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Abstract

Modeling the changes to the carbon cycle and their effects on the atmosphere is

a key area of research for understanding climate change. The Vegetation Photosyn-

thesis and Respiration Model (VPRM) is a light-use efficiency model that models the

biogenic flux of carbon dioxide (CO2) known as Net Ecosystem Exchange (NEE). Pre-

vious studies used methods such as non-linear least squares in order to calibrate the

parameters. One other method of calibrating parameters is the Metropolis-Hastings

Markov Chain Monte Carlo (MCMC) technique. The MCMC technique has not been

used previously due to how computationally expensive it is. The benefit of the MCMC

technique is that it is a Bayesian technique that generates a probability distribution

of the posterior parameters. This probability distribution can be used to quantify

uncertainty in the posterior parameters.

This study compares the MCMC technique to a non-linear least squares technique

to determine its viability for use in the calibration of the VPRM. Observation data

from four cropland sites from the AmeriFlux eddy covariance tower network were

used with both techniques to fit the model to observations. Using the parameter

correlations generated from the posterior probability distributions, a series of exper-

iments were conducted to determine the sensitivity of the optimization of VPRM to

the state vector.

The analysis of this study found that the MCMC technique reduced the RMSE of

the VPRM predicted flux by more than a factor of two. The technique is viable on a

site-by-site scale. However, scaling up the algorithm to more sites and land use types

(LUTs) would be very computationally expensive and would necessitate the use of

small batches of sites and averaging the results to prove viable. Using a single LUT

to cover all cropland may also be too general and splitting the cropland LUT into

different types of crops may further improve the VPRM overall.
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Chapter 1

Introduction

The impact of greenhouse gasses on climate change and the atmosphere is indis-

putable. Carbon dioxide (CO2) is the most important greenhouse gas with concen-

trations of CO2 rising to over 410 ppm in 2020 (Friedlingstein et al., 2022). The full

effects of this greenhouse gas on the climate and its feedback on land-atmosphere

fluxes are beginning to be understood. This better understanding comes from mon-

itoring stations at the in-situ level such as the AmeriFlux eddy covariance tower

network and atmospheric inversions using data from satellites such as the Orbiting

Carbon Observatory-2 (OCO-2) and the Orbiting Carbon Observatory-3 (OCO-3)

instrument on the International Space Station (ISS) (Crisp et al., 2017).

An important tool for understanding the carbon cycle and its feedback on climate

change is the use of numerical modeling. The interaction between land and atmo-

spheric carbon is modeled via tracking concentrations of CO2 in the atmosphere as

CO2 moves in and out of the atmosphere in the form of biogenic flux. The Vegeta-

tion Photosynthesis and Respiration Model (VPRM) developed by Mahadevan et al.

(2008) is a simple light-efficiency model that models the net ecosystem exchange

(NEE) flux of CO2 by splitting this flux into equations covering ecosystem respi-

ration (ER) and gross ecosystem exchange (GEE) which represents the CO2 taken

up by photosynthesis and summing them to produce an estimate of NEE (Gourdji

et al., 2022). VPRM adds onto a previous model called the Vegetation Photosynthesis

Model (VPM) by adding the equation for ER and adding a non-linear term to the

equation for GEE that takes into account the response of GEE to light (Xiao et al.,

2004a,b; Mahadevan et al., 2008).

1



The VPRM employs several parameters that must be calibrated to each land use

type (LUT) in order to estimate NEE. This calibration is usually done by minimiz-

ing mismatches between model predictions and eddy covariance data, such as from

AmeriFlux (Hilton et al., 2013, 2014; Gourdji et al., 2022). Previous studies used

this method because methods such as Markov Chain Monte Carlo (MCMC) are com-

putationally expensive (Hastings, 1970; Hilton et al., 2013; Metropolis et al., 1953).

This study uses the MCMC method to provide a distribution of estimated parameter

values to quantify the uncertainty of the parameters involved with their full joint

posterior distribution.

1.1 Past Work on the VPRM

Many studies have examined estimating the flux of CO2 using numerical modeling

and satellite data (Xiao et al., 2004a,b; Mahadevan et al., 2008; Hilton et al., 2013,

2014; Hu et al., 2020, 2021; Gourdji et al., 2022). Xiao et al. (2004a) developed the

predecessor to the VPRM, the VPM, to estimate GEE in the needleleaf evergreen

forest of Howland Forrest, Maine during the growing periods from April to early

November for the years 1998 until 2001. The authors used EVI and LSWI derived

from the VEGETATION (VGT) sensor on the SPOT-4 satellite, as well as observa-

tions of GEE from the AmeriFlux eddy covariance tower at Howland Forrest. They

also analyzed the seasonal and interannual dynamics of the Enhanced Vegetation

Index (EVI) and the Land Surface Water Index (LSWI) compared to other satellite-

derived indices such as the Normalized Difference Vegetation Index (NDVI) and the

Moisture Stress Index (MSI) respectively. Xiao et al. (2004a) found that while the

seasonal dynamics of EVI were different in magnitude and phase from NDVI, EVI had

a stronger linear relationship to GEE than NDVI. They also found that there was a

close relationship between MSI and LSWI at the Howland Forrest site. The authors

found that using the VPM with EVI and LSWI produced a reasonable agreement
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between modeled and observed GEE in terms of seasonal dynamics and in a simple

linear regression model. Xiao et al. (2004a) acknowledge that there were discrepan-

cies between modeled and observed GEE in certain periods of their study time frame

and attribute the errors to three factors: the sensitivity of the VPM to PAR and air

temperature, the error in calculating the observed GEE from the measured NEE at

the site, and errors from how EVI and LSWI are derived and the effects of angular

geometry on reflectance data.

Xiao et al. (2004b) expanded the work of the previous paper by using the VPM

to estimate GEE in the deciduous broadleaf forest of Harvard Forest, Massachusetts.

The authors compared using EVI and LSWI derived from the VGT sensor on the

SPOT-4 satellite during the period of April 1998 to December 2001 against EVI

and LSWI derived from the MODIS sensor on the NASA Terra satellite from the

year 2001. As the orbiting periods are different for each satellite, 10 and 8 days

respectively, the authors used different length composites of flux and meteorological

data for use in their modeling simulations. Xiao et al. (2004b) also compared EVI

derived from the VGT sensor to NDVI. Similarly to their previous study, the authors

found that the seasonal dynamics of EVI better match the phase and amplitude of

GEE than NVDI. They also found a stronger linear relationship between EVI and

GEE than between NVDI and GEE. When modeling GEE, both VGT and MODIS

performed reasonably well in their respective VPM simulations.

The study by Mahadevan et al. (2008) added to the previous studies by introducing

a respiration component and developing the original VPRM. The authors used flux

tower data from 11 sites for calibration of the VPRM parameters across LUTs and

another 11 sites were used for testing. Mahadevan et al. (2008) used nonlinear least

squares to optimize the model parameters. Overall, correlation coefficients for results

from the calibration sites ranged from 0.6 to 0.9, indicating a relatively good fit to the

observed NEE. Correlation coefficients from the testing sites also indicated a good
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fit for the parameters, except for one outlying site. The authors noted that certain

elements of water stress may not be accurately captured using the VPRM due to

satellite-derived indices not capturing the aftereffects of severe drought. Uncertainties

in the VPRM arise partly from the limited resolution of vegetation classification and

differences in the vegetation makeup between calibration and validation sites.

Hilton et al. (2013) expanded on the previous study by using 65 observation sites in

their optimization. The authors examined the time period between 2000 and 2006 due

to the availability of the MODIS and flux observation data respectively. They chose

to find parameter values that minimized the sum of squared errors (SSE) through

an algorithm known as differential evolution (DE) (Price et al., 2005). The authors

chose this algorithm instead of MCMC due to the computational expense that would

be required, even though DE only provides point estimates of the parameters and

not a probability density function for each parameter. The authors partitioned the

observations based on different temporal and spatial groupings to form nine unique

parameter sets. Hilton et al. (2013) focused much of their analysis on spatial structure,

devising a covariance function to test for spatial correlation. The authors found

that their parameter values across all parameter sets were similar to those found in

Mahadevan et al. (2008). They note that while the VPRM parameters seem to be

similar for many LUTs, the limits of the spatial density of eddy covariance towers at

the time made it difficult to rule out any covariances that could contribute to both

observation and model error.

Hilton et al. (2014) used the parameter optimizations from their previous paper

and performed a cross-validation analysis using a further 27 flux tower locations.

The authors evaluated model performance using a penalized sum of squared errors

(PSSE). They also evaluated the spatial performance of the VPRM on a continental

scale by using surface temperature and downward surface radiation from reanalysis

products and satellite-based indices derived from upscaled MODIS data. Results
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from this analysis indicate that grouping a number of sites by LUT and using all

available data provides a set of parameters that best fits the observations without

overfitting the data. Using these parameters going forward in their analysis, Hilton

et al. (2014) found that the optimal parameter set was able to upscale both temporally

and spatially. They do acknowledge that how the sites were chosen and the simplicity

of the VPRM itself could explain many of the mismatches found as the model was

upscaled.

Hu et al. (2020) used the WRF model coupled with the VPRM (WRF-VPRM)

and the median values found from the optimization performed by Hilton et al. (2013)

to perform a downscaling analysis over the contiguous United States (CONUS).

The authors also investigated three case studies using WRF-VPRM simulations and

CO2 concentration observations from the ACT-America 2016 summer field campaign.

Evaluating the meteorology output of the WRF-VPRM against observations found

that the model exhibited high correlation coefficients for surface temperature and sur-

face dew point temperature. Correlation coefficients for the amount of precipitation

were lower. Comparisons of WRF-VPRM CO2 concentrations to posterior fluxes from

the CarbonTracker 2017 (CT2017) products show a general agreement with regional

and temporal differences through the domain. The case studies, in particular the case

of August 5, 2016, near Lincoln, Nebraska, showed that the WRF-VPRM concentra-

tion distributions in height were similar to the observations from the ACT-America

aircraft.

Gourdji et al. (2022) conducted a study into expanding the VPRM and used

the results to develop the new respiration equation shown in Equation (2.3). The

parameters for the new equation were optimized using a least squares approach, first

by optimizing the respiration equation using nighttime data and then optimizing the

GEE equation using daytime data. The authors then compared the simulations of

VPRM to other similar biosphere models, the Carnegie-Ames Stanford Approach

5



(CASA) model and the Simple Biosphere model version 4 (SiB4), to analyze the

sensitivity between models. The authors found that comparing the newer respiration

to the older one on a site-to-site basis showed a remarkable improvement in modeling

respiration with the newer equation. The VPRM using the new respiration equation

was shown to be mostly unbiased compared to the observations throughout the year

whereas other variations of the VPRM as well as CASA and SiB4 showed greater

magnitude in biases. This improvement is also shown in the spatial simulations.

However, the new model does not perform better in these spatial simulations than

CASA. This suggests that there are some processes that are still not captured by the

improved respiration equation.

Hu et al. (2021) revisited their previous paper and used the improved respira-

tion equation from Gourdji et al. (2022) to investigate the August 5, 2016, Lincoln,

Nebraska case study. The authors also compared the skill of the improved respira-

tion equation to simulate nighttime CO2 peaks against the original equation from

Mahadevan et al. (2008). The authors found that simulations using Equation (2.3)

matched the observations of nighttime peaks better than simulations using Equation

(2.2). The improved respiration equation also simulates the CO2 concentration band

ahead of a cold front from the case study of August 5, 2016, from the previous study

better than the original equation from Mahadevan et al. (2008).

1.2 Connecting the Past to This Study

The methods used in prior studies have been shown to produce results that have

investigated how changes in weather over time have affected NEE and the concentra-

tions of CO2 in our atmosphere. Because the VPRM is a land-surface model, it can

be used to investigate short-to-medium-term effects on future climate change. The

MCMC process allows for a new examination of these ideas. Given the joint poste-

rior parameter distribution, correlation analyses can be conducted to investigate the

6



effects of photosynthesis and respiration and how correlated each physical process

represented in the VPRM equations, such as temperature and water stress, are to

each other.

1.3 Thesis Structure

In Chapter 2, the methodology of this study is discussed including the technical

details regarding the VPRM and MCMC algorithm. Chapters 3 and 4 present and

discuss results that are the most interesting with regard to the science questions

presented above. Additional results are included in Appendices A - D. Finally,

conclusions for this study are discussed in Chapter 5.
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Chapter 2

Methodology

2.1 Observations from AmeriFlux Towers

Table 2.1: AmeriFlux sites used in this study

Site ID Location Crop

Type

Water

Source

Data

Available

Data Fre-

quency

Reference

Ne2 Mead,

NE

Soybean

and corn

rotation

Irrigated 2001-

2020

Hourly Suyker

(2022a)

Ne3 Mead,

NE

Soybean

and corn

rotation

Rainfed 2001-

2020

Hourly Suyker

(2022b)

KM1 Battle

Creek,

MI

Corn Rainfed 2009-

2021

Half-

hourly

Robertson

and Chen

(2022)

Ro1 Rosemount,

MN

Soybean

and corn

rotation

Rainfed 2004-

2016

Half-

hourly

Baker

et al.

(2022)

The observation data used in this study comes from the AmeriFlux eddy covari-

ance towers as depicted in Table 2.1. The data used in this study, plotted in Figure

2.1, comes from a five-year period beginning January 1, 2010, 00:00 UTC and ending

January 1, 2015, 00:00 UTC. All NEE data are smoothed using a three-hour running
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mean and then filtered for any missing flux or meteorological data. The data is fil-

tered again by dropping any data with a nighttime friction velocity, u∗, less than 0.1

ms−1 and also dropping any data where NEE or u∗ falls outside 2σ from the mean

(Mahadevan et al., 2008).

Looking at the patterns that are shown in Figure 2.1, the respiration and GEE

balance each day leading to a neutral net flux during the non-growing season between

late autumn and early spring, while there is a large diurnal variability in NEE during

the summer growing season. The time series for the Mead, NE AmeriFlux sites (Ne2

and Ne3) show little to no gaps in the data while the results for the Battle Creek,

MI (KM1) and Rosemount, MN (Ro1) sites show some gaps where the data were

not gap-filled. The second time series for each site shows the annual and seasonal

patterns of the observed 2 m temperature and incoming solar radiation.

2.2 Data from the NASA MODIS Sensors

EVI and LSWI for use with VPRM were calculated using Equations (2.6) and

(2.7) with data from the NASA MODIS MCD43A4.V061 nadir reflectance product

and bands as mentioned in Section 2.3 (Schaaf and Wang, 2021). The MODIS data

were downloaded using the Application for Extracting and Exploring Analysis Ready

Samples (AppEEARS) developed by the NASA EOSDIS Land Processes Distributed

Active Archive Center (LP DAAC, AppEEARS Team, 2022). Shown in the top panels

of Figure 2.1, EVI and LSWI have clear annual and seasonal patterns where LSWI and

EVI reach minima during the non-growing season and maxima in the growing season.

While data from MODIS was filtered for quality-checked data, there are times outside

the growing season where the calculated EVI and LSWI show anomalous readings.
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2.3 The Vegetation Photosynthesis and

Respiration Model (VPRM)

The VPRM is a simple light-efficiency diagnostic model providing a system of

equations that predict NEE (Mahadevan et al., 2008). At its core, the VPRM models

the two aspects of NEE into a source term in ER and a sink term in GEE (Eq. (2.1)).

NEE = ER +GEE (2.1)

Originally, Mahadevan et al. (2008) developed the ER equation as a linear function

of air temperature alone using an offset and a linear parameter (Eq. (2.2)). This was

chosen by Mahadevan et al. (2008) as a deliberately simple model in order to facilitate

online calculations (Gourdji et al., 2022). As a function of temperature, Mahadevan

et al.’s original formulation for respiration did not take into account variables such

as moisture or biomass. Recent studies have expanded upon the ER equation to take

these factors into account as well as to add a non-linear response to temperature

that better captures respiration response to changes in temperature (Gourdji et al.,

2022; Hu et al., 2021). Equation (2.3) shows this by using EVI as a representation

of biomass, adding scaling terms that quantify water stress, and using a quadratic

dependence on temperature (Gourdji et al., 2022; Nagler et al., 2005).

ER = α · T + β (2.2)

ER = β+α1 ·T +α2 ·T 2+γ ·EV I+k1 ·Wscale2+k2 ·Wscale2 ·T +k3 ·Wscale2 ·T 2 (2.3)

The temperature used in Equation (2.3) is the surface air temperature for most

situations. When the air temperature is below a certain threshold during the winter,

the temperature is modified using Equation (2.4). This allows for situations where the
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soil temperature would be warmer than the air which would allow for some respiration

to continue (Gourdji et al., 2022). Vegetation water stress is quantified using a scaling

term that incorporates LSWI as shown in Equation (2.5) (Chandrasekar et al., 2010).

Ta < Tcrit : T = (Ta − Tcrit) · Tscale2 + Tcrit (2.4)

Wscale2 =
LSWI − LSWImin

LSWImax − LSWImin

(2.5)

EVI and LSWI are indices derived from reflectance data from satellite-borne sen-

sors such as the Moderate Resolution Imaging Spectrometer (MODIS) sensors on the

NASA Aqua and Terra satellites (Chandrasekar et al., 2010; Nagler et al., 2005; Huete

et al., 2002). EVI, calculated using Equation (2.6), parameterizes photosynthesis in

terms of reflectance in the near-infrared band (841-876 nm, Band 2) and the visible

red (620-670 nm, Band 1) and blue (459-479 nm, Band 3) bands. The values of G,

C1, C2, and L used in Equation (2.6) in this study are 2.5, 6.0, 7.5, and 1 respectively

(Xiao et al., 2004a). Xiao et al. (2004a) noted that EVI was correlated with leaf area

index (LAI) and therefore could be used as a representation of vegetation greenness.

LSWI, shown in Equation (2.7), uses reflectances in both near-infrared and short-

wave infrared (1628-1652 nm, Band 6) bands to represent how much water is found

in the vegetation canopy and surrounding soil (Chandrasekar et al., 2010; Xiao et al.,

2004a).

EV I = G× ρnir − ρred
ρnir + (C1 × ρred − C2 × ρblue) + L

(2.6)

LSWI =
ρnir − ρswir

ρnir + ρswir

(2.7)

VPRM uses Equation (2.8) to model the sink term of GEE (Mahadevan et al.,

2008). This equation is similar to the equation of the VPM developed to simulate

GEE (Xiao et al., 2004a,b). Mahadevan et al. (2008) added the final, non-linear term
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to account for the response of GEE to the saturation of light. This response to light

takes the form of photosynthetically active radiation (PAR) and its half-saturation

constant (PAR0). Equation (2.8) uses multiple scaling terms that modify the uptake

of CO2 based on temperature, water stress, and leaf age (Mahadevan et al., 2008).

GEE = λ · Tscale1 ·Wscale1 · Pscale · EV I · PAR · 1

1 + PAR
PAR0

(2.8)

The temperature scaling factor in Equation (2.9) limits light-use efficiency as a

function of air temperature and the minimum, maximum, and optimal temperatures

for photosynthesis (Xiao et al., 2004a). These minimum, maximum, and optimal tem-

peratures vary by LUT and are generally taken from values in literature (Mahadevan

et al., 2008). If the air temperature falls below the minimum for photosynthesis, the

temperature scaling factor is set to zero (Mahadevan et al., 2008; Xiao et al., 2004a,b).

Tscale1 =
(T − Tmin) (T − Tmax)[

(T − Tmin) (T − Tmax)− (T − Topt)
2] (2.9)

The water stress factor for GEE is different than the one shown in Equation (2.5).

Hu et al. (2021) and Gourdji et al. (2022) used (2.5) in the ER equation because it

had a better fit for some LUTs when compared to Equation (2.10) and equivalent fits

for the remaining LUTs. GEE still uses Equation (2.10) which is found in both VPM

and VPRM (Mahadevan et al., 2008; Xiao et al., 2004a,b)

Wscale1 =
1 + LSWI

1 + LSWImax

(2.10)

Leaf age, also known as phenology, measures the effects of the stresses of age on

the production of photosynthesis and is measured in Equation (2.11) (Xiao et al.,

2004a,b). For the evergreen LUT, the leaf age factor is assumed to be equal to 1

year-round (Mahadevan et al., 2008).
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Pscale =



1+LSWI
2

green up period

1 full leaf period

1+LSWI
2

senescence period

(2.11)

The parameters for Equations (2.3) and (2.8) (β, α1, α2, γ, k1, k2, k3, λ, and

PAR0) form the state vector that is optimized for VPRM. Prior parameter values

come from the cropland LUT parameters found in Hu et al. (2021), with parameter

uncertainty derived from the standard deviation (σ) of the parameter values across

the different land surface types (Table 2.2).

Table 2.2: VPRM parameters, their units, and the prior values from Hu et al. (2021)

Parameter Units Prior Values Prior σ

β µmol CO2 m−2s−1 -0.156 4.925

α1 µmol CO2

m−2s−1◦C−1

0.072 0.599

α2 µmol CO2

m−2s−1◦C−2

-0.001 0.017

γ µmol CO2 m−2s−1 5.501 2.281

k1 µmol CO2 m−2s−1 0.145 3.160

k2 µmol CO2

m−2s−1◦C−1

-0.152 0.437

k3 µmol CO2

m−2s−1◦C−2

0.016 0.013

λ µmol CO2/µmol

PAR

-0.078 0.019

PAR0 µmol PAR

m−2s−1

2,782 79.1
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2.4 Non-linear Least Squares Curve Fitting

As mentioned above, previous studies have used least squares techniques to opti-

mize the VPRM (Hilton et al., 2013; Hu et al., 2021; Gourdji et al., 2022). Replicating

these techniques as a first-principles analysis will give insight into what can be ex-

pected during the MCMC analysis. The drawback is that the subspace trust region

interior reflective approach (STIR) technique used in this study itself is not Bayesian

and therefore will not give a true sense of quantifying posterior uncertainty. In order

to quantify posterior uncertainty, samples from a prior distribution must be used with

the STIR technique to produce a posterior distribution.

This study uses the STIR non-linear least squares algorithm developed by Branch

et al. (1999) in the SciPy Python module to fit the equations of the VPRM to the

observed data. Two sensitivity analysis experiments of the STIR approach are con-

ducted in this study. Each experiment is given 1,000 prior parameter values drawn

randomly from a Gaussian distribution of the priors mentioned in Table 2.2. The

first experiment fits the parameters to the entire five-year set of observations at once

(Sec. 3.1). The other experiment fits the respiration parameters to Equation (2.3)

using nighttime data and fits the photosynthesis parameters to Equation (2.8) using

daytime data assuming the optimized respiration parameters in the first step. By

sampling the prior parameter space, an estimate of the posterior uncertainty distri-

bution can be derived from the STIR fitting technique.

2.5 Metropolis-Hastings Markov Chain

Monte Carlo (MCMC)

The Markov Chain Monte Carlo (MCMC) algorithm was first developed by Metropo-

lis et al. (1953) in an effort to find a general method to calculate properties of state
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equations. Hastings (1970) expanded on this method by generalizing the method fur-

ther in cases of asymmetric proposal distributions. The combined algorithm, called

the Metropolis-Hastings MCMC algorithm, is computationally expensive. However,

this algorithm is useful for finding and quantifying posterior parameter distributions

in many applications (Xu et al., 2006).

The Metropolis-Hastings MCMC algorithm starts with an a priori first guess for

the state vector of the model for each separate chain (θ0, Eq. (2.12)). A new guess for

the state vector is generated as a random draw from a proposal distribution (q(θ′|θt),

Eq. (2.13)). A symmetric distribution, such as a Gaussian or uniform distribution

centered at θt, is generally used so that q(θ′|θt)/q(θt|θ′) = 1. In this study, q(θ′|θt) is

chosen to be a Gaussian distribution centered at θt.

θ =

[
β α1 α2 γ k1 k2 k3 λ PAR0

]T
(2.12)

θ′ ∼ q(θ′|θt), t = 0, 1, ..., N (2.13)

The next step is to calculate log-likelihood for both θt and θ′ (Eq. (2.14)). Using

these log-likelihood values and the proposal distributions, an acceptance ratio (A)

is calculated using Equation (2.15). Since the proposal distribution in this study is

a symmetric, Gaussian distribution, the acceptance ratio becomes the ratio of log-

likelihood values.

L = ln(σ2
NEEmodeled

√
2π)−

∑M
i=0((NEEmodeled,i −NEEobs,i)

2)

2σ2
NEEmodeled

(2.14)

A = min

{
1,

Lθ′

Lθt

q(θ′|θt)

q(θt|θ′)

}
(2.15)

The acceptance ratio is then compared against a random number (U) generated

from a uniform distribution ranging [0, 1] to determine whether to accept the proposed

θ′ (Eq. (2.16)). If the acceptance ratio is greater than or equal to this random
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number, then the proposed θ′ is carried over to the next iteration. Otherwise, the

current θt is carried over to the next iteration. The algorithm continues in this fashion

for a set number of iterations to tune the covariance of the underlying proposal

distribution. Then, the algorithm uses the tuned covariance and runs for a larger

number of iterations in order to sample enough of the parameter space to generate

the underlying posterior probability distribution (Metropolis et al., 1953; Hastings,

1970; Xu et al., 2006).

θt+1 =


θ′ A ≥ U

θt A < U

, t = 0, 1, ..., N − 1 (2.16)

This study uses the PyMC Python module to run the MCMC algorithm in four

parallel chains for 1,000 tuning iterations and 10,000 main sampling iterations per

chain for a total of 40,000 posterior sampling iterations per study site (Wiecki et al.,

2022). The PyMC module also generates 10,000 prior parameter sets for comparison

of the tuned prior and posterior distributions. The 95% confidence intervals of each

distribution along with their medians are compared against the observations from

each site. This study runs several fitting experiments by fitting nighttime data us-

ing Equation (2.3) via the MCMC technique and daytime data using (2.8) via the

STIR approach. This two-step approach is used to limit the computational expense

of running a second MCMC step. Other experiments look into the parameter cor-

relations for both prior and posterior distributions and how dropping variables that

have high correlations in the posterior affects the model’s fit to the observation data.

Two of these experiments focus on setting the α2 and k3 parameters to zero while the

other two experiments set λ and PAR0 to the values that Hu et al. (2021) set them.

Holding the light-use parameters to these values is necessary for these experiments

because setting them to zero would either result in Equation (2.8) equaling zero or a

division by zero in the non-linear term.
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Chapter 3

Results

3.1 Comparing Simultaneous and Night/Day

Separate Fitting

3.1.1 Root Mean Squared Error Analysis

Figure 3.1: A kernel density estimate (KDE) plot of VPRM root mean square error (RMSE) for

using MCMC (top row) and NLLS (bottom row) fitting techniques for the Ne2 (blue), Ne3 (gold),

KM1 (green) and Ro1 (red) AmeriFlux sites when fitting all data points simultaneously. The left

(right) column represents the RMSE of the prior (posterior) distributions of parameters.

In order to compare the goodness of fit between the prior and posterior distribu-

tions, this study uses root mean square error (RMSE) of model predicted net flux

within each parameter set. Figure 3.1 and the top sections of Tables 3.1 and 3.2 show

the RMSE distributions when fitting the whole dataset simultaneously. In general,

NLLS posterior RMSE medians for all four AmeriFlux sites show a general agreement
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in fit within 1.6 gC m−2 day−1 of each other. This is in contrast with MCMC where

the MCMC RMSE medians for each site are within 2.2 gC m−2 day−1 of each other.

Prior distributions for both fitting techniques agree among the sites with around 10

and 16 gC m−2 day−1 for the NLLS and MCMC prior median RMSE distributions

respectively. The improvement in the posterior fits is statistically significant with

median RMSEs around 3 and 4 gC m−2 day−1 for NLLS and MCMC respectively.

The spread of these distributions, represented in this study by the median absolute

deviation from the median (MAD), shows an expected decrease. Using the NLLS,

the prior MAD dropped from around 3.5 gC m−2 day−1 to below the threshold of

significant digits (<0.001 gC m−2 day−1) for every site. The MCMC technique nar-

rowed the MAD spread from around 7 gC m−2 day−1 to around 2 gC m−2 day−1,

representing a significant decrease in the spread of the distribution.

Figure 3.2: Same as Figure 3.1 but fitting ER and GEE separately.

In contrast, fitting ER to nighttime data and GEE to daytime data separately

produces a different improvement of fit for the MCMC fitting technique (Fig. 3.2,

Table 3.2). While the MCMC improvement from around 6 gC m−2 day−1 prior median

RMSE to around 3 gC m−2 day−1 posterior median RMSE is still significant, it only

improves the fit to the data to half of the prior median RMSE. The MCMC prior
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MAD when fitting the two processes separately from around 3.15 gC m−2 day−1 to

around 0.3 gC m−2 day−1 for the posterior MAD, representing a change in magnitude

in terms of the spread. Fitting the STIR NLLS algorithm separately produces similar

results as fitting the whole data set simultaneously (Table 3.1). Prior median RMSE

improves from around 10 gC m−2 day−1 to a posterior median RMSE around 3 gC

m−2 day−1. The narrowing of the MAD spread is not as drastic when fitting the

NLLS using the two-step method ranging from a prior MAD of around 3.5 gC m−2

day−1 to a posterior of around 0.002 gC m−2 day−1. Only one AmeriFlux site, the

irrigated Ne2 from Mead, Nebraska, showed a posterior MAD below the threshold of

significant digits using this two-step fitting method.

3.1.2 Parameter Distributions

Figure 3.3: A KDE plot similar to Figure 3.1 except for the PAR0 parameter distributions while

fitting all data points simultaneously. A normal distribution based on the prior values and

standard deviation from Hu et al. (2021) is included in a purple-dashed line.

Fitting the whole dataset simultaneously significantly reduced the MAD of all

parameters (Tables A.1 and A.2, Figs. 3.3 - 3.5). Most parameters, such as the γ and

λ parameters, demonstrate a unimodal posterior distribution that appears Gaussian

20



Table 3.1: NEE RMSE and Median Absolute Deviation (MAD) for each NLLS experiment using

the medians of the prior and posterior parameter distributions. Units gC m−2 day−1

Ne2 Ne3 KM1 Ro1

Prior Median

RMSE

10.955 11.150 10.205 9.507

Prior MAD 3.477 3.817 3.358 3.239

Posterior

Median RMSE

3.046 2.350 3.650 2.129
Normal

Posterior MAD <0.001 <0.001 <0.001 <0.001

Prior Median

RMSE

10.955 11.150 10.205 9.507

Prior MAD 3.477 3.817 3.358 3.239

Posterior

Median RMSE

3.068 2.360 3.693 2.182ER/GEE

Separately

Posterior MAD <0.001 0.001 0.002 0.004

Prior Median

RMSE

10.257 10.053 9.610 8.842

Prior MAD 3.181 3.340 2.951 3.158

Posterior

Median RMSE

3.065 2.365 3.694 2.179
α2 drop

Posterior MAD <0.001 0.001 0.002 0.005

Prior Median

RMSE

11.269 10.997 10.542 9.494

Prior MAD 3.814 4.060 3.743 3.434

Posterior

Median RMSE

3.155 2.474 3.695 2.199
k3 drop

Posterior MAD 0.002 0.001 0.002 0.002

Prior Median

RMSE

10.830 10.899 10.185 9.355

Prior MAD 3.467 3.709 3.375 3.201

Posterior

Median RMSE

3.104 2.376 3.721 2.205
λ drop

Posterior MAD <0.001 <0.001 0.001 0.001

Prior Median

RMSE

11.117 11.143 10.246 9.633

Prior MAD 3.532 3.823 3.334 3.322

Posterior

Median RMSE

3.067 2.358 3.878 2.326
PAR0 drop

Posterior MAD <0.000 0.001 0.015 0.015

21



Table 3.2: NEE RMSE and Median Absolute Deviation (MAD) for each MCMC experiment

using the medians of the prior and posterior parameter distributions. Units gC m−2 day−1

Ne2 Ne3 KM1 Ro1

Prior Median

RMSE

16.443 16.270 16.462 16.003

Prior MAD 6.963 6.954 6.980 6.945

Posterior

Median RMSE

4.645 3.654 5.269 3.151
Normal

Posterior MAD 2.215 1.743 2.514 1.504

Prior Median

RMSE

6.829 6.401 6.881 5.692

Prior MAD 3.148 3.143 3.175 3.142

Posterior

Median RMSE

3.340 2.649 3.790 2.327ER/GEE

Separately

Posterior MAD 0.038 0.031 0.030 0.021

Prior Median

RMSE

6.804 6.410 6.806 5.681

Prior MAD 3.136 3.131 3.164 3.124

Posterior

Median RMSE

3.389 2.693 3.825 2.390
α2 drop

Posterior MAD 0.038 0.030 0.030 0.020

Prior Median

RMSE

7.827 7.252 7.672 6.223

Prior MAD 3.098 3.098 3.101 3.099

Posterior

Median RMSE

3.203 2.501 3.718 2.211
k3 drop

Posterior MAD 0.037 0.029 0.029 0.020

Prior Median

RMSE

6.793 6.372 6.843 5.666

Prior MAD 3.136 3.134 3.158 3.135

Posterior

Median RMSE

3.406 2.693 3.821 2.356
λ drop

Posterior MAD 0.038 0.031 0.031 0.021

Prior Median

RMSE

6.848 6.413 6.896 5.698

Prior MAD 3.129 3.126 3.146 3.130

Posterior

Median RMSE

3.343 2.645 3.977 2.479
PAR0 drop

Posterior MAD 0.038 0.031 0.031 0.021
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Figure 3.4: Same as Figure 3.3 but for the γ parameter distributions.

in nature (Figs. 3.4 and 3.5). The posterior parameter fit for these two parameters in

particular shows some significant disagreement among the different AmeriFlux tower

sites. Figure 3.4 shows that both the MCMC and NLLS median prior distributions

for the γ parameter representing vegetative greenness agree at approximately 5.45

µmol CO2 m
−2s−1. The posterior median MCMC fits for each of the sites range from

5.53 µmol CO2 m−2s−1 for the Ne2 site to 10.24 µmol CO2 m−2s−1 for the KM1

site, a difference of 4.71 µmol CO2 m−2s−1. The NLLS displays a larger range in

posterior medians at 9.24 µmol CO2 m−2s−1. These ranges are significantly larger

than the posterior MAD for both fitting techniques. The MCMC posterior MAD

was about 0.170 µmol CO2 m−2s−1 for each site while the NLLS posterior MAD

fell below the significant digit threshold (<0.0001 µmol CO2 m
−2s−1). Similarly, the

λ parameter shows the same general agreement among the AmeriFlux sites for the

MCMC and NLLS median prior parameter fit at -0.078 µmol CO2/µmol PAR (Fig.

3.5). Median posterior fits show a range of 0.164 and 0.135 µmol CO2/µmol PAR for

NLLS and MCMC respectively which is significantly larger than the posterior MAD

which was around 0.001 µmol CO2/µmol PAR for the MCMC posterior MAD and

below the significant figure threshold for the NLLS posterior MAD. Some parameters
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such as PAR0 and the λ posterior for the Ro1 AmeriFlux have some skewness to their

posterior distributions (Fig. 3.3). In particular, the KM1 and Ro1 AmeriFlux sites

have their posterior PAR0 distributions heavily skewed to the left with posterior

medians below 300 µmol PAR m−2s−1 for both MCMC and NLLS fits. This is

in contrast to the fits for the Mead, Nebraska sites which were >3,000 µmol PAR

m−2s−1 for the MCMC posterior medians and the Ne2 NLLS posterior median while

the Ne3 NLLS posterior median was around 1,600 µmol PAR m−2s−1. These median

values for Ne2 and Ne3 seem more realistic than the median values for KM1 and Ro1

given the prior value from Hu et al. (2021) of 2,782 µmol PAR m−2s−1.

Figure 3.5: Same as Figure 3.3 but for the λ parameter distributions.

Fitting the parameters in the two-step process of fitting ER to nighttime data and

GEE to daytime data shows similar results to fitting the whole dataset simultaneously.

An outlier in the results is the PAR0 posterior distribution medians (Fig. 3.6). The

value that the NLLS algorithm found of 6,000 µmol PAR m−2s−1 is at the upper

bound set prior to the experiment. Because the NLLS algorithm searches for a least-

squares solution to fitting the data, boundaries must be set for certain parameters to

keep the values realistic. The upper bound of 6,000 µmol PAR m−2s−1 was chosen

to represent a value slightly above the global mean of shortwave radiation reaching
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the top of the atmosphere converted into PAR via Equation (3.1) (Mahadevan et al.,

2008; Hu et al., 2020). The posterior MAD for the PAR0 parameter is essentially

0 µmol PAR m−2 s−1. This is due to the entire posterior distribution reaching

the upper bound set for the NLLS approach that was used for fitting the light-use

parameters.

PAR ≈ SW × 0.505 (3.1)

The MAD of the posterior probability distributions of γ and λ in this two-step

experiment such as those shown are larger than their counterparts when fitting the

full dataset (Figs. 3.7 and 3.8). For γ, the posterior MAD of the MCMC poste-

rior is around 0.2 µmol CO2 m−2s−1 while the NLLS posterior MAD is around 0.08

µmol CO2 m−2s−1. The λ parameter had a posterior MAD of around 0.0003 µmol

CO2/µmol PAR for the MCMC posterior distributions and the NLLS posterior dis-

tributions for the Ne2 and Ne3 sites while the KM1 and Ro1 NLLS posterior MAD

for the λ parameter are around 0.0036 µmol CO2/µmol PAR. This indicates that

this method of fitting the ER and GEE equations separately creates more uncertainty

in the posterior distributions. This is possibly due to fitting less amount of data than

fitting the whole data set simultaneously. However, the MAD of each parameter’s

posterior distribution significantly decreased when compared to the prior parameter

distributions with γ MCMC and NLLS prior MAD of around 1.5 µmol CO2 m
−2s−1.

The prior MAD for the λ parameter differs as the MCMC prior MAD is 0.0044 µmol

CO2/µmol PAR while the NLLS prior MAD is 0.0123 µmol CO2/µmol PAR.

3.1.3 Time Series Comparison

Analyzing the time series of modeled NEE compared to the observed shows that

while the NLLS and MCMC techniques may find posterior parameters that show a

better RMSE when compared to the prior, the overall fit to the observed NEE contains
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Figure 3.6: Same as Figure 3.3 but with fitting ER and GEE separately

Figure 3.7: Same Figure 3.4 but with fitting ER and GEE separately
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Figure 3.8: Same as Figure 3.5 but fitting ER and GEE separately.

Figure 3.9: A time series plot of NEE observations (black), VPRM NEE with parameters from

the parameter sets corresponding to the lowest RMSE and 95% confidence interval of the prior

RMSE distribution (red), and VPRM NEE using parameter sets corresponding to the lowest

RMSE and 95% confidence interval of the posterior RMSE distribution (blue), for the STIR

non-linear least squares (top panel) and the MCMC (bottom panel) parameter fitting techniques

fitting the whole dataset simultaneously for the Ro1 AmeriFlux site.
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Figure 3.10: A time series plot of VPRM NEE residuals (NEEmodeled −NEEobserved) with a

parameter set representing the lowest RMSE of the prior distribution (red) and a parameter set

representing the lowest RMSE of the posterior distribution (blue) from the STIR non-linear least

squares algorithm (top panel) and MCMC algorithm (bottom panel) while fitting the whole data

set simultaneously for the Ro1 site.
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error, especially during the summer growing season (Figs. 3.9,). Figures 3.10 and 3.11

demonstrate that the posterior modeled NEE can underestimate the observed NEE

by as much as -15 gC m−2 day−1 during the summer growing seasons. While lower in

magnitude overall than the prior parameter error, with both parameter sets reaching

near-zero error during the non-growing seasons, there is still large uncertainty involved

in the modeled estimates.

Figure 3.11: Same as Figure 3.10 but after fitting ER and GEE separately.

The MCMC technique shows an over 10 gC m−2 day−1 reduction in RMSE for

all four AmeriFlux sites when fitting the entire dataset simultaneously (Table 3.2).

The modeled NEE generated by the 95% confidence interval of the prior and posterior

parameter distributions fit the observations with the posterior 95% confidence interval

shrinking closer around the data as expected (Fig. 4.7). Taken as a whole, the

posterior modeled NEE fits the observed data well for every year except 2013. As
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discussed in Section 2.1, this is possibly due to the drop in two-meter temperature

and incoming solar radiation found in the summer of 2013.

Figure 3.12: Same as Figure 3.9 but fitting ER and GEE separately.

3.2 Parameter Drop Experiments

3.2.1 Parameter Correlations Motivating Experiments

Correlation analysis on the posterior parameter distributions shows that fitting

the full dataset simultaneously produces a strong positive correlation of 0.91 for the

Ne2 AmeriFlux site between the λ and PAR0 parameters of Equation (2.8) (Fig.

3.13). Other strong correlations common among the parameter distributions of the

AmeriFlux sites are the -0.66 anti-correlation between the α1 and α2 and the moder-

ate -0.41 anti-correlation between the k2 and k3 parameters concerning the effects of
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Figure 3.13: A plot of parameter correlations of the posterior parameter distributions for the Ne2

normal MCMC experiment.
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temperature and square of temperature on Equation (2.3) respectively. These corre-

lations are also present in the results from Hu et al. (2021) with strong -0.99 and -0.97

anti-correlations for the α1/α2 and k2/k3 correlations respectively while the λ/PAR0

prior correlation was a modest 0.41 (Fig. 3.14). The k2 and k3 parameters combine

the impact of water stress with the effects of temperature while exhibiting a negative

correlation similar to the α1/α2 correlation. The resulting correlation is lessened in

magnitude than the correlation of the parameters representing the effects of tempera-

ture alone. Correlations for the two-step ER/GEE fit were generally similar to fitting

the whole data set simultaneously. A notable exception is the λ/PAR0 correlation

for the Ne2 and Ne3 sites where, as shown for Ne2 in Figure 3.15, the correlation is

essentially absent (0.08). Correlations in the prior distributions for each experiment

were calculated; however, due to the random draw nature for both the MCMC and

NLLS algorithms, the correlations were near-zero. With strong correlations regarding

parameters that represent similar physical characteristics in respiration and photo-

synthesis, this indicates that these parameters are not independent of each other.

Because of this, it is difficult to separate any interpretations regarding the correlated

parameters. Fixing the parameters relating to the effects of the square of temperature

(α2 and k3) and the parameters related to light use efficiency (λ and PAR0) are the

focus of the experiments discussed in Section 3.2.

3.2.2 Parameter Distributions and RMSE Analyses

Tables 3.1 and 3.2 summarize that the posterior distribution RMSE for all exper-

iments at all sites dropped by about half when compared to the prior distribution

RMSE. The MAD for all parameters that aren’t held constant follows the same trend

as the MAD reductions for fitting the two-step ER/GEE process. (Tables A.1 and

A.2).
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Figure 3.14: Simillar to Figure 3.13 but for the prior parameter referenced in Hu et al. (2021)

The k3 parameter drop experiments, discussed in greater detail in Sections 4.1

and 4.2, offer some interesting results in their posterior parameter distributions and

RMSE. Median prior RMSEs for the k3 parameter drop experiment increased when

compared to the median prior RMSEs from the full state vector using the two-step

process (Fig. 3.16). For the NLLS, the median prior RMSEs were about 11 gC m−2

day−1 which isn’t much of an increase while the MCMC median prior RMSEs were

about 7.5 gC m−2 day−1. Both of these values are about 1 gC m−2 day−1 greater

than the median prior RMSEs for the full state vector. This is within the prior MADs

for both experiments and so the while the change is larger than other experiments, it

does not represent a statistically significant change overall. Median posterior RMSEs

for the k3 drop experiment are significantly lower using the MCMC with the difference

between the full state vector median posterior RMSEs and the k3 drop experiment

around 0.12 gC m−2 day−1. This difference is significant as it is much larger than the
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Figure 3.15: Same as Figure 3.13 but after fitting ER and GEE separately.
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0.03 gC m−2 day−1 posterior MAD for both experiments. Using the NLLS method,

the difference of around -0.06 gC m−2 day−1 is also significant when compared to the

posterior MAD of around 0.003 gC m−2 day−1. The difference for the NLLS method

is negative as there was a general increase in median posterior RMSE when dropping

k3 using this method while there was a decrease in median posterior RMSE when

using MCMC.

Figure 3.17 shows that the posterior distributions for PAR0 were maximized

against the upper boundary condition of 6,000 µmol PAR m−2 s−1. This indicates

that the way PAR0 is optimized in this study tends toward a potentially unrealis-

tic result. Figure 3.18 shows that the maximum light-use efficiency tends to cluster

based on latitude. The Mead, Nebraska sites tend towards a weaker maximum effi-

ciency with a median posterior value of around -0.024 µmol CO2/µmol PAR while

the Battle Creek and Rosemount sites which are further north tend to try to make

as much use of the more angled sunlight as possible during the growing season with

a median posterior of around -0.10 µmol CO2/µmol PAR. These values are rela-

tively unchanged from their values for the two-step ER/GEE full-state vector median

posteriors.

Figure 3.16: Same as Figure 3.1 but for the k3 parameter drop experiment.

35



Figure 3.17: Same as Figure 3.3 but for the k3 parameter drop experiment.

Figure 3.18: Same as Figure 3.5 but for the k3 parameter drop experiment.
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3.2.3 Time Series Analysis

Differences in how the modeled NEE fits the observed values are illustrated in

Figures 3.19 and 3.20. Holding PAR0 constant transforms the parameter fitting

problem from a non-linear one to a linear problem. The posterior modeled NEE for

the PAR0 experiment shown in Figure 3.19 fits the observed negative drawdowns

in NEE better than holding λ constant (Fig. 3.20). Despite the strong correlation

between the two parameters, it seems from the time series alone that tuning the

λ parameter may bring about a better fit. However, when looking at the median

posterior RMSEs the two experiments demonstrate similar median posterior RMSEs

of around 2.9 and 3.1 gC m−2 day−1 for NLLS and MCMC respectively.

Figure 3.19: Same as Figure 3.9 but for the PAR0 parameter drop experiment.
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Figure 3.20: Same as Figure 3.9 but for the λ parameter drop experiment.
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Chapter 4

Discussion

4.1 Monthly and Seasonal Cycle Analysis

The monthly average of the observed NEE as well as modeled NEE from the

parameter sets representing the median RMSE of both the prior and posterior dis-

tribution from the MCMC experiments were calculated to analyze the effectiveness

of the VPRM to capture the seasonal and sub-seasonal patterns of the carbon cycle.

Five-year means for each month were also calculated to determine how each month

deviates from the five-year average. The top panel of Figure 4.1 shows that the

VPRM follows the general monthly pattern observed at Ne2. The posterior-modeled

NEE performs closer to the observation then the prior for most of the temporal do-

main. However, as time progresses the posterior NEE does not match the magnitude

of the summertime negative flux. This is best indicated with June 2013 and 2014

where the monthly-mean posterior modeled NEE are roughly 0 and -1 gC m−2 day−1

respectively. For June 2014, both the observed monthly mean and the prior-modeled

monthly mean NEE reach around -4 gC m−2 day−1. The bottom panel of Figure 4.1

shows that the deviation of the posterior NEE from the five-year monthly means was

within |1 gC m−2 day−1| for every month between 2010 and 2015. The deviation of

the observed NEE and the prior NEE from the five-year monthly means extend to

≥ |3 gC m−2 day−1|.

For most cases, the parameter drop experiments produced similar results. One

notable exception is the k3 parameter drop experiment for the Ne2 site shown in

Figure 4.2. The main difference between the normal experiment and the k3 drop
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Figure 4.1: A time series plot of (top panel:) the monthly observed (black), VPRM NEE using

the parameter set representing the lowest RMSE from the prior NLLS (solid) and MCMC (dashed)

distributions (red), VPRM NEE using the parameter set representing the lowest RMSE from the

posterior NLLS (solid) and MCMC (dashed) distributions (blue), (bottom panel:) the departure

from the 5-year monthly mean of the observed (light orange), the departure from the 5-year

monthly mean of the VPRM NEE using the parameter set representing the lowest RMSE from the

prior NLLS (solid) and MCMC (dashed) distributions (dark orange) and the departure from the

5-year monthly mean of the VPRM NEE using the parameter set representing the lowest RMSE

from the posterior NLLS (solid) and MCMC (dashed) distribution (sky blue) for the Ne2

AmeriFlux site fitting the whole dataset simultaneously.
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experiment is that the summertime negative prior monthly average NEE for the k3 is

more negative than −7 gC m−2 day−1. This is likely due to how the remaining priors,

which were optimized in Hu et al. (2021) with k3 in mind, are unable to compensate

for the lack of the combined effects of water stress and temperature.

There are some similar patterns when comparing the posterior parameter corre-

lations of the two-step ER/GEE separate experiment shown in Figure 3.15 to those

of the k3 drop experiment shown in Figure 4.3. There is a greater magnitude of cor-

relation between the light-use parameters of λ and PAR0 in the k3 drop experiment

with the correlation going from 0.08 to -0.22. This indicates that the MCMC k3 drop

experiment increases its dependence on the light-use parameters in order to compen-

sate for the lack of the k3 parameter The anti-correlation between the temperature

parameters of α1 and α2 is also lessened slightly in magnitude from -0.45 to -0.39.

Other correlations are similar between the two experiments. The bottom panels of

Figures 4.1 and 4.2 have similar patterns, however, Figure 4.2 shows a spike of a 4

gC m−2 day−1 departure from the five-year monthly mean in the prior NEE during

the summer of 2012 and around a 3 gC m−2 day−1 departure during the summer of

2014. The magnitude of the 2012 spike in the departure from the prior NEE five-year

monthly average is lessened to about 3 gC m−2 day−1 and the 2014 spike is inverted

to a trough of −2 gC m−2 day−1 in the normal experiment (Fig. 4.1). The patterns

of the observed and posterior NEE departure from the five-year monthly mean are

similar between the two experiments.

Figures 4.4 and 4.5 show the one-to-one relation of the observed to the modeled

NEE for the summer months in the temporal domain. The modeled NEE from the

median of the prior parameter distribution of the k3 parameter drop experiment is

generally more negative than the observed with the majority of the data points and the

95% confidence interval below the one-to-one line (Fig. 4.5). This is in contrast to the

prior-modeled NEE from the normal MCMC experiment where the 95% confidence
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Figure 4.2: Same as Figure 4.1 but for the k3 drop experiment.
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Figure 4.3: Same as Figure 3.13 but for the k3 parameter drop experiment.
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interval is generally the same magnitude of distance away from the one-to-one line

(Fig. 4.4). The posterior-modeled NEE from both experiments generally falls within

the same general distance from the one-to-one line with more positive bias in the

modeled NEE for more negative observed NEE.

Figure 4.4: A one-to-one plot showing observed NEE on the x-axis and modeled NEE from the

medians of the prior (red) and posterior (blue) parameter distributions as well as their respective

95% confidence intervals for the Ne2 normal MCMC experiment during the summer (JJA) months.

The observed diurnal cycle of NEE shows a stronger degree of variability during

the peak growing season of June through September than in the other months of
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Figure 4.5: Same as Figure 4.4 but for the k3 drop MCMC experiment.
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the year (Fig. 4.6). The diurnal minima of around −12 gC m−2 day−1 during the

afternoon and evening periods of July and August correspond to the monthly minima

found in the top panel of Figure 4.1. The VPRM NEE calculated from the median of

the posterior parameter distribution follows a similar monthly pattern as the observed

NEE with a negative bias earlier in the temporal domain and a positive bias beginning

in the summer of 2013. It is not the goal to match the peaks and troughs exactly

for the monthly trends, but rather that matching the general pattern shows that the

VPRM can be used.

Figure 4.6: Observed monthly diurnal cycle average NEE for the Ne2 AmeriFlux site. Months

are as in the key.

4.2 Comparing Irrigated and Rainfed Sites

The VPRM NEE using the median of the parameter posterior distribution has

a lower RMSE indicating a better overall fit to the observations when modeling the

rainfed Ne3 AmeriFlux site when compared to the irrigated Ne2 site (Table 3.2, Figs.
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Figure 4.7: Same as Figure 3.10 but for the Ne2 AmeriFlux site.

Figure 4.8: Same as Figure 3.10 but for the Ne3 AmeriFlux site.
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Figure 4.9: Same as Figure 3.13 but for the Ne3 AmeriFlux site.
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4.7 & 4.8). The Ne3 posterior more closely matches the observed summer negative

NEE in 2013 than the Ne2 posterior.

Figure 4.10: Same as Figure 4.3 but for the Ne3 AmeriFlux site.

Posterior parameter correlations for the Ne3 normal MCMC parameter experiment

demonstrate a higher correlation among the parameters related to water stress (k1-k3).

LSWI calculated for Ne3 is lower on average during the summer months compared

to LSWI for Ne2 which could account for the increased correlations in the water

stress parameters. Comparing the k3 drop parameter experiment posterior parameter

distribution correlations show a similar pattern in the posterior correlations to that

of the Ne2 k3 parameter drop experiment.

The one-to-one relation analysis for Ne3 shows that the k3 parameter drop MCMC

experiment has a similar pattern to that of the k3 parameter drop experiment for Ne2
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Figure 4.11: Same as Figure 4.4 but for the Ne3 normal MCMC experiment.
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Figure 4.12: Same as Figure 4.5 but for the Ne3 k3 parameter drop MCMC experiment.
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(Fig. 4.12). However, the normal MCMC experiment for Ne3 shows a closer one-to-

one relationship between posterior-modeled NEE and observed NEE than the same

experiment for Ne2 (Fig. 4.11). This corresponds to the bottom panels of Figures

4.13 and 4.14 where the departure from the five-year monthly mean posterior-modeled

NEE says closer to 0 gC m−2 day−1 than the equivalent experiments from the Ne2

site.

Figure 4.13: Same as Figure 4.1 but for the Ne3 AmeriFlux site.
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Figure 4.14: Same as Figure 4.2 but for the Ne3 AmeriFlux site.
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Chapter 5

Conclusions and Future Work

5.1 Sources of Error Compared to Previous Work

Xiao et al. (2004a) identified three sources of potential error in their paper: the

sensitivity of the VPM to PAR and air temperature, the error in calculating the

observed GEE from the measured NEE at the site, and errors from how EVI and

LSWI are derived and the effects of angular geometry on reflectance data (Section 1.1).

This study faced similar sources of error that may explain the remaining uncertainty

in the results.

The correlations of the temperature parameters (α1 and α2) with the rest of the

respiration equation indicate that parameter estimation is not able to separate the

effects of temperature from the other terms. While the correlations aren’t as strong

in the irrigated Ne2 site, they are of a higher magnitude in the rest of the sites

(Figs. 3.13, 4.9). This sensitivity is also shown in the α2 and k3 parameter drop

experiments. Figure 5.1 shows that the positive summertime NEE response is flatter

when not accounting for the effects of the square of temperature than the normal

MCMC experiment. The effect of setting the k3 parameter to 0 µmol CO2 m−2 s−1

◦C−2 reduces the negative valued prior-modeled NEE during the summer to a value

well below what was observed as expected since the other parameters were optimized

by Hu et al. (2021) with the k3 parameter included in the state vector (Fig. 4.12).

The k3 drop posterior parameter correlations and the summertime posterior-modeled

NEE show that the MCMC can adjust the remaining parameters to compensate for

dropping the k3 parameter, increasing the correlations for parameters such as the γ
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and k2 parameters with the β parameter and the correlation between k1 and k2 (Figs.

4.3 and 4.5).

Figure 5.1: Same as Figure 3.9 but for the k3 parameter drop experiment.

The data from the AmeriFlux eddy covariance tower sites used in this site provided

measured NEE and so calculations were not needed to derive observed NEE. However,

instrument uncertainty can still factor into the uncertainty of results using these data.

The heights above ground level of the sensors at Ne2 and Ne3 are not consistent which

can account for some degree of uncertainty. These data were not gap-filled or quality

checked and therefore contain uncertainty that may not have been filtered out in the

running means and removal of outliers discussed in Section 2.1. Eddy covariance data

are also impacted by different turbulence regimes. Using a filtering technique on u∗

is an attempt to account for these impacts, but it is not a perfect method. When

strong advection or weak vertical mixing is present, errors in eddy covariance data

are common (Mahadevan et al., 2008).
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The derivation of EVI and LSWI from the MODIS data using Equations (2.6)

and (2.7) respectively also is a potential source of error. Calculations from the raw

data produced data points where the EVI ended up being ≤0. These data points

were dropped from the data used in subsequent calculations which produces gaps in

the EVI and LSWI. MODIS reflectance used for these calculations came from the

nadir reflectance product and so the effects of angular geometry on the data should

be negligible. However, the effects of partial cloud cover and aerosol activity can still

lead to uncertainty in the reflectance measurements.

Other sources of uncertainty that are unique to this study are the use of the STIR

algorithm to curve fit the daytime GEE parameters after the MCMC was used to

fit nighttime respiration and the randomness of the MCMC algorithm. The inherent

randomness of the MCMC algorithm requires the use of a random seed in the Python

code to generate randomness that can be reproducible with each experiment. The

use of a different random seed, or not using a seed at all and letting the random

state of the computer hardware memory determine the randomness could affect the

results found from this technique. The use of STIR for fitting the daytime GEE

parameters presents uncertainty in calculating the posterior distribution for λ and

PAR0. The STIR technique itself is inherently non-Bayesian and thus does not

lend itself to generating a posterior distribution without drawing from a random

distribution of priors. This technique was used for certain experiments in this study

because conducting a second round of MCMC for the daytime GEE parameters would

be more computationally expensive. Redoing these experiments in the future with

the MCMC technique used for fitting both of the main VPRM equations would be

beneficial to explore the implications of using MCMC on all variables. As VPRM is

a simple model, processes and factors that are present in other similar models such

as CASA may lead to errors as well (Gourdji et al., 2022).
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5.2 AmeriFlux Tower Site Selection

Sites selected for this study were selected in order to examine the differences

among observation sites with the same general VPRM LUT. The irrigated Ne2 site

performed the most predictably in terms of parameter correlations. This suggests

that irrigated sites provide better control of NEE output than rainfed sites. The

northernmost site at Ro1 produced the lowest RMSEs of all experiments while the

corn-only KM1 site produced the highest RMSEs when compared to the other sites.

The higher RMSEs at KM1 suggest that separating the cropland LUT into LUTs for

different types of crops may be beneficial to the fit of VPRM as a whole.

The small number of sites used in this study may not be representative of the

full capabilities of the MCMC technique to quantify the uncertainty of the VPRM

parameters. Future work on these experiments could use more flux tower sites by

either fitting them separately as in this study or by fitting all sites simultaneously.

5.3 Viability of MCMC as a Parameter

Calibration Technique

This study shows that the MCMC technique reduces the MAD of both the modeled

NEE and the posterior parameter distributions (Tables 3.2 and A.2). The use of MAD

instead of σ as the measure of uncertainty and median instead of mean for the measure

of the center of the distribution was due to the robustness of MAD and median to

outliers in the distribution. As shown in Figures 3.3 and 3.5, many parameters show

disagreement regarding the posterior distributions. Combining the data sets into

one larger data set and fitting them together may provide a parameter distribution

that better agrees with the aggregate observations while not fitting individual sites

as accurately. Fitting the whole dataset simultaneously has a greater magnitude of

reduction in MAD, but fitting the ER and GEE equations separately produces the
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most overall reduction in modeled-NEE MAD and the second lowest RMSE of all

experiments. The lowest RMSE comes from the posterior-modeled NEE of the k3

parameter drop experiment. This suggests that not including the combined effects

of water stress and the square of temperature in the model may provide a better fit

overall than using Equation (2.3) derived by Gourdji et al. (2022).

Constraining and quantifying sources of uncertainty using methods such as this

study shows that the MCMC technique may be a viable way of tuning the parameters

of the VPRM equations on a site-by-site scale. Scaling the technique to a more general

use with more sites and different LUTs may be very computationally expensive. The

benefit is that once fitting is complete on a larger data set the generated posterior

distribution may provide more accurate estimates that scale to continental and global

scales. Using small batches of sites and averaging the results may provide a less

computationally expensive method.

5.4 Future Work

Future work on the VPRM using MCMC includes scaling up the MCMC fitting

algorithm to include more sites and LUTs to generalize the VPRM to larger spatial

scales. This in turn would allow the posterior parameter sets to be incorporated

into WRF-VPRM for analysis in regional and continental scales of the carbon cycle.

Incorporating a data assimilation technique such as Three-dimensional Variational

Assimilation (3DVAR) or Ensemble Kalman Filter (EnKF) and assimilating the ob-

served NEE on a set assimilation cycle may also assist in minimizing uncertainty in

the VPRM. Another technique that could be explored in future work is creating more

LUTs based on crop type for work with the VPRM and classifying all AmeriFlux ob-

servation sites using the new set of LUTs. More LUTs would allow for more accurate

parameter sets depending on crop type which in turn would allow for a more accurate

VPRM as a whole.
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Appendix A

Parameter Distributions

A.1 Distribution Tables

Table A.1: A table of distribution medians and median absolute deviation (MAD) for the NLLS
parameter fitting experiments. Values marked with ’N/A’ were held constant for the experiment
indicated. Units are described in Table 2.2

Site ExperimentStatistic β α1 α2 γ k1 k2 k3 λ PAR0

Ne2 Normal Prior
Me-
dian

-0.48 0.1165 -0.0011 5.4268 0.1662 -0.1616 0.0163 -0.0774 2769.8776

Ne2 Normal Prior
MAD

3.3369 0.3982 0.0117 1.5261 2.1784 0.2916 0.0089 0.0123 532.2794

Ne2 Normal Posterior
Me-
dian

0.9969 0.011 0.001 -2.1476 -0.3261 1.0509 -0.0381 -0.0237 5061.4007

Ne2 Normal Posterior
MAD

<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.9416

Ne2 ER/GEE
Sepa-
rately

Prior
Me-
dian

-0.48 0.1165 -0.0011 5.4268 0.1662 -0.1616 0.0163 -0.0774 2769.8776

Ne2 ER/GEE
Sepa-
rately

Prior
MAD

3.3369 0.3982 0.0117 1.5261 2.1784 0.2916 0.0089 0.0123 532.2794

Ne2 ER/GEE
Sepa-
rately

Posterior
Me-
dian

0.6496 -0.0238 0.0032 1.2055 -0.767 1.0838 -0.0433 -0.0228 6000.0

Ne2 ER/GEE
Sepa-
rately

Posterior
MAD

0.0135 0.0001 0.0001 0.0842 0.0214 0.0214 0.0009 0.0003 <0.0001

Ne2 α2
drop

Prior
Me-
dian

-0.48 0.1165 N/A 5.4268 0.1662 -0.1616 0.0163 -0.0774 2769.8776

Ne2 α2
drop

Prior
MAD

3.3369 0.3982 N/A 1.5261 2.1784 0.2916 0.0089 0.0123 532.2794

Ne2 α2
drop

Posterior
Me-
dian

0.5251 0.042 N/A 1.5972 -0.5573 0.9448 -0.0375 -0.0227 6000.0

Ne2 α2
drop

Posterior
MAD

0.0167 0.0018 N/A 0.0944 0.0266 0.0252 0.0011 0.0003 <0.0001

Ne2 k3
drop

Prior
Me-
dian

-0.48 0.1165 -0.0011 5.4268 0.1662 -0.1616 N/A -0.0774 2769.8776

Ne2 k3
drop

Prior
MAD

3.3369 0.3982 0.0117 1.5261 2.1784 0.2916 N/A 0.0123 532.2794

Ne2 k3
drop

Posterior
Me-
dian

-0.4689 0.2607 -0.0097 6.0284 2.2288 -0.1297 N/A -0.0239 6000.0

Ne2 k3
drop

Posterior
MAD

0.0098 0.0059 0.0004 0.0168 0.0409 0.0039 N/A 0.0003 <0.0001

Table A.1 continues on next page
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Table A.1 continued from previous page

Site ExperimentStatistic β α1 α2 γ k1 k2 k3 λ PAR0

Ne2 λ drop Prior
Me-
dian

-0.48 0.1165 -0.0011 5.4268 0.1662 -0.1616 0.0163 N/A 2769.8776

Ne2 λ drop Prior
MAD

3.3369 0.3982 0.0117 1.5261 2.1784 0.2916 0.0089 N/A 532.2794

Ne2 λ drop Posterior
Me-
dian

0.6481 -0.0238 0.0032 1.2136 -0.7649 1.0818 -0.0432 N/A 353.1329

Ne2 λ drop Posterior
MAD

0.0008 0.0001 <0.0001 0.0042 0.0024 0.002 0.0001 N/A 0.5852

Ne2 PAR0
drop

Prior
Me-
dian

-0.48 0.1165 -0.0011 5.4268 0.1662 -0.1616 0.0163 -0.0774 N/A

Ne2 PAR0
drop

Prior
MAD

3.3369 0.3982 0.0117 1.5261 2.1784 0.2916 0.0089 0.0123 N/A

Ne2 PAR0
drop

Posterior
Me-
dian

0.6488 -0.0238 0.0032 1.2093 -0.766 1.0829 -0.0432 -0.0271 N/A

Ne2 PAR0
drop

Posterior
MAD

0.0139 0.0001 0.0001 0.0872 0.0217 0.0219 0.0009 0.0004 N/A

Ne3 Normal Prior
Me-
dian

-0.48 0.1165 -0.0011 5.4268 0.1662 -0.1616 0.0163 -0.0774 2769.8776

Ne3 Normal Prior
MAD

3.3369 0.3982 0.0117 1.5261 2.1784 0.2916 0.0089 0.0123 532.2794

Ne3 Normal Posterior
Me-
dian

0.4565 -0.0368 0.003 2.9516 -2.8892 1.0701 -0.0403 -0.0307 1557.7215

Ne3 Normal Posterior
MAD

<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.1521

Ne3 ER/GEE
Sepa-
rately

Prior
Me-
dian

-0.48 0.1165 -0.0011 5.4268 0.1662 -0.1616 0.0163 -0.0774 2769.8776

Ne3 ER/GEE
Sepa-
rately

Prior
MAD

3.3369 0.3982 0.0117 1.5261 2.1784 0.2916 0.0089 0.0123 532.2794

Ne3 ER/GEE
Sepa-
rately

Posterior
Me-
dian

0.2274 -0.0708 0.0045 4.6425 -3.0653 1.0953 -0.0425 -0.0235 3339.6652

Ne3 ER/GEE
Sepa-
rately

Posterior
MAD

0.038 0.0039 <0.0001 0.0755 0.1968 0.0439 0.0015 0.0003 77.0683

Ne3 α2
drop

Prior
Me-
dian

-0.48 0.1165 N/A 5.4268 0.1662 -0.1616 0.0163 -0.0774 2769.8776

Ne3 α2
drop

Prior
MAD

3.3369 0.3982 N/A 1.5261 2.1784 0.2916 0.0089 0.0123 532.2794

Ne3 α2
drop

Posterior
Me-
dian

-0.0057 0.0244 N/A 5.2461 -2.4218 0.8705 -0.0336 -0.0239 3144.7395

Ne3 α2
drop

Posterior
MAD

0.036 0.0031 N/A 0.0706 0.1909 0.0417 0.0015 0.0003 73.7012

Ne3 k3
drop

Prior
Me-
dian

-0.48 0.1165 -0.0011 5.4268 0.1662 -0.1616 N/A -0.0774 2769.8776

Ne3 k3
drop

Prior
MAD

3.3369 0.3982 0.0117 1.5261 2.1784 0.2916 N/A 0.0123 532.2794

Ne3 k3
drop

Posterior
Me-
dian

-1.4105 0.2097 -0.0066 8.1268 4.6816 -0.2698 N/A -0.0222 5769.4036

Table A.1 continues on next page
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Table A.1 continued from previous page

Site ExperimentStatistic β α1 α2 γ k1 k2 k3 λ PAR0

Ne3 k3
drop

Posterior
MAD

0.0212 0.0063 0.0004 0.0497 0.0799 0.0053 N/A 0.0003 17.6257

Ne3 λ drop Prior
Me-
dian

-0.48 0.1165 -0.0011 5.4268 0.1662 -0.1616 0.0163 N/A 2769.8776

Ne3 λ drop Prior
MAD

3.3369 0.3982 0.0117 1.5261 2.1784 0.2916 0.0089 N/A 532.2794

Ne3 λ drop Posterior
Me-
dian

0.2237 -0.0705 0.0045 4.6501 -3.0445 1.091 -0.0424 N/A 305.6309

Ne3 λ drop Posterior
MAD

0.004 0.0004 <0.0001 0.0055 0.0242 0.0049 0.0002 N/A 0.7359

Ne3 PAR0
drop

Prior
Me-
dian

-0.48 0.1165 -0.0011 5.4268 0.1662 -0.1616 0.0163 -0.0774 N/A

Ne3 PAR0
drop

Prior
MAD

3.3369 0.3982 0.0117 1.5261 2.1784 0.2916 0.0089 0.0123 N/A

Ne3 PAR0
drop

Posterior
Me-
dian

0.2256 -0.0707 0.0045 4.6463 -3.0541 1.0931 -0.0424 -0.0248 N/A

Ne3 PAR0
drop

Posterior
MAD

0.0384 0.0039 <0.0001 0.0781 0.201 0.0445 0.0016 0.0005 N/A

KM1 Normal Prior
Me-
dian

-0.48 0.1165 -0.0011 5.4268 0.1662 -0.1616 0.0163 -0.0774 2769.8776

KM1 Normal Prior
MAD

3.3369 0.3982 0.0117 1.5261 2.1784 0.2916 0.0089 0.0123 532.2794

KM1 Normal Posterior
Me-
dian

-1.023 0.1307 -0.0038 7.0886 0.8848 0.3404 -0.0096 -0.188 225.8973

KM1 Normal Posterior
MAD

<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0023

KM1 ER/GEE
Sepa-
rately

Prior
Me-
dian

-0.48 0.1165 -0.0011 5.4268 0.1662 -0.1616 0.0163 -0.0774 2769.8776

KM1 ER/GEE
Sepa-
rately

Prior
MAD

3.3369 0.3982 0.0117 1.5261 2.1784 0.2916 0.0089 0.0123 532.2794

KM1 ER/GEE
Sepa-
rately

Posterior
Me-
dian

-0.0108 0.0851 -0.0007 3.3123 0.5697 0.4547 -0.0149 -0.0984 502.1505

KM1 ER/GEE
Sepa-
rately

Posterior
MAD

0.0097 0.0003 0.0001 0.0057 0.0377 0.0395 0.0028 0.0036 7.4397

KM1 α2
drop

Prior
Me-
dian

-0.48 0.1165 N/A 5.4268 0.1662 -0.1616 0.0163 -0.0774 2769.8776

KM1 α2
drop

Prior
MAD

3.3369 0.3982 N/A 1.5261 2.1784 0.2916 0.0089 0.0123 532.2794

KM1 α2
drop

Posterior
Me-
dian

-0.0057 0.0717 N/A 3.3252 0.5725 0.4816 -0.0164 -0.0984 503.3742

KM1 α2
drop

Posterior
MAD

0.0092 0.0009 N/A 0.0053 0.038 0.0419 0.003 0.0036 7.58

KM1 k3
drop

Prior
Me-
dian

-0.48 0.1165 -0.0011 5.4268 0.1662 -0.1616 N/A -0.0774 2769.8776

KM1 k3
drop

Prior
MAD

3.3369 0.3982 0.0117 1.5261 2.1784 0.2916 N/A 0.0123 532.2794

Table A.1 continues on next page

64



Table A.1 continued from previous page

Site ExperimentStatistic β α1 α2 γ k1 k2 k3 λ PAR0

KM1 k3
drop

Posterior
Me-
dian

-0.1207 0.178 -0.006 3.7351 0.5464 0.1694 N/A -0.0985 501.0784

KM1 k3
drop

Posterior
MAD

0.031 0.0181 0.0011 0.081 0.0333 0.0149 N/A 0.0036 7.1898

KM1 λ drop Prior
Me-
dian

-0.48 0.1165 -0.0011 5.4268 0.1662 -0.1616 0.0163 N/A 2769.8776

KM1 λ drop Prior
MAD

3.3369 0.3982 0.0117 1.5261 2.1784 0.2916 0.0089 N/A 532.2794

KM1 λ drop Posterior
Me-
dian

-0.0088 0.085 -0.0007 3.3125 0.5647 0.4497 -0.0145 N/A 720.355

KM1 λ drop Posterior
MAD

0.0026 0.0001 <0.0001 0.0053 0.0058 0.0056 0.0004 N/A 3.987

KM1 PAR0
drop

Prior
Me-
dian

-0.48 0.1165 -0.0011 5.4268 0.1662 -0.1616 0.0163 -0.0774 N/A

KM1 PAR0
drop

Prior
MAD

3.3369 0.3982 0.0117 1.5261 2.1784 0.2916 0.0089 0.0123 N/A

KM1 PAR0
drop

Posterior
Me-
dian

-0.0092 0.085 -0.0007 3.3123 0.5665 0.4516 -0.0147 -0.0424 N/A

KM1 PAR0
drop

Posterior
MAD

0.0093 0.0003 0.0001 0.0017 0.0379 0.04 0.0029 0.0012 N/A

Ro1 Normal Prior
Me-
dian

-0.48 0.1165 -0.0011 5.4268 0.1662 -0.1616 0.0163 -0.0774 2769.8776

Ro1 Normal Prior
MAD

3.3369 0.3982 0.0117 1.5261 2.1784 0.2916 0.0089 0.0123 532.2794

Ro1 Normal Posterior
Me-
dian

-0.6793 0.094 -0.0022 5.0857 1.0703 0.3723 -0.014 -0.1422 284.654

Ro1 Normal Posterior
MAD

<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0007

Ro1 ER/GEE
Sepa-
rately

Prior
Me-
dian

-0.48 0.1165 -0.0011 5.4268 0.1662 -0.1616 0.0163 -0.0774 2769.8776

Ro1 ER/GEE
Sepa-
rately

Prior
MAD

3.3369 0.3982 0.0117 1.5261 2.1784 0.2916 0.0089 0.0123 532.2794

Ro1 ER/GEE
Sepa-
rately

Posterior
Me-
dian

-1.0166 0.0447 0.0011 7.5832 1.1232 0.1475 -0.0102 -0.0991 469.0696

Ro1 ER/GEE
Sepa-
rately

Posterior
MAD

0.0009 0.0017 0.0001 0.0271 0.0327 0.028 0.0019 0.0036 12.4458

Ro1 α2
drop

Prior
Me-
dian

-0.48 0.1165 N/A 5.4268 0.1662 -0.1616 0.0163 -0.0774 2769.8776

Ro1 α2
drop

Prior
MAD

3.3369 0.3982 N/A 1.5261 2.1784 0.2916 0.0089 0.0123 532.2794

Ro1 α2
drop

Posterior
Me-
dian

-1.0597 0.0671 N/A 7.6872 1.147 0.1017 -0.008 -0.0997 463.7912

Ro1 α2
drop

Posterior
MAD

0.0034 0.0001 N/A 0.0197 0.0347 0.025 0.0018 0.0035 11.8531

Ro1 k3
drop

Prior
Me-
dian

-0.48 0.1165 -0.0011 5.4268 0.1662 -0.1616 N/A -0.0774 2769.8776

Table A.1 continues on next page
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Table A.1 continued from previous page

Site ExperimentStatistic β α1 α2 γ k1 k2 k3 λ PAR0

Ro1 k3
drop

Prior
MAD

3.3369 0.3982 0.0117 1.5261 2.1784 0.2916 N/A 0.0123 532.2794

Ro1 k3
drop

Posterior
Me-
dian

-1.1815 0.1107 -0.0023 8.3391 1.1415 -0.0786 N/A -0.1012 457.0564

Ro1 k3
drop

Posterior
MAD

0.0313 0.0109 0.0006 0.1176 0.0365 0.015 N/A 0.0032 9.5116

Ro1 λ drop Prior
Me-
dian

-0.48 0.1165 -0.0011 5.4268 0.1662 -0.1616 0.0163 N/A 2769.8776

Ro1 λ drop Prior
MAD

3.3369 0.3982 0.0117 1.5261 2.1784 0.2916 0.0089 N/A 532.2794

Ro1 λ drop Posterior
Me-
dian

-1.0166 0.0449 0.0011 7.5832 1.1197 0.1449 -0.01 N/A 690.9106

Ro1 λ drop Posterior
MAD

0.0009 0.0001 <0.0001 0.0031 0.0038 0.0025 0.0002 N/A 1.8943

Ro1 PAR0
drop

Prior
Me-
dian

-0.48 0.1165 -0.0011 5.4268 0.1662 -0.1616 0.0163 -0.0774 N/A

Ro1 PAR0
drop

Prior
MAD

3.3369 0.3982 0.0117 1.5261 2.1784 0.2916 0.0089 0.0123 N/A

Ro1 PAR0
drop

Posterior
Me-
dian

-1.0166 0.0448 0.0011 7.5818 1.1213 0.1463 -0.0101 -0.0437 N/A

Ro1 PAR0
drop

Posterior
MAD

<0.0001 0.0017 0.0001 0.0266 0.0334 0.0287 0.002 0.0008 N/A

End of Table A.1

Table A.2: A table of distribution medians and median absolute deviation (MAD) for the MCMC
parameter fitting experiments. Values marked with ’N/A’ were held constant for the experiment
indicated. Units are described in Table 2.2

Site ExperimentStatistic β α1 α2 γ k1 k2 k3 λ PAR0

Ne2 Normal Prior
Me-
dian

-0.1855 0.0737 -0.001 5.4866 0.1602 -0.1512 0.016 -0.0782 2783.6421

Ne2 Normal Prior
MAD

2.7654 0.0549 0.0001 1.4712 1.3049 0.0387 0.0001 0.0044 540.5935

Ne2 Normal Posterior
Me-
dian

-0.4095 0.1463 -0.0038 5.53 4.0558 -0.5344 0.0136 -0.0268 5480.3211

Ne2 Normal Posterior
MAD

0.0315 0.0026 0.0001 0.181 0.1094 0.0074 0.0001 0.0004 347.7465

Ne2 ER/GEE
Sepa-
rately

Prior
Me-
dian

-0.146 0.0727 -0.001 5.4407 0.1324 -0.153 0.016 -0.078 2809.1055

Ne2 ER/GEE
Sepa-
rately

Prior
MAD

2.8078 0.0553 0.0001 1.4831 1.2972 0.0379 0.0001 0.0044 526.1539

Ne2 ER/GEE
Sepa-
rately

Posterior
Me-
dian

-0.9082 0.1273 -0.0022 9.2707 4.3143 -0.6937 0.0149 -0.0257 6500.0

Ne2 ER/GEE
Sepa-
rately

Posterior
MAD

0.0465 0.0037 0.0001 0.2476 0.1718 0.0092 0.0001 0.0001 0.0

Ne2 α2
drop

Prior
Me-
dian

-0.1386 0.0719 N/A 5.5282 0.1301 -0.1516 0.016 -0.078 2809.1055

Table A.2 continues on next page
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Table A.2 continued from previous page

Site ExperimentStatistic β α1 α2 γ k1 k2 k3 λ PAR0

Ne2 α2
drop

Prior
MAD

2.7888 0.0564 N/A 1.4967 1.2819 0.0375 0.0001 0.0044 526.1539

Ne2 α2
drop

Posterior
Me-
dian

-0.9382 0.0866 N/A 9.6204 4.552 -0.7231 0.0148 -0.026 6500.0

Ne2 α2
drop

Posterior
MAD

0.0496 0.0035 N/A 0.2646 0.1755 0.0111 0.0001 0.0001 0.0

Ne2 k3
drop

Prior
Me-
dian

-0.1386 0.0719 -0.001 5.4842 0.16 -0.1535 N/A -0.078 2782.0002

Ne2 k3
drop

Prior
MAD

2.7888 0.0564 0.0001 1.4488 1.2822 0.0381 N/A 0.0001 0.0044

Ne2 k3
drop

Posterior
Me-
dian

-0.5684 0.1119 -0.0018 7.2897 3.1204 -0.2434 N/A -0.0247 6500.0

Ne2 k3
drop

Posterior
MAD

0.0443 0.0035 0.0001 0.2517 0.1776 0.0094 N/A 0.0001 0.0

Ne2 λ drop Prior
Me-
dian

-0.146 0.0727 -0.001 5.4407 0.1324 -0.153 0.016 N/A 2786.7462

Ne2 λ drop Prior
MAD

2.8078 0.0553 0.0001 1.4831 1.2972 0.0379 0.0001 N/A 529.1851

Ne2 λ drop Posterior
Me-
dian

-0.9082 0.1273 -0.0022 9.2707 4.3143 -0.6937 0.0149 N/A 428.788

Ne2 λ drop Posterior
MAD

0.0465 0.0037 0.0001 0.2476 0.1718 0.0092 0.0001 N/A 2.7945

Ne2 PAR0
drop

Prior
Me-
dian

-0.146 0.0727 -0.001 5.4407 0.1324 -0.153 0.016 -0.078 N/A

Ne2 PAR0
drop

Prior
MAD

2.8078 0.0553 0.0001 1.4831 1.2972 0.0379 0.0001 0.0044 N/A

Ne2 PAR0
drop

Posterior
Me-
dian

-0.9082 0.1273 -0.0022 9.2707 4.3143 -0.6937 0.0149 -0.0309 N/A

Ne2 PAR0
drop

Posterior
MAD

0.0465 0.0037 0.0001 0.2476 0.1718 0.0092 0.0001 0.0001 N/A

Ne3 Normal Prior
Me-
dian

-0.1855 0.0737 -0.001 5.4866 0.1602 -0.1512 0.016 -0.0782 2783.6421

Ne3 Normal Prior
MAD

2.7654 0.0549 0.0001 1.4712 1.3049 0.0387 0.0001 0.0044 540.5935

Ne3 Normal Posterior
Me-
dian

-2.196 0.208 -0.0039 9.0046 10.6502 -0.9139 0.0129 -0.0249 3738.6098

Ne3 Normal Posterior
MAD

0.0361 0.0027 0.0001 0.1917 0.1568 0.0073 0.0001 0.0005 284.4526

Ne3 ER/GEE
Sepa-
rately

Prior
Me-
dian

-0.146 0.0727 -0.001 5.4407 0.1324 -0.153 0.016 -0.078 2809.1055

Ne3 ER/GEE
Sepa-
rately

Prior
MAD

2.8078 0.0553 0.0001 1.4831 1.2972 0.0379 0.0001 0.0044 526.1539

Ne3 ER/GEE
Sepa-
rately

Posterior
Me-
dian

-2.1932 0.1607 -0.0022 9.6946 9.9273 -0.9055 0.0147 -0.0236 6500.0

Ne3 ER/GEE
Sepa-
rately

Posterior
MAD

0.0469 0.0034 0.0001 0.292 0.2357 0.0099 0.0001 0.0001 0.0

Ne3 α2
drop

Prior
Me-
dian

-0.1386 0.0719 N/A 5.5282 0.1301 -0.1516 0.016 -0.078 2809.1055

Table A.2 continues on next page
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Table A.2 continued from previous page

Site ExperimentStatistic β α1 α2 γ k1 k2 k3 λ PAR0

Ne3 α2
drop

Prior
MAD

2.7888 0.0564 N/A 1.4967 1.2819 0.0375 0.0001 0.0044 526.1539

Ne3 α2
drop

Posterior
Me-
dian

-2.2988 0.1242 N/A 9.8411 10.8338 -0.9633 0.0146 -0.0239 6500.0

Ne3 α2
drop

Posterior
MAD

0.0491 0.0029 N/A 0.2553 0.2162 0.0104 0.0001 0.0001 0.0

Ne3 k3
drop

Prior
Me-
dian

-0.1386 0.0719 -0.001 5.4842 0.16 -0.1535 N/A -0.078 2782.0002

Ne3 k3
drop

Prior
MAD

2.7888 0.0564 0.0001 1.4488 1.2822 0.0381 N/A 0.0001 0.0044

Ne3 k3
drop

Posterior
Me-
dian

-1.5832 0.1269 -0.0017 8.3427 6.4402 -0.3808 N/A -0.0225 6500.0

Ne3 k3
drop

Posterior
MAD

0.0497 0.003 0.0001 0.2716 0.1889 0.0092 N/A 0.0001 0.0

Ne3 λ drop Prior
Me-
dian

-0.146 0.0727 -0.001 5.4407 0.1324 -0.153 0.016 N/A 2786.7462

Ne3 λ drop Prior
MAD

2.8078 0.0553 0.0001 1.4831 1.2972 0.0379 0.0001 N/A 529.1851

Ne3 λ drop Posterior
Me-
dian

-2.1932 0.1607 -0.0022 9.6946 9.9273 -0.9055 0.0147 N/A 368.6935

Ne3 λ drop Posterior
MAD

0.0469 0.0034 0.0001 0.292 0.2357 0.0099 0.0001 N/A 2.5426

Ne3 PAR0
drop

Prior
Me-
dian

-0.146 0.0727 -0.001 5.4407 0.1324 -0.153 0.016 -0.078 N/A

Ne3 PAR0
drop

Prior
MAD

2.8078 0.0553 0.0001 1.4831 1.2972 0.0379 0.0001 0.0044 N/A

Ne3 PAR0
drop

Posterior
Me-
dian

-2.1932 0.1607 -0.0022 9.6946 9.9273 -0.9055 0.0147 -0.0283 N/A

Ne3 PAR0
drop

Posterior
MAD

0.0469 0.0034 0.0001 0.292 0.2357 0.0099 0.0001 0.0001 N/A

KM1 Normal Prior
Me-
dian

-0.1855 0.0737 -0.001 5.4866 0.1602 -0.1512 0.016 -0.0782 2783.6421

KM1 Normal Prior
MAD

2.7654 0.0549 0.0001 1.4712 1.3049 0.0387 0.0001 0.0044 540.5935

KM1 Normal Posterior
Me-
dian

-1.4217 0.0976 -0.0034 10.2445 0.9144 -0.2216 0.0145 -0.1615 291.1479

KM1 Normal Posterior
MAD

0.0456 0.0032 0.0001 0.1712 0.0522 0.0073 0.0001 0.0024 5.5715

KM1 ER/GEE
Sepa-
rately

Prior
Me-
dian

-0.146 0.0727 -0.001 5.4407 0.1324 -0.153 0.016 -0.078 2809.1055

KM1 ER/GEE
Sepa-
rately

Prior
MAD

2.8078 0.0553 0.0001 1.4831 1.2972 0.0379 0.0001 0.0044 526.1539

KM1 ER/GEE
Sepa-
rately

Posterior
Me-
dian

-0.4761 0.0849 -0.0022 6.6393 0.5109 -0.2146 0.0152 -0.097 551.2912

KM1 ER/GEE
Sepa-
rately

Posterior
MAD

0.0565 0.0039 0.0001 0.2264 0.0657 0.0095 0.0001 0.0006 3.3245

KM1 α2
drop

Prior
Me-
dian

-0.1386 0.0719 N/A 5.5282 0.1301 -0.1516 0.016 -0.078 2809.1055

Table A.2 continues on next page

68



Table A.2 continued from previous page

Site ExperimentStatistic β α1 α2 γ k1 k2 k3 λ PAR0

KM1 α2
drop

Prior
MAD

2.7888 0.0564 N/A 1.4967 1.2819 0.0375 0.0001 0.0044 526.1539

KM1 α2
drop

Posterior
Me-
dian

-0.5509 0.0404 N/A 7.2738 0.5254 -0.2364 0.0151 -0.0966 563.3392

KM1 α2
drop

Posterior
MAD

0.0578 0.0038 N/A 0.2185 0.0664 0.0089 0.0001 0.0006 3.3842

KM1 k3
drop

Prior
Me-
dian

-0.1386 0.0719 -0.001 5.4842 0.16 -0.1535 N/A -0.078 2782.0002

KM1 k3
drop

Prior
MAD

2.7888 0.0564 0.0001 1.4488 1.2822 0.0381 N/A 0.0001 0.0044

KM1 k3
drop

Posterior
Me-
dian

-0.3137 0.0913 -0.0015 5.17 0.5992 0.1089 N/A -0.0978 525.3042

KM1 k3
drop

Posterior
MAD

0.0575 0.0037 0.0001 0.2198 0.066 0.0093 N/A 0.0006 3.1064

KM1 λ drop Prior
Me-
dian

-0.146 0.0727 -0.001 5.4407 0.1324 -0.153 0.016 N/A 2786.7462

KM1 λ drop Prior
MAD

2.8078 0.0553 0.0001 1.4831 1.2972 0.0379 0.0001 N/A 529.1851

KM1 λ drop Posterior
Me-
dian

-0.4761 0.0849 -0.0022 6.6393 0.5109 -0.2146 0.0152 N/A 776.2055

KM1 λ drop Posterior
MAD

0.0565 0.0039 0.0001 0.2264 0.0657 0.0095 0.0001 N/A 3.9936

KM1 PAR0
drop

Prior
Me-
dian

-0.146 0.0727 -0.001 5.4407 0.1324 -0.153 0.016 -0.078 N/A

KM1 PAR0
drop

Prior
MAD

2.8078 0.0553 0.0001 1.4831 1.2972 0.0379 0.0001 0.0044 N/A

KM1 PAR0
drop

Posterior
Me-
dian

-0.4761 0.0849 -0.0022 6.6393 0.5109 -0.2146 0.0152 -0.0445 N/A

KM1 PAR0
drop

Posterior
MAD

0.0565 0.0039 0.0001 0.2264 0.0657 0.0095 0.0001 0.0001 N/A

Ro1 Normal Prior
Me-
dian

-0.1855 0.0737 -0.001 5.4866 0.1602 -0.1512 0.016 -0.0782 2783.6421

Ro1 Normal Prior
MAD

2.7654 0.0549 0.0001 1.4712 1.3049 0.0387 0.0001 0.0044 540.5935

Ro1 Normal Posterior
Me-
dian

-0.8653 0.1458 -0.0051 6.9604 0.8827 -0.2071 0.0125 -0.1514 285.5758

Ro1 Normal Posterior
MAD

0.0267 0.0023 0.0001 0.1206 0.0332 0.0056 0.0001 0.0019 4.715

Ro1 ER/GEE
Sepa-
rately

Prior
Me-
dian

-0.146 0.0727 -0.001 5.4407 0.1324 -0.153 0.016 -0.078 2809.1055

Ro1 ER/GEE
Sepa-
rately

Prior
MAD

2.8078 0.0553 0.0001 1.4831 1.2972 0.0379 0.0001 0.0044 526.1539

Ro1 ER/GEE
Sepa-
rately

Posterior
Me-
dian

-1.294 0.11 -0.0026 9.8441 0.9171 -0.4134 0.0145 -0.1028 467.4688

Ro1 ER/GEE
Sepa-
rately

Posterior
MAD

0.0329 0.0025 0.0001 0.1467 0.0399 0.0062 0.0001 0.0005 2.6716

Ro1 α2
drop

Prior
Me-
dian

-0.1386 0.0719 N/A 5.5282 0.1301 -0.1516 0.016 -0.078 2809.1055

Table A.2 continues on next page
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Table A.2 continued from previous page

Site ExperimentStatistic β α1 α2 γ k1 k2 k3 λ PAR0

Ro1 α2
drop

Prior
MAD

2.7888 0.0564 N/A 1.4967 1.2819 0.0375 0.0001 0.0044 526.1539

Ro1 α2
drop

Posterior
Me-
dian

-1.2434 0.0555 N/A 10.1861 0.794 -0.4196 0.0141 -0.1016 483.9903

Ro1 α2
drop

Posterior
MAD

0.031 0.0019 N/A 0.1277 0.0388 0.0061 0.0001 0.0005 2.7149

Ro1 k3
drop

Prior
Me-
dian

-0.1386 0.0719 -0.001 5.4842 0.16 -0.1535 N/A -0.078 2782.0002

Ro1 k3
drop

Prior
MAD

2.7888 0.0564 0.0001 1.4488 1.2822 0.0381 N/A 0.0001 0.0044

Ro1 k3
drop

Posterior
Me-
dian

-1.1584 0.0916 -0.0013 8.4229 1.0939 -0.0816 N/A -0.1011 462.1234

Ro1 k3
drop

Posterior
MAD

0.0294 0.0024 0.0001 0.1208 0.0378 0.0054 N/A 0.0005 2.5916

Ro1 λ drop Prior
Me-
dian

-0.146 0.0727 -0.001 5.4407 0.1324 -0.153 0.016 N/A 2786.7462

Ro1 λ drop Prior
MAD

2.8078 0.0553 0.0001 1.4831 1.2972 0.0379 0.0001 N/A 529.1851

Ro1 λ drop Posterior
Me-
dian

-1.294 0.11 -0.0026 9.8441 0.9171 -0.4134 0.0145 N/A 730.8831

Ro1 λ drop Posterior
MAD

0.0329 0.0025 0.0001 0.1467 0.0399 0.0062 0.0001 N/A 2.5797

Ro1 PAR0
drop

Prior
Me-
dian

-0.146 0.0727 -0.001 5.4407 0.1324 -0.153 0.016 -0.078 N/A

Ro1 PAR0
drop

Prior
MAD

2.8078 0.0553 0.0001 1.4831 1.2972 0.0379 0.0001 0.0044 N/A

Ro1 PAR0
drop

Posterior
Me-
dian

-1.294 0.11 -0.0026 9.8441 0.9171 -0.4134 0.0145 -0.0451 N/A

Ro1 PAR0
drop

Posterior
MAD

0.0329 0.0025 0.0001 0.1467 0.0399 0.0062 0.0001 0.0001 N/A

End of Table A.2
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A.2 Distribution Graphs

A.2.1 Whole Data Set Simultaneously

Figure A.1: Same as Figure 3.3 but for the β parameter distributions.

Figure A.2: Same as Figure 3.3 but for the α1 parameter distributions.
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Figure A.3: Same as Figure 3.3 but for the α2 parameter distributions.

Figure A.4: Same as Figure 3.3 but for the k1 parameter distributions.
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Figure A.5: Same as Figure 3.3 but for the k2 parameter distributions.

Figure A.6: Same as Figure 3.3 but for the k3 parameter distributions.
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A.2.2 ER/GEE Separately

Figure A.7: Same as Figure A.1 but fitting ER and GEE separately.

Figure A.8: Same as Figure A.2 but fitting ER and GEE separately.

74



Figure A.9: Same as Figure A.3 but fitting ER and GEE separately.

Figure A.10: Same as Figure A.4 but fitting ER and GEE separately.
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Figure A.11: Same as Figure A.5 but fitting ER and GEE separately.

Figure A.12: Same as Figure A.6 but fitting ER and GEE separately.
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A.2.3 α2 Drop Experiment

Figure A.13: Same as Figure A.1 but for the α2 parameter drop experiment.

Figure A.14: Same as Figure A.2 but for the α2 parameter drop experiment.
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Figure A.15: Same as Figure 3.4 but for the α2 parameter drop experiment.

Figure A.16: Same as Figure A.4 but for the α2 parameter drop experiment.
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Figure A.17: Same as Figure A.5 but for the α2 parameter drop experiment.

Figure A.18: Same as Figure A.6 but for the α2 parameter drop experiment.
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Figure A.19: Same as Figure 3.5 but for the α2 parameter drop experiment.

Figure A.20: Same as Figure 3.3 but for the α2 parameter drop experiment.
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A.2.4 k3 Drop Experiment

Figure A.21: Same as Figure A.1 but for the k3 parameter drop experiment.

Figure A.22: Same as Figure A.2 but for the k3 parameter drop experiment.
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Figure A.23: Same as Figure A.3 but for the k3 parameter drop experiment.

Figure A.24: Same as Figure 3.4 but for the k3 parameter drop experiment.
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Figure A.25: Same as Figure A.4 but for the k3 parameter drop experiment.

Figure A.26: Same as Figure A.5 but for the k3 parameter drop experiment.
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A.2.5 λ Drop Experiment

Figure A.27: Same as Figure A.1 but for the λ parameter drop experiment.

Figure A.28: Same as Figure A.2 but for the λ parameter drop experiment.
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Figure A.29: Same as Figure A.3 but for the λ parameter drop experiment.

Figure A.30: Same as Figure 3.4 but for the λ parameter drop experiment.

85



Figure A.31: Same as Figure A.4 but for the λ parameter drop experiment.

Figure A.32: Same as Figure A.5 but for the λ parameter drop experiment.
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Figure A.33: Same as Figure A.6 but for the λ parameter drop experiment.

Figure A.34: Same as Figure 3.3 but for the λ parameter drop experiment.
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A.2.6 PAR0 Drop Experiment

Figure A.35: Same as Figure A.1 but for the PAR0 parameter drop experiment.

Figure A.36: Same as Figure A.2 but for the PAR0 parameter drop experiment.
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Figure A.37: Same as Figure A.3 but for the PAR0 parameter drop experiment.

Figure A.38: Same as Figure 3.4 but for the PAR0 parameter drop experiment.
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Figure A.39: Same as Figure A.4 but for the PAR0 parameter drop experiment.

Figure A.40: Same as Figure A.5 but for the PAR0 parameter drop experiment.
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Figure A.41: Same as Figure A.6 but for the PAR0 parameter drop experiment.

Figure A.42: Same as Figure 3.5 but for the PAR0 parameter drop experiment.
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A.3 RMSE Distributions

Figure A.43: Same as Figure 3.1 but for the α2 parameter drop experiment.

Figure A.44: Same as Figure 3.1 but for the λ parameter drop experiment.
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Figure A.45: Same as Figure 3.1 but for the PAR0 parameter drop experiment.
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Appendix B

Parameter Correlations

B.1 MCMC

B.1.1 Whole Data Set Simultaneously

Figure B.1: Same as Figure 3.13 but for the KM1 normal MCMC experiment.
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Figure B.2: Same as Figure 3.13 but for the Ro1 normal MCMC experiment.
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B.1.2 ER/GEE Separately

Figure B.3: Same as Figure 3.15 but for the Ne3 AmeriFlux site.
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Figure B.4: Same as Figure 3.15 but for the KM1 AmeriFlux site.
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Figure B.5: Same as Figure 3.15 but for the Ro1 AmeriFlux site.
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B.1.3 α2 Drop Experiment

Figure B.6: Same as Figure 3.13 but for the α2 parameter drop experiment.
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Figure B.7: Same as Figure B.6 but for the Ne3 AmeriFlux site.
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Figure B.8: Same as Figure B.6 but for the KM1 AmeriFlux site.
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Figure B.9: Same as Figure B.6 but for the Ro1 AmeriFlux site.
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B.1.4 k3 Drop Experiment

Figure B.10: Same as Figure 4.3 but for the KM1 AmeriFlux site.
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Figure B.11: Same as Figure 4.3 but for the Ro1 AmeriFlux site.
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B.1.5 λ Drop Experiment

Figure B.12: Same as Figure 3.13 but for the λ parameter drop experiment.
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Figure B.13: Same as Figure B.12 but for the Ne3 AmeriFlux site.
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Figure B.14: Same as Figure B.12 but for the KM1 AmeriFlux site.
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Figure B.15: Same as Figure B.12 but for the Ro1 AmeriFlux site.
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B.1.6 PAR0 Drop Experiment

Figure B.16: Same as Figure 3.13 but for the PAR0 parameter drop experiment.
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Figure B.17: Same as Figure B.16 but for the Ne3 AmeriFlux site.
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Figure B.18: Same as Figure B.16 but for the KM1 AmeriFlux site.
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Figure B.19: Same as Figure B.16 but for the Ro1 AmeriFlux site.
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B.2 NLLS

B.2.1 Whole Data Set Simultaneously

Figure B.20: Same as Figure 3.13 but for the NLLS while fitting the whole data set
simultaneously.
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Figure B.21: Same as Figure B.20 but for the Ne3 AmeriFlux site.

Figure B.22: Same as Figure B.20 but for the KM1 AmeriFlux site.
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Figure B.23: Same as Figure B.20 but for the Ro1 AmeriFlux site.
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B.2.2 ER/GEE Separately

Figure B.24: Same as Figure B.20 but for the NLLS while fitting ER and GEE separately.
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Figure B.25: Same as Figure B.24 but for the Ne3 AmeriFlux site.

Figure B.26: Same as Figure B.24 but for the KM1 AmeriFlux site.
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Figure B.27: Same as Figure B.24 but for the Ro1 AmeriFlux site.
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B.2.3 α2 Drop Experiment

Figure B.28: Same as Figure B.20 but for the NLLS α2 parameter drop experiment.
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Figure B.29: Same as Figure B.28 but for the Ne3 AmeriFlux site.

Figure B.30: Same as Figure B.28 but for the KM1 AmeriFlux site.
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Figure B.31: Same as Figure B.28 but for the Ro1 AmeriFlux site.
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B.2.4 k3 Drop Experiment

Figure B.32: Same as Figure B.20 but for the NLLS k3 parameter drop experiment.
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Figure B.33: Same as Figure B.32 but for the Ne3 AmeriFlux site.

Figure B.34: Same as Figure B.32 but for the KM1 AmeriFlux site.
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Figure B.35: Same as Figure B.32 but for the Ro1 AmeriFlux site.
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B.2.5 λ Drop Experiment

Figure B.36: Same as Figure B.20 but for the NLLS λ parameter drop experiment.
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Figure B.37: Same as Figure B.36 but for the Ne3 AmeriFlux site.

Figure B.38: Same as Figure B.36 but for the KM1 AmeriFlux site.
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Figure B.39: Same as Figure B.36 but for the Ro1 AmeriFlux site.
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B.2.6 PAR0 Drop Experiment

Figure B.40: Same as Figure B.20 but for the NLLS PAR0 parameter drop experiment.
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Figure B.41: Same as Figure B.40 but for the Ne3 AmeriFlux site.

Figure B.42: Same as Figure B.40 but for the KM1 AmeriFlux site.
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Figure B.43: Same as Figure B.40 but for the Ro1 AmeriFlux site.
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Appendix C

Time Series

C.1 Observed Diurnal Cycle

Figure C.1: Same as 4.6 but for the Ne3 AmeriFlux site.
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Figure C.2: Same as 4.6 but for the KM1 AmeriFlux site.

Figure C.3: Same as 4.6 but for the Ro1 AmeriFlux site.
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C.2 Full Time Series

C.2.1 Whole Data Set Simultaneously

Figure C.4: Same as Figure 3.9 but for the Ne2 AmeriFlux site.
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Figure C.5: Same as Figure 3.9 but for the Ne3 AmeriFlux site.

Figure C.6: Same as Figure 3.9 but for the KM1 AmeriFlux site.

134



C.2.2 ER/GEE Separately

Figure C.7: Same as Figure 3.12 but for the Ne2 AmeriFlux site.
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Figure C.8: Same as Figure 3.12 but for the Ne3 AmeriFlux site.

Figure C.9: Same as Figure 3.12 but for the KM1 AmeriFlux site.
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C.2.3 α2 Drop Experiment

Figure C.10: Same as Figure 3.9 but for the α2 parameter drop experiment using the Ne2
AmeriFlux site.
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Figure C.11: Same as Figure C.10 but for the Ne3 AmeriFlux site.

Figure C.12: Same as Figure C.10 but for the KM1 AmeriFlux site.
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Figure C.13: Same as Figure C.10 but for the Ro1 AmeriFlux site.
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C.2.4 k3 Drop Experiment

Figure C.14: Same as Figure 3.9 but for the k3 parameter drop experiment using the Ne2
AmeriFlux site.
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Figure C.15: Same as Figure C.14 but for the Ne3 AmeriFlux site.

Figure C.16: Same as Figure C.14 but for the KM1 AmeriFlux site.
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Figure C.17: Same as Figure C.14 but for the Ro1 AmeriFlux site.
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C.2.5 λ Drop Experiment

Figure C.18: Same as Figure 3.9 but for the λ parameter drop experiment using the Ne2
AmeriFlux site.
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Figure C.19: Same as Figure C.18 but for the Ne3 AmeriFlux site.

Figure C.20: Same as Figure C.18 but for the KM1 AmeriFlux site.
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C.2.6 PAR0 Drop Experiment

Figure C.21: Same as Figure 3.9 but for the PAR0 parameter drop experiment using the Ne2
AmeriFlux site.
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Figure C.22: Same as Figure C.21 but for the Ne3 AmeriFlux site.

Figure C.23: Same as Figure C.21 but for the KM1 AmeriFlux site.
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C.3 Residual Time Series

C.3.1 Whole Data Set Simultaneously

Figure C.24: Same as Figure 3.10 but for the KM1 AmeriFlux site.
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C.3.2 ER/GEE Separately

Figure C.25: Same as Figure 3.10 but for the Ne2 AmeriFlux site when fitting ER and GEE
separately.
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Figure C.26: Same as Figure C.25 but for the Ne3 AmeriFlux site.

Figure C.27: Same as Figure C.25 but for the KM1 AmeriFlux site.
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C.3.3 α2 Drop Experiment

Figure C.28: Same as Figure 3.10 but for the α2 parameter drop experiment using the Ne2
AmeriFlux site.
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Figure C.29: Same as Figure C.28 but for the Ne3 AmeriFlux site.

Figure C.30: Same as Figure C.28 but for the KM1 AmeriFlux site.
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Figure C.31: Same as Figure C.28 but for the Ro1 AmeriFlux site.
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C.3.4 k3 Drop Experiment

Figure C.32: Same as Figure 3.10 but for the k3 parameter drop experiment using the Ne2
AmeriFlux site.
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Figure C.33: Same as Figure C.32 but for the Ne3 AmeriFlux site.

Figure C.34: Same as Figure C.32 but for the KM1 AmeriFlux site.
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Figure C.35: Same as Figure C.32 but for the Ro1 AmeriFlux site.
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C.3.5 λ Drop Experiment

Figure C.36: Same as Figure 3.10 but for the λ parameter drop experiment using the Ne2
AmeriFlux site.
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Figure C.37: Same as Figure C.36 but for the Ne3 AmeriFlux site.

Figure C.38: Same as Figure C.36 but for the KM1 AmeriFlux site.
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Figure C.39: Same as Figure C.36 but for the Ro1 AmeriFlux site.
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C.3.6 PAR0 Drop Experiment

Figure C.40: Same as Figure 3.10 but for the PAR0 parameter drop experiment using the Ne2
AmeriFlux site.
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Figure C.41: Same as Figure C.40 but for the Ne3 AmeriFlux site.

Figure C.42: Same as Figure C.40 but for the KM1 AmeriFlux site.
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Figure C.43: Same as Figure C.40 but for the Ro1 AmeriFlux site.
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C.4 Monthly Average Analysis

C.4.1 Whole Data Set Simultaneously

Figure C.44: Same as Figure 4.1 but for the KM1 AmeriFlux site.
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Figure C.45: Same as Figure 4.1 but for the Ro1 AmeriFlux site.
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C.4.2 ER/GEE Separately

Figure C.46: Same as Figure 4.1 but for fitting ER and GEE separately.
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Figure C.47: Same as Figure C.46 but for the Ne3 AmeriFlux site.
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Figure C.48: Same as Figure C.46 but for the KM1 AmeriFlux site.
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Figure C.49: Same as Figure C.46 but for the Ro1 AmeriFlux site.
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C.4.3 α2 Drop Experiment

Figure C.50: Same as Figure 4.1 but for the α2 parameter drop experiment.
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Figure C.51: Same as Figure C.50 but for the Ne3 AmeriFlux site.
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Figure C.52: Same as Figure C.50 but for the KM1 AmeriFlux site.
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Figure C.53: Same as Figure C.50 but for the Ro1 AmeriFlux site.
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C.4.4 k3 Drop Experiment

Figure C.54: Same as Figure 4.2 but for the KM1 AmeriFlux site.
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Figure C.55: Same as Figure 4.2 but for the Ro1 AmeriFlux site.
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C.4.5 λ Drop Experiment

Figure C.56: Same as Figure 4.1 but for the λ parameter drop experiment.
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Figure C.57: Same as Figure C.56 but for the Ne3 AmeriFlux site.
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Figure C.58: Same as Figure C.56 but for the KM1 AmeriFlux site.
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Figure C.59: Same as Figure C.56 but for the Ro1 AmeriFlux site.
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C.4.6 PAR0 Drop Experiment

Figure C.60: Same as Figure 4.1 but for the PAR0 parameter drop experiment.
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Figure C.61: Same as Figure C.60 but for the Ne3 AmeriFlux site.
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Figure C.62: Same as Figure C.60 but for the KM1 AmeriFlux site.
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Figure C.63: Same as Figure C.60 but for the Ro1 AmeriFlux site.

181



Appendix D

Seasonal Analysis

D.1 Whole Data Set Simultaneously

D.1.1 Winter (DJF)

Figure D.1: Same as 4.4 except for during the winter (DJF) months.
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Figure D.2: Same as D.1 except for the Ne3 AmeriFlux site.
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Figure D.3: Same as D.1 except for the KM1 AmeriFlux site.
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Figure D.4: Same as D.1 except for the Ro1 AmeriFlux site.
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D.1.2 Spring (MAM)

Figure D.5: Same as 4.4 except for during the spring (MAM) months.
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Figure D.6: Same as D.5 except for the Ne3 AmeriFlux site.
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Figure D.7: Same as D.5 except for the KM1 AmeriFlux site.
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Figure D.8: Same as D.5 except for the Ro1 AmeriFlux site.
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D.1.3 Summer (JJA)

Figure D.9: Same as 4.4 except for the KM1 AmeriFlux site.
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Figure D.10: Same as 4.4 except for the Ro1 AmeriFlux site.
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D.1.4 Autumn (SON)

Figure D.11: Same as 4.4 except for during the autumn (SON) months.
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Figure D.12: Same as D.11 except for the Ne3 AmeriFlux site.
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Figure D.13: Same as D.11 except for the KM1 AmeriFlux site.
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Figure D.14: Same as D.11 except for the Ro1 AmeriFlux site.
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D.2 ER/GEE Separately

D.2.1 Winter (DJF)

Figure D.15: Same as D.1 except for fitting ER and GEE separately.
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Figure D.16: Same as D.15 except for the Ne3 AmeriFlux site.
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Figure D.17: Same as D.15 except for the KM1 AmeriFlux site.
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Figure D.18: Same as D.15 except for the Ro1 AmeriFlux site.
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D.2.2 Spring (MAM)

Figure D.19: Same as D.15 except for during the spring (MAM) months.
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Figure D.20: Same as D.19 except for the Ne3 AmeriFlux site.
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Figure D.21: Same as D.19 except for the KM1 AmeriFlux site.
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Figure D.22: Same as D.19 except for the Ro1 AmeriFlux site.
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D.2.3 Summer (JJA)

Figure D.23: Same as D.15 except for during the summer (JJA) months.
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Figure D.24: Same as D.23 except for the Ne3 AmeriFlux site.
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Figure D.25: Same as D.23 except for the KM1 AmeriFlux site.
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Figure D.26: Same as D.23 except for the Ro1 AmeriFlux site.
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D.2.4 Autumn (SON)

Figure D.27: Same as D.15 except for during the autumn (SON) months.
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Figure D.28: Same as D.27 except for the Ne3 AmeriFlux site.
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Figure D.29: Same as D.27 except for the KM1 AmeriFlux site.
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Figure D.30: Same as D.27 except for the Ro1 AmeriFlux site.
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D.3 α2 Drop Experiment

D.3.1 Winter (DJF)

Figure D.31: Same as D.1 except for the α2 parameter drop experiment.
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Figure D.32: Same as D.31 except for the Ne3 AmeriFlux site.
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Figure D.33: Same as D.31 except for the KM1 AmeriFlux site.
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Figure D.34: Same as D.31 except for the Ro1 AmeriFlux site.
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D.3.2 Spring (MAM)

Figure D.35: Same as D.31 except for during the spring (MAM) months.
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Figure D.36: Same as D.35 except for the Ne3 AmeriFlux site.
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Figure D.37: Same as D.35 except for the KM1 AmeriFlux site.
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Figure D.38: Same as D.35 except for the Ro1 AmeriFlux site.
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D.3.3 Summer (JJA)

Figure D.39: Same as D.31 except for during the summer (JJA) months.

220



Figure D.40: Same as D.39 except for the Ne3 AmeriFlux site.
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Figure D.41: Same as D.39 except for the KM1 AmeriFlux site.
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Figure D.42: Same as D.39 except for the Ro1 AmeriFlux site.
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D.3.4 Autumn (SON)

Figure D.43: Same as D.31 except for during the autumn (SON) months.
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Figure D.44: Same as D.43 except for the Ne3 AmeriFlux site.
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Figure D.45: Same as D.43 except for the KM1 AmeriFlux site.
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Figure D.46: Same as D.43 except for the Ro1 AmeriFlux site.
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D.4 k3 Drop Experiment

D.4.1 Winter (DJF)

Figure D.47: Same as D.1 except for the k3 parameter drop experiment.
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Figure D.48: Same as D.47 except for the Ne3 AmeriFlux site.
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Figure D.49: Same as D.47 except for the KM1 AmeriFlux site.
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Figure D.50: Same as D.47 except for the Ro1 AmeriFlux site.
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D.4.2 Spring (MAM)

Figure D.51: Same as D.47 except for during the spring (MAM) months.
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Figure D.52: Same as D.51 except for the Ne3 AmeriFlux site.
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Figure D.53: Same as D.51 except for the KM1 AmeriFlux site.
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Figure D.54: Same as D.51 except for the Ro1 AmeriFlux site.
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D.4.3 Summer (JJA)

Figure D.55: Same as 4.5 except for the KM1 AmeriFlux site.
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Figure D.56: Same as 4.5 except for the Ro1 AmeriFlux site.

237



D.4.4 Autumn (SON)

Figure D.57: Same as D.47 except for during the autumn (SON) months.
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Figure D.58: Same as D.57 except for the Ne3 AmeriFlux site.
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Figure D.59: Same as D.57 except for the KM1 AmeriFlux site.
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Figure D.60: Same as D.57 except for the Ro1 AmeriFlux site.
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D.5 λ Drop Experiment

D.5.1 Winter (DJF)

Figure D.61: Same as D.1 except for the λ parameter drop experiment.
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Figure D.62: Same as D.61 except for the Ne3 AmeriFlux site.
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Figure D.63: Same as D.61 except for the KM1 AmeriFlux site.

244



Figure D.64: Same as D.61 except for the Ro1 AmeriFlux site.
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D.5.2 Spring (MAM)

Figure D.65: Same as D.61 except for during the spring (MAM) months.
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Figure D.66: Same as D.65 except for the Ne3 AmeriFlux site.
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Figure D.67: Same as D.65 except for the KM1 AmeriFlux site.
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Figure D.68: Same as D.65 except for the Ro1 AmeriFlux site.
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D.5.3 Summer (JJA)

Figure D.69: Same as D.61 except for during the summer (JJA) months.
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Figure D.70: Same as D.69 except for the Ne3 AmeriFlux site.
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Figure D.71: Same as D.69 except for the KM1 AmeriFlux site.
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Figure D.72: Same as D.69 except for the Ro1 AmeriFlux site.
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D.5.4 Autumn (SON)

Figure D.73: Same as D.61 except for during the autumn (SON) months.
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Figure D.74: Same as D.73 except for the Ne3 AmeriFlux site.
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Figure D.75: Same as D.73 except for the KM1 AmeriFlux site.
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Figure D.76: Same as D.73 except for the Ro1 AmeriFlux site.
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D.6 PAR0 Drop Experiment

D.6.1 Winter (DJF)

Figure D.77: Same as D.1 except for the PAR0 parameter drop experiment.
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Figure D.78: Same as D.77 except for the Ne3 AmeriFlux site.
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Figure D.79: Same as D.77 except for the KM1 AmeriFlux site.
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Figure D.80: Same as D.77 except for the Ro1 AmeriFlux site.

261



D.6.2 Spring (MAM)

Figure D.81: Same as D.77 except for during the spring (MAM) months.
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Figure D.82: Same as D.81 except for the Ne3 AmeriFlux site.
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Figure D.83: Same as D.81 except for the KM1 AmeriFlux site.
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Figure D.84: Same as D.81 except for the Ro1 AmeriFlux site.
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D.6.3 Summer (JJA)

Figure D.85: Same as D.77 except for during the summer (JJA) months.
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Figure D.86: Same as D.85 except for the Ne3 AmeriFlux site.

267



Figure D.87: Same as D.85 except for the KM1 AmeriFlux site.
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Figure D.88: Same as D.85 except for the Ro1 AmeriFlux site.

269



D.6.4 Autumn (SON)

Figure D.89: Same as D.77 except for during the autumn (SON) months.
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Figure D.90: Same as D.89 except for the Ne3 AmeriFlux site.
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Figure D.91: Same as D.89 except for the KM1 AmeriFlux site.
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Figure D.92: Same as D.89 except for the Ro1 AmeriFlux site.
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