. Duplicate 2 g samples of meat were placed in 50 ml centrifuge tubes 

containing 5 mL of KP04 50 mM buffer, pH 7.5 containing 100 mM of KCI. Samples 

were diluted to 1:15 (w /v) and homogenized for 30 sec using a biohomogenizer 

model 133 (Biospec Products Inc., Bartlesville, OK). Protein concentration of the 

samples was recorded as percent mg of soluble protein per ml of solution. 

Sodium Chloride 

Salt (NaCl) content of the meat samples was determined using an Orion model 

90-02 chloride ion electrode. Meat samples were frozen in liquid nitrogen and 

pulverized. Duplicate 5 g samples of meat were weighed in a 250 ml beaker with 

0.6 M HN03 extraction solution and brought to a boil. Samples were removed and 

cooled to room temperature. Chloride ion concentration in meat extract was 

measured to determine the percent salt content. 

20 
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Sodium Nitrite 

Nitrite (NaN02) analysis was determined on cooked {67°C) luncheon hams 

according to procedures outlined in AOAC (1992). Triplicate 2.5 g portions of each 

sample were placed in a 250 ml beaker with 50 ml distilled water and heated in a 

Blue M constant temperature water bath (Blue M Electric Company, Blue Island, IL) 

for 2 hr at 80°C. Then samples were transferred into 250 ml flasks and brought to 

volume with distilled H20. Filtration samples were pipetted into a 50 ml flask and 

reacted with 1 ml of Greiss reagent containing 0.5 sulfanilamide and 0.1 N-(1-

naphtyl) ethylenediamine dihydrochloride with 15% acetic acid (150 ml) for color 

development of aqueous solution. The samples were read on a spectrophotometer 

at absorbance 540 nm for comparison of residual nitrite content to a standard curve. 

Hydrogen Ion Concentration (pH) 

Duplicate 5 g portion cooked meat samples were placed in a 250 ml beaker of 

distilled water and homogenized for 30 sec using a biohomogenizer. Meat samples 

at 4°C were measured for the negative logarithm of [H+], the hydrogen ion 

concentration, with a digital Corning 130 pH meter. 

Cooked Loss and Smokehouse Yields 

Cooking loss (WHC) values for total fluid released were calculated according to 

the procedures of Lee et al. (1981) and Honikel et al. (1981). Each 5 g sample of 

processed muscle was weighed into a preweighed 50 ml centrifuge tube and placed 

in a boiling water bath for 20 min. Duplicate tube contents were cooled and 

drained off. Meat samples were blotted with filter paper and subsequently placed 

back into tubes for reweighing. The percentage of moisture loss during cooking 

was determined. Smokehouse yields were determined by preweighing stainless 

steel molds without and with sectioned and formed meat prior to thermal 

processing. Processing yields were calculated on a percentage basis: (final cooked 

weight/uncooked weight) x 100 =%yield. 
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Color Evaluation 

Color observations were taken on the sliced surface, at four diffferent sites, for 

each cooked ham within each treatment using a Minolta (Minolta camera Co., Ltd., 

Los Angeles, CA.) L *, a*, and b* values measuring in CIELAB for L * = lightness, a* 

= bluish-green/red-purple hue component, b* = yellow /blue hue component, C* 

[(a*2 + b*2)1/2] = Chroma, and h0 (from arctangent b* /a*) = hue angle (0° = red­

purple, 90° = yellow, 180° = bluish-green, 270° = blue). 

Muscle Ultrastructure (Electron Microsc?:PY) 

Tissue Preparation. After thermal processing, samples were taken from the 8 

hr tumbling, brine treated hams at 13 and 38°C. The product was sliced into 1 mm 

squares and saturated with fixative (8% glutaraldehyde in 0.27 M cacodylate buffer, 

pH 7.2) and fixed for 2 hr at room temperature. The tissues were washed in 0.2 M 

phosphate buffer three times for 20 min each. The samples were dehydrated in a 

graded ethanol series (50, 70, 90, 95, 100, 100, and 100%) for 20 min each at room 

temperature and washed in 100% propylene oxide three times for 20 min each. 

The tissues were infiltrated in 1:1 propylene oxide/polybed 812 (21 ml polybed, 13 

ml dodecenylsuccinic anhydride, 11 ml nadic methyl anhydride, 0.7 ml 2,4,6-tri 

dimethylaminomethyl phenol -30°) in capped vials overnight at room 

temperature. Vials were uncapped in a vacuum desiccator for approximately 7 hr. 

The 1 mm strips of cooked ham were flat-mold embedded in fresh polybed for 48 

hr at 60 to 70°C. 

Sectioning. Blocks were thick (0.5 um) and thin (0.07 um) sectioned on a 

Sorvall MT-6000 microtome (Research and Mfg. Co., Tuscon, AZ). Thick sections 

of eight cooked hams were placed on glass slides, stained with Mallory's Azure II 

methylene blue (1 % Azure II, 2% methylene blue, and 2% Borax), and examined 

with an Olympus BH2 light microscope (Hitschfel Instruments, Inc., St. Louis, MO). 

Light microscopy was used to visually determine the selection of blocks for thin 

sectioning. Thin sections were placed on 200 mesh nickel grids, post-stained with 
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5% VA for 4 min and lead citrate (0.03 gm in 10 ml water, 2 drops 50% NaOH) for 5 

min, and examined with a JEOL 100-CX STEM at 80 kv. 

Binding Evaluation 

Binding strength analysis as described by Suter et al. (1976) was performed 

using the Instron Universal Testing Machine Model #4500. The cooked hams were 

allowed to equilibrate at room temperature and a sliced section was placed in a 

tensile testing device which held the sample in place by metal pins. Dimensions of 

the cooked ham slice were 8.7 cm in length, 5.6 cm in width, and 8 mm thick with a 

grip distance of 2.8 cm. Sample rate and crosshead speed were 10 pts/sec and 100 

mm/min, respec-tively. Binding variables from force and area measurements 

were: breaking strength (MPa), toughness (MPa), and energy at break (Joules). 

Statistical Analysis 

Treatments were arranged in a 23 (2x2x2) factorial design and randomized 

during manufacture. Replications of each treatment were performed in triplicate. 

The three factors were brine temperatures (13 and 38°C), tumbling times (0 and 8 

hr) and quality muscle types (normal and PSE). Data were analyzed using general 

linear model procedures of the Statistical Analysis System (SAS, 1985). Means, 

where significant, were separated using the least square means (LSM) procedure. 

The model included effects of brine temperature, tumbling time, brine temperature 

x tumbling time, quality muscle type, brine temperature x quality muscle type, 

tumbling time x quality muscle type, brine temperature x tumbling time x quality 

muscle type, and the replications x brine temperature x tumbling time x quality 

muscle type = appropriate error term for each F-test. Once interactions for a 

measurement were detected at P < 0.05, all means will be presented to distinguish 

between the simple effects from all possible treatment combinations. When 

interactions for a measurement were not significant, main effects were tested and 

least squares treatment means are presented. For the test procedure when means 

are discussed as not different (P >0.05), actual probability values are greater than .20. 
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Results and Discussion 

A statistical t-test comparisons for each quality muscle type classification was 

performed. Identification of parameters to differentiate muscle quality types (PSE 

and normal) is categorized (Tables 1 and 2) by pH, WHC, and color measurements. 

The pH value of PSE muscle was lower (P < 0.05) than the normal muscle type in 

Table 1 which subsequently corresponds to the drip loss percentage being greater in 

PSE muscle compared to normal muscle contents. , Loss in weight (shrinkage) for 

PSE samples was 3.4% more than for normal muscle. These data are in agreement 

with Sayre et al. (1964) who showed that PSE muscle may lose 6 to 10% of its weight 

as drip loss. Chemical analyses for percentage moisture, fat, and protein were not 

different (P > 0.05) between PSE and normal muscle type (Table 1). Similarly, 

Briskey et al. (1959) and Wismer-Pedersen (1959) observed no consistent difference 

in protein, fat, and moisture content between PSE and normal musculature. 

Minolta color values are shown in Table 2. The PSE muscle type was greater (P 

< 0.05) in color intensity for L *, a*, b*, C*, and h 0 values than normal musculature. 

Differences in the pH and WHC between the two muscle types (PSE and normal) 

appear to influence the descriptive values of color intensity because of the wet 

surface on the PSE muscle. Once an abundance of water is liberated to the surface 

of the meat, it will begin to reflect more light. Lister (1987) believed that these 

soluble proteins precipitate onto the structural proteins, thus causing interference 

with the optical properties of the meat surface. 

Nuclear Magnetic Resonance 

Nuclear magnetic resonance (NMR) spectroscopy is a technique which can be 

used to evaluate cellular and tissue metabolic changes via a noninvasive approach. 

This method detects the interaction of radiation with matter. The technique 

depends upon the fact that certain atomic nuclei such as phosphorus (3lp) have 

intrinsic magnetic properties, i.e. spin. When a sample (tissue extraction) contains 

such muscle and is placed in an NMR magnetic field, the nuclei begin to align with 



Table 1. Analytical and chemical analysis of muscle 
classification of pork sides 

Muscle Type 

Analytical Analyse~ 

pH 

WHC (drip loss %) 

Chemi~al Analyse~ (0i1>) 

Moisture 

Fat 

Protein 

PSE 
(Right Side) 

5.5sa 

7.25a 

73.28a 

2.ooa 

24.74a 

Normal 
(Left Side) 

5.86b 

3.83b 

73.26a 

1.98a 

24.57a 

a,bMeans in rows and followed by the same superscript 
letter are not different (P > 0.05). 

SEM 

.04 

.30 

.16 

.17 

.12 

Table 2. Minolta color mean values of muscle classification 
of raw pork sides 

Muscle Type 

PSE Normal 
(Right Side) (Left Side) 

L* Values 58.59a 51.65b 

a* Values 7.22a 5.s2h 

b* Values 9.37a 6.23b 

C* Values 11.87a 8.60b 

h 0 Values 51.92a 45.17b 

a,bMeans in rows and followed by the same superscript 
letter are not different (P > 0.05). 

SEM 

55 

.27 

.37 

.43 

1.05 
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respect to the field. Introducing a second field perpendicular to the main field 

causes a realignment of the nuclei. Decay of the second field allows the original 

alignment to be regenerated. This magnetic interaction is detected in the 

radiofrequency range due to the emission of radiation releasing decay of the second 

field. The composition of the molecular structure of samples which contain the 

nuclei will determine the type of frequencies that are being emitted. The 

frequencies are expressed as signals or resonances which are dimensionless 

parameters known as chemical shifts (ppm). Analysis of the chemical shift allows 

an interpretation of the structure of molecules in a liquid. The purpose of the 

phosphorus (P) 31 NMR experiment was to classify normal and PSE quality muscle 

types according to the metabolic changes or the presence of certain phosphorus 

compounds in pork tissues. 

Figure 2 represents a typical P-31 NMR spectrum obtained approximately 20 

min post-mortem from a normal muscle. Nine resonances were assigned, from 

left to right field (ppm), to the following metabolities: (1) glucose 6-phosphate 

(G6P); (2) a-glycerol phosphate (a-GP); (3) inorganic phosphate (Pi); (4) 

phosphocreatine (PCr); (5) y-adenosine triphosphate (y-ATP); (6) a-adenosine 

triphosphate (a-ATP); (7,8) nicotineamide adenine dinucleotide (NAO and 

NADH); and (9) ~-adenosine triphosphate (~-ATP). In Figure 3, PSE characteristics 

were induced on the right sides of pork carcasses at a thermal processing 

temperature of 37.7°C with 95% RH. The P-31 NMR analysis revealed only three 

intracellular concentrations of phosphorylated compounds, namely (1) G6-P, (2) a­

GP, and (3) Pi in pig muscle extraction. Thermal-induced samples did not reveal 

observed changes in P-31 signals for PSE conditioned muscle because of the 4 hr 

time duration prior to tissue extraction. This is not in agreement with Miri et al., 

(1992) who showed that 31-P NMR spectrum for PSE muscle had a low pH, low to 

medium ATP content, low PC, and high phosphomonoester (PME) content. Figure 

3 demonstrates when creatine phosphate declines to zero within 4 hr 
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Figure 2 Phosphorus-31 NMR spectrum of normal pig muscle at O hr after slaughter 
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post-mortem, the ATP level is not maintained through rephosphorylation of ADP 

by creatine phosphate. Therefore, the ATP level is low causing rigor to be 

established without the generation of P-31 signals. 

Chemical Analyses (Raw Products) 

Mean main effect values for chemical analysis of raw meat are given in Tables 

3, 4, and 5 for brine temperature, tumbling time, and quality muscle type factors. 

Moisture and fat percentages in Table 3 were not different between brine treatment 

levels (13 and 38°C), but the protein content was influenced (P < 0.05) by the 

elevated brine temperature of 38°C. Table 4 shows that when comparing O and 8 hr 

tumbling moisture and protein percentages were similar, but the fat content was 

different (P < 0.05) between tumbling times. Based on these data, the increase in 

brine temperature from 13 to 38°C causes slight modifications in moisture and fat 

levels, but the utilization of tumbling alters the fat content which may be attributed 

to the increased rate of brine absorption into muscle pieces. Mean values for 

quality muscle types are given in Table 5. The influence of normal and PSE 

muscles did not affect (P > 0.05) the proximate composition (moisture, fat, and 

protein) of processed hams. As expected, the brine injection levels for muscle types 

(normal and PSE) contained the same chemical contents regardless of brine 

temperature levels used in pumping muscle portions for further processing. 

Table 3. Main effects for chemical analyses of raw sectioned and 
formed pork meat according to brine temperatures 

Cold Brine (13°C) Hot Brine (38°C) 

Chemical Analises (%) 

Raw 
Moisture 74.64a 74.94a 
Fat 1.33a 1.12a 
Protein 19.31a 17.56b 

SEM 

.30 

.21 
1.75 

a,b Means in rows followed by the same superscript letter are not different 
(P > 0.05). 



Table 4. Main effects for chemical analyses of raw sectioned and 
formed pork meat according to tumbling times 

0 Hr Tumbling 8 Hr Tumbling 

Chemi~al Analyses (%) 

Raw 
Moisture 74.79a 74.79a 
Fat 1.ooa 1.45b 
Protein 18.93a 17.94a 

SEM 

.01 

.46 

.99 

a,b Means in rows followed by the same superscript letter are not different 
(P > 0.05). 

Table 5. Main effects for chemical analyses of raw sectioned and 
formed pork meat according to quality muscle type 

Normal Musclea PSE Musclea SEM 

Chemical Analyses (0b) 

Raw 
Moisture 74.97 74.59 .38 

Fat 1.27 1.19 .07 
Protein 18.19 18.69 .49 

a Means in rows followed by .the same superscript letter are not different 
(P > 0.05). 

Chemical Analyses (Cooked Products) 

30 

There was a significant (P <0.05) three-way interaction involving brine 

temperature x tumbling time x quality muscle type for percentage moisture of 

cooked hams (Table 6). These data suggested that the level of factors had a 

proportional effect at different levels on at least two of the factors in cooked ham 

treatments. Moisture percentages were affected between O and 8 hr levels of 

tumbling for normal and PSE hams within 13 ° C brine temperature. Normal 

tumbled hams were different across the 13 ° C treatments. Both PSE treatments 

regardless of tumbling time were different from the normal treated hams injected 

with a cold brine{l3° C). Treatments within the hot brine temperature (38 ° C) were 
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Table 6. Chemical analyses of cooked hams according to brine temperatures 
arrangement. 

Cold Brine (13°C) Hot Brine (38°C) 

Tumbling Tumbling 

0 Hours 8 Hours 0 Hours 8 Hours 

Normal PSE Normal PSE Normal PSE Normal PSE 

Moisture(%) 72.90d 72.46ef 74.52a 72.17£ 73.79c 73.97c 72.76de 74.33a 

a,b,c,d,e,f Means in rows followed by the same superscript letter are not different (P 
> 0.05). SEM = .15. 

not different between the nontumbled normal and PSE muscle groups. PSE 38°C, 

was different from the treatments within the hot brine (38°C) treated hams. 

The cold (13°C) and hot (38°C) brine levels for fat and protein contents in 

Table 7 were lower in the hot brine treated hams. There were no differences (P > 

0.05) among tumbling times (O and 8 hr) for fat and protein contents (Table 8). As 

for the quality muscle types in Table 9, only the protein level was higher in PSE 

treated hams. The PSE sample appears to have loss more solids content in the 

cooked ham compared to the normal muscle type. Certain chemical properties 

were slightly altered between brine temperature and muscle type factors within 

treatments. These subtle changes may be attributed to the homogeneity of protein 

solubility or inherent variation of PSE muscle. 

Meat Protein Extraction 

Mean percentage values for soluble protein content are given in Figure 4. The 

quality muscle type (normal and PSE) affected (P < 0.05) the overall solubility levels 

of ham treatments. As expected, protein solubility was lower in PSE compared to 

the normal muscle system. This loss of protein functionality is attributed to the 

denaturation of myofibrillar proteins (Briskey and Sayre, 1964; Penny, 1969) which 



Table 7. Main effects for chemical analyses of cooked hams 
according to brine temperatures 

Cold Brine (13°C) Hot Brine (38°C) 

Chemical Analyses (%) 

Cooked 
Fat 2.31a 1.86b 
Protein 19.73a 18.78b 

SEM 

.46 

.95 

a,b Means in rows followed by the same superscript letter are not different 
different (P > 0.05). 

Table 8. Main effects for chemical analyses of cooked hams 
according to tumbling times 

0 Hr Tumblinga 8 Hr Tumblinga SEM 

Chemical Analyses (%) 

Cooked 
Fat 
Protein 

2.04 
19.36 

2.13 
19.15 

.09 

.20 

a Means in rows followed by the same superscript letter are not different 
(P > 0.05). 

Table 9. Main effects for chemical analyses of cooked hams 
according to quality muscle type 

Normal Muscle 

Chemical Analyses (%) 

Cooked 
Fat 
Protein 

PSE Muscle SEM 

.13 
1.63 

32 

a,b Means in rows followed by the same superscript letter are not different 
(P > 0.05). 
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Figure 4. Soluble protein means expressed in percentages(%) for normal (N) 
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and PSE (P) pork muscles in sectioned and formed hams arranged by 
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will decrease the amount of protein extraction in meat products. Protein solubility 

values were higher in normal treated hams than the PSE treated hams, whereas 

the hot brine (38°C) at 8 hr tumbling for normal muscle contained the highest 

protein solubility value (P <0.05) across treatments. Hot brine (38°C) treated PSE 

hams had greater solubility (P < 0.05) regardless of tumbling times (0 and 8 hrs) 

compared to the remaining PSE treatments. These data (Figure 4) suggest that 

quality muscle type is the single most important factor that determines the degree 

of protein solubility in meat systems. However, increasing the brine temperature 

to 38°C prior to injection into the muscle will enhance the protein extraction of 

salt-soluble proteins in both normal and PSE meats. Wismer-Pedersen (1959) and 

McLoughlin (1963) reported that the myofibrillar protein salt-solubility is 

substantially reduced in PSE meat, and Camou and Sebranek (1991) found that the 

PSE condition causes adverse chemical changes in meat protein functionality. 

Consequently, a reduction in the protein solubility of muscle will cause a decrease 

in WHC and texture of meat products. Furthermore, mean percentage values for 

insoluble protein (Figure 5) are the direct inverse of the aforementioned data in 

Figure 4. Meat products with a high level of insoluble protein content can directly 

be associated with increased cooking loss, poor texture, and extended product 

variability. 

Muscle Ultrastructure (Electron Microscopy) 

Transmission electron microscope (TEM) micrographs of four product 

treatments were observed at 3600 magnifications. Figures 6 through 9 show the 

morphological differences in muscle ultrastructure for normal and PSE, brine 

injected (13 or 38°C), tumbled products. Figure 6 represents the conventional 

method of manufacturing cooked hams. TEM observations revealed coagulation 

and shrinkage of muscle fibers in normal 13°C tumbled samples, resulting in a 

compressed network structure of disrupted muscle fibers. Conversely, the sample 



Figure 6. Transmission Electron Microscope Micrograph 
of Normal Muscle Injected With Cold Brine 
(13°C), Tumbled (8 hr), Mixed (10 min) and 
Thermal Processed (67°C) - 3600 magnifications 

Figure 7. Transmission Electron Microscope Micrograph 
of Normal Muscle Injected With Hot Brine 
(38°C), Tumbled (8 hr), Mixed (10 min), and 
Thermal Processed (67°C)- 3600 magnifications 
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Figure 8. Transmission Electron Microscope Micrograph 
of PSE Muscle Injected With Cold Brine (13°C), 
Tumbled (8 hr), Mixed (10 min), and Thermal 
Processed (67°C)- 3600 magnifications 

Figure 9. Transmission Electron Microscope Micrograph 
of PSE Muscle Injected With Hot Brine (38°C), 
Tumbled (8 hr), Mixed (10 min), and Thermal 
Processed (67°C)- 3600 magnifications 

37 
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in Figure 7 possesses a stable protein matrix created by a pronounced dissociation of 

actomyosin that causes the release of salt-soluble proteins, which in turn coats the 

meat chunks and is then heat coagulated by cooking. This normal 38°C tumbled 

treatment contained more molecular interactions, through the solubilization of 

myofibrillar proteins and water-binding ability, compared to the normal lower 

temperature (13°C) ham samples. The large oval-shaped material present in Figure 

7 is a protein sol (a mass of solubilized proteins). 

The PSE 13°C tumbled product in Figure 8 shows that the muscle bundles and 

epimysium, endomysium, and perimysium collagen structures after thermal 

processing were intact without being completely solublized. Usually, muscle fibers 

become distorted and much more tightly packed together during heat denaturation 

between 40 and 60°C of the sarcoplasmic and myofibrillar proteins (Penny, 1967; 

Bendall and Restall, 1983). This particular tumbled 13°C treatment contains visible 

and distinct muscle bundles. The theory is muscle fibers from PSE meat are 

partially denatured and contain a high level of protein insolubility with salt and 

phosphate agents and are less pliable during mechanical (tumbling) action. 

However, after hot brine injection (38°C), the tumbled PSE treatment (Figure 9) 

revealed a semi-loose protein matrix structure with broken fiber fragments, protein 

sol, and coagulated fibers. 

In summary, cold brine (13°C) treatments showed the usual product structure 

and orientation of normal and PSE luncheon hams. The incorporation of a 38°C 

brine into both normal and PSE hams demonstrated the effects of temperature­

sensitive myofibrillar protein extraction. Meat pieces became easily pliable once 

the temperature of muscle was increased from 8 to 21 °C by a hot liquid brine 

injection. 

Salt. Nitrite. and pH 

Mean values for salt concentrations are shown in Table 10. Normal and PSE 

hams injected with a hot brine that were not tumbled (0 hr) were different (P < 
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0.05) in salt concentrations compared to tumbled 13 and 38°C hams. The tumbled 

treatments containing cold (13°C) or hot (38°C) brine were not different (P > 0.05) 

in salt levels between normal and PSE hams. Cold brine (13°C) hams at O hr 

tumbling were the lowest in salt content among treatments. 

Differences in salt concentration for certain treatments may be attributed to the 

brine level of solubility. Cursory observation revealed that brine ingredients (salt, 

nitrite, erythorbate, phosphate, and corn syrup solids) tended to be more 

solubilized at the elevated temperature of 38°C compared to the liquid brine at 

13°C. 

Residual nitrite values are given in Table 10. Each treatment was different (P < 

0.05) in residual nitrite concentration (ppm) in hams, but the nontumbled 13°C, 

PSE treated product contained the highest nitrite level among treatments. All the 

treatments were inadvertently stored longer than the PSE 13°C nontumbled 

products prior to residual nitrite analysis which may explain the higher 

concentration. The pH levels were not different (P > 0.05) between treatments 

except for normal 13°C nontumbled product. 

Table 10. Analytical analyses of cooked hams according to brine temperatures 

Cold Brine (13°C) Hot Brine (38°C) 

Tumbling Tumbling 

0 Hours 8 Hours 0 Hours 8 Hours 

Normal PSE Normal PSE Normal PSE Normal PSE 

Salt(%) 2.Q7C 2.Q7C 2.23b 2.14bc z.54a 2.4sa 2.2sb 2.27b 

Nitrite (ppm) 20.13h 42.75a 22.15g 24.21e 27.lQC 28.21b 2s.4sd 22.77f 

pH 5.91b 6.23a 6.12a 6.12a 6.zsa 6.23a 6.3oa 6.21a 

a,b,c,d,e,f,g,h Means in rows for treatments followed by the same superscript letter 
are not different (P > 0.05). 
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Color Values for Cooked Hams 

The Minolta color evaluation involved a significant (P <0.05) three-way 

interaction among brine temperature x tumbling time x quality muscle type factors 

for b* values (Table 11). This factorial experiment provided information on the 

average effects of each factor and their proportional influence at different levels. 

The normal and PSE treated hams were different at O and 8 hr at 13°C. The normal 

13°C, nontumbled treated ham was not different (P > 0.05) from the normal 13°C 

tumbled ham. PSE 13°C tumbled meat was lower (P > 0.05) in yellowness (b) 

intensity compared to the PSE 13°C nontumbled product. Hot brine (38°C) treated 

hams were different in yellowness intensity between normal tumbled and 

nontumbled hams. The PSE treated hams were not different between the tumbled 

and nontumbled levels within the 38°C brine temperature factor. 

Table 11. Minolta color mean values for cooked hams arranged by brine 
temperatures, tumbling times, and quality muscle types 

Cold Brine (13°C) Hot Brine (38°C) 

Tumbling Tumbling 

0 Hours 8 Hours 0 Hours 8 Hours 

Normal PSE Normal PSE Normal PSE Normal PSE 

L* Values 62.58 63.06 61.76 64.20 58.81 60.91 60.16 62.26 

a* Values 10.51 9.23 11.14 9.88 9.34 9.13 10.14 10.05 

b* Values 7,34d 9.92a 7.01d 8.96b 7,75abc 7.5obcd 5.17e 7.18Cd 

a,b,c,d,e Means in rows for treatments followed by the same superscript letter are 
not different (P > 0.05). SEM = .31. 
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Water-Holding Capacity and Smokehouse Yields 

WHC values measured by cooking loss are presented in Figure 10. Quality 

muscle type and brine temperature factors contributed significantly to the amount 

of fluid released from meat systems (P < 0.05). Hot brine {38°C) PSE samples that 

were subjected to 8 hr tumbling were equal to the normal 38°C, nontumbled hams, 

and subsequently were higher in WHC percentage than all of the remaining cold 

brine (13°C) treatments. Normal 38°C, tumbled hams retained the most WHC 

across treatments. As a result of elevating the initial temperature of meat from 8 to 

21 °C, the brine solution was allowed to enhance pliability and optimize the soluble 

extraction of proteins. It appears that the 38°C liquid brine extracts more salt­

soluble proteins from the dissociation of muscle filaments by allowing greater 

WHC than a colder temperature brine. The lowest (P < 0.05) WHC levels were 

found in the 13°C PSE samples. Usually PSE pork holds less water than normal 

meat (Bendall and Wismer-Pedersen, 1962). This occurs because PSE muscle has a 

low pH, which will alter the protein functionality of meat, causing the WHC to be 

lowered. Water loss from PSE meat may be attributed to muscle hypertrophy 

which is associated with decreased capillary density in red fibers within muscle 

(Koch, 1968 and Weatherspoon, 1969). 

The influence of brine temperature x tumbling time x quality muscle type 

factors contributed to a three-way interaction for smokehouse yield percentages 

(Figure 11) in luncheon hams. Actual smokehouse yields for normal and PSE 

treatments were numerically increased (P < 0.05) by hot brine (38°C) injection. Hot 

brine (38°C) treated normal and PSE hams, tumbled for 8 hr were not different in 

yield percentages, and were the highest among treatments. PSE 38°C, tumbled 

products were equivalent to nontumbled normal 38°C, hams, even though PSE 

38°C, nontumbled hams were not different from the normal 13°C, nontumbled 

products. All normal 13°C, treatments had higher product yields than PSE 13°C, 

hams. 



97 -";fl. 96 -> t: 95 0 
<C 
a. 94 <C 
0 
CJ 93 z 
25 
..J 92 0 
:c 

I 91 er: 
w 
~ 90 ;: 

89 

Figure 10. 

42 

a ••• -0- Cold Brine I Ohr Tumbling ,,,, 
,,,,,,, ... ,,,,, 

1110 111 Cold Brine/ Shr Tumbling '•,,,, 

b .. 
,,,,, b .. ,,. 

-II- Hot Brine I Ohr Tumbling 

' ' C ' 
"

1
•

111 Hot Brine/ Shr Tumbling 
cYl. ', 
' ' ·, ~c 

. ·, ··, ·~ ··~ 
',,.~ .... '1 d 

,, , d 

N p 

MUSCLE QUALITY ATTRIBUTES 

Water-holding capacity percentages, measured as cooking loss, for 
normal (N) and PSE (P) pork for cooked hams arranged by muscle 
quality attributes.a,b,c,d Mean values having he same superscript 
are not different (P > 0.05). 
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MUSCLE QUALITY ATTRIBUTES 

Interaction of smokehouse yields using a steam cycle process for 
normal (N) and PSE (P) york for cooked hams arranged by muscle 
quality attributes.a,b,c,d,e, Mean values having the same superscript 
are not different (P > 0.05). 
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The product yields for PSE 13°C, treatments were the lowest because of the low 

pH and partial denaturation of myofibrillar proteins. Wismer-Pedersen (1959) 

demonstrated that PSE hams normally have decreased water-binding capacity. 

Similarly, Camou and Sebranek (1991) showed that PSE extracts when thermally 

induced produce a lower yield (greater water loss) than control treated normal 

pork. In Figure 10 the WHC values have a similar magnitude in product yields for 

brine temperature, particularly the 38°C level, and muscle type correlation with 

lowered temperature (13°C) treated hams. From these data, the analysis of variance 

indicated that brine temperatures accounted for 40%, and quality muscle type 38% 

of the variation in cooked yield. The tumbling levels (0 and 8 hr) contributed only 

7% to the overall factors in processing hams. The results revealed that by altering 

the solubilization levels of myofibrillar proteins with an elevated brine 

temperature and tumbling there is an upward trend of increased yields on normal 

and PSE meat products. 

Binding Quality Evaluation 

The analysis of variance indicates a significant (P < 0.05) three-way interaction 

for brine temperature x tumbling time x quality muscle type for breaking strength 

(Figure 12). The toughness and energy at break followed the same trend of 

parallelism between simple effects (Figures 13 and 14). In Figure 12, breaking 

strength was the highest for normal tumbled treated hams at both brine 

temperatures 38°C, followed by 13°C. The PSE tumbled and normal nontumbled 

hams containing a hot brine injection (38°C) were similar in binding strength and 

different from the remaining treatments. PSE 13°C, treated hams were not 

different from the nontumbled PSE hot brine treated products. With a cold brine 

injection without tumbling, normal hams were similar to the PSE 13°C, treated 

samples. As for toughness and energy at break (Figures 13 and 14), product values 

between normal 13 and 38°C, tumbled hams at different brine temperatures were 

not different (P > 0.05) and were higher in toughness than the other treatments. 
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MUSCLE QUALITY ATTRIBUTES 

Figure 12. Breaking strength interactions for normal (N) and PSE (P) pork for 
cooked hams arranged by muscle quality attributes. a,b,c,d,e,f Mean 
values with the same superscript are not different (P > 0.05). 
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MUSCLE QUALITY ATTRIBUTES 

Figure 13. Toughness means for normal (N) and PSE (P) pork for cooked 
hams arranged by muscle quality attributes. a,b,c,d,e,f Mean 
values with the same superscript are not different (P > 0.05). 
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MUSCLE QUALITY ATTRIBUTES 

Figure 14. Energy at break means for normal (N) and PSE (P) pork for cooked 
hams arranged by muscle quality attributes.a,b,c,d,e,f Mean values 
with the same superscript are not different (P > 0.05). 
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Both PSE 38°C, and normal 38°C, tumbled and nontumbled, respectively, were 

intermediate in toughness and required more energy at break for samples. PSE 

nontumbled, 38°C and tumbled, 13°C treated hams were similar to the normal 

13°C, nontumbled samples but equal to the PSE 13°C, nontumbled products. 

Furthermore, the analysis of variance indicates a three-way interaction (P < 0.05) 

for the tensile testing parameter of breaking strength. According to the ANOV A 

data (not shown), muscle quality (normal and PSE) exerted the most influence 

followed by tumbling and brine temperature factors. This may be attributed to the 

proportional effects on protein extraction, the amount of soluble proteins present, 

through mechanical manipulation with cure in binding meat pieces. Moreover, 

protein extraction enhancement mainly depends on the length of time for 

mechanical action (tumbling, mixing, and massaging) with curing ingredients to 

influence the binding quality of meat pieces (Theno et al., 1978; Schmidt, 1986). 

In all cases, the conventional manufacturing method using a cold brine in 

conjunction with tumbling for PSE meat gave the lowest values in binding 

strength, toughness, and energy to break samples compared to the other tumbled 

13°C treated products. From visual and physical observation, PSE 13°C, cooked 

hams appeared to be soft and crumbly in texture compared to the normal ham 

products. In contrast, the utilization of a hot brine in comparison to a cold brine 

for tumbled hams increased the breaking strength by 21 % for normal and 51 % for 

PSE treatments. A subsequent numerical increase occurred for PSE treatments for 

toughness and energy at break parameters. The liquid cure temperatures 

contribute to the level of binding sectioned and formed meats under certain 

conditions. This involves the increasing of meat temperature with a 38°C brine 

that allows greater protein extraction from tumbling and mixing of meat which 

causes improvement in water binding and protein-protein interactions during 

cooking. 
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Conclusions 

Hot brine treatments (38°C) increased protein solubility levels compared to the 

cold brine (13°C) treated hams as determined by protein extraction. WHC, as 

measured by cooked loss, was higher for normal 38°C, tumbled followed by PSE 

38°C, tumbled and normal 38°C, nontumbled meat products. Normal hams treated 

with a cold brine were different from the lower temperature PSE samples except for 

the 38°C, nontumbled hams. Smokehouse yields, however, showed that PSE 38°C, 

tumbled meats were similar to normal, 13°C, tumbled and nontumbled hams. The 

normal 13°C, tumbled product was intermediate but the PSE and normal 38°C, 

nontumbled products were equivalent in cooking yields. Brine temperature 13°C 

treated PSE hams had the lowest yields across treatments. The incorporation of a 

38°C brine into both normal and PSE treated hams demonstrated different 

morphological changes in muscle ultrastructure which resulted in the increase in 

meat temperature from 8 to 21 °C, causing the meat to become easily pliable for 

enhanced protein extraction of salt-soluble proteins. The hot brine in comparison 

to the cold brine for tumbled hams increased the binding strength by 21 % for 

normal and 51 % for PSE treatments. There was a numerical increase in toughness 

and energy at break for all 38°C brine treatments. 



CHAPTER IV 

EVALUATION OF ULTRASONIC CAVITATION AND TUMBLING 

CHARACTERISTICS ON PORK MUSCLE IN SECTIONED 

AND FORMED HAMS 

Introduction 

The manufacture of sectioned and formed meats depends on the formation of 

the protein matrix to bind meat pieces. Physical processes such as massaging and 

tumbling are used to extract protein from muscle fibers causing a release of salt­

soluble proteins, which in turn coats the meat chunks and is then heat coagulated 

by cooking. Massaging chunks or meat pieces involves frictional energy resulting 

from the rubbing together of two meat surfaces, whereas tumbling incorporates 

kinetic energy into the muscle and a concomitant temperature increase (Addis and 

Schanna, 1979). Using these conventional methods improved the binding 

characteristics of meats (Siegel et al., 1978; Krause et al., 1978; Kreibig, 1991). By 

increasing protein extraction there is a concurrent increase in binding strength 

(Schmidt and Trout, 1984). Usually pork primal sections (hams and loins) contain 

variable muscle properties with respect to pH values, WHC, and color. All of these 

properties will affect the particle-:to-particle binding ability (protein gelation) of 

meat. 

Ultrasonic cavitation may be an alternative method to massaging and 

tumbling meat for protein extraction. Ultrasound technology has been 

investigated in the homogenization of milk (Newcomer, 1955), the cleaning of eggs 

(Dawson et al., 1960), and the tenderization of meat (Simjian, 1959; Webb et al., 

50 
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1962). Ultrasonication uses low and high frequency shock waves within liquid that 

causes the formation of minute bubbles to disrupt cellular material. This method 

can become very detrimental to biological tissues, especially at lower frequencies 

which create bubbles, gas filled cavities, that enlarge and implode in liquid. 

Cavitation is the term used to describe the formation and collapse of bubbles or 

cavities in liquids. 

Child and Forte (1976) evaluated the use of ultrasound for the solubilization of 

protein from cottonseed products. They found that ultrasound increases the 

protein extraction of heat-treated cottonseed compared to the screw-expressed 

cottonseed meat method. Wang (1975) reported that ultrasonication increases 

protein extraction yield by 20% from soybean flakes compared to a conventional 

stir method. Ultrasonication has received limited research in the meat processing 

area. Reynolds et al. (1978) demonstrated that ultrasonic cavitation increases the 

binding strength in cured ham rolls. Their research showed changes in the 

microstructure of muscle by tank cleaner. Research has indicated that ultrasound 

has the potential to enhance protein extraction and improve binding strength in 

meat products. The purpose of this research is to evaluate ultrasonic cavitation on 

binding and color characteristics in sectioned and formed hams. 

Materials and Methods 

Manufactured Procedures 

A 2x2 factorial arrangement was conducted in this experiment. Prior to cured 

processing, loins and hams were deboned, and subcutaneous, intermuscular fat 

and connective tissue were removed. Manufacturing procedures involved 

triplicate batches for each treatment at O and 25 KHz ultrasonication frequencies 

and subsequently tumbled (0 or 8 hr) respectively. Loins and hams were macerated 

and injected with a brine formulation (water, salt, corn syrup solids, sodium 

tripolyphosphate, sodium erythorbate and sodium nitrite) at 20% of green weight. 

Muscle pieces were sectioned into 4.5 x 4.5 cm chunks and subjected to 
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ultrasonication at O and 25 KHz frequencies, respectively. Meat was submerged in a 

liquid brine at 1500 watts of power for 15 min. using an ultrasonic tank (Ultrasonic 

Power Corporation, Freeport, IL) with dimensions of 25 x 20 x 35 cm and three 

individual 500 watt generators. After ultrasound, tumbling times involved O and 8 

hr and a rest interval for 4 hr, respectively, and further processing for 10 min using 

a mixer. The meat was stuffed into polylined stainless steel molds (Charles Abram, 

Inc., Philadelphia, PA) and steam cooked to an internal temperature of 67°C. After 

attaining the desired internal temperature, hams were showered with cold water 

for 60 min and placed in a 4°C cooler. The product was removed from molds and 

packaged for further analysis. 

Chemical Analyses 

Percentage of moisture, fat and protein were determined on raw and cooked 

product samples following AOAC (1992) procedures. The Leco nitrogen 

determinator (Leco Corporation, St. Joseph, MI) was used to analyze samples for 

protein content. 

Smokehouse Yields 

The product yields were determined using the following formula: % yield = 

(final cooked weight/ uncooked weight) x 100. 

Binding Strength and Color Evaluation 

Binding strength and color evaluation methods were conducted in the same 

manner as the previous study in Chapter III. 

Results and Discussion 

This study used ultrasonic cavitation as a technique to extract proteins from 

pork muscle to enhance the binding characteristics of meat systems. However, 
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ultrasonication created a dramatic: increase in heat that caused the meat pieces to be 

scalded. Scalding the meat surface resulted in severe protein denaturation of meat 

chunks from ultrasonication at a frequency of 25 kHz. 

Smokehouse Yields 

There was a significant (P <0.05) two-way interaction for ultrasonication x 

tumbling time on smokehouse yields for sectioned and formed hams (Figure 15). 



54 

The ultrasound effects of one factor were not independent of the variations in 

other factors. Heat denaturation on the surface of meat at 25 kHz may not have 

been homogeneous between the nontumbled and tumbled treatments in 

processing luncheon hams. This is evident by the yield increase for the 25 kHz 

nontumbled product compared to the 25 kHz tumbled hams. Figure 15 shows that 

the nontumbled treated 25 kHz product was not different from either controls but 

was different from the 25 kHz tumbled meat product. The interaction between 

factors may be attributed to the irregular shape of meat sections which interfere 

with the cavitational effects on the surface of meat. 

Minolta Color Values 

Minolta color values are shown in Figures 16 through 18. The 25 kHz 

nontumbled meats were darker in color than either controls and the 25 kHz 

tumbled products (Figure 16). In Figure 17, both the control treatments were redder 

(P > .05) than the ultrasound treated products regardless of tumbling times (0 and 8 

hr). Figure 18 shows no differences between treatments for yellowness (b) values 

in color intensity. These results suggest that the scorching of meat products treated 

with ultrasound (25 kHz) developed variations in color intensities. 

Binding Characteristics 

Binding strength values in Figure 19 were not different (P < 0.05) between 

treatments. In Figure 20, there was a two-way interaction among treatments for 

toughness in ham products. The analysis of variance data (not shown) indicated 

that tumbling exerted the most influence on toughness followed by 

ul trasonica tion. 

Conclusions 

The scorching of meat sections prior to further processing into cured hams 

caused severe protein denaturation. This protein denaturation was not 
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Figure 16. Lightness (L) Minolta color values for cooked hams arranged 
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the same superscript are not different (P > 0.05). 
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Figure 17. Redness (a) Minolta color values for cooked hams arranged 
by ultrasonic cavitation frequencies. a,b Mean values having 
the same superscript are not different (P > 0.05). 
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Figure 18. Yellowness (b) Minolta color values for cooked hams arranged 
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the same superscript are not different (P > 0.05). 
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a Mean values having the same superscript are not different 
(P > 0.05). 
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homogeneous on all meat portions. The variation in binding and color may be 

attributed to the different degree of scorching between treatments. Therefore, the 

meat portions will vary in color and binding traits which depends on whether 

tumbling or nontumbling will be used in altering the product quality attributes of 

hams. 

Recommendations 

The ultrasonic tank used for extracting protein from muscle pieces was 

specially designed for optimal cavitation to occur at higher temperatures (60 to 

80°C). This equipment contained a wide temperature bandwidth that accumulates 

a heating effect at 43°C that causes the scorching of the meat. By designing a 

narrow temperature band between 15 to 25°C, this will eliminate the cumulative 

effect of heating that scorches the meat and allow optimal cavitation to a lower 

temperature. In addition, the lowering of the ultrasonic frequency from 25 to 16 

kHz will permit cavitation to be more disruptive to raw material and may improve 

the extraction of proteins from muscle. 



CHAPTER V 

CONCLUSIONS 

Experiment I, protein extraction, water-holding capacity and binding quality 

characteristics for cooked hams injected with a hot brine {38°C} were improved in 

comparison to the conventional processing method of cold brine (13°C} treated -

hams. The PSE 38°C product cooked yield was equivalent to the normal 38°C and 

13°C hams. In experiment II, a 25 kHz frequency using ultrasonication on meat 

pieces in this study do not appear feasible for manufacturing luncheon hams 

because the meat surface was scorched and product cooking yields were lowered. 

These results demonstrated that hot brine (38°C) injection of hams along with 

tumbling and/ or mixing may numerically increase the water-holding capacity and 

texture of sectioned and formed hams. In addition, ultrasonication was not 

effective in improving processing yields and texture to meat systems. 
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