Hydroquinones as Halogen-Bonding Catalyst for Radical Perfluroalkylation Reactions Bailey Robertson, Tarrannum Tasnim & Spencer P. Pitre* Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma, United States

Light Mediated Reactions

- A reaction that is promoted by light is known as a photochemical reaction •This chemical reaction is initiated by the absorption of energy in the form of light •The absorption of light creates an excited state that leads to a reaction that changes the molecules' physical and chemical state from their original form
- •Visible light is a renewable, clean, and abundant source of energy •The absorption of the wavelength is from 400nm – 700nm
 - •These reactions are very attractive to researchers because this design of chemical products/processes minimizes the environmental impact of chemical synthesis (AKA green chemistry)
- •This process is beneficial because it reduces the amount of toxic and polluting waste, decreasing the chemical disruptions of ecosystems
- This ultimately reduces the pollution that could decrease human health, the environment, and natural resources

Charge-Transfer Complexes (CTCs)

- The generation of a new ground state aggregate by the association of an electron-rich substrate, also known as the donor, along with an electron-poor substrate, which is known as the acceptor
- The CTC (also known as Electron Donor-Acceptor Complex) is often able to absorb in the visible light region, whereas the individual substrates do not, providing an alternative strategy for performing visiblelight-mediated reactions
- In previous work, the Pitre Lab found that substituted hydroquinones are able to form a CTC with perfluoroalkyl iodides to promote the radical perfluroalkylation of electron-rich (hetero)arenes

Scheme 2. Catalytic Halogen-Bonding Complex for Perfluoroalkylation Reactions

Tasnim, T.; Ryan C.; Christensen, M. L.; Fennell, C. J.; Pitre, S. P. Org. Lett. 2022, 24, 446–450.

Absorbs < 350 nm

Reaction Optimization

Table 1. Optimization of Reaction Conditions (1-6) and Control Reactions (7-12)

OMe		Brs COsEt	10 mol % DTHQ Bu ₄ N ⁺ I⁻ 2 equiv NaHCO ₃	
MeO OMe	·	F F	Solvent (0.15 M), Ar hv (427 nm, 30 h), 58.3 °C	

Entry	Bu₄N⁺I⁻	Solvent	Time (hours)	Yield
1	1 equiv	Acetone	30	84%
2	1 equiv	DMSO	30	Quantitive
3	20 mol%	DMSO	30	75%
4	20 mol%	DMSO	6	54%
5	20 mol%	DMSO	18	65%
6	20 mol%	DMSO	24	87%
7	-	DMSO	24	31% (without Bu₄N⁺I⁻)
8	20 mol%	DMSO	24	26% (without Base/NaHCO₃)
9	20 mol%	DMSO	24	22% (without degassing/ under air)
10	20 mol%	DMSO	24	Trace (without irradiation)
11	20 mol%	DMSO	24	11% (without DTHQ)
12	20 mol%	DMSO	24	89% (r. t.)

Figure 4. Absorption Spectra Between DTHQ and C₄F₉I

Halogen-Bonding

- A halogen bond occurs when there is evidence of a non-covalent interaction between an electrophilic halogen substituent and the Lewis base
- Halogen-based Lewis acid is the halogen-bond donor
- Lewis acid: a molecule that can accept a pair of electrons
- The interaction angle is approx.180 degrees
- Strength of halogen bonding (X = I > Br > CI > F)
- In previous work, perfluoroalkyl lodides resulted in higher yields compared to the corresponding bromides owing to bromides being less effective at forming halogen-bonds
- The goal of this work is to develop a method to engage alkyl bromides and chlorides using halogen-bonding photocatalysis by performing an *in situ* Finkelstein reaction with an iodide salt

Scheme 1. Perfluroalkylation of (Hetero)arenes

Tasnim, T.; Ryan C.; Christensen, M. L.; Fennell, C. J.; Pitre, S. P. Org. Lett. 2022, 24, 446–450.

Proposed Mechanism

- The iodide salt and perfluoroalkyl bromide (Br-R_F) undergo a Finkelstein reaction (substitution reaction where one halogen is replaced by another). This gives off a bromide anion and generates R_{F} -I *in situ*.
- A CTC complex is formed initially between DTHQ and R_F-I through halogen-bonding interaction.
- The CTC is excited under 427nm irradiation leading to singleelectron transfer, generating an R_F radical and a DTHQ radical cation which is subsequently deprotonated to form a phenoxy radical (I).
- Simultaneously, the R_F radical adds to electron-rich (hetero)arene to give the carbon-centered radical intermediate (II). This intermediate (II) undergoes a HAT reaction with (I) to yield the perfluoroalkylated hetero(arene) (III) and regenerate the DTHQ photocatalyst.

Tasnim, T.; Ryan C.; Christensen, M. L.; Fennell, C. J.; Pitre, S. P. Org. Lett. **2022**, 24, 446–450.

Conclusions and Future Directions:

- Finkelstein reaction to generate the corresponding alkyl iodide in situ
- also extending this work to the activation of alkyl chlorides

Acknowledgements

OMe 10 mol% DTHQ $(CF_2)_3 CF_3$

MeO

X = Br; Yield: 29%

X = I; Yield: 88%

- 2 equiv NaHCO₃ 11:1 MeCN:MeOH (0.15 M) Ar, 25 °C, 30 h hv (2 X White LEDs)
- **Scheme 3.** Proposed Mechanism for the DTHQ-catalyzed Radical Perfluoroalkylation

• The addition of an iodide salt allows access to alkyl bromide substrates, typically poor halogen-bond donors, through a • Future directions include examining the substrate scope in regards to both the (hetero) arene and alkyl bromides and

