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ABSTRACT 

The vestibular system plays a critical role in balancing and the vestibulo-ocular reflex 

(VOR), which aids in maintaining visual stability during head movements. Current methods of 

vestibular research rely on scleral coils and video-oculography (VOG) with markers. These 

processes are potentially damaging to the test subject and painful. A comfortable non-invasive 

procedure is VOG without the use of markers. However, this option foregoes the accuracy of the 

others. A machine learning approach was explored to see if this gap in functionality could be 

closed. VOG is a visual-based technique of measuring eye movements. This method is used in 

vestibular and oculomotor research and medical diagnosis involving vertigo and stroke. A Machine 

Learning system was developed by training object-detection models from TensorFlow with a 

headset fabricated for this project. The horizontal/vertical movements were tracked by recording 

the model’s bounding box. From the bounding box, the center of the pupil can be derived via the 

geometric center. The location of the pupil center is used to calculate the angular velocity of the 

eye. A 3d-printed headset was fabricated to test the system using a gyroscope, raspberry pi, button 

light, and camera. The headset’s rotational data collection is processed along with the images 

captured. The rate of error was calculated to be more than scleral coils, although a more thoroughly 

trained model could be able to reduce error. The pupil miss rate limits the accuracy but using a 

higher speed and resolution camera will ameliorate the problem. A machine learning process was 

explored for the use of vestibular-ocular research in 2D. A low-cost headset was fabricated as an 

alternative to the current methods which are significantly more expensive.  
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Chapter 1. Overview 

1.1 Introduction 

1.1.1 History of Eye Tracking 

 Eye tracking technology, despite being considered a modern invention, has been utilized 

since the late 1800s when psychologist Louis Emile Javal began researching eye movement during 

reading [1]. In the early 1900s psychologist Alfred Yarbus utilized the corneal reflection technique 

to study eye movements and visual perception. This technique bounced light off the cornea of the 

eye and recorded the reflection to track the movements of the eye with a high degree of accuracy 

[1,2]. The development of computer technology and software in the 1990s, along with digital 

cameras becoming affordable, led to the creation of more advanced eye-tracking systems capable 

of recording eye movements with greater precision. These systems have been used in fields such 

as human-computer interaction, assistive technology, and are increasingly employed as a tool to 

diagnose and monitor neurological disorders [3-6].  

Neurological disorders can impact eye movement and eye tracking technology can detect 

and analyze these changes For example, gaze estimation aids in diagnosing autism and attention 

deficit hyperactivity disorder (ADHD) as children with autism struggle with making and sustaining 

eye contact while children with ADHD have difficulty sustaining attention/gaze [7-9]. Our 

research aims to create a diagnostic tool for a wide range of neurological disorders including 

stroke, multiple sclerosis, early onset ataxia, concussion, and vertigo by tracking eye movement, 

gain, and the vestibulo-ocular reflex (VOR). 
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1.1.2 Eye and Vestibular System Anatomy 

The vestibular system plays a crucial role in maintaining balance and equilibrium. The 

vestibulo-ocular reflex (VOR) assists in stabilizing visual gaze during head movements. To track 

the VOR, a machine learning-based video-oculography (VOG) device without markers was 

developed. VOG is a widely used visual-based process for measuring eye movements. Before 

discussing the intricacies of our VOG system without markers, a brief introduction to the anatomy 

of the eye and the vestibular system is necessary.   

 

 

Figure 1.1 Human Eye Anatomy (a) Sagittal illustration of the anatomy of the human eye [10] (b) Coronal view of 

the human eye with iris, pupil, limbus, and sclera labeled [11]. 

Figure 1.1 shows the anatomy of the human eye. The cornea is the front of the eye and is a 

transparent layer that protects the eye from outside damage. Behind the cornea is the iris which is 

the colored part of the eye. The iris controls the size of the pupil which in turn controls the amount 

Pupil 
Iris 

Limbus Sclera 
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of light let in. Between the iris and the cornea is a layer of aqueous humor that enables the passage 

of light, provides nutrients, and aids in maintaining intraocular pressure. The pupil is located inside 

the iris and helps focus the light which is then passed to the retina. The retina receives this focused 

light and converts it into neural signals that are sent through the optic nerve to the brain. The retina 

transforms the light signal into electrical signals through its cone and rod cells. The cone cells 

allow the eye to make out fine details and colors. The rods allow for less focused vision but can 

better track movements and mostly make up the peripheral view. Directly behind the pupil is the 

posterior pole and just above it is the fovea. The fovea is a small pit in the retina that is made up 

of exclusives cone cells. A line drawn from the fovea to the center of the pupil is the visual axis. 

The visual axis is where our eye is focusing at any given time and is much clearer than peripheral 

vision. The brain then decodes the electrical signals which result in vision. 

 

Figure 1.2  Vestibular System Anatomy. Illustration of the anatomy of the inner ear with the semicircular canals, 

utricle, and saccule labeled [12]. 

 

The vestibular system consists of three semi-circular canals that detect angular acceleration 

and the utricle and saccule which detect linear acceleration, gravitational acceleration, and position 

of the head [13]. The utricle is a small, fluid-filled sac located in the inner ear. It is one of the two 

otolith organs. Within the utricle are hair cells, called stereocilia, that are covered with tiny calcium 
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carbonate crystals called otoliths. When the head movement occurs, the otoliths move along with 

the fluid in the utricle, which causes the stereocilia to bend. This bending generates electrical 

signals that are sent to the brain via the vestibular nerve. The brain uses these signals to determine 

the orientation of the head and the direction and speed of movement in order to help maintain 

balance and stabilize the eyes during head movements [14]. The saccule is the other otolith organ 

located in the inner ear and is located adjacent to the utricle. The saccule works almost identically 

to how the utricle does. However, the saccule is oriented vertically, whereas the utricle is oriented 

horizontally. This means the saccule is responsible for detecting vertical linear acceleration, while 

the utricle is responsible for detecting horizontal linear acceleration. The three semi-circular canals 

are the other major components of the vestibular system and are fluid-filled tubes that are oriented 

perpendicular to each other. Each semi-circular canal is responsible for sensing rotational 

acceleration for one of the three dimensions. The semi-circular canals have a wider region called 

the ampulla, which contains stereocilia that are embedded in a gelatinous structure called the 

cupula. When the head rotates in a particular direction, the fluid in the corresponding semicircular 

canal moves, causing the stereocilia to bend the cupula creating a signal. As the head rotates, the 

generated electrical signals are transmitted to the brain via the vestibular nerve. The brain uses 

these signals to determine the direction, speed, and duration of the head movement [14]. The 

semicircular canals work in combination with the utricle and saccule to provide a comprehensive 

picture of the body’s position and movement. The vestibular system’s purpose is to maintain 

balance, stabilize vision, and coordinate movements. VOG will be used to track an individual’s 

VOR to gain insight into neurological conditions. The VOR is the three semi-circular canals 

working with the utricle and saccule in order to send excitatory signals to the oculomotor nuclei 

for the opposite direction of acceleration detected and inhibitory signals to the oculomotor neurons 
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for the same direction [13].  These signals cause saccadic eye movement in the opposite direction 

of the acceleration detected by the stereocilia which allows for the gaze to remain steady while the 

head is moving. 

1.2 Eye Tracking Techniques 

1.2.1 Current Eye Tracking Methods 

The current methodologies used for tracking the VOR’s response include scleral search 

coils or electro-oculography (EOG), infrared-oculography (IRO), and VOG. Scleral search coil 

eye tracking is widely regarded as the gold standard for eye tracking and is often implemented in 

animal studies due to its high accuracy [15]. This method utilizes a small magnetic coil implanted 

on the sclera which generates a small electrical current induced by the magnetic field within the 

coil, that is tracked to determine the movement of the eye [16]. However, the invasive and painful 

nature of this method makes it impractical for use in human subjects.  

(a)  (b)  

Figure 1.3 Scleral Search Coil Eye Tracking. (a) Scleral search coil made of silicone rubber annulus with 

induction coils of insulated copper wire inserted into the silicone contact [17]. (b) Image of the scleral search coil 

attached to the eye [18]. 

There are two different methods of VOG used in eye tracking. The first method is VOG 

with markers. This method uses small reflective markers placed on the surface of the eye, which 
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are tracked throughout the video recording to determine eye movement. This method yields a high 

level of precision that is comparable to EOG [19]. However, the markers can be uncomfortable for 

some participants, and may shift during the experiment and cause inaccurate results. Additionally, 

the use of reflective markers can interfere with the participant’s vision, which may affect their 

ability to complete visual tasks. Despite these limitations, VOG with markers is a less painful 

procedure than EOG which makes it slightly more practical for use in humans, yet, it is still mostly 

used exclusively in animal research [19]. The other method is VOG without markers. This method 

uses cameras to record the eye’s response to visual stimuli. This method is less accurate than VOG 

with markers but is less invasive. It also has significantly more difficulty tracking eye torsion than 

its marker counterpart. The two methods for eye tracking with VOG without markers are corneal 

reflection and pupil center tracking. Corneal reflection VOG tracks the reflection of a light source, 

either visible light or infrared, on the cornea as the eye moves. The position of the corneal 

reflection is used to calculate the direction and amplitude of eye movements. The main advantage 

of corneal reflection VOG is its high spatial resolution, which allows for highly accurate 

measurements of eye movement. Corneal reflection also allows for more precise torsional tracking. 

However, this technique is susceptible to artifacts from head movement or blinking, which can 

distort and lead to inaccuracies. Pupil center tracking VOG, on the other hand, tracks the movement 

of the pupil center as the eye moves. This method is less susceptible to artifacts from head 

movement as the pupil is relatively stable during these movements. Pupil center tracking VOG has 

lower spatial resolution compared to corneal reflection VOG, but it is more reliable in measuring 

slow eye movements and detecting subtle changes in eye position [20]. When compared to scleral 

search coil tracking, VOG costs less and is non-invasive making it an ideal tool for human studies. 

However, it is more prone to errors, often caused by blinking or lighting environment, than EOG.  
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IRO utilizes similar methods as VOG, however, instead of visible light, it uses infrared 

light and instead of a camera an IR detector can be used. IRO can track both corneal reflection and 

pupil center. IRO using corneal reflection tracks the infrared light that is reflected off the cornea 

instead of the pupil or another feature. IRO using pupil center tracking is less biases towards 

colored eyes than its VOG counterpart. IRO is less affected by lighting environments leading to a 

more accurate measurement than VOG. 

1.2.2 Eye Tracking Principles 

 VOG with markers utilizes a feature-based algorithm, while VOG without markers can use 

feature based or model-based algorithms. Feature based algorithms rely on detecting specific 

features of the eye, such as edges, corners, or a marker. Those features are then used to estimate 

the position of the gaze. These algorithms often require careful calibration, and the experiment 

must be set up to account for variations in lighting, head movement, and other factors that can 

affect the features being tracked such as eye lashes blocking the feature. Common feature-based 

algorithms include corneal reflection, pupil center tracking, and VOG with markers. Model-based 

algorithms, on the other hand, use a mathematical model of the eye to predict the position of the 

gaze. For example, an object detection model can be used to find the best fitting ellipse for the 

pupil [21, 22].  Feature-based algorithms are usually simpler and faster to implement but are more 

sensitive to environmental factors such as light. Model-based algorithms are  more robust but often 

require more computational resources and expertise to develop. 

Most eye tracking systems are either head-mounted or remote systems. A remote eye 

tracking system is a type of technology that allows for tracking and analyzing eye movements and 

gaze patterns from a distance. Remote video-based eye tracking systems can utilize both infrared 

and visible spectrum tracking. One of the main advantages remote systems have overhead mounted 
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systems is that they capture head movement that is not affected by any external factors such as the 

weight a head mounted system would entail. However, these systems require the user to be in a 

specific area of operation. Remote eye tracking systems are also usually considerably less accurate 

than their head mounted counterparts. Because of the low accuracy and limited area of operation, 

remote eye tracking systems are not usually used in clinical settings. They are more often used in 

research and commercial settings where users are interacting with a website or application to track 

generally where the user is looking. This technology can help impaired individuals operate 

computers. These systems are simple and provide accurate enough gaze estimation for commercial 

settings, yet they lack the level of accuracy desired to aid in clinical diagnosis. Head mounted 

systems on the other hand provide adequate accuracy for clinical settings. A head-mounted eye 

tracking system uses sensors mounted on a headset or glasses to track eye movements and gaze 

patterns in real-time. The system typically consists of a lightweight and portable headset or glasses 

that are equipped with cameras that capture eye movement data. The sensors used in head-mounted 

eye tracking systems typically track the position of the eyes and the movement of the pupils, 

allowing researchers to measure a wide range of eye movement parameters, including fixation 

duration, saccade velocity, and smooth pursuit tracking. While head mounted eye tracking systems 

require more complex equipment and software than remote eye tracking systems, this tradeoff is 

acceptable because of the significant increase in accuracy and area of operation.  

 There are two ways to illuminate the eye for tracking, dark and light pupil tracking. In light 

pupil tracking, the light is placed near the optical axis and causes the pupil to appear brighter than 

the surrounding iris which is what causes red eyes in photos. The simplicity of bright pupil tracking 

comes at a price. The main drawbacks are that the size of the pupil, age, ethnicity, and light in the 

surrounding environment can cause variance in the accuracy of pupil tracking [23]. The other 
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major drawback was that the camera is set up on the optical axis, which made it near impossible 

to have the light in the optical axis without mirrors. Due to these limitations, dark pupil tracking 

was chosen instead. Dark pupil tracking has the light off the optical axis and causes the pupil to 

appear darker than the surrounding iris. Dark pupil tracking also appeared more accurate for all 

ethnicities compared to bright pupil tracking which has significant accuracy drops with small dark 

eyes.  

1.3 The Proposed Device  

 The goal of this project is to combine several of the eye tracking methodologies currently 

used to create a product that has accuracy comparable to EOG while remaining non-invasive and 

inexpensive. The basis of our device will be a VOG without markers head mounted device because 

of the low cost and complexity. It will utilize a model-based algorithm in the form of a machine 

learning object detection model that will be trained to find the pupil in an image. This machine 

learning model-based approach should help to maximize accuracy while not adding cost. However, 

it will be more computationally taxing.  Our device will also utilize infrared lighting to reduce the 

effect of lighting environment and head movement. Along with the added benefit of highlighting 

the contours of the pupil and limbus and being less biased than bright pupil tracking. This device 

will be able to track both eye movement and head rotation to compute the gain or ratio between 

eye and head rotation. By finding an individual’s gain, we hope to aid in the diagnosis of stroke, 

multiple sclerosis, early onset ataxia, concussion, and vertigo. Vertigo is the sensation of spinning 

or dizziness caused by head movement or visual stimulation. VOG can also help differentiate 

between peripheral and central causes of vertigo. Peripheral vertigo is caused by disorders of the 

inner ear, while central vertigo is caused by dysfunction in the brainstem or cerebellum [24]. By 

analyzing the patterns of eye movements, VOG can help identify the type of problem and 
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differentiate between these two types of vertigo [25]. Dizziness and imbalance are common 

symptoms of patients seeking attention in emergency departments; however, these symptoms can 

stem from both vertigo and stroke. Stroke can cause damage to the brainstem or cerebellum which 

in turn can cause nystagmus, or “dancing eyes”, which is involuntary eye movement that can be 

tracked with VOG [26-28]. It is important to be able to distinguish vestibular diseases from stroke 

in emergency situations as most pharmacological stroke treatments to break up the clot must be 

given within five hours of the onset of symptoms. VOG has been shown to be capable of 

differentiating between the two with a series of tests called HINTS, or head impulse test, 

nystagmus, and test of skew [26, 29, 30].  This device can also aid in Multiple Sclerosis diagnosis. 

Multiple sclerosis is a neurological disorder that affects the central nervous system. More 

specifically it is the breakdown of the myelin sheath that surrounds the axon of a neuron whose 

role is to accelerate the propagation of the action potential. Multiple sclerosis affects the transport 

of information from one neuron to another and can cause nystagmus or slowed eye movement. 

This device will help detect subtle changes in eye movement not visible to the naked eye which 

can help identify early signs of multiple sclerosis [31, 32]. It can also be helpful in monitoring the 

progression of the disease. VOG can also aid in the diagnosis of early onset ataxia, which is 

characterized by a lack of muscle control during voluntary movements, and can help distinguish 

between inherited chronic ataxias and Friedreich ataxia [33].  VOG is also capable of monitoring 

and assessing the severity of a concussion [34]. In addition to diagnosis, VOG can also be used to 

monitor the progress of treatment and assess the effectiveness of therapies such as vestibular 

rehabilitation exercises. However, VOG should not be used as the sole diagnostic tool but should 

be used in combination with other diagnostic tools for improved diagnostic accuracies.  
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Chapter 2. Design Details 

2.1 Prototype I 

    

 
 

Figure 2.1 Prototype I. Prototype of the 3D printed video-oculography headset without the cameras, Raspberry Pi, 

and smartphone attached. The two eye holes are intended for the cameras, the top hole is for the smartphone, and the 

Raspberry Pi will be secured on top. The strap mounts are located on the side and are broken. 

2.1.1 Hardware 

To develop the initial prototype of the video-oculography headset, a 3D model was 

constructed in SolidWorks. The design consists of two camera slots, a slot for a smartphone, a 

nose notch, a Raspberry Pi mounting spot, and two strap mounts. The decision to employ straps 

for securing the headset to the head was based on the convenience of adjusting the length to 

accommodate various head sizes. The placement of the two strap mounts was strategically selected 

to prioritize stability, thereby capturing precise pupil responses without any interference from the 

device shifting on the head. Holes for the Raspberry Pi Camera and lens are designed to be pressed 

fit into the sockets. Space for the Raspberry Pi was allotted on the top of the headset for ease of 

alteration. A Raspberry Pi 4 Model B was chosen because it is compact and light weight which 

allowed for it to be mounted on top of the headset. The Raspberry Pi 4 is a small single-board 
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computer that is incredibly versatile while remaining affordable. The quad-core ARM Cortex-A72 

processor with 8GB of RAM is powerful enough to support all the software. The software is open 

source which made control and integration of the cameras and IMU easier through the ability to 

modify source code. The Raspberry Pi can also interface with a variety of devices. All these factors 

together make the Raspberry Pi an ideal device for prototyping. Two 12.3 MP Raspberry Pi HQ 

Camera CS with Arducam 2.8-12 mm Varifocal C-mount lenses attached were chosen because of 

their compatibility with the Raspberry Pi, high quality footage, and affordable price. The camera’s 

compact design along with high quality video via a 12-megapizel Sony IMX477 sensor made it 

the ideal camera for our design. The lenses help to improve the resolution of the video and have 

an adjustable focal length which yields flexibility in the depth of the captured video. However, 

these benefits are mitigated by the bulk of the lenses which make the device considerably heavier. 

The cameras were connected to the Raspberry Pi with the Multi Camera adapter Module V2.2 for 

Raspberry Pi. The headset was 3D printed using PLA+. PLA+ was chosen for the material because 

of its smooth surface, which reduces friction against the head, glossy/reflective finish, which is 

utilized to reflect the small light button to increase the exposure of the eye, and affordable price. 

Small LEDs were attached to the inner side wall of the headset.  
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2.1.2 Software 

A)   B)  

Figure 2.2 Object Detection Model Labeling and Output A) A sample of one of the 300 annotated images used to 

train the objection-detection model made with the program labelImg. The annotation consists of dragging the 

bounding box until it encompasses the pupil. B) The output of the trained model is shown with a bounding box 

encompassing the pupil.  

To create a machine learning object detection model, TensorFlow, an open-source software 

library developed by Google, was utilized. TensorFlow operates on a computational graph that 

represents a mathematical model as interconnected nodes where each node represents a 

mathematical operation, and the edges depict the data flow between them. The Python API was 

employed to define and manipulate these computational graphs. The decision to use TensorFlow 

was based on its open-source nature, enabling the use of pre-trained models and access to tutorials 

and code sources, which simplified the coding process while being completely free. 

An object detection model is a computer vision task involving identifying and localizing a 

feature in images or videos. The object detection model uses a convolutional neural network 

(CNN), which is a deep learning architecture that can learn to identify features in images. CNNs 

are typically trained using a loss function, such as the mean squared error or cross-entropy loss. 

The choice of architecture varies depending on its intended use. The main trade-off is between 

speed and accuracy. In this case, accuracy was prioritized over speed because of the post-

processing approach employed. 
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To train the object detection model a dataset of images with the location and type of feature 

labeled are necessary. Three-hundred images were acquired by taking an initial nine pictures of 

the eye with the pupil in each of the following positions: center, up, down, left, right, upper-left, 

upper-right, lower-left, and lower-right. Then eleven additional images were captured in positions 

between the initial nine. This was done to provide the objection-detection model with adequate 

data to train on. Before training the model, the images must be preprocessed by normalizing pixel 

values and ensuring the images are the same size. The 300 images included multiple people of 

different ethnicities with different colored eyes. Training on diverse training data is an important 

consideration to avoid a biased model. The training data must be representative of the real-world 

scenario where the model will be used. The model is intended for medical diagnosis meaning any 

individual could be tested. This is why we regularly reevaluated the performance of the model on 

a diverse group of individuals. The images were then annotated to provide the necessary feature 

label. To annotate the images, LabelImg software was utilized to create bounding boxes centered 

on the pupil. Another important consideration for maximizing the accuracy of the model is to 

ensure that each of the labeled images is accurate and consistent. To avoid inconsistencies, the 

same individual labeled each image and had the bounding boxes edges line up with the top/bottom 

and right/left of the limbus.  

Once the model is trained, it is necessary for it to be evaluated on a separate validation set 

to measure its performance on unseen data. Common metrics for object detection include 

precision, recall, and mean average precision (mAP). Precision measures the proportion of 

predicted object detections that are correct, while recall measures the proportion of true object 

detections that are detected. mAP is a summary metric that combines both precision and recall 

across a range of detection thresholds. If the model performance is unsatisfactory, it may be 
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necessary to adjust the model architecture, hyperparameters, or data preprocessing steps and 

retrain the model. Hyperparameters that can be tuned include learning rate, batch size, and 

regularization strength. 

A machine learning system was developed by training an object-detection model from 

using 300 annotated images of the eye. The 300 images included multiple people with different 

colored eyes After the images were labeled, the object-detection model was trained to an output of 

a bounding box around the pupil. This allowed us to begin tracking the eye’s movement. Eye 

movements can be broken down into two parts: horizontal/vertical and torsional. In our 

preliminary approach the horizontal/vertical movements were measured using the model’s 

bounding box. The center of the pupil was derived from the geometric center of the bounding box.  

2.2 Prototype II 
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Figure 2.3 Prototype II (a) 3D model of the video-oculography headset made in Solidworks 2021.  (b) Prototype of 

the 3D printed video-oculography headset with the Raspberry Pi attached. 

 

2.2.1 Hardware 

Following the preliminary approach, several areas for improvement were identified. 

Firstly, the strap mount was found to be insufficient in supporting the weight of the device, as 

illustrated in Figure 2.1. Consequently, a third strap mount was added to enhance the device's 

strength and stability, and the mounts were repositioned farther from the head to facilitate easier 

attachment of the straps. Secondly, the nose notch was found to be sharp and too close to the face, 

resulting in discomfort and device shifting during testing. To address this issue, the notch was 

relocated further from the head, allowing for a pocket to be created to accommodate the nose, 

ensuring a pain-free procedure and accurate results. Finally, the use of battery-powered light 

buttons was adopted instead of a wired connection to improve cable management, reduce the risk 

of electrical hazards, and provide more space for other devices to be attached to the Raspberry Pi. 

This modification also facilitated troubleshooting by simplifying the identification of disconnected 

wires. 
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Figure 2.4 Wire Diagram for Gyroscope and Accelerometer. The complete wiring diagram for the 

Raspberry Pi can be found in the appendix. The gyroscope and accelerometer are powered with 5V.  

 The next improvement would be utilizing an accelerometer and gyroscope instead of the 

Phyphox iPhone application. The headset’s gyroscopic and accelerometer data collection was 

compounded to create an inertial measurement unit (IMU). An IMU utilizes the specific force or 

acceleration from the accelerometer and the angular rate or velocity from the gyroscope in order 

to estimate the motion, orientation, and position of the device in three dimensions.  The 

accelerometer measures the acceleration of the device in three axes of motion, up/down, 

forward/back, and up/down, while the gyroscope measures the rotation around each of the axes. 

The gyroscope is best utilized for quick or sharp movements; however, the main disadvantage is 

that over time the gyroscopic data drifts and begins to diverge from accurate results. An 

accelerometer is poor at measuring short quick changes; however, it is accurate over time.  To 

provide the most accurate data over time from the accelerometer and gyroscope a complementary 

filter was utilized. The complementary filter fuses the high frequency data measured by the 



18 
 

gyroscope and the low frequency data measured by the accelerometer to estimate the movement, 

orientation, and position of the device. The complementary filter places most of the weight in the 

gyroscopes data because it estimates the orientation of the device and is more accurate in the short 

term but utilizes the accelerometers data to prevent the data from drifting over time. This filter 

utilizes the strengths of both of the sensors while minimizing their weaknesses. The raw IMU data 

collected is filtered prior to being input into the complementary filter to reduce noise. The 

gyroscopic data is prone to low frequency noise, so it is passed through a high pass filter, while 

the accelerometer data is prone to high frequency noise, so it is passed through a lowpass filter.  

 

Figure 2.5 Improved Lighting Conditions. (a) Image captured by prototype I with only one light source. (b) Image 

captured by prototype II with two light sources 

Another improvement implemented in the second prototype was the modification of the 

lighting conditions. In the initial design, a single light source was positioned on the bottom left 

side of the headset. However, this configuration presented several issues, such as shadows, 

reflections, and an unbalanced lighting environment. In particular, the single light source produced 

a noticeable shadow on the lower part of the eye, as illustrated in figure 2.5. These shadows could 

potentially interfere with the accuracy of eye tracking and alter the intensity gradient. To overcome 

this challenge, a second light source was integrated into the headset, located on the top of the 

device. This resulted in a more uniform illumination environment with fewer shadows. The 

enhancement can be observed by comparing Figure 2.5a with 2.5b. 
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2.2.2 Software 

 The first improvement was to train the model based on the improved lighting conditions 

of less shadows and better balance caused by adding a second light.  

(a)  (b)   

Figure 2.6 Improved Lighting Model. (a) Old detection model trained on singular light source images with shadows 

and low brightness with a training rate of approxiamtely 97%. (b) Improved detection model trained on two light 

sources with improved brightness with a training rate of approxiamtely 99%. 

Figure 2.6 shows the old detection model which was trained using images taken with only one 

light source and the new detection model which was trained using images taken with two light 

sources. The reduction of shadows and more even lighting conditions improved the accuracies of 

images from around 97% with the old model to 99% with the new model. The next improvement 

made to the object detection model was to increase the number of images the model is trained on 

from 300 images to approximately 1800 images. The next improvement was to increase the amount 

of training steps from 3000 to 5000.  
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(a)  (b)  

Figure 2.7 Improved Training Steps Model. (a) Detection accuracy of 82% from the detection model with 3000 

steps. (b) Detection accuracy of 100% from the detection model with 5000 steps. 

 Increasing the number of images, the model is trained on allows for better performance as 

the model is better able to discern between the variations in the data. It also decreases the likelihood 

of the model overfitting, which is when the model learns patterns from the training data that is not 

representative of the entire data set. It also increases the model’s robustness as it is trained on a 

more diverse data set. Increasing the training steps can help the model to reach convergence. It 

also reduces the likelihood of model underfitting, which occurs when the model cannot 

comprehend the complexity of the data which leads to poor performance. These improvements 

significantly increased the overall accuracy of the model.  

2.2.3 Methods 

Workflow: 

1. Turn on the Raspberry Pi 

2. Open test camera program to ensure the eye is centered and in focus 

3. Change the save file name in both the gyroscope and camera programs 

4. Open the terminal and run the following command “python3 officialGyro.py & python3 

officialCamera.py”  
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5. Wait until the video shows up on the screen then instruct the subject to turn their head left and 

right at a rate of 1 hertz.  Press ctr + c to end the program.  

6. Transfer the data from the raspberry Pi to a desktop either by emailing or with a thumb drive.  

7. Open the video manipulation program to separate the video into frames.  

8. Open the training and detection program in google colab in order to gain the pupil center 

positional data.  

9. Upload the positional data into the MATLAB program to calculate gain 

 

2.3 Final Design 

2.3.1 Hardware 

  

Fig 2.8 Final Headset Design.  Final Design of the 3D printed video-oculography headset with the Raspberry Pi, 

camera, IR light, and fan attached. 

 The final design of the device involved significant improvements over the preceding 

versions. In order to increase strength and stability, the strap mounts were altered to resemble the 

initial prototype, with the holes shifted away from the edge of the device. To reduce weight and 
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material usage, the mounts were brought back towards the device. The third strap mount, which 

did not significantly contribute to stability, was removed. A fan was also added to the Raspberry 

Pi to prevent the central processing unit (CPU) from overheating during demanding computational 

processes. Overheating can lead to performance issues or even damage the device, and the fan 

helps increase system stability. Furthermore, to increase user comfort, a soft cushion was added to 

the part of the device that makes contact with the forehead. 

 Another improvement was to utilized infrared light. While prolonged exposure to high 

intensity infrared light can be damaging to the eye, the IR lights used are not powerful enough to 

cause damage in the short time the eye is tested. The implementation of dark pupil tracking in 

conjunction with infrared lighting resulted in a more distinct contrast between the iris and pupil.  

Using infrared lighting allowed for better control over environmental light. The number of lights 

was kept at two to ensure proper illuminated the eye while reducing the number of shadows in the 

image. The reduction in shadows allowed for an increase in the accuracy/precision of the device. 

It also fixed the issue of shadows creating intensity differences. With an evenly lit eye, the 

striations became visible and trackable. 

 The last improvement incorporated into the hardware of the device involves utilizing a 

singular camera, resulting in a significant reduction in cost, as the camera and lens were the most 

expensive components. This optimization was achievable by enabling the camera to alternate 

between the two available camera slots, enabling it to capture measurements of both the left and 

right eye. Additionally, this alteration contributed to a reduction in the overall weight of the device. 

2.3.2 Software 
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In machine learning, loss measures how well a machine learning model is performing on 

the task it is supposed to accomplish. The goal is to minimize this loss function during training in 

order to improve accuracy and predictive power. The loss metrics are the most important indicator 

of training accuracy and overall performance.  

(a)  

(b)  

Figure 2.9 Classification Loss Improvements. (a) Classification loss of the second prototype’s object detection 

model. The raw data is represented by the faded line and the smoothed data is represented by the bright line. (b) 

Classification loss of the final design’s object detection model. The raw data is represented by the faded line and the 

smoothed data is represented by the bright line. 
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The first loss metric that will be discussed is classification loss.  Classification loss is a 

specific type of loss function that measures the difference between the predicted class probabilities 

and the true class labels of a set of training data. Cross-entropy loss is the most common type and 

is usually used in binary classification and multi-class classification problems. The eye tracking 

model only has one class, the pupil class, so we utilize binary classification. Cross-entropy loss 

measures the difference between the predicted probabilities and the true labels by calculating the 

log loss between the predicted probability distribution and the true label distribution. The better 

the model is performing on the classification task, the lower the cross-entropy loss will be. Figure 

2.9 shows the improvement of the classification loss between the old and new object detection 

model.  

(a)  
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(b)  

 

 

Figure 2.10 Localization Loss Improvements. (a) Localization loss of the second prototype’s object detection model. 

The raw data is represented by the faded line and the smoothed data is represented by the bright line. (b) 

Localization loss of the final design’s object detection model. The raw data is represented by the faded line and the 

smoothed data is represented by the bright line. 

Localization loss is the next loss metric that is used in object detection tasks in computer 

vision. Object detection involves both identifying the presence of objects within an image and 

localizing them with a predictive bounding box. The localization loss calculates any discrepancies 

between the predicted bounding box coordinates and the true bounding box coordinates. The most 

common type of localization loss is the mean squared error (MSE) loss, which calculates the 

squared difference between the predicted and true bounding box coordinates. The localization loss 

is typically combined with a classification loss to form a joint loss function. The joint loss function 

is optimized during training to improve the accuracy of the model in detecting and localizing 

objects within images. While localization loss and classification loss can be the only loss functions 

utilized to train a model, this can lead to overfitting. In order to prevent overfitting, the model also 

utilizes regularization loss to train the model.  Overfitting occurs when a model becomes too 

complex and starts to fit the noise in the training data rather than the underlying patterns. Figure 

2.10 shows the improvement of the localization loss between the old and new object detection 

model. 
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Figure 2.11 Regularization Loss Changes. (a) Regularization loss of the second prototype’s object detection model. 

The raw data is represented by the faded line and the smoothed data is represented by the bright line. (b) 

Regularization loss of the final design’s object detection model. The raw data is represented by the faded line and 

the smoothed data is represented by the bright line. 

Regularization loss is the last loss metric we will be utilizing and is typically added to the 

overall loss function during training to encourage the model to learn simpler patterns and reduce 

the impact of noise in the training data. The most common types of regularization loss are L1 and 

L2 regularization. L1 regularization encourages the model to learn sparse representations by 

setting some of the weights to zero. L2 regularization encourages the model to learn small weight 

values and smooth out the decision boundary. The amount of regularization is controlled by a 
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hyperparameter called the regularization strength, which determines the relative weight of the 

regularization loss compared to the main loss. Figure 2.11 shows the changes between the old and 

new object detection model for regularization loss. 

(a)  

(b)  

Figure 2.12 Total Loss Changes. (a) Total loss of the second prototype’s object detection model. The raw data is 

represented by the faded line and the smoothed data is represented by the bright line. (b) Total loss of the final 

design’s object detection model. The raw data is represented by the faded line and the smoothed data is represented 

by the bright line. 

Total loss is the sum of all the different types of loss functions used in a machine learning 

model. For our model, the total loss consists of all three types of loss functions: classification loss, 

localization loss, and regularization loss. During training, the machine learning algorithm tries to 

minimize the total loss function by adjusting the mode’'s parameters using an optimization 
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algorithm such as gradient descent. The total loss provides a measure of how well the model is 

performing on the training data, and the goal is to minimize it as much as possible. The relative 

weight of each type of loss function in the total loss can be controlled by hyperparameters such as 

the learning rate and regularization strength. The choice of loss functions and hyperparameters 

depends on the specific task and the type of model being used. Figure 2.12 shows the improvement 

of the total loss between the old and new object detection model. 
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Chapter 3. Results 

3.1 Prototype I Results  

 The first prototype of the headset utilized the Phyphox smartphone application, which 

granted access to the phone's orientational sensors to output gyroscopic data for the goggles. Since 

the phone was inserted inside the headset, the smartphone's motion as measured by its sensors was 

deemed representative of the entire device. Phyphox was selected due to its accessibility on most 

smartphones, ease of use, and no cost. Nonetheless, using a smartphone as the gyroscopic sensor 

had a significant drawback: the phone was not entirely secured in place, making it too susceptible 

to movement for precise measurements. Despite this limitation, it was deemed sufficiently accurate 

for the first prototype. The primary aim of the first prototype was to develop a preliminary version 

of the device to validate its feasibility. This approach facilitated the early identification of design 

flaws such as the sharp and uncomfortable nose notch and the weak strap mount that ultimately 

broke. Another flaw that surfaced through the initial round of prototyping was the lack of 

synchronization between the camera and gyroscope. This arose from using two different devices, 

the smartphone for the gyroscope and accelerometer and Raspberry Pi for the cameras, without 

enabling communication between the devices. This led to delays between the motion detected by 

the smartphone and the VOR as detected by the eye-tracking model. Although the data could not 

assist in any medical diagnosis, the prototype established the feasibility of our device. 



30 
 

 

Fig 3.1 Prototype I Gyroscope Results. This figure illustrates the gyroscopic data associated with the movement of 

the head which in turn moved the goggles. For the first 20 seconds the headset was held as still as possible. Between 

20 and 40 seconds, each axis of rotation was tested. X represents roll, Y represents pitch, and Z represents yaw with 

each letter coinciding with the axis it rotates about. 

 Figure 3.1 shows the initial data output from rotating the goggles while attached to the head. 

There was a large amount of noise associated with yaw which we attributed to either difficulty 

completely isolating the movement, or the iPhone not being as sensitive to yaw rotation as it is to 

pitch and roll.  

 

Figure 3.2 Prototype I Pupil Center Tracking A, B) The X- and Y-axis align with the gyroscopic coordinate system 

and are plotted respectively. C) Plot of the absolute velocity of the pupil center over time. D) Combination of all 

three plots for ease of comparison 
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 Using the gyroscopic data from Phyphox along with our trained model we were able to gain 

some preliminary eye-tracking data. This was done by first deriving the center of the pupil. The 

geometric center of the bounding box represented the center of the pupil. The pupil center of each 

frame was used to obtain planar velocities based on the pixel location. This was achieved by 

comparing each frame’s pupil center to the previous frame to track how many pixels the center 

had shifted. The initial experiment was quite simple. The patient was instructed to turn their head 

to the left then right then center followed by down then up. The results of the experiment can be 

found in Fig 3.2.  

3.2 Prototype II Results 

(a) (b)  

(c)  (d)  

Figure 3.3 Prototype II Pupil Center and Gyroscope Results. (a) Pupil Center tracking over time. (b) Device 

trajectory tracking over time (c) Pupil Center vs Gyroscopic Trajectory (d) Prototype II Gain 
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The results of the second prototype are shown in Figure 3.3. In this experiment the subject 

was asked to keep still for 5 seconds then turn their head right to left for 20 seconds.  Figure 3.3a 

shows the filtered data acquired with prototype II and the object detection model of prototype II.  

The data was consistently noisy with constant shifts which revealed little data about VOR. This is 

likely due to the model overfitting based on its training data. Figure 3.3b shows the filtered 

rotational data acquired with negative and positive velocities relating to turning right and left 

respectively. Figure 3.3c shows the pupil center and rotational data for ease of comparing the two. 

The ideal results would show pupil center data similar to the head rotation data. The pupil center 

and rotational data was found to be positive and weakly correlated with a Pearson correlation 

coefficient of 0.297. The average gain was found to be -9.282. It is evident that prototype II did 

not function as intended as it detected a large amount of movement in the first 5 seconds when the 

subject was completely still. However, this prototype proved that the idea was feasible, and the 

gyroscope and cameras could be synchronized to yield proper results.  

3.3 Final Design Results 

(a) (b)  
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(c)  (d)  

Figure 3.4 Final Design Pupil Center and Gyroscope Results. (a) Pupil Center tracking over time. (b) Device 

trajectory tracking over time (c) Pupil Center vs Gyroscopic Trajectory (d) Final Design Gain 

The results of one trial using the final design are shown in Figure 3.4. Figure 3.4a shows 

the smoothed data acquired with final design and the final object detection model. The data was 

considerably less noisy than the pupil center data from prototype II. This is likely due to a 

combination of improved lighting condition and object detection model. Figure 3.4b shows the 

smoothed rotational data acquired during the same experimental procedure where the subject was 

instructed to keep still for 5 seconds then turn their head right and left for 20 seconds. The first 5 

seconds were removed to compare only the rotational data, to ensure the gain accuracy was not 

inflated. Figure 3.4c allows for the comparison between the pupil center and rotational data. While 

the pupil center does not exactly match the rotational data, it is more similar than prototype II with 

many more of the peaks aligning. The pupil center and rotational data were found to be negative 

and weakly correlated with a Pearson correlation coefficient of 0.191. The VOR was estimated by 

finding gain or the ratio of head rotation to pupil center rotation. The results of 9 trials can be seen 

in table 3.1. The desired gain is to remain close to one. This is because the VOR is a reflex that 

causes eye movement in the opposite direction of head motion in order to stabilize gaze. The 

stabilizing effect causes smooth eye movement in the same direction as head rotation. The average 

gain for the trial shown in figure 3.4 was found to be 4.478.  
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Table 3.1 Final Design Correlation and Average Gain. 

Trial Correlation Coefficient Average Gain 

1 -0.019 14.577 

2 0.206 3.620 

3 0.001 7.573 

4 -0.051 24.519 

5 0.196 24.719 

6 0.191 4.478 

7 -0.074 12.882 

8 0.050 18.379 

9 -0.061 17.026 

Averages 0.074 14.419 

  

The correlation and average gain for 9 trials can be seen in table 3.1. The average gain for 

the final design across all 9 trials was 14.419. The average correlation was 0.074. The large VOR 

gain values obtained from the study mainly due to absence of de-saccade process to remove huge 

eye blinks, which cause relatively huge eye movement. The eye motion of saccades should not be 

counted into the VOR gain computing. Another big potential issue is the synchronization between 

gyroscope signals and camera image capturing. Even a tiny delay could produce a big VOR 

computing error.  
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Chapter 4. Discussion 

 The purpose of this project was to create a low cost VOG without markers head mounted 

device that utilizes a machine learning object detection model in order to track head rotation and 

eye movement. By tracking head rotation and eye movement an individual’s VOR can be evaluated 

by finding gain. Finding an individual VOR gain during head movement will provide additional 

diagnostic evidence for a myriad of neurological conditions including early onset ataxia, 

concussion, MS, stroke, and vertigo.  The result of the first prototype was a successful proof of 

concept. It was proven that head rotation and eye movement could be tracked with the use of 

cameras and a gyroscope. There were several challenges found through the first prototyping 

process. The first challenge was making the device more comfortable, which was achieved by 

altering the nose notch and smoothing edges. The other challenge was that the gyroscope and pupil 

tracking data were not synchronized making it difficult to track gain. This was addressed in the 

second prototype by adding a gyroscope and accelerometer to the Raspberry Pi. The challenges 

found during the second prototyping process were noisy data, inadequate lighting conditions, and 

poor object detection model performance. These challenges were addressed through increased 

filtering, training steps, training data, and lights. The lights were not only increased in number, but 

changed to IR. These alterations allowed for much better performance for the final design.  

 The initial method employed to evaluate the relationship between head rotation and eye 

movement data involved measuring the correlation between the two datasets. The strength of the 

correlation indicates how similar the two data sets are and is determined by analyzing the extent 

to which one variable changes in response to changes in the other variable. The correlation analysis 

revealed a stronger relationship between head rotation data and eye movement data for the second 

prototype compared to the final design, yet, both correlations were weak. The average gain for the 
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final design was also found to be lower for prototype II compared to the final design. However, 

the second prototype gain calculation contains the first 5 seconds of rest, while the final design 

does not. It is likely that the inclusion of the 5 seconds of rest inflated the correlation and gain 

calculations leading to inaccurate true measurements. The reliability of the prototype II is also in 

question as the sample size is only one. This reduces the statistical power of its results because 

there is an increased likelihood of random chance affecting the results.  

 High quality VOG devices such as the ICS Impulse goggles created by GN Otometrics 

yield VOR gains on average of 0.95 to 1.05. High quality EOG devices such as the one created by 

Pleshkov and colleagues yield VOR gains on average of 0.92 to 0.97 [15]. When compared to the 

VOR gains found with the final design of 14.419 it is evident that the device’s accuracy needs 

improvement. However, the ICS Impulse goggles are considerably more expensive than our 

device. The EOG device used is of a comparable price. Yet, both devices measured VOR gain 

using an impulse test where the subject turned their head a single time either left or right and the 

head rotation and eye rotations were recorded. The final design device tracked VOR gain over a 

longer period of time with an average of  5 full head rotation from left to right. This is likely why 

our device has such a considerably less accurate VOR gain measurements.  

 The sources of error in our experiment are thought to be from the device shifting on the 

head, the gyroscope drifting over time, and object detection model errors. While the device became 

more comfortable with the nose notch improvements, the extra space allotted allowed for more 

slippage if the device was not held securely. This is likely why some of the average VOR gain 

measurements were as high as 25. While the drifting of the gyroscope was mitigated with the 

inclusion of accelerometer data to create a complementary filter, the value likely slightly drifts 

over the 25 seconds of measurement contributing to inaccurate results. The last source of error 
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likely stems from the object detection model. While the model is highly accurate even when the 

eye shifts far from the center, errors still occur when the eye blinks. When the eye blinks, the 

model can lose the pupil center as eye lashes and the eye lid block part of or all of the eye. This is 

a significant source of error as it was difficult for the subjects to keep their eyes open for the entire 

25 seconds. Another small source of error is how focused the eye is during the test. The subjects 

were not instructed how or where to focus on during the experiment as the focus was to try to keep 

their eyes open and look forward. Eye movement is affected by if the eye is focused or relaxed, so 

in future studies the subjects should be instructed to relax and not focus their eye during testing to 

mitigate this source of error.  

 While significant improvements were made from the first prototype to the final design,  the 

device is far from complete. The first improvement to be made is finding a more accurate pupil 

center than the center of the bounding box. This is necessary because if the bounding box’s edges 

are not perfectly aligned with the edges of the iris, which tends to happen as the pupil shifts further 

from the center, the eye tracking data is less accurate and more prone to noise. One solution to 

improve accuracy would be to search for an ellipse within the bounding box. The ellipse would 

represent the pupil and be found by comparing color intensities inside the bounding box. The idea 

behind using color intensities is that the pupil is much darker than the surrounding iris so a clear 

border can be found. Once the ellipse was fit, the center was easily procured by finding the 

geometric center of the ellipse. The geometric center of the ellipse would be a more accurate 

representation of the pupil center which would improve the overall accuracy of the device. The 

next improvement to be made is to track the torsional component of eye movement. This is a 

particularly complex problem that has no easy solution. One solution could be to train the object 

detection model to find a prominent vein in the scleral, or white part of the eye, and track its 
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rotation. However, not all eyes have prominent veins or if they do, they can be lost throughout eye 

movement. The camera quality would also have to improve to be able to consistently track the 

veins, which would cause additional costs. Future experiments should also be conducted on 

diseased individuals since testing has only been conducted on a young and healthy population. 

This would allow for the comparison of healthy to diseased VOR gains.  

Table 4.1. Price Breakdown of the Device.  

Part Cost (Dollars) 

Raspberry Pi 4 model B/8GB 75.00 

Micro-HDMI to HDMI Cable 5.00 

Raspberry Pi HQ Camera CS  50.00  

2.8 -12mm Varifocal C-mount Lens  64.99 

Gyroscope 24.20 

Fan 12.10 

IR light x2 20.40 

3D Printed Headset 39.40 

Wire Connectors 6.80 

Total Price 297.89 

 

Presently, there are numerous eye trackers accessible in the market with prices ranging 

between roughly 300 to 30,000 US Dollars. The majority of the cost does not stem from the 

hardware itself as there has been a significant decrease in the cost of high-quality digital camera 

technology over the past decade. The expenses are primarily attributed to the customization of 

software implementation. The eye trackers that cost less than 1000 US Dollars are mostly remote 

eye tracking devices that track gaze on a screen but are not capable of tracking VOR. The device 

created through this project cost only 297.89 US Dollars making it one of the cheapest devices 

on the market. The breakdown of the prices of all the equipment used can be found in table 4.1. 

The price could be further reduced in the manufacturing process as each of these parts was 

bought individually.   
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Chapter 5. Conclusion 

In conclusion, the purpose of this project was to create a low-cost vestibulo-ocular reflex 

(VOR) device using machine learning object detection to track head rotation and eye movement 

without markers. This device has potential diagnostic applications for a variety of neurological 

conditions, including concussion, early onset ataxia, MS, stroke, and vertigo. While the first 

prototype was a successful proof of concept, challenges arose, including making the device more 

comfortable, synchronizing gyroscope and pupil tracking data, noisy data, inadequate lighting 

conditions, and poor object detection model performance. These challenges were addressed in the 

second prototype through increased filtering, training steps, training data, and  improved lighting 

conditions. Despite these improvements, there were still sources of error, including the device 

shifting on the head, gyroscope drifting over time, and object detection model errors. The device's 

accuracy needs further improvement when compared to high-quality VOG and EOG devices. 

While high-quality VOG devices are more accurate, they are also more expensive. The device 

needs improvements such as finding a more accurate pupil center and implementing 3D torsional 

tracking. Overall, this project has great potential for future research and development with the 

potential of creating a low-cost alternative for diagnostic and clinical applications. 
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Chapter 6. Other Project 

A Head Tilting Scheme to Detect Small Amount of Middle Ear Effusion 

6.1 Abstract: 

Otitis media (OM) is a common condition in young children, characterized by the presence of 

fluid in the middle ear cavity. Diagnosis of fluid buildup in the middle ear is typically performed 

using a pneumatic otoscope, which is dependent on the severity of middle ear effusion (MEE) and 

can lead to subjective diagnoses. In this study, we propose that the position of MEE changes when 

the head is tilted 30°, and that this change induces motion in the tympanic membrane (TM) in 

response to sound stimuli, which can be detected by a scanning laser Doppler vibrometer (SLDV) 

using our new computer-aided detection (CAD) scheme. 

To test this hypothesis, we simulated MEE in five human temporal bones and measured TM 

displacement in response to sound stimuli in a 30-degree tilting experiment. We analyzed the 

effects of head tilting on TM motion changes statistically. Our results indicate that the average 

sound displacement across the bottom half of the TM between the frequency bands of 0.8 kHz to 

6.5 kHz in the tilted position was significantly lower than in the normal (non-tilting) position. This 

finding provides a practical application of quantitative assessment for diagnosing OME. The new 

tilting approach combined with the new algorithm offers a less subjective and more reliable 

process to detect small MEE. 

In summary, our study demonstrates the potential of using a tilting approach combined with a 

CAD scheme and SLDV to detect MEE more objectively and accurately. This approach could 

provide a more reliable diagnosis for OME and improve clinical decision-making. 
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6.2 Introduction  

Otitis media (OM) is a common condition among young children, characterized by the 

presence of fluid in the middle ear cavity. It is the top reason for children to visit a physician, and 

the usual treatment is prescription antibiotics, which contributes to children in developed countries 

spending approximately 90 days on antibiotics by the age of two [37-40]. This is problematic as 

many pathogenic bacterial species have become resistant to antibiotics, and the excessive 

prescription of antibiotics may lead to more bacteria evolving to become resistant [41-43]. The 

World Health Organization has declared this problem a threat to modern medicine, highlighting 

the need for a more accurate diagnosis of OM. 

The current tool for detecting fluid buildup in the middle ear is the pneumatic otoscope, which 

relies heavily on the severity of the buildup and leads to a subjective diagnosis [44-50]. Otoscopy 

or tympanometry is very difficult to detect MEE in cases where the amount is small, or the MEE 

is below the lower limit of the TM. We hypothesize that MEE will move in the middle ear cavity 

due to gravity when the head is tilted 30° laterally. Furthermore, we expect that the change in MEE 

position will cause a change in middle ear impedance, which will, in turn, cause a change in TM 

motion in response to sound stimuli. Using SLDV, the change in TM motion will be detected, and 

our recently developed CAD scheme can quantify the change. 

Our study aims to improve the accuracy of diagnosing small MEEs in OM. By developing a 

more accurate prediction of small MEEs, otologists can make more accurate diagnoses of OM, 

which will lead to a reduction in the excessive prescription of antibiotics. This, in turn, can 

contribute to the reduction of antibiotic-resistant bacteria and prevent the further evolution of 

antibiotic-resistant bacterial strains. 
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6.3 Methods: 

Overall approach:  

Small amount of MEE was simulated by 0.1ml saline injection into the five human temporal 

bones (TB). SLDV and wide band tympanometry (WBT) were used to measure the middle ear 

impedance before and after injection under control and tilting setups.  

Wide band tympanometry measurement 

An Interacoustics Titan tympanometer (Version 3.4.0) was used to measure the impedance 

change in response to MEE. The measurements procedure was described in our previous study 

(ref). WBT measures were performed four times in setup and averaged to minimize influence of 

physical movement of the TBs during the measurement setup changes. A full WBT absorbance 

dataset is characterized in three parametric dimensions (e.g., absorbance, frequency, and pressure). 

For the present analysis, a single absorbance spectrum at a fixed tympanometric pressure was 

selected for each test position setup. The chosen fixed tympanometric pressure was the pressure at 

which absorbance measures at 226 Hz peaked, which corresponds to maximum tympanic 

membrane compliance in conventional, single frequency tympanometry. 

SLDV measurement  

MEE was replicated by injecting a small amount (0.1ml) fluid into the middle ear of the human 

cadaver ear. The human cadaver ear was initially inspected by an operating microscope (OPMI-1, 

Zeiss, Thornwood, NY) to ensure a normal structure. A silicone catheter was inserted through the 

bony part of the Eustachian tube and into the middle ear canal (MEC). Once the tip was confirmed 

to reach the MEC it was fixed in place. A second hole was drilled near the arcuate eminence and 
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into the MEC. A second catheter was inserted through this hole for outflow. This was done to 

ensure pressure equilibrium when injected fluid through the first catheter. 

 

 

Figure 6.1 Experimental Setup (a) Schematic of the experimental setup not tilted. The human ear is held in 

place on the tilting milling table which is attached to the vibration isolation table. The laser, speaker, amplifier, and 

microphone are then directed at the external auditory meatus (b) Picture of the experimental setup. The human 

cadaver ear is held in place via three pins. The holding device is locked into the tilting milling table which is locked 

into the vibration isolation table. The SLDV with the TDT CF1 speaker and RCA SA-155 amplifier are pointed at 

the external auditory meatus. The SLDV is a grey and blue device with a lens. The speaker and amplifier are housed 

in the box with the blue funnel extended. 

The human ear is held in place on the tilting milling table which is attached to the vibration 

isolation table. The laser, speaker, amplifier, and microphone are then directed at the external 

auditory meatus B) Picture of the experimental setup. The human cadaver ear is held in place via 

three pins. The holding device is locked into the tilting milling table which is locked into the 

vibration isolation table. The SLDV with the TDT CF1 speaker and RCA SA-155 amplifier are 

pointed at the external auditory meatus. The SLDV is a grey and blue device with a lens. The 

speaker and amplifier are housed in the box with the blue funnel extended. 

 Next, we placed the TB holder on the tilting milling table to achieve the desired tilt of 30° 

laterally. The SLDV was then adjusted to the same angle with double laser alignment. The tilting 

milling table was secured on top of a vibration isolation table. Once set-up was complete, a 90dB 
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chirp stimulus from 0.2 to 8 kHz generated by a function generator (HP 35670A, Hewlett-Packard, 

Palo Alto, CA) and an amplifier (RCA SA-155, Radio Shack, Fort Worth, TX) was delivered to 

the TM by a speaker (TDT CF1, Tucker-Davis Technologies, Alachua, FL) via the external 

auditory meatus. Then the full-field surface motion of the tympanic membrane was recorded by 

the SLDV (PSV-400, Polytec Inc., Irvine, CA) with its corresponding software package (PSV 8.8, 

Polytec Inc., Irvine, CA). This entire process took 15 minutes and resulted in 125 data points.  

 

The experiment was conducted on the ear in four different variations: no liquid injected in an 

upright position, no liquid injected in a tilted position, liquid injected in an upright position, and 

liquid injected in a tiled position. All positions were then compared using an algorithm to process 

the raw data exported from PVS 8.8. For each frequency, the coordinates of all scanning points 

and the corresponding displacement were saved. The first part of the algorithm removed the 

outermost layer of scanning points twice to ensure all the points are located on the TM as seen in 

figure 2. 

Next, we utilized a robust smoothing algorithm [48] to reduce experimental noise. Then an 

analysis of variance (ANOVA) was conducted on the smoothed data, comparing the mean sound 

Figure 6.2. Scanning Point Removal.  
Illustration of scanning points 

removed of outermost scanning 

points 2 times successively across 

the TM 
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displacement of all four variations of the experiment. The ANOVA test results in an F-statistics 

that reveal if the data is significantly different. Then the surface variation and area to volume ratios 

were calculated to compare the effects tilting had. 

 

Figure 6.3. Illustration of the Data Preprocessing, which shows (a) the removal of outermost scanning points on 

TM for 2 times successively, (b) FE simulation derived deflection shape with a Gaussian distribution noise, (c) FE 

simulation derived deflection shape after smoothing, (d) deflection shape of TM at 1381.25 Hz before smoothing, 

and (E) deflection shape of TM at 1381.25 Hz after smoothing. 
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6.4 Results: 

The tympanometry measurements showed highly similar results among control, 0.1ml MEE in 

normal position and 0.1 ml MEE in 30-degree tilting position as shown in Figure 6.3  

 

Figure 6.4. TB Tympanometry Measurements. A sample of 3D tympanometry gram from TB measurements 
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Figure 6.5. Pre and Post Injection Absorbance Averages. This figure compares the pre and post injection grand 

averages for the absorbance in cadaver ears. Confidence bands (95%) are shown for each grand average and are 

based on a t distribution due to the small sample size of N = 5 (df = 4), t = 2.571. The * range approximately 

indicates the frequency region (about 0.6–1.1 kHz) over which pre- and post-injection absorbance differs 

significantly (p < 0.05) based on the degree of overlap of the confidence bands (19). The maximum average effect 

occurred at 1 kHz with absorbance decreasing from ~0.8 to ~0.5 after MEE formation. As expected for a 

longitudinal control comparison, no significant differences were observed between the pre- and postoperative WBT 

patterns in five temporal bones. 

This preliminary study tested the effects that tilting the head laterally had on the detection of 

otitis media in the middle ear cavity. When the displacements across all frequencies were averaged 

and compared, they yielded no significant difference. This led to narrowing the frequency range 

to 0.8 to 6.5 kHz. We chose this range according to where Figure 2a seemed to have the largest 

difference and least amount of noise. 
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Figure 6.6. Comparison of Sound Displacements 

A) Sound displacement results across the frequencies 0.8 to 6.5kHz across the full TM 

B) ANOVA test results of full TM 

C) Sound displacement results across the frequencies 0.8 to 6.5kHz across the Top half of the TM 

D) ANOVA test results of Top half of the TM 

E) Sound displacement results across the frequencies 0.8 to 6.5kHz across the bottom half of the TM 

F) ANOVA test results of Bottom half of the TM 
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Initially, we began by looking at the full surface of the TM, but this yielded no significant 

difference between normal positions with and without liquid as shown in Figure 2b. We believed 

this to be caused by gravity pulling the fluid away from the top of the TM, causing the average to 

be skewed. We then proposed to look exclusively at the bottom half of the TM since this is where 

the media should be forced once the head is tilted. The division of the TM can be seen in Figure 

6.6. When we ran the ANOVA test comparing exclusively the bottom half of the TM, the results, 

shown in Figure 6.5D, indicated that the average sound displacement between the frequency bands 

.8 kHz to 6.5 kHz of the tilted head was significantly lower than that of the controls and liquid-

filled ear in the normal position. The lower sound displacement is to be expected due to the fluid 

exerting pressure on the TM reducing its ability to vibrate and lowering its response.  

 

 

 

 

 

 

 

Figure 6.7. TM Quadrant Division.  Illustration of the division of the TM into two halves 
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Figure 6.8. Surface Variation and Area to Volume Ratio Results. (a) Surface variation of each trial across the 

frequencies 0.2 to 6.5 kHz in the bottom half of the TM (b) Area to Volume Ratio of each trial across the 

frequencies 0.2 to 6.5 kHz in the bottom half of the TM. 

The surface variation and area-volume ratio quantitatively describe the degree of TM 

deformation and complexity of the TM surface deflection shape, respectively. The surface 

variation was higher for the liquid trials than the control trials at low frequencies, as seen in figure 
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5a, suggesting it is a valuable indicator of OME. At low frequencies, as seen in figure 5b, the area 

to volume ratio for the liquid tilting trial was the lowest, and at high frequencies was the greatest. 

This suggests that tilting causes greater variance in the area to volume ratio, which is another 

valuable indicator of OME. 

6.5 Discussion: 

Middle ear effusion is characteristic of otitis media and it has been always challenges for 

physicians when the MEE is small or below the bottom edge of TM annual. The present study tried 

to modify a routine clinical setup with a 30 degree tilting head using a SLDV measurement to 

detect small amount of MEE. Processed the raw data with a newly developed CAD scheme, the 

small amount of MEE (e.g. 0.1 ml) was successfully detected when wide band tympanometry 

failed. These preliminary yet promising results bring hope for early detection of OM/OME even 

the inflammation is not obvious.  

Many previous studies try to quantify the middle ear mechanics change in response to MEE 

and the sensitivities of TM motion change was successfully detected when MEE is substantial with 

quite a few approaches, such as SLDV, holograph, wide band tympanometry, or OCT [47-49]. 

However, when MEE amount is small, it is very difficult to observe or measure the change of 

middle ear change, morphologically or mechanically with routine setup while the subject stands 

as normal posture. We hypothesize the tilting of the head will change the location of MEE inside 

the middle ear cavity and the impedance of middle ear or the TM motion in response to sound 

stimuli will be changed. The data measured from five human temporal bones confirm the TM 

motion changed with tilting setup and our recently established CAD scheme detected the 

difference, especially in the lower part of the TM.  
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Future Study 

The present study indicates that a SLDV with a CAD scheme can detect a small amount of 

MEE in a tilting setup. This approach is feasible to be used in clinical applications in future with 

promising outcomes in this preliminary study. The feasibility of application of this setup with OCT 

scanning since OCT is more and more common in clinics.  

6.6 Conclusion: 

In this study, we tested a tilting paradigm to detect small amount of middle ear effusion with 

SLDV measurements in five human TBs. The new tilting approach amalgamated with our 

algorithm offers a less subjective and more reliable process to detect MEE. A more effective 

diagnosis leads to more effective treatment, which should lead to fewer antibiotics prescribed. The 

benefit this technique provides over the pneumatic otoscope could outweigh the significantly 

higher cost of the machine itself. The high cost of the machine indicates it would be more 

effectively implemented in wealthy nations, which are the most responsible for the over-

prescription of antibiotics. For future studies, different angles could be tested to find the optimal 

test angle.  
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Appendix:  

Complete Wire Diagram. The two IR lights are powered with 3.3V and connected to ground. The 

gyroscope and accelerometer are powered with 5V and have the serial data and serial clock connected 

to the SDA and SCL ports respectively.  
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