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Abstract

The purpose of this thesis is to construct the spectral theory of Dirac
operators with measures, create a bridge between Dirac operators and
canonical systems, and discuss the de Branges spaces of a Dirac operator.

To properly interpret the Dirac equations, we invoke Jan Persson’s bril-
liant work [1], which is relative to linear measure differential equations.
The main difficulty we have to face here is discontinuity. Unlike works in
[12] by Jonathan Eckhardt and Gerald Teschl, as well as [13] by Christian
Remling and Ali Ben Amor, in which the second derivative guarantees
the absolute continuity of solutions, this property fails when considering a
first-order equation. In all, we will deal with functions of bounded varia-
tion rather than absolutely continuous functions.

In Chapter 2, we give a fundamental background, and more details can
be found easily in some standard textbooks, for instance, [2,3,8,9,10]. In
Chapter 3, we give an explanation of Dirac operators and discuss some
properties of such an operator. After that, in chapter 4, we construct
boundary conditions, self-adjoint realization, and Weyl theory as well.
When assuming the limit point case at infinity, we derive the unique Weyl
function which is Herglotz as the limit of Weyl circles. With this func-
tion, we obtain the spectral measure of a Dirac operator, and finally, we
reach out to the spectral representation theorem. In Chapter 5, we show
that Dirac operators are some special canonical systems. There, Volpert’s
chain rule plays an essential role, and integral should be treated care-
fully. In Chapter 6, we introduce de Branges spaces generated by Dirac
operators, and we try showing that a Paley-Wiener space endowed with a
proper inner product gives a Dirac operator with an absolutely continuous
measure with respect to Lebesgue measure.

vi
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Chapter 1

Introduction

The Dirac equation is a relativistic wave equation derived by physicist

Paul Dirac in 1928 to describe particle physics. In this paper, we want to

investigate
, 0 —1
S —nf=gJ=
1 0
) H1o 2
where p is a 2x2 measure on the Borel sets of [0, 00),and p =
M2 — 1

satisfying | ;] ([0, V]) < oo for all N > 0.

If this measure p is absolutely continuous with respect to the Lebesgue
measure, we just go back to a regular Dirac operator, and in that case,
this equation can be interpreted easily as a regular differential equation;
however, since singular measures are allowed here, a careful interpretation

1s indeed needed.

0o

Let’s take a Dirac-like measure for instance. Consider pu = where

00



0 is Dirac measure at some point xy. On one hand, we may expect a jump
point at zy which makes the solution discontinuous at x(, and this gives
a difficulty to determine the value of the solution at zy; moreover, this
even causes the catastrophe: the lack of existence and uniqueness of the
solution when talking about initial value problem, which is necessary and
automatic in classical theory. On the other hand, unlike in classical theory,
we need to interpret the integral carefully: if the measure is absolutely con-
tinuous, it doesn’t matter how one defines the integral on a closed interval

or an open one, but this does matter when the measure is not good enough.

With a compatible interpretation that we come up with in Chapter 3 which
can be used for singular measures and continuous measures with respect
to the Lebesgue measure, we construct the spectral theory of Dirac oper-
ators in Chapter 4: those topics contain the construction of self-adjoint
realizations by von Neumann theory and Cayley transformation, general

boundary conditions, Weyl theory, and spectral representation theorem.

A canonical system is defined as follows:

on an open interval z € (a,b), —oo < a < b < oo, where z is a complex

number, and H satisfies: (1) H € R**2, (2)H € L} (a,b), (3) H is Her-

loc

mitian and positive definite.



The first difficulty of this system comes from the definition: those sys-
tems, basically speaking, are not operators in general due to some coef-
ficient matrices H(x) which are not invertible; however, by considering
relations rather than graphs in suitable Hilbert spaces, we can still con-
struct self-adjoint realizations, boundary conditions, Weyl circles, etc. For

more details, please see [2].

A well-known fact is that Jacobi and Schrodinger equations can be rewrit-
ten as canonical systems, also see [2]. We also expect to construct a bridge
between canonical systems and Dirac operators, and this is the main result

in Chapter 5. Some corollaries will be used in Chapter 6 as well.

People are also interested in the inverse spectral theory. In Chapter 6
We use de Branges theory to investigate this topic: we want to show that
de Branges spaces generated by a Dirac operator are Paley-Wiener spaces

endowed with some proper inner product, and the inverse is partially true.

Organization of Text:

In Chapter 2, we introduce some definitions, theorems, and conclusions
Since those kinds of stuff are classical and can be found in standard text-
books, for example [2,3,5,8,9,10], we just present them without any proofs,

and we assume readers can find them easily.
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In Chapter 3, we introduce Dirac operators with measures and some basic
properties we need to develop our topic. There, we focus on the work by
Jan Persson [1], and Jan Persson’s work will be introduced in chapter two
as well. Jonathan Eckhardt and Gerald Teschl’s work is also enlightening,
see [12], but we don’t invoke this paper there. Christian Remling and
Ali Ben Amor’s work [13] is also relative to schrodinger operators with
measures, but the essential difficulty we need to deal with in this thesis
is about discontinuity, which is totally different from the papers we men-

tioned above.

In Chapter 4, we construct the spectral theory of Dirac operators. In
section 4.1, we describe self-adjoint restrictions by von Neuwmann’s the-
ory and depict boundary conditions of Dirac operators. In section 4.2, we
construct Weyl theory to derive the Weyl function, which gives spectral
information of a Dirac operator, and after that, we give the spectral rep-

resentation theorem.

In Chapter 5, we construct the relation between canonical systems and
Dirac operators. We conclude that Dirac operators are special canonical

systems with some particular conditions.

In Chapter 6, we want to focus on the inverse problem. We first show that

de Branges spaces of a Dirac operator on any intervals are Paley-Wiener

4



spaces endowed with proper inner products, and those inner products are
related to a Llloc function; inversely, any Paley-Wiener space with a proper
inner product gives a Dirac operator on an interval. There, reproducing
kernels and conjugate kernels of a de Branges space play an important role,
and the technical point is to analyze the regularities of two integral equa-
tions originating from those kernels, so Fredholm theory and de Branges

theory can be applied.



Chapter 2

General Background

In this chapter, we present a fundamental introduction to Herglotz func-
tions, canonical systems, de Branges theory, and integral operators. we
have to assume that readers have a basic background (For instance, Hilbert
spaces, Lebesgue integral, holomorphic functions, measures, etc.), and we
believe that readers have the ability to find out details from standard

textbooks, for example, [2,3,5,8,9,10].

2.1 Herglotz Functions

Herglotz functions, sometimes called Nevanlinna functions, play a signifi-
cant role when it comes to the spectrum of Dirac operators with measures,
especially, the Weyl function of a Dirac operator is Herglotz, and this func-
tion gives the spectral measure of the operator. We introduce this topic
briefly here without any proofs, for readers who are interested in this topic,

please see [2],[5],[6].



We call a function (generalized) Herglotz if it is holomorphic from C*
to (CT) C+. It is well known that a generalized Herglotz function F has

the Herglotz representation

1 t
F(z) = b — dp(t
(@) =abe+ [ (o = el
where a in R, b > 0, and p a positive Borel measure on R with fR ?ffl) < 0.

Remark. F'is a generalized Herglotz function if either it is a Herglotz

function or F' = a € R

Moreover, the triple (a,b, p) can be realized from a Herglotz function as

follows:
- ()
a—Re(F(z)),b—Zh_{gO .
with Im(z) > € > 0,
dp(t) = 2w* — Tim ImF(t + iy)dt
p(t) = Zu" = Jim ImF(t +iy

in the sense of weak* convergence.

Sometimes, it is useful to rewrite a Herglotz function as follows:

Fz) = a+/R 1t+tzdv(t)

—Z

where dv(t) = mdp(t) + bise.

The advantage of this form is that v is finite on the compact space R.



Weyl functions, also known as Weyl-Titchmarsh functions, can be de-
scribed as Herglotz functions, see [2] and chapter 4 in this thesis. The
measure in the Herglotz representation is indeed the spectral measure of
the corresponding operator in the spectral representation theorem, also see
[2]. Hence, we want to depict supports of the absolutely continuous part
and the singular continuous part of the measure in the triple.

Let

Yae={t €R:0< lim ImF(t+iy) < oo}
y—0+

Ys={teR: lim ImF(t+iy) = oo}
y—0+

then o,.(p) = Sue 7 and Xy is a support for the singularly continuous part

of p.

We are also interested in the convergence of a sequence of Herglotz func-
tions. Let F be the set of all generalized Herglotz functions with the
topology of locally uniformly convergence. This space is metrizable, but
we don’t need this metric here. The following theorems show the connec-
tion between the convergence of Herglotz functions and the convergence

of those triples (a, b, p) or equivalently, (a,v).

Theorem 2.1 F is compact.
Theorem 2.2 Let F,,, F € F\ {oc}. Then

(1) F, — F if and only if a,, = a and v, — v in weak® sense;



(2) F, — oo if and only if |a,| + v,(Ry) — 00

2.2 Canonical Systems

Canonical systems are differential equations that generalize some famous
differential equations such as Dirac equations, Jacobi equations, and schrodinger
equations.

Precisely, a canonical system is defined as follows:
u'(z) = zJH(z)u(z)

on an open interval z € (a,b), —oo < a < b < oo, where z is a complex

number, and H satisfies: (1) H € R*? (2) H € L} (a,b), (3) H is
Hermitian and non-negative definite for (Lebesgue) almost all = € (a,b).

We denote the collection of all canonical systems on (0, N)((0,00)) by
C(N)(C).

The proper Hilbert space when talking about a canonical system is not
L*(a,b) anymore, but a space called L3(a,b) instead.

Let’s define
b
L={f:(a,b) = C*: f(Borel) measurable, / ffHf < oo}

with norm ||f|| = (f f*Hf)?.



The Hilbert space is defined as the quotient
L3(a,b) == L/N

where N'={f € L :||f|| = 0}.

By Weyl theory, it is well known that under the assumption of the limit
point case at oo, if f denotes the (unique, up to a factor) non-trivial
L%(0, 00) solution of v/(z) = zJH (x)u(z) on [0,00), then the Weyl func-

tion is given by
_ f1(07 Z)
f2(07 Z)

Moreover, Weyl functions are Herglotz, See [2] for more details.

m(z)

In the sequel, we always denote by u, v the solution of

u'(x) = zJH(z)u(x)

satisfying u(a, z) = ,v(a, z) = respectively when we talk about
0 1

canonical systems on (a, b).

Analogously as we mentioned above, Weyl functions are important be-

cause they contain spectral information about canonical systems. Roughly

10



speaking, if we assume the limit point case at oo, let
Uf = / (s, ) H(s)f(s)ds, f € U L%(0, N)
0 N>0

Uf = ]\E%O Uxpo.nf), f € L%(0, 00)

define a unitary map U : L%(0,00) — L*(R, p) (here, limit is norm limit
in L*(R, p)), where p is the measure from the Herglotz representation of
the Weyl function m given above, then this map together with the spectral

measure p provides a spectral representation.

If the coefficient H in a canonical system is a constant matrix up to a
function on R, we then can anticipate solving the equation directly, and
we may ~delete” those parts from H to simplify the coefficient. We call
this scenario singular.

A point = € (a,b) is called singular if there is § > 0 and is a vector
v # 0 € R? such that H(t)v = 0 for almost all |t — x| < §. A non-singular
point is called regular.

Obviously, the set of all singular points is open, hence is the union of open

intervals, and we call those connected components singular intervals.

Now, we can describe Weyl functions more adequately: theorem 2.3 below
says the value of the coefficient b in the Herglotz representation of the Weyl
function is relative to the length of the first singular interval of a given

type, theorem 2.4 and 2.5 depict the spectral measure when it comes to

11



singular intervals (regular points). See [2] for details.

Theorem 2.3 Consider a canonical system on [0,00). Assume the limit
point case at oo, and let m be the Weyl function. The coefficient in the
Herglotz representation of m, b > 0 if and only if (0,00) starts with a

singular interval of type es.

Theorem 2.4 Under the assumptions of theorem 2.3. Then p(R) < oo if
and only if:

(1) (0, 00) starts with a singular interval of type e, # eg, or

(2) (0,00) starts with a singular interval of type ey, immediately followed

by a second singular interval.

Theorem 2.5 Under the assumptions of theorem 2.3. The spectral mea-
sure is compactly supported if and only if the number of regular points on

any finite interval is finite.

2.3 De Branges Functions and Spaces

De Branges theory was developed first by de Branges in his four papers
[21,22,23,24], this theory can be applied to the inverse spectral theory
since the unitary map U in the spectral representation actually provides

an isometry between a de Branges space and the Hilbert space, see [2].

12



A de Branges function is an entire function E such that |E(z)| > |E#(2)]

for » € C*. Here, E#(2) = E(Z). The de Branges space of F is defined as
F F#
B(E) := {F : F entire, —,— € H*
(E) :={ entire, —,— € }
where H? = H?(C") is the Hardy space on the upper half plane.

One of the most important observations is that, if £ is a de Branges

function, then B(FE) is a Hilbert space with the inner product

[Rmzléfmmw

v

[E()[*

Moreover, the reproducing kernels

are in B(F), and [J,, F] = F(w) for all F' € B(F),w € C.

De Branges functions can be determined by de Branges spaces to some
degree, that is, let £y, F» be de Branges functions. B(F;) = B(FE,) if and
only if

RGEQ R6E1

M

]mE2 [mE1
for some M € SL(2,R).
Here, B(FE;) = B(FE,) means they share the same functions and are iso-

metrically equal to one another as Hilbert spaces.

13



In L. de Branges’s four brilliant papers, he came up with some profound
theorems, including the characterization of de Branges spaces, the ordering
theorem, connection with canonical systems, etc., see [2,16,17] for details,
we just state those results without proofs, and readers may omit the rest

part of this section on a first reading until Chapter 6.

Theorem 2.6 characterize a Hilbert space as a de Branges space.

Theorem 2.6 Let H be a Hilbert space whose elements are entire func-

tions. Assume that:

1) For every z € C, point evaluation z(F) := F(z) € H*;

2) If F € H with F(w) =0, then G(z) = Z2F(z) € H and ||F|| = ||G||;

—w

W

3) ' — F7 is isometric on H.
Then H = B(F) for some de Branges function F.
conversely, if B(FE) is a de Branges space, then it satisfies those assump-

tions above.

If we give an extra condition, we even have an order among different de
Branges spaces (Theorem 2.7). We call a de Branges space B(F) regular,
if for all zy € C,

F(z) = F(%)
Z — 20

F e B(F)= 5. F(z) = € B(E)

14



where S, F(z9) = lim S, F(z).

Z—r20
If we have two de Brange spaces B(FE1), B(Es), then we say B(F;) C B(E»)
if B(E4) be isometrically contained in B(FE»).
Theorem 2.7(the Ordering Theorem) Let B(F), B(E1), B(E>) be reg-
ular de Branges spaces and B(E}), B(F2) C B(E), then either B(E;) C

B(E) or B(E>) C B(E)).

There is a natural connection between regular de Branges spaces and
canonical systems, i.e., as mentioned above, the spectral representation
gives a de Branges space that is regular; and we can recover a canonical
system from a de Branges space as follows:

Theorem 2.8 If B(F) is a regular de Branges space, £(0) =1 and N > 0,
then there is a coefficient H(x) of some canonical system on (0, V) such
that E(z) = u1(V, z) —iua (N, z). Moreover, H can be chosen so that trH

1S a positive constant.

Now, we turn to the type of an entire function. An entire function F
is said to be of exponential type if |F(z)| < C(r)e™l, (2 € C) for some
7 > 0. the infimum of the 7 > 0, denoted by 7(F), is called the type of F.
If we consider a canonical system on [0, N] with H € L'(0, N), then the

type of En(2) = ui(N, z) — iug(N, z) is given by

™(E) = /O VdetH(z)dx

15



The next theorem contains information about reproducing kernels and
conjugate kernels. Roughly speaking, those kernels can be treated as a
basis of a Hilbert space.

Theorem 2.9 Let H be a canonical system on (0, V) defined in the section

2.2, then the space

B(Ew) = {F(2) = | w(e9H@)(@)ds: ] € L(0.V)

is a regular de Branges space with En(z) = ui(N, 2) — ius(N, 2).

1) The reproducing kernels are given by

hence K, (z) € B(En).

3) Define F(z) := [K., F] for F(z) = fN w*(z,Z)H (z) f(x)dz, then F(z) =

0
fON v(x,Z)H (z) f(z)dz. Moreover, assume 0 < Ny < Ny and F' € B(Ey,),
then

[KiNl),F]B(ENl) — [K§N2),F]B(EN2)

4) For all F,G € B(Ey),we have

F(0)G(0) — F(0)G(0) = [SoG, F]| — [G, SyF]

16



5) The space B, := {F € B(Ey) : 7(F) < 7n(F)} is also a de Branges

space and B; = B(F,), where a = max{z € R: 7,(F) < 7v(E)}.

Paley-Wiener theorem is not a main topic in de Branges theory, but it
is strongly related to topics we are interested in in this thesis, so we put

it here to emphasize its importance.

Theorem 2.10 (Paley-Wiener theorem) Let F' be an entire function, then
the following is equivalent:

(1) F = [ f(s)e™**ds for some function f € L*(—L, L);

(2) |F(2)] < C(L)e!, (2 € C) for some constant C(L) > 0 and F(t) €

L2(R).

2.4 Integral Operators

Integral operator theory is a large topic in analysis, we also need to deal

with some operators by Fredholm theory.

Young’s inequality for integral operators is broadly used. We assume X,Y
are measurable spaces, and K : X x Y — R is measurable. Let p,q,r > 1

suchthat%—i—%:%—i—l. If

( /X K (r,y)Pdr)t < C

17



and

nguwW@ﬁsc

for all z € X and all y € Y respectively,

([ 1] Kaaswalany < o 15w

Especially, if the kernel is given by a function f(z — y), we have Young’s

then

Convolution Inequality

1 gll- < [[£1lpllglly

Young’s inequality can be used for Hilbert-Schmidt integral operators,
that is, let My, My be measurable subsets of RP, RY respectively, and K &€

L*(My x M), the operator

T : L*(M,) — L*(M))

Tf(x) = y K(x,y)f(y)dy

One of the most famous results is that Hilbert-Schmidt integral operators

are compact. See [10].

We always need to estimate the upper bound of a solution, hence Gron-

wall’s Inequality is helpful. Suppose f, g are non-negative functions on

18



0, L], with f continuous and g € L*(0, L). If

flz) <a+ / g0 (0)de

then

f(z) < aelo 9O

Abstractly, the compactness of an operator is significant once we want to
know the existence and the uniqueness of solutions, so we invoke Fred-
holm theory here. Let X Y be Banach spaces and 7': X — Y a bounded
linear operator. T is called Fredholm if its kernel ker(7") and cokernel
coker(T) =Y \ Ran(T) are finitely dimensional and Ran(T) is closed (the
condition about the range is actually redundant). The index is defined by

ind(T) := dimker(T) — dimcoker(T).
Theorem 2.11 Let X,Y be Banach spaces, and T': X — Y compact,

then 1 4+ T is Fredholm with ind(1 + 7T) = 0, i.e., dimker(1 +T) =

dim(Y \ Ran(1l + K)).

19



Chapter 3

Dirac Operators with Measures

In this chapter, we discuss the general definition of a Dirac operator with
a measure as the coefficient which is related to the differential equation

Jf"— uf = g, and investigate some basic properties we need in the future.

As we introduced in Chapter 1, the equation above should be interpreted
carefully because of the potential discontinuity of the solution (the mea-
sure). Due to the form of this equation, we can intuitively say that the
solution is of bounded variation because the derivative (in the sense of dis-
tribution) is a measure. In section 3.1, we introduce (complex) functions
of bounded variation and three theorems by Jan Persson; in section 3.2,
we give a compatible definition of a Dirac operator, and we investigate
some useful topics such as the transfer matrix, variation of constants and

whether the operator is densely defined, etc.

20



3.1 Basic Concepts

Let N be a positive number. We call a function f € L0, N] from R to C

of bounded variation (on [0, N]), if the total variation of f, defined by

_sup{/ Bdt - ¢ € CH[0, N],R), ||||r~ < 1}

is finite. And we use the notation BV[0, N] to represent the collection of

all bounded variation functions on [0, N], i.e.,
BV[0,N]:= {f € L'[0, N] : V§" (f) < o0}

This definition is equivalent to that the real part and the imaginary part

of f are of bounded variation in the sense of real functions.

f
It f = : is a function from R to C x C, we call f is of bounded

f2

variation (on [0, N]) if f; and f5 are in BV'[0, N], and we also use the same

notation BV[0, N], i.e.,

BV[0,N] :={f = I e L'0,N]: VN(fy) < 00,i = 1,2}

/2

We also define the total variation of f by

Vo' (f) —maX(Vo (fi)

21



We also need to consider the half-line problem. We define the space of all

locally bounded variation functions by

BV|[0,00) :={f = i € L;,,[0,00) : V{¥(f) < 00 for all N > 0}

fa

Analogously, we say a matrix is in BV'[0, N](BV[0,00)) if all entries are
in BV[0, N](BV[0,0)).

Remark. Even though we use the same notation for different categories,
there is no confusion: all components are of (locally) bounded variation.
People may be interested in the Tonelli-like, pointwise definition, i.e., the
definition containing the sum of differences. The equivalence of those two
definitions under some conditions is a difficult topic, and we don’t want
to discuss it, for readers who want to know more about this topic, see

[chapter 7, 15] by Giovanni Leoni.

M1 2
Let u be a 2 x 2 signed Borel measure on [0, c0) of the form ,

M2 —H1
we define the set of such measures as follows:

DS = {p: (1) max(|i[ ([0, N]) < 0o for all N> 05 (2) p(10}) = 0}

Here, condition (2) is not essential, and we require this normalization just
to avoid discussing the left limit of the solution at 0, as we will see later;
but of course, there is no technical difficulty if we remove this condition.

On the other hand, condition (1) is essential because it gives a complex

22



measure when considering the cut-off of a measure from DS so that we can
apply Jan Persson’s theorem; moreover, this condition also implies that
there are only countably many points in any compact subset of [0, 00) such
that u{z} # 0 at those points. Here, and in the sequel, to avoid too many
notations, we will write u{z}(u(a, b)) rather than p({x})(u((a,b))) if there

1s no confusion.

Given p € DS, it is also convenient to define the set of all jump points of
1L
S() = {x € (0,00) : ) # 0}

Assume p € DS and f € L, (n),we interpret integral [ duf as follows:

loc

w fusdnf x>a
[ awr=4 (3.1)
a —f(%a]d,uf r<a

Recall that if f, h are functions of locally bounded variation from R to
C, then integration by parts is given by

f(x+)dh+/ df h(z—) = f(b+)h(b+) — f(a—)h(a—)

[a,b] [a,b]

here, d means the relevant Lebesgue—Stieltjes measure associated with the
right-continuous representation of the function. See [3,(21.68)] for exam-

ple. (Even though the formula is not for vector functions in [3], it’s not
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hard to get our version from the original one.)

We still need some notations with respect to matrices. Assume D =

Dy D 22 :
€ C**%, the supremum norm of D is defined by ||D|| =

Ds D,

max;—1234(]D;]). This norm is equivalent to the spectral norm ||D||s,
which is defined as the largest singular value, more precisely, we have
|D|| < ||D]]2 < 2||D]|. We also observe that the supremum norm is not
sub-multiplicative: ||DyDsl|| < 2|| D1l - || Doll-

We introduce a function, denoted by g, from C?*? to C**;

o Dn—l
9(D) = Z nl
n=1 )

Especially, recall an important constant matrix J =

Now, we are ready to state Jan Persson’s work, see [1] for the general

situation.

Theorem 1.[1] Let A be a 2 x 2 complex Borel measure on the real
line and [ the identity matrix. Let k be a 2 X 1 complex Borel measure
on the real line.

If A{x} + I is invertible for all z € R, then to each choice of C' € C?,

there is a unique solution f, which is of locally bounded variation and
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right continuous, of

f(:z:):C—/Odi(t)er/Oxdk(t), 23>0

and
f(x):CwL/di(t)f—/mdk(t), r <0

Here, the integral should be explained as (3.1).
The approximation below plays a significant role in the sequel.

Let A and k be as in the hypothesis of Theorem 1. Let ¢ € C(R)
with ¢ > 0, [¢(t)dt = 1, and suppp C [—1,1]. Let ¢ > 0 and define

Ge(x) == —dj(%:l). Let

- / bl — 1)dA(H) (3.2)
R

and

— /R ez — t)dk(t) (3.3)

Theorem 2.[1] Let A be a 2 x 2 complex Borel measure on the real line
and k a 2 x 1 complex Borel measure on the real line. Let € > 0, C' € C?

and let f. be the solution of

—C- / (t)fdt + / ke (t)dt (3.4)
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Then the family {f. : 0 < e < 1} is uniformly bounded under the supreme
norm of a vector in any compact subset of R.
Theorem 3.[1] Under the assumptions of theorem 2. As e — 0, the family

{fe: 0 < e <1} converges pointwisely to the unique solution f of

f(2)=C - / " G(A{NAAM) S + / " g(A{)dR(D), x> 0

and

f2)=C+ / " G(A{N)AA()f — / " GA{D) k(D). x <0

We need to recall some facts from complex functions. Also see Chapter 1
for more details.

Given a generalized Herglotz function F', we have the Herglotz represen-

tation
F(z)=a+b +/( L e (3.5)
z)=a+ bz — :
R t— 2z t2 + 1 p
where a in R, b > 0, and p a positive Borel measure on R with fR ?ffl) < 00

we introduce Mobius transformation

a b az+b
z = d,z
¢ d cz +

€ Cy

where a,b,c,d € C and ad — bc # 0.

The next theorem is useful.
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Theorem 4.[2] Let A € SL(2,C). Then the Mobius transformation

Az — Az is Herglotz if and only if i(J — A*JA) > 0.

3.2 the Properties of Dirac Operators

Let € DS, we want to interpret the differential expression Jf' — uf on

[0, 00).

Fix a > 0, define

Afa) = J1@) ~ [ glus})ins

if f € BV|0,00) is right continuous.

This definition makes sense. For f € BV[0,c0), we know the existence of

the left limit and the right limit everywhere, hence, even if this function

fisin L}

loes the right continuous representation is subsistent and unique.

Moreover, Af is also right continuous. Now, we introduce an operator 71":
D(T) :={f € L*[0,00) : f € BV[0,00) and right continuous,

Af € AC[0,00), (Af) € L*[0,00)}

Tf=—(Af)

As expected, we say f € AC[0,00) if f € AC|0,b] for all b > 0, i.e, f

is locally absolutely continuous. Here, even though we have a constant a,
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the choice of a > 0 is irrelevant to the definition of 7.

Moreover, let k € L*[0,00), and we consider the following integral equa-

tion:
15 = [ gtuts)aus = ¢ [ rat (3.6)

where C' is a constant.

This equation implies that f(x) is determined by values of f between a
and z. For N > 0, we define k(z) = X~ (2)k(z) and 1 = p on [0, N]
and @ = 0 outside, then Jan Persson’s Theorem 1. gives the existence and
uniqueness of the solution of (3.6) when substituting k£ and u by k and
the complex measure p, it follows that 7' is indeed an operator. Moreover,
since the solution is of locally bounded variation and right continuous, we
conclude that f can be extended to 0. This fact also indicates that it is
reasonable in the definition of D(T") to assume f € BV[0, 00) rather than

f € BV(0,00). For convenience, in the sequel, we always assume a = 0.

We are also interested in J f — pf on the interval [0, N]. The operator Ty

is defined as follows:
D(Ty) :={f € L*[0, N] : f € BV[0, N] and right continuous,
Af € AC[0, N, (Af)' € 12[0, N}

Inf=—(Af)

28



Here, as we mentioned before, £ and p should be treated as k and the

complex measure g in (3.6), and f is the cut-off of the solution of (3.6) on

[0, V.

Claim 3.1 Let f € D(Ty)(D(T)), then f(z—) = e/} f(z). As con-

sequences, f is continuous at u{z} = 0 and f*(z—) = f*(x)e =},

Proof: As Af € AC[0,N], we have lim Af(y) = Af(x), then it fol-

Yy—x—

lows that Jf(z—) = Jf(x) + g(p{z}T)u{z} f () = Je/Hio) f(x) o

This observation also gives a way to define f(0—) if necessary, and by

choice of our measure, it is natural to assume f(0—) := f(0).

We introduce a useful tool called the transfer matrix of the operator T (7).

Basically speaking, the transfer matrix 7" is a 2 x 2 matrix-valued solution

of

JT(z) - / (s} )T = 1

where [ is the identity.

Obviously, T'(0) = I. we sometimes need to write 7" down explicitly as

up v
T(x) = (u(z),v(x)) = , where u and v are vector-valued so-
Uz U2
1 0
lutions of the integral equation satisfying u(0) = and v(0) =
0 1

respectively. Of course, u and v are right continuous and of locally bounded
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variation by definition.
Remark. We can define the transfer matrix 7, analogously for (3.4) if we

let k=0and A= Jpu.
Claim 3.2 det(T'(x)) = 1 for z € [0, 00).

Proof: We observe that (3.4) is equivalent to a regular differential equa-
tion, and it’s easy to show that det(T.(x)) = 1. It follows from Theorem
3. that det(T'(x)) = 113% det(T.(x)) = 1. |
In the sequel, we briefly denote g(u{s}J) by g in the integral for conve-

nience if there is no confusion, i.e., if there is a ”¢” in the integral, then

the prior recognition is g(u{s}J).

Claim 3.3(Variation of Constants). Let f € D(Tx)(D(T)) and Ty f =

k(Tf =k). Assume f(0) = C, then
f(z) =T(z)C +T(x) / ’ T Jkdt (3.7)
0

Proof: Let’s define C(x) := T~ !(z)f(z) with C(0) = C, which is of (lo-

cally) bounded variation.

We have
JT(x)C(x) —/ gduT (s)C(s) = JC —/ kdt (3.8)
0 0
(%) —U1
We claim that C(x) is continuous. Indeed, T71 = is right
—U2 U]
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continuous, and as a product of two right continuous functions, C(z) is
also right continuous. On the other hand, by claim 3.1, we have T'(x—) =

e/ (), then it follows that
Clz—) = T Ya)e /Mt md £ (1) = C(2)

Hence,

Jy 9duT(s)C(s)

~([ gdursNC@) - [ (| gduryices
0 0,2] Jo
= (/ gduT)C(x) —/ (/ gduT)dC +/ gu{s}TdC
0 [0,2] JO [0,x]
Recall that u{s} = 0 except for countably many points; moreover, the
continuity of C' implies C{¢} = C(§) — C({—) = 0 as a measure, it follows

that f[o 2 91{s}TdC = 0. Hence, we have
JT(x)C(x) — [y gduT (s)C(s)

= (JT(z) — /Ox gduT)C(x) + /[W](/OS gduT)dC
= JC(z) +/

( / gduT)dC
[0,2] JO

= J(/Ode—FC’(O)) -I—/Ox(/osgduT)dC
= JC(0) + /Ox(/osngT+ J)dC

= JC(0) + / JTdC

0
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Now, it follows from (3.8) that

/TdC:J/ kdt
0 0

Hence, by the approximation of C2° test functions,

C(z)-C = / dC = / T-'TdC = / T ' Jkdt
0 0 0

This identity implies (3.7). |

Our purpose is to construct spectral theory for T, hence we expect this

operator to be densely defined so that the adjoint 7™ makes sense.

Claim 3.4 D(Ty) = L?[0, N], D(T) = L?[0, o)

Proof: Let f € L*[0, N], we have T-'f € L?[0, N] as T~! is bounded on
[0, N] under the supremum norm. We can pick up a sequence {C},}°°; C
C5°(0, N) such that C, L5 71, then it follows that TC, - f.

We define k,(x) := —JT(x)C!(x), then k, € L*[0, N] since C! is also
bounded. Moreover, Cy,(z) = [ T~ Jkydt.

Now, we consider

Tfu(e) - /0 gy Vg = — /O et
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Theorem 1. shows that f,, € D(Tx), and (3.7) shows

f.(2) = T(x) /0 Tt

ie., fulz) =T (x)Cy(x). It follows from f, i f that D(Ty) = L?[0, N].
To show D(T) = L?[0, 00), we pick up f € L*[0,00). Since xpn]f A f,
we can pick up {C,}>°, C C§°(0,N) such that f, = TC, N X[o.n1f -

Observe that f,(N—) = 0, then claim 1. shows f,(/N) = 0, hence the

function
~ folr) x<N
Jn =
0 >N
is in D(T). it follows from this fact that D(T) = L*[0, c0). |

The relation between Ty and 7T’ is also interesting.

Claim 3.5 Assume N > 0 and C1,Cy € C?, then there is f € D(Ty)

such that f(0) = C; and f(N) = Cs. Moreover, if f € D(Ty), then there

~

is a fe D(T) such that f = xp.nf

Proof: It’s clear that there are many f € D(Ty) satisfying f(0) = Ci,

then by (3.7), there is a k € L?[0, N| such that

f(x)=T(x)Cy + T(x) /Oz T ' Jkdt
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hence the value at NV is given by
N
f(N)=T(N)Cy +T(N) / T Jkdt
0
We define a linear functional
l: L*[0, N] — C?

N
(k) = / T Jkdt
0

We claim that [ is surjective. Indeed, we can write down [ as

— [N Tkt
l(k) =
¥ uTkdt
If | =0, we just pick up k£ = 0.
a
If I(k) = for some a # 0, we pick up a non-trivial k satisfying
0

k e<u >t and k ¢< 7 > and normalize it. Such a k exists, otherwise,
< v >C< u >, then it follows that v and v are linearly dependent, which

contradicts with claim 3.2.

a
If I(k) = for some a # 0 and b # 0, we pick up a non-trivial k
b

satisfying k €< au + bv > and k ¢< u > and normalize it.

As [ is surjective, we conclude that 3k € L2[0, N] such that (k) =
T~H(N)Cy—C1. And this k gives a unique f € D(Ty) satisfying f(0) = C}
and f(N) = Cs.
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To prove the second conclusion, we pick up an arbitrary number M such
that M > N. f € D(Ty) gives a k € L?[0, N] and f(N). By the same
method as above, we can pick up a ke L?[N, M] such that the corre-
sponding f satisfies f(N) = f(N) and f(M) = 0. If we glue f(k) and

~

F(k) together, and set 0 when z > M, then we construct an element in

D(T)(R(T)), and the cut-off on [0, N] of this function is just f. |
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Chapter 4

the Spectral Theory of Dirac

Operators

In this chapter, we want to construct the spectral theory of Dirac operators.

In section 4.1, we first investigate the Wronskian of two functions in the
domain of a Dirac operator, and this concept will be used to character-
ize a closed and symmetric operator. Von Neumann theory with Cayley

transform there can be applied to construct self-adjoint realizations.

In section 4.2, we discuss Weyl theory: we can show that the transfer
matrix is entire as a complex function, then by Mobius transformation
generated by this transfer matrix, we construct Weyl circles. The limit
point case is defined if those circles converge to a point, and the limit
point can be represented by a Herglotz function called the Weyl function
which contains the spectral measure of a self-adjoint realization of the op-

erator we are considering.
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In section 4.3, by using the Green function, we can construct a Hilbert-
Schmidt operator, and Weyl theory allows us to evaluate the spectral mea-
sure explicitly. The spectral representation theorem is established there,

and we give an alternative proof in Chapter 5.

4.1 Self-adjoint Realizations

In this section, we want to construct self-adjoint extensions of T (7). We

define the Wronskian of two functions f and A by

Win(z) = (f*Jh)(z)

If f,h € D(Tn)(D(T)), we have f and h are of (locally) bounded variation
and right continuous, then they satisfy claim 3.1, hence we conclude that

Win(x—) =Wyep(x) = f*(x)Jh(z), especially, this is true for z = 0.

Claim 4.1 Let a < b be positive. Suppose f,h € BV[0, c0), right contin-

uous, and Af, Ah € AC|0,0), then

—/ ((Af))* hdt +/ S (AR dt = Wi (b)) — Wen(a) (4.1)

Proof:

/ f*(Ah)/dt — f*(b)Ah(b) . f*(a—)Ah(a—) B /[ b] i A
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Notice that

f[a’b] df*Ah

- / df* Jh — / df* / gduh)
[a,b] [a,b] 0

b
— df*Jh — *(b duh + f*(a— duh “(z—)qgduh
Aﬂf f(%égu+fw)l;fﬂz+ﬁﬂf@)gu

Hence

b
L/ﬁmmmz—wm@+wm@—/‘ﬁUM- H(@)e = gdpn
a [aab] [avb]

For f ((Af))*hdt, notice that (Af)* = —f*J — [ f*dug(—Jpu{s}), then
the same calculation shows that :

2 (CAF)) hat

= —Win(0) + Wen(a) + [, £ TdR = [ Fr(@)dpg(=Tp{z})e’ *1h
Notice that by integration by parts:

/ f*th+/ df*Jh = Wi p(b) — Wen(a) + f*(g;)(l_e—ﬂ{x}J)th
[a,b] [a’b] [a,b]

Moreover, since g(u{z}J) = 1 almost everywhere with respect to the
Lebesgue measure, we have

@ gdun /[ gy

= Y (F@)(e Y —1)Jh) - £(@)I(1 - M)
xeSN[a,b]

ST P e et —9) gn(a)

zeSna,b]
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We also have

P —e @ dh = 3 f )1 - e ) I(hr) — ha-)

[a,0] xeSN[a,b]

Applying claim 3.1. again, we get

S I (@) (1 = e7537) Jdh

= S £ @Y gdph — [y £ (@)dpg(=Tpda})e

Assemble all identities we have gotten here, we finally get

—/ ((Af))* hdt +/ S (AR dt = Wi p(b) — Wen(a)

Corollary 4.2 Suppose f,h € D(T)(D(Ty)), then

(T f,h)y = (f. Twyh) = lm_ Wyp(z) — Wy p(0)

x—00(N)

as the inner product in L?.

Proof: Let b — oo(N) and a — 0 in (4.1), and recall that f and h

can be extended to 0. [ ]

From now on, we briefly denote lim Wy (z) by Wyp(oo), lim f(x) by
T—00 T—00
f(o00) and T by T, hence, the notation, T, is indeed T"if N = oco. Also,
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to simplify notations, we simply write W [0 := W, (N) — Wy, (0).

We denoted the adjoint of Ty by Ty, i.e.,

and we define an operator T,, as follows:

D(T,,) ={f € D(Ty) : f has compact support on (0, N)}

Claim 4.3. T; C Ty

Proof: Let f € D(T}), then Yk € D(T,,), 3h € L?[0, N](L?*[0,0)) such
that

<f7 Took> - <h7 k>

Theorem 1.,with a little adaption, gives a right continuous solution f; €

BV[0,00) of the equation

f1<x>—/:duf1=—/:hdt

But f; may fail to be in L?[0, N](L?0,0)). By (4.1), with the fact that k

has compact support, we conclude that
N
(h, k) = —((Af1) k) = / fiTnkdt
0
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Notice that T,,k = Tyk, it follows that

N
/0 (f — f1)*Tkdt = 0

That is, Vp € R(T,,), we have fON(f — f1)*pdt = 0.
Observe that,by recalling (3.7), p € R(T,,) if and only if

(1) p € L*[0, NJ(L?[0, 00));
(2) there are 0 < a < b < N such that p = 0 out of [a, b];

(3) fON T~ Jpdt = 0, where T is the transfer matrix.

Let us denote by K the linear subspace of L?[0, N](L?[0,00)) defined just

by condition (2), and consider the following functionals on K:

Fi(k) = (1,0) /ON T Jkdt, Fy(k) = (0,1) /ON T Jkdt

F(k) = / (f = fi)kdt

Condition (3) implies if Fi(k) = Fy(k) = 0 for a k € K, then F(k) = 0.

We invoke a lemma which is discussed in [2]:

Lemma. Let F,...,F,,FF : K — C be linear functionals on a vector
space K and assume NN (F;) C N(F), then F is a linear combination of

F;.
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It follows that F' is a linear combination of Fi, F5, i.e., there is a vector

v € C? such that
N —
/ (f = fi — Tw) kdt = 0
0

for all £ € K.

This is true if and only if f — fi — Tv = 0 locally, hence globally. It

follows that f satisfies

f(:z:)—/oxd,ufzv—/oxhdt

and f € L?[0, N|(L*[0,00)), we conclude that f € D(Ty), i.e., T, C T.1

Corollary 4.4 (1) Ty is closed. (2) T, = T,,, T = Ty; moreover, T,

o

is closed and symmetric.

Proof: (1) Since T,, is also densely defined and T,, C T, = Ty by the
definition of T,,, due to claim 4.3, we have Ty C Ty C Ty C Ty, i.e.,

Ty =Ty

(2) As the adjoint of Ty, T, is closed.
T# = Ty = Ty implies T,, = T = T% = T,. Moreover, Ty = Ty =
T CT;

007

with claim 4.3, it follows that Ty = T = T},. Since T,, C Ty,

we conclude that T, C T}. H
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Claim 4.5 Let f € D(Ty). f € D(T,) if and only if Vh € D(Ty),

Proof: Define an operator T as follows:
D(T) = {f € D(Ty) : W;;(0) = Wy ,(N) = 0,Yh € D(Tx)}

T =Ty

It follows from Corollary 4.2. that TcT,

If there is f € D(Ty) but f ¢ T, then without losing generality, let’s
assume Wy ;,(0) # 0 for some h € D(Ty). Fix h(0), then by claim 3.5.,
we can choose h € D(Ty) such that h(0) = h(0) and h(N) = 0. This h
satisfies ijl(()) = Wy n(0) # 0 and Wfﬁ(N) = 0, hence it follows from
corollary 4.2. that f ¢ T,. This is equivalent to T = T,.

For N = oo, we just need a little adaption: we may cut off the half line

into a finite interval and an infinite interval, then we vary the part of A on

the finite interval. |

Now, we turn to von Neumann Theory of symmetric relations (see[2]),
and introduce the boundary conditions of a Dirac operator with a mea-

sure.
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We define the null spaces of the operator as follows:
Ny =N(i—Ty),N_=N(—i—Ty)
and defect indices of those two spaces:
Y+ = dimNy
By the first formula of von Neumann, we have:
D(Ty) = D(T,)+N,+N_(direct sum)

Tn(fo+ 9+ +9-) =Tofo +igy —ig—, for fo € D(T,),9+ € Ny,g- € N_

Claim 4.6 T, has equal defect indices v = v, = v < 2. As a consequence,
the self-adjoint extensions of T, are exactly the y-dimensional symmetric

extensions of T}, equivalently, v-dimensional symmetric restrictions of Ty.

Proof: Let f € N, then f satisfies

Tf(z) - /O " gul{s} Dyduf = JF(0) — i /O "t

Notice that g(p{s}J) = 1 a.e. with respect to the Lebesgue measure, we

actually have

Jf(z) - / " guls) ) (d— idt)f = T(0)
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Let us define du; = dp — idt. It follows from p;{x} = p{x} that

1) - [ gt D) di) f = T5(0) (42)

By Theorem 1., the dimension of the solution space of the integral equation
(4.2) is 2. Since those solutions may fail to be in the L?[0, N], or L?[0, 0o),
we conclude that v, < 2. Moreover, by taking complex conjugate in (4.2),
it follows that v = ..

The rest of the claim is the direct consequence of the Cayley transform,

see [10] for instance. |

Claim 4.7. Suppose f; € D(Tx) (j = 1,...,7) are linearly independent

modulo D(T,) and Wy, r, [t/ = 0, then the operator S defined by
D(S):=={f € D(Tw): Wy 4ly =0,j=1,....,7} (4.3)

S=Ty

is self-adjoint. conversely, every self-adjoint realization is obtained in this

way.

This statement makes sense because v # 0, otherwise, Tl itself is self-
adjoint, and this implies Vf € D(Tx), f(0) = 0 by claim 4.5, but this does

not need to be true.

Proof: Since T, C S C Ty, and by the construction of S, we conclude
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that S is at least y-dimensional extension.

On the other hand, we define functionals
Fj : D(TN) — (C7Fj(h) = ijah‘év

Then we can rewrite D(S) as D(S) = D(Ty) N N(Fy)--- N N(F,).

If v = 1, we claim that N(Fy) # D(Ty). Indeed, if h € N(F}), then
W]l = 0. On the other hand, since f; is not in D(T},), by claim 4.5.,
there is h € D(Ty) such that either Wy, ,(0) = Wy, 4(IN) # 0 or Wy, 1(0) #
Wy n(N). Without losing generality, we assume that Wy, 5(0) # 0, then

as we did in the proof of claim 4.5., we can construct he D(Tx) such that

~

h(0) = h(0) and h(N) = 0, this implies F}(h) # 0. Now, it’s safe to say

that S is at least a 1-dimensional restriction of Tly.

If v = 2, we claim that F; and F5 are linearly independent. Indeed,
define F := aFy + 8Fy = Waypasp.8, and we consider F' = 0. Since
afi + Bfy ¢ D(T,) except for a« = =0, hence if afy + 5f2 ¢ D(T,), we
can construct h € D(Ty) as above such that F' (ﬁ) # 0, this contradiction
shows that « = § = 0. Now, if, say, N(Fy) C N(F3), the lemma we
used in claim 4.3. implies F; = S F; for some [,which contradicts with the
linear independence. As N(Fy) ¢ N(Fy) and N(Fy) ¢ N(Fy), it’s safe to

conclude that S is at least 2-dimensional restriction of Tly.
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In all, by claim 4.6. and the symmetry of S, It follows that S is self-

adjoint.

Conversely, if a self-adjoint extension S of T}, is given, then we can pick up
v elements f; € D(S) which are linearly independent modulo D(7,) and
satisfy Wy, [0" = 0. We use them to define Sy by (4.3). Since S C S; and

S,,57 are self-adjoint, it follows that S = S; as expected. |

4.2 Weyl Theory

In this section, we want to construct Weyl theory for Dirac operators with
measures, then spectral theory as well. We are interested in the sepa-
rated boundary condition, i.e., in the statement of claim 4.7, we have

Wy, 1(0) = Wy ¢(N) = 0 separately. As usual, a calculation shows that
.. . COS (o

this is equivalent to e, Jf(0) = e}, Jf(IN) = 0 where e,, = for
sin o

some «; € R, see [2].

Given N < oo, we consider the self-adjoint restriction of Ty with sep-
arated boundary condition: f2(0) = 0,ejJf(N) = 0 for some g € [0, ).
The Titchmarsh-Weyl m function, m?\, :Ct = Cyp, with Ct = {2z € C:
Imz > 0} and Cy the Riemann sphere, is defined as usual:

take a non-trivial solution f of Ty f = zf that satisfies e J f(N) = 0, then

J(2) = 710,2) (4.4)



We also generalize the transfer matrix we introduced in Chapter 3. We

call a 2 x 2 matrix T'(z, z) the transfer matrix if it is the solution of

JT(z,z) — /Oxg(,u{s}J)d,uT(t, 2)=J— z/ox T(t,z)dt

where [ is the identity.

uyp v
Also, we write T down explicitly as T'(x, z) = (u(z, 2),v(x, 2)) = :

Uz Vg

and it is obvious that the previous transfer matrix 7'(z) we defined is

T(x) =T(x,0).
Using Mobius transformation, we can rewrite m function as follows:

m?(z) = T"Y(N, z) cot 3 (4.5)

The approximation we introduced in Chapter 3 is super important here,

so we state it more clearly.

Let 1. := xpo,n(t)(dp — 2dt) be a complex measure, and define

:cz:—J/@ s (t)

where ¢, is defined as in (3.2).
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Consider the differential equation:
fl+Ad(x,2)fe=0

and we call T.(x, z) = (ue(x, 2), ve(x, z)) the transfer matrix of this equa-
tion if

T/(x,2) + Az, 2)T.(x,2) = 0,T.(0,2) = I (4.6)

Observe that T'(x, z) satisfies

JT(z,2) - / s} DTt 2) = J

By Theorem 2. and Theorem 3., for a fixed z, it follows that {T.(z,z2) :
0 < € < 1} is uniformly bounded under the supreme norm of matrices and

that lin% Ti(x,z) = T(z, z) pointwisely with respect to x.
€E—

Claim 4.8 (1) detT'(x,z) = 1 and (2) for z € C*, i(T*(x, 2)JT (z, 2)—J) >

0

Proof: It is easy to show that, as the transfer matrices of regular differen-

tial equations, detT.(x, z) = 1, hence detT(x, z) = lir% detT (z,z) = 1.
€E—

Notice that

%(T:(x, 2)JT(x,2)) = (Z—2)T)(x, 2)T(z, z)/o Gc(x —t)dt
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Hence we have

THx,2)JT(x,2) — J = =2ilmz /Ox T (s, z)TE(S,z)(/O Ge(s —t)dt)ds

e, (T (x,2)JT(x,z) — J) > 0.

As T'(z, z) is the pointwise limit of T¢(z, z), we conclude that

(T (x,2)JT (x,2) — J) >0

Claim 4.9 For any fixed x, T'(z, 2) is entire.

Proof: Since (4.6) is a regular differential equation, then the standard
theory of differential equations shows that T,(x, z) is entire for any fixed

x. For example, see [4].
The integral form of the differential equation (4.6) is :

‘]TG(ZC7 Z)

- J+/Ox ds(/ON (s — t)du(t))To(s, 2) —Z/OI ds(/ON (s — t)dt) T (s, 2)

Fix a = and let K be a compact subset of C, we consider the family
F:={T(z,2):0<e<1,z€ K}.

20



Since the supreme matrix norm of the kernel is given by

1S5 bels — t)dp(t) — = [ ¢e(s — t)dt||

< / bels — )dp(®)]| + |2 / buls — t)dt

Moreover,

1)y ¢ls = )du(t)]] = max (J5" dcls — t)dluil (1))

=1,2,34

< / s =)D dlpi (0

Hence we have

[T, 2)]

<149 / s / 65 =)D dlpl ) + 2 / buls — 1)) ||Ti(s, 2)]

Since fON de(s — 1) S |l (t) + | 2] fo de(s — t)dt is in L*(R), By Gron-

wall’s inequality, we have

1Tu(z, 2)]| < 2o Us @l Tiydiml(24z] [i¥ ocls=00dt) < 25004 |l 0N +4I2IN

It follows from this inequality that F' is uniformly bounded on K.
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On the other hand, let us consider the differential equation
u'(z,2) + Az, 2)u(z, 2) = k(x, 2), u(0,2) =C
By variation of constants, it follows that
u(w,z) = Te(x,2)(C + /Om T (s, 2)k(s, 2)ds)

If we pick up z, 29 € K, then we have two equations in the form of (4.6),
hence

(Te(xa Z) - Te(aja ZO)) + Ae(x7 Z)(Te(xa Z) - Te(x7 ZO))
N
=(z— zo)J(/ de(x — t)dt)T(x, 2p)
0
It follows from a variation of constants that
€T N
Tz, z)=T(x, 2z) = (z—zO)Te(x,z)/ Te_l(s,z)JTE(s,zo)(/ Oc(s—t)dt)
0 0

This implies that

[ Te(z, 2) — Te(z, 20)|| < 4]z — 20 - HTe(a:,Z)H/O T (s, 2)]] - [|Te(s, 20)

Since F' is uniformly bounded on K, we conclude that there is a constant

M which is irrelevant to € and x such that

|Te(, 2) = Te(w, 20)|| < M|z = |
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It follows that F' is equicontinuous.

Now, Arzela-Ascoli theorem works: there exists a subsequence of F which
converges uniformly. Since T'(zx, z) is the pointwise limit, then it is the
uniform limit. For K is arbitrary, as the uniform limit of holomorphic

functions on any compact set, T'(x, z) is entire. |

Claim 4.10 m%(z) is a Herglotz function.

Proof: We first show that m?\,(z) # a € Ry. Indeed, if m]ﬂ\,(z) = a,
then the solution f that we used in the definition of (4.4) satisfies some
boundary condition at 0; however, this is impossible because a complex

number z cannot be an eigenvalue of any self-adjoint restriction of Ty.

Claim 4.9. implies, in (4.4), that f2(0, 2) is entire, hence either f2(0,z) =0
or zeros of f5(0,2) have no accumulation points. Because m_,ﬁv(z) # 00
as we gained above, it follows that m’ (z) has a meromorphic extension.
Moreover, since f(0, z) is real on the real line, the non-real poles of m]ﬁ\,(z)
come in complex conjugate pairs. If we write the Mobius transformation
explicitly, we have

UZ(Nv Z) COtB - Ul(Nv Z)
—uz(N, z) cot 5 + ui(N, z)

W) =
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If m_,ﬂv(z) has a pole at z € C*, we conclude from us(N, z) cot f—u (N, z) =
0 that u is in the domain of the self-adjoint restriction we defined at the
beginning of the section, but this implies that z is an eigenvalue of that
self-adjoint restriction, which is impossible. As a consequence, mjﬂ\,(z) is
holomorphic on C™.

By Theorem 4 in Chapter 3, claim 4.8, and (4.5), we conclude that m/5 ()

maps CT to CF, hence is a generalized Herglotz function, and Herglotz.

Moreover, we have that all poles are on the real line. |

Now, we are ready to define the Weyl circle C(V, z) and the Weyl disk

D(N, z) as follows:
C(N,z) :={T"YN,2)q:q € Ry}
D(N,z):={T"Y(N,2)q:qe C+}

Obviously, if N; < Ny, then D(Ny, z) € D(Ny, z).

Claim 4.11 The radius R of D(N, z) is given by

1
E =2Imz - HU(,Z)H%Q[O,N]

UQ(Nv Z) _Ul(Na Z)
Proof: Since T7Y(N, z) = , by a standard calcu-

—uy(N,z) wui(N,z)
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lation based on Mobius transformation (see [2]), we have

1 .
o= 2[Im(—ua(N, 2)ui (N, z)|

Moreover,

2iIm(—us(N, z2)uy (N, 2))

= —u*(N, z2)Ju(N, z) = —lim (ul (-, 2)Jue(, 2)) (t)dt

€
e—0 0

Recall the calculation in claim 4.8, we have

—lim [ (uz (-, 2) Juc(-, 2)) () dt

€
e—0

N N
= 2ilmzlim w; (t, 2)ue(t, z)(/ Ge(t — s)ds)dt
0

e—0 0

Recall that {uc(z,z) : 0 < € < 1} is uniformly bounded on [0, N] by

Theorem 2.,it follows that
2iIm(—us(N, 2)ui (N, 2)) = 2iImz||u(-, Z)H%;[O,N]

This gives us the identity we need. |

Since D(N, z) are nested and compact, we define a non-empty set as fol-

lows:



We call the limit point case at oo if for any z, there is just one non-trivial
solution up to a factor (in BV'[0, 00) and right continuous) of (Af) = —zf
which is in L?[0, 00), and the limit circle case if for all z, all solutions (in
BV[0,00) and right continuous) of (Af) = —zf are in L*[0,0).

Remark. Since the spectrum of 7' is nonempty as the space is a com-
plex Hilbert space, there must be z € o(T) so that Tf = zf for some

0 # f € D(T), hence we just have those two scenarios.

Claim 4.12
1) Assume the limit point case at oo, then D(IV, z) is a point;

2) Assume the limit circle case at oo, then D(N, z) is a circle.

Proof: Let M € C, and we define fy(z,2) = TM = T - =

v(z,z) + Mu(z, z). We claim that

N
M € D(N, z) <:>]mz/ farfaudt < ImM
0

N
M e C(N,z) <:>]mz/ farfaudt = ImM
0

Indeed, in the proof of claim 4.8, we actually conclude that

T (z,2)JT(x,2) — J = —QiImz/ TT (s, z)ds
0
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This implies

N
far(N)J far(N) — 2iImM = —2ilmz/ farfadt
0

Hence

N
]mz/ farfudt = ImM — Imfp (N, 2)
0

Thus

N
Imz/ fifudt < ImM < Imfy(N,z) >0« TM € CH
0

N
]mz/ farfudt =ImM < Imfy(N,2z) =0 TM € Ry,
0

To prove 1), we assume D(z) contains at least 2 points, say, M; and M,. It
is easy to show that fy;, and fy, are linearly independent and in L]0, co),

but this contradicts the definition of limit point case.

To prove 2), notice that D(L, z) = N OD(N, z), hence we have D(Z) =
>IN>

Llim D(L.z). By checking the center and radius, we can reach this conclu-
— 00

sion. B

D(z) is

Claim 4.13 Assume the limit point case at oo, then m(z) € D(
Herglotz. If f is the non-trivial solution up to a factor (in BV[0,00) and

right continuous) of (Af)" = —zf which is in L?[0, 00), then m(z) = fzgg ;

Proof: m(z) = lim m%(z) is a locally uniform limit of Herglotz func-

N—o0
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tions, hence Herglotz.

Let f,(z,2) := Tm, then f,, € L?[0, 00) and m(z) = 122 |

4.3 Spectral Representation Theorem

Now, we want to investigate the spectral representation theorem, and there
is no need to restrict our self-adjoint realization so strictly, hence we con-
sider T with general separated boundary conditions, i.e., we define the

self-adjoint restriction S, g of Ty as follows:
D(S.p) ={f € D(Ty) : sinafi(0) — cosafa(0) =0,

sin 8 f1(N) — cos Bf2(N) = 0}
Suy =Ty

for some «, 8 € [0, 7)

Let up, uny be non-trivial solutions of Ty f = zf satisfying sin aug1(0) —
cos o 2(0) = 0 and sin Suy1(N) — cos funa(N) = 0 respectively and
we normalize them such that detM(0) = 1 where M(z) = (ug(z), un(z)).

Notice that

IMGe.2) = [ gluels} M t,2) = MO

We have the following claim with respect to the Green function.
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Claim 4.15 Let z € C\ R, then Vk € L?0, N], we have

(Sus — 2) L = /0 Y Gt 2k(0)de

where
Clont,2) = uy(z,2) - ud (t,2) t<z
up(z, 2) - uy(t,2) x <t
Proof: Since S, 5 is self-adjoint, then Vz € C\ R, we have (S35 —2)"! €
B(L?[0, N]). Let k € L?[0, N], then 3f € D(S, 3 — 2) such that (S,5 —

z)f = k. By variation of constants again, we get an analogous conclusion
@) = M(2)C + M(x) / ML Tkt
0

where C' = M (0)~1 £(0).

Moreover, we have f(N)= M(N)C + M(N) fN M1 Jkdt.

0

Define Q = [1' M~'Jkdt, then Q = M~'(N)f(N) — M~'(0)f(0). Sup-
COS (v (cos 6\

pose f(0) =m , f(N)=n for some real numbers m, n,
sin a \sin 6)

COS & (cos ﬁ\
and up(0) = p , uy(N) = for p,q # 0. then we have

sin av \sin o] )

gsinf3  —qcospf cos 3 un2(0) —un1(0) cos o
Q =N —m

—ug2(N) wp1(V) sin —psina pcosa sin «
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Observe that detM = ugi(z)un2(x) — up2(z)uyi(x) = 1 since M is a

rotation of the transfer matrix, hence we have

oo [5)_(@
o Q»
: . n —@h
Since C'= M(0)~ f(0) = = , we actually have
0 0

f(z) = +/O M Jkdt) = / G(z,t, 2)k(t)dt

G(z,t,2) tuna(t; 2) Xeew) (una(t; 2)

And here,

thuo(t,2) X2 (t)uoa(t, 2)

If we calculate this product, it gives us that

un(z,2) - ug (t, 2 t<ux
R RCCORRICD

uo(z, 2) ~uy(t,z) x<t

Claim 4.16 (S, 3 —14)"! is a Hibert-Schmidt operator. As a consequence,

0(Sa,8) = {En} is purely discrete and ) =g < oo.

Proof: Notice that G(x,t, z) is square integrable with respect to the Lebesgue
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1 is normal. |

measure, and (S, 3 — 1)~
We turn back to the case that @« = 0 and [ keeps free, and the self-

adjoint restriction is denoted by Sg.

By Weyl theory, we have a Herglotz function m]ﬁv(z) with the integral

expression
t
t—z 241

mh(z) = a+ bz + /R ( )dp(t)

Since m?,(z) is meromorphic and real on the real line, it follows that p(t) is

discrete with atoms precisely at the poles of mﬁ,(z), more precisely, those
poles are eigenvalues of Sg. In fact, we can describe Sg as a spectral rep-

resentation.

Claim 4.17 The measure p associated with m% (z) is given by

O
p =
Z ) HU(',E)H%Q[O,N]

EEO’(SB

where 0g is the Dirac measure at E.

Moreover, p and the map:
U: L*[0,N] — L*(R, p)

Uf(t) = / u* (5, ) f(s)ds
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set up a spectral representation of Ss.

Proof: We want to calculate p{t} for a fixed ¢. Since we know p{t} =

li%1+(—iym%(t + iy)) and Imz fON frof sdt = Im(m5,(z)) from claim
y— my N

4.12, we have

N
plt) = Jim o7 [ £ 5,
0 NN

y—0+

= lim y?(|[o(-,t + iy)||> + [m% (t +iy) | |u(-, t + iy)])?
y—0+

—l—/o (v*mjﬁvu + u*(mfi,)*v))

We first claim that lim ||u(-, t+iy)||*> = [Ju(-, t)|[* and lim ||v(-, t+iy)||* =
y—0+ y—0+
l|v(-, t)||? for a fixed t.

Indeed, let us consider

JT (x,t +1iy) —/ g(p{stN)duT (s, t +iy) = J — (Hiy)/ T(s,t+iy)dt
0 0

Recall dj; = xo,n(s)(dp — tds), then

JT(z,t +iy) — / g(pe{ s} duw T (s, t +iy) = J — z'y/ T(s,t+iy)dt
0 0
Hence, by variation of constants, we get

T(x,t+iy) = T(z,t)( + iy /Ox T (s, t)JT(s,t + iy)ds) (4.7)
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As a transfer matrix, sup ||T(x,t)|| < M for some M € R, thus we have
x€[0,N]

sup ||T(z,t+iy)|| <2M (1 +2yNM sup ||T(x,t+iy)||)
2€[0,N] z€[0,N]

1

SN2’ we have

If y is small enough, say, y <

sup ||T(x,t+dy)|| < 4M
x€[0,N]

From (4.7) we also have
T(x,t+iy) — T(x,t) = iyT(x,t) / T (s, t)JT(s,t +iy)ds)
0

Hence

sup ||T(xz,t +iy) — T(x,t)]| < LGNM’y
x€[0,N]

for small enough y.

This implies hr&_ T(z,t +iy) = T(x,t) uniformly with respect to x in
y—r
[0, N], and Lebesgue dominated convergence theorem gives the identities

we desire.

Notice that yli)r& y? fON v*mﬁ,u = yli)r& Y fON v*(ymﬁ,)u, we conclude that

p{t} = o {tHlu(- )|

This implies

A = o
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if t € 0(S3), hence we have

0p
pzZH(

vt TG B

As usual, {% . B, € 0(Ss)} forms an ONB of D(Sg), the map

L)l

given with this spectral measure sets up a spectral representation of Sz.H

For the half-line problem, if we have the limit circle case at oo, then there
is nothing new, and we just need to give a boundary condition at oo, and
everything is crystal. If we assume the limit point case at co, then we get

a unique m function and its measure p as well.

Claim 4.18 Assume limit point case at oo, let

Uf = / s)ds, f € ULQ[O N]

Uf = hm U(xpnf), f € L*[0,00)

define a unitary map U : L?*[0,00) — L*(R, p) (here, limit is norm limit
in L*(R, p)).

Then this map together with measure p provides a spectral representation.

The proof is classical, and we just skip it here, see [2] for more details.
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We also provide an alternative proof in Chapter 5 after we understand the

relation between canonical systems and Dirac operators.
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Chapter 5

Dirac Operators as Canonical

Systems

In this chapter, we want to study the relationship between Dirac operators

with measures and canonical systems.

In section 5.1, we give some notations needed in this chapter, and some
consequences used in section 5.2 are given. In section 5.2, we construct a
mapping between Dirac operators with measures and a subset of canonical
systems. We also prove that this mapping is bijective. In section 5.3, we
give some corollaries which may be used in Chapter 7 based on our main
result. Some of those corollaries can be proved easily when considering
absolutely continuous measures. Also, a depiction of Weyl functions is

given at the end of this chapter.
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5.1 Some Notations and Preparations
A canonical system is defined as follows:
u'(x) = zJH(z)u(x)

on an open interval z € (a,b), —oo < a < b < oo, where z is a complex
number, and H satisfies: (1) H € R*? (2) H € L} (a,b), (3) H is

Hermitian and non-negative definite for (Lebesgue) almost all = € (a,b).

Here, the coefficient H can represent this system uniquely up to a nor-
malization(for example, trace normed), hence we sometimes simply say a

canonical system H, see [2] for more details.

From now on, we temporarily fix the interval [0, N] for N < oo and con-
sider measures in DS. As we mentioned in Chapter 3, it is not essential
that the part of a measure in DS on (N, co) when we consider [0, V], hence

it is safe to assume the part of a measure on (N, 00) is 0, i.e., we consider

DS(N):={ue€ DS : u(N,o0) =0}

We also define a subset of canonical systems in [0, N] as follows:

CD(N):={H € C(N) : (1)H € BV|[0, N] and right continuous;

(2)detH = 1; (3)H(0) = 1}
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As expected, condition (1) means all entries of H are of bounded variation
and right continuous; conditions (2) and (3) are the normalization that we

desire.

We also need to consider the chain rule in this thesis which is due to
Volpert. For our purpose, we don’t need to describe the derivative glob-

ally, hence we just need the following weak version:

Volpert’s chain rule: Let I C R be an open interval, f : R™ — R"
continuously differentiable , v : I — R™ is of bounded variation, and S
the set of all jump points of v defined as the set of all x € I where the

approximate limit @ does not exist at x. Then

d(f(u)) = du - df (@)

in the sense of measures on I \ S, where d is the distributional derivative.

See [11] for more details.

The description on S is much more intricate, we just ignore that. More-

over, this theorem was generalized by L.Ambrosio and G.Dal Maso in [11].

The following conclusion is important here.
Claim 5.1 A = e for some B € R?>*? satisfying B = B',trB = 0 if and

only if A € R?>*? satisfies detA =1, A= AT and A > 0.
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Proof: If A =eP, then A = B = 8 = A, hence A € R2*2.
Also, we have AT = ¢B' =B = A and detA = "B = 1.

Notice that eigenvalues of A are of the form e}, hence A > 0.

Conversely, A* = A and A > 0 give a matrix B = In A by spectral theorem

when we consider the spectral norm, i.e., A = e®. The same calculation

as above gives properties of B. |

Pick up H € CD(N). Since H' = H, H > 0 and detH (z) = i =
Neo(H ()

1, we actually have H > 0 for all = € [0, N] and

i R% Ri1R5cosd

RiR5cosd R3

for some real function R, Ry > 0 and ¢ such that R;Rysind = 1.

It is possible to find out the square root of H, denoted by H %, as fol-

lows:
R24+1 Ri1R5cosé
s — VERAR342  \/R3+R3+2 (5.1)
Ri1Rycosé R3+1

VERAR342 /R +R3+2

Since H € BV[0, N] and right continuous; moreover, \/R? + R3 +2 > 2,

it follows that Hz € BV[0, N] and right continuous.

We also denote the inverse of Hz by H ~2 and want to consider when
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x > 0 that H 2(z)H(z—)H 2(z). Moreover, the collection of all jump

points of H is defined by
Sy(H) :={x € (0,N]: H(z—) # H(z)}

Obviously, this set contains countably many points, hence sometimes it is

convenient to write Sy(H) = {x1, z9, 3, - }.

Claim 5.2 Assume H € CD(N), then there is a matrix M(x) € R**?
on (0, N] satisfying M(x) = M(x)",trM(x) = 0 for all z € (0, N] such
that on (0, V]

H 2 (2)H(z—)H *(z) = M@ (5.2)

Moreover, > ||M(x)|| < oo
IGSN(H)

Proof: Since detH(x—) = lim detH(y) = 1, it follows that

y—r—

det(H 2 (z)H(z—)H 3 (z)) = 1

Also, H 2(z)H(z—)H 2(z) € R¥? and symmetric. We want to show

that H2(2)H(z—)H 2(z) > 0. Indeed, since we have H > 0, it fol-

lows that H~2 > 0. Moreover, as v*H(z)v > 0 for all v € C2, we have

v*H(x—)v > 0. Since detH(x—) = (H( ; A; = 1, this implies that
A€o (H(z—

A; > 0, which is equivalent to H(x—) > 0. Thus, as a product of positive

definite matrices, we have H ™2 (x)H (z—)H 2(z) > 0.
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By claim 5.1, we have the existence of M. We also observe that M (z) =0

if and only if H is continuous at x.

Since H 2, H € BV[0, N], we have sup ||[H 2(z)|| < oo, and from com-
x€[0,N]

paring with total variation of H, Y  [|H(x)— H(z—)|| < oo it follows
{,CESN(H)

> H H(2)H(e—)H 2(x) - 1|

xESN(H)

<4 Y H @) H(x) - Hz-)|| < oo

x€SN(H)

This estimation demonstrates that we can pick up a number L > 0 such

that
Bt , , 1
> H 2 (i) H (=) H 2 (2;) — 1] < 1
=L

If : > L, We have

Hence

|[2J M ()| = 2|[M (z;)]|
o 28| H 5 () H (=) H 2 () — | JF
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This tells that

ZHM(%)II
< 1SS @A) H ) H ) — 1))
k=1 i=L
< izyﬁ(z [[H % (@) H (2= ) H* (27) — I||)*
k=1 i=L
1o 1
<12
1
T4
Which implies > ||M(2)]| < oc. .

JL‘GSN(H)
5.2 the Main Result

We pick up g € DS(N), then the transfer matrix 7T'(x), or equivalently
T(x,0), with respect to this p is unique due to Theorem 1. If we define
H(x) :=T"(x)T(x), then it is trivial to show that H € CD(N). In fact,

this observation gives a mapping between DS(N) and CD(N):

F:DS(N) — CD(N),pr>H=T'T

Our main result in this chapter is the following claim:

Claim 5.3 F' is bijective.
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Proof: First of all, we discuss the relationship between p € DS(N) and
its transfer matrix 7. As we already mentioned, if u is given, we just have
a unique transfer matrix. On the other hand, if T" is the transfer matrix

of p1, e € DS(N), then we must have

/ (g {5} dun — glunls}T)dpuo)T = 0

The left-hand side of the above equation is of bounded variation, and the
distributional derivative is just 0 as a function, and this implies, by the

approximation of C'2° test functions, that

Jo (glp{s}T)dpn — g(uz{s}J)dus)
— [ Gt} )dis = glias} )T 7 =0
Since f{x}(g(ul{s}J)dul = f{m}(g(m{s}(])d,ug, we conclude that

etted J = ereled g

or equivalently, pi{x} = po{z}. If A is a Borel set of (0, N] out of the

support of jump part of pui{x}(u1{z}), then we have

[ (stmtsyadim = [ (otuatsh Naws = [ dr = [ s

by approximating x4 by C2° test functions.

Combining those two facts together, we conclude that for any Borel set of
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(0, N], we have [, du = [, dps, i.e., pn = po.

Now, the statement above shows that, in order to complete the proof,

we just need to find out a unique transfer matrix 7" such that H =TT

for any H € CD(N).

Next, we assume the existence of such a transfer matrix, and we want
to show that, under this assumption, this decomposition of H is unique,
in other words, there is exactly one matrix satisfying this decomposition
and is the transfer matrix for some p € DS(N). After that, we will show

the existence.

By the assumption, we have 77T = Hz Hz, this gives (TH2)T (TH z) =
I. Since we also know that det(TH2) = 1, it follows from those two facts
that
TH™: = R,

cosf(z) —sinf(x)
for some function §(z) and Ry(z) = such that

sinf(x) cosf(x)
Ry(0) = 1. Moreover, Ry € BV[0, N] is right continuous.

As the transfer matrix of some Dirac operator ¢ € DS(N), we have

T(x—) = /7T (), thus it follows that
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Moreover,
H(x—) = (H#(x=)) HE (1) = H () o (00 113 (1)
Thus by claim 5.2, we conclude that
o{a} = Ro(x)M(2) Ry (2)

and

Ry(z—) = Ro(z)e’™M ) H2 (2)H 2 (2—) (5.3)

Those two identities imply that, even if we had two different transfer ma-
trices (even though this is impossible as we will see later), the jump points
of those corresponding rotations are the same. Moreover, the first identity

also implies that x is a jump point of T" if and only if x is a jump point of

H.

Also recall that T, H, H2, Ry are continuous at z if and only if p{xro} =0,
and the continuity on (0, N] \ Sy(H) implies the equivalence between a
function u and its approximate limit @ on (0, N|\ Sy(H), in other words,
we can refine Volpert’s chain rule (Theorem 2.34) by substituting @ by u

directly in this case.

We can say more about e/ Hz(z)H 2(z—). By claim 5.2 and ¢/ =
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e M7 we have

(2=) "M H2 (@) H 2 () = 1

N[ =

(e/M@) H (z)H~

1

Also observe that det(e’M® Hz(z)H 2 (z—)) = 1, hence there is a function
B(x) such that
MO (1) H™* (=) = Ry()

We define a signed Borel measure 1 on [0, N by

[y AT - T, A {0}
0, A={0}

f(A) =

and using this measure, we define p as follows:

(D

It’s easy to check that this p is a signed Borel measure.

Moreover, if z € (0, N|, then

iy = | JAT-T7' = J(T(2)—T(x—))T Y(z) = J(1— e Fo@M @R @)
o}
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Notice that g(p{z}J)u{z} = J(1 — e/Fs@M@)R () e get
izt = gz} )pfz}
This identity, with (IT), shows that for any Borel set A on (0, N|, we have

/A dfi = /A g(u{s})dn

Since [, duT = JT(x) — J, it follows that

IT@) = [ gtuls) )it = 1

Notice that T is the transfer matrix of o, then the same argument we use

at the beginning of this proof shows that 4 =0 € DS(N).

We already proved that, if T" is such a transfer matrix, then the corre-
sponding measure is given by (I) and (II). Now, let us focus on g and

write down p explicitly to check how many measures given by (I) and (II)

are indeed in DS(N).

Recall (5.1), (5.2), and (5.3), it follows that if H is continuous at x, then
so are Hz(z) and Ry, and this shows that jump points of Hz(z) and Ry

are in Sy(H). Thus, on (0, N]\ Sy(H), by Volpert’s chain rule, we have

dfi = J(dRyH? + RydH?)T ' = RyJdH>*H *R,' + JdRyR,"
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hi hg
= , then

hs  hs

N

To avoid too many notations, let us simply write H

we have

L hsdhs — hodhs hgdhs — hidho
JdH>H 2 =
haodhy — hsdhs hidhs — hsdhy

As detH> = 1, we have hodhy — hsdhs = hsdhs — hidhso, hence in fact,

JdH2H"3 is symmetric. Once again, we denote this measure by

1 1 Fl F3
JdH>H 2 =
F3 Fy

Also, notice that this measure is determined only by H.

Now, we can calculate dy:

RyJdH:H 2R}

Fycos? 0 + Fysin? 0 — sin 20 F; %sin 20(Fy, — Fy) + cos 20F;

%sin 20(Fy — Fy) + cos20F3  Fycos? 0 + Fy sin® 6 + sin 20 Fy
and

sin 0d cos @ — cos @dsin —(sin Od sin 6 + cos Od cos )
JdRy R, =

sin @d sin @ + cosfdcos  sinfdcosO — cosOd sin b
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By Volpert’s chain rule again (or integration by parts),
d(cos® § + sin? §) = 2(sin fd sin § + cos Od cos ) = 0

Moreover, by the construction of p and the fact that u = o € DS(N), it

follows

1
sin fd cos  — cos fdsinf = —§(F1 + F)

With the help of the fact that sin 6dsin 8 + cos6d cosf = 0, we conclude

cos 0 —# cos

F+F 0

sin @ 5 sin @

If © € Sy(H), recall (5.3), then we have Ry(z—) = Ry(x)Rp(x), and it

implies that

cosf(x— cosf(x
) _ p, [0
sinf(x—) sin f(x)
cos 0 cos 0(x) cos O(z—)
Also recall the fact [, , d = — , then it
{z} , . :
sin 0 sin 0(x) sin 0(z—)
follows that
cos 6 cos 6
/ d = /(1 — Rﬁ)d&g
{#} \'sin@ R sin

where 0, represents the Dirac measure at x.
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We define a measure w on R by

0 Fi+F
2
do = Xonnsvim | + ) (Rs(x) —1)dd,
-2 0 w€Sy (H)

where, as usual, x (o n]\sy(#) is the indicator of (0, N]\ Sy (H).

cos b
What we have discussed above reveals the fact that satisfies the

sin 6

following equation:

cos 0(x) 1 z [ cosf z cos 0
— = / d = — / dw
sin 0(x) 0 0 sin 6 0 sin 6

Let us consider this integral equation

1 T
flz) = — [ dwf(s)
N

First of all, we claim that the measure w is complex.

Indeed, the first part is fine since H is just of bounded variation on [0, V],

hence we just need to show that

> IBs(a) — 1] <0

IGSN(H)
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or equivalently,
™M @) H (=) — 1] < o0
i=1

Notice that

and

1

|2 () H ™2 (=) — 1] < 2|[H? ()| - [|[H 2 (2i—) — H

N[

(i)l

103 D) () H i)

k!
k=1
1 1 1 28| | M ()]
<4\ HH @) [[H o)l - (5 ) =)
k=1 '

1

Since H2 € BV|[0, N], and recall e/M@ Hz(z)H 2 (x—) = Rs(z), we con-

clude that there is a constant, denoted by C, such that

max{ sup ||Hz(z)|[, sup [|H:(z—)|]} <C
2€(0,N] z€(0,N]

Hence

Y Hz (@) H 2 (x—) — 1] <2C - ViV (H %) < o0
1=1
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i H<§Z IME) 1 ) - )| < 202 i 2R 3% [IM ()|

k! k!
i=1 k=1 k=1
ZOO 25 (22, | M () [])"
2 =1 ¢
s2¢ p k!
=1

— 202 (2 2= M@l _ 1)

< o0

we combine those estimations together, then we can reach our conclusion

that the measure w is complex.

On the other hand, it is easy to check that

w{x}_|_]: I $¢SN(H)
Rs(z) € Sy(H)

Hence, by Jan Persson’s Theorem 1, the solution of the integral equation
is unique. This unique solution gives a unique Ry, which means that the

. 1. .
transfer matrix T'= RyH? is unique.

The only issue left is the existence of such a transfer matrix. In fact,

this part also comes from the integral equation above.

The measure w which is determined only by H that we introduced above
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gives a unique transfer matrix 7T ( which is of bounded variation) satisfying
x
T()(SC) =1— / dCUT()
0

uyp U1
If we write down T explicitly as Ty = , we have

Uz U2

dwl dCUQ
Observe that dw is of the form , hence we can rewrite this

—dw2 dwl

equation as follows:

From the uniqueness of the solution of the equation, it follows that
vi() —uy()
va() u ()

We want to show that detTy = 1. Notice that, since here we are interested
in the value at a point, so integration by parts works, and we don’t need

to invoke the chain rule.

83



By integration by parts, we have the following two equations:

/Ox w1 (s)duy = ui(x) — ui(0) — /Ox wi (s—)duy

/050 up(s)duy = u3(z) — u3(0) — /Ox up(5—)dus

Recall that u;{x} = u;(x) — u;(z—), hence it follows that

2 /Ox(ul(s)dul + ug(s)duy) = detTy — 1 + Z (wi{s} +u3{s})

s€(0,z]NSN(H)

the right-hand side is from the fact that

u{x} o) uy ()

u2{x} u2(:c)

or equivalently

Because we have

ui{s} +uz{s} =
we actually get

Y. Gi{syru{sh) =2 Y (1—cosB(s))(uf(s) +ui(s))

s€(0,z)NSN(H) s€(0,z]NSn(H)
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On the other hand, the distributional derivatives of uq, us can be obtained

directly from the integral equation, hence it follows that

/o (u1(s)duy + us(s)dug) = /o (ui(s) +us(s)) Z (1 — cosp(x))dd,(s)

{,UESN(H)

If we combine all observations above together, we conclude this important
result that detTy(z) = 1.
Now, it follows that

Th = Ry

for some @ such that Ry is of bounded variation on [0, N] and right con-

tinuous.

We claim that T := RyH? is the transfer matrix of some measure IS

DS(N). Notice that T'T = H since detTy(x) = 1.

Indeed, notice that T is of bounded variation, hence d1" is a Borel measure.

We define a signed Borel measure on [0, N] by

oy JdT T, A+ {0}
0, A={0}

(A) =

And measure p by
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We still have, if = € (0, N, that

w{ry = [ Jdr- T
{}

— J(T(z) = T(z=)T""(z) = J(1 — Ry(a—)H?>(z—)H *(z)R, ' (z))
Since Ry satisfies Ry(x) = I — fox dwRy, we conclude that
Ry(x—) = (wi{z} + I)Ro(x)

Notice that

(wiz} + ) Ry(x) = Ry(x)(w{x} + 1)

and

w{z} + 1 =eMDH(2)H 3 (z—)

it follows that

i{e} = J(1 — BON@R@) — g1 MO = g(u{a} ) e}
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Thus, we have

/ = / (s} )i

Since [ dpT = JT(x) — J by the definition of 7z, it follows that

JT(z) - / g(uds))AuT = J

Next, we want to show that u € DS(N).

From Ry(x—) = (w{z} + I)Ry(x), we conclude that Ry(x) is continuous if
and only if w{z} = 0, and this is always true if x ¢ Sy (H). If a Borel set
A on (0, N] that doesn’t contain jump points of H is given, then we have,

by Volpert’s chain rule again, that
MAﬁi/RMMﬁHﬁRf+J/d&Rf
A A

Moreover, by the definition of w, we have that

0 N+ F

2

dRa = RH

R+ R
5 0

in the sense of distribution on A, hence,

Fi+Fy 0
-1 2

J/d&& :—/

A A 0 P+ F
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L FF
Recall that JAH3H % = [ | and (I), it follows that p has the cor-

F B

rect form.

Define ||u||(A) := rg%c(leA)) for a Borel set A on [0, N], then

1pl1C10, NT) < {lpl[(S (H)) + [[ulI([0, NT\ Sn(H))

Since we have SZ(H) [[M ()] < oo, [[ul[([0, NT\ Sn(H)) = [[al[([0, N]T\

Sy(H)) and T is of bounded variation, it follows that ||u||([0, N]) < oo,

i.e., u€ DS(N).
We completed the proof. |

5.3 Some Corollaries

We have some interesting corollaries.

Let us define a subset of DS(INV) as follows:
DSy, (N):={p e DS(N):du < dt}

where dt is the Lebesgue measure on R.

Obviously, a measure from DS,.(N) gives a regular Dirac equation. We
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define a subset of CD(N) as well:

CD.(N):={H € C(N) : (1)H € AC[0, N]; (2)detH = 1;

(3)H(0) =1}

The restriction of ' on DSy.(IV), denoted by F|pg, (v}, maps DS,.(N)
into C'D,.(N). To obtain this conclusion, we just need to observe that the
transfer matrix T satisfies JT' = fT for some f € L0, N], which means

T is absolutely continuous. Moreover, we have the following claim:

Corollary 5.4 F|pg, () is bijective.

The proof of this claim 5.4 is much easier, and we don’t want to repeat

this tedious calculation here, so we just state the sketch of the proof.

The sketch of the proof: Pick up H € CD,.(IN), then we still have

. R} RiR5cosd

Ri1Rycosd R%
for some real function Ry, Ry > 0 and ¢ such that R;Rssind = 1. No-
tice that R? € AC[0,N] and they are not 0, then we conclude that

R;, 0 = arcsinﬁ e AC|0, N].

89



We claim that, as in the proof of claim 5.3, the unique 6 given by
1 v
0 = §R1R2 cos ) — R Ry cos ddt
0

derives the unique rotation Rjy.

Moreover, as a function rather than a measure, the coefficient f can be

deduced easily from a differential equation:
f=JrT!

This gives a measure in DSy.(N). |

One can expect that if we just delete the discrete part of a measure, then
we may have an analogous conclusion. So we also define a subset of DS(V)

as follows:
DS.(N):={u € DS(N) : u{z} =0, Vx € [0, N|}
Also, the subset of CD(N) is defined as:
CD.(N) = {H € C(N): (1)H € C[0, N]; (2)detH = 1;

(3)H(0) = 1}

Here, that H is continuous at boundary points means the value of H is

the same as the left (right) limit at the corresponding boundary point.
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Moreover, the continuity on a compact set is essential since this gives a

bounded function, hence is of bounded variation.

Once again, The restriction of ' on DS.(N), denoted by F|pg, (), maps

DS.(N) into CD.(N). We have the following conclusion:
Corollary 5.5 F|pg,(n) is bijective.

The proof is absolutely the same as the proof of claim 5.3, the only im-
provement is Rg(z) = 1, hence the measure p defined satisfies pu{z} = 0.

We just skip the proof.
Now we are ready to prove claim 4.18.

Proof of the claim 4.18:

With a little adaption, we conclude from claim 5.3 that p € DS if and
only if H=T'T € C, H € BV[0,00), detH = 1 and H(0) = 1. Here,
T(x) = T(x,0) is the transfer matrix of the Dirac operator with respect

to u.

We claim that, f € L?[0,00) is a solution of

15~ | " (uds} D) duf = TF(0) — = / i
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if and only if g := T!f € L%][0,00) is a solution of
g =2zJHg=2JT"Tg,g(0) = f(0)

Indeed, notice that by the definition of the norm in L%0,00), we have

1gl|z2, = [|f]|ze- Moreover, claim 3.3 characterizes a Dirac equation: since

g(x) = g(0) + 2z / JT Tydt
0

and observe that JTT = T~1J, then we have

fa) = TS0+ 7(0) [ (e

Comparing with (3.7), we conclude that f is indeed the solution of the

Dirac equation with k£ = zf, and this equation is the desired one.

This observation, with the definition of Weyl functions of Dirac opera-
tors and of canonical systems, implies that the given Dirac operator and
the corresponding canonical system share the same Weyl function, and
hence spectral measure.

Now, claim 4.18 is a direct conclusion of the spectral representation theo-

rem of canonical systems, see[2]. |
We turn to a depiction of Weyl functions to end this chapter.

Claim 5.6 Assume p € DS and the limit point case at oo. Then the
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Weyl function is given by

m(e) =a+ [ (= = ot

where p(R) = oo and p is not compact supported.

Proof: Notice that the corresponding canonical system has 1 as the deter-
minant, which implies there is no singular point. This claim follows from

theorem 2.3, 2.4 and 2.5. |
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Chapter 6

De Branges Spaces of Dirac

Operators

In this chapter, we want to discuss the inverse spectral theory. Here,
de Branges theory plays a significant role: given a Dirac operator with
a measure, we can define a de Branges function originating from a solu-
tion of eigenvalue problems, and the spectral representation theorem from
Chapter 4 in fact gives an isometry between L? and the de Branges space
generated by the de Branges function. On the other hand, the spectral
representation theorem also implies that the spectral measure gives some

information about the inner product of the de Branges space.

In section 6.1, we give a transformation that can transfer the integral
equation with respect to a Dirac operator with a measure to another inte-
gral equation which can be solved by iteration. In section 6.2, we introduce
some background about measures and Fourier transform. In section 6.3,

we discuss de Branges spaces generated by a Dirac operator and character-
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ize those spaces as Paley-Wiener spaces with some proper inner products.
In section 6.4, with a stronger assumption, we show that a Paley-Wiener
space with a proper inner product gives a regular de Branges space, hence
a canonical system can be found from this de Branges space. In section
6.6, we discuss the regularities of two integral equations so that we may

write down this canonical system explicitly.

6.1 A Transformation

In this section, we will extend a well-known transformation. For conve-
nience, we restrict ourselves on the interval [0, N], but as we have done

many times, there is no technical difficulty to extend to the half line [0, c0).

Consider [0, N] and let € DS. Analogously, we define
Sn(p) == {z €|0,N]:z e S(p)} = {z1, 29,23, -+ }
and a function on (0, 00) by
t(z) = (pifa} + p3fa})?

obviously, t(z) # 0 if and only if x € S(u). This function gives a measure

w which is defined as follows:
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where ¢, is the Dirac measure at zx.

Claim 6.1 There is a unique function k in BV'[0, c0) which is right con-

tinuous such that
k(r)=1-— / dwk
0

As a consequence, the collection of all jump points of k is exactly Sy (u).

Proof: First of all, we claim that w is complex. Indeed, as we have done

in Chapter 5, we have

W) =1 X (@@ et@_g)=1 > (¥, 54

€SN (1) r€SN (1)

> ()
_ 1 00 xESN(n)
T2 Zn:l (2n)!

> ta) - X =)
— %(ewesmu) e €SN _ 2) < 00

The last inequality comes from ) #(z) < oo.
€SN (1)

On the other hand, we have for x € Sy(u),

Ho) 4 o—t)
2

w{x}+1:€ £0
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Now, we apply Jan Persson’s theorem (see [1] for n = 1) to get this con-
clusion. If one wants to use theorem 2 that we just introduced in Chapter

3, then a diagonal 2 x 2 matrix with entries k& works. |

The following property is essential when we define the transformation.
Claim 6.2 There is ¢, M > 0 such that € < |k| < M.

Proof: Since k € BV[0,00) is right continuous, hence the existence of

M is trivial. We just need to show the existence of e.

First, we claim that k(z) # 0. Indeed, if k(z¢) = 0 for some zy, then

To
0

k(:c):(l—/ dwk)—/ dwk:—/ dwk,x > x
0 o o

k(z) = / dwk,x < x

we have 0 =1 — dwk, hence the equation

has a unique solution which is still k(x); however, 0 is the solution of this

equation, which means k = 0. This contradicts with £(0) = 1.

Second, as before, we have k(z—) = (1 + w{z})k(x), or equivalently,
k(z) = % Moreover, we also have that k(z) = 1 for x < 0 and

k(x) = k(N) for x > N.
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If 1[an |k| = 0, then there is a sequence {z,}>°; C [0, N] such that
z€|0

for any n € N*,

1
k(xy —
()| < -

Since [0, V] is compact, there is a convergent subsequence of {z,,}>? ; which

we still denote by {x,}>2,. In other words, lim z, = zy € [0, N].

n—oo
If x,, approximates to xy from the right-hand side, i.e., there is a sub-
sequence {z,, }?°, such that zy < z,, and kllm T, = X, then by the
—00

existence of the right limit of a function of bounded variation, it follows

that
1

\k(zo)| = [k(xo+)| = hm |k(x,,)] < lim — =0
k—o0 M

If x,, can approximate to x( from the left-hand side, then we still have such

a subsequence, hence

bao-) e
1+w{me}  14+wi{ze} ~ k—oong(l+wiz})

[F(zo)| =

In all, we conclude that k(z() = 0, which is impossible. Since 1[%fN ] |k| >0,
Tre

we simply let € = mei[%fN] || |

It’s time to introduce the transformation.
Assume y is the solution of the equation

Jy(z) — /Owg(u{S}J)duy =C - Z/Ox ydt

98



We define a function
where Q(x, z) = |

Due to claim 6.2, f is well-defined everywhere. Moreover, we have the

following conclusion:

Claim 6.3 On the interval [0, N]|, f satisfies

s T —Qizsdp
i) :1 1 1 C+/ 0 e (s) £(s)
2l 1 0\ e2=5qP(s) 0

et(s)_e—t(s) .
where dP(s) = t(s)(et(s)+€—t(s>)(dMQ(S) — idp (s))

Proof: First of all, we claim that

et(x) — e*t(x) et(x) —+ eft(z) —
2t(x) 2t2(x)

Jg(pfa} ) 2z}

here, coefficients should be interpreted as limits, i.e., when ¢(x) = 0, then

et@) _e—tlz) et@) pe—tl@) _o 1
o) L and 2 (z) 2

Indeed, if t(z) = 0, then p{z} = 0, which implies Jg(0) = J.
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If t(x) # 0, and notice that (u{x}J)* = t*(x)I, we have

g(p) = ()"

et_— et el +et—2
— I J
ST YR

Observe that JuJ = u, thus we get the desired identity:.

Now, we fix z € C. Thanks to claim 6.2, it follows that f is of bounded
variation on [0, N] and right continuous. Also notice that y(0—) = y(0) as

p{0} = 0, we have

(4]MMDfZM@Q@ﬁ@%ﬂMD—/ He)QE)d(s)  (6.1)

[0,]

by integration by parts on [0, V].

By Volpert’s chain rule, we have

/)d%@fz d%@f+/ A(kQ) f
[0,2] [0,2]\Sn (1)

[va]mSN (ILL)

:/‘ aMQf+/‘ k(dQ) f
[0,2]\Sn (1) [0,2]\Sn (1)

+ d(kQ
/[OJ]QSN(M) ( )f

Observe that

/ k(dQ)f = ZJ/ kQfds = ZJ/ kQ fds
[0,1‘]\51\[ (1) [va]\SN () 0

100



and

/m oy QT = 0 (k(s) — k(= )Q()

s€[0,2]NSN (1)

- [ awar
0,411 (1)
Hence, it follows that
| ey = [ dwar s [ kosas
[va] [0733] 0

Moreover, by the definition of y, we get

)Q0) 1) = y(0) = ~I( [ hgludus ~ = [ kQfit

0

Combining (6.1), (6.2) and (6.3) together, we get

—/Okag(,LLJ)d,qu
:/ d(k)Qf+/ k(s—)Q(s)df (s)
0.2]

[0,7]

x et(s) o e—t(s) x et(s) + e—t(s) -9
—— [ s wrdnes - | kuds}duQ
0 2t(s) 0

22(s)

Let’s investigate the measure dk - I + %ku{s}du.
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We have

T et(s) 4+ eft(s) —9
-
/0 (- 1+ s—ku{s}dn)

Hs) 4 o—ts) _ o
— (k@) - DI+ Y k(s I
s€[0,2]NSN (1)

:(k(a:)—1+/0xdwk)]:()

Also notice that k and f are continuous at 0, hence we have

B T 6t(s) + e—t(s) —9
/{0 RCUIEE /0 e hls}ans

Thus
e_t(s)

v lls) _
[ ke =~ [ ki

Recall k(z—) = (1 + w{z})k(z), we get

x x et(s) _ e—t(s) .
f@) =10 = [ 4= - [ o Qs

—i 1
This one, with f(0) = 2 C, gives the desired equation. |
2 | .
i

6.2 Some Notations about Measures

In this section, we introduce some notations used in the sequel.

Let © € MPR) the complex Borel measures space on R. We do have

many equivalent ways to define the Fourier transform of u, for example,
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via distribution theory or via Fourier analysis of locally compact Abelian
groups [18]. Here, we just simply use the most intuitive way, that is, the

Fourier transform of p is defined by

ﬁw:AWW@

From this form, one can immediately know that 7i(¢) is bounded by the
total variation of u, and moreover, thanks to Lebesgue’s dominated con-
vergence theorem, ji(t) is continuous on R. We want to mention that
Lebesgue’s dominated convergence theorem doesn’t work in the sense of
nets, so we actually use the sequence version, then deal with sequences
in complex numbers. If p is absolutely continuous with respect to the
Lebesgue measure, then the classical Riemann-Lebesgue lemma shows that
fi(t) in fact is continuous on the Riemann sphere R, ; however, this is no

need to be true for a measure containing discrete part. the easiest example

could be ¢;.

Given measurable spaces (X7, M) and (Xi, M;), a measurable function
f X1 — X5, and a ( positive, complex, signed, etc.) measure p on
My, the pushforward measure of p under f is defined to be the measure

p(A) == p(f~1(A)) for A € M. p, plays as a change of variable.

Let u1, p € M®(R), the convolution s * p is the pushforward measure of the

product measure p x p under the addition map +: R xR — R, (z,y) —
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z+y, e, p* p(A) = [p.plalz +y)d(p(@) x p(y)).

Claim 6.4 Let p € M*(R), and pug = >.°7 ¢,0,, be discrete part of

(. Then we have

.1 f )2 2
Jm g A dtiﬁ”

where fi(t) = [; €"*du(s) is the Fourier transform of .

Proof: Let us define p, to be the pushforward measure of 7 under f(z) =

—x, i.e., pu-(A) = 1(f1(A)) for any Borel set A C R. Obviously, u, is a

~

complex measure; moreover, we have fi,.(t) = 1i(t).

We consider pu * p,.. The Fourier transform of this convolution is

ﬁmm=AW<Wmem@:mmm:mw

On the other hand, as the convolution of two complex measures, it is also

complex. It hence follows from Fubini’s theorem that

1 1 (B

o5 !MWﬁzR MMMW=AM®WW$)

where
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iRs —iRs

Since |fr| <1, fr(0) =1 and fr(s) = “5;— if s # 0, we conclude that
lim fr(s) = 0 except for s = 0. By Lebesgue’s dominated convergence
theorem for sequences, and treat 55 f 7i(t)|2dt as a function on R, we

have

1 [t
fim / 70)[2dt = o % 11,0}
—R

R—o0 2
By the definition of convolution again,

w0} = [ Lo+ 0)dn(e) % l) = [ ol -s)duto ZW

RxR

Combining all together, we finally get

: 1t 2 - 2
e G = e

An intriguing corollary of this claim 6.4 gives an intuition about some
measures called Rajchman measures.

Corollary 6.5 Assume pu € MP(R) is continuous (with respect to the
Lebesgue measure) on R. then those two conditions are equivalent:

(1) lim |u(t)] exists;

t—+o00

(2) lim [a(t)] = 0.

t—do00

Proof: We just need to show (1) = (2). Assume (2) is not true, then
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from claim 6.4, it follows that

1 2
I;gg@/ A Pdt = 0

As p is complex, we know that fi(t) is continuous and bounded by the
total variation of p. We pick up a M € R* if we have |fu(t)| > € for some

€ > 0 when t > M, then when R is large enough, we have

L o) e = 2 / Ot + —— R\ ) [t
2R J_g 2R 2R
- R—M ,
T
When R — +o0, we have hm @ RR 72 (t)|?dt > % This contradiction
implies that thgrn |ze(t)] = 0. The same conclusion for ¢ — —oo can be
—+00
achieved once we consider 55 f:éw |7(t)|2dt. |

Corollary 6.6 Assume p € M®(R). If lim |z(t)| = 0, then p is con-

t—+oo

tinuous.

Proof: We still pick up a M € R* such that |u(t)| < € for some € > 0

when |t| > M, then for large R,

M R M
o |waopa =g [ aopac [Caopas [ o)

R
< ) dt
- e+QR/Mm<>|
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Thus we have

L <
lim 5 /_ ln(t)|dt < e

As € is arbitrary, and with claim 6.4, we conclude that the discrete part of

(4 is empty. |

We denote continuous complex measures by M2(R), i.e.,
ME(R) := { € MR) : p is continuous}
Rajchman measures are special measures in MP(R) defined as follows:

M(R) := {p € M"(R) : lim [f(t)| = 0}

t—+o00

Absolutely, by Riemann-Lebesgue lemma and corollary 6.6 above, we con-
clude that

L'(R) € MG(R) € M,(R)

We want to mention that Menshov constructed a singular continuous Ra-
jchman measure, and moreover, the Cantor-Lebesgue measure is a con-
tinuous measure that is not a Rajchman measure. See [19,20] for more
details. Notice that the Fourier transform of a Rajchman measure is de-

fined on Riemann sphere R.

Now, we are ready to present Wiener’s lemma.
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Claim 6.7 (Wiener’s Lemma) Assume y € MJ(R) and duy < dt. If
1+ 7i(t) # 0 on R, then there is a complex measure p € M§(R) and and

dp < dt such that
1

1+ 71

=1+p

where dt is the Lebesgue measure.

We present a closed property without proof due to Rajchman and Milicer-

Gruzewska.

Claim 6.8 Let p € M}(R). If a complex measure u satisfies u < |p|,

then € M4(R).

MB(R) is sometimes said to be a L-space or a band because of claim

6.8.

We have discussed p * p for some p,p € MP(R), and we already know
that pu * p € MP(R). Next, we will discuss one special case: dp < dt.
By Lebesgue-Radon-Nikodym theorem, this is equivalent to dp = fdt for

some f € LY(R,dt).

Let A be a Borel set of R, then the value of the convolution at A is
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given by

ok p(A) = / / 14z + y)dp(a)duy)

- /R(/Af(x — y)dx)dp(y)
— /A(/Rf(x —y)du(y))dx

Here, the third equality is from the fact that p is complex and Fubini’s
theorem.

Since we have

L1 @ wdutlae < [ ([ 15 = plds)dal) <

it follows that [, f(z — y)du(y) € L*(R,dt). In fact, this is the Radon

derivative of measure i * p. We denote this function by

o fz) = / F(x — y)du(y)

Claim 6.9 Let y € M*(R) and f € LY(R,dt). Then u* f(z) € LY(R, dt)
and

[l fllprw) < Ll (R) - [ f]] 21 ry
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6.3 De Branges Spaces

Let N < oo, p € DS and we consider Ty. As usual, let u(z,z) be the

1
solution satisfying Txu = zu with u(0, z) = . we define

0

En(z) = u1 (N, z) —iug(N, 2)

Claim 6.10 Ey(z) is a de Branges function. The reproducing kernels of

B(Ey) are given by

Proof: En(z) is entire because T'(N, z) is entire.

Let’s calculate

The third equality comes from the same approximation used in claim 4.8.

In particular, taking w = z, we obtain that

|En(2)? — |B§(2)?
4Imz

= |[u(-, 2)|I* > 0

Hence, En(z) is a de Branges function. H
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Claim 6.11 The formula

Uf(z) = /O (2.3 f(2)da

defines an isometry U : L?*[0, N| — B(Ey).

With claim 6.10, the proof is irrelevant to the type of operators, hence
claim 5.3 guarantees this claim since we have the same version for canon-
ical systems, see [2]. We don’t work explicitly on this proof. Moreover,

this theorem implies that if Ny < Ny, then B(En,) C B(En,).

Now, it is time to invoke a theorem by Louis de Branges. The version
we need here is a little bit different from de Branges’s original one, but
it is more explicit for our purpose. For readers who are interested in the

original version, please see [24].

Theorem (De Branges) Let Ny < Ny < oo, p € DS. If F € B(Ey,)

and |h| < 7y, — 7n, Where Ty, is the type of Ey,, then ¢/ F € Ey,.

Let p € M*(R) and compactly supported, we define a complex function
1i(z) by
o) = [ ean(s
R
This function is entire by Morera’s theorem, and moreover, the restriction

of this function on R is the Fourier transform of p, see [9]. This property
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also indicates the usage of the notation p.

We denote the pushforward measure of @ under f(z) = —x by pu,, and

recall the property f,.(t) = 1(t). In the sequel, we sometimes use du €

MP(R) rather than the formal notation u € M®(R) just for convenience.

Claim 6.12 Assume p € DS. Then for any arbitrary N € (0,00), B(Ey)

is a Paley-Wiener space as sets, i.e.,

~

f(z): f € L*(=N,N)}

B(EN) = PWN = {F(Z)
Proof: For convenience, we still use p to denote the cut-off of p on [0, V],

ie., u€ DS(N).

Conclusions from section 6.1 show that
Es(z) = 2k(8)e 0 f5(6, 2)

1
where f is from claim 6.3, f(0,2) = 5 and 0 € (0, N].

2
1
We first focus on a small interval, i.e., let us consider the interval [0, ]

with ||p][((0,0]) = nl?g(\ui\((O,(S])) < 3. we apply iteration on [0,4] by
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putting

1 1 1 x 0 e*?izsdp(s)
o
0

’ fn—|—1 — 5 . _
1 1 GQZZSCZP(S) 0

fo

where dP(s) = ey (dpas) = idp (5)).

1) (@@ 1ot

We claim that the solution can be written as

1
fla,z) = % + Zvn(x,z)

1 n>1
where

1z rh tno1 (dp(tl)dp(tz)---dP(tn)e—%z(tl—tz+t3—---+tn)\
I

dP(t)dP(ts) - - - dP(t,)e2*(ti—ta+ts—+tn)
'Un(.fC, Z) —

dP(t)dP(ts) - - - dP(t,)e 22 —tatts—r—tn)

WA

\ AP (t1)dP(ts) - - - dP(t,)e2=ti—trtta——ta) )

\

and the first (second) branch is for odd (even) n.

Un,1

Indeed, we denote v, by . Since vy = v;% 1, to check the con-
Un,2
vergence of > v,(x,z), we just need to check ) wv,a(x,z). Notice that
n>1 n>1
O<ti—to+t3—---£t, <0 and t(x‘jt((est)(j)i_etff(s» <1 for t > 0, it follows

113



that

o] < o / [ [ P i)

€2|Z|N
<[ aroy

e2|z|N 1

< A
- 2 4n

hence we conclude that 21 v (2, 2) converges uniformly on [0, ] and on a
>

compact set of C. -

Let s = 2(t; —to+t3—---+t,). We just consider v, s(x, z) when n is odd.

For any even n, we have an analogous result.

Write

A:{(t17t277tn)0<tn§tn—1§Stlgé}

The transform
T :R" =R (t,to, - ,tn) — (8,12, ,tp)

satisfies

/2 -2 2 .- 2\

o1 0 -0

T"=10 0 1 --- 0

\O 0 0 --- 1/
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hence, T is invertible.

We have
1 — _ )
Un,2(5, Z) = 5/ d(P x P x P)(t)6212(t1*t2+t3*“'+tn)XA(t)

where t = (t1,t9,- -+ , ).
We denote the pushforward of Px P---x P under T by T,(Px P ---x P),

then we actually have

tnalb2) =5 [ AP P x D)) nria (@

where © = (8,19, ,t,).

Let OT(A)(s) be the cut-off of T(A) at s, i.e., the collection of all points

in T'(A) such that the first coordinate is s. We define a measure on R by

pn(A) = / X[o,za](S)/ A(T.(P x P x P))(s,ta,- - ,t,)
4 OT(A)(s)

Obviously, this one is compactly supported; moreover, by the definition of

a pushforward measure and 7T, we have

1) t th_1
ol (R) < / / / AIP|(,)d|P|(tr) - d|P|(11)
1
<

=
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Thus, u, € M*(R) and compactly supported by [0, 2d], and

1 .
Un2(0,2) = —/ e “dpy,(s)
2 Jr
Notice that this conclusion is also true if n is even. The total variation
n
of 1, implies that the sequence of complex measures {> 1;}>2; converges
i=1

in M’(R), and moreover, the limit, which is denoted by p, is compactly

supported by [0,24] with |p|(R) < 3.

Since measures in the sequence above are compactly supported by [0, 2],

we conclude that

00 k ~
1 128 _ 128 - p(Z)
;Unz(é, z) = Ekh—glo Re dnz:;,un(s) = /Re dp(s) = -
and this gives the desired result:
Ej(2) = k(0)e ™ (1 + p(2)) (6.4)

for some p € MP®(R) and is supported by [0, 25].

On the closed upper half plane, i.e., Imz > 0, we have

N —

(2)] < |pl(R) <
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hence, it follows that

. k(& .
‘e—zz(5| < ‘E(;(Z)‘ < 3‘ ( )|‘€—zz6|

k()]
2 2

on C+.

This estimation, with the fact that @ > 0, gives B(Es(2)) = B(e™™) as
sets. With the famous result saying that B(e~%*%) = PWj as sets (see[2]),

we get the conclusion that B(FEs(z)) = PWs as sets if 0 is small enough.
Next, we want to show PWy C B(Ey) as sets.

We first observe that, because of claim 5.3 and the exponential type for-
mula, the type of Ej, denoted by 77, can be determined by 7;, = L for
L e0,00). Let |h| < N —d and F = f € PW;. Clearly, ¢"*F =3, % f €
B(Ey) due to the theorem (de Branges) above. On the other hand, since
f runs in L?*(—4,9), then §;, * f runs in L*(—6 — h,d — h). If we pick
up some proper h, L*(—=N,N) can be decomposed into the direct sum
of finitely many such subspaces. As B(Ey) is Hilbert, we conclude that

PWy C B(EN)
Moreover, we claim that B(Ey) C PWy as sets.

First, we want to show that |Ex(t)] < C on R for some constant C,

or equivalently, fo(N,t) is bounded.
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Since u € DS, we can pick up finitely many point masses so that the

rest of point masses is small enough, precisely, for ¢ > 0, there exists an

integer m such that for x,, € Sy(u) we have i \p|(z,) < e. Moreover,
n=m

as [0, N] is compact, we can find out finitely many points, denoted by

do=0< 0 <y < - <dpy-1 < 0y = N so that ||u||((0p,0nt1)) =

5121211)5(\#2\((%, 0n41))) < 5. We need to be aware of that d, can be a point

mass which has a large weight, and this is why we just consider open in-

tervals rather than closed ones.

Now we consider the integral equation in claim 6.3 on intervals [, :=
(0, 0nt1) separately. On [y, this is indeed what we did at the beginning
of the proof, and the conclusion is that f(d;—,t) is bounded. To evaluate
f(01,t), notice that the point d; will update f(6;—,t) to f(d1,t) by a con-
stant matrix ( which is not the identity if d; is a point mass), thus f(d1,?)
is still bounded. On [,,, we consider the iteration as above by putting:

z 0 e 2=5dP(s)

fo= f6u2) fon=fGna)+ [ | fuls)

o\ e2#5dP(s) 0
An analogous calculation as above shows that f(d,.1—,t) is bounded if
f(0p,t) is so, and as expected, f(d,41,t) is also bounded since 6,1 up-
dates f(d,+1—,t) by a constant matrix relative to the mass of this point.
In summary, it follows from induction that |En(t)| < C' on R for some

constant C'.
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Let F € B(Ey). the exponential type formula, theorem 2.9, claim 5.3,

and claim 6.11 together show that 7(F) < N. Moreover,

270 F(t) o 2 2 £(2) ,
L1P0Pd = [ 1P B Pt < Pl

Since EiN € H? by the definition of B(Ey), it follows that F(t) € L*(R).

Now, the Paley-Wiener theorem implies that B(Ex) C PWy. |

Claim 6.13 Assume pu € DS and du < dt. Then for any arbitrary

N € (0,00), B(Ey) is a Paley-Wiener space as sets, i.e.,

~

f(z): f € L*(=N,N)}

Moreover, m =1+ ¢(t) on R for some ¢ € L'(R) such that ¢(z) =

é(—x). Thus, for F = f € B(Ey), the norm can be written as

| F|[Bgy) = 2(f, f + &% [)

Proof: The first part about Paley-Wiener spaces is from claim 6.12 directly.
To show the second part, we just need to observe, due to Volpert’s chain

rule, that the estimation of |v, | from the proof of claim 6.12 can be
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improved on [0, N]| as

€2|Z|N N rti th—1
oal < = [ [ [ PP - P )
0 0 0

_ A /N/“...(/Ot“ /Otnl d| P|(t,)d| P|(ta1)) - - - d|P|(11)
) 2|zN/ /tl...(/Otn_g%(/Omd\P|(tn))2d\P|(tn_2))-..d|P\(t1)

2N (| P|[0, N])"
2n/!

And moreover, we have du, < dt since dP < dt, thus we get the conclu-

sion that:

Ey(z) = eV (1 +p(2))

for some p € L'(0,2N) (formally, p is absolutely continuous, but we still
use this notation).
Recall that Ey(z) # 0, otherwise u(N, z) = 0.

A calculation shows, for t € R, that

1 1

[ExP 1+5()

where g 1= p + p, + p* p, wWith p.(t) = p(-1).
By Young’s convolution inequality, we conclude that g € L'(R). Now,
Wiener’s lemma (claim 6.7) implies that there is a ¢ € L'(R) such that

=1+ g%, this gives

1+4g(t)
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Moreover, if we take complex conjugate on both sides, we have qg = (;AS

Recall that g = gb}, and this gives ¢ = ¢,. By the definition, we have

VPl =+ [ 1PPoecg == [ \fPde+ - [ F- 55

Parseval identity implies that

1EIBEy) = 211122 +2(f, ¢+ f)

which is indeed the desired result. [ |

Remark. Claim 6.13 implies that, even though the convolution operator
¢ * - with ¢ € L(R) maps L*(—N, N) into L*(R), HFH2B(EN) is determined
by ¢ * f on (—N, N), that is, by the restriction of ¢ to (—=2N,2N). With-
out loss of generality, we can assume that ¢ € L'(—2N,2N). Moreover,

as a norm, we require that (f, f + @ * f) > 0 for non-zero f € L>(—N, N).

6.4 PW, as a Regular De Branges Space

Fix N, let ¢ € L'(—2N,2N) and =z € (0, N]. We define an operator,

denoted by T7, as follows:

Ty : L~z 2] = L*[—z,2], TS f = /_x o(t —s)f(s)ds

This definition makes sense because of Young’s inequality for integral op-

erators. Notice that this operator is essentially different from the convolu-
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tion operator on LQ[—ZL‘, x]: the convolution operator is not compact unless
¢ = 0, whereas T} is compact as we will see later. However, it is useful to
point out the relation between those two types of operators once we con-
sider different x: if we identify ¢ € L'(—=2N,2N) and f € L*[—x, ] with
their extensions (set 0 out of intervals) in L'(R) and L?*(R) respectively,

then the convolution ¢ * f € L*(R), and T} f = ¢ * f on [z, z].

We define a subset of L!(R),denoted by ®y, as follows:
Oy = {¢ € L'(—2N,2N) : 1)¢(z) = ¢(—x);2)1 + T, > 0}

where 1+ T,¥ > 0 means (f, (1+7,')f) > 0 for non-zero f € L*[=N, NJ.
Notice that (f, (1 + Tév)f) = (f, f+ ¢ x* f) if ¢ is treated as its extension

(set 0 out of the (—2N,2N)) in L'(R).

Let ¢ € &y, and F = f,H = h e PW,, we define an inner product (

which is easy to verify) as follows:
[F, Hlpo :=2(f, (1 + T5)h)

The norm is given by

132 = [F. Floa
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Claim 6.14 T} is self-adjoint and compact.

Proof: Let f,g € L*[—x,z], then it follows from Fubini theorem that

1z = [ Tt - syng(sis

Recall that ¢(z) = ¢(—x), then the left-hand side is indeed (T f, g}, and
this shows that T} is self-adjoint.

Pick up ¢, € C°(—2N,2N) so that ¢, — ¢ in L'(—2N,2N). Since Ty
are Hilbert-Schmidt integral operators, hence are compact as well. Young’s

inequality implies that

HTgnf o TngLQ[*I,SC} - HTgn—gbeLQ[fx,z] < H¢n - ¢|‘L1(72N,2N)Hf”L2[f:z:,x]

and this estimation shows that T} — T in B(L*[~x,z]). As a result, T}

is also compact. |

Claim 6.15 PW, with the norm || - ||, , denoted by (PWa,|| - |ls2),
is a Hilbert space.
Proof: Consider f € L*[—x, z], and the extension of f (set 0 out of [—z, x])

in L?[—N, N],denoted by f for convenience.

We have for all f € L*[—z, x],

0<(f,(L+T)f)=(f. AL+ T)f)
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Since T} is self-adjoint and compact, we have o(7T7]) = 0,(T;7) U {0} and 0

is the only accumulation point; moreover,
o(1+T7) = op(Ty + 1) U{l} = (0,(T7) + 1) U {1}

From the inequality above, we conclude that if A € o,(T§ + 1), then

A > 0,otherwise there must be a f € L?|—x, z] so that

L A+TE) ) =AlfIF <0

Since 1 is the only accumulation point of o,(1 + T7), then there are at
most finitely many eigenvalues in [0, 1 — €] for any € > 0. Let’s denote the

smallest eigenvalue by \,;, > 0, the spectral theorem shows that

FOHTDN = [ tdlBaafIF 2 ol

o(1+T%)

where Ey . (t) is the spectral family of 1+ T7.
On the other hand, we have (f, (1 +T7)f) < |1+ T7|| - ||f||>. Those two

min .; — } ¢7x — 1 j ¢ J

That is, (PW, || - ||¢.) is Hilbert. |

Claim 6.16 (PW,, || - ||s.) is a de Branges space.

Proof: Theorem 2.6 characterizes a de Branges space, so we check 1) to 3)
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one by one.

1) For z € C, we have

AF) = | [ geta < e [ flde < VIR

Recall || f|r2—a,0 < \/ﬁHFqua we have

It follows from the inequality above that the linear functional z € PW}.

2) Recall the Paley-Wiener theorem
PW, ={F: Fis entire,/ |F|? < 00, |F(2)| < Crpe™}
R

Let’s pick up F' € PW, with F(w) = 0, and write G(z) = =2F(2).

Z—w

Consider the power series of F' at w, then it’s easy to see that G is also
entire.

Also, we have

o
[16r= [ =pre = [ (PP <
R RI—-W R

To show that |G(z)| < Cge®?l for some constant Cg, we consider G in
the closed unit ball B;(w). since G(z)e " is entire, then is bounded in
compact set Bi(w). We choose a large number M s.t. |G(2)e | < M
in Bi(w), i.e., |G(2)| < M|e**| < Me* in Bj(w). On the other hand, in

C\ Bi(w), since lim |=%| = 1, we conclude that [==2| < N for some large

z—00 T Z—w
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N, ie., |G(2)| < NOpe®?. In summary, |G(z)| < max{M, NCp}e*.
Now, it follows from the Paley-Wiener theorem that G € PW,, that is,
there is g € L?[—z, 2] s.t. G = .

Let’s evaluate ||G||5 , (with some obviously simplified notations).

G

1 1 ~
Notice that |G (t)|> = |F(t)[*, we get
1 )
1Gllo0 = —(F,(1+0) - F) = 2(f, (1 + ¢) = f) = ||FIl;,,

~

3) Recall again that F#(z) = f.(z) where f,.(t) = f(—t). We have

1FANG.. = 20F, A+ T ) = 2(f, (1 + 0) * [ = || P[5 .

This gives the isometry. |

Claim 6.17 (PW,, || - ||¢«) is regular.

Proof: Let F € PW,, we want to show that (S, F)(z) = Z2=L2) e pyy,.
By checking the power series of F(z) at 2, it’s easy to see that S, F' is
entire.

To evaluate [ (S5, F)(t)|dt, we need to consider two cases: a) z ¢ R; b)

20 € R.
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F(t) = F(z) ) 2 [t
/R\ )= g < /Rm 9l (z)] /R < 00

20 |[Imzg|? |t — zo|?

b) We can find a small ball centered at zj, denoted by B.(zj), and split

the integral into two parts:

[ s pora= [ - FO=Teey | . el

by the same reason in a), we have fR\B (20) |%§)(zo)|2dt < 0.

Since (S,,F)(z) is continuous, |(S,,F)(z)| reaches out to its maximum,

denoted by M, in B(z), i.e., [5 (z0) |M]2dt < 2eM?. If we assemble

t—Zo

those two parts together, we always have [, |(S.,F)(t)]*dt < oc.

We have [(S.,F)(z)| < M < Me** in B,(z); moreover, in C\ B.(z), we

also have

F(z) = F(x)
Z — 20

| < )+ IFGo)l) < (e + o)

hence, for an adequately large number C, it’s clear that

CF (gols] 4 grlaal) < crerl
€

In summary, it follows that

F(z) = F(=0)

| | < max{C, M eV
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Now, the Paley-wiener theorem gives the desired conclusion. |

6.5 the Canonical System Given by PWy

We have proved that (PWy,|| - ||s.~) is a regular de Branges space, i.e.,
there is a de Branges function, denoted by Ey, so that (PWy, || - |lsn) =
B(Ey). Without the loss of the generality, we can normalize Ey s.t.
En(0) = 1. Now, by theorem 2.8, there is a canonical system H with

trH =1 on (0, N) such that

En(z) = u1(N, z) — ius(N, 2)

and the corresponding reproducing kernels J,, are given by

Ui 1
where u = is the solution of ' = zJ Hu satisfying u(0, z) =

U9 0
In the sequel, we simply denote (PW,,|| - ||¢») by PW,, and B, the de

Branges space of v’ = zJHu on (0,z). Also, for convenience, we define
PWy = By = {0}.

For PW,, we have PW, C PW,, if 1 < xs.

For B,, we still have B,, C B,, if 1 < x5 and z; is regular. See [17] for
details.

We denote all regular values of the canonical system on [0, N] by R. Since
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PW, and B, are regular due to claim 6.17 and theorem 2.9, it follows from
the ordering theorem (theorem 2.7) and the fact PWy = By that either

PW, C By or By C PW, for t € R. Define for t € R a function z(t) by
z(t) = inf{x € [0,N] : B, C PW,}

By the definition, we have that ¢ = 0, N are regular (see Corollary 10.11
in [17]), i.e., (0) = 0,2(/N) = N. It is also clear that x(¢) is increasing.

We apply a modification: if (0, V) starts with a singular interval (0, a) and
E.(z) = 1, we delete this initial interval and rescale the rest so that we
still have a canonical system on (0, V). Clearly, this modification does not

change By.

Claim 6.18 Vz € (0,N), PW, = (| PW, = |J PW,. This closure is

y>z y<x

taken in PWy.

Proof: Since PW, C PW, if x <, it’s clear that PW, C [ PW,,.

y>x

On the other hand, let F' € (| PW,, then F € PW, 1 for all positive
integers n, i.e., F(z) = ffn(tzz;dt where f, € L*(—(z + 1),z + 1). By
the uniqueness of the inverse Fourier transform, we get that all f,, are the
same. This is true only if f,, are supported by [—x, z], hence F' € PW,.
Since PW, C PW, it y < z, hence UTVVy C PW, as PW, are closed in
PW,. "

Let F € PW,, then F = f for some f € L?(—x,z). Define f, =

X(_(x_;)’x_;)f, then F, — F in (PW,,|| - ||s), hence it follows F' €

3
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U PW,. |

y<x

Claim 6.19 The (modified) canonical system u' = zJHu has no sin-

gular points. Moreover, PW, ) = B; for all t € [0, N].

Proof: If t € R, then either PW, C B; or B, C PW, for t € R, hence

it follows that |J PW, C B, C (] PW,. By claim 6.18, we have
y<z(1) y>x(t)

PWo4 = By

If (a, b) is a singular interval, then for regular values a, b, we have PW,,) =

Ba, PWm(b) = Bb, i.e.,
PW{L(b) S PWx(a) = By © B,

Corollary 10.11 in [17] again implies that the right-hand side is one-dimensional;
however, the left-hand side cannot be one-dimensional, this contradiction

shows that there are no singular points. As a result, PW, = B; for all
t € [0, N]. |
6.6 Two Integral Equations

1) Reproducing kernels for w =0 in PW,
Let’s denote reproducing kernels for w = 0 in PW, by Jy(z, z), then there
exist j(z,t) € L?*(—xz,x) such that Jy(z,z2) = fi,j(m,t)emdt.

VE = [ fe**'dt € PW,, we have [Jy, F,, = F(0). Hence it follows

Fo) = [ "t = (L ) paamy = 20 (14 T2V
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As the operator 1 + T is self-adjoint, we actually have
<17 f>L2(—x,:E) = <2<1 + qu)% f>
Since f is arbitrary in L?(—x, ), we conclude that

or equivalently,

1

Jx,t) + /_x o(t — s)j(x,s)ds = 3 (6.5)

ont e [—z, .

2) Conjugate kernels for w =0 in PW,
We introduce some notations first.

The signal function, denoted by sgn(x), is the function defined by

I, z€l0,00)

-1, € (00,0)

For ¢ € Oy, we define a function ®(z) by

() = /0 " 6(s)ds

The usage of the notation ¢ will not bring any confusion, and we also
follow the convention: if z < 0, then [; ¢(s)ds = — f; o(s)ds. Also notice

that we have the property ®(z) = —®(—xz).
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We define a function by ¢(s) = (2®(s) + sgn(s))i, then define a bounded

linear functional for F' = fe PW, as follows:

Fo) = [ Bs

We stop to insert the following property of F (0) which will be used later

when we construct the connection between PW, and B,.

Claim 6.20 For all F = f,G = § € PW,,we have

F(0)G(0) — F(0)G(0) = [SoG, Flse — (G, SoFlo.s
Proof: Let’s write soF'(t) := I1(t) — x(0.0)(t) F(0), where I;(t) = [*_f(t)dt.
Notice that I¢(x) = F'(0), then it is easy to show that SoF(z) = —ig)l\?(z)
as Fourier transform.
Thus we get

[S()G, F]gb,:z: = 2i<SoG, (1 + Tg)f>
G S0F g = —2i((1 +T7)g, soF)

Notice that

Ly, L+ TZ)f) = ((L+T5) 1y f)

= (L+ T, - I, = (L +T5)g, 1) + G(0) [*, oz — t)I;(t)dt
Ly, L+ TZ)f) + (L +T5)g, Iy)

= FO)T+ T, (x) + G(0) [, é(x — 1) ()de
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On the other hand, since ((1+77)g, Iy) = (g, (1 +T¥)Iy), the same com-

putation shows that

Iy, A+ T5)f) +{(L+TF)g, I)

= G(0)(1+T)Is(x) + F(0) [5 ot — x)I,(t)dt

Hence we have

FONT T, () + GO) | " (e — 01 (1)dt

=G0)(1+T7)Is(x) + F(0) /_m ot — )1, (t)dt

We also know from the equation above that

150G, Flysw — G, SoFlos
= 2i((Iy, L+ T) )+ ((1+T5)g, I5) = GON(1+T)X 0.0, f) = F(0) (g, (1+
T5)X(0.2))

= G(0)-i([7, ¢(x = ) I (t)dt + (1 + T () — 2((1 + TF)X(0), )
—F(0) - (=i)(J2, ot — 2) [, (t)dt + (1 + TF)Iy(x) — 2(g, (1 + T5)X(0.0)))

Notice that

T
—X

TiTi(x) = /_ " (e — )1 (t)dt — / B(x — 1) f(1)dt

and

(L+T5)X(02), £) = (X(0.2)5 f) + /_x (B(z — t) — D(—1)) f(¢)dt

we finally get

(S0G, Floz — |G, SoF)s. = F(0)G(0) — F(0)G(0)
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H
Now, let’s resume our discussion about F (0). As a bounded linear func-
tional on PW,, the Rieze representation theorem then guarantees that
there must be a unique Ko(z, 2) = [ k(z,t)e*dt € PW, so that [Ky, Fly, =

F\(O) for all F = f € PW,. In other words, we get

mwmmﬁa[wwwu

ie, (1+T5)k= 51, or equivalently,

k(z,t) + /_ "ot — (o, s)ds = %zp(t) (6.6)

ont e [—z, .

6.7 the Regularities of the Integral Equations

In this section, we always assume ¢ € @, x € (0, N]. We want to consider

the following differential equation:

pa) + [ ol = 9t s)ds = gla.)

for t € [—x, x] in some proper spaces.
We can also extend this equation to 0, i.e., if x = 0, we define p(0,0) =
g(0,0). To simplify our notations, let’s define a triangle with respect to a

number m € (0, N] by

A, ={(z,t) eER*:0< |t| <z <m)
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It is clear that if g(z,t) = 5 and g(z,t) = 3¢(t), then this differential
equation gives (6.5), (6.6) respectively.
For our purpose, we do need to define some operators and analyze those

operators carefully. Recall that

T3 L*—z,2] = L2[—x,x],T$f — /x o(t —s)f(s)ds

By Young’s inequality for integral operators, we can define

L;@:Ll[—x,x]%[]l[—x,x], éf:/_x o(t —s)f(s)ds

and

Cy: Cl=m, 2] = Cl—u,2],Cy f = /1‘ ot —s)f(s)ds

Here, C|—z, ] is the Banach space of all continuous functions endowed
with the supreme norm.

Of course, since C|—x,z| C L?[—z,z] C L'[—xz,x] as sets, if we pick up
some function f € C[—z,z| for instance, then we do have TY f = Lff =
C;f; however, the advantage of using different notations for ”the same”
operator is that we don’t need to always emphasize spaces when jumping

back and forth among those different spaces.

Let’s define

H[—z,x] == C|—x,z] ® L{x|0, z]}
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where L means all linear combinations.

Of course, we can treat H|[—x, x] as the direct sum of two Banach spaces,
then the scalar multiplication and vector addition can be defined as usual
so that H|[—x, x] becomes a vector space.

For (f,ax|0,z]) € H[—z, x|, we define the norm (which is easy to check)

as follows:

1(f, ax[0, 2Dl -0 = [|fllc-0.0 + |0l

It’s easy to see that H[—x, x| with the norm above is a Banach space;
moreover, C[—x,z] can be embedded into H[—z,z] isometrically. In all,

we have the chain:
Cl—x,7] C H|-m,2] C L*[—x,2] C L'[—x, 1]

and the second C may be interpreted as f + ax[0,z]| for (f,ax[0,z]) €
H[—z,x].

Let f € C[—x,x]. We have

/_x ot — s)(f(s) + ax|[0,z](s))ds = /_x ot — s)f(s)ds + a/t_ o(s)ds

It is clear that the right-hand side is continuous, hence we can define an
operator

Hy : H|-x,z] = H[~x,1]

H(F.ax(0.0]) = ([ ot = $)((5) + ax[0.a)(5))ds.0)
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It is helpful to keep in mind that the range of H 5 18 actually in C'[—z, z] and

that $1(¢) can be treated uniquely as (i(®(s) —1),ix[0,2](s)) € H|—z, z].

Claim 6.21 C’gj, Hj, Lj are compact.

Proof: Pick up ¢, € C>*(—2N,2N) so that ¢, — ¢ in L'(—=2N,2N) and
fn — @l < 1.

We first claim that Cq“;n is compact.

Let {fn} C Cl=x,2] st. ||fullcayg < 1. Since ||C$nfm|‘0[—x,x] <
@[+ + 1, we get that {C7 f,,} is uniformly bounded. On the other

hand, since

€5, Jm(t) = CF, fn(to)] < /_ |n(t = s) = dnlto — s)lds

and ¢, is continuous and compactly supported, hence is uniformly contin-
uous, thus it follows that {CF f,,} is equicontinuous. Now Arzela-Ascoli
theorem tells that C’;jn is compact.

Also notice that Cf — Cf in B(C[—x,z]), we get that C}f is compact as
well.

The same idea can be applied to H?, hence H 518 also compact.

For L%

4, we just need to notice that the range of L is in C[—x,x], then

the same idea also shows that L7 is compact. |

Claim 6.22 Let X,Y be Banach spaces. An operator 7': X — Y has a
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continuous inverse if and only if
vyr = inf{||Tz|| : x € D(T), ||z|| > 1} > 0.

We have that ||T7Y| = 75"
Proof: Let’s assume 7 > 0 first.

Then it follows that ker(7') = {0}, hence the inverse exists. We have

1T HT_1 | = | | = :
= sup = Ssup : x
yen— Il epir ||T I duf Tl

This show that 71 is continuous and ||T1|| = ;'
On the other hand, if vy = 0, then either there is x # 0 such that Tz = 0,

i.e., T" has no inverse; or T" has the inverse but there is a sequence {z,}

such that ||x,|| = 1 and |[y,|| := |[Tz,|| — 0; however, this implies that
HT||;,1‘1|J|"H = Hy 7~ 00, i.e., T~! is not continuous. m

Claim 6.23 1+ 77, 1+ CJ, 1 + H, and 1 + Lj are bijections.

Proof: Since all operators listed are Fredholm with index 0, hence we just
need to show that their kernels are {0}.

For 1+ T%, if f € L*[—x,x], then as what is got in the proof of the claim
6.15 (we still denote by f the extension of f by setting 0 out of [—z, z]),

we have
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where X > 0 is the smallest eigenvalue of 1+ 7.
If v is an eigenvalue of 14T, then for a corresponding eigenvector f,, we

must have

<f7a (1+ Téf)fﬁ = 'YvaW > AHfVHQ

Hence, it follows that all eigenvalues of 1 + T are not less than A. By
spectral theorem again,

11+ T2) |2 = / 2|l Es(0)f]2 = NI ]2

o(1+T%)

where Ey . (t) is the spectral family of 1+ T7.
Now, claim 6.22 implies that 1+T7 is invertable with |[(1+T7%) "] < A7,

specially, ker(1 +77) = {0}.

For 1+ (7, since any eigenvalue of 1+ CF must be an eigenvalue of 1477,
hence all eigenvalues of 1 + C’f; are not less than A, i.e., 0 cannot be an

eigenvalue, thus ker(1 + C¥) = {0}.
For 14+ HJ, the desired conclusion is from the conclusion of 14 C7 directly.

For 1+ Lj, we change our strategy: we will show that Ran(l + Lj) =
L'—x, ], hence dimker(1 4+ Lj) = 0. Let g € L'[—x, ], then we have
{g.} C C|—z,2] so that g, — ¢ in L'[—x,z]. Since we already proved
that 1+ CJ is a bijection, then there must be {f,} C C[—=, 7] so that

(1+ C;f)fn = g,; moreover, this fact implies (1 + Lé)fn = gn, 1., {gn} C
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Ran(1 + L7). Since we know that Ran(1 + LJ) is closed, it follows that

g € Ran(1 + Lg) as the limit of {g,}. H

Let’s turn to 1 + H again.
Suppose g = (g, ax[0,z]) € H[—z, x|, then claim 6.23 implies there is just

one f = (f, ax[0,z]) € H[—=,z] such that (1 + HJ)f =g, i.e.,

fe(x,t) + /x o(t — s)fo(x,s)ds = g.(x,t) — a/t o(s)ds

This gives the unique solution f. + ax[0,z] € L?[—z,z] of the equation
(L 4+ T5)(fe + ax|0,z]) = g + ax[0, z].
Specially, from (6.6), we have k(x,t) = k.(z,t) + ix[0,z] where k. €

C[—x, x] is the solution of

k(. t) + / 6(t — $)ho(x, 5)ds = iB(t — ) — %z

Claim 6.24 Assume g(z,t) € C(Ay). For any x € [0, N], there is a

unique p(z,t) € C[—x,z| which is the solution of

ple,t) + / " (¢ — $)ple s)ds = g(z. 1)

Moreover, we have
1) p(z,t) € C(An).
2) Under an extra assumption that for all fixed x € [0, N], g(x,t) €

AC|—z,z], we have that p(z,t) € AC[—x,x] with respect to t. More-
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over, the partial derivative p;(z,t) satisfies

pi(, 1) + /_x ¢t = s)pi(w, 5) = gi(@, 1) + ¢t — 2)p(x, ) — H(t + 2)p(w, —x)

where g;(x,t) is the partial derivative of g with respect to t.

Proof: The existence of p(x,t) € C[—z,z| for a fixed x € [0, N] is from
claim 6.23 directly.

1) We first show that p(z,t) is continuous at 0. The purpose here is to
avoid x = 0 in the sequel.

Let 1 > ¢ > 0. Recall that [[C3f]| < [|fllc[za) sup fo s)|ds, we
can pick up a small N; by absolute continuity so tfljt xlfsﬂ b—a < 2N, then
ff [¢(s)|ds < e. Thus, for all x € [0, N1], we have [|CF]| < e.

It is clear that (14 C5)~" = > (=C5)" and ||(1 4 C%)7!|| < = for all

n=0

z € [0, Nq]. Let (x,t) € Ay,, then it follows from p(0,0) = g(0, O) that

Since g(x,t) € C(Ay), then N; can be chosen small enough so that

lg(x,t) — g(0,0)| < ¢, hence the equality above gives

e(1 4 1g(0,0)])
1—e¢

p(z,t) = p(0,0)] <

This implies that p(x,t) is continuous at (0, 0).
The rest part is the continuity on Oy, := Ay \ Ay, U {(Ny,t) : [t| < Ny}
for any Ny > 0.
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Let’s fix a V1. We first introduce a method to ”annihilate” the variable z,

see [4] chapter 6 for example. Let h be a continuous function as follows:
t
h: Oy, — [Ny, N] x [-1,1], h(z,t) = (z, E)

Notice that the construction of the function makes sense because we al-

ready avoid x = 0. Moreover, on Oy, p solves the equation

p(x,t) /¢t—s (x,s)ds = g(x,t)

if and only if on [Ny, N] x [=1,1], ¢ := po h™! solves

q(z,t) + /_1 ro(xt — x8)q(x, s)ds = go h™(z, 1)

We denote the second operator from C[—1,1] to C[—1,1] for a fixed = €
[Ny, N] by 1+ K%, with the help of C5, we know that 1+ K is boundedly
invertible. The advantage of this operator is that the second coordinate is
irrelevant to z, hence we can plug q(z,t) into 1+ K 5 as needed and don’t

need to worry about whether they are corresponding.

Let 1 > € > 0, if we fix 2y € [Ny, N], and pick up = € [Ny, N| such that
|z — xo| < 0 for some proper ¢ > 0, we want to analyze [|(K§ — Kg°) f|| <
| f]] sup f ||zo(at — xs) — xop(xot — x05)|ds for f € C[—1,1].

te[-1.1

Let {qbn} C OX(—2N,2N) satisfying ¢,(z) = ¢,(—2) and ¢, — ¢ in
LY(—2N,2N).
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Since we have for f € L*[—N, N,

[ A +T0) = A+ TN < ARG — @alls

we conclude that for all large n, ¢, € ® 5, hence without loss of generality,
we assume all ¢, € & in the sequel.
Let’s pick up a large enough n such that ||¢ — ¢, || <
f_ll lxgp(xt — xs) — xopp(x0t — 205)|ds
< f_11 \zp(at — x5) — 2Py (2t — w5)|ds + f_ll | Todn (20t — 205) — 20P(T0t —

xos)|ds + f_ll |z (2t — x5) — o (Tot — 205)|ds

S h
I+ e e

The first and the second terms are not greater than ||¢ — ¢,||, moreover,
since

f_ll \zpn (2t — x5) — Todn (2ot — 205)|ds

< [L @lu(at — x5) — pulwot — 205)|ds + |z — zol [ |¢n (@t — zos)|ds

and ¢, uniformly continuous, if ¢ is chosen properly small enough such

that |¢, (vt — xs) — dp(xot — x08)| < =ik and that the second

€
SN||(1+K,°)

term is also small, then we can get

€

|G — K1 < o
SN ([ S D |

Consider the following equation about K:

(1+ K3 Hgoh ™ (z,t) = ql,t) + (1 + K*) (K5 — K*)(a(x, 1))

143



Since we have |g| < M for some M, then

lla(@, e < MIA+ K+ ella(@, e

equivalently,

MII(1 + K3) |

sup HC](ZE, ')HC[—l,l] < 1 —
|x—xo|<O €

We also have (1 + K3°)"'(g o h™'(wo,t)) = q(wp,t). If § is chosen smaller
enough, then we have ||g o h™!(z,-) — g o h™'(xo,)||cl-1,1) < € hence in

fact, we have the following estimate:

MI|(1+ K3°) ]
€

lla(zo, ) — al@, ey < 1+ EZ) ™ e+ =

On the other hand, if we consider x and t simultaneously, we have

\q(x,t) - q(afo,t())’ < ‘Q<$7t) - Q<5E07t)‘ + |q(SL‘0,t) - q<$07t0)|

This implies ¢(x,t) € C([IN1, N] x [—1,1]), that is, as the composition of
two continuous functions, p(z,t) € C(Oy,).
If we change N; in Op,, and with the fact that p is continuous at 0, we

conclude that p(z,t) € C(Ay).

2) Fix z € (0,2]. Let {¢n},{(gn)e(2,8)} C CZ(=2N,2N) and ¢, —
¢, (gn)e(x,1) = gi(x,t) in LY(—=2N,2N). We write g,(z,t) = g(z,0) +

fot(gn)t(x, s)ds, then g, — ¢ in C[—=z, x|, and we have solutions p,, satisfy-
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ing
(1+ qun)pn = gn(z,1)

or equivalently,

pult) = - [ " bult — 3)pule, 8)ds + gu(z, 1)

Since ¢,, is differentiable and its derivative is bounded, then by applying
the mean value theorem and dominated convergence theorem to ¢,, we
conclude that [* ¢,(t — s)pa(z,s)ds is differentiable as a function of ¢,
and the derivative is [* ¢/ (t — s)pu(z,s)ds. Since p,(z,t) € C(Ay),
hence it is bounded, and ¢/, is also bounded, then we actually conclude
that by mean value theorem again, [* ¢,(t — s)p,(z,s)ds is Lipschitz,
hence absolutely continuous with respect to ¢, thus it follows that p,, is

absolutely continuous. We denote those derivatives by (p,):, then we have

(1+ Lgn)(pn)t = (gn)t(x,t) + Pn(t — x)pu(z, ) — Gu(t + 2)pp(, —2)

Here, we have to change the space we are in (the operator notation we are

using) because the right-hand side converges in L' rather than C[—z, x].
Since (1+C% )" =1 - (1+C5)"'C5_, )" (1+C5)7", and for all large

n, we have [|CF_; || < |[¢p — &ul|nr < m for small 0 < € < 1, hence

it follows that

11+l
€

I+ C3) " =+ el =
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For 1+ L7 , we have an analogous conclusion.

From p, = (1 + an)*l gn, we conclude that {p,} is a Cauchy sequence
in C[—x,z] that converges to p(z,t), hence {p,} is uniformly bounded,
as a consequence, (gn)¢(z,t) + on(t — z)pn(z, ) — dn(t + x)pp(x, —2) is
convergent to g;(z,t) + ¢(t — x)p(x,x) — ¢(t + 2)p(x, —x) in L[z, 2]. It
follows as above that {(p,):} is Cauchy in L}[—z, z], i.e., there is a function
in L'[—x,x], denoted by p;, such that nh—{go(pn)t — p;. If we take limit for

(1+ L7 )(pn)t, then we can get the equation we need; moreover, we have

pn(x,t) = pp(x,0) -l—/o (pn)i(z, s)ds

once we take limit on both sides, we get

p(z,t) = p(z,0) +/O pe(z, s)ds

Since our purpose is just to analyze two equations obtained in section

6.6, we can summarize the claim 6.24 as follows:

Claim 6.25 Assume that g(z,t) = 3 or g(z,t) = i®(t — z) — 3i.
1) For any = € [0, N], there is a unique p(x,t) € C[—z,x] that is the
solution of

pat)+ [ "ot — s)p(e. s)ds = g(a.1)

Moreover, we have p(z,t) € C(Ay), and p(x,t) € AC|—z, 2] with respect
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to t. The partial derivative p;(x,t) satisfies

pi(, 1) + /_x ¢t = s)pi(w, 5) = gi(2, 1) + ¢t — @)p(x, ) — o(t + 2)p(w, —x)

where g;(z,t) is the partial derivative of g with respect to t.

2) For any z € [0, N],we denote by p,(z,t) the solution of

px(:l?,t) +/_m ¢(t_s)px(x73) = gm(x7t> —gb(t—x)p(a:,x) —gb(t—l—[lﬁ)p(&?, —SU)

where g, (x,t) is the partial derivative of g with respect to x.

Then for any x € [0, N], we have

/p(x,s)d,s:/ p(|s|,s)d5+/ ds/ pz(m, s)dm
—x —x —x |s|

Proof: 1) This is just a restatement of claim 6.24.

2) We first discuss the uniform upper bound of operators (1 + Cgf)_l with
respect to x.

As in claim 6.22, we define on [0, N| a function for ¢ € ®y:

e, (@) = mf{{[(1+ COf] - f € Cl=z,x |[f]| = 1}

We claim that ~¢,(z) is continuous on [0, N].
Indeed, let’s recall the operator 1 + K§. In the proof of part 1), we dis-
cussed |[K§ — K°|[, and the conclusion there can be summarized as K is

continuous as a mapping about .
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We pick up f € C[—x,z] such that [|f|| = 1, then We have (1 + CJ)f =
(1 + K§)k where k(t) = f(xt), and (1 + C°)w = (1 + K;°)k where

w(t) = f(::t). Because
(1 + KR < [[(1+ KG°)E[] + [[KG = K[| - |[Kllor-1

we get

(L + GOSN < [I(1+ CPwl| + [[KF = K]

If we take infimum on the left-hand side first, then take infimum again
on the right-hand side, we conclude that y¢, () < ¢, (o) + || K — K5°||.
Once we switch K and K%, then we can get the symmetric one: y¢, (o) <

Yo, () + || K§ — K;°[|. The inequality

v, (20) = e, ()] < [[KG — K|

implies, by taking  — x¢, that y¢,(z) is continuous on (0, N]. If zy = 0,

then lim [[CF]| = 0, this gives the continuity at 0.

T—T
Now it follows that v¢,(z) > i[%f;\/] Yo, (T) = ve,(xo) for some zy € [0, V].
xe |V,
Moreover, by claim 6.22, claim 6.23 and closed graph theorem, we know
that yc,(zo) > 0, hence it follows from this fact that v¢,(x) > c(¢) for

some number only related to ¢ and ¢(¢) > 0, i.e.,

1
sup |[(1+CH7 < —
2€[0,N] I o)l (o)
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. For 1 + L we have an analogous conclusion saying that
g

for a number only related to ¢ and [(¢) > 0. To see this, we just need to no-
tice that as above ||f||r1—z2 = 2[|K][2 =11, || f]21j—22) = %HwHLl[_]jO’xo],

and apply Young’s inequality for integral operators again for || K — K°||.

We just need to deal with g = %, the other scenario can be done as the
same ( the only nuance is that we need to consider g, obtained by substi-
tuting ¢ by ¢, in g).

As in the proof of claim 6.24, Let {¢,} C C*(—2N,2N) and ¢, — ¢ in
LY(—2N,2N), and we denote the difference quotient of a given function f

by
flx+et)— flx,1)

€

Sef(a,t) =

Again, we have

1 €
_ <SNA+C5)T =1+ <
o = pllciea < 510+ C5)™ = 0+ C) 7 < 30555

i.e., p, is convergent to p uniformly not only about ¢ but about z, as a

result, we conclude that

sup |pn(z,t)| < M
(z,t)EAN

for all n and a large number M.
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On the other hand, we also have for € > 0

—Z

(108 == [ oult=9matores)— [ onlt=shpla+es)

(z+e)

and for e < 0

—Zx

(1+ C;f:e)sepn = %(— /x 6gbn(t — $)pn(z,8) — / On(t — $)pn(x, s))

—(z+e)

Let’s deal with the first equation.

Since the right-hand side converges to —¢,,(t—x)p, (z, ) — ¢, (t+x)p,(x, —2)
in C|—z,x], hence Scp, = (pp), in C[—x,z] when € — 0 from the right-
hand side.

To deal with the second equation, consider (1 + K qff)(Sepn o h1) and

(14 K% )((pn)s o h~'), moreover, for a small enough € > 0,
A+ K ) ' =(01—(1+K5) (K; — K™ ) '+ K5)™

it follows that Sep, — (pn)s in C[—x, 2] when ¢ — 0 from the left-hand
side.
In all, p, is differentiable everywhere in term of x, and the (partial) deriva-

tive is (pn)., and

X

mmw:mwﬁ+/umwﬁ@

2|

Once again, since {p, } is uniformly bounded in Ay, it follows that —¢,,(t—
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20, 2) — b(t + 2)pu(r, —) = —(t — D)pla,2) — Bt + 2)p(z, ) in
LY[—z, 2] uniformly in 2 € [0, N], as a consequence, it follows from the

uniform bound of |[(1+ L§)~"|| in term of = that

nll—{go H(pn)x - px' |L1[f:v,ac] =0

uniformly in x.

This limit implies that Fubini theorem works, and

i [ [ () m.) = pitim,s))ds =0

Moreover, if we pick up a large n, then we have

f dmf |pe(m, s)|ds
< foldm f_m|(pn) ,8) = pu(m, s ‘d5+fo dmf n)a(m, s)|ds

The first term of the second line is small enough, and (p,), is bounded,
hence f |p2(z, s)|ds is integrable in term of x.

By Fubini theorem, we have

0= lim [ dm [ ((pn)z(m,s) — pu(m, s))ds

n—00

= lim f_ dsf ((pn)z(m, 8) — pe(m, s))dm
= lim f (pn(z,8) — pu(ls], s) —flf‘px(m, s)dm)ds

n—oo

= [, (pla, ) — pllsl, ) — [ palm, s)dm)ds
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This gives

/ P, s)ds = / p(lsl, s)ds + / ds / pa(m, s)dm
—x —x —x |s|

152



Bibliography

[1] Jan Persson, Fundamental Theorems for Linear Measure Differential

Equations, MATH.SCAND.62(1988), 19-43

[2] C. Remling, Spectral Theory of Canonical Systems, de Gruyter Stud-

ies in Mathematics 70, Berlin/Boston, 2018.

[3] Edwin Hewitt, Karl Stromberg, Real and Abstract Analysis, Springer-

Verlag Berlin Heidelberg 1965

[4] B.M.Levitan, I.S.Sargsjan, Sturm-Liouville and Dirac Operators,

Kluwer Academic publishers 1991

[5] Gerald Teschl, Jacobi Operators and Completly Integrable Nonlinear

Lattices, American Mathematical Society,2000

(6] Gelrald Teschl, Mathematical Methods in Quantum Mechanics, Grad-

uate Studies in Mathematics 157

[7] Gerald Teschl, Ordinary Differential Equations and Dynamical Sys-

tems, Graduate Studies in Mathematics 140

[8] Walter Rudin, Real and Complex Analysis, International Edition,

McGraw-Hill Book Co. Singapore, 1987

153



[9] Walter Rudin, Functional Analysis, 2rd edition, McGraw-Hill Book

Co.,Inc, 1973

[10] Joachim Weidmann, Linear Operators in Hilbert Spaces, GTM 68,

Springer-Verlag New York Inc. 1980

[11] L.Ambrosio and G.Dal Maso, A General Chain Rule for Distributional

Derivatives, Proc. Amer.Math.Soc.,108(1990),691-702

[12] Jonathan Eckhardt and Gerald Teshcl, Sturm-Liouville Operators
with Measure-Valued Coefficients,J.d’Analyse Math. 120(2013), 151-

224

[13] Ali Ben Amor and Christian Remling, Direct and Inverse Spectral
Theory of One-dimensional Schrodinger Operators with Measures,

Int.Eq.Op.Theory 52(2005),395-417

[14] A. 1. Volpert, Spaces BV and quasi-linear equations, Math. USSR Sb.,

17 (1967) pp. 225-267.

[15] Giovanni Leoni, A First Course in Sobolev Spaces, American Mathe-

matical Society, 2009

[16] L. de Branges, Hilbert Spaces of Entire Functions, Prentice-Hall, En-

glewood Cliffs, 1968

[17] Remling Christian, Schrodinger operators and de Branges spaces, J.

Funct. Anal. 196 (2002), 323 - 394.

154



[18] Walter Rudin, Fourier Analysis on Groups, Wiley, second edition,

1990

[19] Ghandehari, M. Derivations on the algebra of Rajchman measures.

Complex Anal Synerg 5, 6 (2019)

[20] Russell Lyons, Seventy Years of Rajchman Measures, The Journal of

Fourier Analysis and Applications,1st Edition, 2020

[21] L. de Branges, SOME HILBERT SPACES OF ENTIRE FUNC-

TIONS. Trans.Amer.Math.Soc.96(1960), 259-295

[22] L. de Branges, SOME HILBERT SPACES OF ENTIRE FUNC-

TIONS. II Trans.Amer.Math.Soc.99(1961), 118-152

[23] L. de Branges, SOME HILBERT SPACES OF ENTIRE FUNC-

TIONS. III Trans.Amer.Math.Soc.100(1961), 73-115

[24] L. de Branges, SOME HILBERT SPACES OF ENTIRE FUNC-

TIONS. IV Trans.Amer.Math.Soc.105(1962), 43-83

155



