

CDR - Rise of the **Phoenix**

2023 Speedfest Orange Team

NOBLE

@speedfestorange

TEAM STRUCTURE

 \bigcirc

SCHEDULE

Gantt Chart Critical Design Review Critical Design Review Critical Design Review Prototype Rollout Final Design Freeze Aircraft Grounded Speedfest Cri Optimization/Analysis Propuls Optimization/Analysis Aerody

|--|

CDR Sub-team Tasks

				Ű			н ,	। लं	-	r ·	н н	1	н .
ACTIVITY:	PROGRESS	START DATE	END DATE	м	τv	V T	F S	S	М	T	W T	F	S
Milestones													
Preliminary Design Review	100%	2-Feb	2-Feb										
Critical Design Review	0%	23-Feb	23-Feb										
Prototype Rollout	0%	27-Mar	27-Mar										
Final Design Freeze	0%	5-Apr	5-Apr										
Aircraft Grounded	0%	24-Apr	24-Apr										
Speedfest	0%	28-Apr	30-Apr										
Critical Design Review													
Optimization/Analysis Propulsion	75%	6-Feb	8-Feb										
Optimization/Analysis Aerodynamics	75%	6-Feb	8-Feb										
DR - Rocket Testing Confirmation	100%	7-Feb	7-Feb	2									
omplete Avionic Layout/Configuration	100%	8-Feb	10-Feb										
ompletion in Overall Configuration - CAD/Sizing	100%	10-Feb	13-Feb										
omplete Internal/External/Ground Support Structural Layout	100%	12-Feb	15-Feb										
omplete Updated CAD	100%	12-Feb	14-Feb										
onstruction Plans	50%	15-Feb	18-Feb										
inalized Gantt Chart for Construction and Testing	90%	20-Feb	22-Feb										
completed Drawings and Plans	0%	20-Feb	22-Feb										
Jetailed Bill of Materials	50%	20-Feb	22-Feb										
Selection of Primary Propulsion Systems	95%	15-Feb	17-Feb										
Structures/CAD													
lesearch/Benchmark - Materials	100%	6-Feb	16-Feb										_
ATO Implementation - Launch Stand, configuration, integration	30%	6-Feb	20-Feb										J
esting Preparation - Coupons, 3D Printing, CAD, Construction Plans	100%	8-Feb	15-Feb										
festing - Rocket Thermal Signatures, Loadings	100%	15-Feb	21-Feb										
Construction Build Plan	50%	14-Feb	21-Feb	_									J
OML Intiation	100%	6-Feb	10-Feb						_				
² reliminary Plug/Mold (Practice)	100%	10-Feb	13-Feb										
ndplate Integration	90%	12-Feb	13-Feb							1			
inalizing Testing Development	80%	12-Feb	14-Feb										
inalization of Material Selection	100%	13-Feb	16-Feb									_	
inalization of Internal Structure	100%	15-Feb	17-Feb										
inal RATO Development	60%	13-Feb	15-Feb										

BUDGET

			Projected Budget										
					Table					1			
	Orange Team				Total Budget		>	2,645.55	L	abor Costs:	\$	-	
	Oklahoma Stat	e Universtiv			1010111-0000			12.120201010		e na recomi			
	date:	2-Feb-23			Actual Cost		ş	2,587.94	Av	vionics Costs:	\$	1,184.	76
	Customer:	Speedfest							Ma	aterial Costs:	¢	178	29
											Ŷ	1/0.	<u> </u>
									Har	rdware Costs:	Ś	311.	53
Item Name	Item Type	description	link						Te	esting Costs	<u>,</u>		
motor	avionics	2814-1560Kv Brushless Motor	BadAss 2814-1560Kv Brushless Motor (badasspower.com)							esting costs	Ş	913.	26
Main Battery	avionics	Tattu R-Line 1550 mAh 18.5V 120C	Tattu R-Line Version 3.0 1550mAh 18.5V 120C 5S1P with XT60 Plug (genstattu.com)										
ESC	avionics												
Receiver	avionics	Jeti Duplex EX R9 2.4GHz Rec. w/Telemetry	Jeti Duplex EX R9 2.4GHz Receiver w/Telemetry (espritmodel.com)	_		_			-		_		
Aux Battery	avionics	Jeti Receiver Batt Pack 1300mAh 7.4V LiPo	Jeti Receiver Battery Pack 1300mAh 7.4V Li-Poly (espritmodel.com)		Total budget:		\$ 3	2,645.55		Total Actual:		\$2,5	587.94
Rocket	avionics	F50-41 Standard Single Use Motor	VST X08 V6 0 HV Serve 1 HeliDirect	-							-		
servo	aviorites		KST NOS VOLOHV SELVO THEIDITECE		55	1	Ş	55.00	Ş	56.99	1	Ş	56.99
					30	1	\$	30.00	\$	37.09	1	\$	37.09
Rocket	avionics	Apogee Medalist Motor - F10-4 (1pk)			25		:						
Rocket	avionics	Aerotech 29mm Propellant Kit - F40W-4			25		1				1	<u>i</u>	
Rocket	avionics	Aerotech 29mm Motor - F25-6W			50	1	: \$	50.00	Ś	105 00	1	i ć	105.00
Rocket	avionics	Cesaropi - P24-2G White - Longhum (520)			50	-		50.00	Ŷ	105.00	-		105.00
Rocket	avionics	Eirewire Mini Initiator (6/ok)			25	1	: \$	25.00	Ś	13.00	1	Ś	13.00
Rocket	avionics	BC Switch with Small Low-Side Mosfet				-						1	
battery	avionics	TATTU 1300mah 5S 75C 18.5V LiPo Battery and Freestyle			35	3	Ş	105.00	Ş	29.44	1	Ş	29.44
		,,			50	2	6	150.00	ċ	45 00	2	6	125 00
wood	testing	2inX 10in X 8 ft (southern yellow pine)	pickup order / lowes		50	3	• •	130.00	Ş	45.00	3	Ş	133.00
wood	testing	2in x 4 in X 92-5/8 Whitewood	pickup order / lowes	Ś	30.00	1	S	30.00		34.6	1	S	34.60
wood	testing	Power Pro 2-1/2in Epoxy Wood Screws	pickup order / lowes	-		-	1		<u> </u>			-	
keeney	testing	Keeney 1-1/4in Brass Threaded Both Ends	pickup order / lowes	Ş	20.00	1	: Ş	20.00		24.6	1	Ş	24.60
rocket	testing	ProCast Pyrogen mix	https://www.apogeerockets.com/Rocket-Motors/Motor-Starters/ProCast-Mix	ć.	25.00		1	25.00		20 51	- 1		20 51
				Ş	35.00	1	>	35.00		38.51	1	\$	38.51
CNC Molds	Labor			\$	40.00	1	\$	40.00		42.36	1	\$	42.36
Main Battery	avionics	Granhene LiPo 1050 55 18 5v Battery Pack	https://mayamps.com/collections/5s.lino.hattery-18.5v/products/graphene-lino-1050.5s.hatte	\$	23.00	1	\$	23.00		23.03	1	\$	23.03
ESC	avionics	PHOENIX EDGE LITE 100 AMP ESC	https://www.castlecreations.com/en/phoenix-edge-lite/phoenix-edge-lite-100-esc-010-0111-	1.0	20.00		1	20.00		20 62	1		20 62
ESC	avionics	PHOENIX EDGE LITE 75 AMP ESC	https://www.amazon.com/Castle-Creations-Electronic-Speed-Controller/dp/B00CSXSELY/ref=s	Ş	20.00	T	: >	20.00		20.03	1	\$	20.03
The second se	hardware	MTM ACR7-18 Ammo Crate	https://www.amazon.com/MTM-ACR7-18-Ammo-Crate-Utility/dp/B01CNP4HOY/ref=zg bs 196	Ś	20.00	1	: \$	20.00		19 98	1	i s	19 98
	hardware	Super Lube Synthetic Multi-Purpose Grease	https://www.amazon.com/Super-Lube-21030-Synthetic-Grease/dp/B000XBH9HI/ref=sr 1 2?cri	Ŷ	20.00	-	1	20.00	<u> </u>	19.50	-	1 *	15.50
	hardware	Castle Link V3 USB Programming Kit	https://www.amazon.com/Castle-Creations-CSE011-0119-00-Link-Programming/dp/B0716SH9V	\$	30.00	1	: \$	30.00		29.99	1	: \$	29.99
Motor	avionics	BadAss	https://innov8tivedesigns.com/badass-2814-1950kv-brushless-motor.html	-	10.00		1.	10.00		45.40		1	45.40
-	avionics	RC Switch with Small Low-Side Mosfet	https://www.servocity.com/rc-switch-with-small-low-side-mosfet/		16.26	1	: \$	16.26		15.12	1	\$	15.12
	hardware	RMS-29/40-120 MOTOR HARDWARE	RMS-29/40-120 Motor Hardware (apogeerockets.com)		2 97	1	i ć	2 97		2 76	1	Ś	2 76
rocket case	nardware	Cesaroni 24mm 3-Grain Case	https://www.apogeerockets.com/Rocket_Motors/Cesaroni_Casings/24mm_Casings/Cesaroni_2		2.57	1	4	2.57		2.70	1	Y	2.70
rocket	testing	AEROTECH 29MM MOTOR - ESOT-6	Aarotech 29mm Motor - ESOT-6 (anoteerockets.com)					\$42.26	16 0	677 76 642 24	16	6 677 76	10.00
rocket	testing	CESARONI - P24-3G SMOKY SAM (F79)	Cesaroni - P24-3G Smoky Sam (F79) (apogeerockets.com)					\$28.30	7 6	198.66 \$28.35	7	\$ 198.66	
matches	hardware	First Fire Jr. Starters	https://www.apogeerockets.com/Rocket_Motors/AeroTech_Accessories/First_Fire_Ir_Starter?	cPath=7	160&#description</td><td></td><td></td><td>\$17.67</td><td>2 \$</td><td>35.34 \$17.67</td><td>2</td><td>\$ 35,34</td><td></td></tr><tr><td>propeller</td><td>avionics</td><td>Aaronaut White Turbo Spinners for Folding Propellers</td><td>https://www.espritmodel.com/agropaut.white.turba.coinners.for.folding.organellers.aspx</td><td></td><td></td><td></td><td></td><td>\$22.00</td><td>2 6</td><td>44.00 \$22.00</td><td>2</td><td>\$ 44.00</td><td></td></tr></tbody></table>								

MISSION #1 Based on Most Flags Possible in the Set Time **Time Set** number of flags in the set time 5.1.1 1st: 15 Rocket Glide **Electric Pylon Dash Pylons** 2nd: 10 1 1 J L 11 3rd: 5 4th: 0 Visible rocket ignition • Maximizing T/W RATO Rocket through center of gravity • Minimize profile, cross-sectional drag •High L/D Glide •Low W/S •Minimal weight •Quick turns Pylons Minimize weight •Low energy loss in turns

@speedfestorange

MISSION # 2

O

Website	 Motivating/Encouraging/informative Website Design 	
Video	• < 2minutes •Engaging, Story-telling, Professional	
Social Media	•Create a presence/influence	

PDR RECAP

<u>Concerns/Questions</u>:

- Manufacturing Tail Boom
- Fluttering
- Material Selection
- Heat Mitigation

Answers:

•

- Layup Practice
 - Material Strength Tests
- Increase Benchmarking
- Rocket Tests

PROPULSION

Testing Rockets/Connections/Transmitter

PROPULSION

Testing Rockets/Connections/Transmitter

Aerotech F25 Max thrust: 47 N Burn time: 3.1 s

PROPULSION

Testing Results

Carbon Tube

Degradation after firing

- Severe damage to tail boom
- Multiple layers burned through Heat Mitigation
- Ceramic paint
- Aluminum foil top layer
- Different boom material selection

AERO RESULTS

Conceptual Check

BEFORE

Г

- Optimization
- Airfoil Selection
- Stability & Control
- Sizing
- Refinement

<u>CAD</u>

Aerodynamics S&C

O)

8 150K

F50T

60

3

Wing Area Effects Airfoil Eppler 325 AR Reynolds APC 6x6 25k Prop Badass 2814-1950KV Motor Rocket Launch Angle (degrees) Mission 1 Mission 2 Flag Count vs Wing Area Max Speed vs Wing Area 30 300 25 250 Max Speed (mph) Lag Count 200 150 10 100 5 50 0 0 0 0.5 1 1.5 2 2.5 3 3.5 0 0.5 1.5 2 2.5 1 S (ft^2) S (ft^2)

@speedfestorange

O

3.5

Aspect Ratio Effects

Airfoil	Eppler 325
S (ft^2)	1
Prop	APC_6x6_25k
Motor	Badass 2814-1950KV
Rocket	F50T
Launch Angle (degrees)	60
Reynolds	150K

Mission 2

@speedfestorange

O

<u>Mission 1</u>

27

Stability Analysis

Baseline Sizing:

$S - 1.25 ft^2$	AR – 7
Chosen CG Loca	tion – 0.1c
SM approximate	ely 5 – 10%

Wing Configuration

Sweep - 20°

Taper Ratio – 0.7

1 ·

O

Wing Sizing/Configuration

0	1		h
$\langle $	H	*	\mathbf{T}
V		1	V

S/	'AR	dowr	n se	lecti	on.
57		uuvvi	130	iecu	011.

- Highest Score
- Stability Sensitivity

A	Aspect Ratio	Mission 1 (Flag Count)	Mission 2 (Top Speed (mph))
6	5	24.6	270.76
6	5.5	25.9	270.84
7	7	26.2	269.32
7	7.5	26.9	269.38

Wing Area (ft^2)	Mission 1 (Flag Count)	Mission 2 (Top Speed (mph))
0.8	27	295.64
1	27.2	283.71
1.1	26.8	277.36
1.2	27	273
1.25	26.2	269.32
1.5	25.4	258.13

Final Selection:

- $S 1.1 ft^2$
- AR 7
- Sweep = 25°
- Taper ratio = 0.7

佘

Vertical Stabilizer Sizing

- Goals:
 - S_T as small as possible
 - $C_{n\beta} \ge 0.05$
- Processes to decrease stabilizer size
 - Sweep Vertical Stabilizer
 - Taper Vertical Stabilizer
 - Decreases $C_{n\beta}$ and also Decreases Area
- Final Specifications
 - $S_T = 12.1 \text{ in}^2$
 - b = 3.85 in
 - $\Lambda = 40^{\circ}$
 - λ = 0.6
- Airfoil as needed with or without rudder

AERODYNAMICS

Final Wing Design

Wing:

- $S 1.1 ft^2$
- AR 7
- b 2.774 ft b 3.85 in

- Tip Chord 3.92 in $S 12.1 in^2$
- Sweep 25°

Stability:

- Pitch SM 14%

Vertical Stabs:

• $V_v - 0.04$

• AR – 1.23

- Taper Ratio 0.7 Root Chord 3.91 in
- Root Chord 5.6 in Tip Chord 2.35 in

@speedfestorange

@speedfestorange

Airfoil Design

@speedfestorange

0

35

R

O

AERODYNAMICS

Flight Simulator Refinements

- Front 100% Eppler 189
- Rear 50% NACA 1109
- 8.32% thickness @ 30.9%
- 1.13% camber @ 35.2%

@speedfestorange

@speedfestorange

AERODYNAMICS

Control Surface Sizing

- Initial sizing done using VLaM code
- Goals for elevator deflection:
 - Trim close to stall AOA
 - Trim below 0 AOA
- Handling qualities observed in flight SIM
- Aileron deflection was decided using SIM
- 20% chord with a 9" span each
- Deflection Range:
 - Elevator $-20^{\circ} \approx 10^{\circ}$
 - Aileron $-10^{\circ} \simeq 10^{\circ}$

Elevator -20° deflection

Elevator 10° deflection

AERODYNAMICS

Servo Sizing

Tested for worst case for each mission:

- Mission 1
 - 20° deflection at 156 knots
 - Hinge moment with 1.5 FOS = 21.25 oz/in
- Mission 2
 - 10° deflection at 240 knots for max speed
 - Hinge moment with 1.5 FOS = 31.84 oz/in

Integrated drive System (IDS) used for mounting

ServoKST X08 PlusManufacturerKST TechnologyApplicationsDLG/Airplanes 3.8V/8.4V (1S/2S)TypeLV/HV Coreless MicroTorque 3.8V33.3 oz/in (2.4 kg/cm)Torque 6V53.4 oz/in (3.85 kg/cm)Torque 8.4V73.5 oz/in (5.3 kg/cm)Speed 3.8V0.18 sec/60 degreesSpeed 6V0.12 sec/60 degreesSpeed 8.4V0.09 sec/60 degrees		
ManufacturerKST TechnologyApplicationsDLG/Airplanes 3.8V/8.4V (1S/2S)TypeLV/HV Coreless MicroTorque 3.8V33.3 oz/in (2.4 kg/cm)Torque 6V53.4 oz/in (3.85 kg/cm)Torque 8.4V73.5 oz/in (5.3 kg/cm)Speed 3.8V0.18 sec/60 degreesSpeed 6V0.12 sec/60 degreesSpeed 8.4V0.09 sec/60 degrees	Servo	KST X08 Plus
Applications DLG/Airplanes 3.8V/8.4V (1S/2S) Type LV/HV Coreless Micro Torque 3.8V 33.3 oz/in (2.4 kg/cm) Torque 6V 53.4 oz/in (3.85 kg/cm) Torque 8.4V 73.5 oz/in (5.3 kg/cm) Speed 3.8V 0.18 sec/60 degrees Speed 6V 0.12 sec/60 degrees Speed 8.4V 0.09 sec/60 degrees	Manufacturer	KST Technology
Type LV/HV Coreless Micro Forque 3.8V 33.3 oz/in (2.4 kg/cm) Forque 6V 53.4 oz/in (3.85 kg/cm) Forque 8.4V 73.5 oz/in (5.3 kg/cm) Speed 3.8V 0.18 sec/60 degrees Speed 6V 0.12 sec/60 degrees Speed 8.4V 0.09 sec/60 degrees	Applications	DLG/Airplanes 3.8V/8.4V (1S/2S)
Forque 3.8V 33.3 oz/in (2.4 kg/cm) Forque 6V 53.4 oz/in (3.85 kg/cm) Forque 8.4V 73.5 oz/in (5.3 kg/cm) Speed 3.8V 0.18 sec/60 degrees Speed 6V 0.12 sec/60 degrees Speed 8.4V 0.09 sec/60 degrees	Гуре	LV/HV Coreless Micro
Forque 6V 53.4 oz/in (3.85 kg/cm) Forque 8.4V 73.5 oz/in (5.3 kg/cm) Speed 3.8V 0.18 sec/60 degrees Speed 6V 0.12 sec/60 degrees Speed 8.4V 0.09 sec/60 degrees	Forque 3.8V	33.3 oz/in (2.4 kg/cm)
Forque 8.4V 73.5 oz/in (5.3 kg/cm) Speed 3.8V 0.18 sec/60 degrees Speed 6V 0.12 sec/60 degrees Speed 8.4V 0.09 sec/60 degrees	Forque 6V	53.4 oz/in (3.85 kg/cm)
Speed 3.8V 0.18 sec/60 degrees Speed 6V 0.12 sec/60 degrees Speed 8.4V 0.09 sec/60 degrees	Forque 8.4V	73.5 oz/in (5.3 kg/cm)
Speed 6V 0.12 sec/60 degrees Speed 8.4V 0.09 sec/60 degrees	Speed 3.8V	0.18 sec/60 degrees
Speed 8.4V 0.09 sec/60 degrees	Speed 6V	0.12 sec/60 degrees
	Speed 8.4V	0.09 sec/60 degrees

PROPULSION

Propulsion Team

Introduction

@speedfestorange

Optimization Analysis Method

- Change one variable at a time while keep the rest constants
- Variables & Values:

	Kv	AF	S	Prop	Rocket	Launch ang
High	4700	4406	1.5	6x8	F85	60
Medium	1950	2406	1	6x6	F40	40
Low	1350	"0006"	0.5	6x4	F25	20

Outputs : Max Speed and Flags Captured

P/D Iterations For Mission 2

P/D Iterations Graphed

@speedfestorange

PROPULSION

Rocket Down Select

- Aerotech F50T
 - Base Rocket: Lowest Power, Single Use, Easiest Control
- Cesaroni F51
 - Best RATO: Most possible flags due to launch height, reloadable
- Cesaroni F79
 - Best Speed: Highest Top Speed, reloadable

Mission 1					
Rocket	Flags	Height [ft]	Glide Time [s]		
F50	31	612	183		
F51	36.6	721	216.2		
F79	31.8	625.8	187.6		

	Mission 2				
Rocket Top Speed [MPH					
	F50	311.3			
	F51	315.8			
	F79	320.6			

PROPULSION

Motor Down Select

- BadAss 2814-1950
 - High Kv Outrunner, lightweight, low cost
- BadAss 2820-1350
 - Outrunner, medium weight, low cost
- Hacker 10108993
 - High Kv In-runner, heavy with gearbox, and high cost.

Mission 1					
Motor	Flags				
BadAss 2814	36.6				
BadAss 2820	35.4				
Hacker	30.9				

Mission 2				
Motor Top Speed [MPH				
BadAss 2814	320.6			
BadAss 2820	300.1			
Hacker	263.8			

PROPULSION

Battery Down Select

- MaxAmps 1050
 - High C-rating, smallest size and lowest weight, low capacity
- MaxAmps 1300
 - High C-rating, small size and low weight, high capacity
- Tattu
 - Lower C-rating, larger size and weight, high capacity

Other Avionics

- Aux Battery: Jeti Receiver Battery Pack 650mAh
- ESC: PHOENIX EDGE LITE 75 AMP
- Receiver: Jeti Duplex EX R6 Light US
- Rocket Switch: RC Switch with Small Low-Side Mosfet
- Speed Sensor: JETI MSPEED EX 450
- Flight Control Stabilizer: FT Aura 5 Lite

Propeller Selection

- Graupner Cam Slim
 - $\frac{P}{D} = 1.33$
- APC Thin Electric • $\frac{P}{D} = 1.17$
- APC with 20% Trim • $\frac{P}{D} = 1.33$

Mission 1			
Motor	Flags		
Graupner	38.3		
APC	34.9		
APC 20% Trim	34.9		

Mission 2			
Motor Top Speed [MPI			
Graupner	320.6		
APC	317		
APC 20% Trim	320.3		

Testing

- Igniter Function: How does igniter function with rocket and receiver/transmitter
- ESC to Motor: Compatibility and programming
- Static Performance: How well does it correlate to predicted performance

PWM Switch

@speedfestorange

Call

R

O)

PROPULSION

Testing

F50T Test

Dino Setup

Dino Test

@speedfestorange

Testing Results

Static Performance

- Test data was performed on the static Dino Stand
- Predicted data from MathCad programs

O'

C

R

O'

PROPULSION

Hand Takeoff Requirements

• To perform mission 2 with a mid-air rocket we must hand launch

@speedfestorange

O

PROPULSION

Estimated Performance Maps

Mission 1 using F51 Rocket

Glide Time From RATO

O'

PROPULSION

Estimated Performance Maps

• Mission 2 using F79 rocket

Rocket Thrust vs Time

Propellor Thrust vs Time

Velocity vs Time

@speedfestorange

PROPULSION

Estimated Performance Maps

Mission 3

- To achieve a 4-minute endurance flight, the airplane will need to throttle to 60%
- 60% throttle gives a cruise speed of 127 mph

	Throttle $\equiv .6$ ng $\equiv 1$	G-load in turn	
E _{batt} 60Vpack·Ibatt(I _{sc_cri}	_{sise)} = 4.2	Cruise En	idurance [min]
V _{cr}	$uise \frac{3600}{5280} = 127$	cruise in mp	h

Structures Lead Ethaniel Tobar Structure Engineer I Engineer I **Structures** Team Structure Structure Engineer I Engineer I Introduction Structure **Engineer** I Engineer I Structure Engineer I

S)

STRUCTURES

Internal Configuration Component Considerations

Internal Configuration

Fuselage Wing: List of Materials

Inboard Section

- Inboard Skin
- Motor Mount
- Main Component Housing
- Main Hatch
- Rocket Housing

Outboard Section

- Outboard Skin
- Main Spar
- Ribs
- Aft Shear Web
- Servo Bay
- Servo Hatches
- Elevon Shear Web
- Wiper
- Endplate Connection Points

STRUCTURES

Fuselage Wing

Inboard Section: Composite Skin

Core Materials

- Balsa Wood (multiple thicknesses)
- 3oz 1/8", Divinycell foam, cubed and un-cubed
- 1 mm, Rohacell Foam
- 1/8", Honeycomb, expanded and non-expanded
- No Core, Dual Core
 - 90 and 45 degree orientations

Lamina Materials

- 3 oz Fiber Glass
- 5.7oz Carbon Fiber
- Kevlar, various weaves
- Tooling Glass
- Carbon Scrim

@speedfestorange

STRUCTURES

Fuselage Wing

Inboard Section: Composite Skin

Coupon Development

- Organized composition via excel file
- Developed 6 main core groups
- Built 40+ coupons to refine lay up techniques
- Tested 20+ coupons to generate useful data

Core Group	ltem 💌	Connection(s)	Outer 1 💌	Outer 2 💌	Outer 3 💌	Core 🔻	Inner 1 💌	Inner 2 💌	Inner 3 💌
1. Balsa	1.1	basic	5.7 oz Carbon @90	3 oz Glass @45		5/64th" Balsa	3 oz Glass @45	3 oz Glass @90	
1. Balsa	1.2	1.1, replace I2 with tooling	5.7 oz Carbon @90	3 oz Glass @45		5/64th" Balsa	3 oz Glass @45	20 oz Tooling @90	
1. Balsa	1.3	1.1, thinner core	5.7 oz Carbon @90	3 oz Glass @45		1/8th" Balsa	3 oz Glass @45	3 oz Glass @90	
1. Balsa	1.4	1.1, add alum @ O1	Aluminum Foil	5.7 oz Carbon @90	3 oz Glass @45	5/64th" Balsa	3 oz Glass @45	3 oz Glass @90	
1. Balsa	1.5	1.1, Add Kevlar @ O3	5.7 oz Carbon @90	3 oz Glass @45		5/64th" Balsa	3 oz Glass @90	3 oz Glass @45	Kevlar @90
1. Balsa	1.6	1.1, remove I2	5.7 oz Carbon @90	3 oz Glass @45		5/64th" Balsa	3 oz Glass @90		

Fuselage Wing

Inboard Section: Composite Skin

Testing 3 Point Bending

- Tested potential combinations of skin and core
- Force vs Displacement Data
- Easy to compare stiffnesses of materials from Force vs
 Displacement Curve

@speedfestorange

Fuselage Wing

Inboard Section: Composite Skin

@speedfestorange

O

Fuselage Wing

Inboard Section: Composite Skin

Core Type	Coupon Weight (g)	Coupon Thickness (in)
1/8 in Balsa	10.2	0.14
1/16 in Balsa	9.63	0.07
1/32 in Balsa	8.47	0.045
1/64 in Balsa	8.53	0.03
Cubed 1/8 in Divinycell	12.53	0.13
Non-Cubed 1/8 in Divinycell	8.87	0.13
Non-Cubed Rohacell	7.71	0.04

O.

Fuselage Wing

Inboard Section: Motor Mount

Motor Mount Transfer el

Transfer electric motor thrust loading

- Bonded to fuselage before the two halves are joined
- Reinforced with carbon tow connecting skin and fire wall
- Must transfer worst case scenario loading, 3 lbf of trust
- CAD provided dimensions

Testing Considered Validating our weight cost optimization

- Carbon, aero ply, and fiberglass plates of various thicknesses to be tested
- To be put in bending test, point loads applied

Fuselage Wing

Inboard Section: Main Hatch

Main Hatch Access point to the fuselage avionics

- Large length with small width, tight tolerance needed
- Placed on the top of the fuselage
- Joined to skin with tape
- Composition similar to the surrounding skin
- Reinforced with extra layers of glass if needed

STRUCTURES

Fuselage Wing

Inboard Section: Rocket Integration

Rocket Wall

Transfers rocket load

- 1/8" thick Aero ply, Fiberglass Laminate, Carbon Fiber Laminate
 - Will be tested to ensure it can support largest rocket load, 22 lbf
- Bonded to fuselage before the two halves are joined

RocketHouseHouses rocket motor

- Traditional cardboard tube housing
- Held in place by a series of two formers
- Added to fuselage before the two halves are joined

Fuselage Wing

Outboard Section: Main Spar

Shear

Web

- Formed outside of the wing
- Balsa, formed to fit sweep
- Aero Ply, reinforce straight center section
- Custom Made, epoxied wooden sheets
- Jig Developed

Spar Cap Laid up in the skin

- Carbon TOW (various weights tested)
- Continuous Strip, folded over itself
- Precise location needed for proper load transferal

STRUCTURES

Fuselage Wing

Outboard Section: Main Spar

Spar Cap Formed outside of the wing

- 4.3 oz IM unidirectional carbon fabric
- 4.0 oz unidirectional carbon fabric
- Stock unidirectional carbon tow

Fuselage Wing

Outboard Section: Spar Caps

Fiber Type	Coupon Weight (g)	Coupon Thickness (in)
Stock Unidirectional	9.86	0.09
4.0 oz Unidirectional	12.30	0.08
IM Unidirectional	11.97	0.08

O

Fuselage Wing

Outboard Section: Ribs

Ribs(s) Small and Precise reinforcement

- Different Balsa Thicknesses will be tested
- Sandwich elevon surface
- Sanded to fit sizing
 - Must Fit
 - Pitot Tube Room
 - Servo Wiring Room

Fuselage Wing

Outboard Section: Servo Bay

Servo Mount Bonded in the Skin

- Balsa formed structure
- Adhesive for skin connection
- To be laser cut to exact dimensions
- Position driven by wing tolerances

Fuselage Wing Outboard Section: Servo Bay Hatches

Servo Bay Hatches Servo Maintenance access

- Positioned under the wing
- Same composition as the surrounding skin
- Kevlar hinges
- Giles Method: In skin hatch lay up method
- Practice lay ups completed

Fuselage Wing

Outboard Section: Elevon Components

Elevon Shear Web Closing out the aileron

- Epoxy strip to fill small section
- Strengthens elevon stiffness

Wiper Allowing closeout during deflection

- Developed for max deflection of 10 deg
- Formed post wing connection
- Eliminates FOD during actuation

Endplate Attachment Points Connecting wing tips to endplates

- Wing tip to be cut off
- Epoxied with a flush connection to the endplate
- Plywood Build up, for mounting screws to puncture

Fuselage Wing

Outboard Section: Composite Skin

Material
SelectionLess layers for less loads

- Similar as the materials found in the inboard section
 - Primarily a Fiberglass and Balsa Construction
- Less lamina layers will be utilized than the inboard section
- A carbon scrim material is considered for reinforcements

Fuselage Wing

Inboard Section: Composite Skin

	Outer Lamina	Coupon Weight (g)	Coupon Thickness (in)
	D138 Cross fiber @ 90	8.94	0.07
	D138 Cross fiber @ 45	9.63	0.08
	D144 Cross fiber @ 45	8.20	0.08
	D144 Cross fiber @ 90	8.75	0.08
	Baseline Balsa	7.27	0.05

O.

Endplates

Main Spar Reinforce endplate shear strength

- Same materials as main wing spar, custom balsa
- IM Servo placed in one endplate, reduced drag at increased weight to traditional servo and horn
- May pivot to an external actuator in future

R

O)

STRUCTURES

		MAIN SPAR AFT SHEAR WEB		AR WEB	RIBS					
Weight Breakdown		<u>Main Shear Web:</u> BALSA	A	Shear Web: BALSA			<u><i>Ribs:</i></u> BALSA (estimated at right triangle)			
		length	31.06 in	length	9.72 in		height	0.24	in	
		heigth	1.75 in	heigth	0.16 in		length	3.81	in	
		width	0.06 in	width	0.1 in		width	0.0625	in	
Overall weights		volume	3.40 in^3	volume	0.15552 in^3		volume	0.028575	in^3	
-		density	9.36 lbs/ft^3	density	9.36 lbs/ft^3		density	9.36	lbs/ft^3	
		Weight	0.0184 Ibs	Weight	0.001686 lbs		Weight	0.00062	lbs	
		<u>Spar Caps:</u> IM UNIDIRE	CT. CARBON FIBER	ENDPLATE SPAR			COMPONENT HOUSING			
		length	31.06 in	<u>Endplate Shear Web:</u> B	ALSA	_	Mounting Tray	<u>:</u> BALSA		
		width	0.75 in	length	5.00 in		volume	0.49	in^3	
	TOTAL WEIGHT	weight per area	0.03 lb/ft^2	heigth	1.75 in		density	9.36	lbs/ft^3	
		area	23.30 in^2	width	0.06 in		Weight	0.0080	lbs	
	Internals and Skin	Weight	0.029121 Ibs	volume	0.55 in^3					
	Internal Structure 0.130154 lbs			density 9.36 lbs/ft^3				ROCKET HOUSING		
	Avianies / Dranulsian 1 18 lbs	<u>Shear Web Center Reinf</u>	orce: AERO PLY	Weight	0.0059 lbs		Formers and Bu	<u>ulkhead:</u> AERO PL	ł	
	Avionics/Propulsion 1.18 lbs	length	10.25 in				volume	0.34	in^3	
	Skin 0.72 lbs	heigth	1.75 in	SERVO	BAY		density	43.70	lbs/ft^3	
		width	0.125 in	Servo Mount: BALSA			Weight	0.0258	lbs	
	Weight 2.023955 lbs	volume	2.242 in^3	volume	0.12 in^3					
		density	43.70 lbs/ft^3	density	9.36 lbs/ft^3		SKIN			
		Weight	0.056703 Ibs	Weight	0.001951 bs		<u>Full Skin:</u> Estim	ating full core w/ 4	layers of glass	
							surface area	398	in^2	
		Main Spar Weight	0.1042 lbs	FIREWALL			thickness	0.7	in	
				Motor Mount: assuming carbon fiber			density	0.0026	lbs/in^3	
				volume	0.11 in^3		Weight	0.716	lbs	
				density	0.057 lbs/in^3					
				Weight	0.00627 lbs					

Weight Breakdown Overall weights

TOTAL WEIGHT

Internals and Skin							
Internal Structure	0.130154	lbs					
Avionics/Propulsion	1.18	lbs					
Skin	0.72	lbs					
Weight	2.023955	lbs					

Key Assumptions

- Skin assumed to have full balsa core composition, four glass lamina
- Servo and housing present in endplate
- Aero Ply motor mount, Carbon Fiber rocket wall

S)

R

STRUCTURES

RATO Stand

RATO Stand

Design Rationales and Specifications

1anufacturability

Ease of Production and Repair

- Easily Sourced Parts and Materials
 - 80/20 1" Aluminum T-Slotted Profile
- Low Assembly Time
- Self Made vs Pre-Made
- Non-Invasive Design
- Minimum Number of Parts
 - Reduction of Failure Points

RATO Stand

Design Rationales and Specifications

Marketability

Designed For Any Age and Size

- Small Footprint (3 feet by 8 in)
 - Fits easily in most vehicles for transport
- Easy Assembly/Setup
- Lightweight (0.5088 lb/ft)
 - Total weight slightly under 10 lbs.
- Variable Launch Angle
- Non-Destructive Firings
- All-Terrain Launch Capability
- Simple to Use
- Universal Launch

@speedfestorange

RATO Stand

Point of Departure

Testing

Future Rato Testing

- Stand Stability Testing
- Plane Stability Testing
- Structural Testing
- All Terrain Testing
- Assembly Time Testing
- Final configuration conformation

MARKETING

MARKETING

@speedfestorange

MARKETING

Strategy Uniqueness and creativity

Marketing Philosophy

- Flying Wing and Speed
- RATO Capability
- Dual-use RATO Launch Sled
- Manufacturing Lead Time Savings
- Versatile Range for Rocket Types

MARKETING

Strategy Future Development

Development Plan

- Launch Website (Next Week)
- Marketing Video
- Social Media Updates
- Outreach to Local/outside Organizations

