
GENERALIZATION AND NEURAL NETWORKS

By

FOREST DAN FORESEE

Bachelor of Science
Oklahoma State University

Stillwater, Oklahoma
1979

Master of Engineering
Oklahoma State University

Stillwater, Oklahoma
1981

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

DOCTOR OF PHILOSOPHY
December, 1996

COPYRIGHT

By.··

Forest Dan Foresee

December, 1996

GENERALIZATION AND NEURAL NETWORKS

Thesis Approved:

. ThesisA~ ·

-rRorntUJ (?. e£Yeks
Dean of the Graduate College

ii

ACKNOWLEDGMENTS

I would like_ to thank my major adviser, Dr. Martin Hagan, for his guidance, encour

agement, patience and friendship. I would also like to thank my other committee members

Dr. Carl Latino, Dr. Scott Acton and Dr. James Whiteley for their helpful suggestions and

assistance.

My thanks also goes to the management of Lucent Technologies for their support

in this endeavor. Specifically, thanks goes to Mike Stallings, Steven Gregus, Sid Hardy,

Mike Carolina and in particular to Al Arms.

I would like to express my deep appreciation to my wife, Tina, for her years of lov

ing support and encouragement. Thanks also to my children Dustin, Austin and Tara for

their love and patience. Finally, I wish to thank my parents for all they have done to support

all my endeavors, especially the encouragement for this one.

iii

TABLE OF CONTENTS

CHAPTERl
INTRODUCTION ... 1

CHAPTER2
BACKGROUND ... 4

Introduction .. 4
Single Neuron ,. ... 4
Neural Network Architecture ... 7
Abilities ,, , 10
Training Concepts .. 11
Training Methods ... 12
Toy Problems ... 19
Commonly Used ParaIIleters ... 20
Summary .. 22

CHAPTER3
GENERALIZATION ... 24

Intent of Chapter .. 24
Generalization .. 24
Improving Generalization .. 26
Summary ... 40

CHAPTER4
NIC ... 41

Introduction .. 41
Background .. 41
Method of Application ... 45
Trials .. 48
Summary .. 53

CHAPTERS
REGULARIZATION .. 55

Introduction .. 55
Background .. 55
Method of Application ... 58
Trials .. 59

iv

Effective Number of Parameters .. 62
Summary .. 66

CHAPTER6
BAYESIAN LEARNING AND THE GNBR ALGORITHM 68

Introduction .. 68
Background .. 70
Method of Application ... 82
GNBR Trials .. 83
Effective Number of Parameters .. 87
Noise Considerations ... 100
An Alternate Viewpoint ... 103
Summary .. , 115

CHAPTER7
STOPPED TRAINING .. 117

Introduction .. 117
Background .. 118
An Analysis .. 122
Method of Application-.. 129·
Trials .. 130
Summary _ ... 134

CHAPTERS
REAL-WORLD PROBLEMS ... 135

Introduction .. 135
Recipe for Application .. 135
Age versus Weight/Height of Preschool Boys .. 137
Sensors ... 142
Sunspots .. 144
Mackey-Glass Equation ... 147
Summary .. 150

CHAPTER9
CONCLUSIONS ... 152

Summary ofResults ... 152
Recommendations for Future Work .. 154

REFERENCES ... 156

V

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9
Table 10
Table 11

LIST OF TABLES

Parameter Styles .. 20
List of Parameters .. 21
Eigenvalues from the Saw Example .. 96
Comparison of Different Hidden Layer Sizes ... 99
Weight Values of Additive Neurons ... 100
Comparison of Models Trained with Laplacian Noise 102
Comparison of Models Trained with Uniform Noise 103
Model Comparison for Boys Data Set .. 138
Model Comparison for Sensors Data Set .. 143
Model Comparison for Sunspot Data Set .. 146
Model Comparison for Mackey-Glass Data Set ... 148

vi

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37

LIST OF FIGURES

A Single Neuron ... 5
Linear and Tansig Functions ... 6
A 2-Layer Network with S Hidden Layer Neurons .. 8
Typical 1-2-1 Network Mapping .. 10
Example of Good and Poor Generalization .. 12
Toy Problems .. 20
Fitting of Data for Polynomials of Order 6 and 8 ... 26
Examples of High Bias and High Variance .. 31
Training Set and Validation Set Errors ... 37
Learned Function at Point A and Point B .. .38
Four Period Sine Function ... 48
NIC for Four Period Sine Wave49
Actual, Training Set, and Learned Functions for Different Architectures 50
NI C and Actual Squared Error for Different Architectures 51
N* and Ev for the Saw Functiori ... 52
Normalized Ewfor the Saw Function ... 53
Overfitting Example for a= 0.001 ... 61
Underfitting Example for a= 10 .. 62
Data Fitting Example for a= O.Ol .. 63
Final Results for Various Values of a .. 64
Effective Number of Parameters for the Saw Function 66
Prior and Posterior of Bayesian Learning : ... 72
Final Function and Actual Squared Error Progression 84
E0 and Ew for the Saw Function of the 1-6-1 Network 85
a and~ for Saw Function of the 1-6-1 Network .. 85
yfor the Saw Function for the 1-6-1 Network .. 88
Results of Small Initial Weights for the 1-6-1 Network 90
yfor Small Initial Weights for 1-6-1 Network .. 91
Simplified View of Eigenvector Relationships .. 92
Results for the 1-10-1 Network .. 97
yfor the 1-10-1 Network ... 98
Noise and Noisy Training Sets ... 101
Example of Training to the Point of Overfitting ... 119
Function Plot at Point A and Point B .. 120
Bias and Variance of a Network During Training .. 121
Plot of Diagonal Elements of Mm and Ma Parameters 125
Simplified View of Regularization and Stopped Training Relationship 129

vii

Figure 38 Results for Fixed a .. 131
Figure 39 Results of Bayesian Learning Example .. 133
Figure 40 Preschool Boys Data Set.. ... 137
Figure 41 Training for Boys Data Set ... 139
Figure 42 Interim Function Plots for 1-6-1 Training .. 140
Figure 43 Sensor Data Set ... 142
Figure 44 Training for a 2-8-1 Model with Sensor Data ... 144
Figure 45 Sunspot Training Data Set and Test Set ... 145
Figure 46 Training for a 2-6-1 Model with Sunspot Data ... 147
Figure 47 Mackey-Glass Training Data Set and Test Set ... 148
Figure 48 Training for a 2-7-1 Model with Mackey-Glass Data Set 150

viii

CHAPTERl

INTRODUCTION

With the recent dramatic increase in neural network usage, pressure is increasing to

improve their performance. Neural networks are trained by using sample sets. However,

the samples usually contain noise. When a network is trained, it learns the noise in the

training set along with the underlying function. The resulting network will not respond

properly to new input because of the noise. The neural network is said to not generalize

very well. Our goal is to improve neural network generalization performance.

A common problem with surveying current literature in this area is the diversity of

the field of researchers. The theories of neural networks are developed by people with a

broad range of backgrounds. Different fields typically have their own language and no

menclature. This makes reading· and applying their work difficult.

We will survey and categorize common techniques aimed at improving generaliza

tion. A few of the most promising techniques will be chosen for examination. We will put

each into a common mathematical language for easy comparison. Then we will explore

their strengths and weaknesses by implementing each of them in the Leven berg-Marquardt

training algorithm and running experiments.

1

We will then draw on this knowledge and propose an improved algorithm based on

the best existing techniques. We will test our new algorithm on real-world problems and

discuss the results.

We will show that our GNBR (Gauss-Newton approximation to Bayesian Regular

ization) algorithm consistently produces optimal generalization performance results with

out dramatically increasing computational overhead. Indeed, any reasonably sized model

trained with the GNBR algorithm, following our recipe for application, will often produce

optimal results the first time. Our recipe will include some simple checks to give confi

dence in the training results.

Let us now outline the flow of this document. Chapter 2 will serve as a refresher of

pertinent neural network background material. Its main thrust will be to put commonly

used equations into the form we will be using and to introduce our nomenclature. This

chapter will end with a list of parameters we will use throughout this document for easy

reference.

In Chapter 3, we will discuss generalization and how it affects neural network per

formance. We will also give a short introduction to several existing generalization tech

niques. Finally, we will list the most promising methods, which we will present in more

detail in future chapters.

The first method we will present is a model comparison criterion. It is an extension

to the AIC commonly used in statistics for comparing regression models. This will be ex

amined in Chapter 4.

2

Regularization is used quite often in statistics to restrict parameter values. In Chap

ter 5, we will examine its effect on neural network training. In Chapter 6, we will look at

a method of automatically optimizing the amount of regularization to use on a neural net

work architecture, gi~en the particular set of data used to train it. This will be accomplished

through Bayesian analysis of network training.

A very popular training technique used today is "stopped training". In Chapter 7,

we will explore this technique and compare it to regularization.

Then, in Chapter 8 we will outline a recipe for application of our new GNBR algo

rithm, which is first developed in Chapter 6. We will also apply it to four real-world prob

lems to demonstrate the consistently optimal generalization performance it gives.

Chapter 9 will contain a summary of the main results and contributions of this work.

This will be followed by recommendations for future work.

3

Introduction

CHAPTER2

BACKGROUND

The intent of this chapter is to introduce relevant neural network background in a

mathematical framework that will be used in the chapters to follow. It will remind the read

er of applicable fundamentals while introducing the notation we are using. We will begin

with a short analysis of a single neuron. This will be followed by a description of a 2-layer

network architecture and a short discussion of its abilities.

Training is the key to improving generalization. We will briefly show a conceptual

relationship between training and generalization, and will then present some details of the

simplest form of training. Note that this material is slanted toward the implementation of

the algorithm we will use.

"Toy" problems which will be used to illustrate the various concepts discussed in

this dissertation are identified next. Lastly, a list of the most often used parameters is sup

plied for future reference.

Single Neuron

A neuron is the smallest processing element of an "artificial" neural network. A

block diagram of a neuron is shown in Figure 1. It has an input p and an output a . The

equation of operation is

4

a = f(x) = f(wp + b) (1)

The input is scaled by the weight w and added to the bias b . The weight and bias of a neu-

ron are selectable parameters and can take on any real value. The transfer function of the

neuron is represented as f. It can be a simple. linear function with unity gain, or it can be a

more complex nonlinear function such as the hyperbolic tangent sigmoid (tansig). What-

ever it is, it provides a key translation between the input p and the output a .

w X

p a

b

1

Figure 1 A Single Neuron

Let the transfer function f be an increasing function which is symmetric about zero.

Then the bifurcation point of Eq. (1) is at p = -~ . For both a linear function and a tansig
w

function, if p < -~ then a < 0 whereas p > -~ maps to a > 0 . w . w

As an example calculation, consider p = - ~ + E for any E > 0. From Eq. (1),
w

a = f(wp + b)

= f(- b + EW + b)

= f(Ew)

(2)

If f is a linear transfer function such that f(x) = x , then the amount of the input p greater

5

than _!!_ is simply scaled by w. Note that, since w can be any real value, it can be selected
w

to cause any specific output a for a particular input p . Now, if f is the tansig function, then

X -X
e -e

f(x) = --x -x (3)
e +e

so f is bounded by (-1, 1) ; i.e., -1 < f(x) < 1 "i/ x . Note that the linear transfer function

is good for providing real-valued output while the tansig function provides more of a binary

type output, conducive to decisions and selections. An example of a = f(0.25p + 0.75)

for both the linear function and the tansig function is shown in Figure 2.

0,8 0.8

0,6 0.6

0.4 0.4

0,2 02

a o ------------ ----------------------- a o ------------ -----------------------

-02 -02

-0.4 -0.4

-blw -blw
-OB -0,8

-1'-----'---"~~--'-'--~~~~~~
-10 -8 -6 -4 -2 8 10

p p

Figure 2 Linear and Tansig Functions

As one last note on a single neuron, we show it in Figure 1 as having only one input.

It can also have many inputs. If pT = ~1 p2 .•. pJ, then a = f(wp + b) where

w = [w1 w2 ... wJ. The neuron now provides a weighted sum of the inputs combined

with the bias before being translated by the function f. We will see how the single-input

neurons can be combined with a multiple input neuron in the next section.

6

Neural Network Architecture

Consider the 2 layer neural network of Figure 3. It has two layers because the single

input p is processed by S single neurons simultaneously before having their outputs

a~, a~, ... , a1 treated as multiple inputs to a single neuron whose result is the final output

of the network af. The neurons receiving common input are considered to be in the same

"layer". Thus we have two layers. There is one neuron in the output layer, so dubbed since

its output is the output of the whole network.

Between the input p and the output layer is the "hidden" layer. The name stems

from the fact that it does not have direct exposure to the output of the network. On one end

of the network is the output layer; on the other end is the network input. The hidden layer

of Figure 3 has S neurons. All S neurons may receive the same input p , but since the

weight w: and the bias b: are typically different for each neuron, they will each respond

with a different output a: .
Notice that we show a network containing S hidden layer neurons with a single in

put as shown in Figure 1, and one output layer neuron with S inputs, from the hidden layer,

as discussed at the end of the previous section. Imagine that the hidden layer neurons each

have a bounded output as discussed previously, while the output layer neuron has a linear

transfer'function. We can now see that the size of the input p might determine which hid

den layer neurons are presenting a value close to 1 as opposed to a -1 to the inputs of the

output layer neuron. Recall that the linear output neuron will scale the inputs according to

7

Figure 3 A 2-Layer Network with S Hidden Layer Neurons

the weights. So this neural network could provide a nonlinear scaled output based on the

various combinations of outputs of the hidden layer neurons, which is in tum based on the

value of the input p .

To see this better, we examine the equation of operation of the neural network of

Figure 3 and follow with a simple example.

2 f 2,J 1 1 2 a 1 = (w J (w p + b) + b) (4)

where

1 bl 2
Wl 1 Wl

1
1

bl
bl 2 T 2

b 2 = [b~ w = W2 = 2 (w) = W2 (5)

1 bl 2
Ws s Ws

8

The neural network we will use will be a single-input/single-output two layer network of

the architecture shown in Figure 3. Further, we will assign the unity gain linear transfer

function to the output layer neuron and the tansig function to each of the hidden layer neu-

rons.

For an example, suppose there are only 2 hidden layer neurons. Thus our network

will have only 3 neurons requiring 10 weights. (Note: quite often the weights and biases

of a neural network are collectively referred to simply as the weights. This is in part be-

cause they have similar value to the network since they are all tunable parameters.) Our

network will operate according to

2 I 2,J 1 1 2 a 1 = (w J (w p + b) + b)

= 1[H w~1[[:Jp+ [:J]+bi]

= [wi w~1[[:Jp + [:m + hi

If we assign the weights of this network as

bl = 1-21
lo.sJ

2 T [-5J (w) =
-10

(6)

h2 = [o.s] (7)

then the mapping function performed by this network would be as shown in Figure 4. More

hidden layer neurons can produce more complex mappings. We will see many examples

of this later.

9

1.5

-0.5

p

Figure 4 Typical 1-2-1 Network Mapping

Abilities

As indicated previously, the input p of a neural network can be mapped into more

complex looking functions as more hidden layer neurons are added. In fact, Hornick and

Stinchcombe show that any function (Borel integrable) can be approximated arbitrarily

well by a 2-layer network given enough neurons in the hidden layer. [Whit92]

Thus far we have talked about neural networks that implement a certain mapping.

Adjusting the weights to produce a desired mapping function is referred to as nonlinear re-

gression, or function approximation.

Neural networks are certainly not limited to function approximation or regression.

They can also perform discriminant analysis, or pattern recognition. For instance, if the

transfer function in the output layer is bounded in the interval (-1, 1) we can train a net-

work with a single output neuron to produce a 1 when the input is in one class and a -1

when the input is in a second class. With multiple neurons in the output layer more com-

plex classifications can be made.

10

In order to reduce the scope of work to a manageable size, this research will address

only the function approximation (regression) aspects of neural network training. Many of

the ideas discussed here, however, can be directly applied to pattern recognition (discrim

inant analysis) as well.

Training Concepts

Having defined the boundaries of our work, we will now discuss how to adjust the

tunable parameters of a neural network, the weights. We will use supervised training to

"teach" our network the function we wish it to learn. Supervised learning requires that we

know the desired output (target) t for each input p, so errors can be calculated.

Of course, the training set (inputs and desired outputs) is finite in size. In many real

world cases the training set size might be quite small. The idea is that the training set rep

resents a random sampling of the function we wish our network to learn to approximate.

However, since we took measurements on the function, they surely contain errors. There

are many sources of error; e.g., the measuring device, rounding, environmental inflections,

or simple human error. If our training set were infinite in size, the average error would tend

to zero. However, in practicality we are limited to a finite set of sample measurements.

Since these measurements contain noise, we must find a way to reduce the effects

of the noise on training. Our desire is to train the network to respond as the true function

does. The underlying function is sometimes severely obscured by the noise. We do not

want our neural network to respond to novel inputs with an output typical of the noise it

learned from the training set. How well a trained network mapping resembles the true func

tion is a measure of generalization capability.

11

If a trained neural network is presented with an input value which it was not specif-

ically trained for, we would like for the network to properly map it anyway. This is referred

to as good generalization. Indeed, since our training set is finite in size, most of the future

inputs will not have been in the training set. If the network learns the noise in the training

set, then it will respond incorrectly to the novel input. This is referred to as poor generali-

zation. Examples of good and poor generalization are shown in Figure 5. The training set

samples are denoted by a"+" and the true function and the network response by lines. No-

tice the network mapping function on the right has learned the noise in the training set at

the highest peak. In the figure on the left, the network response closely tracks the underly-

ing saw function and has good generalization. Improving the generalization of a neural net-

work is the aim of this work.

Good Generalization

a a

0.6 0.7 0.8 0.9 1

p p

Figure 5 Example of Good and Poor Generalization

Training Methods

Tuning the parameters of the neural network according to the training set is central

to our theme. To follow the ideas of training algorithms, we must now define several math-

ematical expressions. These ideas are common in the neural network literature, although

12

the notation is different for most every paper. The parameters used here will be reused

throughout this paper.

With supervised learning we have a set of inputs and target outputs:

where these pairs are generated from the following underlying process

(8)

We define the training set error as

n n

(9)

i = 1 i = 1

where ai is the output of the neural network when Pi is the input. (Note that for simplicity

of presentation we are assuming a single-input/single-output system. The results can be

easily generalized to the multiple-input/multiple-output case.) Also note that in the final

relation of Eq. (9) we show the errors for the entire training set as the vector e. Thus, e

becomes an n length vector composed of the individual errors for the n size training set as

(10)

We can also define an "actual" error as

n

(11)

i = 1

13

We often adjust the weights and biases of the network to minimize the training set error ED .

However, we really want the network to minimize the actual error EA. The problem is that

EA is not measurable.

There are also other errors we will wish to monitor later. For a set of independently

chosen data, Ev performs the same function as Ev, except that Ev is not used by the train-

ing algorithm. This is the error associated with a validation set of data. We might observe

this variable during training as a cross-check of proper learning.

Similarly, for yet another independently chosen set of data, we define Er to be the

testing error which could be evaluated after training as an indication of proper performance.

On a different note, we define

N

Ew = (w-w0{(w -w0) = L (wi- w0) 2 (12)

i = 1

This is the sum of the squares of the weights, ordered in w . We will assume the nominal

weight vector w O = 0 unless stated otherwise. Ew has a form similar to ED but is depen-

dent solely on the values of the weights.

When training a neural network, we often look to minimize the errors of the training

set ED . But the actual function we minimize can take on many forms. For example, we

may want to initialize some combination of Ev and Ew. We will refer to our general ob-

jective function as F, and we will be careful to indicate which form we are using for each

14

instance. For minimizing F, we will require the gradient and possibly the Hessian of the

objective function F.

If our objective function is F(w) = En, the gradient of Fis

where

is the Jacobian matrix.

a
VF(w) = awF(w)

a
= awEn(w)

a T = aw((e(w)) e(w))

= 2JT(w)e(w)

(13)

(14)

The matrix of second derivatives with respect to the weights is called the Hessian

of F. It too, can be expressed using the Jacobian matrix.

15

a2
d ,id F(w)

W Wl

= 2[J\w)a:•(w) + ;~i e;(w)V2e;(w)]

= 2JT(w)J(w) + 2S(w)

n

We will assume S(w) = L e/w)V2ei(w) is close to zero. Thus,

i = 1

(15)

(16)

The typical training method used today is backpropagation. This method propa-

gates the resulting errors back through the network for weight modifications. The simplest

form of backpropagation is steepest descent.

Steepest descent takes a step of size µ in the direction opposite of the gradient of

the error function. It has the form shown in Eq. (17) below. This assures us that

F(w(i + l)) < F(w(i)) so that we will approach a minimum point of our objective function

F(w).

(i + 1) (i) nF((i))
W = W -µv W (17)

16

The valuation of a = f(wp + b) is the forward propagation of a neuron for a single

input stimulus p . For backpropagation of the resulting error at the output (t - a) , we must

find the gradient VF(w) whereF(w) =Ev= (e(w)/e(w). Note that the errors e are

a function of the weights w since e = t- a and a = f(wp + b). So, we must use the

chain rule of the form

a a a
a"-;/Cx) = a1Cx). awx(w)

where x = wp + b is clearly a function of the weights. We will not dwell on the derivation

ofbackpropagation but refer the reader to e.g. [HaDe96] for a detailed treatment. We will

only show the final form of equations as they apply to our network architecture.

For each error ei of our 2-layer neural network containing S hidden layer neurons,

the forward equations are

al = /cwlp + bl)

a2 = lcw2al + b2)
(18)

Note that the output a2 and bias b2 for our single neuron output network are scalars. Now,

for each training set sample we define the sensitivities

17

c2 = -{-~-/(xi)} = -2[---~-j(xf)](t-a)
axl axl

a I 1 0 0 -1 (x1)
axl

a I 1
(19)

1 0 -1 (x2) 0
(,v2)~ __i!_/<xi)J C = ax2

axl

0 0 a I 1
··· -1 (xs)

axs

The act of learning in a neural network is updating the weights. For each error we have

l(i + 1) l(i) 1
w = w -µc p

2(i + 1) 2(i) 2(1)T w = w -µc a

b l(i + 1) bl(i) 1 = -µc
(20)

b 2(i + 1) b2(i) 2 = -µc

We see from Eq. (17) that applying the chain rule to obtain the gradient VF(w) resulted in

the use of the sensitivities c 1 and c2 . Each type of weight or bias has its own update equa-

tion because of the different results obtained by the chain rule.

Now, for each epoch of training, we sum the results of all n errors, then take a step.

Training typically ceases when a minimum level of error ED is found. Recall that near a

minimum point of F, the gradient approaches zero, and ED has a minimum there.

There are many variations on the backpropagation algorithm. One method of de-

picting a large group of these variations is

U + 1) (i) RnF((i))
W = W -µ V W (21)

18

where the matrix R modifies the descent direction. In steepest descent, R = I and we

have simple gradient descent. More complex numerical optimization techniques modify

the gradient using local second derivative information. This requires the estimated Hessian

matrix introduced earlier.

The learning method of our choice for the duration of this work is the Levenberg

Marquardt algorithm. It is a Gauss-Newton form which terripers the second derivative Hes

sian estimate with tendencies toward steepest descent when inaccuracies due to only having

local second derivative information result in an increase in the error function. This results

in generally faster learning for small networks.

Toy Problems

For the purpose of debugging software implementations and exploiting character

istics of various generalization improvement techniques, we will use "toy" functions. The

toy functions will serve as the true function we wish our trained neural network mapping

to resemble. Knowing the true function, we can plot network responses and do visual com-

parisons as well as use non-noisy data for evaluating the actual errors EA . Both these tech

niques will help us decide which generalization improvement technique can best

approximate the true function.

We will obtain samples from each toy function. Then we will add noise to these

true values to create noisy measurements. These will populate our training, validation and

testing sets as they are needed. Unless otherwise noted, the same data sets will be used

throughout this work for best comparisons. The initial weights are selected by the Nguyen-

19

Widrow method. [NgWi90] Again, for common architectures the same initial weights will

be used unless otherwise noted.

The two toy problems chosen are the single cycle sine function and the single cycle

saw function. Their forms are shown in Figure 6. The sine function is smooth whereas the

saw function has sharp points.

0.8 Sine 0.8 Saw
0.8 0.8

0.4 0.4

0.2 0.2

a o a o

-0.2 -0.2

-0.4 -0.4

-0.6 -0.8

-0.B -0.8

p p

Figure 6 Toy Problems

Commonly Used Parameters

As a guide to notation, Table 1 shows the three types of typical variables used here.

Table 2 shows a list of the most often used variables with a brief description. This list is

not complete, but serves as a useful reminder of parameters carried from chapter to chapter.

Parameter Type Style Examples

scalar non-bold Greek or italic letter p,a,N

vector bold small letter e
matrix bold capital letter F

Table 1 Parameter Styles

20

Parameter Type Description

a scalar regularization parameter

~ scalar error function parameter

'Y mo' 'Y ma' 'Y1j scalar
Moody's/MacKay's/Ljung's effective number of

parameters

A scalar eigenvalue

Ab Ah scalar eigenvalue of v2~E D, V2F
'
µ scalar training algorithm tunable parameter

cro scalar variance of noise in sample set

2 scalar variance O'

a,a scalar/vector output of network

D -- set of all training set data

e,e scalar/vector single/all data set sample errors

ei, ei scalar/vector single output value for single sample/part of e

EA scalar sum squared actual data errors

Ev scalar sum squared training set data errors

Er scalar sum squared testing set data errors

Ev scalar sum squared validation set errors

Ew scalar sum squared weights

F scalar objective function

VF, V2F vector/matrix gradient/Hessian of F

F(w,D) scalar objective function for D data set of size n

F'\w) scalar objective function for regularization factor of a
-

scalar expectation of F(w, D) over training sets F(w)
- -
F scalar expectation of F(w) over w
G matrix matrix in NI C

GNBR -- Gauss-Newton approximation to.
Bayesian Regularization

H matrix Hessian of F

I matrix identity matrix

Table 2 List of Parameters

21

Parameter Type Description .
ji vector row part of J (produced by single sample)

J matrix Jacobian of F

K matrix . f, .T
expectation o J iJ i

m scalar training step number

M -- denotes a particular neural network model

Ma matrix weighted mean parameter based on a

Mm matrix weighted mean parameter based on training steps m

n scalar number of training set samples

N scalar number of weights and biases in network

N* scalar estimate of N

NIC scalar Network Information Criterion

p,p scalar/vector input to network

Q matrix matrix in NI C

R matrix modifies gradient descent direction

s scalar number of hidden layer neurons

t, t scalar/vector target(s) of sample input(s)

wi,w scalar a neural network weight or bias

w vector vector of weights and biases in the network

ML vector Most Likely weights based on min ED w

MP vector Most Probable weights based on Bayes' Optimization w

WO scalar constant

w -- set of all weights and biases in network

Table 2 List of Parameters

Summary

In this chapter, we have presented relevant background for the purpose of introduc-

ing our notation. This notation will be our foundation for mathematical comparisons made

in the following chapters.

22

We will now have a more extensive discussion of generalization and then present

some existing procedures for improving generalization. We have bound this part of the

work to feed-forward 2-layer neural networks with a single-input/single-output architecture

for function approximation. The discussions and work in the following chapters will be

limited to this situation.

In the next chapter, we will present applicable methods of improving generaliza

tion. Some of these we will explore further in later chapters.

23

Intent of Chapter

CHAPTER3

GENERALIZATION

In this chapter, we will define generalization as it applies to our neural network ar

chitectures introduced in Chapter 2. Then we will discuss notable methods of improving

generalization performance. Finally, we will note the methods we have decided to pursue

in this dissertation.

Generalization

The intent of training a neural network is to represent in the network the function

described by the training set. We would hope that the training set samples fully describe

the form of the true function. For this reason, some of the requirements falling on the train

ing set include the quantity and distribution of the samples. If the number and distribution

of training set samples is not enough to fully describe the regularity or salient features of

the true function, then the best a neural network can do is assign some random components

to some of its parameters. We will not pursue training set requirements here. Rather, we

will concentrate on how to ensure the most appropriate number of parameters are available

in the neural network for a given training set.

The ability of a neural network to learn a function from a training set is driven by

the relationship of two quantities: the number for parameters necessary to adequately de-

24

scribe the true function and the number of parameters available in the neural network.

[BoLi96]

Too few or too many parameters in the neural network can have devastating effects

on the ability of the neural network to properly learn the true function. It is not enough for

the neural network to learn to appropriately map a particular training set sample input to the

required output value. For any training set, given enough hidden layer neurons, a neural

network can be trained to "memorize" the samples. However, overfitting can easily result.

Regression Comparison

The concept of overfitting in a neural network is much the same as in linear regres-

sion. For a finite set of data regressed onto an overparameterized model, the model can be

made to fit the data, but testing points of the true function outside the sampled set may show

that the model does not even grossly represent the true function.

Figure 7 shows a simple example of overfitting. The data is represented by circles.

Polynomials of orders 6 and 8 were regressed onto the data. In the figure, the lines repre-

sent the actual polynomial mappings. The sixth order polynomial did not fit the data as well

as the eighth order polynomial. However, the higher order polynomial does not appear to

be the proper interpretation of the function the data represents. The two equations are

a= -0.0037p6 +0.llp5 -1.28p4 +7.0lp3 -19.2p2 +26.4p-11.1
(22)

a = 0.002p8 -0.079p7 + 1.33p6 - 12.lp5 + 64.5p4 - 206p3 + 382p2 - 367p + 140

Definition: Generalization -- If a testing set is taken from the same probability

function as the training set, then good generalization means the performance of the neural

network will be about the same for both the training set and the testing set. [BoLi96]

25

a s

6th Order

Polynomial

p

a s

8th Order

Polynomial

p

Figure 7 Fitting of Data for Polynomials of Order 6 and 8

With the above definition, note that good generalization is not equivalent to good

approximation of the function being learned. Also, poor generalization of a neural network

does not necessarily imply overfitting of the data. If the neural network does not contain

enough parameters to learn the function, then underfitting results. In a general sense, this

means that either the learned function is too smooth or that only a subset of the true function

is represented.

For the toy problems where the true function is known, we will use EA as a com-

parative empirical measure of generalization performance. When the true function is not

known, we will sequester a portion of the available data samples that will not be used for

training and use ET for performance comparisons.

Improving Generalization

Neural networks have problems obtaining good generalization through training.

These are much like the problems encountered in linear regression. Much time has been

spent in the statistical world developing methods for comparing regression models and

evaluating the performance of models. Neural network enthusiasts also have many ways

26

of comparing trained neural networks or empirically evaluating them and incorporating

changes to improve generalization performance.

Here, we will briefly describe four distinct categories of generalization techniques

used in neural networks. Pruning starts with an oversized neural network and removes "un

necessary" parts after training is finished. Growing starts with a small network and adds

more neurons as needed. Statistical techniques attempt to evaluate the performance of

trained neural networks for comparative purposes. Other techniques, mostly disparate in

nature, exist but only a few have widespread acceptance.

Pruning Techniques

Pruning gets its name from gardening: if a limb or branch does not significantly

contribute to the whole, excise it. There are many variations of pruning, though most stem

from one of the two discussed here.

The simplest form of pruning examines the weights and biases of a trained neural

network and removes or zeroes any which are close to zero. This static exercise assumes

that a small weight contributes very little to the overall mapping function. However, given

the nonlinearity of the neural networks, this need not be true. Static pruning may work to

some degree, but results are not guaranteed. [SiDo91]

A more credible method of pruning is called Optimal Brain Damage. This method

aims to remove unimportant weights by examining second derivative information of the

objective function. Through perturbation analysis of the objective function, the second de

rivatives can be used to give an indication as to their importance in reducing the objective

function. Those weights which have minimal effect on the objective function are removed

27

and the training resumes from there. Cases have been sited where an otherwise optimal ful

ly-connected network was reduced by more than half the number of weights and yet gained

significant improvements in generalization. [CuDe90]

Growing Techniques

Growing a neural network obviously involves adding to an existing architecture.

On the simple side, one can choose a neural network which is inherently too small and train

it and evaluate its performance. Then, add a single neuron to the hidden layer and continue

training. In this process, neurons continue to be added as long as performance improves.

Growing methods can also be more deliberate. Two such techniques are stacked

generalization and cascade correlation models. Both involve adding to existing architec

tures with the intent of improving generalization performance at a fundamental level.

Stacked Generalization

Stacked generalization (or ensemble methods) is a way of combining multiple in

dependently trained neural networks to reduce generalization error. The neural networks

may be of different architectures, or trained differently or simply using a different training

set (e.g., the statistical leave-one-out implementation described on page 34). The outputs

of all neural networks are combined in some fashion (e.g., weighted sum, average, winner

take-all, or nonlinear combination) to produce the overall "corrected" output. Certain con

straints must be met in some variations (e.g., the sum of all the weights used to combine the

networks must equal one, or the size of training set may need to be consistent for each net-

work). [W olp92]

28

This technique uses the idea that the error of each neural network is independent of

the others so it can be "averaged" out. This also means that each neural network must be

trained and stopped at a different local minimum. In [PeCo92], it is experimentally shown

that there are usually few local minima, so the ensemble network may only require a few

distinct neural networks. Also, each architecturally similar neural network is usually

trained with a different cross validation subset of data. (See "Stopped Training" on

page 36.)

Cascade-Correlation

The cascade-correlation network has a different structure than other neural net

works noted here. It begins as a single layer of neurons, the output layer. All inputs avail

able are connected to each of the output layer neurons. Typically, some form of gradient

descent training method is used to minimize the training set error. When performance stops

improving, the error level of the network is checked. If it is low enough, training stops. If

not, then a single new neuron is added to the network.

The new neuron is chosen by first training several candidates with all available in

puts to each. The neuron with the best correlation between its output and the established

residual errors of the network is chosen to be inserted into the network. The input weights

for the new neuron remain frozen, but the new connection from its output to the output layer

neurons is modified along with the rest of the network as training resumes. This process is

repeated by checking the final error level and adding another neuron, if necessary.

The key here is that each new neuron has all available inputs plus the outputs of

each previously added neuron as its total complement of inputs. In this way, the new neu-

29

ron has the same inputs as the output layer neurons. With its output correlated with the er

rors of the original network, these errors are hopefully attenuated by the output layer

neurons when connected as an input to them. If the first neural network learns only the

most coarse characteristics of the desired function, then the subsequent cascades add in

creasingly higher degrees of detail. [FaLe90]

Statistical Techniques

This subsection gives a brief overview of some statistical techniques that have been

adapted to apply to neural networks. Some may require a little background. We will pro

vide that here.

Bootstrapping and jackknifing are two well known statistical methods employed for

parameter estimation. These concepts are used in an attempt to overcome bias in the sam

ple set used for network training. If all possible data were available in the training set then

all measurements based on the exhaustive sample set must be accurate. However, the typ

ical situation allows only a small subset of all possible data to be analyzed. This subset is

usually the result of randomly sampling the true process.

One problem with random samples, however, is that they do not usually reflect the

distribution of the true process. For example, let's say a neural network is trained on a par

ticular training set. The resulting function will contain two types of error. First, if the

learned function is on average different from the true function, then it contains bias. Sec

ond, if the learned function is very sensitive to the peculiarities of the training set, such that

a different randomly chosen training set yields a different learned function, then it contains

variance.

30

An example of this concept is shown in Figure 8. Both plots show the curved true

function, the training set indicated as"+" points, and the learned function. In the plot on

the left, we see that the average difference between the training set points and the learned

function is large, but will remain about the same size for any randomly chosen training set.

This is an example of high bias and low variance. In the plot on the right, the learned func-

tion fits the training set exactly, but will have large errors if compared to most any other

training set. This learned function has no bias, but a very high variance.

1. High Bias High Variance

OB

0.2

-0.20 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0,9 1 -0,20 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p p

Figure 8 Examples of High Bias and High Variance

We can now see that if a neural network is trained to the level of the noise in the

training set it will contain high variance error, whereas an untrained neural network might

have high bias in its mapping function. (Unless the initial weights happen to reflect a min-

imum point of the error function.)

In this section, we will discuss four attempts to minimize these two error types.

Bootstrapping and jackknifing characterize the bias and try to compensate for it. The NI C

is a statistical measure of the training set fit ofthe learned function. Regularization at-

tempts to minimize the bias and variance errors through training techniques.

31

Bootstrapping

Bootstrapping attempts to characterize the bias in sampling by analyzing many re-

sampled sets. A resampled set is a set of samples taken from the original sample set. The

samples are randomly taken from the original sample set one at a time. After each sample

is taken, it is recorded in the new set and then placed back into the original set. In this man-

ner, a sample has equal opportunity to be chosen every time. Thus, it is possible for the

same sample to be recorded in the resampled set more than once. In fact, since the size of

the resampled set is supposed to be equal to the size of the original set, the resampled set

will surely have duplicates. This process is repeated for each resampled set required.

When we sampled the true process, our sampling method did not preclude us from the pos-

sibility of drawing two identical samples. Resampling with replacement has the same idea.

Suppose we randomly sample our already chosen sample set, being careful to re-

place samples, giving them the possibility of being randomly chosen again. Now, calculate

a statistic on the resampled set and then perform another independent resampling. After

many resamplings, we average the statistic values found. The relationship between the av-

erage resampled statistic and the statistic for the complete sample set indicate the basis for

'
a relationship between our sample set and the true process. We chose our samples for res-

ampled sets from the original set in the same manner we chose our original set from the true

function. If, for example, our average resampled statistic shows bias relative to the original

set statistic we could assume the bias relationship can be extrapolated to the true function.

Thus, the extrapolation of the two statistics will estimate the bias of the true function.

32

In bootstrapping we hope that the bias involved in the resampling relative to the

training set is the same for the original training set relative to the true function being sam

pled (see [WeKu91]). Since we are extrapolating two statistics, we must use many resam

pled sets to ensure some degree of accuracy. This procedure, however, is usually

computationally prohibitive since the rule of thumb is to perform at least 200 resamples and

subsequent reestimations of the parameters.

Bootstrapping a neural network would involve training a neural network where the

parameters being estimated are the weights and biases of the neurons. This procedure may

work for neural networks whose trained state is "well defined" by the training set, such as

generalized regression neural networks or probabilistic neural networks, but applying it to

multilayered feed forward neural networks is problematic, at best. [Mast95]

First, the training takes time. Bootstrapping requires retraining the same neural net

work many times. Also, the randomness of which neuron takes on which feature will foul

up averaging and comparing. Finally, falling into different local minima will require re

training from different initial conditions many times for each resampled set in an attempt

to locate the same local minimum for all resampled training comparisons.

The work involved is too time consuming to get the best implementation possible

for a single architecture. Also, there is no way to know how many different architectures

must be trained before finding one with acceptable testing results. In addition, consider that

bootstrapping is based more on experimental observations than on proven statistical tech

niques and thus is not guaranteed to produce more accurate parameter estimates.

33

Jackknifing

The jackknife method of parameter estimation assumes that the bias of the estimates

is approximately inversely proportional to the sample size. Thus, extrapolation from two

parameter estimates based on different sample sizes would give an estimate of the bias in

the estimates. The first parameter estimate is, of course, based on the entire sample set, but

we must use a subset of the entire sample set for the second parameter estimate.

The typical jackknifing method is to perform leave-one-out sampling. This in-

volves estimating the parameter once for every new sample set created by leaving one data

point out. If there are n samples in the original sample set, then there are n new sample

sets for estimating the parameter. The average of then new estimates is then compared to

the original estimate that was based on the entire sample set. A linear extrapolation is then

performed based on the two parameters. If we know the parameter estimates with set size

n and (n - 1), then we can extrapolate from the parameter estimates at points ! and
n

(n ~ 1) to zero, the point where n represents an infinite number of samples. [Mast95]

Jackknifing suffers from all the same problems as bootstrapping concerning com-

putation time and local minima. Also, the basic assumption of the relation of bias to sample

size cannot be affirmed until testing of the final estimated neural network parameters is per-

formed.

NIC

The Network Information Criterion, NIC, is a statistical tool. The NIC is an exten-

sion of Akaike's Information Criterion, AIC, that is widely used to compare regression

34

models. The NIC is a statistic which consists of two parts. The first part is a measure of

the accuracy of the network in fitting the training set. The second part is a measure of the

complexity of the network. By minimizing the NIC we compromise between accuracy and

complexity. Comparing multiple neural network architectures with the NIC will hopefully

indicate the simplest network which sufficiently learns the true function. As in the rule of

parsimony, the simpler network is thought to be least likely to overfit, thus providing better

generalization. (See page 57.) The NIC will be discussed in detail in Chapter 4.

Regularization

Regularization is an attempt to restrict the size of the weights during training. The

weights of the network are adjusted to minimize an objective function which is a combina

tion of squared errors and squared weights. A regularization parameter multiplies the

squared weights in the objective function. As this parameter is increased, more emphasis

is placed on reducing the weights. Of course, too much emphasis on reducing the weights

limits the neural network learning ability. This results in underfitting the true function with

a learned function which is too smooth. Regularization will be discussed in detail in Chap

ter 5.

Bayesian Learning

What is missing with regularization is a way to automatically optimize the size of

the regularization parameter. One answer to this problem is to put the training method in a

probabilistic form, then solve for and optimize the regularization factor. This method uses

Bayesian inference to find the most probable value of the regularization factor. This form

of Bayesian learning will be discussed in detail in Chapter 6.

35

Other Techniques

Stopped Training

As with jackknifing, cross validation estimation also involves leave-one-out train

mg. (See page 34.) However, for cross validation the one left out is used as a test case for

performance evaluation. This is done for all samples in the training set, and the cross val

idation error estimate is the average error of the tested cases. There are many variations of

this technique; e.g., in 10-fold cross validation, the training set is split into 10 sets, the neu

ral network is trained 10 times, each time holding out a different 10% set, and subsequently

testing on that set. [W eKu91]

In neural networks, stopped training is a variation of cross validation testing. A sub

stantial portion of the training set, say 10% to 50%, is randomly chosen and held out and

used for validation during training. The cross validation set error is observed during train

ing and training ceases when the cross validation set error begins to increase, presumably

at the onset of overfitting. This can only be done once, since retraining with different cross

validation sets and choosing the neural network with the best validation test results invali

dates the cross validation. Once the test set error is used for comparison, it has become a

part of the training criteria. [Smit93]

An example case is shown in Figure 9 and Figure 10, where the underlying function

is a saw wave. In Figure 9 is the sum of squared errors of the training set ED and the sum

of squared errors based on a separate validation set Ev progression during training of a 1-

28-1 neural network trained on 24 points of training set data containing noise. Point A is

the minimum value for Ev. Point B represents the final trained neural network. Notice the

36

upturn in the validation set error between these two points. It is at the onset of increasing

Ev that overfitting may begin to happen. Eventually, the validation set error becomes

much larger than the training set error.

10'

,o~'-,---~~--'-,-'-~-~------'----'
~ ~ ~ ~

A E h B poc s

Figure 9 Training Set and Validation Set Errors

In Figure 10 we see the results of training to Point A and to Point B. The neural

network function is plotted with the true saw function and the training set data, depicted as

"+". For the plot at Point B, although the learned function passes very close to each training

set data point, it obviously does not represent the true function very well. In contrast, the

learned function as of Point A does not seem to show any signs of overfitting.

There is little statistical theory available to support stopped training, but there are

many heuristics on how to use it. For example: use sufficient hidden units to avoid early

local minima traps; use 10% - 50% of the training set as cross validation set; use a higher

than typical percent for cross validation set if the total sample set is small; if the number

of samples is greater than the number of neural network parameters but less than 30 times

the number of neural network parameters, then use 1~ % of samples for the cross valida
"' 2N

37

tion set where N is the total number of weights and biases in the network; and, some train-

ing methods may be too fast for stopped training. (See, e.g., [Sar195], [Prec94],

[AmMu95], [Dodi94] and [Weig94].)

Point A Point B

0.5

a o

-0.5 -0.5

-1 -1

p p

Figure 10 Learned Function at Point A and Point B

Stopped training is different from regularization techniques. Stopped training at-

tempts to maximize generalization by stopping the training early, thus avoiding overfitting

the data. Regularization avoids overfitting by limiting the complexity of the neural network

so that it cannot learn minor features of the training set which are presumably not found in

the true function. Also, regularization is surrounded by statistical theory that cannot be ap-

plied to early stopping techniques since a minima is never reached. In Chapter 7 we will

describe the relationship between stopped training and regularization.

One problem with stopped training occurs when the number of training set samples

is small. In this case, placing any samples in the cross validation set severely reduces the

training set size. Another problem occurs when the cross validation set error never increas-

es. This might occur when the neural network, because it is too small, is only able to learn

coarse features of the true function that are common to both training and validation sets.

38

Also, some research shows that stopped training does not positively contribute to

the neural network performance if the number of training set samples is greater than 30

times the number of neural network parameters and should not be used in this case (see

[AmMu95]). Stopped training will be discussed in Chapter 7.

Discussion

Of all the techniques discussed, very few involve growing a neural network. Most

adopt the idea of utilizing an oversized architecture and proceeding to constrain it some

how. Without constraints, the neural networkwill overfit the data. It is widely accepted

that we can discourage overfitting in three ways.

First, we can limit the number of hidden neurons by pruning or statistically compar

ing different models. Techniques involving removing weights after training are straight

forward and not computationally expensive; e.g., only one neural network is trained only

one time. But, results are not guaranteed. Empirical comparison methods, however, have

strong roots in statistics. [Smit93]

Second, we can constrain the weight values. This would include statistical regu

larization and weight decay methods. These methods bound the weight space of the learn

ing problem, instead of restricting the actual number of dimensions.

Third, we can limit the amount of training. Here, of course, we are referring to

stopped training methods involving validation data set criteria. Again, we are not reducing

the dimensionality of the problem, but choosing to stop training before the high dimension

al space is fully exploited by the gradient descent learning technique, which will lead to

overfitting.

39

We could pursue many directions from here, but choose to investigate what appear

to be the most promising ideas in each of the three categories of discouraging overfitting.

In the next few chapters, we will introduce in greater detail the NIC, regularization and

stopped training. In each case, we will implement the basic algorithms and show results of

experimental trials. Where applicable, we will compare results.

Summary

In this chapter, we have described the concept of generalization as it applies to neu

ral networks used in function approximation. We have also discussed the many methods

of improving generalization. Most techniques are based on limiting the size of the network,

limiting weight values or limiting training. We have chosen to pursue one technique in

each of the three categories which we perceive as having the most potential.

In the next four chapters, we will introduce the NIC, regularization, Bayesian con

trol of regularization and stopped training. Within each topic, we will describe the tech

nique, implement the algorithm, run a few trials and discuss findings.

We will describe the NIC first in Chapter 4. Regularization will follow next in

Chapter 5, which explores how regularization affects learning. Several simple examples

are used to illustrate the application of regularization.

Chapter 6 will introduce Bayesian techniques for regularization. This will lead to

better control of regularization through automatic tuning of the regularization factor.

Finally, stopped training will be discussed in Chapter 7. Validation set monitoring

is the key feature of this chapter. As a very popular technique used today, we will compare

the performance of the stopped training technique with the other generalization methods.

40

Introduction

CHAPTER4

NIC

In this chapter, we will introduce the Network Information Criterion, NIC. It is a

statistical measure one can use to compare performance of neural networks. We will show

our adaptation of the key equations and how they can be approximated within the Leven

berg-Marquardt algorithm. Finally, we will show our experimental results and note suc

cesses and problems encountered.

Background

The NIC is a statistically derived criterion for model selection. The objective is to

select the neural network model which has the best generalization. If a model is too simple,

containing too few parameters, it will underfit the data. Too complex a model may fit the

training set data well, but may not reflect the true features of the underlying function be

cause of overfitting. One way to minimize overfitting is to select the simplest model pro-

viding an appropriate fit to the training data. The NIC is designed to provide an empirical

model comparison to do just that.

Once a network is fully trained, the NIC can be calculated and compared with the

NIC value of another model. The lowest value represents the best model fit.

41

In [MuYo94], Amari outlines the development of the NIC. The NIC is based on

Akaike's Information Criterion, AIC, which is used in regression model comparison. In

fact, Amari shows it to be a generalized extension of the AIC to include comparison of un-

derfitting models. Thus, an array of models for the same data set should produce a valley
7

of NI C values. The lowest point represents the best fitting model, with underfitting on one

side and overfitting on the other.

Since the NIC is based on the AIC, we would expect it to have two parts. One part

would represent how well the model fits the training set data, and the other would be a mea-

sure of complexity, as in the following forth.

NIC = g 1 (errors)+ gi(model complexity) (23)

The first part is based on the training set errors. As the size of the neural network

increases, the errors should correspondingly diminish. However, the second part of the

NIC is a size penalty function. So, although increasing the size of the network lowers the

error term, it will simultaneously increase the complexity term.

Comparing the NIC values for different architecture sizes should allow us to find

the neural network model producing the smallest possible NIC. This model should repre-

sent the best trade off between training set errors and model size.

We will now show our adaptation of the equations of the NIC. First, assume a stan-

dard objective function of

F = Ev (24)

where Ev is the sum of the squares of the training set errors. We then express Fin the

42

form of a log loss probability function. For this, we must recognize that the NI C is derived

around a noise model. It assumes the training set data can be modeled as

a = f(p, w) + E (25)

where p is the input to the true function f(p, w) whose output is dependent upon parame-

ters w . The E parameter represents noise added to the system to obtain the sample outputs

a.

If the noise is independent of w and Gaussian, then the conditional distribution is

P(ajp, w) : \jf(a-f(p, w)) : &2exp(-~(a-f(p, w))2). (26)
27t0' 20'

From Eq. (24) we note e = a - t = a - f(p, w) are the errors we are minimizing

during training. Thus, the log loss of P(alp, w) is

1 2 1 2
d(w) = -logP(alp, w) = 2log(27t0') + - 2e .

20'
(27)

Next, we need to find the gradient V d(w) and the Hessian V2d(w). From Eq. (9)

and Eq. (13), the matrix form of the gradient V d(w) is

a
Vd(w) = aw(-log(P(alp, w)))

= a:(2: 2(e(w){e(w))

1 a
= 2cr2. awF(w) (28)

1 T = - 2 · 2J (w)e(w)
20'

1 T = 2 J (w)e(w)
O'

43

For the Hessian V2d(w), using Eq. (16), we have

a2
V2d(w) = dwdw(-log(P(ajp, w)))

d 2
(1 T) = awaw 2ci(e(w)) e(w)

1 a2

= -2. a d F(w)
20' w w

(29)

1 T = - 2 · 2J (w)J(w)
20'

1 T
= 2 J (w)J(w)

O'

Finally, we denote the variance of the gradient V d (w) ; and the expectation of the

Hessian V2d(w) by

G = Var{Vd(w)} (30)

(31)

Now, with Eq. (30) and Eq. (31) we find the NIC of a model trained to minimize

Eq. (24) as

1 1 -1
NIC = -F + -tr(GQ)

n n
(32)

where n is the number of training set samples and "tr" is the trace of the given matrix. Thus

we see the NIC is the sum of the final trained objective function and another factor which

can be shown to be a function of the number of parameters (weights) in the network. Ac-

cording to [MuYo94], if the model does not underfit the data for a single-input/single-out-

put neural network trained with Eq. (24), then G = cr2Q, where cr2 is the sample variance

44

of the training set errors. This means ~tr(GQ-1) ofEq. (32) should be proportional to
(j

the number of parameters in the neural network, which we will call N*. So, our NIC im-

plementation reduces to the average squared error plus a ratio of the number of neural net-

work parameters to the training set sample size.

Method of Application

Given the equations above, we need only train a number of a neural networks and

evaluate them. The parameters G and Q can be estimated as shown in Eq. (33) and Eq.

(34)

n

1 ~ T
G z n £..i (Vdi(w))(Vdi(w)) (33)

i = 1

n

Q z 1 L (V2di(w)) (34)

i = 1

where Vdi is our log loss function expressed for a single training set sample i. We must

now adapt these equations for use in our algorithm. [Mura93]

Following the development of the Levenberg-Marquardt algorithm in [HaDe96], in

Eq. (12), we note that for F(w) = En = eT(w)e(w) the gradient can be expressed as

T
VF(w) = 2J (w)e(w) (35)

and from Eq. (16), the Hessian can be approximated by

T V2F(w) z 2J (w)J(w) (36)

45

where the Jacobian matrix J(w) is defined in Eq. (14), and all the training set errors are

contained in e(w) as defined in Eq. (10). These equations are in matrix form for applica-

tion to all errors in the training set at once.

To calculate Eq. (33) and Eq. (34), we need to separate the Jacobian and errors into

n components. Each component represents the effect of one training set sample. Recalling

the format of Eq. (14), we define

.T
J1
.T

J= J2 (37)

.T
Jn

where j 1 is the N x 1 part of the Jacobian attributed to the first training set sample, just as

e1 in e(w) is the output error for that same sample. Examining the matrix forms in Eq.

(13) and Eq. (16), we see that for a single training set sample i we have

VF/w) = a:e7(w) = 2j/w)e/w) (38)

and

2

V2F.(w) = a aa e\w):.,:, 2j .(w)(j .(w){
l w w l l l

(39)

We can apply these to Eq. (28) and Eq. (29). Thus for individual training set samples, we

can rewrite Eq. (33) and Eq. (34) as

46

and

n

1~ T
G = n £.J (Vd/w))(Vdi(w))

i = 1

n

= ! L (~(2t(w)e/w)))(~(2j/w)e/w)))T
n 2a 2cr

i = 1

n

i = 1

n

Q = 1 L (V2di(w))

i = 1

n

= 1 L (2:2(2j/w)(j/w){)).
i = 1

n

(40)

(41)

The reason for putting G and Q into these terms is that the elements of these func-

tions are readily available in our algorithm. As for cr2 , given our noise model of Eq. (25),

we can estimate cr2 over the entire training set as

n

2 1
Again, we note from Eq. (24) that e = a - t = a - f(p, w). Thus, cr :::: -En.

n

47

(42)

Now we have all the parts of the NIC available in the form used in the Levenberg-

Marquardt algorithm. After training a neural network, we can use the last computed values

of ji(w), ei(w) and Ev to find the NIC for the trained network. For our application, the

NIC of Eq. (32) becomes

1 1 -1
NIC = -Ev+ -tr(GQ)

n n

where ci contained in tr(GQ-1)is the sample variance estimated as

Trials

2 1
cr :::: -ED. n

(43)

(44)

For our first experiment with the NIC, we trained a number of neural network ar-

chitectures using noisy data from a four period sine wave. The equation for the noisy sine

p

Figure 11 Four Period Sine Function

function is t = sin(4(27tp))+O.l(E) where E israndomnormallydistributednoiseof

zero mean and variance one. Figure 11 shows the four period sine function and the noisy

training set. Figure 12 shows the NIC values for nine different sizes of hidden layers rang-

48

ing from 2 to 30 hidden layer neurons. In both plots, the number of hidden layer neurons

S counts along the x-axis. The 1-5-1 architecture was the simplest architecture to generally

fit the data. This is reflected in Figure 12 as the lowest NIC value. As the architectural

complexity increases, the NIC generally increases, until another fundamental level of fit-

ting is able to occur. The 1-15-1 network, for example, has a sufficient number of param-

eters to capture some significant effects of the noise in the data, resulting in overfitting.

Although the NIC drops at this point, due to a strong reduction in the En, it is still signif-

icantly higher then the 1-5-1 NIC.

·0.012 +
+ NIC 0.0115

0.011 + +

+
0.0106 +

0.0,

10~ + + +
0,0095

0.009

+
0.0085

10 15

s s
Figure 12 NIC for Four Period Sine Wave

NIC

(Enlarged) +

+

20 25 30

In general, this was not a very enlightening example. However, applying the NIC

to the saw function was very intriguing. For the true saw function, fitting the sharp points

better requires increasing the number of parameters. However, at some point, the extra pa-

rameters will try to fit the sharp areas of the noisy data set as if they were sharp parts of the

true function.

49

Figure 13 shows examples of underfitting and overfitting for the saw function. Just

as for the sine wave, we added random normally distributed noise of mean zero and vari-

ance 0.01. We can see that the first fundamental fit of the data happens with the 1-2-1 net-

work. But the learned function is obviously too smooth (only because we know the

underlying function). The 1-6-1 network did the best job of fitting the saw function since

it contained the highest level of complexity without overfitting.

1 - 1 - 1

a a

- 1.So 0.1 0.2 0.3 ~ 0.4 0.5

p p

1 - 6 - 1

a a

-0.5

-1

0.6 0.7 0.8 0.9 1 -i.50 0.1 0.2 0.3 0.4 0.5

p p

1 - 2 - 1

0.6 0.7 0.8 0.9 1

1 - 7 - 1

+ +
++ +

+
++

0.6 0.7 a.a o.9 1

Figure 13 Actual, Training Set, and Learned Functions for Different Architectures

Having made this cursory comparison, we now examine the numbers. Figure 14

shows the results of training the neural network architectures for the saw problem with the

number of hidden layer neurons plotted on the horizontal axis for each. In Figure 14, we

50

see that the NI C would have us believe that the 1-2-1 architecture is the best model. It has

the lowest calculated NIC value. However, the plot of actual squared errors (the errors be-

tween the fitted model and the underlying saw function) in Figure 14 shows the 1-6-1 to be

the clear winner. In fact, the small area of the saw function which is overfit by the 1-7-1

and 1-8-1 networks still results in lower total actual squared error than the choice indicated

by the NI C of the 1-2-1 architecture. (Recall that the actual squared errors cannot be com-

puted in practice, since we do not generally know the true underlying function.)

o.2• NIC +

0.22

0.2 + 10"

0.18 + +
0.16 +

+ + +

0.14 + + + +
0.12

0.1 + +

s s
Figure 14 NIC and Actual Squared Error for Different Architectures

In trying to find a clue as to what is happening, we examine three key items. First,

recall our application of the NIC from Eq. (43). The Ev will be large for all underfitting

models and distinguishably smaller for any model which can fit the data. The other term is

the trace of a square matrix of dimension equal to the total number of parameters in the neu-

ral network.

Figure 15 is a plot of the sample derived estimate of the number of parameters N*

and the final training set error ED for several architectures. They are plotted with the num-

51

ber of hidden layer neurons along the x-axis. The estimated number of parameters are in-

dicated as a"+" for each model while the true number of parameters are shown as a "o".

Thus, our estimates are very good.

25 25

N*
20 20

15 15

10 .o 10

s s
Figure 15 N* and Ev for the Saw Function

For a second clue, note the size of N* in Figure 15 in comparison to the size of ED .

The parameter N* plays the dominate role in Eq. (43) for all but the simplest architectures,

thus our trend of the NIC shown in Figure 14.

For a third and final indication, look at the normalized Ewin Figure 16. The Ew

is a sum of squares of weight values. Similar to the ED , it is a simplistic way of tracking

weight size. For architecture comparison purposes, however, Ew must be normalized by

dividing it by the number of parameters it represents since each neural network architecture

has a different number of parameters.

In Figure 15, while the mid range networks could do little to distinguish themselves

in reducing the ED , the high end architectures have the complexity to do so. They reduce

52

the ED slightly, yet distinguishably, but at the cost of the very large average squared weight

shown in Figure 16. Thus, significant overfitting seems to be synonymous with a tremen-

dous surge in weight size.

350 Ew(norm) +

300 +

250

200

150

100

+
50 + +

+ +

s
Figure 16 Normalized Ew for the Saw Function

Summary

In this chapter we have shown how we adapted the NIC to our algorithm making

the assumption of Gaussian noise in the training set. Our results for preliminary experi-

ments were shown using our toy problems where we know the optimal neural network size.

TheN/C would seemto be a great way to compare different models and even dif-

ferent model types, based on the widely accepted standard for regression modeling -- the

AIC. However, it requires calculating the inverse of the Hessian. Not only is this compu-

tationally expensive, but overparameterization may cause singularity problems. Also, sev-

eral models must be trained before the NIC comparisons can be made. In addition, there

is no guide for which model types or sizes to try.

53

Most importantly, the NIC is not fool proof. Our experiments indicate that the best

model might be the most complex model which is not complex enough to seriously overfit.

However, without prior knowledge of the true function we cannot monitor the possibilities

of overfitting. But, we can watch the progression of Ew during training. We can even in-

clude the Ew term in our objective function as an attempt to discourage high weight sizes,

thus reducing possibilities of overfitting.

These ideas are the subject of the next two chapters as we move on from empirical

model comparisons to statistical regularization techniques for improving generalization.

54

Introduction

CHAPTERS

REGULARIZATION

In this chapter, we will explore the addition of regularization to the objective func

tion. Most of the background material comes from [Mood92]. After noting the key equa

tions, we will incorporate regularization into the Levenberg-Marquardt algorithm. Some

graphical results will show how regularization affects the resulting neural network mapping

function. We will then introduce the concept of the effective number of parameters that we

will build on in the next chapter. Finally, we will summarize our findings.

Background

Regularization attempts to restrict the size of the parameters in a model. This sim

ply means that we anticipate that the function has some degree of smoothness. It is equiv

alent to assuming that small changes in the input will not result in a large change in the

output. Given the noise inherent to measuring techniques, this assumption is sound and is

one of the least restrictive assumptions that can be made on the target function (see

[ReMa95]).

For the objective function

F = Ev+aEw, (45)

55

the regularization term, Ew, creates a biasing of weight sizes. (Note, the bias referred to

here is different from the discussion on page 30 in Chapter 3.) The regularization term

causes an unnatural tendency of the weights to migrate, during training, toward a particular

value.

There are many possible regularization functions. Two of the more popular func-

tions are

and

2
W,

E - ~ I

w - ~(w~ -w2)
I I _ 0

(46)

(47)

where wi is a weight in the neural network and w O is a constant. Eq. (46) is a sum of

squares of weights adjusted by a constant (see [SjLj92]). If w O = 0, the regularization

term simply attempts to reduce the magnitude of all the weights. In Eq. (47), the effect is

to penalize weights with values much larger than the nonzero constant w O (see [WeRu91]).

Thus, just as the training set error term sways the weights toward reducing the er-

rors, the regularization term sways the values of the weights toward a predetermined con-

stant. For example, in Eq. (46) all the weights will be swayed toward the value w O • If a

weight wi is smaller than w O , then the weight will tend to grow. If it is larger than w O ,

then the weight will tend to diminish in value.

56

In Eq. (45), we are not forcing the weights to become a particular value, but simply

causing a tendency to migrate in that direction. The regularization parameter a dictates

how dominant a role the biasing plays in the overall objective function. If a is very small,

the error term must be reduced to a comparable amount before the regularization term will

have much effect on the weight sizes. If a is very large, the error will be allowed to grow

in a situation where weight reduction is paramount.

Though any reasonable scheme will work, we chose to use

(48)

for the regularization term for all the work contained in this report. It penalizes large

weights to gain a similar effect to parsimony, preferring lower order polynomials in statis

tical regression. Note that in statistics, a parsimonious model fits the available data ade

quately without using any unnecessary parameters. It is well known that parsimonious

models produce better forecasts.

We note here that Eq. (9) and Eq. (48) are sums of squares and therefore nonnega

tive. Now, for a> 0, Eq. (45) is equivalent to the smoothing fanctional introduced by

Tikhonov. The regularizing effect of minimizing this equation reduces parameter values

for solving overparameterized problems. [Moro93] [TiGo90] [Tikh63]

Recognizing that our data contains noise, we are not trying to find a model which

could have produced our exact data, but rather we wish to find a model which approximates

the true process. Thus we want a model that statistically represents our data, yet has as few

parameters as possible. [Pank83]

57

One way to implement parsimony would be to reduce the actual number of weights

in the neural network and measure the effect on the training set error. We saw this in Chap

ter 4 with the NIC. Here, we are considering an alternate method of implementing parsi

mony. If we bound the weight sizes, we are limiting their usefulness.

Eq. (48) attempts to drive the size of the weights down, thus reducing or eliminating

their effect on the overall objective function, hopefully achieving a more parsimonious

model. Obviously, if aEw >> ED in Eq. (45), then the next step in training will emphasize

reducing the weight values, perhaps at the price of a modest increase in the training set error

ED . Thus, without regularization the neural network is allowed to use all of its parameters

to the fullest extent during training. Of course, this may lead to overtraining.

In contrast, with too much emphasis on regularization, a too large, the weights are

too restricted in size to contribute much to the training set error reduction. In this case, the

mapping function learned by the neural network is too smooth. This corresponds to under

fitting the data.

However, with an appropriate value of a in Eq. (45), an optimum usage of param

eters can balance minimizing training set errors with the principle of parsimony. It is in this

balance that we will find the neural network with the best generalization performance.

Method of Application

From Eq. (45) above, our new total objective function now includes both the sum

of the squares of the training set errors, ED , and the sum of the squares of the weights and

biases, Ew, tempered by the regularization factor a. With w being a vector of the weights

58

and biases, e a vector of training set errors and J the Jacobian matrix, we can follow the

flow of the Levenberg-Marquardt algorithm development found in [HaDe96] and find that

T
VF(w) = 2J e + 2aw (49)

and

(50)

The parameter update equation now becomes

T -1 T
= wk-[J J+(a+µ)I] [J e+awk]

(51)

whereµ is the Levenberg-Marquardt algorithm tunable parameter.

Trials

For a demonstration of how regularization affects neural network generalization,

consider the saw function of Figure 6 of Chapter 2. We chose to explore regularization on

the saw function because of the sharp points it has. In linear regression, too few parameters

would look too smooth rounding out the peaks. Too many parameters might overfit, but

hopefully regularization will prevent that.

We will use a 1-6-1 neural network architecture to learn the saw function. The

training set contains 100 random samples of the saw function with normally distributed

noise of zero mean and 0.01 variance added. For the following examples, the Levenberg-

Marquardt training algorithm will use Eq. (51) for weight updates. These examples will

illustrate the effect of the regularization parameter a on the network performance. Note

that the plots for En, EA and Ew show their value during the course of training. The x-

59

axis for these plots is the training step (epoch) number. The plots of the learned functions

also show the saw function of Figure 6 and the noisy training set, indicated as a"+" for each

point.

Figure 17 shows an example of overfitting. Although a is not zero, which would

totally eliminate the influence of the size of the weights on the objective function, it is small

enough to show overfitting of the data. Note the extra "squiggle" in the learned neural net

work function. The neural network is overfitting the data and losing track of the actual saw

function. There is also a significant increase in the actual error, calculated by using noise

less data samples. The point during training where the actual error increases corresponds

to when Ev decreases and Ew increases. The weights increase enough to lower the train

ing set error slightly, and in the process overfit the data.

On the other hand, Figure 18 shows the underfitting that happens for a too large.

Here, the weights were so restricted that the resulting function resembles a smooth sinusoid

instead of a sharp saw function. Even though the final Ev is approximately the same value

as in Figure 17, the Ew is two orders of magnitude smaller. Looking only at Ev and Ew,

we might think the neural network learned a function that fit the data very well. But, in this

demonstration, we have the luxury of knowing what the real function looks like. And even

though the actual error seems to be non-increasing throughout training, the plot of the neu

ral network function with the saw function shows the truth of underfitting.

Finally, with an appropriate value of a , nice results can be obtained as shown in

Figure 19. Comparing Figure 19 with the previous two figures, we see that the final Ev

60

0£

a

--0.5

-1

10'

10'

' +

Training Set and

10'

10'

10'

0.6 0.7 0,8 0.9 1

p Epochs

10'

Epochs Epochs

Figure 17 Overfitting Example for a.= 0.001

and Ew fall between those for overfitting and underfitting. However, the actual error is

much improved over both other cases. This is quite noticeable in the saw versus neural net-

work function plot.

A plot of the final values obtained from training trials for several values of a. is giv-

en in Figure 20. Notice that for best results, a. cannot be at either extreme of En or Ew·

Sometimes a small change in a. results in drastic changes in ED or Ew. Also, note the

valley in the actual error plot. The actual error increases for a. too large, demonstrating

underfitting. The actual error also increases for a. too small, demonstrating overfitting.

61

1.5 10'

Training Set and Ev

10'

a

-0.5 10'

-1

-1.5 10" 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.B 0.9 1 10" 10' 10'
p Epochs

10' 10'

EA Ew

10'

10"'7-------~----..__._J
~ ~ ~

Epochs Epochs

· Figure 18 Underfitting Example for a = 10

Effective Number of Parameters

A neural network has weights and biases which can be adjusted, much as coeffi-

cients of power terms are adjusted in a regression model. (See "Regression Comparison"

on page 25.) Without pruning or growing, each neural network has a known total number

of parameters available to it, as determined by the architecture.

Without the regularization term in Eq. (45), a neural network will use all of its pa-

rameters to reduce the training set error during learning. With the addition of the regular-

ization term, however, weights found to be redundant will be constrained, thus reducing

their usefulness. Here, the learning algorithm tries to find a balance between minimizing

the training set error and lowering weight values.

62

0.5

a

-0.5

-1

10'

10'

+ +

Training Set and

10'

10'

1o•L.._ __ ___::c:======-----l
~ ~ ~ ~

p Epochs

Epochs Epochs

Figure 19 Data Fitting Example for a.= 0.01

The regularization term, in effect, places a constraint on the weights. Thus, each

weight contributes to both the training set error ED and the regularization term E w. If a

particular weight is comparatively very large, the contribution to the overall objective func-

tion is probably much stronger in the regularization term than in the training set error term;

i.e., a large valued weight probably increases Ew to a value beyond the benefit it provides

to lowering ED . This weight is said to not be very effective at reducing the training set

error, since its effect on En is excessively counteracted by the increase in Ew. However,

if a weight is comparatively very small, then it may contribute much more to reducing the

63

+
10'

+
+

+ + + ++

10-1
10~ ,o~ 10-2 10' 10'

a

10' 10'

EA + Ew +

10'

+
10'

+ ++
10'

+
+

10' +

10'
+

+ + +

10-1 -1-+ 10'
,o~ ,o~ 10-2 10' 10' ,o~ ,o~ 10-2 10° 10'

a a

Figure 20 Final Results for Various Values of a

training set error than its value has caused the regularization term to increase. This weight

is said to be utilized very effectively in learning the function.

From these ideas, Moody introduces the concept of the effective number of param-

eters. The effective number of parameters is a measure of the number of weights signifi-

cantly contributing to the reduction of the training set error ED . During training, the

effective number of parameters will begin as some random value dictated by weight initial-

ization. Then, it will change with every step. How it changes depends on the contribution

to the total objective function F by the weights. However, the final value is strongly de-

pendent on a. [Mood92]

64

Moody introduces his equation for calculating the effective number of parameters

very abruptly in [Mood92]. He references a derivation to be found in a yet to be published

follow-up paper. Although this paper is still unpublished we will introduce his equation

anyway, however without derivation or explanation of the underlying ideas.

n

Since Moody uses F = Ev+ aEw where Ev = ~ L ef and H = V2F, then

i = 1

-1 T
Ymo = tr(JH J)

= tr((JTJ)H-1)

= tr((V2Ev)(V2Ff1)

(52)

which is the trace of the product of the Hessian of the part of F responsible for the errors

times the inverse of the Hessian for the whole objective function F.

Now, for our objective function ofEq. (45) F = Ev+ aEw, where

n

Ev = L ef , we have from Eq. (16) that V2Ev"" 2JT J. Also, from Eq. (50) we have

i = 1

H = V2F"" 2JT J + 2al. Therefore, for our objective function Moody's effective number

of parameters is

Ymo = tr((V2Ev)(V2Ff1)

""tr((2JT J) (2JT J + 2al)-l) (53)

T -1 T
""tr(J (J J + al) J)

This is how we calculate the effective number of parameters in our training algorithm.

65

Moody claims that Ymo ~ N, the total number of weights in the neural network, as

a ~ 0 . This reinforces the idea of no regularization will allow a neural network to overfit

using all of the parameters, and a very large regularization parameter will cause the network

to underfit the data by driving all weights to zero regardless of the training set error. Look-

ing at Figure 21, note that large a does indeed limit the effectiveness of the neural network

weights in minimizing the objective function, while very small a allows all 19 of the

weights to be fully utilized in our 1-6-1 neural network. Compare this plot with those of

Figure 20 to confirm the effect a has on the weights.

10'

Ymo

+ +

10' + ++
+

+

+

10'
10~ 10~ 10~ 10' 10'

a

Figure 21 Effective Number of Parameters for the Saw Function

Summary

In this chapter, we adapted our training algorithm to include regularization. The re-

sults of our preliminary experiments showed that adding a regularization term to the objec-

tive function could temper the number of significant parameters utilized by the neural

network and, therefore, greatly affect the final number of effective parameters, allowing

better generalization. We also experimented with a way to calculate the effective number

66

of parameters used by a neural network in performing the mapping function described by

the training set.

Problems entailed in this implementation include the required calculation of the in

verse of the Hessian. Not only is this computationally expensive, but for overparameter

ized problems the Hessian may be singular or near singular.

Also, recall that the fundamental assumption of regularization is that the actual de

sired mapping function has a certain degree of smoothness. Although this is likely, given

the typical presence of noise in measured data, still there is the question of how much

smoothness. Without foresight, the neural network must be retrained many times changing

the regularization factor a in an attempt to find the best compromise of training set error

and smoothness of function.

In the next chapter, we will explore a method of automatically choosing the optimal

regularization factor a. We will use Bayesian ideas to optimize regularization dynamical

ly during training.

67

CHAPTER6

BAYESIAN LEARNING AND THE GNBR ALGORITHM

Introduction

In Chapter 5, we saw the dramatic effect regularization has on neural network train-

ing results. The regularization term is adqed to the squared error term of the objective func-

tion in an attempt to reduce final weight sizes. Small weights tend to be conducive to

smoother functions which generalize better. ·.

' '

The main problem of regularization is knowing how much emphasis to place on

regularization, as opposed to error reduction~ i.e., the size of the regularization parameter.

Clearly there is a trade-off. An oversized regularization parameter leads to underfitting the

data, resulting in inordinately high errors in the training set. In contrast, an undersized pa-

rameter results in overfitting the data, where the training set errors may be very small but

generalization is poor.

In the previous chapter, we have viewed w as a deterministic parameter. We chose

the value of w that minimized the error function ED . Once given the training set data D ,

we used a gradient descent type method to minimize ED . The training performed an iter-

ative search for the single most likely parameter value wML that could have produced the

data D . This approach is commonly referred to as the maximum likelihood method.

68

Now, we will explore a different approach. We will assume our parameter w is a

random variable. A random variable is represented by a probability density function. We

can assign such a probability density function to our random variable w . This probability

density function will describe our preconceived ideas about the values of w before having

ever seen the training set D. This is called the prior probability density. We can also ex

press our likelihood function based on ED as a conditional probability density function for

w, given the training set D. Combining these density functions properly, using Bayes'

theorem, will produce the posterior distribution. While the prior distribution is typically

very broad, indicating our uncertainty of w , the posterior distribution is very narrow. The

peak value of the posterior density function is the most probable valu~ wMP. This approach

is called Bayesian inference.

In this chapter, we will express our neural network training in Bayesian form. This

will lead to an interesting comparison to the regularization techniques of Chapter 5. Using

a second level of Bayesian inference, we will try to find the most probable regularization

factor thus eliminating the guesswork of the previous chapter. We will then adapt our train

ing algorithm to this approach and run simulations for comparison to previous work. This

will be followed by an in depth analysis of the effective number of parameters as seen from

two different viewpoints. Finally, a relationship between the regularization weight param

eters and the unregularized ones will be derived for analysis.

The Bayesian application to neural networks found in this chapter is based on ma

terial found in [MacK95], [MacK92a], [MacK92b], [MacK92c] and [Bish95]. They are

69

also responsible for the qualitative comparison of wML and wMP. The second point of

view of the theoretical derivation of the effective number of parameters and the mathemat-

ical comparison of wML and wMP is taken from [SjLj92], [LjSj92] and [SjLj94].

We will express the pertinent equations in our mathematical framework for com-

parative purposes. Then they will be adapted for use in our algorithm. Our demonstrations

will show how updating the regularization parameter between training steps will result in

the best amount of regularization found experimentally in Chapter 5.

We will also explain how the effective number of parameters calculation works and

in particular why the value of any given weight is never actually driven to zero by regular-

ization. We will also explain the relationship between wML and wMP and therefore what

actually happens when applying regularization,. Then we will adapt into our framework a

third theory that is aimed explicitly at deriving y and mathematically compare it to the oth-

ers.

Background

In a Bayesian framework, neural network learning is interpreted in a probabilistic

fashion. Consider the following application of Bayes' theorem:

P(Dlw)P(w)
P(wlD) = P(D) (54)

Without the training set D, the probability distribution over the weights w is P(w), called

the prior. With the observed training set data D , a set of weights w can be evaluated by

an error function, say ED , to give the probability that the neural network with weights w

70

produced the training set data D . This is the likelihood function which we maximize to

train the neural network (minimizing the squared error). On the left side of Eq. (54) is

P(wlD). This is called the posterior probability and describes the probability that a par-

ticular set of weights w could have produced the training set data D given our prior know 1-

edge of the weights. The denominator of Eq. (54) P (D) is a normalizing factor that ensures

the posterior probabilities sum to one.

Using common names, Eq. (54) looks like

P . Likelihood x Prior
ostenor = al. . .

Norm 1zat10n Factor
(55)

The neural network interpretation of Eq. (54) is that we want to maximize the prob-

ability of w given D, P(wjD), by maximizing the likelihood function P(Djw) during

' . ' .

training while using prior knowledge about the weights P(w). But, given a particular neu-

ral network model, we would generally have no known preferences for a particular set of

weights w for that model. Thus, with no reasonable prior knowledge, we simply set all

prior probabilities equal. Since P(D) is just a normalization factor, we conclude that to

find the best choice of weights in the presence of data P (w ID) we mo.st maximize the like-

lihood P(Dlw). This is unregularized training.

Figure 22 is a simplified depiction of learning. The prior P(w) is flat indicating

preference given to a broad set of weights w . Since it is a probability distribution over a

broad spectrum, the uniform height is small. Once the training set data has been used for

training by finding the likelihood P (D I w) , the prior can be converted into a posterior dis-

71

P(wlD)

P(w)
/ '

I I
I \

/ '

Figure 22 Prior and Posterior of Bayesian Learning

tribution P(wlD) using Eq. (54). Note that the posterior distribution shows preference to

a strongly narrowed spectrum of weights. And, since the area under it must sum to 1, as

with any probability distribution, it must have a much higher peak than the prior. The high-

er posterior peak with narrower base are indications of having learned something about the

correlation between the training set data ~d the weight spectrum. The highest point rep-

· ·· MP
resents the most probable weights w .

Before we describe the actual function used in the evaluation ofEq. (54), recall our

objective function that includes regularization is

(56)

Note that we have added a factor~ to the error term Ev. In the previous chapter, we real-

ized that regularization could be very helpful in achieving good generalization if we could

only optimize the regularization factor a. In this application of Bayes' theorem, it is con-

venient to simultaneously optimize an error factor ~ .

72

Now, rewriting Eq. (54) with Eq. (56) in mind, the new form of our neural network

learning function is shown in Eq. (57) where Mis a particular neural network model.

A _ P(Djw, p, M)P(wja, M)
P(wjD, a,...,, M) - P(Dja, p, M) (57)

Note that the prior density describes our knowledge of what w should be without having

seen the training set D . So, the prior density function P (w I a, M) is not dependent on p .

Also, our likelihood function is based on minimizing the errors in ED . It has nothing to do

with Ew, so the likelihood P(Djw, p, M) is not dependent on a. The posterior density

function, however, is dependent on a and P by the defined relationship ofEq. (57) as they

apply to our neural network learning problem.

First, consider the prior distribution. From Eq. (56), the size of the weights depends

on the regularization factor. a and the number of weights which defines a model M. If we

consider the weight distribution to have a Gaussian form, it would look like

where Zw(a) = J exp(-aEw)dw which normalizes the distribution. A multivariate

Gaussian distribution is written as

(59)

where w i are zero mean independent random variables with variance cr2 .

73

N

Now, we can see that Zw(a) simplifies to (~) 2 since crt = 2~. Examining the

N

operation of Eq. (58), we see that if the weights w are large, then Ew = L w; is large,

i = 1

and our prior probability P(wla, M) is small. Thus, the highest probability for

P(wla, M) is thew which has the smallest weight values. So, Eq. (58) prefers smaller

weights, just as we wanted for good generalization, since we assume the true function to

have some degree of smoothness.

Next, consider the likelihood P(Dlw, p, M). We have always assumed that the

training set measurements contained noise. Recall Eq. (25) from Chapter 4,

a = f(p, w) + E. If we assume the noise E to be Gaussian with zero mean, then we can

write the likelihood probability as

where Zn(P) = J exp(-PEn)de is the normalizing constant over then-dimensional train-

ing set data space. Similar to Eq. (59), if we assume all training set data points to be mea-

sured independently, then with zero mean independent Gaussian noise we have for the

training set errors of ED

(61)

74

n

Thus with a noise level of a1 = 21P we see that Zv(P) simplifies to (;f. Just as in the

regularization term, the likelihood probability distribution prefers smaller errors which is

what we minimize during training.

Before going further, let's examine what we have so far. Since P(Dla, p, M) is

just a normalizing constant, we can rewrite Eq. (57) as

P(wlD, a, p, M) oc P(Dlw, p, M)P(wla, M). (62)

Evaluating the right hand side using Eq. (58) and Eq. (60) we have

P(Dlw, p,M)P(wla,M) = [z ~a)exp(-aEw>][z ~P)exp(-PEv)]
W -- D .

1 .·
= Zw(a)Zi:iP)exp(-PEv-aEw) (63)

1 ·.
= Zw(a)Zv(P)exp(-F)

Recalling that Zw(a) and Z D (P) are constants, we can now see that maximizing the pos-

terior density function P(wlD, a, p, M) is accomplishing the same thing as minimizing

our regularized objective function F of Eq. (56)!

We should note that we assumed prior knowledge of w, since Eq. (58) gives pref-

erence to smaller weight values. If we assumed no prior knowledge of the weights, the pri-

or density function P(w I a, M) would simply be a constant over the entire weight space.

This is interpreted as at being very large and from at = 2~ we must have a very small

75

regularization factor a.. Thus, as we would expect, no prior knowledge of w represents

unregularized training.

Now we have suitable representations for the probability density functions of Eq.

(57). From Eq. (63), maximizing Eq. (57) accomplishes the same function as minimizing

our objective function F. Thus, for a chosen a., we know the prior density function

P(w I a., M). Also, for a particular p we can use our training algorithm to find the likeli-

hood value wML that minimizes ED thus maximizing the likelihood P(D I w, p, M) . Since

a. and p are fixed constants, we can negate the normalizing constant P (DI a., p, M) of Eq.

(57) and use Eq. (62) to compare the effects of different regularization factors. This is what

we did in Chapter 5.

Now we look at optimizing a. and p. Applying Bayes' theorem to the task, we get

A - P(Dla., p, M)P(a., PIM)
P(a., ..,ID, M) - P(DIM) . (64)

Our aim is to maximize the posterior P(a., PID, M) producing the most probable values

a.MP and pMP. Using the same ideas as before, we note that P(DIM) is simply a normal-

izing constant and that without prior knowledge of a. .and p we assign all possibilities of

P(a., p IM) to equal values. Thus, to optimize a. and p we must maximize the likelihood

P(Dla., p, M). Take note that this is the normalizing factor of Eq. (57)! This factor is

called the evidence for a. and p .

76

Here is the key point. If we could estimate the posterior of Eq. (57), we could use

Eq. (58) and Eq. (60) to estimate the evidence P(Dla, p, M) giving us a.MP and pMP. In-

deed, we can estimate P(wlD, a, p, M) with some accuracy ifwe are near a minimum of

our objective function F. If we are sufficiently close to a minimum of F, we can approx-

imate the surface of the objective function as a quadratic. With this in mind, we perform a

Taylor series expansion of P(wlD, a, B, M).

First, we will need the Taylor series expansion of F(w) around wMP

. MP 1 MPTMP MP
F(w)zF(w)+ 2(w-w) H (w-w) (65)

MP . .
where H = V2F(w) lw = WMP (MP stands for most prnbable) and VF(w) = 0 for

MP · MP th f .. h 1 al . . f F w = w smce w represents e set o we1g ts at a oc mm1mum o .

Since all parts ofEq. (57) are Gaussian, we expand P(wlD,. a, p, M) as a Gaussian

distribution.

1
P(wtD, a, B,M) = 2Fexp(-F(w))

. .

z -exp -F(wMP)- -(w-wMP) H (w-wMP) 1 (1 T MP)
ZF .. 2 (66)

With the multivariate Gaussian form of

(67)

77

N/2 MP -1 112
we have that Zp = (21t) (det((H))) exp (-F(wMP)).

Now, plugging Eq. (58), Eq. (60) and Eq. (66) into Eq. (57), we have

R _ P(Djw, B, M)P(wja, M)
P(wjD, a,,-,, M) - P(Dja, B, M)

[zn:B) exp(-BEn)][zw:a) exp(-aEw)]
P(Dja, B, M) = . . 1

- Zp exp(-F(w)) (68)

Zp exp(-BEn-aEw)

= Zn(B)Zw(a) exp(-F(w))

Zp

If we take the log of Eq. (68) and collect terms, we have

logP(Dja, B, M) = log(Zp)-log(Zn(B))-log(Zw(a))

N .l MP MP n (1t) N (1t) = 21og(21t)- 2logdet(H)-F(w)- 2log ~ - 2log a (69)

MP 1 MP n N . N n
= -F(w)- 2logdet(H)+ 2log(B)+ 2log(a)+ 2Iog2- 2log1t

Recall from Eq. (64), to maximize P (a, BID, M) we must find the maximum of

P(Dla, B, M). We need only to take the derivatives of Eq. (69) with respect to a and B,

set the derivatives to zero, and solve for aMP and BMP.

First consider what happens in both cases to the second term of Eq. (69). Since H

is the Hessian of F in Eq. (56), we can separate it as

mensional identity matrix. If we let Ah be an eigenvalue of H and Ab be an eigenvalue of

78

~B, then Ah = Ab+ 2a for all corresponding eigenvalues. Now we take the derivative of

Eq. (69) with respect to a. Since the determinant of a matrix can be expressed as the prod-

uct of its eigenvalues, we can reduce it as shown in Eq. (70) where tr(H-1) is the trace of

the inverse of the Hessian H .

(70)

= -~N~----

II (At+ 2a)

i = 1

N

"' 1 -1 = £..i b .· = tr(H)
Ai +2a

i = 1

Now, we define the parameter"{ as inEq. (71) andexpanditforuse in our next step.

The parameter "{ is referred to as the effective number of parameters. We will explore it in

depth in a later section.

79

-1
Y= N- 2atr(H)

N 1 N (2a J N (A~ J N A~
= N - 2a L b = L 1 - b = L b = L h

i = 1 \ + 2a i = 1 Ai + 2a i = 1 A; + 2a i = 1 A;

Now for the derivative with respect to p .

= 2 N

i = 1

N b
1 A; y

= 2p L A~+ 2a = 2p
i = 1 1

(71)

(72)

where the fourth step is derived from the fact that A~ is an eigenvalue of PB and therefore

the derivative of A~ with respect to p is just the eigenvalue of B which is A~ IP.

Now we are finally ready to take the derivatives of Eq. (69) and set them equal to

zero. The derivative of Eq. (69) with respect to a, using Eq. (70), will be

80

o o MP a1 MP oN
oalogP(Dja, p, M) = oaF(w)- 0a 2logdet(H) + oa2loga

o MP MP -1 N = --s-(aEw(w))-tr(H) +~
oa 2a

MP MP -1 N = -Ew(w)-tr(H) + ~ = 0
2a

Rearranging terms, and with Eq. (71) we have

.. MP N MP -1
Ew(w) = ~-tr(H)

2a .

2aMPEw(WMP) = N-2aMP tr(HMP)-1 = "(

Now for p and using Eq. (72),.

aMP = "(
MP

2Ew(w)

0 · , O MP O 1 · MP On
aplogP(Dja, p, M) = apF(w)- ap2logdet(H) + ap2logp

(73)

(74)

·a MP "(ri
= apCPEv(W))- 2pMP + 2pMP (75)

Rearranging terms,

MP "(n = -Ev(w)---+-- = 0
2pMP 2pMP

(76)

For a review of what we have done, we redefined our performance index in terms

of Bayes' theorem, Eq. (57),·assuming Gaussian models. Estimating the posterior of Eq.

(57) near a minimum of our objective function enabled us to estimate the normalization fac-

81

tor P(DJa, p, M) which is the evidence for a and p shown in Eq. (64). Maximizing the

evidence has given us a way to calculate optimal values for our factors aMP and pMP.

Though we are not near a minimum at the onset of training, there is no reason not to use

Eq. (74) and Eq. (76) to estimate our objective function's factors, since the estimations will

become more accurate during the course of training.

Method of Application

Applying the Bayesian method of optimization to our objective function factors is

straight forward. First, we modify our algorithm to minimize our new objective function

shown in Eq. (56). For the initial step calculations, we must choose reasonable initial con

ditions for a and p . Since the initial weight settings are random, we have two choices.

First, we may choose to maximize initial emphasis on ED by initializing the parameters to

a = 0 and B = 1 . Second, we may choose to calculate a and p in the normal way de

scribed below just as if a step had been taken. Though both methods of initialization work,

we chose the second method for our trials, Now we can set the algorithm in motion and

take a first step.

Next, we use the resulting H = V2F(w) z 2BJT J + 2alN to calculate the current

y from Eq. (71). This allows us to adjust a and p for the next step using Eq. (74) and Eq.

(76). The new a and B should be closer to optimal since our last step of the algorithm

moved our weight vector w closer to a minimum of F. Note that we are using a Gauss

Newton approximation to the Hessian that is available to us in the Levenberg-Marquardt

82

algorithm. The resulting procedure will be called the Gauss-Newton approximation to

Bayesian Regularization (GNBR).

Now we can take another training step being careful to realize we have changed our

objective function by changing a and~. We continue the cycle until we are sufficiently

close to a minimum of F to stop training. For our implementation, we chose to stop train

ing only when the Levenberg-Marquardt learning parameterµ was increased to the maxi

mum value allowed. At this point, machine accuracy limits the ability of the algorithm to

lower the objective function F.

GNBR Trials

For the saw function of Chapter 5, we now test our GNBR algorithm. We will use

the same training set of Chapter 5 and apply it to a 1-6-1 :p_eural network. The resulting

learned function is shown in Figure 23 along with the actual squared errors; i.e., the sum of

the squares of errors using nonnoisy data. A comparison of these results with Figure 17,

Figure 18 and Figure 19 of Chapter 5 show that the Bayesian training seems to automati

cally hone in on the best choice for regularization factor. The form of the function learned

is most similar to that of Figure 19 .. It does not show the overfitting or underfitting aspects

of the others, but instead seems to show a very good approximation of the actual saw func

tion. The EA plot in Figure 23 also shows a final value very close to that of Figure 19. No

tice that it does not contain the upward movement on the tail end of training indicative of

overfitting as shown in Figure 17.

To make further comparisons, we now reveal that the trials concerning the saw

function of Chapter 5 were actually done using Eq. (56) instead ofEq. (45). The parameters

83

1-6-1
10'

a

-0.5

-1

10-2~-~~~-~~~-~~
100 101 102 103

p Epochs

Figure 23 Final Function and Actual Squared Error Progression

were fixed during the trials with p = 78.8354. We chose this value since it is the final

value found for P through Bayesian optimization. Note that this constant factor for ED in

no way compromises the trial results. If P = 1 , then all the results of Chapter 5 would still

be true but for correspondingly scaled values for a . Compare Eq. (56) with Eq. (77) below,

(77)

Changing P in our objective function changes the valuation of the function to ~.

The minimum of~ occurs at the same weight values as the minimum of F. Thus, the only

effect changing P has on the function is that it scales the regularization factor to be ~ . So

if we fix P to be a constant other than one, the results of Chapter 5 will be the same but for

correspondingly scaled regularization factors. With this in mind, we continue our compar-

isons.

84

The final actual squared error was very close to the lowest found experimentally in

Figure 20. The variables ED and E w are plotted in Figure 24. Their final values were both

in the mid range of those shown in Figure 20, hopefully indicating neither overfitting nor

underfitting.

Epochs Epochs

Figure 24 Ev andEw for the Saw Function of the 1-6-1 Network

In Figure 25, we plot a arid p during training. Note that the initial values of

a = 0 and P = 1 seemed to be immediately recovered from after the first step.

a

Epochs Epochs

Figure 25 a and p for Saw Function of the 1-6-1 Network

85

The only problem encountered with Bayesian training using the Levenberg-Mar-

quardt algorithm was how the training was stopped. While attempting to take the last step,

µ is increased beyond a maximum value. From [HaDe96], µ is normally increased in the

Levenberg-Marquardt algorithm to a point where the objective function is lowered, depict-

ing a compromise between Gauss-Newton and steepest descent methods. With large µ, the

algorithm takes a steepest descent step which in theory must yield a lower objective func-

tion.

However, a and~ are updated with each epoch such thatJhe typical minimum

specified objective function may never be reached as a stopping criteria. In fact, plugging

Eq. (74) and Eq. (76) into our objective functionyields

F = ~En+aEw

1 1
= 2(n-y) + 2'Y (78)

1 = -n 2

Thus every adjustment of a and ~ resets F to half the number of training samples.

Now the natural stopping criteria becomes the point when increasing µ does not re-

duce the objective function. This is the case when the algorithm has been compromised by

the numerical limitation of the machine; i.e., the require step size is smaller than the accu-

racy of the machine. Therefore, this is also the proper exit criteria for our regularization

algorithm.

86

Effective Number of Parameters

In this section, we will concentrate on the meaning ofEq. (71). The eigenvalues of

V2F and V2~Ev are key to these discussions. Once the concepts are explained, we will

return to our experiments to see examples of the relationship between these eigenvalues and

the effective number of parameters.

Looking again at Figure 25, which shows the progression of a and ~ during train-

ing, we note that although the final values of a and ~ were 0.0559 and 78.835 , respec-

tively, they were not constant during training. Also, note how ~ increased first, giving

more preference to reducing Ev . And, comparing with Figure 24 we see that Ev drops,

then becomes somewhat stable. Once Ev is stable, a begins to increase thus driving Ew

down. Note that Ev is still stable. This is when the algorithm is attempting to reduce the
, ,'·

effective number of parameters without affecting error minimization.

Recall that in Chapter 5 we introduced. the concept of the effective number of pa-

rameters. Moody calculates the effective number of parameters using Eq. (52), whereas
/

MacKay defines it as Eq.'(71) restated here as Eq. (79). Recall that a is our regularization

factor, N is the total number of weights, and H is the Hessian for V2F of Eq. (56).

'Yma = N - 2a tr(H-1). (79)

Moody showed 'Yma to be a linearization of his 'Ymo, where discrepancies exist be-

tween them for very small values of a. However, we found no measurable discrepancy

throughout our experiments. Perhaps for our examples, a is much too large to show a dif-

87

ference. For a small enough to show a measurable difference, the regularization would

allow undesirable overfitting. In our trials, Ymo and Yma were numerically identical in val

ue. But, although both are always tracked in all of our experiments, we endorse using Eq.

(79) for actual calculations since it minimizes the additional computations. The Leven

berg-Marquardt algorithm is a second order method, thus the Hessian is already available

to us for use.

Figure 26 shows Ymo for the saw example. Note that the initial calculation for Ymo

is an incorrect estimate. This is the result of the start-up situation where Eq. (56) begins in

a random situation given the initialization of the weights. Also, a has been forced to zero

for the first step.

18
Ymo

10' 10'

Epochs

Figure 26 y for the Saw Function for the 1-6-1 Network

Comparing Figure 26 with Figure 24 and Figure 25, we can see the possible over

fitting occurring as ~ rises, allowing ED reduction and therefore, an increase in Ymo. How-

ever, once a rises sharply, Ew drops with a corresponding drop in Ymo. This is hopefully

reducing the possibility of overfitting.

88

If we began training with no eigenvalues of ED significantly contributing to F, we

would expect the initial value of Ymo to be virtually zero and increase as training progress

es. Some researchers believe this is important for proper neural network training. We will

develop this concept further in Chapter 7. For our experiment, we took the same training

set data and applied it to a 1-6-1 network. We used the same initial weights, however di-

viding them by 1000 to make them too small to initially contribute much to F.

The results are shown in Figure 27 and Figure 28. Comparing them with the results

for our previous experiment in this chapter, shown in Figure 23 through Figure 26, we

found the final results to be the same. The final function looked the same and the final val-

ues for EA, Ev, Ew, a, B and Ymo were all the identical. The Ew began very small and

was allowed to grow to a final value under the control of a , which seemed to almost as

ymptotically drop on the log scale during training.

The effective number of parameters for this new experiment is shown in Figure 28.

Aside from initialization, notice how Ymo started very small and grew to the final value.

This corresponds to the almost continual drop in ED . This is an indication of weights

growing to learn the function. If we look back at Eq. (71), we see the last relationship is

the ordered sum of ratios of eigenvalues. Putting this into perspective, look at Eq. (56)

again. We are comparing eigenvalue sizes of the Hessian of BED to those of the Hessian

of the total objective function F. Each ratio is a measure of the contribution of the eigen

value due to the error portion of the overall objective function.

89

1.5 10'

1-6- 1 EA

10'

a

-0.5 10'

-1

-1.5
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10-1

10° 10' 10' 10'

p Epochs

10' 10'

ED 10' w
10'

10'

10'

10-4~--~--~-~---~
100 101 102 10'

Epochs Epochs

a
10'

10' 10'

10·~--~~---~---~
100 101 102 10'

10-2~--~--~-~---~

10' 10' 10' 10'

Epochs Epochs

Figure 27 Results of Small Initial Weights for the 1-6-1 Network

Now let's look at the regularization process from a slightly different point of view,

which will demonstrate how the effective number of parameters is reduced as regulariza-

tion is added. First, recall Eq. (71):

90

'Ymo

Epochs

Figure 28 ·yfor Small Initial Weights for 1-6-1 Network

Y = i (b A: J = i Y;
')... + 2a

i=l I i=l

(80)

We can see that O ~'Yi~ 1. If a = 0 (no regularization) then 'Yi = 1 and"{ = N, which

means that all parameters are being fully used. If a i~ very large (overspecification of reg-

ularization) then 'Yi ""'· 0 and "{""' 0 , which means that effectively no parameters are being

used.

Consider the two extreme cases. First, without data, our objective function is re-

duced to F = aEw and minimizing F drives wi toward zero. Since"{ = 2aEw, then

"{~O.

Recall that the prior density function for the weights is based on Ew which is a sum

of squared weights. Since all of the terms have a coefficient of 1 , and there are no cross-

terms, the eigenvalues of V 2Ew are positive and equal. A contour plot of the Ew surface

would show circles indicating equal curvature in all directions centered at the origin. This

is depicted as the circle in the simplified view of a 2 dimensional problem shown in Figure

91

29. The circle is centered at the origin since the minimum of Ew is the vector O where

w i = 0 for all i .

Figure 29 Simplified View of Eigenvector Relationships

Now, consider the other extreme. Withoutregularization, F = PEv. At a mini-

mum wML of ED, all eigenvalues 11.f of V2PE D are greater than or equal to zero. All

weights are used to minimize ED. Thus, 'Yi = 1 for all weights and y = N. Since not all

11.f are of the same size, we show an ellipse for the contour centered at wML in Figure 29.

Returning to the general regularized objective function, from the above discussion

we note that eigenvalues 11.f of V2PEv can be large or small while eigenvalues of V2a.Ew
. .

are equal in size. Consider again the relationship 'Yi =
b

A· b
b 1

• A large eigenvalue Ai of
\ +2a

V2PE D has an associated eigenvector pointing in a: direction of high curvature. Slight

92

movement of wML in this direction corresponds to a significant change in the value of ED.

Thus, a large eigenvalue plays an important role in reducing the error. Since the eigenval-

ues of V2aEw are fixed in size, the large eigenvalue 11.t of V2BE D dominates them. This

corresponds to 11.t > > 2 a which implies Yi --? 1 and the eigenvalue for the associated weight

(or combination of weights) is shown to be an effective parameter. In Figure 29, eigenvalue

11.2 with associated eigenvector u2 is a large eigenvalue and therefore contributes to the ef

fective number of parameters with a value near unity.

In contrast, a small sized eigenvalue 11.t of V2BE D has an eigenvector pointing in

a direction of only .slight or no curvature. In this case, wML can be varied in this direction

with minimal effect on minimizing the errors in ED. Thus, the parameter (or combination

of parameters) associated with this small eigenvalue is not a key player in reducing the er-

rors. Now, 11.t <<2a and Yi--? 0 and the responsible parameter is driven to smaller values

through regularization. In Figure 29, the small eigenvalue 11.1 with associated eigenvector

u1 corresponds fo such an ineffective parameter.

Our error term ED is the squared error of a nonlinear function whose Hessian can

be approximated as a quadratic near a minimum wML. At such a minimum, the eigenval

ues of V2Ev are positive but not necessarily equal, since a small change in one weight com-

ponent wi may not increase Ev as significantly as a corresponding change in another

93

weight component. In our 2-dimensional example shown in Figure 29, the ellipse centered

at wML represents a single contour of Ev. Now the minimum of Ev is more sensitive to

changes along u2 than in changes along u1 . Thus, the eigenvalue of V2Ev with associated

eigenvector pointing in the u2 direction is much larger than the eigenvalue whose eigen

vector is pointing in the u1 direction since curvature of the contour of Ev is much stronger

in the direction of u2 than u1 .

Here is the real meaning of the effective number of parameters. If all the weights

are important to realizing the true function, then they all have correspondingly large eigen-

values and their exact size is important, so a must be small enough to allow them to grow

as needed. On the other hand, redundant parameters have eigenvalues smaller than a and

are driven to insignificant s.iies, since they do not contribute significantly to reducing the

error term Ev in the objective function. Therefore, y counts only the number of w i whose

values are strongly controlled by the data, rather than the prior probability.

So, weights (or combinations of weights) with a small eigenvalue show little depen

dence oti data thus these weights tend to be driven to smaller values. In contrast, a weight

(or combinations of weights) with a large eigenvalue contributes strongly to the reduction

in Ev and its size is predominantly unaffected by the Ew term. Thus, in Figure 29, regu-

larization producing the most probable weight vector wMP is moved away from the error

minimum wML and along u1 , due to its insensitivity in that direction indicated by the small

94

eigenvalue. The new minimum wMP moves only slightly along the u2 direction, since this

direction corresponds to a large eigenvalue of V2~E D , and therefore ED must be very sen-

sitive to movement in this direction.

In review, our Bayesian approach to learning has shown us how to optimize our ob-

jective function parameters, resulting.in a most probable set of weights wMP given the pres-

ence of the training set data. The relationship between wMP, which is the minimum of F,

and wML, which is the minimum of ED alone, is graphically shown in a simplified view in

Figure 29, where components of wML that only .slightly contribute to the minimum of Ev

d . all al . MP are nven to sm er v ues m w .

Now we return to our original example in thi§ chapter. Table 3 contains an example

of eigenvalues from the saw function problem. The weights are not ordered by size, but the

eigenvalues are. Note that for reasons discussed above, a particular eigenvalue may not

correspond to a particular weight, but rather some combination of weights. In this example,

Ymo = 9.9084, which is the sum of the rightmost column values. Clearly, the eigenvalues

much larger than a = 0.055915 are the only effective parameters.

Looking at the weight values, it is not obvious which parameters are not effective.

The first group of six are the final values of the weights between the input neuron and the

six hidden layer neurons. The next 6 are hidden neuron biases. The last group of 6 are hid-

den layer output weights, and the final single value is the bias for the output neuron in our

1-6-1 architecture. With this in mind, note that the magnitudes of the first and sixth weight

95

l~ b b b
Weight Value \ +2a. \ l(li + 2a.) = 'Yi l

-0.661620 178108.302988 178108.414818 0.999999

7.112937 79025.772300 79025.884130 0.999999

-3.199016 8670.878694 8670.990524 0.999987

5.669189 5674.480460 5674.592290 0.999980
-4.204124 872.648132 872.759962 0.999872

0.661621 310.434534 310.546364 0.999640

0.156640 168.292386 168.404216 0.999336

-2.170455 5 .565156. 5.676986 0.980301
2.317223 1.272448 1.384278 0.919214

-4.850998 0.519392 0.631222 0. 822836
1.064855 0.021364 0.133194 0.160398

-0.156640 0. 002458. 0.114288 0.021507
0. 880564. 0.000396 0.112226 0.003529

-1.874159 0.000206 0.112036 0.001839
3.045329 0.000000 0.111830 0.000000
2.388736 0.000000 0.111830 0.000000

-3.291639 0.000000 0.111830 0.000000
-0.880566 0.000000 0.111830 0.000000
-0.117509 0.000000 0.111830 0.000000

Table 3 Eigenvalues from the Saw Example

of each group of six are equal. These are the redundant, or ineffective, parameters. With

all three pairs having opposite sign, they do not negate each others effect in the neural net-

work. Rather, their effect is additive as if all pairs had the same sign. This means that the

Bayesian training is somehow balancing the load instead of actually driving the redundant

weights all the way to zero. This is a very intriguing observation that we will return to in

a moment.

Reconsider for a moment the idea of Bayesian training. If the size of the neural net-

work we are using is more complex than necessary, the Bayesian optimization of a. and ~

96

should drive into insignificance all extraneous parameters. Thus, it would seem that the re-

suiting network should perform similarly for different numbers of hidden layer neurons.

1.5 10'

1-10-1 EA

10'

a

-0.5 10'

-1

-1.5 10-1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1

10' 10' 10' 10'

p Epochs

10' 10'

En Ew
10'

1o'

10'

10'

10a.

10'
10' 10' 10' 10'

10_,
10' 10' 10' 10'

Epochs Epochs

Figure 30 Results for the 1-10-1 Network

With this in mind, we tried training a 1-10-1 network using the same saw function

training set. Figure 30 shows the resulting function approximation along with the ED, Ew

and EA during training. Amazingly, the 1-10-1 network function approximation was near-

ly identical to the 1-6-1 result and the 1-10-1 network had almost exactly the same final val-

ues for ED , E w and EA . In addition, the final value for effective number of parameters as

shown in Figure 31 was virtually the same.

97

Table 4 contains a summary of results for other network sizes we tried. Note that

for each size of network, the Ev, Ew, EA and Ymo all plateau once a sufficiently complex

network is reached. Recall that unregularized training found the 1-6-1 network as optimal

in actual squared error comparisons of Figure 14 in Chapter 4, although the 1-4-1 and 1-5-1

network architectures did almost as well. Here, we see that using optimal Bayesian regu-

larization training allows us to use virtually any size neural network that has at least 4 hid-

den layer neurons. The training will automatically reduce the redundant parameters so as

to not overfit the training set data.

Ymo

10

o~~~~~~-~~~~~~

100 101 10' 10'

Epochs

Figure 31 yfor the 1-10-1 Network

Now, let's return to our observation in the 1-6-1 network example, where two hid-

den layer neurons played identical additive roles. If we compare final weight values for

different sizes of neural networks, we can make some very interesting observations.

Looking again at Table 3, we see that there are four completely dissimilar hidden

layer neurons; i.e., they each have distinguishably different weights associated with them.

With each hidden layer neuron having one input weight, one output weight and one bias,

there are 12 distinctly unique weights in the 1-6-1 network. Comparing weight values with

98

s ED Ew EA N 'Ymo

2 1.612 203.0 .5031 7 5.659

3 1. 214 187.8 .1954 10 8.468

4 1.144 177.0 .1080 13 9.843
5 1.143 177.2 .1085 16 9.906

6 1.143 177.2 .1088 19 9.908
7 1.143 177.2 .1090 22 9.910

8 1.143 177.1 .1091 25 9.911

9 1.143 177.1 .1092 28 9.912

10 1.142 177.1 .1093 31 9.913

14 1.142 177.0 .1095 43 9.915

20 1.142 177.0 .1097 61 9.916

30 1.142 177. 0 .1098 91 9.918
40 1.142 176.9 .1099 121 9.919

Table 4 Comparison of Different Hidden Layer Sizes

other sizes of networks, we find these same 12 weight values to be common to them all!

In fact, these 12 weights, plus an output neuron bias, make up the trained 1-4-1 network.

Starting with the 1-4-1 network, the actual value of each of these weights slowly increase

or decrease as another hidden layer neuron is added. The change in value is very small,

always less that one percent.

Now that we see how similar the networks of different sizes are, we must wonder

what the rest of the neurons are doing. We found that, just as in the 1-6-1 example, all hid-

den layer neurons outside the common four are always identical in magnitude. In Table 3,

the two neurons beyond the common 4 had identical values for input weight, output weight

and bias. The 1-10-1 network has six neurons beyond the four that are common. Each of

the six neurons had identical values for input weights, output weights and biases.

Table 5 shows a summary of how many hidden layer neurons had identical values

for the different architectures. It also shows what the values are. Notice how the values

99

decrease as the number of additive neurons increase. It is also interesting that the point of

symmetry for the transfer function of the neurons is preserved for all network sizes. Recall

that the point of symmetry for f(wp + b) is at -blw. (See e.g., [HaDe96] Chapter 2.)

Number Number
Bl

Hidden Additive Wl Bl -Wl W2 B2
Neurons Neurons

5 1 .77267 -.16720 .216 -1.11036 -.18510
6 2 -.66162 .15664 .237 .88057 -.11751
7 3 .59155 -.14127 .239 -.75124 -.07142
8 4 .54104 -.12842 .237 -.66544 -.03722
9 5 .50212 ;_11808 .235 -.60326 -.01072

10 6 -.47083 .10969 .233 .55557 .01044

Table 5 Weight Values of Additive Neurons

Noise Considerations

Recall that the results in the previous section were for normally distributed noise of

zero mean and 0.01 variance added to the saw function. We will now compare those results

to equivalent amounts of Laplacian and uniformly distributed noise. The three noisy train-

ing data sets and the noise alone are shown in Figure 32.

Table 6 shows the training results for the Laplacian noise training set. With this

type of noise, it was a little more difficult to locate the minimum of EA . Occasionally, a

model had to be retrained with another set of initial weights. As more parameters were

available, the number of local minimums increased. The other local minima, however, had

only slightly higher EA values.

A characteristic of these other minima is that the redundant neurons are not all iden-

tical. For example, the 1-10-1 model trained with the results shown in Table 6 has four

100

0.4 Normal Noise
0.3

0.2
0.5

0.1

t O .' e
.· ..

-0.1 •

-0.5
-0.2

-0.3
-1

-0.4

-1.5
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 a.a 0.9

p p

1.5

0.4 Laplacian Noise
' · ..

0.3

0.5 ··:· 0.2

., ·. 0.1

t 0 .. e .. •:, ..
: .. ·'

-0.1
-0.5

... -0.2

..
-1 -0.3

-0.4

-1.5
0 0.1 0.2 0,3 0.4 0.5 0.6 0.7 0.6 0.9 -0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

p p

1.5 0.5

0.4 Uniform Noise
0.3

-
0.2

0.5

..
·'

0.1

t e 0
..

-0.1 ..
-0.5

-0.2

-0.3
-1 ..

,•

-0.4

-1.5 -0.5
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

p p

Figure 32 Noise and Noisy Training Sets

identical neurons. But, it is fairly easy for training to result in a model realization contain-

ing two different pairs of identical redundant neurons. Increasing the number of redundant

neurons increases the number of alternate local minimums.

101

s En Ew EA N Ymo

1 7.5436 116.2 6.0066 4 3.793

2 1. 6250 214.8 .5770 7 5.676

3 1.0738 239.3 .1861 10 8.559

4 .9576 223.7 .0941 13 10.226

5 .9576 223.7 .0941 16 10.226

6 .9019 366.3 .0754 19 11.923

7 .9019 366.2 .0755 22 11. 924

8 .9020 366.1 .0755 25 11.924

9 .9020 366.1 .0755 28 11. 924

10 .9020 366.0 .0755 31 11.924

Table 6 Comparison of Models Trained with Laplacian Noise

It is also interesting to note that the 1-5-1 model had one redundant neuron with all

other parameters common to the 1-4-1 model. The 1-6-1 model, and all more complex

models with identical redundant neurons, produced the same optimal results.

Table 7 summarizes model results for training with uniformly distributed noise.

This data set presented the most problems. The 1-5-'l model contains parameter values

common to the larger models. Models trained with uniform noise exhibited some of the

same tendencies as the Laplacian noise trained models concerning multiple sets of identical

redundant neurons. In addition, there are now multiple minima with all identical redundant

neurons. The performance of the different minima is significantly different.

Also, models containing at least 10 hidden layer neurons would occasionally locate

a minimum point which had lower EA and higher y, though only slightly improved over

the 1-5-1 model. When a minimum is located that is similar to another model, the actual

values of common parameters are close but not nearly as close as for Laplacian or normally

distributed noise models.

102

s Ev Ew EA N Ymo

1 7.5436 116.2 6.0066 4 3.793

2 1. 62 5 0 214.8 .5770 7 5.676

3 1.0738 239.3 .1861 10 8.559

4 .9576 223.7 .0941 13 10.226

5 .9239 282.9 .0856 16 11.129

6 .9237 283.1 .0857 19 11.157

7 .9236 283.2 .0857 22 11.166

8 .9236 283.2 .0858 25 11.170

9 .9236 283.2 .0858 28 11.172

10 .9236 283.2 .0858 31 11.173

14 .9236 283.1 .0859 43 11.174

Table 7 Comparison of Models Trained with Uniform Noise

Although the models trained with uniformly distributed noise caused the most prob-

lems, we can always identify the redundant.neurons. This will imply what the size is of the

smallest sufficiently complex model that is needed for the training set. Since models with

fewer redundant neurons train more consistently to the optimal minimum, the problems

caused by uniform noise are controllable.

An Alternate Viewpoint

Recall from page 79 that MacKay' s formulation for the effective number of param-

eters seemed to fall out of the a.MP and ~MP equations. Also, recall that Moody did not

show a derivation for Ymo. It would be nice if we had concrete mathematical foundation

for the effective number of parameters. Lennart Ljung, with his significant body of work

in system identification, gives us such a foundation. (See, e.g. [Ljun87].)

In this section, we will explore the works of Ljung and how they relate to our

present work while adapting them to our framework. We will apply the standard measures

of quality for a model that Ljung uses in his system identification textbook [Ljun87].

103

We will first analyze a neural network trained with the unregularized objective

function F = En. Then we will look at the regularized model F = En+ aEw· The re-

suits will be a new definition of the effective number of parameters. Also, a direct relation-

ship between a regularized minimum and an unregularized minimum can be shown. This

is not only important here, but will be used for comparison of the stopped training method

described in Chapter 7 where we will resume exploring Ljung' s work.

We begin by recalling how our training set data is modeled. As in Eq. (25), let the

training set data be modeled as

a = f(p, w) + E (81)

where p is the input, f(p, w) is the true function, and E is white noise with variance of

E(e)2 = cr0 . Recall that these equations assume a single~input/single-output neural net-

work for ease of presentation. They can be generalized for multiple inputs and outputs.

Then with the unregularized objective function

n n

F(w, D) = En = L (a;- f(p;, w))2 = L (e;(w))2 (82)

i = 1 i = 1

we can train a neural network to minimize F such that

wML = arg min F(w, D).
w

(83)

We know that as n grows larger, wML approaches w O, a minimum of the mean

square error over the total population (as opposed to the error over a finite training set).

Thus a measure of a model's ability to learn the true function f(p, w0) could be

104

F'(w) = EF(w,D) = {~
1
(a1-f(p,, w))2J = {~ (e,(w))2J (84)

which is an expectation over all possible training sets, while the average trained model

gives

- -
F = EF(wML) (85)

performance, an expectation over the random variable wML.

Now we need to evaluate a few things. First, we need to approximate the gradient

of f(wML, D) around the minimum Wo by the Mean Value Theorem.

(86)

Rearranging terms, we have

ML . v2 .· -rv·,· ... · .
(w -w0) '"" -[F(w0, D)] F(w0, D). (87)

Second, from Eq. (82) and for j(w0) = a:e(w)L = w,' we have for the gradient

of Eq. (82)

n

(88)

i = 1

Third, we will need the covariance of the gradient.

105

T
cov(VF(w0, D)) = E[VF(w0, D)][VF(w0, D)]

= 4E{i/•(wo)e;(wo)i~l ef (w0)jf (w0)}

= 4Et~/;(w0)(e;(w0))2i;(w0)}

n

i = 1

= 4ncr0K

(89)

Here we note that the cross terms are uncorrelated, and we define K= E{j(w0)jT(w0)}.

We also see that since w0 is a minimum of F(w, D)

(90)

Fourth, from Eq. (88), the expectation of the Hessian of Eq. (82) is

n (91)

i = 1

z2nK

where E{ (0~,<w0))e,(w0)} is zero since E{e,(w0)} = 0 and we assume the error is

independent of the derivative.

106

Lastly, we need the covariance of (wML...,.. w0). This evaluation requires Eq. (87)

and Eq. (91).

(92)

Finally we are ready to evaluate Eq. (85). We start with a Taylor series approxima-

-
tion around w0 in Eq. (93). Note that VF(w0) = 0 since w0 is a minimum. Since we

assume Fis quadratic in the region around a minimum w0 , then V2F(w0) is positive def-

inite. Thus it can be diagonalized where the quadratic can be writ.ten as a sum of products

through the trace of the diagonal matrix. Then, substituting Eq. (92) we arrive at our result.

107

""ncr0 + cr0 tr IN

""cr0(n + N)

-
This says that every parameter contributes cr0 to the model error F, regardless of its im-

portance to learning the true function. So, parameters which do not improve ED degrade

generalization. Obviously we want to minimize this effect. Thus we want N to be as small

as possible. This is the process of model selection similar to the intent of the NIC of Chap-

ter4.

Now, suppose we add regularization and minimize

ex
F (w) = Ev+aEw (94)

where Ew = (w-w0{(w-w0), the square of the Euclidean distance of the neural net-

work weight vector to the weight vector w O, which is a minimum of the true function. In

reality, we typically will not know what w0 is, but we will deal with this later. Note that

108

to distinguish our regularization function from the unregularized F of Eq. (82), we add the

superscript a in Eq. (94) and the next equation, Eq. (95), to remind us of which objective

function we are discussing.

Now we will proceed just as before. Let

WMP - . Fa() - arg mm . w
w

(95)

such that VFa(wMP, D) = 0. Assuming n is large enough that wMP is close to w0 , we

can expand the gradient by the Mean Value Theorem

Thus

MP ~72 a -In a (w -w0)z-[v F (w0,D)] vF (w0,D). (97)

Now, with j(w0) = a:e(w)lw = w" and defming K = E{j(w0)/(w0)} as before, the

gradient of Eq. (94) is

n

(98)

i = 1

where the regulatory term Ew is zero at w0 . Note that this is exactly the same as Eq. (88)

for the unregularized objective function since Ewlw = wo = 0. Thus, the covariance of the

gradient at w0 is the same as in Eq. (89).

a a T
E[VF (w0, D)][VF (w0, D)] = 4na0K (99)

109

The expectation of the Hessian of Eq. (94) is found to be the sum of the Hessian for

the unregularized objective function shown in Eq. (91) and a new term.

E{V2F<\w0, D)} = E{V2Ev + V2(aEw)}

= E{V2F(w0, D)} + aE{ a:a~(w-w0/(w-w0)}

(100)

= 2nK + 2aE{ a: (w - w 0)} .

::::::2nK+2aIN

Now, using Eq. (97) and Eq. (99) the covariance of (wMP -w0) is

:::::: E -[V2F (w0, D)] VF (w0, D) -[V2F (w0, D)] VF (w0, D) {[ex -1 ex .].[ex -1 ex JT}

(101)

Finally, we are again ready to evaluate Eq. (85) for our regularized objective function. We

show this inEq. (102). As before, we use a Taylor series approximation around a minimum

-
w0 at which point the gradient VF(w0) = 0. We also rearrange the terms by assuming

-
that is approximately quadratic and F(w) is positive definite at a minimum w0 . Then, we

substitute from Eq. (101). Finally we use the fact that V2F(w0):::::: EV2F(w0, D):::::: 2nK

from Eq. (84) and Eq. (91).

110

- -
F = EF(wMP)

(102)

Now, since all nondiagonal matrices are the same, namely (nK), we can diagonal-

ize all matrices simultaneously,

(103)

where

N 2 N 2
~ (nA;) = ~ A;

'Y1f= Li (A)2 Li (a.)2
i = 1 n i + a i = 1 A; + n

(104)

is the effective number of parameters (as defined by Ljung) and A; are the eigenvalues of

Ab
K. Recalling Eq. (91) and that A~ is an eigenvalue of V2(PEv), we note that i = 2nA;.

We can see that there is a linear relationship between the eigenvalues. Also, comparing Eq.

(104) to Eq. (71) we note the form of A1j is very similar to that of Arna. Recall that each

111

component Yi of the summation for both is bounded by O :::;; Yi :::;; 1 . Since each Yi tends to

be close to either O or 1, we see that the squaring difference between Yij and Yma is oflittle

consequence. However, Ljung's equation for Yij was purposefully derived where

MacKay' s was a by-product of other derivations.

Comparing to Moody's parameter, recall from Eq. (52) that

(105)

where F = Ev+ aEw. lfwe let A = B-1(V2Ev)B be a diagonal matrix, with Ai as the

diagonal elements, for symmetric B , then

-1 ··:...1 -1
Ymo = tr((BAB)(BAB + 2al))

= tr((BAB-1)(B(A + 2al)B-1)-1)

= tr((BAB-1)(B(A+ 2alf1B-t))

= tr(BA(A + 2alf1B-1)

-1 = tr(A(A + 2al))

Ai
0

Ai+2a

A·
0

I

= Ai+2a

0

This is identical to MacKay's Yma parameter!

112

0

0

A·
0

I

\+2a

(106)

Now, let's return to the analysis ofEq. (103). Notice how Eq. (93) compares to Eq.

(103). For a = 0 (no regularization), y1j = N and Eq. (103) becomes Eq. (93). With reg-

ularization, however, Yij < N. In fact, only large eigenvalues Ai of V2Ev significantly con-

tribute to Yij . Thus, small eigenvalues which do not improve ED do not degrade the

performance of the trained neural network: Note that "large" and "small" are relative to a,

so the regularization factor determines the neural network performance.

During training, some eigenvalues of V2Ev can get very small. These small eigen-

values are very sensitive to disturbances. Recall that 'J...1 associated with eigenvector u1 in

Figure 29, is a small eigenvalue. When the parameter estimate wML is moved along u1 it

only slightly effects the squared error, Ev. We see fromEq. (100) that with regularization,

the eigenvalues of V2 Fa (w) cannot be smaller than 2 a . This limits the minimum size of

the eigenvalues of redundant parameters of w , thus making them less sensitive to the noise

peculiarities of a particular training set.

For an examination of how the regularized wMP differs from the unregularized

wML, from Eq. (94),

0 = VFa(wMP, D) = VEv + V(aEw)

= VF(wMP, D) + 2a(wMP - w0)
(107)

where VF(wMP, D) is the unregularized objective function. Expanding around a near min-

imum point wML of F(w, D) using the Mean Value Theorem and Eq. (91),

113

VF(wMP, D) = VF(wML, D) + V 2F(wML, D)(wMP - wML)

""2nK(wMP -wML)
(108)

where VF(wML, D) ""0 since wML is the minimum of F(w, D). Substituting Eq. (108)

into Eq. (107) we have

VF(wMP, D) + 2a(wMP - w0) = 0

2nK(wMP -wML) = -2a(wMP - Wo)

nK(wMP_wML) = -a(wMP_wML+wML_wo)

nK(wMP -wML) = _ a(wMP -wML)- a(wML _ wo) (109)

(nK + al)(wMP -wML) = a(w0-wML)

(wMP -wML) = ~[K + ~I rl (wo-wML)

Now, rearranging,

wMP = wMLJ + - K + - I w - - K + - I wML a(. . a)-1 a(a)-1
n n ° n n

(a(a)-1) a(a)-1 = 1-n K+nl wML+n K+nl Wo
(110)

= (1-M)wML+M w a a 0

where Ma = ~(K + ~I r1
. So, the regularization estimate wMP is a weighted average of

the unregularized estimate wML and the nominal value w O .

In practice, we cannot use the minimum of the mean square error over the entire

population, w O, since we do not know it. However, in the next chapter, we will revisit these

equations with interesting results for the special case of assuming the condition w O = 0 .

114

As one last note, we have found that regularization plays a key role in preventing

overfitting. We have thus far seen two methods for improving generalization: model se

lection with the NIC, and adding a regularization term to the objective function. Ljung pre

fers to use regularization with an oversized network, rather than choosing the smallest

network which does not overfit. In their experiments, the largest network that does not

overfit produces worse overall performance than a larger model trained with regularization.

They conclude that removing superfluous hidden layer neurons will remove some of the

important parameters, too. We see that this is certainly possible given our discussion on

page 93.

Summary

We have shown how we can use MacKay's Baye&ian analysis of neural network

learning to recalculate the optimum values of a and ~. afte~ each training epoch. Demon

strations of our implementation in the GNBR algorithm show how this yields a dynamically

changing emphasis on reducing the training set error versus reducing the effective number

of parameters. Since these adjustments automatically optimize regularization factors, the

resulting network is the best representation of the underlying function. Our experiments

with the GNBR algorithm have demonstrated common results for all neural network archi

tectures of a minimum size.

We have placed the formulas for the effective number of parameters adapted from

three separate works into a common mathematical framework for comparison. Moody's

'Ymo was found to be identical toMacKay's 'Yma, however the derivation of 'Ymo is unknown

while 'Yma is a by-product of other derivations. The third version comes from Ljung pro-

115

viding a firm mathematical foundation for his parameter Yij. Interestingly, the terms

summed in Yij are almost the square of their counterparts in Yma. However, since all terms

are bounded by (0, 1) and tend to be driven to their extremes, all three versions of y act

similarly.

Although there are several ways to calculate y, they all have drawbacks. They ei

ther require inverting the Hessian or calculating eigenvalues, both are computationally ex

pensive. However, since the Hessian is already available to us through our training

algorithm, the additional overhead is minimal!

Using MacKay' s Bayesian learning technique alone requires alternately updating

a and ~ versus y, where the computation involved for calculating y is expensive. How

ever, our GNBR implementation takes advantage of information available in the training

algorithm. The new GNBR algorithm provides optimal neural network performance with

only a minor increase in computational overhead. We will summarize this major develop

ment with a recipe for application in Chapter 8. But first, we have one more method to ex-

amme.

There is a unique training method that is used very often today. It is called stopped

training. Ljung' s work has exposed a relationship between regularization and the popular

stopped training methods. We will pursue this in depth in the next chapter.

116

Introduction

CHAPTER7

STOPPED TRAINING

Ljung' s work in neural networks seems to have gone ali:nost unnoticed. Yet he has

brought very sound mathematics to bear on the ad hoc procedure of stopped training.

Stopped training is often employed in training neural networks because of its sim

plicity. However, until recently it has lacked a mathematical foundation. Ljung has

brought what appears to be the first rigorous explanation df the method. Interestingly, it is

a straight forward extension of the concepts presented in his well known System Identifi

cation textbook. His analysis seems to go a long way in explaining why stopped training

works, and also sheds light on why stopped training sometimes unexpectedly fails. [Ljun87]

What is most intriguing is how he is able to relate stopped training directly to reg

ularization. This ground breaking comparison is the focus of this chapter. It is a continu

ation of section' An Alternate Viewpoint' on page 103. The key references for this work

are [Ljun87], [LjSj92], [SjLj92] and [SjLj94].

In this chapter, we will use Ljung' s techniques to put stopped training into our

framework for a direct analytical comparison to regularization. This comparison will ex

plain some important characteristics of stopped training. We will also describe an experi-

117

mental comparison between stopped training and the Bayesian regularization optimization

technique of the previous chapter.

Background

The stopped training method stops neural network training when a point is reached

where further training would only lead to overfitting. This is done by monitoring the errors

in an independently chosen validation sample set.

There are many variations on backpropagation training. These range from simple

fixed step size gradient descent to Newton J11ethods that require second derivative informa

tion. Different applications may require different training techniques. These are some of

the reasons why many embrace stopped training. It can be applied to most any algorithm

with only simple modifications, and the modifications do not change anything about the al

gorithm except the stopping criterion.

Let's say that we employ our favorite unregularized training algorithm for reducing

the errors of a training set for a neural network. We know from the gradient descent tech

nique that the error rate must decline with each training step. It will not stop until the limit

of accuracy of the implementing machine is reached. This is why most algorithms use a

particular minimum error size or minimum gradient magnitude as the stopping criteria.

Now, consider what is happening during training. Anyone who has watched a sim

ple single-input/single-output neural network being trained and seen intermediate results

during training has noticed that a network tends to take on the grossest features of the train

ing set first. The finest features are always last to be learned. Often many of the finer fea-

118

tures have more to do with noise of the training set than of characteristics of the true

function.

The longer we allow the unregularized neural network to be trained, the finer the

details the network learns. This could be viewed as a developmental process that passes

through stages resembling fully trained networks of increasing levels of complexity. The

question is how do we know at which level of complexity to stop training in order to avoid

overfitting. [Smit93]

If, during the training of a neural network, we were to monitor the errors of a noise-

less sample set we might see results similar to Figure 33. In this figure, Ev represents the

squared errors in the training set and EA represents the squared errors on the noiseless set

(actual error).

10'

104 ~---~---~-~~

~ ~ ~ ~

A Epochs B

Figure 33 Example of Training to the Point of Overfitting

The errors in both sets are reduced initially. Then, at some point during training the

network begins to learn the characteristics of noise. In Figure 33, this point is labeled A.

Now, although the error continues to fall for the training set, ED, the comparative error for

119

the noiseless data set, EA , begins to increase. The network represented by stopping training

at point B will overfit the training set. Thus, stopping training at point A should result in a

network which has learned the most it can about the true function without significant over-

fitting. This network should have the best overall generalization, since it has not yet been

trained to the level of the noise in the training set. Indeed, the learned functions shown in

Figure 34 show that the overfitting found at point B has not yet happened at point A.

Point A Point B

-0.S

. +

-1 -1

p p

Figure 34 Function Plot at Point A andPoint B

This procedure is promising, but there are several difficulties to address. First, in

real-world problems noiseless data is not available. So we must substitute a second set of

independently chosen samples. Usually this means dividing up the available samples into

two sets: the training set and the validation set. This can be a problem when data is sparse

because we need to use all the data we can to train the neural network.

Second, it is difficult to distinguish between training which learns the true function

and training which learns noise. That is, there is not a decisive point in training where

learning the true function stops and learning noise begins. The two stages overlap, as sym-

bolically shown in Figure 35. Just as in the bias and variance discussion on page 30, from

120

the first to the last step of training the bias is being reduced, and at the same time the vari

ance is being increased. No matter when training is stopped, some overfitting will have

happened.

Training Progess ~

Figure 35 Bias and Variance of a Network During Training

Third, because noise is contained in both the training set and the validation set, the

validation set error may not be a strictly decreasing function. In fact, t:he validation set error

may have multiple valleys, some at a lower error level than others. Many ways to handle

this problem have been suggested. They range from monitoring every fifth training step to

calculating a percentage increase of a moving average of the error over a minimum point.

(Recall the list on page 37.) In any case, there is no guarantee that a particular criteria that

worked in one situation will work for all cases.

Fourth, the neural network may not be complex enough for stopped training to

work. In real world problems, we have few clues as to how complex a network must be to

learn the true function. Too complex a network will cause the variance to increase much

more rapidly as training progresses than a network barely capable of learning the true func-

121

tion. In the latter case, the variance curve in Figure 35 would be virtually flat. If a network

has the minimum complexity to fit a given function, then stopped training is relatively in-

sensitive to the precision of the stopping criteria. In fact, the validation set error of Figure

33 may never distinctly increase.

However, for a complex network the bias and variance curves of Figure 35 may

have very strong slopes. It may be a challenge to locate the optimal stopping point, espe-

cially with quick training techniques like quasi-Newton methods. Also, the level of the er-

ror at this sensitive stopping point may be higher than for the less complex network.

Stopped training clearly has some problems. Experience shows that results are not

guaranteed. With a mathematical understanding of how the process works, however, one

might be able to avert some of these problems.

An Analysis

We will start be analyzing the general weight update formula

(i + 1) (i) R'{7F((i))
W = W -µ V W (111)

Note that in this formula R modifies the gradient direction. For simple backpropagation,

R = I. For Gauss-Newton m~thod, R is an approximation of the Hessian H of our ob-

jective function F = En. Thus, Eq. (111) represents a wide range of updating methods.

We now perform a Taylor series expansion of VF(w(i)) around wML.

(112)

ML . ML
Since fromEq. (83), w = arg mm F(w, D) then VF(w) = 0. Also, fromEq. (91)

w

122

V2F(wM\ D) """2nK since wML is assumed to be close to the minimum w0 of the true

function. Substituting into Eq. (112), we have

Using Eq. (111) and Eq. (113), we can evaluate w(l) and w(2) using

Mm= (1-µnRKt.

and

w(l) = w(O) - µRVF(w(O))

(0) · (0) ML = w -µnRK(w -w)

= (µnRK)wML + (I - µnRK)w(O)

= (I-M1)wML + M1 w(O)

w(2) = w(l) - µRVF(w(1))

= (I-M1)wML + M 1 w(O) - µnRK(w(l) -wML)

= (I-M1)wML +M1 w(O) - (I-M1)(w(l) -wML)

= 2(1-M1)wML + M 1 w(O) - (I-M1)[(1-M1)wML + M 1 w(O)]

= [2(1-M1)- (I-M1)2]wML + [M1 - (I-M1)Mi)w(O)

. 2 ML 2 (0)
= (2µnRK - (µnRK))w · + M 1 w

= (I - (I - µnRK/)wML + M 2 w(O)

= (I - M2)wML + M2 w(O)

Comparing the final form of Eq. (114) and Eq. (115), we see that

(m) = (I_ M) ML M (0)
W mW + mW

where w(O) is our initial weight vector.

123

(113)

(114)

(115)

(116)

Now, compare Eq. (116) with Eq. (110) of Chapter 6. If our initial weight vector

w(O) is the same as our regularization constant w 0 , then the two equations describe a sim-

ilar relationship between our initial set of weights w O and the unregularized estimate wML !

In order to compare Ma and Mm , we will assume a gradient descent training meth-

od where R = I . Also, we assume K is diagonalized, since it can be made so through a

change of basis.

b ...
Recall that A. is an eigenvalue of V2En = V2F(w, D) = 2nK. A diagonal ele-

ment of Mm can therefore be written

(117)

Likewise, a diagonal element of M~ c·an be written

a(1 b a)-1 (1 b)-1
(Ma)jj = n 2n')., + n = 2aA + l (118)

Let's compare these two elements as Ab is varied. A plot for each of these elements

1
over a range of b for m = 100, µ = 0.01 and a ~ 1 is shown in Figure 36. We know

A

that for Eq. (111) to be stable for the gradient descent algorithm we must have µ < /
. (A)max

(See, e.g. [HaDe96].) Thus we are only interested in properties of Mm and Ma for :b > ~.

Indeed, we are really interested in comparing properties concerning small Ab, since we

124

know that regularization drives redundant parameters and their associated eigenvalues to

small sizes. We would like to draw some similar conclusions based on early stopping.

From Figure 36, Mm and Ma seem to be identical for small Ab.

0.9

5 6 9 10

l/11.b

Figure 36 Plot of Diagonal Elements of Mm and Ma; Parameters

. b
Let's compare the diagonal elements of Mm and Ma for very small values of A .

Setting the equations for the diagonal elements equal and taking the derivative with respect

to Ab, we find for asymptotically small values of "-h that

125

(2~Ab + 1 r1 = (1- ~(µAb))m

-log(2~Ab + 1) = mlog(1 - ~(µAb))

1 1 1 (1)

(2~A."+1)·2u = m· (1-1(µ1/)). -zµ

1 mµa. ~--~ = ----- (119)

(2 ~Ab+ 1) (1 - ~(µAb))

1 (1- ~(µAb))
m = ~-~----
. µa. (1 + 2~Ab)

1
mz-

µa.

Now we can see that the number of training algorithm iterations m is directly linked to the

regularization parameter a.! From Eq. (104) in Chapter 6 we know that the number of ef-

fective parameters depends on the regularization factor a. . A larger a. yields a smaller ef-

fective number of parameters. In Eq. (119), m is inversely proportional to a.. Substituting

into Eq. (104), we see that the effective number of parameters grows with each training step

taken. So, stopping training early from an initial weight setting of w O has the same effect

as applying regularization and using Ew = (w- w0{(w -w0).

Now we take a look at the special case of allowing w O to be the origin. Starting

with Eq. (111) and expanding it with substitutions fromEq. (82) and Eq. (88) and allowing

R = I, we have

126

(i+l) - (i) RnF((i))
W - W -µ V W

n

= w(i) - 2µ L j/w(i))e/w(i))

j=l
n

= w<i) -2µ I [a:e/wu))]e/wu))

j=l

n

n

For the hidden layer of the neural network, the log-sigmoid transfer function

(120)

f (x) = 1
1 () is often used. The derivative of this function is f (x) · (1 - / (x)) . + exp -x

For large net input x>> 1 the derivative is almost zero. This will cause the elements of

}~(p, w) associated with weights in the hidden layer to be very small. Thus, if any data

and weight combination are mapped by the sigmoid function into the flat region, where the

function value is near zero on one end or near one on the other, the weight updates of Eq.

(120) will be near zero and the weight will be "frozen".

Now, we add regularization to the objective function. With

n

j=l

we can easily see from Eq. (120) that even though a weight may start in a "frozen" situation,

it will at least be moved according to

127

w(i + 1) = w(i) - µ(2aw(i))

= (1- 2aµ)w(i)
(121)

For O < a < ! , which stabilizes the update equation, the "frozen" weight will be µ

driven toward zero, enforcing our regularization. Here the usefulness of the weight is re-

gained since it is now in the active area of the log-sigmoid function. Of course, along the

way d~(p, w) will no longer be near zero and learning will resume with a now useful

weight.

Thus, the special situation of allowing w O = 0 plays the important role of ensuring

any weight needed to minimize the objective function is available to play its part.

In review, Ljung has shown us that if we set our initial weights w0 to the vector O,

or very near it, and perform early stopping, we will be accomplishing virtually the same

thing as minimizing a regularized objective function, since there exists a direct relationship

between the number of training steps taken and the regularization factor a . Further, by us-

ing w O near the origin, we have the added benefit of avoiding "frozen" weights.

Extending this idea, if we trained to minimize ED, with resulting weights wML, our

neural network weights should have passed through (or at least near) the regularized mini-

mum wMP. This is shown in a simplified graphical view in Figure 37. Thus for these con-

ditions, stopped training could well result in locating wMP or a point near it.

128

Figure 37 Simplified View of Regularization and Stopped Training Relationship

Method of Application

There are many choices to be made when implementing stopped training. These

choices fall into two categories: the size of the validation set, and the stopping criteria.

For the size of the validation set, there do not seem to be any hard rules that have a

rigorous mathematical foundation that can be applied in all cases. Rather, most knowledge

is based on experience. However, we did find one recent publication worth noting.

In [AmMu95], Amari found that when the number of training set samples n is larg-

er than thirty times the number of neural network parameters N, generalization is made

worse by using a validation set to stop training. They show this through asymptotic statis-

tical theory. They further show that for N < n < 30N only ~ samples should be taken
,J2N

from the training set and used as a validation set. The mathematical treatment of these rules

make them worth noting. Of course, even these rules are based on assumptions about the

network and the objective function used for training.

129

As for the stopping criteria, several types of circumstances, as noted on page 120,

must be accounted for. The simplest strategy would be to stop the training on the first iter-

ation for which the validation error function Ev goes up. Experience, however, shows that

stopping after a single uptick fails to produce consistent results. The most encompassing

set of stopping rules we have seen is found in [Prec94].

We now tum our attention to the problem at hand. We have discussed the possible

validation set size and stopping criteria we would investigate using if we were to train a

neural network using stopped training methodology. However, the spirit of stopped train

ing is simply to observe the validation set error Ev and react to it. That is what we will do

in our experiments in the next section.

Trials

For comparison of stopped training with the Bayesian optimization of the regular'"

ization method described in Chapter 6, we chose to try two experiments. First, we wish to

show a case for which an under specified regularization parameter leads to overfitting for

some fixed a and p of our regularized objective function. Second, we want to show a case

where no overfitting occurs. We will observe the validation set error Ev for Bayesian op-

timized parameter values of a and p.

In our first experiment, we fixed a = 0.0001 and P = 78.8354. While P is set

to the final Bayesian optimal value, a is made very small to encourage the use of all the

network parameters. The results are shown in Figure 38. We used the same 1-6-1 network

architecture trained with the saw function as before. We even used the same initial weights

130

and training set D , but we added an additional validation set equal in size to D for easy

comparisons. Note that the learned function plots in Figure 38, and Figure 39 which fol-

lows, show the training set as"+" and the validation set as".".

1.5
10'

Final Function
10'

Ew
10'

a
10'

Ev
-0.5

10' -·-·-·----·-·-

-1
10·1

En

-1.5
0 0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.9 1 104 .

10' 10' 10' 10'

p 17 Epochs

1.5 .. 18 . min (Ev) Function 'Y
'• 17

0.5 16
+ •

a • +
+ 15

-0.6 14

-1 13

-1.5
0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1~00 10' 10' 10'

p 17 Epochs

Figure 38 Results for Fixed a

From Figure 38 we can see that Ev tracked En at the beginning of training. In this

area of training the network is learning features common to tlie two sets of data. Since they

are common, it is hoped they reflect features in the true function. However, late in training

the weight sizes grow tremendously. While this lowers En, it causes an increase in Ev.

Overfitting is surely the result, since features being learned in this phase are predominately

131

from the peculiarities of the noise in the training set which are not in the validation set and

therefore probably not in the true function.

The final learned function does indeed show overfitting. Parts of the saw function

are not represented very well. However, this is the final trained network. If we applied

. stopped training to this case, the results would be different. For the simplest stopped train

ing implementation, the network parameters responsible for the smallest validation set er

ror Ev were saved. The smallest value for Ev was found at the 17th training step. A plot

of the learned function at this intermediate point is shown in Figure 38. It looks very much

like our optimal network function found through Bayesian regularization! Indeed, the de

velopmental process described on page 119 seems to be true even for our fast Gauss-New

ton algorithm.

If we examine the effective number of parameters during training, we see the final

value is a very high 17 .6 .. It increased rapidly as the weight values increased. At the 17th

training step it is only about 15. This intermediate value is still much higher than in our

Bayesian experiment, which resulted in a value of 9 .9. This discrepancy occurs because all

of the derivations of the effective number of parameters assumed we were at or near a min

imum. Only the final value of y has meaning; and all prior calculations are only gross in

dications, which grow more accurate as a minimum is reached. For this reason, the estimate

of the effective number of parameters is not accurate under the stopped training method,

since no minimum is ever reached.

Now let's look at our second experiment. We use the same conditions as before,

except this time we optimize a and B. The results are plotted in Figure 39. They should

132

1.5 10'

Final Function Ew

0.5 10'

+··

a •+ +
+

-0.5 10'

-1
Ev

-1.5 10" 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10" 10' 10' 10'

p Epochs

1.5 10'

+ min(Ev) Function
..

10'

0.5 ,+
+··

a \'I- +
10'

--0.5

10-1

-1

-1.5 10-2
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10' 10' 10' 10'

p Epochs

20 10-2

18
y al~

8~~~~~~~~~~~~~~

10c 10 1 102 103

Epochs Epochs

Figure 39 Results of Bayesian Leaming Example

be familiar to us from Chapter 6. Notice how the validation set error Ev never substantially

increased. In fact, it increased less than 2.5 percent from the minimum point at step 12 to

the end of training at step 173. If we compare the function learned at step 12 to the final

function, we see very little difference. The sum of squared errors for the nonnoisy data,

133

EA, is 0.1022 for step 12 and 0.1088 at the end of training. Thus, even in the eyes of

stopped training, our Bayesian regularization algorithm operates well.

Summary

We have explained the stopped training method for improving generalization. We

have also put stopped training into our common framework for a direct comparison to reg

ularization. Our experiments show that stopped training is effective when used properly.

However, there are several problem situations that can arise. The best defense against them

is to examine the validation set error over the course of training. ·

In our examples, we have shown that the performance of stopped training is similar

to Bayesian optimization of regularization. However, in typical situations the amount of

data available is limited. Splitting the data into a separate training set and validation set

means our neural network will be trained with less data. Since the training set size is now

significantly smaller, we would expect the resulting network to have less accuracy in de

scribing the true function.

Therefore, in typical situations the Bayesian optimization method would be pre

ferred to stoppedtraining. Since stopped training requires a significant amount of precious

data to be used for an independent validation set, the Bayesian optimization technique will

generally yield more reliable results.

Stopped training is the last generalization improvement method we have chosen to

pursue. In the next chapter, we will outline a recipe for application of the GNBR algorithm

and show results for real world problems.

134

Introduction

CHAPTERS

REAL-WORLD PROBLEMS

In this chapter we will apply our algorithm to real-world problems. We have ex

plored several methods for improving generalization performance, From these, we have

developed the Gauss-Newton approximation to Bayesian Regularization (GNBR) algo

rithm. Now we will apply the GNBR to four real-world problems.

The first test problem is a problem relating age to the ratio of weight to height for

preschool boys. The second problem relates two photosensor inputs to the position of a ball

in the field of view. The third problem is the prediction of annual sunspot activity. The

final problem is the prediction of a sample response of the Mackey-Glass chaotic equation.

These four problems were selected to represent a diverse cross-section of applica

tions: a single-input/single-output regression; a two-input/single-output regression; a real

world time series; and a simulated chaotic system.

First we will review a step-by-step recipe for application, and then we will show the

results of the real-world problems. Overall results will be sµmmarized at the end of this

chapter.

Recipe for Application

Here is the general recipe we will follow for application:

135

1) Normalize Data -- Bound each input and target output by [-1, 1] . For

a time series, bound the entire set before formatting for training usage.

2) Testing Set -- For our purposes, we will segregate a 10% sample of the

data for a test set. This will serve as our cross-validation comparison

check. In practice, all the data would be used for training unless over

fitting is suspected.

3) Training -- Choose a reasonably sized model and train with formatted

data. Use the method described in section 'Method of Application' on

page 82. For the Levenberg-Marquardt training algorithm, stop training

by allowing µ to be driven to a maximum value.

4) Check y -- If the final effective number of parameters y is within S of

the total number of parameters N, be suspicious that the model is not

sufficiently complex. Increase S and retrain. Continue to increase the

number of hidden neurons S until y stops increasing.

5) Other Checks -- If the "noise" in the data is narrowly dispersed, then

Ev, Ew and y will remain constant for all sufficiently large models.

For a wide dispersion of noise, retraining with new initial weights may

be necessary to ensure consistent results (although our experiments

showed surrounding minima to be very close to optimal results). As a

final check for a sufficiently complex model, compare actual parameter

values (weights and biases): for two models, look for parameter values

in common; for the larger model, look for duplicate parameter values.

136

Both are good indications of redundant neurons and therefore sufficient

model complexity.

We used these ideas as our primary guide for training neural networks with the

GNBR algorithm. In the next few sections we show the results for the four real-world prob-:

lems.

Age versus Weight/Height of Preschool Boys

This data set was taken from [SeWi89] but originated from [EpFo72]. There are

two variables in the data set. One is the age of the preschool boys in the study, and the other

is their weight to height ratio.

Figure 40 shows the normalized data"+" along with a trained neural network re-

sponse. There are 72 points. Our process of normalizing the data is simply to scale it to be

bounded by ± 1 . For example if D is the set of ages, we could transform it according to

[D-Dmin J
D norm = D - D . X 2 - 1

max min
(122)

such that the elements of D norm E [-1, 1] .

0,8

0.6

OA

0.2

W/H o

Age

Figure 40 Preschool Boys Data Set

137

With 72 data points, we randomly chose 7 for extraction into our testing set. The

rest formed our training set, with age as the input and weight/height as the target set. Table

8 summarizes the results of training a broad range of models. (Recall that S is the number

of hidden layer neurons, ED is the squared training set error, Ew is the squared weights,

Er is the squared test set error, N is the number of actual parameters, and y is the effective

number of parameters.) Notice that for all models with S ~ 4 the errors and y are the same.

A quick look at the final parameter values revealed why: all parameters associated with

redundant neurons are very near zero! Thus, any model with S > 4 responds essentially the

same as the 1-4-1 model. The GNBR algorithm has worked unquestionably well in pro-

ducing the same optimal results for increasingly complex neural networks.

s ED Ew Er N 'Y
1 1. 2621 15.42 .04749 4 3.055
2 .. 4427 45.65 .00954 7 5.984

3 .4441 43.37 .00866 10 6.059
4 .4413 41.63 .01244 13 7.244

5 .4413 41.63 .01244 16 7.244

6 .4413 41.63 .01244 19 7.244

7 .4413 41.63 .01244 22 7.244

8 .4413 41.63 .01244 25 7.244

10 .4413 41.63 .01244 31 7.244
20 .4413 41. 63 .01244 61 7.244

Table 8 Model Comparison for Boys Data Set

Figure 40 shows the resulting function learned while Figure 41 shows the error

tracking for training a 1-6-1 model. The mapping learned by the neural network seems bal-

anced in the data and very smooth. The plots of ED and Ew are relatively flat for about

138

10' 10'

ED
10'

10'

10'

10'

10'

10_,
10' 10' Epochs 10' 10'

10-1

10' 10' Epochs 10'
10'

10' to'

10'

10'~---~--------~

10' 10' Epochs 10' 10'

10'

10~~---~----~---~

10' 10' Epochs 10' 10'

10'~---~--------~

10' 10' Epochs 10' 10'

Figure 41 Training for Boys Data Set

the last 280 epochs. However, at about 80 epochs into training y increases along with Ey.

The normal interpretation would be that the increase in y results from a better fit in the data,

and a corresponding increase in Ey indicates fitting training set characteristics not common

139

to the testing set. This describes overfitting. But ED does not show a drop to indicate better

fitting and Ew does not increase as it does when overfitting occurs.

Compare the interim learned function plots in Figure 42. They show training results

for 14, 16, 70 and 300 epochs. The testing data is indicated with "o" while the training set

is shown as"+". From 14 to 16 epochs, the function clearly improves near p = 1, but

there is little difference between the 16 and 70 epochs results. Both of these differences

follow observations in Er.

0.8

0.8

0.4

0.2

a o

-0.2

14 Epochs

p

0.8

+
+ + + + ++ ++

+ ++ +
0.6

+ +
+

0.4 + +

0.2

a o

70 Epochs

p

0.8

0.6

0.4

0.2

a o

0.8

0.6

0.4

0.2

a o

+ + + + + ++++ +

+ ++ + + +
+

p

p

+ +

+ + + + ++ ++

+ +
+

16 Epochs

300 Epochs

Figure 42 Interim Function Plots for 1-6-1 Training

140

The increase in Er near 80 epochs is mostly attributed to the change in the learned

function near p = -0.4 . Comparing 70 to 300 epochs, the function in this area moved

closer to the group of lower valued training set target points which increased the distance

between the function and two test set points. This caused the increase in Er.

The results of Er for this particular t~aining session are clearly misleading. Prior

to the final increase in Er, the neural network was slightly overfitting areas impacting Er.

In the final stages of training, the movement to a slightly better fit of the data resulted in

moving away from the testing set data points. Using Er as a stopping training criterion

would have resulted in a less than optimal network. Indeed, retraining with different initial

weights always resulted in the same final value for Er but only occasionally showed the

valley in Er we chose to show here for demonstration.. This indicates that the method of

early stopping, which was presented in Chapter 7, will not always provide the optimum net

work.

Also, note in Table 8 that the S = 2 and 3 models yielded smaller Er than the

models with larger S; however, Ev and Ew are larger, y is not consistent, and there are

no common parameters between these models. These models are not complex enough for

the mapping task, but those places where the models are flawed are not exposed by the test

set. They were not complex enough to put the extra "bend" in the resulting function near

p = -0.4 . The smoother function for the smaller networks simply gives false indications

for testing set results. A different testing set may not reflect the same results.

141

Sensors

Two optical sensors provide information about the position of an object which pass-

es through their visual field. The two sensors are located in different positions, thus pro-

viding independent measurements. The data consists of the two sensor outputs and the

object position. Figure 43 shows two different views of the data "o" and the final 2-8-1

network mapping "+".

0,8 19 ED ID fB e

0.6 0.8

0.6
0.4

0.4

0.2
0.2

t 0

--0.2 --0.2

--0.4
-0.4

--0.6

--0.8

Figure 43 Sensor Data Set

....

. . ..

•• "'.

-0.5

0.5

The data was normalized and used to train a two-input/single-output network. Sev-

en of the 67 data points occupied the randomly chosen testing set. The results are shown

in Table 9. The 2-8-1 neural network is the smallest model providing optimal fit of the data.

Notice how well the GNBR algorithm works. Even when 61 parameters are available, only

about 21 are effectively utilized. Each increase in model complexity corresponds to an in-

crease in y, but only until a sufficiently complex model is found where the optimal y is

20.978. Also, as complexity increases ED and ET tend to drop until sufficient complexity

is available for them to reach the optimal errors of 0.003596 and 0.000973, respectively.

142

s Ev Ew ET N y

2 .024190 126.59 .002924 9 8.035

3 .008660 87.60 .002114 13 12.118
4 .004857 36.94 .001012 17 15.567

5 .004507 36.70 .000987 21 16.727

6 .003903 41. 73 .001010 25 19.027

7 .003917 40.98 .000979 29 19.269

8 .003596 46.51 .000973 33 20.978

9 .003596 46.51 .000973 37 20.978

10 .003596 46.51 .000973 41 20.978
15 .003596 46.51 .000973 61 20.978

Table 9 Model Con;iparison for Sensors Data Set

Just as in the previous problem, redundant neurons had parameter values near zero;

however, sometimes retraining was necessary to locate the proper minimum. The 2-8-1

model has one redundant neuron, but we couldn't seem to train to the optimal minimum

point with a 2-7-1 model. It would seem that the optimal minimum is "surrounded" by oth-

er local minimums causing our training algorithm to get stu:ck in one of them.

Figure 44 shows how training progressed for the 2-8-1 model. As is typical, the pa-

rameter ~ stabilizes before a makes a final adjustment. Notice how well the regularization

works. The point where Ew drops significantly, ED and Er do not increase. Instead, they

drop slightly while y increases. The GNBR algorithm is reducing the redundant weight

values and increasing the effectiveness of the necessary weights to produce optimal results.

143

10'

10'

104'-----~---~-----...J
10' 10' Epochs 1o' , 10'

10-,'-----~---~-----...J
10' 10' Epochs 1o' 1o'

a.
10'

10'

10'

10'

10-1'-----~---~~----...J
10' 10' Epochs 10' 10'

10~'-----~---~---__,

10' 10' Epochs 1o' 10'

y
10'

10'

10~

104

10~~---~---~---~

10' 10' Epochs 10' 10'

Figure 44 Training for a 2-8-1 Modelwith Sensor Data

Sunspots

The sunspot data set was taken from [Tong90]. It is the annual sunspot observations

from 1700 to 1988. This is a time series problem so we used delayed values to "predict"

the current target value for training. Box and Jenkins in [BoJe76] suggest a second order

autoregressive model for this problem. Thus, after normalizing, the data set was formatted

144

using the two previous values as inputs to the neural network and the current value as the

target. The last 29 points (10 percent of the data) were assigned to a testing set, the rest for

training. Figure 45 shows the sunspot data set used for training where the year represents

the relative position in the training set.

0.8

0.8 Sunspots 0.6 Sunspots
0.6 0.4

0.4
0.2

0.2

-0.2
-0.2

-0.4
-0.4

j

~
-0.6 -0.6

-0.8 -0.8

-1
0 50 100 150 200 250 300 -1

Year
255 260 265 270 275 280 285 290

Year

Figure 45 Sunspot Training Data Set and Test Set

Table 10 shows the training results for several models. The optimal network size

was found to be a 2-4-1 model. This is the smallest neural network where increasing the

number of actual parameters N does not cause an increase in the number of effective pa-

rameters y. The optimal y utilizes 12.52 out of a possible 17 parameters. In fact, for a 2-

50-1 network having 46 redundant neurons with 184 associated parameters, the GNBR ef-

fectively inhibits their superfluous contributions. Again, the redundant neurons had asso-

ciated parameters near zero, resulting in the same effective mapping function for all models

with four or more hidden layer neurons.

Note that Er is smallest for the 2-2-1 network. This is clearly not the optimal mod-

el, since increasing the number of hidden neurons S by one lowers ED and increases y.

145

s En Ew Er N 'Y
1 6.999 3.993 1. 474 5 4.507

2 5.426 13.88 1.123 9 8.030
3 5.297 13.61 1.459 13 10.55
4 5.105 13.79 1.187 17 12.52

5 5.105 13.79 1.187 21 12.52

6 5.105 13.79 1.187 25 12.52

8 5.105 13.79 1.187 33 12.52
10 5.105 13.79 1.187 41 12.52
15 5.105 13.79 1.187 61 12.52
20 5.105 13.79 1.187 81 12.52

30 5.105 13.79 1.187 121 12.52

50 5.105 13.79 1.187 201 12.52

Table 10 Model Comparison for Sunspot Data Set

Following our recipe for application of the GNBR, the 2-4-1 network clearly represents the

minimally complex model. Of course, as indicated above, any neural network with S ~ 4

will provide the same optimal generalization performance.

Figure 45 shows the testing set data points "o" with the corresponding 2-6-1 net-

work one-step-ahead predictions "x". Our network produces residuals very comparable to

those found in [BoJe76] for their AR(2) model. Figure 46 shows the training progress for

the 2-6-1 model. As usual, ~ stabilizes before a, but in this case Ew does not reflect the

final significant change in a that is shown in y. The result, however, is a definitive drop

in Er providing the best testing set error for the lowest training set error ED.

146

1o'

10'

10°~---~---~---~

10' 10' Epochs 10' ,o'

10°~---~----'-------"'-'

1o' 10' Epochs 1o' 1o'

a

10'

10'

10'

10-1'--------~---~-----'

10' 10' Epochs 10' ,o'

10' 10'

10'·<,,----~~---~------'

10' 10' Epochs 10' 10'

Figure 46 Training for a 2-6--1 Model with Sunspot Data

Mackey-Glass Equation

The Mackey-Glass chaotic equation, taken from [P1Co96], is

. () ax(t - 't) _ b () xt = 10 xt
1 +x(t-'t)

(123)

We set the characteristic parameters to a = 0.2 , b = 0.1 and 't = 17 . Letting !it = 1 ,

147

we iterated the equation to produce a time series. Skipping the first 1000 iterates (transient

period), we captured the second 1000 data points. The data set is shown in Figure 47.

0.8

,)
0.6

0.4

0.2

x(t) o x(t)
-0.2

-0.4

-0.6

-0.8

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6 . . .
-0.8 llill 1111

-1 l!IIIILRIIII

•
!\i

·,.;

~-rJ ·.
• •

-,~~~~~~~~~~~ 880 900 920 940 960 980 1000
0 100 200 300 400 500 600 700 800 900 1000

Iterates Iterates

Figure 47 Mackey-Glass Training Data Set and Test Set

We then normalized the data set and took the last 100 points (10 percent) as a testing

set. Using two time-delayed inputs, the first and eighteenth, we formatted the data and

trained 2-S-1 models. Table 11 shows the results.

s Ev Ew Er N y

1 2.532 68.56 0.4012 5 4.077
2 0.09857 107.2 0.01471 9 8.178
3 0.08527 98.81 0.01241 13 11.82
4 0.07438 14.70 0.01078 17 16.71
5 0.07384 15.07 0.01080 21 19.47
6 0.07376 14.88 0.01078 25 20.91

7 0.07375 14.41 0.01082 29 22.07

8 0.07375 14.41 0.01082 33 22.08

9 0.07374 14.41 0.01082 37 22.09
10 0.07374 14.42 0.01082 41 22.09
12 0.07369 15.27 0.01079 49 21. 61

Table 11 Model Comparison for Mackey-Glass Data Set

148

The effective number of parameters y reached a maximum of about 22 with the 2-

7-1 network. Though N is increased for larger models, y stayed at 22 indicating the 2-7-

1 model is the smallest model with sufficient complexity to fit the data. Beyond this size,

En and ET remain stable at 0.0737 and 0.0108 respectively. Error values for larger net

works show a slight deviation from the values for the 2-7-1 model. This is because the larg

er models have redundant parameters that are nonzero. Thus the common parameters are

not exactly alike and the resulting networks do not respond identically, but they are very

close. Indeed, the GNBR algorithm produces consistent optimal results, similar to those

obtained for the saw function of Chapter 6. For each model the redundant neurons have

identical values. Although in this case the parameters are nonzero, a simple examination

still indicates that we have a minimum sized network with sufficient complexity to obtain

optimal results.

Looking at Figure 47 again, the testing set is shown as "o" while the predicted re

sults from the 2-7-1 neural network are shown as "x". This is a time series problem similar

to the sunspot problem. However, the Mackey-Glass data set is much larger. Note how

well the network output fits the test set data.

As a final note, Figure 48 shows the training progress for a 2-7-1 model. Notice

how the significant weight changes allowed near 100 epochs of training resulted in im-

proved performance for ET. ED improved only slightly, but y shows a significant im

provement. Again, this is where the GNBR is reducing the value of redundant weights and

increasing the effectiveness of those necessary to fit the data.

149

10' 10'

ED Ew
10'

10'

10'

10'

10_,

10-2

10' 10' Epochs 10'
10'

10'
10' 10' Epochs 10' 10'

10' 10'

a
10'

10'

10'

10'

10'

10-1

10' 10' Epochs 10'
10'

10-1

10' 10' Epochs 10'
10'

10' 10'

Er y
10'

10' 10'

10-1

10-2
10' 10' Epochs 10'

10'
10'

10' 10' Epochs 10'
10'

Figure 48 Training for a 2-7-1 Model with Mackey-Glass Data Set

Summary

In this chapter, we have outlined our recipe for application of our GNBR algorithm.

It is simple to follow and easy to implement in conjunction with the Levenberg-Marquardt

training algorithm.

150

We applied the GNBR to a variety of real-world problems to demonstrate the per

formance of our algorithm. In each case it was clear that for any reasonable model of at

least a certain minimal complexity, the GNBR algorithm resulted in an optimal neural net

work realization.

We further showed how analyzing the resulting implementation was crucial to de

tecting false indications of optimal results. Specifically, a testing set that is required for the

stopped training method of improving generalization was shown to sometimes result in a

less than optimal realization. Examples of false indications during training and during

model comparison were shown. In addition to removing precious data from the training

set, stopped training does not produce reliable and consistent results.

In contrast, our GNBR algorithm always produced optimal results for a sufficiently

complex neural network. Indeed, a comparison of parameter values for two oversized net

works showed obvious and consistent results. Given the simplicity of implementing the

GNBR in the Levenberg-Marquardt training algorithm, with minimal increase in computa

tion, our GNBR algorithm has clear benefits over other techniques for improving general

ization performance.

151

CHAPTER9

CONCLUSIONS

In this chapter we present a brief summary of results. This is followed by recom

mendations for future work.

Summary of Results

We have discussed the key methods for improving generalization performance in

feed-forward 2-layer neural networks trained for function approximation. These tech

niques fall into the following categories: limiting the size of the network (e.g., pruning,

growing and model selection);limitiiJ.g weight values through regularization, and limiting

training with stopped training techniques. We performed an in-depth examination of the

Network Information Criterion (NIC) for model selection, regularization, and stopped

training.

One contribution of this work is a theoretical comparison of several important gen

eralization techniques. We modified the development of each technique to place them into

a common mathematical framework. This allowed a direct comparison between what

would otherwise appear to be divergent techniques. Further, the framework we used is con

sistent with the Levenberg-Marquardt algorithm. This made each technique easy to imple

ment for experimental comparisons.

152

We analyzed the strengths and weaknesses of each method, both theoretically and

experimentally. This experience opened the way for the development of a new algorithm.

We found that the best overall strategy is to incorporate Bayesian optimization of

regularization parameters into the training algorithm. This has several advantages over oth

er techniques. Stopped training requires segregation of important data for a validation set.

The NIC requires training numerous models to select the best implementation. Regulariza

tion also requires numerous training cycles to experimentally locate the optimal regulariza

tion parameter for a model.

The main contribution of this work is the development of the GNBR (Gauss-New

ton approximation to Bayesian Regularization) algorithm -- an implementation of Bayesian

regularization that uses a Gauss-Newton approximation of the Hessian matrix of the objec

tive function. This approximation makes Bayesian regularization feasible because it dras

tically reduces the amount of computation required. We have shown in Chapters 6 and 8

that the GNBR algorithm consistently produces networks with excellent generalization ca

pability.

A reasonably sized model trained with the GNBR algorithm with properly normal

ized data often produces optimal results the first time. Chapter 8 outlines our recipe for ap

plying the GNBR algorithm and includes some simple checks to give confidence in the

results.

We chose to implement the Bayesian optimization procedure in combination with

the fast Levenberg-Marquardt training algorithm. We found the modification to the train

ing algorithm to be straight forward and the computational overhead to be minimal, since

153

most of the information required for the GNBR algorithm was directly available from the

Levenberg-Marquardt training algorithm.

We successfully applied the GNBR to four real-world problems. They included

single variable regression, two variable regression and time series, for demonstration of di

verse applications. The analysis of these problems provides both demonstration and insight

into our recipe.

Recommendations for Future Work

In some of the real-world problems, the redundant parameters in a large network

were actually driven to zero by the GNBR algorithm. Given our discussion on page 94 we

would not typically expect individual redundant parameters to be driven to zero. We be

lieve that the normalization process applied to the data sets may qreate this effect. Mathe

matical exploration of this area is needed to understand the transformation. A guarantee

that a data transformation will result in negligible redundant parameter values has obvious

advantages.

Another area for future work concerns the application to time series or other multi

variate input problems. For a single-input/single-output model, it is easy to spot underfit

ting due to insufficient model complexity; the relationship between the effective number of

parameters "{ and the actual number of parameters N gives sufficient indications. Howev

er, for multiple-input models, adding a single hidden layer neuron may not cause a corre

sponding increase in "{, whereas a second added neuron might. This may have to do with

the effectiveness of "neuron sharing" for what may otherwise be mutually exclusive con

tributions to the output neuron by different inputs. Some experimentation with multiple-

154

input models without cross connections to the hidden layer neurons might yield insight into

this situation. This would explain why multiple plateaus for y exist for a set of ordered

models of minimally increasing complexity.

155

REFERENCES

[AmMu93] S. Amari and N. Murata, "Statistical Theory of Learning Curves under
Entropic Loss Criterion," Neural Computation, vol. 5, pp. 140-153,
1993.

[AmMu95] S. Amari, N. Murata, K.-R. Muller, M. Finke and H. Yang, "Asymptotic
Statistical Theory of Overtraining and Cross-Validation," METR 95-06,
Department of Mathematical Engineering and Information, Physics,
University of Tokyo, August, 1995.
(ftp://archive.cis.ohio-state.edu/pub/neuroprose/amari.overtraining
.ps.Z)

[Bish95] C. M. Bishop, Neural Networks for Pattern Recognition, New York:
Oxford University Press, Inc., 1995.

[BoLi96] N. K. Bose and P. Liang,Neural Network Fundamentals with Graphs,
Algorithms, andApplications, New York: McGraw-Hill, Inc., 1996.

[BoJe76] G. E. P. Box and G. M. Jenkins, Time SeriesAnalysis Forecasting and
Control, Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1976.

[CuDe90] Y. L. Cun, J. S. Denker and S. A. Solla, "Optimal Brain Damage," in
Advances in Neural Information Processing Systems 2, D. Touretzky,
ed., pp. 598-605, San Mateo, CA: Morgan Kaufmann Publishers, Inc.,
1990.

[Dodi94] R. Dodier, "Increase of Apparent Complexity Is Due to Decrease of
Training Set Error," in Proceedings of the 1993 Connectionist Models
Summer School, M. C. Mozer, P. Smolensky, D.S. Touretzky, J. L.
Elman and A. S. Weigend, eds., pp. 343-350, Hillsdale, N.J.: Lawrence
Erlbaum Associates, Inc., 1994.

[EpFo72] E. S. Eppright, H. M. Fox, B. A. Fryer, G. H. Lamkin, V. M. Vivian and
E. S. Fuller, "Nutrition of Infants and Preschool Children in the North
Central Region of the United States of America," World Rev. Nutrition
and Dietetics, vol. 14, pp. 269-332, 1972.

156

[FaLe90] A. E. Fahlman and C. Lebiere, "The Cascade-Correlation Learning
Architecture," in Advances in Neural Information Processing Systems 2,
D. Touretzky, ed., pp. 524-532, San Mateo, CA: Morgan Kaufmann Pub
lishers, Inc., 1990.

[HaDe96] M. T. Hagan, H. B. Demuth and M. Beale, Neural Network Design, Bos
ton: PWS Publishing Co., 1996.

[Ljun87] L. Ljung, System Identification: Theory for the User, Englewood Cliffs,
N.J.: Prentice-Hall, Inc., 1987.

[LjSj92] L. Ljung and J. Sjoberg, "A System Identification Perspective on Neural
Nets," Technical Report LiTH-I-ISY-1373, Department of Electrical
Engineering, Linkoping University, Sweden, 1992.
(ftp://ftp.control. isy. liu.se/pub!Reports/1992/1373.ps.Z)

[MacK95] D. J.C. MacKay, "Bayesian Methods for Supervised Neural Networks,"
in The Handbook of Brain Theory and Neural Networks, ed. M. A.
Arbib, pp. 144-149, Cambridge, MA: MIT Press, 1995.

[MacK92a] D. J.C. MacKay, "Bayesian Model Comparison and Backprop Nets," in
Advances in Neural Information Processing Systems 4, J.E. Moody, S. J.
Hanson and R. P. Lippmann, eds., pp. 839-846, San Mateo, CA: Morgan
Kaufmann Publishers, Inc., 1992.

[MacK92b] D. J.C. MacKay, "A Practical Framework for Backpropagation Net
works," Neural Computation, vol. 4, pp. 448-472, 1992.

[MacK92c] D. J.C. MacKay, "Bayesian Interpolation," Neural Computation, vol. 4,
pp. 415-447, 1992.

[Mast95] T. Masters, Advanced Algorithms for Neural Networks: A C++ Source
book, New York: John Wiley & Sons, Inc., 1995.

[Mend87] J.M. Mendel, Lessons in Digital Estimation Theory, Englewood Cliffs,
N.J.: Prentice-Hall, Inc., 1987.

[Mood92] J.E. Moody, "The Effective Number of Parameters: An Analysis of
Generalization and Regularization in Nonlinear Learning Systems," in
Advances in Neural Information Processing Systems 4, J.E. Moody, S. J.
Hanson and R. P. Lippmann, eds., pp. 847-854, San Mateo, CA: Morgan
Kaufmann Publishers, Inc., 1992.

[Moro93] V. A. Morozov, Regularization Methods for Ill-Posed Problems, Boca
Raton, Florida: CRC Press, Inc., 1993.

157

[Mura93]

[MuYo94]

[NgWi90]

[Pank83]

[PeCo92]

[P1Co96]

[Prec94]

[ReMa95]

[Sarl95]

[SeWi89]

[SiDo91]

N. Murata, "Learning Curves, Model Selection and Complexity of Neu
ral Networks," in Advances in Neural Information Processing Systems 5,
S. J. Hanson, J. D. Cowan and C. L. Giles, eds., pp. 607-614, San Mateo,
CA: Morgan Kaufmann Publishers, Inc., 1993.

N. Murata, S. Yoshizawa and S. Amari, "Network Information Criterion
-- Determining the Number of Hidden Units for an Artificial Neural Net
work Model," IEEE Transactions on Neural Networks, vol. 5, pp. 865-
872, 1994.

D. Nguyen and B. Widrow, ''Improving the Learning Speed of 2-Layer
Neural Networks by Choosing Initial Values of the Adaptive Weights,"
Proceedings of the IJCNN, vol. 3, pp.21-26, 1990.

A. Pankratz, Forecasting with Univariate Box-Jenkins Models, New
York: John Wiley & Sons, 1983.

M. P. Perrone and L. N. Cooper, ''When Networks Disagree: Ensemble
Methods for Hybrid Neural Networks," to appear in Neural Networks for
Speech and Image Processing, R. J. Mammoni, ed., Chapman-Hall,
1993. . .

(ftp://archive.cis.ohio-state.edu/pub!neuroprose!perrone.MSE-averaging
.ps.Z)

M. Plutowski, G. Cottrell and H. White, "Experience with Selecting
Exemplars from Clean Data," Neural Networks, vol. 9, pp. 273-294,
1996.

L. Prechelt, "Probenl -- A Set of Neural Network Benchmark Problems
and Benchmarking Rules," Technical Report 21/94, Fakultat filr Infor
matik, Universitat Karlsruhe, Germany, 30 September 1994.
(ftp:/lftp.ira.uka.de!pub!papers!techreports/1994/1994-21.ps.Z)

R. Reed and R. J. Marks II, "Neurosmithing: Improving Neural Net
work Learning," in The Handbook of Brain Theory and Neural Net
works, ed. M.A. Arbib, pp. 639-644, Cambridge, MA: MIT Press, 1995.

W. S. Sarle, "Stopped Training and Other Remedies for Overfitting," to
appear in Proceedings of the 27th Symposium of the Inteiface, 1995.
(ftp://ftp.sas.com//pub!neural/inteiface95.ps)

G. A. F. Seber and C. J. Wild, Nonlinear Regression, New York: John
Wiley & Sons, 1989.

J. Sietsma and R. J. F. Dow, "Creating Artificial Neural Networks That
Generalize," Neural Networks, vol. 4, pp. 67-79, 1991.

158

[SjLj92]

[SjLj94]

[Smit93]

[TiGo90]

[Tikh63]

[Tong90]

[Weig94]

[WeKu91]

[WeRu91]

[Whit92]

[Wolp92]

J. Sjoberg and L. Ljung, "Overtraining, Regularization, and Searching
for Minimum in Neural Networks," Technical Report LiTH-I-ISY-1297,
Department of Electrical Engineering, Linkoping University, Sweden,
1992.
(ftp://ftp. control. isy. liu.se/pub/Reports/1991/1297.ps.Z)

J. Sjoberg and L. Ljung, "Overtraining, Regularization, and Searching
for Minimum with Application to Neural Networks," Technical Report
LiTH-ISY-R-1567, Department of Electrical Engineering, Linkoping
University, Sweden, 1994.
(ftp://ftp.control. isy. liu.se/pub/Reports/1994/1567.ps.Z)

M. Smith, Neural Networks for Statistical Modeling, New York: Van
Nostrand Reinhold, 1993.

A. N. Tikhonov, A. V. Goncharsky, V. V. Stepanov and A.G. Yagola,
Numerical methods for the Solution of ill-Posed Problems, Dordrecht,
The Netherlands: Kluwer Academic Publishers, 1990.

A. N. Tikhonov, "The solution of ill-posed problems and the regulariza
tion method," in Dokl. Acad. Nauk USSR, vol. 151:3, pp. 501-504, 1963.

H. Tong, Non-linear Time Series: A Dynamical System Approach, New
York: Oxford University Press, 1990.

A. S. Weigend, "On Overfitting and the Effective Number of Hidden
Units," in Proceedings of the 1993 Connectionist Models Summer
School, M. C. Mozer, P. Smolensky, D.S. Touretzky, J. L. Elman and A.
S. Weigend, eds., pp. 343-350, Hillsdale, N.J.: Lawrence Erlbaum Asso
ciates, Inc., 1994.

S. M. Weiss and C. A. Kulikowski, Computer Systems That Learn, San
Mateo, CA: Morgan Kaufmann Publishers, Inc., 1991.

A. S. Weigend, D. E. Rumelhart and B. A. Huberman, "Generalization
by weight-elimination applied to currency exchange rate prediction," in
Proceedings of the International Joint Conference on Neural Networks,
vol. 1, pp. 837-841, Piscataway, N.J.: IEEE, 1991.

H. White, Artificial Neural Networks: Approximation and Learning The
ory, Cambridge, MA: Blackwell Publishers, 1992.

D. H. Wolpert, "Stacked Generalization," Neural Networks, vol. 5, pp.
241-259, 1992.

159

VITA

Forest Dan Foresee

Candidate for the Degree of

Doctor of Philosophy

Thesis: GENERALIZATION AND NEURAL NETWORKS

Major Field: Electrical and Computer Engineering

Biographical:

Personal Data: Born in Cushing, Oklahoma, on July 8, 1959, the son ofF. Don and
Ruth E. Foresee.

Education: Graduated from Cushing High School, Cushing, Oklahoma, in May
1976; received Bachelor of Science degree in Electrical Engineering and
Master of Electrical Engineering degree from Oklahoma State University,
Stillwater, Oklahoma, in December 1979 and May 1981, respectively.
Completed the requirements for the Doctor of Philosophy degree in Electri
cal Engineering at Oklahoma State University in December 1996.

Experience: Employed by Amoco Production Co. as a Research Engineer in 1980;
employed by Oklahoma State University as a Teaching Assistant from 1980
to 1981; employed by Magnetic Peripherals Inc. as an Associate Electrical
Engineerfrom 1981 to 1982; employed by Lucent Technologies, formerly
of AT&T, as a Member of the Technical Staff from 1982 to present.

Professional Status and Memberships: Licensed as a Professional Engineer in the
state of Oklahoma since July 1989; Member of National Society of Profes
sional Engineers, Institute of Electrical and Electronic Engineers, and Inter
national Neural Network Society.

