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Abstract

Doppler weather radar is an essential tool for monitoring and warning of hazardous

weather phenomena. In weather radar, achieving a longer aliasing range (ra) is crucial

for surveillance, and a higher aliasing velocity (va) is also important to obtain dynamical

information of storms unambiguously. However, the desire for longer ra and higher

va creates a conflict because these two parameters are inversely related to the pulse

repetition time (PRT). This conflict is known as “Doppler dilemma”, as ra and va cannot

be improved simultaneously using a single PRT. This phenomena is more challenging at

shorter wavelengths, which means it has a more significant impact on X-band, followed

by C-band and S-band.

There are two main approaches to mitigating this issue. The first approach to dealias

the velocity is the post-processing method. This method checks for abrupt changes from

one end of the va to another, and a fold is detected when such instances are encountered.

The underlying assumption is that the velocity field should be spatially continuous. This

approach performs well for wide and spatially continuous storms. However, it still suf-

fers when the storms are isolated within the radar field of view. The second approach is

the waveform design method, which utilizes two or more pulse repetition times (PRTs),

and the aliased velocities are found by searching for disagreement between two or more

velocities observed from different PRTs. Velocity dealiasing is performed by solving

a least-common-multiple problem. However, this method still has the inherent limita-

tion of ra. The post-processing method allows the system to operate everything else,

xxi



such as ground clutter filter, continuous pulse-pair processing, etc., as waveform design

methods require modifications to the existing filters. Therefore, in this study, the main

focus will be on the post-processing method, and the key is to detect the aliased velocity

accurately, leading to the correct velocity dealiasing.

The detection of aliased velocity can be compared to classification. Raw aliased

velocity can be regarded as the input image, and the aliased count can be regarded as

label. With advancements in technology, machine learning can be applied to image

classification. Convolutional neural networks (CNNs) are widely used for image seg-

mentation, enabling the model to output the same size as the input image. Therefore, in

this study, a CNN is utilized to tackle the velocity dealiasing issue. In the training pro-

cess, the input data comprises aliased velocity and the aliased count (the sign and how

many times they are aliased). The best weights and the biases are determined through

a fit-and-adjust process. After the training process, the performance is evaluated using

unseen test data. The aliased velocity is used as input, and the output is the aliasing

count. Velocity dealiasing is performed by combining the input (aliased) velocity, the

aliasing count, and the known va.

For evaluation, the CNN method is compared to the traditional region-based

method, which is also a post-processing method in Python ARM Radar Toolkit (Py-

ART). Both methods are evaluated on mostly filled precipitation and sparsely filled

precipitation. Sensitivity tests are conducted on template size and the va used to op-

timize the CNN model to cover the X-band range coverage. This model can be used

regardless of va. Both methods demonstrate similar performance on mostly filled pre-

cipitation. However, the CNN method shows better performance on sparsely filled pre-

cipitation, as it processes the entire scan at once while the region-based method only

processes the limited adjacent area.

The overarching goal of this study is to exploit CNN for velocity dealiasing and to

xxii



achieve human-level performance. Through this process, it is expected that the labor-

intensive work could be automated.
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Chapter 1

Introduction

Radar is an indispensable tool that can be widely used to detect the location of targets

and their speed regardless of day or night and can operate under various weather con-

ditions. Radars transmit electromagnetic waves to the targets and receive backscattered

signals. A particular design of radar called pulsed Doppler radar can measure the range

of a target using pulse-timing techniques, which measures the time between the trans-

mitted and the returned signals from the targets. These radars also estimate the velocity

of the targets by measuring the phased change from pulse to pulse [1]. Doppler weather

radar is one specific application of pulsed Doppler radar, which is used for monitoring

and warning of hazardous weather phenomena [2].

Although an important tool, some limitations exist in weather radar systems, such

as atmospheric attenuation, limited range resolution due to bandwidth, temporal reso-

lution, observation range, sensitivity, etc. Attenuation by precipitation is a more severe

issue when the radar wavelength is shorter; in other words, an X-band radar system is

more attenuated, followed by C-band, and S-band is slightly impacted by precipitation

[3]. Range resolution is also limited by the wavelength and bandwidth, the angular

resolution is determined by the antenna size, and the temporal resolution is also limited

when for a dish-based system, but this limitation can be mitigated by a phased array

radar (PAR) [4]. Observation range is also limited by system transmitter power and the
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radar sensitivity depends on factors such as size and the shape of antenna, operating

frequency, transmitted power, pulse width, etc. [1, 2, 5].

The desire for a large maximum unambiguous range (ra) and a large aliasing ve-

locity (va, which is also known as Nyquist velocity), is in conflict since these two pa-

rameters are oppositely proportional to the pulse repetition time (PRT). This so-called

“Doppler dilemma” becomes a more severe issue for shorter-wavelength radars, which

means it has more impact on X-band, followed by C-band, and S-band [1, 2, 6].

Next Generation Weather Radar (NEXRAD) is a network of radars consisting of

160 high-resolution S-band Doppler weather radars, including Puerto Rico and the U.S.

Virgin Islands are installed and jointly operated by National Weather Service (NWS),

the Federal Aviation Administration (FAA), and the U.S. Air Force. In 1988, NEXRAD

established the WSR-88D radar systems. WSR stands for Weather Surveillance Radar,

88D refers to 1988 when the first WSR-88D radar system was deployed, and D rep-

resents the Doppler capability. S-band was chosen for the WSR-88Ds because it has

less impact of attenuation by precipitation and relatively high va compared to X- and C-

band radar systems for a constant ra. However, S-band is relatively expensive due to the

large size of the antenna needed to achieve the desired angular resolution. Therefore,

smaller radar systems, such as the X- and C-band radar systems, are also employed.

S- and C-band radar systems are commonly used for operational purposes around the

world, and X-band radar systems are mostly employed for research purposes. X-band

systems, such as the PX-1000, are widely used for gap-filling purposes, when there is

beam blockage by ground clutter such as in mountainous areas. X-band radar systems

are also utilized for field work where a mobile system is necessary for storm/tornado

capture [7–9].

The WSR-88D employs a number of Volume Coverage Patterns (VCP) modes for

operational purposes, such as clear-air and precipitation modes. Clear-air mode is em-
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ployed when there is no precipitation within the radar observation range. It slowly

rotates the antenna where the increased dwell time improves the radar sensitivity over

the precipitation mode. There are some examples of clear-air modes, which are VCP 31

and 32. These are operated with the same elevation angles. VCP 31 uses a long pulse

while VCP 32 employs a short pulse. When precipitation occurs, it does not have to be

as sensitive as clear-air mode since the rain has reasonable backscattered signals. There

are multiple precipitation VCP modes, such as VCP 12, VCP 212, VCP 215, and so on.

VCP 12 has 14 elevation angles and can give dense vertical sampling at lower eleva-

tion angles with a reasonable update time, suitable for severe weather. Similar to VCP

12, VCP 212 has 14 elevation angles, but it is suitable for more distant severe weather

since it has a longer dwell time compared to VCP 12. VCP 215 is the general surveil-

lance VCP mode with 15 elevation angles and updates every six minutes. For tropical

systems, VCP 121 is utilized with nine scans, including multiple lower-elevation an-

gles with different pulse repetition frequency (PRF) values, which is called the split-cut

method. In this method, one scan is performed using a long PRT for range estimation,

and another scan is performed with a short PRT to enhance velocity estimates [10, 11].

From the backscattered weather signals, spectral moment estimates can be calcu-

lated. The three most important spectral moment estimates are signal power, mean

Doppler velocity (vr), and spectrum width (σv). Reflectivity is derived from the signal

power, and it is important since the rain rate can be derived from the reflectivity. vr

is the air motion toward or away from the radar, and is calculated from the time rate

of change of signal phase. The σv is the measure of the velocity dispersion with the

resolution volume of the radar [2, 3, 8]. The phase is directly related to the signal wave-

length. If the wavelength is shorter, the phase is easy to be wrapped (±π) compared

to a longer wavelength. Therefore, X-band, which has a shorter wavelength, is more

challenging in regards to velocity aliasing than S-band radar system, which has a longer
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wavelength.

Many algorithms have been devised to mitigate the Doppler dilemma, and are gen-

erally grouped into techniques called “Velocity Dealiasing.” One approach is based on

waveform design where two or more different PRTs are used. Another approach is a

post-processing method based on checking the spatial continuity along the azimuth or

range direction.

Methods based on waveform design estimate Doppler velocity from different PRTs,

and aliasing can be found by searching for any disagreement between the two estimates.

Velocity dealiasing is accomplished using their difference by solving a least-common-

multiplier (LCM) problem [12]. This family of algorithms includes the dual-PRF, stag-

gered PRT, and the dual scan (which is known as split cut). In dual PRF, the trans-

mitter alternates two “batches” of PRTs [2, 13]. Staggered PRT is the method where

the transmitter alternates the two different PRTs every pulse [14–20]. The dual-scan

method collects one scan with a short PRT and the other with a long PRT. It should be

noted that waveform design methods are limited by the LCM and cannot be extended

over the LCM.

The second approach is based on post-processing, which allows use of tradi-

tional signal processing algorithms (e.g., clutter filtering, pulse-pair processing, etc.).

Waveform-design approaches require the modification of the existing clutter filters [19].

Post-processing methods are performed after moment data estimation, and is based on

checks for spatial discontinuity with 2va along the radial or range to decide whether

velocity aliasing has occurred. Aliasing detection is the key to this approach. Once the

aliased gate is successfully detected, it can typically be dealiased correctly [21–27].

One popular radar processing software library, Python ARM Radar Toolkit (Py-

ART), incorporates a novel region-based velocity dealiasing algorithm [26]. The key

assumption of this method is that the “first-guess” field is non-aliased. Therefore, it has
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the option to use data from environmental winds (e.g., radiosonde data) to decide the

aliasing of the first-guess field. Once the first-guess field is determined, it checks the

adjacent radar cells for abrupt velocity changes within a storm cluster and, if aliased,

dealiases the velocity by adding 2nva to the measurement. If a radar scan has multiple

isolated storms, it produces multiple first-guess fields and processes each storm individ-

ually. If the assumption of the first-guess field is incorrect, it leads to incorrect velocity

dealiasing of the connected storm.

Despite numerous studies have been conducted to mitigate the Doppler dilemma,

it remains a challenge for the community. For example, the waveform-design methods

are limited by their va and the post-processing method faces the issue of first-guess field

estimation. This challenge is especially true in the case of complicated wind fields, such

as tornado signal detection, or when the storm is isolated and far away from the radar.

Consequently, human intervention is often necessary, which can be cumbersome and

time-consuming [28–30].

Detection of aliased velocity can be regarded as an image classification problem.

With the help of technology development, the machine learning (ML) technique is

widely employed to assist the classification problem. One can see how an ML algo-

rithm can be applied to mitigate velocity aliasing. In principle, an ML algorithm allows

the trained model to determine the velocity aliased count, the number of folds, and the

direction. Additionally, through the semantic segmentation method, ML also allows the

identification of the range gates where velocity dealiasing will be required. Therefore,

it is expected that ML would replace what human intervention provides, i.e., identifi-

cation of the velocity aliasing region and classification of the velocity aliasing count.

ML can perform these two tasks in one pass, much like what a human is capable of.

ML is a subset of AI (Artificial Intelligence), which is a rule-based system. ML is the

data-fitting method, which is able to learn via iterative fit-and-adjust training. In ML,
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model parameters (i.e., weights and biases) are optimized through the iterative training

process to minimize a cost function. Each couple of weight and bias is a neuron, and

multiple neurons form a neural network (NN) (1 layer), and more than one layer makes

the model train the more complicated features, which is called deep neural networks

(DNN). Deep learning is the training process of DNN. A single-layer NN is similar to

the current technique (one threshold); however, the DNN is more complex, with the

promise of better performance. Convolutional Neural Networks (CNN) is a type of

deep learning methods to handle two or more dimensional data, and it is suitable for

image classification. U-Net is one of the CNN architecture type, which is proposed by

[31]. It is an U-shaped architecture with successive layers so called “fully convolutional

network.” It consists of encoding (convolution and pooling) and decoding (upsampling

and de-convolution) part to provide the same output size as the input size. Using the

U-Net, it can segment the image and gives the output at each pixel [31–35].

CNN is the concatenated layers of filters that operate like the convolution operator,

and is widely applied in image processing since it has strength in classification by

extracting common features. CNN-based image classification can produce a single

label that represents the whole image, e.g., facial recognition [36–38], or an output

image that indicates multiple labels (segments) within an image, e.g., medical diagnosis

[39], object recognition, speech recognition [40, 41], and so on.

CNNs are also applied in meteorological data processing. For example, classify

spatially localized climate patterns from Community Atmospheric Model v5 (CAM5)

simulation [42], detection of cold and warm fronts from reanalysis data [43]. It is

also applied in classifying the tropical cyclone intensity from satellite images [44],

prediction of the probability of severe hail [45], detecting the bird roosts from combined

radar products [46], and so on.

Like these studies, CNNs can be applied to the Doppler dilemma issue [47]. Detec-
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tion of aliased velocity can be transferred to the image classification or segmentation

problem. In the human-level, if we know the aliased number and the direction of the

aliased velocity, it can be dealiased with this information and va. In the same way, once

the training is completed and the aliased velocity is induced to the trained CNN model,

it would give the aliased number and direction as an output label. The promise of using

a CNN is to achieve human-level performance. Through this process, it is expected that

the labor-intensive task of velocity aliasing could be automated.

This dissertation is organized as follows. Chapter 2 describes weather radar funda-

mentals, followed by Chapter 3 with an overview of convolutional neural networks.

Chapter 4 provides the application of Convolutional Neural Networks to Velocity

Dealiasing, and Chapter 5 describes the results and discussion of the proposed algo-

rithm. Finally, Chapter 6 concludes and describes thoughts on future work.
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Chapter 2

Weather Radar Fundamentals

In this chapter, weather radar fundamentals are explained. First, the concept of pulsed

Doppler radar is described. The radar range equation for the point target is derived

and expanded to the volumetric targets and the weather radar. Radar variables such as

reflectivity, and mean radial velocity will be derived. The range and velocity aliasing

concept, which is the “Doppler dilemma” is introduced and two main approaches to

mitigate this issue will be discussed.

2.1 Pulsed Doppler Radar

Pulsed Doppler radars measure the range and the velocity. It determines the range of

a target by pulse-timing techniques and measures the target’s radial velocity by using

the Doppler effect of the returned signal. Doppler effect is the change in frequency of

a wave in a relative location to an observer with moving toward (-) or forward (+) from

the wave source. The basic idea of “Doppler radar” is to compare the frequency change

of the radar signal from a moving target to the frequency of the original signal. A con-

tinuous wave (CW) should generate the transmitted and received signals differently to

distinguish them since it continuously transmits and receives. However, for the pulsed

waveform, with a pulse-timing technique, it transmits the pulse and pauses the time to
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receive the returned signal from the target.

In this chapter, it would describe the weather radar fundamentals including the radar

range equation for the point target and the volumetric scattering, and it is applied to

derive the weather radar equation. Range and velocity estimation is also explained, it is

expanded to the range and velocity ambiguity, and the general attempts to mitigate the

problem are also described.

2.2 Radar Range Equation

In this section, the radar range equation is derived for point targets and the volumetric

scatter, and it is expanded to the weather targets, such as rain echoes which are a type

of volumetric scatters.

2.2.1 Point Target Radar Range Equation

The point target radar range equation is derived from the power spectral density for

the point target. When a pulse of energy is emitted from a radar, it is dispersed to the

surface of targets. For a spherical target with radius r, the surface of a sphere is 4πr2;

therefore, the power density can be derived by dividing the transmitted power (Pt) by

the surface of a sphere. The radius r of the sphere is the range of the target from the

radar.

St(r) =
Pt

4πr2
(2.1)

Antenna gain (G) is the radiation intensity of the antenna in a specific direction over
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the radiation intensity of the antenna of an isotropic source and it is as shown:

G =
4πA

λ2
. (2.2)

Therefore, the power spectral density from the directive antenna can be calculated

with the power spectral density from the isotropic antenna multiplied by antenna gain.

St(r) =
PtG

4πr2
(2.3)

The radiated power density of the reflected signal at the radar is shown in Equa-

tion (2.4). From Equation (2.3), the radar cross section (RCS), represented by σ (m2),

is multiplied to Equation (2.3) and divided by the received area, which is also the sur-

face of a sphere.

S(rt, rr) =
PtG

4πr2t

(
σ

4πr2r

)
(2.4)

Received power (Pr) can be derived by Equation (2.5). It is the power density at

the radar, which is in Equation (2.4), multiplied by the effective area of the receiving

antenna (Ae). Pr is shown below:

Pr =
PtG

4πr2t

(
σAe

4πr2r

)
, (2.5)

where the Ae can be expressed in terms of the antenna gain and the wavelength λ and

it is shown in Equation (2.6).

Ae =
Gλ2

4π
(2.6)

This equation is substituted into Equation (2.5) to obtain Equation (2.7) and it is the

radar range equation for the point target.
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Pr =
PtG

2λ2σ

64π3r4
(2.7)

Once we consider the loss (L), received power Pr is divided by L since the Pr is

attenuated by L and it is in linear scale. The loss-considered received power can be

derived as follows:

Pr =
PtG

2λ2σ

64π3r4L
. (2.8)

Additionally, signal-to-noise (SNR), which is the measure to detect a given target at

a given range can be expressed by considering the Pr and the noise (N ). For NEXRAD,

a target is considered to be present when the SNR is higher than 3 dB. Noise can be

calculated in Equation (2.9) and the SNR can be expressed as Equation (2.10).

N = kBnTs, (2.9)

where k is the Boltzmann’s constant, which is (1.38× 10−23 J ·K−1), Ts is the system

noise temperature, and Bn is the noise bandwidth of the receiver.

S

N
=
Pr

N
(2.10)

Thus, Equation (2.11) can be obtained by substituting Pr to Equation (2.7) and N

to Equation (2.9).

S

N
=

(
PtG

2λ2σ

64π3r4L

)(
1

kBnTs

)
=

PtG
2λ2σ

64π3r4kTsBnL
(2.11)
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2.2.2 Volume Scattering Radar Range Equation

In this section, the radar range equation is extended to the volumetric target. For the

spherical targets, the total backscattering cross-sectional area of targets within the radar

sample volume σ can be expressed in Equation (2.12).

σ = V Σσi, (2.12)

where the sample volume (V ) is defined in Equation (2.13) [48].

V = π
rθ

2

rϕ

2

h

2
, (2.13)

where ϕ is the vertical beam width of antenna pattern, θ is the horizontal beam width,

and h is the height.

The volume of a radar pulse by Probert-Jones [49] using a Gaussian shape for beam

pattern is the following:

V =
πr2θϕh

16ln(2)
. (2.14)

In Equation (2.7), σ is replaced to Equation (2.12) using Equation (2.14) and result

in following Equation (2.15):

Pr =
PtG

2λ2θϕhΣσi
1024ln(2)π2r2

. (2.15)

2.2.3 Weather Radar Equation

If a sphere is small compared to the wavelength of the radar, the scattering behavior

of the target is considered to be in the Rayleigh regime and the RCS can be defined as

Equation (2.16) [50].
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σi =
π5|K|2

∑n/vol
i=1 D6

i

λ4
, (2.16)

where D is the rain drop diameter and |K|2 is defined as follows:

|K|2 =
∣∣∣∣ϵ− 1

ϵ+ 2

∣∣∣∣2 , (2.17)

where ϵ is the permittivity, and K is the dielectric constant, which is often expressed as

|K|2 since it is typically used for power-related quantities. For water, the value of |K|2

is 0.93; whereas for ice, it is 0.2.

Since weather radar systems primarily target rain echoes, which are volumetric in

nature, a radar cell is considered to be a volumetric target. The key assumption is that

the entire radar cell is uniformly filled with rain. A new expression of σ can be derived

by replacing V and σi in Equation (2.12) with Equations (2.14) and (2.16), respectively.

σ = V

n/vol∑
i=1

σi =

(
πr2θϕh

16ln(2)

)(
π5|K|2

∑n/vol
i=1 D6

i

λ4

)
(2.18)

A weather-specific radar equation, referred to as the weather radar equation, can

be derived by replacing σ in Equation (2.7) with Equation (2.18). The weather radar

equation is expressed in Equation (2.19):

Pr =

(
PtG

2λ2

64π3r4

)
σ =

PtG
2π3θϕh|K|2ΣD6

i

1024ln(2)λ2r2
. (2.19)
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2.3 Radar Variables and Estimators

2.3.1 Reflectivity Estimator

Reflectivity (η) is the total backscattering cross-sectional area per unit volume. In gen-

eral, for the distributed target, η is defined as:

η =

∫ ∞

0

σb(D)N(D) dD, (2.20)

where D is the diameter of a water sphere, σb(D) is the expected backscattering cross

section for a hydrometeor of D, and N(D) is the particle size distribution, which is the

number density in the resolution volume between D and D + dD.

For the spherical water drops that are small compared to the wavelength by assum-

ing the Rayleigh distribution, the backscattering cross-section can be approximated as

shown:

σb(D) ≈ π5

λ4
|Kw|2D6, (2.21)

where Kw is the dielectric constant of water. Using Equation (2.21), σb(D) is substi-

tuted into Equation (2.20) to obtain:

η =
π5

λ4
|Kw|2

∫ ∞

0

D6N(D) dD. (2.22)

From the Equation (2.22), the integral part is the linear radar reflectivity factor (z)

in mm6m−3, which is shown below:

z =

∫ ∞

0

D6N(D) dD. (2.23)

z can be converted to logarithmic scale relative to 1 (mm6m−3) as shown in Equa-
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tion (2.24). Z is the logarithmic reflectivity factor measured in dBZ.

Z (dBZ) = 10 log10

( z

1mm6m−3

)
(2.24)

2.3.2 Mean Radial Velocity Estimator

Mean radial velocity is derived from the echo voltage equation, which is Equa-

tion (2.25) as below:

V (t, r) = |A| exp
[
j2πft− j

(
4π

λ
r +

4π

λ
vrt

)
+ jψt + jψs

]
, (2.25)

where A is the amplitude, 4π
λ
r is the two-way path, 4π

λ
vrt is the mean radial velocity,

also known as the Doppler velocity, ψt is the transmitting phase, and ψs is the scattering

phase.

This voltage model (Equation (2.25)) can be simplified to Equation (2.26) and it is

described below:

V (kTs) = sk exp

[
−j
(
4π

λ

)
vrkTs

]
, (2.26)

where kTs corresponds to t in Equation (2.25), k is the sample index, which is 0, 1, ...,

M − 1. Ts is the pulse repetition time, sk is the total constant of the kth sample. vr can

be expressed in terms of fd and it is described as follows:

vr = −λfd
2
. (2.27)

Equation (2.27) can be also expressed for Doppler frequency fd and it is shown as

follows:

fd = −2vr
λ
. (2.28)
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Since wd is equivalent to 2πfd = −4πvr
λ

, Equation (2.26) can be expressed with wd

and it is shown as below:

V (kTs) = skexp[jwdkTs]. (2.29)

If white noise, which is from the internal electronic components, atmospheric

sources, and so on, is considered, it becomes:

V (kTs) = sk exp(jwdkTs) + nk. (2.30)

Doppler spectrum of V (kTs) can be obtained by estimating its Auto Correlation

Function (ACF). The Doppler velocity can then be estimated from the ACF at lag 1.

The ACF is defined as below:

R̂(lTs) = E[V ∗(kTs)V ((k + l)Ts)] (2.31)

= E[(s∗ke
jwdkTs + n∗

k)(ske
jwd(k+l)Ts + nk+l)] (2.32)

= E[(s∗ksk+l)e
jwdlTs ] + E(n∗

knk+l) + E(nksk+le
jwd(k+l)Ts) + E(s∗ke

−jwdkTsnk+l),

(2.33)

where E is the expected value and it means the weighted average. Since the signal (s)

and the noise (n) are uncorrelated, E[s · n] = 0; therefore, Equation (2.33) becomes:

R̂(lTs) = E
[
(s∗ksk+l)e

jwdlTs
]
+ E(n∗

knk+l), (2.34)

where the first term E[(s∗ksk+l)e
jwdlTs ] is defined as follows:


E[s∗ksk] = s, for l = 0

E[s∗sk+l] = sρ(lTs), in general.
(2.35)
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Therefore, if l is non-zero, then the final form of ACF is shown as follows:

R̂(lTs) = sρ(lTs) exp(jwdlTs), (2.36)

where the ρ(lTs) for the Gaussian spectrum correlation coefficient is given by [2]:

ρ(lTs) = exp

[
−8

(
πσvlTs
λ

)2
]
. (2.37)

The ACF estimate can be expressed in a different form by substituting the ρ(lTs)

term in Equation (2.36) with Equation (2.37), as the following:

R̂(lTs) = s exp

[
−8

(
πσvlTs
λ

)2
]
exp(jwdlTs)

= s exp

[
−8

(
πσvlTs
λ

)2
]
exp

[
−j
(
4π

λ

)
vrlTs

]
.

(2.38)

If l = 1 and δl = 0, then R̂(lTs) becomes Equation (2.39).

R̂1(Ts) = s exp

[
−8

(
πσvTs
λ

)2
]
exp

[
−j
(
4π

λ

)
vrTs

]
(2.39)

Therefore, the argument, which is the phase component of R̂1(Ts), is defined as the

following:

arg(R̂1(Ts)) = −4πvrTs
λ

. (2.40)

The estimator for the mean radial velocity at Ts can be expressed as follows:

v̂r = − λ

4πTs
arg(R̂1(Ts)). (2.41)
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2.3.3 Estimation of Aliasing Range and Aliasing Velocity

For a stationary target, vr is 0. Therefore, Equation (2.25) can be simplified to the

following:

V (t, r) = |A| exp
[
j2πf

(
t− 2r

c

)
+ jψt + jψs

]
. (2.42)

Equation (2.42) is composed of in-phase and quadrature components of voltage as fol-

lows:

I(t) =
|A|√
2
u

(
t− 2r

c

)
cos

(
4πr

λ
− ψt − ψs

)
, (2.43)

Q(t) = −|A|√
2
u

(
t− 2r

c

)
sin

(
4πr

λ
− ψt − ψs

)
, (2.44)

where u is the unit step function and it is defined as follows:

u(t) =


1, t ≥ 0

0, t < 0,

(2.45)

where t is the time. For convenience, the phase component of Equations (2.43) and

(2.44) is expressed as follows:

ψe(t) = −4πr

λ
+ ψt + ψs, (2.46)

where r changes in time whereas ψt and ψs are independent in time. Therefore, the

time rate of phase change is the Doppler angular frequency, the unit is in radians per

second. Doppler angular frequency is shown in the following equation:

dψe

dt
= −4π

λ

dr

dt
= −4π

λ
vr = ωd, (2.47)

where ωd is equal to 2πfd.
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From the “Nyquist Sampling Theorem” [51], sampling frequency fs = 1/Ts must

be twice over the highest frequency in the signal.

fs > 2fN, (2.48)

where fN is the highest frequency in the signal and fs is the inverse of PRT (Ts). There-

fore, it can be expressed as Equation (2.49):

fN <
fs
2

=
1

2Ts
. (2.49)

If fd is higher than fN, the frequency will be aliased. Therefore, fd should be lower

than fN to avoid aliasing.

|fd| < |fN| (2.50)

Equation (2.50) can be expressed using Equation (2.28) and Equation (2.49).

∣∣∣∣−2

λ
vr

∣∣∣∣ < ∣∣∣∣ 1

2Ts

∣∣∣∣ , (2.51)

|vr| <
∣∣∣∣ λ4Ts

∣∣∣∣ (2.52)

From Equation (2.52), the aliasing velocity va is defined as the following:

va = ± λ

4Ts
. (2.53)

The aliasing range, which represents the maximum unambiguous range, can be de-

termined by considering the two-way path of the target. Therefore, it can be expressed
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as the speed of light (c) times pulse repetition time (Ts) divided by two.

ra =
cTs
2

(2.54)

2.4 Block Diagram

An overview of a simplified weather radar system architecture will be provided in this

section. An example of an X-band radar system block diagram is shown in Figure 2.1:

Digital
Transceiver

Antenna

Target

LNA 
(Low noise amplifier)

Oscillator

Power amplifier Mixer

Mixer

IF 
(50 MHz)

LO (9.60 GHz)

RF 
(9.55 GHz)

IF
(50 MHz)

out

in

RF 
(9.55 GHz)

LO (9.60 GHz)

Figure 2.1: A block diagram example of a simplified X-band weather radar system.

In Figure 2.1, the digital transceiver generates a pulse with an intermediate fre-

quency (IF). IF is mixed with a continuous wave from the local oscillator (LO), and

the resulting pulses are with two frequencies: fLO + fIF and fLO − fIF. A bandpass

filter (BPF) is used to pass the pulse with fLO − fIF and BPF removes the pulse with

fLO+fIF. The resulting frequency is known as the radio frequency (RF). The RF pulse

is then amplified by the power amplifier and routed to the antenna through the circula-

tor. The antenna sends out pulses and receives backscattered signals from the targets.

A limiter is added to prevent the receiver from being damaged by strong signals. The

transmitted signal is attenuated at receive, so a low noise amplifier (LNA) is used to am-

plify the signal with minimal additional noise. The received backscattered signals are
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mixed with the local oscillator again to return to the pulse with IF for signal processing.

The resulting signal is then passed through the BPF, which passes only the pulse with

fLO− fIF. The pulse with IF goes into the digital transceiver, which includes the signal

processor. In the signal processor, the received pulses are sampled and integrated to

generate moment data, such as reflectivity, velocity, etc. Sampling the received signal

is performed at regular intervals of time to determine the target’s position and Doppler

shift. Before generating the moment data, quality control is performed, including tasks

such as speckle removal, clutter filtering, sensoring, attenuation correction, and so on.

The processed radar signals are then displayed on a screen.

2.5 Limitations of Pulsed Doppler Radar – Range-Doppler Ambi-

guities

In Section 2.3.3, ra and va are defined. However, there is a limitation between the

ra and va since these are in a trade-off relation as illustrated in Equation (2.55). The

aliasing range, ra, is directly proportional to the PRT (Ts), but the aliasing velocity, va,

is inversely proportional to the Ts. This competing relation is known as the Doppler

dilemma, also referred to as the range-Doppler ambiguity.

From Equation (2.53) and Equation (2.54), the multiplication of the variables va

and ra is a constant, as shown in the following equation.

vara =
cλ

8
. (2.55)

where λ is the wavelength.

As shown in Equation (2.55), the Doppler dilemma is a more severe issue in shorter

wavelengths. That is, the product of va and ra becomes lower as λ gets shorter. Fig-

21



ure 2.2 shows the relation between the aliasing velocity, va, and the aliasing range, ra,

for S-, C-, and X-band radar systems. The S-band radar system has a longer wave-

length than C- and X-band radar system, followed by C-band, and then the X-band

radar system. The red line represents the ra and va relation of an S-band radar system,

the green line corresponds to a C-band radar system, and the blue line corresponds to

an X-band radar system. Once we assume the ra as 100 km (shown as black dashed

line), va of X-band radar system is about 11 m s−1 while S-band radar system is ap-

proximately 38 m s−1. Since the velocity of typical storms is less than 38 m s−1, the

“Doppler dilemma” is a more severe issue in the X-band radar system.

Figure 2.2: Doppler dilemma depending on frequency such as S-, C-, and X-band radar
system. For a fixed Ts, the maximum unambiguous velocity (va) and the maximum
unambiguous range (ra) are determined by the radar frequency, which is the inverse
of the wavelength. The red line shows the relation for the S-band radar system, the
green line represents the C-band radar system, and the blue line is for the X-band radar
system.
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2.5.1 Range-Overlaid Echoes

In this section, range-overlaid echoes will be discussed. When pulses are transmitted

and all echoes are within the ra, the unambiguous ranges of the target are as described

in Equation (2.54). However, when the target is located beyond the ra, as shown in

Figure 2.3, the radar still receives the signals from the target, but the location is am-

biguous and overlaid within ra [2, 52]. This phenomenon is illustrated in Figure 2.4

when the first pulse is transmitted, but the target signal is not returned during Ts since

it is beyond the ra. It is returned along with the returned signals from the second pulse

and the true location of the target is in between ra and 2ra. This configuration is called

“range overlaid echoes” since the target signal is overlapped to the second-pulse echoes

even if it is from the first pulse.

An example of range overlaid echoes in Plan Position Indicator (PPI) is shown

in Figure 2.5. The left panel shows the result with the short Ts, which has a relatively

shorter ra compared to the right panel (b). Each circle represents a 50 km range interval.

In panel (a), the outer circle (100 km) corresponds to the dotted-dashed circle in panel

(b). The squall line area B in panel (a) is also shown in panel (b). However, the range

overlaid echoes in area A of panel (a) are not visible in panel (b).

2.5.2 Velocity Aliasing

As explained in Equation (2.55), va is limited under the condition of the fixed radar

wavelength (λ) and the ra. Therefore, if the measured velocity vr is higher than va, the

velocity will be aliased.

Figure 2.6 shows two example spectra with va = 15m s−1. If the target velocity is

10 ms−1, which is below va, the Doppler spectrum is non-aliased as shown in the left

panel of Figure 2.6. However, if target velocity is 16 ms−1, it is higher than va. In this
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Radar
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𝑟!

Figure 2.3: Example situation of the range aliasing in a radar system view toward the
target. The target is located beyond ra and range aliasing would occur.
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pulse#1 #2 #3
𝜏!

𝑟"

target

Figure 2.4: Example diagram of the range overlaid echoes in case of the first-trip target
returned with the second pulse. The first-trip target is returned with the low-power
when it is overlaid. τs is the pulse width, and the target echo from pulse#1 is received
during the second period, which is overlaid with echoes from pulse#2.
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Figure 2.5: An example PPI images of range overlaid echoes extracted from [52]. Panel
(a) is the PPI image of radar reflectivity from RBSL radar and panel (b) is from RMYN
radar in South Korea. The left panel (a) displays a PPI collected with a shorter PRT,
while the right panel (b) shows a PPI collected with a longer PRT. The dashed line
indicates area A, which corresponds to the range overlaid echoes, and it is not visible
inside the dotted-dashed circle in panel (b). The squall line area B in panel (a) is also
shown in panel (b) inside the dotted-dashed circle. Thus, it is noteworthy that area A is
where the range-overlaid echoes are present.
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case, the Doppler spectrum is aliased and the target velocity appears as −14 ms−1 as

shown in the right panel.
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Figure 2.6: The Doppler spectra with va = 15 ms−1. The left panel shows a spectrum
of a target with vr = 10 m s−1. The right panel shows another with vr = 16 m s−1 and
the measured velocity is aliased to -14 ms−1.

2.6 Existing Range-Doppler Ambiguity Mitigation Strategies

Many studies have been conducted to mitigate the “Doppler dilemma”, which can be di-

vided into two main approaches: the waveform design method and the post-processing

method.

2.6.1 Waveform Design Methods

Two or more PRT values are used for waveform design methods to dealias the velocity.

The aliased velocities are found by searching for the disagreements between the two

measurements with different PRT values. With the waveform design methods, velocity

dealiasing is executed by solving the LCM problem. Pre-defined dealiasing rule is

applied depending on the velocity difference between two (or multiple) measurements.

There are three typical ways in waveform design methods such as the staggered

PRT, the dual PRF, and the dual scan method (which is also known as the split-cut
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method). The basic idea of the staggered PRT method is to interleave two pulses with

different Ts values as shown in Figure 2.7 (a) [14–20]. The dual PRF method is shown

in Figure 2.7 (b). In this mode, the radar collects a radial by splitting it into two halves;

each half uses the different periods and generates the radial with each Ts and dealiases

the velocity by finding the velocity difference between two halves and solving for the

unaliased velocity [2, 13]. Figure 2.7 (c) shows the dual scan method, which is known

as the split-cut method. The radar scans the same elevation angle twice with different

Ts values; one scan with a short Ts value is utilized for the high va and another scan with

a high Ts is used for the long ra. In operational use, the scan with the short Ts is used

as it is, however, it can be technically expanded to the LCM of two va from each scan.

Dealiasing is performed by a pre-determined rule based on the difference between two

vr from scans with different Ts.

2.6.2 Post-Processing Methods

The second approach is the post-processing method. The key idea of this method is

continuity checking. In this method, aliased velocities are detected by searching the

velocity disagreements (typically ∼ 2n va, where n is −2, −1, 1, 2, and so on). Conse-

quently, the dealiasing is performed by adding or subtracting 2n va. The key assump-

tion is that the initial velocity measurement, e.g., first cell, first range gate, first azimuth,

etc., is non-aliased. An illustrative example is shown in Figure 2.8 where one can see

that there is a clear discontinuity along the radial, which can be used to detect velocity

aliasing.

Numerous studies have investigated velocity dealiasing to determine the discontinu-

ity. It started from a one-dimensional dealiasing, which checks the continuity along the

radial [21]. Checking discontinuity along the radial finds the first meaningful range gate
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Figure 2.7: This figure compares the three waveform design methods in a diagram.
Figure (a) shows the staggered PRT method, (b) represents the dual PRF method and
(c) shows the dual scan method. T1 is the short PRT and T2 is the long PRT.
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Figure 2.8: Waveform Design Methods.

and uses its velocity as the reference velocity, which is assumed non-aliased. However,

the reference velocity could lead to error propagation in case the assumption is incor-

rect. The environmental wind aids to determine the aliasing of initial velocity measure-

ment [22], especially on the disjointed storm. Since the temporal and spatial resolution

could be different in the wind profile from radiosonde, it could result in poor perfor-

mance when the wind field is non-uniform and changes rapidly. Thus, VAD (Velocity

Azimuth Display) was proposed to represent the environmental wind field [24, 53, 54].

VAD shows the radar display of the mean Doppler velocity at a specific range gate

as the antenna rotates the 360 ◦ at a fixed elevation angle. Later, the one-dimensional

continuity checking technique was expanded to two or higher-dimensional dealiasing

methods. The higher dimension is more beneficial by introducing neighboring cells

in azimuth, elevation, and time, thus, resulting in mitigation of the high dependency

on external data sources such as sounding [23, 27, 55]. The method proposed by [25]

utilizes a two-dimensional multi-pass scheme to find the velocity discontinuity. This

method searches the reference velocity in two directions, i.e., clockwise and counter-

clockwise with strict criteria for the first dealiasing of less likely aliased radials. Later
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on, it gradually relieves the threshold to dealias the more complex velocities. In the

data assimilation field, velocity dealiasing is performed on a four-dimensional radar

data assimilation system “VDRAS” (Variational Doppler Radar Analysis System) by

using three-dimensional wind fields from the objective analysis or the VDRAS anal-

ysis. It dealiases Doppler velocity at each grid point. Interpolated numerical weather

prediction (NWP) model data and the radar VAD profiles are on the VDRAS grid and

blended using a Barnes interpolation technique [56]. Most of the velocity dealiasing

algorithms are limited since they focus on typical storms with a measured velocity rang-

ing from 20 to 36 ms−1. Motivated to apply velocity dealiasing beyond this range, the

ADTH (Automated Dealiasing for Typhoon and Hurricane) was developed [57]. In this

method, the first reference radial is critical, as the subsequent dealiasing depends on the

radial velocity that has been previously corrected. The algorithm begins by identifying

the radial velocity that includes the zero Doppler line, as it is less likely to be aliased.

Once the reference is determined, a two-dimensional multi-pass scheme is applied to

dealias the velocity.

A novel region-based velocity dealiasing algorithm was proposed by [26]. The

critical assumption of this method is that the first-guess field is non-aliased. Then, it

checks the adjacent radar cells for abrupt velocity changes within a storm cluster and, if

aliased, dealiases the velocity by adding 2nva to the velocity measurement. Problems

occur when the radar scan has multiple isolated storms, especially when the isolated

storms are far from the radar. Multiple isolated storms require multiple attempts of

estimating the first-guess field velocity aliasing. If the first-guess field is incorrect, it

leads to incorrect velocity dealiasing of the connected storm. Therefore, this algorithm

has an option to utilize the environmental background wind, which can be used to help

the first-guess field estimation. This method is a part of the Py-ART, which is a software

library of high-level radar data processing algorithms.
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Although many attempts of mitigating the Doppler dilemma, the Doppler dilemma

continues to be a challenge to the meteorological radar community. The waveform-

design methods are still constrained by va after the LCM problem. The post-processing

method has the first-guess field estimation problem especially when the storm is iso-

lated and far from the radar. As a result, human intervention is often needed, which is

a laborious and time-consuming process [28–30].
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Chapter 3

Overview of Convolutional Neural Networks

In this chapter, an overview of AI, ML, NN, deep learning, and CNN will be provided.

Especially the fundamental theory of machine learning including hyperparameters, and

cost functions, will be explained.

3.1 Introduction to Machine Learning

AI is a term used when computers can do things that normally only humans can do, i.e.,

reasoning, problem-solving, planning, perception, learning, acting, and others [58]. AI

is a rule-based system and its purpose is to create a machine that can think and act

like humans. AI is widely applied including machine learning, deep learning, natu-

ral language processing, computer vision, robotics, and cognitive computing. These

techniques can learn from the data and can be used in predictions, making decisions,

etc.

ML is another way to arrive at the rules set to implement an AI. Unlike general

programming, in which an engineer builds a model or method, the model finds their

optimum weights and biases by its own fit-and-adjust process in ML. ML is widely

utilized in various areas, especially in the application of classification. ML is a data-

fitting method, where the model parameters, i.e., weights and biases, are optimized by
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an iterative training process.

In general, ML can be classified into supervised, semi-supervised, and unsupervised

learning depending on the existence of ground truth. In supervised learning, the model

learns the methods using the labeled data (ground truth), which means that both input

data and output labels are used in a training process. This learning method maps the in-

put features to the known output, and finally, it makes a prediction for unseen data [59–

61]. In unsupervised learning, the model learns the patterns from the unlabeled data

without any help from experts, therefore, it has to find its own structure and representa-

tions. Supervised learning sometimes limits the training ability for the lack of ground

truth, time-consuming, and expensive to generate the true labels by experts. Therefore,

unsupervised learning can be advantageous because it does not require labeled data for

training. However, it can be challenging to evaluate the performance of training results

since there is no ground truth available for comparison, and the algorithm may require

a large dataset to accurately identify the patterns [59, 62–64]. Semi-supervised learning

is a type of ML that is the combined concept of supervised and unsupervised learning.

One popular approach to semi-supervised learning is using “pseudo labeling” [65]. The

first step is similar to supervised learning, where the model is pre-trained with the la-

beled data. The second step involves generating “pseudo labels” for the unlabeled data

using the pre-trained model. In the next step, the data is thresholded using the softmax

probability, which allows the model to filter out the low probability data, i.e., only high

confidence data remain. The final step involves training the model with the labeled data

and the pseudo-labeled data. This learning method is used when the true label is small,

but a larger number of unlabeled data are available [66–68].

A NN is made up of artificial neurons. A simple model is just a node with a weight

and a bias term. This simplest unit is often referred to as a neuron. While an NN has

one hidden layer, DNN is composed of more than two hidden layers, which can have a
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hundred or thousand hidden layers. Increasing the depth of the model allows the model

to learn and extract more complex features, which can lead to improved performance

on a given task at a certain point. However, if the model becomes too deep, it can lead

to overfitting issues, where the model becomes too specialized to the training data and

does not generalize to new, unseen data.

A CNN is a two-dimensional data filtering process to extract the features from in-

put data. The term convolution refers to the two-dimensional filters that operate like

a sliding window. The mathematical operation used in CNNs is convolution, which

represents how one function is affected by another function. Therefore, it is suitable

for image processing such as classification and segmentation to extract the features

between input data and the convolution filter. More details will be explained in Sec-

tion 3.3.

The Venn diagram in Figure 3.1 illustrates the relation between AI, NN, DNN, and

CNN. CNN belongs to the DNN, which is a type of NN, and NN is a subset of AI.

3.1.1 Neural Networks

A simple NN is shown in Figure 3.2. Each weight and bias pair is a neuron, and multiple

neurons form an NN (1 layer). This NN is composed of the input layer, hidden layer,

and output layer. The input and output can be described as:

y = wx+ b, (3.1)

where y represents the output, x represents the input, w and b are the weight and bias,

respectively. A design with more than one hidden layer is considered a DNN.
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Figure 3.1: A Venn diagram illustrating the different classes of artificial intelligence.
A CNN represents a particular type of AI, and it falls within the category of DNN,
which belongs to the larger category of NN. NN is the subset of the broader category
of artificial intelligence.

Input layer

Hidden layer

Output layer

Figure 3.2: An example diagram of a simple NN. It consists of an input layer with two
inputs, one hidden layer, and an output layer with one output.
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3.1.2 Deep Learning

Deep learning is the training process of a DNN [32]. An example of a DNN is shown

in Figure 3.3. The process to obtain the weights and biases is often referred to as

ML. Therefore, the goal of ML is to optimize the weights and biases of the model.

During the training process, the weights and biases are updated to minimize the error

between the true label and the predicted output. Minimizing the error refers to the

optimization process. The fitting curve, which is the combination of the weights and

biases, is updated by the gradient descent algorithm. The gradient descent algorithm

computes the gradients of the error, which is the slope, on the weights and biases to

find the minimum error. This algorithm updates the weights and biases when the set

of input data is induced to the model until the error reaches the minimum value. In

other words, data fitting finds the best set of weights and biases for a machine learning

model by a fit-and-adjust process to minimize the error between the true label and the

predicted output.

Deep learning can be applied in various fields including developing autonomous

vehicles to help their vehicle perceive and detect obstacles, healthcare for medical di-

agnoses, and gaming for the intelligent response when playing with machines such as

AlphaGo.

3.2 Machine Learning Basics

In this section, the high-level parameters, which are considered hyperparameters, such

as epoch, batch size, and kernel size, will be discussed. The regression method will also

be described including linear regression, the logistic regression, and it will be expanded

to the activation function of deep learning models. Since machine learning is the fit-

and-adjust process, backpropagation is one important process, which performs like a
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Figure 3.3: A simple diagram of a DNN. It consists of an input layer with two inputs,
three hidden layers, and an output layer.

feedback process, to adjust the model weights and the biases. Through the backprop-

agation process, the weights and biases are optimized to minimize the cost function

using the gradient descent algorithm. At the end of the section, the role of training,

validation, and test dataset will be also discussed.

3.2.1 Hyperparameters

Batch size is defined as the number of samples in one neural update, where one neural

refers to the weight and bias. It determines how many samples or images from the train-

ing data are used to update the model’s parameters, which are the weights and biases.

An epoch refers to a complete pass of the entire training dataset through multiple up-

dates. For example, as shown in Figure 3.4, if the training data contains 1,600 samples

and the batch size is set to 32, assuming no samples are reused during a cycle, the model

would be updated (trained) 50 times in order to process the entire training data once.

The batch size and the number of epochs are important hyperparameters to set since
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Total training dataset in one epoch: 32 samples × 50 batches = 1,600 samples

Figure 3.4: The concept of the batch size and epoch in one iteration training. Each
batch size has 32 samples and a total of 50 batches are included to train one epoch for
a total of 1,600 samples.

they can affect the learning efficiency and the performance of the model. A small batch

size would lead to unstable parameter updates, on the other hand, a large batch size

would slow down the training time to process one batch and sometimes, it is over the

computation power. Therefore, it is important to select the appropriate batch size and

it is experimentally determined depending on training conditions. The first batch size

trial is commonly started with 32 samples and it is adjusted depending on the dataset

and the performance updates. Training with a small number of epochs can result in un-

derfitting, whereas a large number of epochs can lead to overfitting. Therefore, finding

the well-balanced batch size and the number of epochs is an important task in training

and it can be empirically obtained through experimentation.

Kernel size should also be discussed in the choice of model hyperparameter. A

kernel is a filter. It is a small matrix that is used to extract the features from an input

image. A larger kernel size can decrease the computational time, but it may lead to loss

of details, while a smaller kernel size can detect fine details. The appropriate kernel

size is determined through experimentation, the common choice of kernel size is 3× 3

or 5× 5.
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3.2.2 Regression

As explained in Section 3.1.2, data fitting is the key to the training process. The goal

of regression is to find the best-fit function between the input (independent variables)

and the output label (dependent variables) [69]. The best fit refers to the appropriate fit,

which should not be underfitting, leading to low accuracy even on the training dataset,

nor overfitting, which is highly focused on the training dataset, which could lead to fail-

ure in unseen data prediction. The most common types of regression in deep learning

are linear regression and logistic regression.

The linear regression model is the statistical approach to modeling the relationship

between the independent and dependent variables [61]. In an NN, the input data can be

one or more, however, the model is implemented using a single hidden layer and has

a linear activation function. Since linear regression is the data fitting method to fit the

linear curve, it can be shown in Figure 3.5 as an example. The fitting curve is defined

in Equation (3.2).

yi =
n∑

i=1

wxi + b, (3.2)

where w is the weight, b is the bias, x is the input, and n is the total number of samples.

The goal of the regression is to find w and b that best fit the entire dataset of xi and yi as

a whole. One typical way to solve linear regression is using the least-squares method.

It is the data-fitting method, therefore, the curve is determined as the best fit for a set

of data. It provides the relationship between the input (x) and the output (y). Another

way to find a solution is by the gradient descent method. The w and b in Equation (3.2)

are updated when the sample pairs of xi and yi are induced for every batch.

The gradient descent method minimizes the cost function resulting in optimized w

and b for each layer. Figure 3.6 compares the high and low learning rates, which will
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Figure 3.5: This figure shows an example of linear regression. The data are fitted to the
line y = 0.9932x+100.0412. This line is derived from the least-square fitting method.

be discussed in Section 3.2.4. In this method, the independent variable (x-axis) is the

weight w (or bias b), and the dependent variable (y-axis) is the cost function. The cost

function will be discussed in Section 3.2.5. The training starts with the random w and

b, and these are updated to reduce the cost function. The gradient of the cost function

on w or b is used to update the weight and the bias by reducing the cost function and

the gradient is also gradually reduced, therefore, this method is named as the gradient

descent algorithm. The update of the w and b are performed by Equation (3.3) and

Equation (3.4) for each.

wnew = wold − α
δ

δw
C, (3.3)

bnew = bold − α
δ

δw
C, (3.4)

where C represents the cost function and it is related to the loss. The cost function will

be discussed in Section 3.2.5.

Linear regression is the data fitting method for the linear relation between input
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Figure 3.6: This figure illustrates the inappropriate learning rate. A high learning rate
would lead to divergence, where the model could fail to map the input data to the
latent space with large updates. A low learning rate requires many updates to reach the
minimum cost, therefore, it makes the training slow.

and output outcomes. Therefore, it can be used in a simple linear network. However,

the complex features including the image classification and detection of the velocity

aliasing would have the non-linearity between the image features. Therefore, “logistic

regression” is introduced to deal with the non-linear features. This regression is used to

analyze the binary or categorical outcome. It models the probability of the dependent

variable being in a particular category using a logistic (or activation) function to map

the input values to the output probability [70]. The activation function will be explained

in the following section.

3.2.3 Activation Function

An activation function is a mathematical function that maps an input value into an out-

put probability in the range between 0 and 1. It operates like a switch or a thresholding

function that converts an input value to an output value that indicates on or off, hence,
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the term activation. The goal of the activation function is to enable the model to learn

the complex features by introducing non-linearity. There are several commonly used

activation functions, i.e., sigmoid function, Rectified Linear Unit (ReLU), Hyperbolic

Tangent (tanh), and leaky ReLU. Additionally, the softmax function is often used for

multi-class classification tasks [60].

A sigmoid function maps any input to the range of 0 to 1, as shown in Figure 3.7(a).

It is commonly used in binary or categorical classification problems, and the goal is to

predict a probability for each class. The equation is as follows:

f(x) =
1

1 + e−x
, (3.5)

where the x is the input value. However, the use of the sigmoid function can lead to a

significant issue known as the “vanishing gradient” problem. As more layers are added

with the sigmoid function, the gradients of the loss function can approach zero, making

it difficult to update the model’s parameters and leading to training difficulties.

A hyperbolic tangent (tanh) function maps input to the range of −1 to 1 as shown

in Figure 3.7(b) and expressed in Equation (3.6). This function can be useful in image

classification where the output can be mapped between −1 to 1. For example, it can be

used to label the aliased velocity, as Doppler velocity can have a negative or positive

direction. However, it is not generally used in CNNs due to the vanishing gradient

issue, which is similar to the issue encountered with the sigmoid function.

f(x) = tanh(x) (3.6)

A rectified linear unit (ReLU) function returns the input if the input of the activation

function is positive, and returns 0 if the input is negative, as shown in Figure 3.7(c).

ReLU can be expressed in Equation (3.7).
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Figure 3.7: These graphs illustrate the different activation functions. Panel (a) shows
the sigmoid, panel (b) represents the tanh, panel (c) illustrates the ReLU, and panel (d)
shows the leaky ReLU with α = 0.1.
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f(x) = max(0, x) (3.7)

ReLU introduces the non-linearity into the NN by setting negative input to zero and

it can help avoid the vanishing gradient issue. This problem can occur when the gradient

of the cost function on weights is extremely small in the early layers of the network,

making it difficult to update the weights or slowing down the learning process. In a

sigmoid function, when the input is large, the gradient of the cost function is small,

therefore, it may occur this vanishing gradient issue. However, ReLU has a gradient of

1 for the positive input and 0 for the negative input, it can keep the gradient and avoid

the vanishing gradient issue. Moreover, ReLU is computationally efficient since it only

requires the simple comparison of input value with zero, making it widely used in CNN

architectures.

Since the ReLU has the “dying ReLU” problem, which has 0 as an output for the

negative input, “Leaky ReLU” is introduced. It protects the “dying ReLU” problem by

introducing the small slope for negative inputs, and it is shown in Figure 3.9(d), where

the α (slope) sets up as 0.1, and the equation is as follows:

f(x) = max(αx, x). (3.8)

In multi-label classification, the softmax function (s(y)), which is expressed in

Equation (3.9), is commonly used by mapping the inputs to a probability distribution

over the multiple classes. It maps the output value in the range between 0 and 1 and

the sum of all outputs is equal to 1, therefore, the output value can correspond to the

probability of each class.
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s(yi) =
eyi∑M
j=1 e

yj
, (3.9)

where M is the number of classes.

In the early days of NN, the sigmoid function is widely used as an activation func-

tion. However, as mentioned, it has a limitation for the vanishing gradient problem,

which means that when the input is significantly small or large, the gradient of the

function (slope) would be significantly small, and it leads to the vanishing of the gra-

dient. To relieve this issue, the hyperbolic tangent (tanh) function is introduced by

extending the range to −1 to 1 whereas the sigmoid function maps the output to 0 to

1. It somewhat helps the vanishing gradient problem, but it still exists. Therefore, the

ReLU function is introduced to mitigate this issue by giving zero to the negative in-

put and one to the positive input. Moreover, since it is computationally efficient, it is

widely used as an activation function. For the multi-label classification, the softmax

function is widely used since it provides the probability as outputs for each class, and

the maximum value is chosen as the output label.

An example model with logistic regression using the activation function can be de-

picted in Figure 3.8, and the output (y) can be defined in Equation (3.10). In this figure,

three inputs are multiplied with weights, and then the bias is added. The resulting value

is passed through the activation function, which maps the summed input to the output

probability.

y = σ(
n∑

i=1

wixi + b), (3.10)

where σ is the activation function. Non-linear functions such as the sigmoid function

can expand the model’s ability to cover the non-linearity.
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Figure 3.8: This diagram illustrates the example model with logistic regression, which
takes three inputs. First, the inputs are summed and then the sigmoid function is utilized
as an activation function for the logistic regression.

3.2.4 Back Propagation

As mentioned before, one approach to solving linear regression is to find the best fit

for the input and output data by updating the weights and biases. This is achieved

based on the chain rule, which states that the derivative of a composite function can

be obtained by multiplying the derivative of the outer function by the derivative of the

inner function. The example of the chain rule is shown in Equation (3.11).

δf

δw
=
δf

δg

δg

δw
(3.11)

The chain rule can be used to calculate the gradient of the loss function with respect

to the parameters, which is the concatenation of the multiple weights or biases, from

the right to the left side. This is the backward feedback process, which is called back-

propagation. The weights and biases are updated through the backpropagation based

on the chain rule. Updating is performed to reduce the error, which is the difference

between the true label (yt) and the predicted output (yp).

There is another factor that affects the updating of weights and biases, which is
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known as the learning rate (α). Therefore, the learning rate should be optimized. A

large α would lead to divergence, while a small α could make the training speed slow.

Hence, the appropriate α should be determined empirically. The common α range is

0.1 to 0.0001, depending on the factors such as the size of the training dataset, the

complexity of the network, etc. A good starting α for testing is 0.01. which can be

adjusted depending on the loss.

During training, the model starts with random weights and biases, the loss might

be reduced significantly in the early epochs. However, if the loss does not decrease

sufficiently in the early epochs, it may indicate that the learning rate is too small. In

this case, increasing the value of α can improve the model’s performance. Sometimes,

even if the loss has saturated, the model’s accuracy may still be significantly low. This

could be due to a high learning rate, which can cause the cost function to diverge. To

address this issue, it is often helpful to decrease the learning rate. If the learning rate is

not the issue, it is possible to be a data problem or a structural problem with the model.

Data issue includes poor data quality or not enough data availability, which can limit

the training. An inappropriate network structure can also hinder the training process of

the model. For example, complex features might be difficult to be trained with a simple

network. In this case, adding more layers or changing the network structure would be

helpful to increase the performance.

The backpropagation process is illustrated in Figure 3.9, the feedforward process

is performed by following the black line from left to right, while the backpropagation

process is operated in the opposite direction, from right to left, by following the red

line. During the backpropagation process, weights and biases are updated using Equa-

tion (3.3) and Equation (3.4) respectively based on the chain rule.

As explained earlier, machine learning is the fit-and-adjust process using backprop-

agation to find optimized weights and biases. The optimization is done by minimizing
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Figure 3.9: This figure illustrates the feedforward and backpropagation process. The
black line from left to right represents the feedforward process, while the red line from
right to left represents the backpropagation process. During the backpropagation pro-
cess, all the weights and biases are updated.

the cost function, which is also referred to as the loss function.

3.2.5 Cost Function

In this section, the cost function will be discussed. The training goal is to iteratively

adjust the model parameters through a fit-and-adjust process. The cost function, also

known as the loss function, measures the difference between the true value and the pre-

dicted output value. Examples of cost functions include Mean Squared Error (MSE),

Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), cross-entropy, and

others. Cross-entropy is commonly used in DNN, particularly for multi-label segmen-

tation.

Intuitively, entropy measures the uncertainty of a field [71], and cross-entropy mea-

sures the uncertainty between the two variables, which correspond to the predicted label

and the true label. Cross-entropy has been shown to be a viable loss function for seg-

mentation problems, e.g., [31, 72]. A cross-entropy of zero indicates that the predicted

label is the same as the true label. Therefore, minimizing cross-entropy means making

the model closer to perfect predictions. During the training process, the cost function

(loss) decreases until convergence, which is defined as the successive change of the
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performance that is less than a preset threshold. A properly trained CNN model should

be able to produce good predictions in general.

C = D(s(y), L) = −
∑
i,k

Li(k) log(s(yi(k))), (3.12)

where L is the true label, i represents the aliasing label, k is the cell index, and s(y)

represents the output of the softmax classifier.

Since the model parameters are trained by minimizing the loss of the more popu-

lated label, the less populated labels may not be well-trained in the training process.

In the real world, data often exhibit class imbalance, where certain labels have much

fewer samples than others. For example, when training a model for aliased velocity,

one or more of the aliased velocities may be less populated compared to non-aliased

velocity.

In this case, class weight can help to better train the less populated label by giving

it more weight during the training process. Therefore, weighted cross-entropy loss,

which gives the different class weights for each label, can be employed to equalize the

imbalanced data. The weighted cross-entropy loss (Cw) is defined as follows:

Cw = −
∑
i

wiLi log(s(yi)), (3.13)

where wi is the class weight of label i, which is defined as the inverse of the population

ratio of the label. However, in cases where the data distribution is extremely skewed,

using class weights may not be a viable solution as it could have a negative impact on

the training of the more populated label. For instance, if the training dataset contains

500 cats and only one dog, the class weight assigned to cats versus a dog is 1 to 500. In

this scenario, the model would try to fit one dog equally as the other 500 cats, resulting
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in poor performance in identifying cats. Therefore, even if the class weights are imple-

mented, a sufficient amount of data on less populated labels should still be provided to

ensure the model can learn their characteristics.

3.2.6 Dataset

The training dataset is used to update the model parameters, which are the weights and

biases. The validation dataset is used to determine the training stopping point, which

prevents the model from overfitting to the training dataset. Examples of underfitting,

appropriate fitting, and overfitting are shown in Figure 3.10 using the same data in all

three panels. The left panel shows the underfitting curve, the middle panel shows an

appropriate fitting curve, and the right panel represents the overfitting curve. The test

dataset is utilized to evaluate the performance of the model. It is important to note that

these three datasets are mutually exclusive and should not overlap.

3.3 Convolutional Neural Networks

CNN is a type of DNN widely used for tasks such as two-dimensional image classifi-

cation and three-dimensional object recognition in video processing. The structure of a

CNN model consists of a combination of convolutional layers, pooling layers, activa-

tion function, and so on [33]. Typical CNN models ingest input data as width by height

by depth.

3.3.1 Layers

A convolutional layer is a collection of concatenated two-dimensional filters used to

extract the common features through the convolution operation. It is the core layer of

CNN, and it learns the meaningful representations of the input data [35]. Figure 3.11
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Figure 3.10: These figures illustrate the importance of finding an appropriate data-
fitting curve. The left panel shows an example of underfitting, the middle panel shows
an appropriate fitting curve and the right panel demonstrates an example of overfitting.
In each panel, the blue dots represent the data, and the red line shows the fitted curve.
A curve that is too simple (underfitting) may not accurately capture the data properties,
while a curve that is too detailed would be overfitted on data and may not generalize to
unseen data.

shows an example of a convolutional layer with kernel size (3 × 3) and stride 1. Here,

the stride refers to the number of pixels that shifts over the input matrix during an opera-

tion such as convolution. The input patch is element-wise multiplied by the convolution

filter.

The pooling layer performs the downsampling by reducing the spatial size of the in-

put while retaining the important features. A 2×2 window is commonly used to down-

sample the input. Average pooling and max pooling are widely used pooling methods.

Average pooling extracts the average value in the window, while max pooling extracts

the maximum value from the window, as shown in Figure 3.12. The maximum value is

extracted from each kernel. Pooling layers help reduce the complexity of the network

and make the representation more invariant to small translations in the input [37].

A fully connected layer performs the classification task and gives the output of the

final predictions. It takes the feature maps learned by the previous layers and makes

the prediction based on the entire input [37]. Another type of layer, named the dropout

layer, randomly drops out some neurons during training to prevent overfitting [73]. The
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Figure 3.11: This figure shows how the convolutional layer works. The left image is an
example of the input data assuming a kernel size of 3 × 3. 3 × 3 patches are extracted
from the input, the pre-determined convolution filter is convolved pixel-wise, and the
calculated result goes to the output. In this example, when we perform an element-wise
convolution between the patch and the convolution filter, the resulting value is 27.
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Figure 3.12: This figure illustrates an example of max pooling. A 2 × 2 kernel size
with a stride 2 is used to downsample the input. The maximum value in each kernel is
pooled out. In this example, the value of 6 is pooled from the yellow patch of the left
panel, 3 from the red patch, 5 from the green patch, and the blue 5 is pooled from the
blue patch of the left panel.
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activation function is also considered as one type of the CNN layer and it is explained

in Section 3.2.3.

3.3.2 Receptive Field

The receptive field refers to the region of the input space that directly affects a neuron’s

output. It is the field that the neuron is “looking at” to produce its output. For example,

in Figure 3.13, with a kernel size of 3× 3, the yellow cell in layer 3 includes the infor-

mation from the entire cell of Layer 1. Therefore, in a training process, key features can

be captured while the input size is reduced. The receptive field should be considered

when designing the model structure for the number of convolutional and pooling layers.

Typically, if the receptive field is already larger than the input size, additional layers do

not have any impact, which helps in deciding the appropriate model structure.

3.3.3 Class Segmentation

As mentioned above, CNNs are widely used in image classification. During training,

an input image is fed into the network along with the ground truth label. The trained

model provides the output scores for each class, and the class is determined as the one

with the highest score or probability. Since training begins with random weights and

biases, the model gradually learns to identify features by reducing the loss, which is the

difference between the true label and the predicted output during training.

After training, the optimized weights and biases are applied to new, unseen data, and

the model can determine the class of unseen images. In addition to single-label clas-

sification, pixel-wise prediction is also available by using the deconvolution process.

The deconvolution process is used to recover the original image size from a downsam-

pled, low-resolution image by convolving an upsampled image with the corresponding
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Layer 1 Layer 2 Layer 3

Figure 3.13: This figure illustrates the concept of the receptive field. From layer 1 in
the left panel, the green patches become the center pixel in layer 2 (middle panel). In
other words, the receptive field of a green pixel in layer 2 is the green patches (3 × 3) of
layer 1. Similarly, the receptive field of the yellow center pixel in layer 3 is the yellow
patches of layer 2 (3 × 3), which corresponds to the entire image (5 × 5) of layer 1.
Therefore, the receptive field of a yellow center pixel in layer 3 is the entire image of
layer 1 (5 × 5).

level of the image from the downsampling process and concatenating the result. Pixel-

wise prediction can provide an output label for each pixel, making it useful for image

segmentation.

One possible model to enable deconvolution is the U-Net structure. The U-Net

model mostly consists of convolution and pooling layers and segments the image by

capturing edges, lines, corners, and other features. As the structure becomes deeper,

the number of filters increases while the image size becomes smaller, enabling more

accurate classification at a certain point by considering the receptive field and template

size.

To achieve the same output size as the input, a U-Net architecture can be used

for semantic segmentation using a CNN [31]. The U-Net architecture consists of an

encoding and decoding process. As shown in Figure 3.14, the left side is the downsizing

part, which is the encoding process that extracts features from the input. The right side

is the decoding part, which recovers the same output size as the input. It is composed
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Figure 3.14: U-Net model structure example extracted from [31]. The input image is
572 × 572 and is downsampled to 28 × 28 using a combination of convolutional and
max pooling layers. Then, it is upsampled to 388 × 388 using the up-convolutional
layers and concatenated with the layers from the downsampling part.

of multiple convolutional layers and max pooling layers by considering the receptive

fields. The output is a map of labels generated from the features learned by the encoder

at a lower resolution and projected onto the pixel level at a higher resolution.

In the context of U-Net, upsampling using an output along with the input from

the previous layers at the same depth provides a mechanism to generate a feature map

of the same size at the same depth. The last layer turns the output from the last de-

convolutional layer into labels through a process that is similar to the mode process,

i.e., the value at which the probability is the highest. A softmax function is used to

provide a normalized output, which can be used as the probability of each label. It is

commonly employed for multi-label classification [33].

As mentioned in Chapter 1, the detection of velocity aliasing can be treated as
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image segmentation, and CNNs are widely used in image classification. The aliased

velocity can be used as the input image, and the aliased count (i.e., the number of folds)

and direction can be treated as the output labels. The U-Net structure allows class

segmentation and provides pixel-wise predictions, which means that predictions are

performed at each pixel, and the predicted output size can be the same as the input data.

Once the aliased count is predicted as the output at each range gate, velocity dealiasing

can be performed using the aliased count, the input aliased velocity, and the aliasing

velocity (va). Chapter 4 presents the application of CNNs to velocity dealiasing.

In the next chapter, the application of CNN to velocity dealiasing will be discussed

including pre-processing, velocity dealiasing using CNN, and the training method. This

will also include the variables of optimization and the results of sensitivity tests.
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Chapter 4

Application of Convolutional Neural Networks to Velocity

Dealiasing

In this chapter, the application of CNN to velocity dealiasing will be discussed.

An overview of proposed method, pre-processing including data generation, velocity

dealiasing using CNN, and training method will be explained.

4.1 Overview of Proposed Process

In this study, a novel velocity dealiasing method based on a CNN construct is pro-

posed to tackle the velocity aliasing challenge, which is a long-standing problem in

the weather radar community. Image segmentation can be performed through a CNN,

where concatenated layers of filters operate like a convolution operation. CNN-based

image classification can produce a single label that represents the whole image, or an

output image that indicates multiple labels (segments) within an image. In this context,

the detection of velocity aliasing can be compared to a segmentation (pixel classifica-

tion) problem. The label indicates whether a velocity cell is aliased and, by extension,

how many times the velocity is aliased. To train the supervised CNN, ground truth data

are required where the raw aliased velocity field is used as input. And the output is a flag

field indicating whether the velocity is aliased and how many times it is aliased. There-

57



fore, the detection of aliasing can be converted into a labeling problem. As mentioned

earlier, once correct aliasing information is detected, dealiasing is straightforward.

In the process of designing and implementing a CNN model, a set of training data,

which consists of the raw velocity fields and the corresponding ground truth, i.e., la-

bels indicating whether a segment of velocity is aliased, is necessary for supervised

learning. There are a number of options to generate ground truth data. The most tra-

ditional method is hand-dealiasing the raw aliased velocity field, which is extremely

labor intensive involving hours of expert human intervention. Another option uses a

longer-wavelength radar, such as the S-band NEXRAD radar velocity, as ground truth

data and generates the aliased velocity field through artificial aliasing. X-band systems

typically have lower va than S-band systems while preserving a moderate coverage,

approximately 60–90 km. For example, the PX-1000 radar typically operates with a

PRF = 2,000 Hz to provide ra = 75 km, and va = 15.7 m s−1. L1 can occur when v is

within ±47.1 m s−1 while L2 can occur when v is within ±78.5 m s−1, which can suffi-

ciently cover most velocity measurements of meteorological echoes. For these reasons,

we chose the latter option for generating our data, which is used for training the CNN

to identify L = 0 (non-aliased), L ∈ [−1, 1] (once aliased), and L ∈ [−2, 2] (twice

aliased label).

4.2 Data Generation

As mentioned, artificial aliasing based on S-band data is performed to generate the

input velocity fields for training the CNN model. Input data are the simulated X-band

radar velocity field (vi) from the NEXRAD S-band radar by a set of simple rules and its

aliased count L, which indicates how many times the velocity is aliased. In the context
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of this study, L ∈ [−2,−1, 0, 1, 2] is produced according to the following rules:

L =



−2, v < −3va

−1, −3va ≤ v < −va

0, −va ≤ v < va

1, va ≤ v < 3va

2, v > 3va

(4.1)

In short, vi can be defined as shown.

vi = vt − 2vaL (4.2)

For example, if vt = 16 m s−1, and va = 15 m s−1, then vi = −14 m s−1 and L = 1

since it is once aliased and detected in the positive direction. If vt = −29 m s−1, and

va = 8 ms−1, then vi = 3 ms−1 and L = −2 since it is twice aliased and detected in

the negative direction.

The number of scans for training, validation, and test dataset is shown in Table 4.1.

To diversify the datasets, scans from four different years and five different NEXRAD

radar sites are collected. Furthermore, data are collected by considering the area where

precipitation fills the scan. Although a qualitative categorization, the cases are sepa-

rated into “mostly filled” precipitation and “sparsely filled” precipitation. Generally,

these cases correspond to stratiform and convective precipitation, respectively. The

training dataset consists of 1,872 scans, which are made out of 624 cases from three

elevation angles, i.e., 0.5◦ , 0.9◦ , and 1.3◦ . It comprises 240 scans of mostly filled

precipitation and 1,632 scans of sparsely filled precipitation. Unaliased velocity fields

from the NEXRAD KTLX, KFWS, KICT, KLSX, and KLOT radar sites in 2018 are
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Table 4.1: The number of scans for training, validation, and test dataset for mostly filled
precipitation and sparsely filled precipitation

Training Validation Test
Mostly filled precipitation 240 75 102
Sparsely filled precipitation 1,632 240 393
Total 1,872 315 495

employed as the training dataset. The validation dataset includes 315 scans with 75

scans of mostly filled precipitation and 240 scans of sparsely filled precipitation (105

cases with three elevation angles), and the scans from the NEXRAD KTLX radar site

in 2019 are collected. The test dataset has a total of 495 scans with 102 scans of mostly

filled precipitation and 393 scans of sparsely filled precipitation, which is 135 cases

with three elevation angles, and the scans are collected from the NEXRAD KTLX

radar site in 2017 and 2020.

The imbalanced number of scans between two precipitation types are collected to

cover both mostly filled precipitation and sparsely filled precipitation. More sparsely

filled precipitation scans are collected over mostly filled precipitation because their

complexity is quite different. The mostly filled precipitation cases are characterized

by being spatially continuous and having relatively simple features, which means the

features can be trained with a lower number of scans. On the other hand, the sparsely

filled precipitation is more complex and includes spatially discontinuous storms, which

requires diverse training data to represent the complex features.

4.3 Methodology

In this section, pre-processing and post-processing will be discussed. The key is con-

verting the velocity dealiasing problem to a labeling problem. Velocity dealiasing is
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performed with the measured velocity fields using the labels.

4.3.1 Pre-Processing

Input data are generated by considering the PX-1000 coverage, which has an inher-

ent limitation of the number of training data. Unlike typical machine learning that

employs more than 100,000 training samples (scans), our collected training data are

approximately 2,000 scans. To overcome this limitation, so-called data augmentation

was performed to generate additional training data. Data augmentation is a process to

diversify the data by slightly modified copies of existing data [74–77].

As mentioned in Chapter 3, typical CNN models ingest input data as width by height

by depth. One can think of the width by height as the size of an image and the depth

as the number of images that are related and processed simultaneously, such as the red,

green, and blue components of a color image. In the context of velocity dealiasing, the

depth is just one as the velocity is processed alone. The dimension D of the input array

of the velocity is:

D = na × nr × 1, (4.3)

where na is the number of azimuths and nr is the number of range gates. Since it is a

labeling process, the output arrays also share the same dimension as the input.

Input and output data are generated to cover 60 km, which is a typical range cover-

age of X-band radars, e.g., [9, 78, 79]. With the NEXRAD range resolution of 250 m,

256 range gates result in a range coverage of 64 km. The number of azimuths is re-

sampled by a 2◦ spacing with 180 radials resulting in a full 360◦ coverage. The input

array is expanded to 256 azimuths by copying the adjacent azimuths to produce a con-

tinuous input field. That is, a scan has azimuths 284, 286, . . . , 358, 0, 2, 4, . . . , 358, 0,

2, . . . , 74. This is done instead of simply setting the first and last parts to zeros. During
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the processing stage, the middle portion, i.e., 0, 2, 4, . . . , 358, is extracted as the final

output for velocity dealiasing.

With the collected dataset, the wind direction has a general bias as the selected

NEXRAD radars are located where there is a non-zero mean of the wind in terms of

climate [80]. In order to overcome this general wind bias, which could result in a

CNN model to develop a bias, a data augmentation to randomly rotate the radar scans

and randomly negate the velocity values is performed. Essentially, the mean wind is

randomized (removed) as a set in the hopes to train a CNN model to handle velocity

fields with different wind directions.

Data normalization is also applied when the model input was generated from vi.

There are two main purposes: one is to eliminate the bias, and the other is to map the

input velocity to a range that is independent of specific va values. It is performed by

dividing the vi by the va.

4.3.2 Algorithm Description

With the generated input data, evaluation is performed with the trained model (the

training process will be discussed in Section 4.4). A block diagram is shown in Fig-

ure 4.1. At first, input (aliased) velocity (vi) passes through the model with optimized

parameters. It produces the predicted label (aliased count) Lp as output. The model

is comprised of two processes: encoding and decoding. In the encoding process, the

convolutional and pooling (downsampling) layers are stacked to extract the features by

convolution and downsampling the input data. In the encoding process, the azimuths

and range gates of input data are reduced while the number of feature maps is increased.

In a decoding process, on the other hand, the number of azimuths and range gates of in-

put data is increased by deconvolution and up-conversion (upsampling) layers. Finally,
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the softmax classifier and a one-hot coding method are applied to generate a map of Lp

as output. Once the Lp is generated, velocity dealiasing is accomplished by combining

the input velocity vi, the predicted label Lp, and the Nyquist velocity va as shown in the

following:

vp = vi + 2vaLp. (4.4)

For convenience, three sets of labels will be used:

L0 = L ∈ [0]

L1 = L ∈ [−1, 1]

L2 = L ∈ [−2,−2].

(4.5)
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Figure 4.1: Block diagram of the proposed velocity dealiasing technique using a CNN.
Velocity dealiasing is performed by combining the input (aliased) velocity (vi), the
aliasing count (Lp), and the Nyquist velocity va. vi passes through the model, which
consists of multiple layers of operations, i.e., convolution, pooling, softmax, and pre-
diction. To that end, the technique produces a map that indicates whether a velocity
measurement is aliased, the sign, and how many times it is aliased.

Figure 4.2 shows the velocity dealiasing process with two synthetic velocity fields,

each with a different va, using a trained CNN model. In this example, the velocity field
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is mostly filled with precipitation. A homogeneous wind field and wide continuous

storm can be seen in this scan. The first column shows the radar reflectivity Z, and

the second column is the ground truth data (vt) from the S-band radar velocity field.

The third column is the input (aliased) velocity (vi), which is manually aliased by va

using Equation (4.1). The fourth column is the predicted aliased label (Lp), and the

last column is the dealiased velocity using Equation (4.4). In the top row, vi is aliased

by va = 7 m s−1, where Lp includes 0 (non-aliased), 1 (once aliased), and 2 (twice

aliased). However, in bottom row, when vi is aliased by va = 17 m s−1, Lp does not

include 2 (twice aliased). In this simple case, regardless of different va, the velocity

dealiasing results are similar to vt, illustrating the efficacy of using a CNN model to

correctly label the velocity aliasing count. More details and the evaluation results will

be explained later in Section 4.4.

Ground Truth Input (Aliased) Velocity Aliased CountReflectivity Dealiased Result

Figure 4.2: Results of the process of velocity dealiasing using the labels predicted by
the CNN. In this example, the data were collected from the KTLX radar on 2020-03-08
23:48 UTC. The input velocity vi is obtained by aliasing vt using va = 7 ms−1 (top)
and va = 17 m s−1 (bottom). Z is the radar reflectivity, and vp is the dealiased velocity
according to Equation (4.4)
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4.4 Training

Training is performed by updating the internal model parameters, i.e., as weights and

biases, to reduce the loss by using a fit-and-adjust process, which is also known as the

gradient-descent algorithm. Weighted cross-entropy loss is employed as a cost function

to handle the imbalances of the data. For example, when va is higher, the number of L1

and L2 are smaller while the number of L0 is larger. Weighted cross-entropy is defined

as the multiplication of the class weight and the cross-entropy of each label, where the

class weight is defined as the inverse of the population ratio. The model parameters are

trained by reducing the loss of the more populated labels and, hence, the less populated

labels may not be well-trained. Intuitively, cross-entropy measures the dissimilarity

between the output label and the true label, which is known as the ground truth data

[81]. The cost function (loss) is decreasing during the training process and it is set to

stop at convergence, which is defined as the successive change of the performance that

is less than a preset threshold. As output, it produces the aliased label Lp.

Various training variables such as different va, different template sizes T , and the

different number of layers can be optimized, and these will impact the performance of

the trained model.

4.4.1 Variables of Optimization

In a training process, there are model and training variables. Different combinations of

variables produce different results. The model hyperparameters are empirically deter-

mined. They include kernel sizes, learning rate, and training variables such as va and

T . Training variables were determined through sensitivity tests and will be discussed

in detail later in Section 4.4.2. Through a series of trial and error, the utilized model

hyperparameters are kernel size of three by three, and a learning rate of 0.001. A total
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of 32 layers are used, which are comprised of the encoding part (seven convolutional

layers and six pooling layers) and the decoding part (seven convolutional layers, six

up-convolutional layers, and six concatenated layers).

The purpose of training is to force the model to learn the aliasing concept rather than

to remember specific scans from a given va value. For doing that, training is performed

by combining the multiple va values and is then compared to the training with single

va to determine similarities. The single va training is executed with two different va,

i.e., va = 7 ms−1 and 12 m s−1. Since we limit the maximum vt to 33 m s−1, artificial

aliasing with va = 7 m s−1 includes L2. Also, va = 12 m s−1 alone was used since

it has the highest once-aliased population when maximum vt is limited to 33 m s−1,

which is the raw va of the NEXRAD S-band radar. However, this model cannot predict

L2 since this label is not included in the training. Three different combined va methods

are trained. One is performed by combining va = 7 m s−1 and 12 m s−1, which is

named va ∈ [7, 12]. The second option, which is named va ∈ [ν], is a training with va

set to ν, which is a random variable that has a uniform distribution in between 7 and

23 m s−1.

During the training process, the population of a label dictates the number of adjust-

ments that are made to identify that particular label. Logically, the labels with the high-

est counts would be fitted the best. However, the goal is to achieve similar performance

among all labels. One way to overcome this imbalance is by using a so-called class

weight, which is inversely proportional to the population ratio of the labels, effectively

undoing the imbalanced adjustments caused by the population distribution. Panel (a) of

Figure 4.3 shows the distributions of labels on va ∈ [7, 9], panel (b) is on va ∈ [11, 13],

and panel (c) is on va ∈ [21, 23]. Training va is limited to 23 m s−1 to avoid becoming

highly biased toward identifying L0 and the performance of identifying L1 is penalized.

Since the class weight of this dataset is 1 : 6.17 : 555, the training could be highly bi-
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ased toward L2, which has a lower population. Focusing toward identifying L2 results

in poorer performance of identifying L0 and L1. The class weight helps equalize the

skewed distribution. However, when the population is extremely skewed, it could lead

to an overfitting issue. For example, if the input data has 500 L0 and only one L1, the

class weight L0 : L1 = 1 : 500. The model would be trained to fit the one L1 equally

as the other 500 L0, resulting in a net loss, i.e., negatively impacting the performance

of identifying L0.
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Figure 4.3: This figure is the distribution of labels with different va in logarithmic
scale: Panel (a) represents the distribution of labels on va ∈ [7, 9]; panel (b) shows on
va ∈ [11, 13]; and panel (c) shows on va ∈ [21, 23]. When the va used is higher (left
panel to the right panel), the distribution is more skewed to the L0.

Therefore, another va random training method, va ∈ [7, ν], is introduced to include

the more collected L2 data instead of increasing class weights. It is performed by fixing

va = 7 m s−1 and selecting one other random va (ν) between va = 8 and 23 m s−1. In

other words, two sets of data are trained together. One set is trained with va = 7 m s−1,

and another set is trained with one random va between va = 8 and 23 m s−1. The

class weight of this method is set as 1 : 2.61 : 77.0, where the class weight of the

twice-aliased label is reduced.

As mentioned before, the template size T is defined as the number of azimuths na

by range gates nr. For simplicity, na = 256 is fixed, and four different nr are trained and
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evaluated by concatenating them to generate the 256 range gates. The trained number

of range gates are described as: 32 range gates cover the 8 km, 64 range gates cover the

16 km, 128 range gates cover the 32 km, and 256 range gates cover the 64 km.

4.4.2 Sensitivity Tests

Training variables are evaluated on va in three configurations: G1, G2, and G3. G1 is

the combined performance of va = 7 and 9 m s−1, G2 is the combined performance of

va = 11 and 13 m s−1, and G3 is the combined performance of va = 21 and 23 m s−1.

In G1, the population ratio of L0 : L1 : L2 is equal to 110 : 48 : 1, and the

corresponding class weight ratio is 1 : 2.28 : 110. In G2, L0 : L1 = 6.89 : 1, and the

corresponding class weight is the inverse of the population ratio, i.e., 1 : 6.89. In G3,

L0 : L1 = 119 : 1, and the corresponding class weight ratio is 1 : 119.

Figure 4.4 shows the performance with different training va and evaluation using

G1,G2, andG3. InG1, va = 7 and va ∈ [7, ν] show the highest performance among five

different models since both include the va = 7 ms−1 in training, which has the largest

number of aliased labels (L1 and L2) in training. However, in G3, which includes

the least aliased label since it has the highest va, training with va ∈ [7, ν] shows the

lower σA than va = 7 model. va ∈ ν model shows a relatively poor performance than

others for its extremely skewed class weights (1 : 6.17 : 555), especially on L2. The

raw population of L2 is deficient. Therefore, it diminishes the non-aliased and once-

aliased training performance by highly focusing the model parameters optimization on

the twice-aliased label. From this experiment, va ∈ [7, ν] model is chosen for our final

training va condition for not to be biased toward one specific va.

Figure 4.5 shows the µA and σA (scan average) as a function of T . The left panels

provide results on the mostly filled precipitation scans and the right panels correspond
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Figure 4.4: Comparisons of the trained CNN with different va, i.e., va = 7 ms−1 (blue)
va = 12 m s−1 (green), va ∈ [7, 12] (red), va ∈ [7, ν] (purple), and va ∈ [ν] (orange) for
each on the mostly filled precipitation (left), and the sparsely filled precipitation (right).
µA is the scan averaged accuracy (top) and σA is the scan averaged standard deviation
(bottom). It is evaluated with the three different va groups G1, G2, and G3.

to the sparsely filled precipitation scans. In general, using a larger T produces better

results (higher µA and lower σA), with the only exception on mostly filled precipitation

with T = 128 and T = 256, which are in reverse order, but the difference is less

than 0.5%. In G2 and G3, all four different template sizes show similar performances.

This is because the mostly filled precipitation scans are spatially continuous and have

relatively simple features in contrast to the sparsely filled precipitation. It is noteworthy

that training with T = 32, which is relatively short-range coverage, also shows high

performance since it still has 360◦ coverage and a more homogeneous wind field, which

makes it easier to predict the aliased label. Mostly filled precipitation is less impacted

by template size since these are spatially continuous and mostly filled. In contrast,

more spatially complicated cases can be negatively impacted by template size. A larger

template size covers a wider area, and it is beneficial for predicting the aliased label L.

Figure 4.6 shows the performance of the trained model using different template
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Figure 4.5: Comparisons of the performance of the trained CNN with different template
sizes (T ), i.e., 32 (blue), 64 (green), 128 (red), and 256 (purple) range gates on mostly
filled precipitation (left), and sparsely filled precipitation (right). It is tested with three
different va group, i.e., G1, G2, and G3.

sizes as a function of range. The top panels are the µA (%) on the mostly filled pre-

cipitation scans, and the bottom panels are the µA (%) on the sparsely filled precipi-

tation scans. The evaluation results for G1, G2, and G3 are provided in the left, mid-

dle, and right panels, respectively. For the mostly filled precipitation, in G1, in range

gates 0–127, all four template sizes show similar performances. However, in range

gates 128–256, the performances are shown in this order: µA(128) > µA(256) >

µA(64) > µA(32). In G2 and G3, all four template sizes show the similar perfor-

mances. For the sparsely filled precipitation, in G1, the performance is shown in this

order: µA(256) > µA(128) > µA(64) > µA(32). It is noteworthy that the performance

reduction is shown at each template boundary, unlike the mostly filled precipitation

result. The sparsely filled precipitation scans include the non-uniform wind field, spa-

tially discontinuous, and isolated storms. For these scans, more information would

certainly help determine the dealiasing decisions. T = 128 and T = 256 are similarly
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performed, however, T = 128 shows the boundary reduction on its template boundary

and T = 256 can be done in one prediction to cover the 64 km while T = 128 needs

two prediction. In G2, both T = 256 and T = 128 exhibit similar best performance,

followed by T = 64, and T = 32. Similar to G1, there is a reduction in performance at

the template boundary of T = 128, while such reduction is not observed in T = 256.

In G3, all four template sizes show similar performances. For both mostly filled and

sparsely filled precipitation scans, the improved performance is observed as tendency

when evaluation va is higher.
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Figure 4.6: Performance of the CNN algorithm as a function of range with the different
T , i.e., 32 (orange), 64 (magenta), 128 (green), and 256 (red) range gates. It is also
compared to the conventional region-based dealiasing method (blue dashed line). The
first row is µA in percentage averaged by the number of scans for the mostly filled
precipitation. The second row is also the µA but for the sparsely filled precipitation
scans. It is analyzed with groups G1 (left), G2 (center), and G3 (right).

In Figure 4.6, velocity dealiasing results with different template sizes as a func-

tion of the range are compared against the more traditional region-based method [26].

The region-based method has the option to utilize the environmental background wind

for referencing the first-guess field velocity estimation. With the goal of a fair com-

parison between the CNN and region-based methods, no environmental background
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wind is used. With the mostly filled precipitation scans, the region-based dealiasing

method properly dealiases the velocity and shows stable performance with range com-

pared to the CNN method. However, with the sparsely filled precipitation scans, the

region-based dealiasing method performs poorly at the initial range gate compared to

the T = 256 model, and it does not show any measurable performance reduction at far

ranges, while the CNN method shows significant performance reduction. In the region-

based method, estimating the velocity of the first-guess field is important. If it correctly

predicts the velocity of the first-guess field, the performance is consistent along the

range. However, if it fails to estimate the velocity aliasing of the first-guess field, it

leads to failing the aliasing prediction of the entire storm cell. For sparsely filled pre-

cipitation, which includes multiple isolated storms, a larger number of first-guess field

predictions is required than in a single-storm case. When the storm is isolated and

far from the radar, it is much more difficult to estimate the first-guess field even for a

human-expert implementation. For the higher va groups (G2 and G3), overall perfor-

mance is gradually improved and the performance differences among different template

sizes are also reduced. Although class weight helps equalize the less populous labels to

be trained by weighting them higher, the distribution of the labels in the evaluation sets

is different. That is, G3 contains more L0 than G2 and G1. Therefore, evaluation using

G3 results in higher overall performance than G2 and G1. The same explanations can

be applied to comparisons between G1 and G2.

In the next chapter, the proposed velocity dealiasing algorithm will be quantita-

tively compared against the region-based method. The comparison is performed with

final parameters such as T = 256 and va ∈ [7, ν] and evaluated with µA and σA. Quali-

tative analyses will be performed with a large set of radar scans and error analysis and

discussion will be conducted.
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Chapter 5

Results and Discussion

In this chapter, the final training parameters are determined through a sensitivity test.

The evaluation will be performed using these parameters, and the statistical results will

then be analyzed.

5.1 Evaluation Method and Metrics

The training parameters are determined empirically through the sensitivity tests in

Chapter 4. To ensure sufficient data coverage, a template size (T ) of 256 (azimuth

gates) × 256 (range gates) is selected. For each iteration process, combined va, which

is 7m s−1 and one random va between va = 8 and 23m s−1, is used. The training class

weight is used as 1 : 2.61 : 77.0, which is also empirically determined.

Evaluation is performed with synthesized X-band radar velocity field based on data

from the NEXRAD S-band radar, which provides readily available ground truth data.

However, false labels can persist even after applying filters to mitigate clutter and unde-

sirable echoes, such as planes and biological echoes with high velocity, which can neg-

atively affect the evaluation of meteorological echoes. Occasionally, the CNN output

appears more meteorologically “natural” than the “ground truth” data from NEXRAD

S-band radar. This is because the so-called ground truth data can be contaminated by
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non-meteorological echoes (e.g., ground clutter, low-SNR clear-air echoes, aircraft), as

the training process is performed with the non-masked data. In our experience, most

humans would prefer the CNN output compared to ground truth data from NEXRAD S-

band radar velocity field as the CNN output is spatially continuous and has less speckle

noise. Unlike the training process, the evaluation is performed only on the masked area

of precipitation. The use of non-meteorological echoes including clear air data could

be useful for training on complicated storms, such as sparsely filled precipitation, as

it provides wider coverage since CNN is less prone to noise or bad pixels. However,

as explained above, non-meteorological echoes or speckles from false labels are not

considered during the evaluation process, as our primary interest is only precipitation.

For a fair comparison, the following common masking conditions were applied on both

CNN and region-based methods: Hydrometeor Classification Algorithm (HCA) is used

to exclude non-precipitation echoes, including biological echoes, the residue of ground

clutters, and clear echoes. SNR thresholding is used to filter poor-quality data, and re-

flectivity mask is utilized to filter data outside of 0 < Z < 80 dBZ, which is pre-applied

as part of the algorithm for region-based method.

During the training process, all scans are trained together. However, for evaluation,

the data are split into two categories based on the amount of precipitation filling: mostly

filled and sparsely filled precipitation, where the classification is manually performed.

For evaluation, the test data are further divided into three groups called G1, G2, and

G3. It is based on the va used since it is challenging to see the impact of less-populated

labels when analyzing all labels simultaneously, particularly when the va is higher. G1

includes the performance of va = 7 and 9 m s−1, G2 includes va = 11 and 13m s−1,

while G3 comprises va = 21 and 23m s−1. The separation of groups is based on

label population, where G1 includes L2, G2 has a higher proportion of L1, and it does

not include L2, and G3, which are mainly includes L0. The label population ratio is
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Table 5.1: The population ratio of each label (L1, L2, and L3) of three different evalua-
tion groups: G1, G2, and G3.

L0 L1 L2

G1 109 47.8 1
G2 6.89 1 0
G3 119 1 0

presented in Table 5.1.

To evaluate performance, µA and σA are measured, whereA represents the accuracy

of a single scan. The accuracy is calculated as the ratio of the number of correctly

predicted cells to the total valid number of cells in one scan. µA is the mean A averaged

by the number of scans, while σA represents the scan-averaged standard deviation of

A to check how the accuracy varies and is dispersed. In addition, since the overall

performance could mitigate the performance on the less-populated label, the accuracy

for each label (L0, L1, and L2) is also calculated.

5.2 Experimental Results

As explained in Chapter 2, the region-based method has the option to utilize the en-

vironmental background wind to aid the first-guess field; however, in this study, envi-

ronmental background wind is not utilized in order to provide a fair comparison. In

Figure 5.1, µA and σA of CNN and the region-based dealiasing methods from each va

group are compared. In mostly filled precipitation scans, in G1, the CNN method has

the lower µA and higher σA than the region-based method. In G2 and G3, it shows the

similar performance on both methods of µA and σA. However, in sparsely filled pre-

cipitation scans, in G1 and G2, the CNN method has a higher µA and lower σA than the

region-based method. In G3, µA is similar on both methods, but the σA is still lower on
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CNN than the region-based method. Typical X-band radars that are set up to provide

a 60-km coverage (ra = 60 km) have a va at approximately 15 m s−1. For that config-

uration, performance on G2 is most representative. It includes a reasonable amount of

L1 and shows high performance on both mostly filled and sparsely filled precipitation

scans.
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Figure 5.1: Comparison results on velocity dealiasing performance between the pro-
posed CNN method (blue) and the conventional region-based dealiasing method (red).
Comparison is performed with mean accuracy (µA) (top) and the standard deviation
(σA) (bottom) in percentage. It is analyzed with the three different va groups, i.e., G1,
G2, and G3. The first column is for the mostly filled precipitation, and the second
column is for the sparsely filled precipitation.

In Table 5.2, the overall performances, which is the weighted sum of G1, G2, and

G3, are calculated with Equation (5.1) on each aliased label, i.e., non-aliased (L0),

once-aliased (L1) and twice-aliased (L2).

ΠA =
∑
i

∑
l∈L

w(Gi,l)µ
(Gi,l)
A , (5.1)

where w(Gi, l) represents the weight of labels in group Gi and set l, which are iterated
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Table 5.2: Comparisons of the total performance metrics between the proposed CNN
method and the conventional region-based dealiasing method. Total performance met-
rics are calculated by multiplying the different va group performance metrics and the
corresponding weights.

ΠA L0 L1 L2

CNN 99.58 99.62 97.89 93.44
Mostly filled Region-Based 99.90 99.87 98.54 94.30

Difference -0.32 -0.25 -0.65 -0.86
CNN 99.23 98.39 96.85 84.96

Sparsely filled Region-Based 96.39 96.88 91.45 74.39
Difference 2.84 1.51 5.39 10.57

Table 5.3: Weights of the different va groups, i.e., G1, G2, and G3 for L0, L1, and L2.
The weight for each group is calculated by the inverse of the number of labels for each
evaluation metric.

va Group L0 L1 L2

G1 0.25 0.61 1.00
Mostly filled G2 0.33 0.35 -

G3 0.42 0.04 -
G1 0.28 0.74 1.00

Sparsely filled G2 0.35 0.25 -
G3 0.38 0.01 -

through all groups (G1, G2, and G3) and all label sets (L0, L1, and L2).

The weights, which show the population ratio of each group based on the va used,

are shown in Table 5.3, where the sum of the weights is ‘1’ for each label, and the

overall performance of the CNN and region-based methods are compared against each

other.

For the mostly filled precipitation scans, both methods achieve similarly high ΠA

(>99%), with the region-based method exhibiting slightly better performance. The

performance difference between the two methods is similar with a discrepancy of less
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than 1% for each label. For the sparsely filled precipitation scans, which has a higher

complexity than the mostly filled precipitation scans, the CNN method achieves higher

ΠA compared to the region-based method. The overall accuracy ΠA for both methods

is higher than the group specific accuracy (µA(G = G1)) since ΠA is derived with more

elements in L0 as the set includes groups G2 and G3. The overall performance for

the three aliasing labels is in the order of ΠA(L = L0) > ΠA(L = L1) > ΠA(L =

L2), meaning that the CNN model is more effective in identifying non-aliased regions,

followed by once-aliased regions, and then twice-aliased regions. Identifying twice-

aliased regions requires correct identification of once-aliased regions that are adjacent.

As such, it is not surprising that ΠA(L = L2) is lower than ΠA(L = L1). The same

reasoning can be applied to ΠA(L = L0) > ΠA(L = L1).

Case studies are now conducted to demonstrate the effectiveness of two dealiasing

methods under conditions with mostly filled and sparsely filled precipitation scans. The

studies are conducted using NEXRAD S-band radar velocity data and PX-1000 X-band

radar velocity data.

The image displayed in Figure 5.2 presents an example of a PPI scan with mostly

filled precipitation, as shown in Z. The evaluated va is 7 m s−1, which includes L0,

L1, and L2. The wind field is spatially continuous, which can be seen in ground truth

vt. Both CNN and region-based approaches are able to dealias the velocity in vi with

a precision of over 99%, since the storm is extensive and spatially continuous, which

contains sufficient information to determine aliasing also for a human. Such storms

are typical for widespread stratiform precipitation events. The CNN and region-based

method results are shown in vp and vc for each.

Figure 5.3 provides an example of how a CNN method can be used to dealias

sparsely filled precipitation scan, which is indicative of convective storms. This case is

also synthesized with 7 m s−1 of va and it contains multiple isolated storms, as shown
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Figure 5.2: An example PPI scan with a mostly filled precipitation. Z is the reflec-
tivity, vi is the input velocity, vt is the ground truth, vp is the dealiased velocity using
the predicted aliased label from the CNN, and vc is the dealiased velocity using the
conventional region-based dealiasing method. The data are synthesized using a 1.32◦

-EL scan from the KTLX on 4 July 2017 05:38 UTC. This example shows the result
of processing a velocity field observed at 7 m s−1. For most simple cases such as this,
both methods are able to produce an accurate dealiased velocity field. This example
shows over 99% accuracy from both CNN and region-based methods.

in Z and vt. In vi, the wind field is discontinuous, and extremely challenging to distin-

guish the aliased area even for a human. The CNN method (vp) is able to successfully

dealias most of the isolated storms, whereas the region-based method fails at multiple

isolated storms. It is because the region-based method assumes that the first-guess field

is non-aliased, and it leads to failure to decide the aliasing of the whole isolated storm

in case of failure estimating the first-guess field, which is shown in the yellow circle

of vc. The assumption that the first-guess field is non-aliased can be problematic, as

illustrated in this example. The CNN model has a wider view than the region-based

method, which aids in aliasing decision-making.

In the domain of CNN processing, there is a notion of the receptive field, which

is the region that each particular CNN layer is looking at [82]. The receptive field

in a CNN is a two-dimensional processing window that is created by multiple layers

of convolution. As one would expect, more successive convolution results in a wider

processing region. With the CNN model that processes each radar cell through multiple
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layers, the receptive field is wide. In the proposed CNN architecture, the receptive field

includes the whole PPI, which is the whole radar coverage. This wide view enables

the model to comprehend the overall structure of a storm and identify areas of aliasing,

similar to how a human would perceive it. By training the CNN to identify large-scale

features through this wide view, it becomes capable of identifying patterns that are not

apparent when considering only individual radar cells.

Dealiased Results

Input Velocity (Aliased) Ground Truth CNNReflectivity Region-Based

Figure 5.3: This figure shows an example PPI scan for isolated storms observed at va =
7ms−1. The data are synthesized using a 1.32◦-EL scan from the KTLX on 30 April
2017 19:14 UTC. The CNN method successfully dealiased the scan as it processed
the entire scan all at once. The region-based method, however, failed at a number
of isolated storms, which are indicated in the yellow circle. In this example, CNN
method predicts the 99.5% on L0, 99.4% on L1, and 100% on L2, while the region-
based method predicts 77.9%, 67.8%, and 84.4% on L0, L1, and L2 for each.

Another example of an isolated storm PPI scan synthesized from the NEXRAD S-

band radar is presented in Figure 5.4. It also contains multiple isolated storms, which

are shown in Z. In vi, an isolated storm in the white dashed circle is aliased. As with

the previous example, the dealiased velocity using CNN (vp) is similar to the ground

truth vt. However, the region-based method failed to perform the velocity dealiasing at

the same location, as shown in vc.

Figure 5.5 shows the dealiasing result obtained from the PX-1000 X-band radar

velocity, which is the target of this study. In this example, va is set to 15.7 ms−1 and

the scan contains two large storms. The bottom isolated storm includes the aliased
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Figure 5.4: This figure shows an example PPI scan with isolated storms observed at
va = 8m s−1. The data are synthesized using a 0.88◦-EL scan from the KTLX on
14 Jan 2017 19:09 UTC. The CNN method successfully dealias with the velocity, it
is similar to vt. The region-based method, however, failed to dealias the velocity in a
white dashed circle.

velocity in vi, whereas the top storm does not. With the proposed CNN method, the

aliased storm is successfully dealiased as shown in vp with the precision of 99.6%,

92.7% for each L0 and L1. L2 does not exist in this case. In contrast, the region-

based method inappropriately dealiases the entire bottom isolated storm, as shown in

dealiased velocity (vc). This failure can be attributed to the inaccurate estimation of the

first-guess field, as explained above in the failed isolated storm dealiasing.

One key feature of this study is that the proposed model is trained using X-band

radar velocity data that were derived from S-band data. The results show the potential

of applying CNN unfolding technique on X-band radar velocity fields for wide and

spatially continuous storms. This is because the model was trained on features extracted

from wide and spatially continuous storm scans, which enables the model to learn the

features from the data regardless of different range resolutions. However, the feature

of small-scale and rapidly changing storms can be different depending on the range

resolution. Therefore, training the small-scale and rapidly changing storm features

would help to improve the performance to cover that features.

Another PX-1000 example is shown in Figure 5.6. As shown in Z, this example
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Figure 5.5: Velocity dealiasing PPI result observed with PX-1000 at a 2.6◦ -EL on 20
May 2013 19:34 UTC . Z is the reflectivity, vi is the input velocity, vt is the true velocity
which is used as ground truths, vp is the dealiased velocity with proposed CNN method,
and vc is the dealiased velocity with traditional region-based dealiasing method.

includes a “hook echo,” which is indicative of a mesocyclone with an embedded tor-

nado. Compared to vt, while both velocity dealiasing methods successfully dealias the

velocity on wide and spatially continuous storms, as shown in an orange dashed circle

at the bottom part of the PPI scan (vp and vc), there is incorrect dealiasing in the white

dashed circle on both CNN and region-based methods. To examine the features of this

signal in more detail, an enlarged figure is shown in Figure 5.7. In vi, there are three

aliasing parts: one is from the bottom wide and spatially continuous storm, one is in the

yellow dashed circle, which is also part of a wide and continuous storm, and another

is in the white dashed circle, which is the hook echo and an important tornadic signal.

The bottom storm and the storm in the yellow dashed circle seems correctly dealiased

on both methods. However, in the white dashed circle, the CNN method failed to

predict the aliasing label because this feature is not sufficiently trained with S-band

NEXRAD data. The region-based method also failed to dealias the velocity because

the velocity of this storm is rapidly changed, which could also be challenging for the

continuity checking method, even though it is able to correctly estimate the first-guess

field aliasing. Therefore, further training with X-band radar data will be expected to

handle small-scale and rapidly changing echoes that may not be captured with S-band
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data.

Dealiased Results

Input Velocity (Aliased) Ground Truth CNNReflectivity Region-Based

Figure 5.6: Velocity dealiasing PPI result observed with PX-1000 at a 2.6◦ -EL on 20
May 2013 19:50 UTC.

Dealiased Results
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Figure 5.7: Enlarged velocity dealiasing PPI result observed with PX-1000 at a 2.6◦

-EL on 20 May 2013 19:50 UTC.

Figure 5.8 shows another example of a PPI scan obtained from the PX-1000 X-band

radar, without ground truth (vt). As previously mentioned, the availability of ground

truth is significantly important for supervised training. Additionally, it is also important

in the evaluation of the algorithm’s performance because the lack of ground truth limits

quantitative evaluation. This scan is the velocity dealiasing PPI result observed with

PX-1000 at a 4◦ -EL on 05 May 2022 00:09 UTC. In this scan, the va of 11.6 ms−1 is

utilized.

In Z, multiple isolated storms are visible, with the convective storm at the center.

In vi, the aliased isolated storms and aliased area inside the center convective storm can
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be observed. Since ground truth is not available, the performance evaluation is limited.

However, the inter-comparison of vp and vc shows that vc still includes aliasing parts

after velocity dealiasing on the white and yellow dashed circle, unlike the vp, which

shows a consistent pattern. In vc, the isolated storms inside the yellow dashed circle

cannot be evaluated without ground truth since the velocity of the entire isolated storm

is continuous. However, the storm in the white dashed circle shows a discontinuity in

the dealiasing result. The storm in the white dashed circle of Z has light precipitation,

far away from the radar center, and therefore, it seems to have a low SNR, and sig-

nals are unstable and discontinuous, resembling interference. This indicates that the

continuity-checking method can be failed inside the storm when the signal is unstable,

not just for the incorrect estimation of the first-guess field.

The lack of ground truth is the main concern when using the CNN method. In terms

of future work, there are two considerations. One approach is to manually generate the

ground truth by hand-dealiasing, but this would require a significant amount of human

labor since the training dataset requires a large amount of data. Another consideration is

semi-supervised learning, as mentioned in Chapter 3. Training small-scale and rapidly

changing signals such as tornadoes is challenging with S-band radars since even these

longer-wavelength radars can be aliased. The semi-supervised learning enables the

model to learn with the combined datasets of labeled and unlabeled data at the same

time. Therefore, improved performance is expected with training combined dataset

with labeled data, which are synthesized X-band data from S-band radar data, and

unlabeled data, which are X-band radar data from X-band radar system.
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Figure 5.8: Velocity dealiasing PPI result observed with PX-1000 at a 4◦ -EL on 05
May 2022 00:09 UTC.

5.3 Error Analysis

In this section, error analysis is conducted by separating the measurement type as speck-

les and non-speckles. The separation process involves grouping together the error pixels

that are connected. If a group has less than a threshold (here, 10 pixels are used as a

threshold), it is considered a speckle. Otherwise, it is classified as a non-speckle.

An incorrect prediction is presented in Figure 5.9, where panel (a) displays the

true labels, and panel (b) shows the predicted labels generated using the CNN model.

Panels (c)–(h) represent the softmax classifier outputs, which normalize a vector to the

[0, 1] range for each label, resembling a probability distribution of a random variable.

Notably, significant overlaps exist between the labels ‘−1’ and ‘0’. Some ‘0’ labels are

incorrectly classified as ‘−1’ labels.

In this example, the otherwise correct label ‘0’ has the second highest probability.

In order to obtain more insight into the incorrect prediction, a similar scan taken at a

similar time from a different elevation angle is examined. In Figure 5.10, the predicted

label is generally accurate, and it overlaps somewhat between the label ‘−1’ and ‘0’. A

region with a low probability, lighter than surrounding pixels, is evident in the correct
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label ’0’, and the second-highest probability, which is darker than the adjacent pixels,

is seen in the incorrect label ‘−1’.
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Figure 5.9: An example of failed prediction with non-speckle echoes: Panel (a) shows
the true label, which is synthesized using a 0.88◦-EL scan from the KTLX on 16 Jan-
uary 2017 06:33 UTC; Panel (b) shows the predicted label; Panels (c–h) represent the
probability of each label from the CNN model. One can see that the green patch near
azimuths 0–45◦ at far ranges is incorrectly predicted. The correct label (L = 0), how-
ever, has a significant probability value, which would result in a correct prediction if
selected.
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Figure 5.10: A similar scan to Figure 5.9 but the CNN model succeeded the prediction
of aliasing labels (green patch in panel (b) of Figure 5.9). Panel (a) shows the true
label, which is synthesized using a 1.32◦-EL scan from the KTLX on 16 January 2017
06:33 UTC. In panel (b), the green patch near azimuths 0–45◦ at range gates 180–256
from panel (b) of Figure 5.9 is now correctly identified. Panels (c–h) represent the
probability of each label from the CNN model.
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Substituting the incorrect pixels with labels having the second highest probability

would have increased the accuracy from 88.1% to 99.7%. The replaced outcomes are

displayed in Figure 5.11, where panel (a) shows the true label, panel (b) indicates the

original predicted label and panel (c) is the replaced label from panel (b) using labels

with the second most probable prediction for failed ones. Among the total of 495 test

data scans, 168 non-speckle scans were examined, and 80.9% of them had the correct

label as the second most probable prediction. Although it is challenging to explain

false predictions due to the complexity of the CNNs, it is evident that the CNN model’s

performance could improve considerably if the second most probable predictions were

selected under such circumstances. However, it must be emphasized here that this

cannot be recovered in practice. This example is presented here only to illustrate the

potential for improvements and to provide insights into future possibilities.

0 64 128 192 256
Range gate

0

45

90

135

180

Az
im

ut
h 

ga
te

(a) True Label

0 64 128 192 256
Range gate

0

45

90

135

(b) Predicted Label

0 64 128 192 256
Range gate

0

45

90

135

(c) Replaced Label

Void

2

1

N

+1

+2

Label

Figure 5.11: This figure shows the replaced result by the second most probable predic-
tion on failed pixels: Panel (a) is the true label; panel (b) is the raw predicted label, and
panel (c) is the same as the middle panel but incorrect labels are replaced by ones with
the second highest probability. The value of A increased from 88.1% in (b) to 99.6%
in (c).

5.4 Discussion

Generating a training dataset is arguably the most crucial step in developing a suc-

cessful deep-learning model. One method of designing a deep-learning model involves

incorporating the Nyquist velocity and mean wind as part of the input metadata. In
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essence, knowing the scan elevation and mean wind enables us to roughly anticipate

where aliasing might occur, making the use of these two variables useful in identifying

aliasing locations. However, in this study, a different strategy was taken. That is, data

normalization and augmentation. In our view, both methods achieve similar outcomes.

The data normalization would eliminate the need for Nyquist velocity to be included as

a part of metadata, while the data augmentation including rotating the PPI and negating

the velocity values eliminates the need for mean wind, allowing the model to function

without these variables.

Wind speed changes rapidly as altitude varies, and the possibility of aliasing can

vary depending on scan elevation and range. One could argue that all scan elevations

should be included in the training datasets. However, as mentioned previously, our hope

is to let the CNN model comprehend the concept of aliasing rather than just memorizing

particular patterns. Similar to how humans learn the aliasing concept, having all scan

elevations is not necessary. Nonetheless, further research to examine the real-world

outcome may be valuable in the future.

If the CNN model fails to identify certain velocity discontinuity features, replacing

the output with the second-highest probability label can improve the accuracy from

88.1% to 99.7%. This indicates that there is room for improvement in the recognition

of such features. While there is currently no obvious solution at the moment, recovering

some of these errors may lead to significant enhancement in overall performance.

Applying the CNN method to X-band radar velocity synthesized from S-band radar

velocity remains challenging when it comes to training for small-scale and rapidly

changing signals, such as tornadoes. This is because S-band data may not capture these

small-scale and rapidly changing signals adequately. However, a potential solution is

to use semi-supervised learning, as explained in Chapter 3. This approach allows us

to train unlabeled data using a pseudo-label approach. The model can be trained using
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the labeled velocity, which is S-band radar with the ground truth. This is the same

process as supervised learning. The generated model predicts the pseudo-label for the

unlabeled data. After the quality control of the pseudo-label by thresholding with the

softmax output value, the pseudo-label, and labeled velocity can be trained again. The

benefit of this approach is that it enables us to train unlabeled data, which can include

X-band radar data with limited availability of ground truth, or even S-band aliased ve-

locity data that includes severe storm features.

Finally, the computational expense is a potential issue when utilizing a deep learn-

ing model. The training time of our design is on the order of tens of hours with a

supercomputer while the inference time is only a fraction of a second, making it feasi-

ble for real-time applications.
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Chapter 6

Conclusions and Future Work

In this study, velocity dealiasing using a CNN method is proposed, implemented, and

evaluated. For the training, input velocity, and true label fields are generated from

the non-aliased NEXRAD S-band radar velocity field. The velocity field is artificially

aliased to produce the aliased velocity fields that simulate the effect of using X-band

radar. However, the collected data tends to have an inherent mean bias due to the

regional dominant wind direction. To overcome this issue, data augmentation is per-

formed by rotating the velocity field in azimuth and negating the sign. The class weight

is also used to balance the less frequently occurring labels, which are mostly the aliased

labels. The optimization aims to minimize the difference between the true and the pre-

dicted labels during the training using the cross-entropy as the cost function. The ve-

locity dealiasing using a CNN method is performed with input velocity vi, predicted

output label Lp, and the Nyquist velocity va. A sensitivity test was conducted to deter-

mine the best training conditions, which resulted in the selection of a template size of

T = 256 and training va ∈ [7, ν].

Evaluation is performed by comparison to the region-based method, which is a part

of the Py-ART software collection. The evaluation is divided into three groups, denoted

as G1, G2, and G3, where each group represents a different set of velocity values (va).

It is analyzed on precipitation scan characteristics (mostly filled and sparsely filled).
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These groupings provide insights into how the algorithm performs in real-world sce-

narios when certain distributions of aliasing conditions are present. Specifically, G1

represents a severe aliasing condition, G2 represents a typical aliasing condition from

an X-band radar, and G3 represents a collection of velocity fields that are the easiest to

process.

When dealing with mostly filled precipitation, both the CNN and region-based

methods are able to generate the dealiasing label and produce the corresponding

dealiased velocity fields, with a performance difference of less than 1 %. This demon-

strates that the CNN method can be effectively employed in situations where precip-

itation is mostly filled. However, for sparsely filled precipitation, the CNN method

performs significantly better than the region-based method.

The performance difference can be attributed to the discontinuity of the storms,

which poses a challenge for the region-based method as it struggles to produce the

first-guess fields correctly. Although utilizing external wind measurement could aid

this process, this study did not employ this approach to ensure fairness in comparisons.

In contrast, the CNN model, which has a receptive field covering the entire scan, can

process the entire scan in one shot. Through the large collection of velocity fields

in the training dataset, one can surmise the CNN model has learned what a proper

velocity field and the corresponding aliasing label should look like. Consequently, it

can produce the correct labels despite the discontinuity of the storms. This level of data

comprehension and processing is what a human would do during a hand dealiasing

process.

Case studies were conducted on synthetic X-band (that were derived from S-band

NEXRAD radar) velocity and native X-band PX-1000 radar velocity field. For the

synthetic X-band (derived from S-band) radar, both the CNN and region-based methods

performed well for mostly filled scans. However, for sparsely filled scans, the CNN
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performs well, while the region-based method failed for some isolated storms since

they failed to estimate the first-guess field. For the X-band PX-1000 radar, the CNN

model showed high performance for wide and spatially continuous storms since these

features were included in the training dataset, whereas the region-based method has

a possibility of failure when estimating the first-guess field. For the small scales and

rapidly changing storms like tornadoes, the current model can not sufficiently cover the

features due to the different range resolutions and the limited dataset of those features

in training. Therefore, further study may be required to cover these features.

Several future works are suggested by the findings of this study. First, there are

cases where the CNN model can encounter failures. This study shows that more than

80% of the errors (from the non-speckle echoes) could be eliminated if they were iden-

tified as the label with the second highest probability. Further investigation might be

required to recover this type of error into the correct prediction.

Secondly, size dependency should be addressed in future improvements. With the

current implementation, interleaving can be used to handle the full-resolution data. That

is, for example, odd azimuths and even azimuths are processed separately since a com-

plete 360◦ scan can be covered with 180 2◦ radials. Of course, discontinuity can occur

whenever they disagree. In addition, for spatially rich weather phenomena, this method

may miss small-scale features or predict incorrect labels since the interleaving method

does not increase spatial resolution. Thus, addressing size dependency is crucial to en-

able this method to handle inputs of varying sizes to use this method regardless of scan

strategy.

Additional research would be recommended for future work to predict the alias-

ing labels of small-scale and rapidly changing storms. To capture these features, it is

recommended to include the X-band radar velocity from X-band radar system in train-

ing dataset. One potential approach is to use semi-supervised learning, which involves
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training the model with a combined dataset that includes labeled X-band radar data

synthesized from S-band radar system such as NEXRAD and unlabeled X-band radar

data from X-band radar system such as PX-1000.
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