
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

GRAPH ATTENTION AND PERSISTENCE
FOR TRAVELING SALESMAN PROBLEM

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE

BY

JOSE E. AGUILAR ESCAMILLA
Norman, Oklahoma

2023

GRAPH ATTENTION AND PERSISTENCE
FOR COMBINATORIAL PROBLEMS

A THESIS APPROVED FOR THE
SCHOOL OF COMPUTER SCIENCE

BY THE COMMITTEE CONSISTING OF

Dr. Dean Hougen

Dr. Dimitrios Diochnos

Dr. Chao Lan

© Copyright by JOSE E. AGUILAR ESCAMILLA 2023
All Rights Reserved.

Acknowledgements

I would like to thank the wonderful team of advisors and mentors that helped me

discover my passion for research at the University of Oklahoma. I am thankful

for the patience and interest Dr. Dean Hougen has shown in my development

as a scientist and his help through the many obstacles this thesis encountered.

Similarly, I am very thankful to Dr. Dimitrios Diochnos for his time and advice as

I began pursuing my first research endeavors and for his availability as I learned,

made mistakes, and succeeded in our joint research endeavors. I am also thankful

with Dr. Sophia Bollin-Dills, who provided an environment of growth and moti-

vation to pursue research and graduate education through the McNair Scholars

Program at OU.

More personally, I am thankful for the help and support my wife, Breashay

Aguilar, has given me as I completed this milestone in my career. Similarly, I

am grateful to my parents, Georgina Escamilla Hernandez and Efrain Aguilar

Martinez, and my siblings for their wisdom and guidance as I encountered obsta-

cles. I am also indebted to the Burke family, who became my second close family

during my time in the United States, offering the support my family wished to

provide but could not due to distance.

I also would like to thank the OSCER team for providing support and re-

sources to carry out this research project and the research scientists from the

iv

Oklahoma Aerospace and Defense Innovation Institute working at the OC-ALC

offices on the south campus for their wisdom and advice with this project.

v

Abstract

Combinatorial optimization problems have long been a computationally-challenging

family of problems with high importance within science. Although algorithms to

solve such problems exist, these classical/exact algorithms tend to become com-

putationally intractable as the problem size increases. Due to the relevancy of

such problems in real life, research has explored other algorithms that forego the

optimality guarantee of classical algorithms. In doing so, heuristic algorithms

have achieved fast inference times with performance that is not too far from the

optimal performance of classical algorithms. A particular heuristic algorithm

from artificial intelligence, the attention model (AM), has achieved state-of-the-

art performance in prevalent combinatorial optimization problems such as the

traveling salesman, vehicle routing, and orienteering problems, where the gap

between classical and heuristic algorithms was diminished. This success is at-

tributed to the ability of the AM to tend to the structure of the input through

the use of graph attention (GAT) mechanisms, a type of graph neural network.

While the mechanism by which these models extract structural information, it is

unknown what kind of information is extracted. This thesis presents a novel vari-

ant of the attention model (AM), the persistence attention model (AM-P), which

explicitly uses a type of structural information, persistent homology. The model

is tested on the traveling salesman problem with different problem node counts

vi

to compare the performance of the attention model with and without persistent

homology information. It is hypothesized that persistent homology information

will help the attention model better exploit the structure of the model, achieving

better performance on combinatorial problems. This hypothesis is demonstrated

false as there is no statistically-significant differences between the performance of

the AM and AM-P. This negative result raises the possibility that the attention

model may already extract structural information similar to persistent homology

through its GAT mechanisms.

vii

Contents

Acknowledgements iv

Abstract vi

List of Figures ix

List of Tables x

1 Introduction 1

2 Background 5
2.1 Combinatorial Optimization Problems 6

2.1.1 Definition of Traveling Salesman 7
2.2 Heuristic Approach through Deep Learning 9
2.3 Neural Networks . 10

2.3.1 Artificial Neural Networks 10
2.3.2 Deep Neural Networks . 14

2.4 The Transformer: An Attention-based Encoder Decoder 15
2.4.1 Encoder-Decoders . 16
2.4.2 Attention Mechanisms . 18

2.5 Attention is All You Need (Transformer) 21
2.5.1 Overview of Architecture 21
2.5.2 Encoder Operation . 23
2.5.3 Decoder Operation . 25

2.6 The Attention Model . 27
2.6.1 Graph Neural Networks and Graph Attention 27

2.7 Attention Model . 30
2.7.1 Encoder . 30
2.7.2 Encoder Output . 35
2.7.3 Decoder . 36
2.7.4 Reinforcement Learning 38
2.7.5 The Dynamic Attention Model (AM-D) 41

2.8 Topological Machine Learning and Persistence 43

viii

2.8.1 Algebraic Topology . 44
2.8.2 Topological Data Analysis 45
2.8.3 Homology . 50
2.8.4 Persistent Homology . 52

3 Persistence Attention Model (AM-P) 56
3.1 Persistence Attention Model . 57

4 Investigating Persistence and Graph Attention 62
4.1 Goals . 62
4.2 Investigating Impact of Persistence as Graph-Wide Embedding . . 63
4.3 Investigating Generalization to Different Graph Problem Sizes . . 65

5 Results 66
5.1 Experiment 1 . 66
5.2 Experiment 2 . 67

6 Discussion & Conclusions 71

7 Future Work 75

Bibliography 77

ix

List of Figures

2.1 Example TSP problem . 8
2.2 Anatomy of a biological neuron. 11
2.3 Visual representation of the Perceptron model. 13
2.4 Overview of a single neural network layer. 14
2.5 The Encoder-Decoder architecture as defined by Cho et al. [2014]. 16
2.6 Visualization of a Recurrent Neural Network. 18
2.7 The Transformer encoder-decoder architecture. 22
2.8 Visual representation of multi-headed attention. 24
2.9 Visual representation of multiplicative attention. 25
2.10 Encoder/Decoder architecture used in Attention Model. 31
2.11 Dynamic attention model (AM-D) algorithm. 42
2.12 Visualization of the seven bridges of Königsberg. 44
2.13 Geometrical visualization of different simplices. 46
2.14 Example Čech complex construction. 47
2.15 Example Rips construction. 48
2.16 Example topological space where cycles are distinguished. 50
2.17 Example computation of a persistence diagram through persistent

homology. 54

3.1 Persistence attention model proposed architecture. 58
3.2 Persistent homology signature computation and vectorization layer. 59
3.3 Visualization of the process for computing persistence landscapes. 60

5.1 Average training rewards over 30 epochs. 68
5.2 Solutions to Traveling Salesman Problem of 50 nodes chosen by

different models. 70

x

List of Tables

2.1 Sigmoid, Tanh, and ReLU equations. 14

4.1 Model and training hyperparameters. 63
4.2 Experiment parameters based on Peng et al. [2020] paper. 63

5.1 ANOVA table collected over AM and AM-P trained on TSP-10. . 67
5.2 ANOVA table collected over AM and AM-P trained on TSP-20. . 67
5.3 ANOVA table collected over AM and AM-P trained on TSP-50. . 67
5.4 Average distance traveled across different Traveling Salesman Prob-

lem sizes. 69
5.5 P-values reported from t-test between the rewards collected be-

tween AM and AM-P trained on the same problem size. 69

xi

Chapter 1

Introduction

Combinatorial optimization problems encompass a family of problems with his-

torical importance for many fields of science. Some examples of popular problems,

such as traveling salesman, vehicle routing, and orienteering problems have been

heavily studied for their implications in theory as well as their relevancy for real-

world problems. Many algorithms have been developed due to research into these

problems. Yet, due to the difficulty and computational hardness of these prob-

lems, classical algorithms often fail to solve large problems within an acceptable

time.

Given the importance of combinatorial optimization problems for solving real-

life problems, research has explored new directions in algorithm design to circum-

vent classical algorithms’ computational intractability. Many of these algorithms,

called heuristic algorithms, forego the theoretical guarantee that a classical, exact

algorithm will always produce an optimal solution. In doing so, these algorithms

produce solutions faster than classical, exact algorithms at the cost of producing

imperfect solutions.

With the popularization of artificial intelligence, research began exploring new

1

ways to employ machine learning to solve combinatorial optimization problems.

A recent success was achieved by the dynamic attention model (AM-D) [Peng

et al., 2020], based on the attention model Kool et al. [2019], which achieved

state-of-the-art performance on many combinatorial optimization problems. Its

solutions were shown to further close the gap between heuristic and exact al-

gorithms, maintaining fast inference times in problems where exact algorithms

become highly intractable.

The key to the success of the attention model and its dynamic variant is due to

the ability of its Graph Attention mechanisms, a subtype of the graph attention

model, to extract graph information effectively. Previous heuristic algorithms

could not often extract and utilize structural information from the shape of a

given problem. This was hypothesized to inhibit good performance by heuristic

algorithms. With the introduction of graph neural networks, this hypothesis

was proven true as graph neural networks helped improve performance on many

problems, including combinatorial optimization problems [Vinyals et al., 2015].

The rise to prominence of GNN and GAT models highlights the renewed inter-

est and importance of the structural information of data. While these techniques

experimentally showed an excellent ability to capture the high-level structure of

the data, there is a poor understanding of what kind of structural information is

extracted. Understanding how these models decipher structural information can

shed light to understand better the problems these algorithms solve (like TSP)

and increase awareness of the importance of the intrinsic structure of data points

in machine learning.

Within mathematics, algebraic topology provides well-studied and theoretically-

grounded tools for analyzing the structure of mathematical objects. Recently,

the development of computational methods to perform this analysis has allowed

2

Topological analysis to extend past mathematical objects into real-life data. This

new field of data analysis called topological data analysis (TDA) has allowed sci-

entists better understand the nature of data past the individual datum.

Many researchers, seeing the potential of TDA, have investigated whether

topological information could aid machine learning in solving problems where the

data structure is thought to be critical [Hensel et al., 2021]. By using persistent

homology, the flagship tool from TDA, scientists have achieved state-of-the-art in

several graph-based problems by using topological signatures to inform a machine

learning model of the data structure.

Another successful application of persistent homology is introducing topo-

logical priors into machine learning through parameter regularization [Brüel-

Gabrielsson et al., 2020]. The work by Brüel-Gabrielsson et al. [2020] showed

how topological regularization could improve the stability and performance of

neural network models on specific problems.

Research has also identified stability as a potential property that could be in-

troduced to machine learning models using TDA. Persistent homology signatures

have the theoretical stability property amid the noise [Carlsson and Vejdemo-

Johansson, 2021]. This property can be desirable in neural networks, which are

susceptible to adversarial attacks capable of derailing learning Szegedy et al.

[2014].

Given these potential benefits of persistent homology, this thesis aims at

studying whether introducing persistent homology could improve the performance

of the Attention Model, the state-of-the-art combinatorial optimization heuristic

algorithm. Because it is unknown what kind of structural information the at-

tention model uses, it is uncertain whether persistent homology signatures will

improve or transfer desirable properties to the attention model.

3

This thesis presents a novel variant of the Attention Model: the persistent at-

tention model (AM-P). This model utilizes persistent homology signatures com-

puted from its input to inform the model of the structural characteristics of the

problem. This model is then tested on the Traveling Salesman Problem (on 10,

20, and 50 node problems) and compared with the results by the original Atten-

tion Model.

The experiments showed little to no change in performance by the AM-P

concerning the AM model. Statistical analysis showed that the models’ perfor-

mance did not differ significantly among the different traveling salesman prob-

lems. These results indicate that persistent homology signatures are less useful

for the AM, suggesting that GAT models could share the same property.

While no improvement in heuristic algorithm performance was achieved, the

results hint at a possible special relationship between GAT models and persistent

signatures. Further research is encouraged to study the nature of this relation-

ship, asking whether information similar to persistent homology signatures is

already being computed within the AM/AM-D and whether GAT models share

this ability.

4

Chapter 2

Background

This thesis’s main contribution encompasses three general research fields: com-

binatorial optimization, deep learning, and topological data analysis. Tools and

ideas are extracted from deep learning and topological data analysis to create a

novel architecture, the persistence attention model (AM-P), capable of solving

combinatorial optimization problems (here, focusing on the traveling salesman

problem.) It is through comparing the learning behavior and performance of the

persistence attention model and the attention model, the main inspiration of the

AM-P architecture, that results are obtained to assess the effect of topological

data analysis on learning.

To gain an appreciation and understanding of the contributions hereby pre-

sented, a survey of combinatorial optimization problems, deep learning, and topo-

logical data analysis is presented, focusing on the most relevant topics to this re-

search. Sections 2.1 and 2.2 cover the field of combinatorial optimization, focusing

on the traveling salesman problem and the two main algorithm families that solve

these problems: classical/exact and heuristic. Next, in Sections 2.3, 2.4, 2.5, a

survey on deep learning is presented, covering the field of neural networks and

5

their importance for solving different problems and the Transformer, a prevalent

and recent deep-learning architecture that catalyzes the AM and AM-P models.

Building on top of these Sections, section 2.6 presents the attention model (AM),

covering in detail the architecture as well as its reinforcement learning training

algorithm. Finally, section 2.8 provides an intuitive survey on topological data

analysis (TDA), focusing on tools that will help extract structural information

from data.

2.1 Combinatorial Optimization Problems

Combinatorial optimization problems are of great interest within the mathemati-

cal and computer science community, given their significance for many real-world

problems and their relationship with the P vs. NP problem [Russell and Norvig,

2020]. At their core, combinatorial optimization problems entail generalized deci-

sion problems, where a solver attempts to make the best decisions over a discrete

set of options [Hoos and Stützle, 2005]. Here, a “best” solution is discriminated

by the help of a quality function, which the solver attempts to maximize.

There exists a myriad of combinatorial optimization problems that are of

great interest to the scientific community. These problems include the traveling

salesman, vehicle routing, and orienteering problems [Golden et al., 1987a]. These

problems are instrumental, given their use to model many real-world problems.

For this reason, combinatorial optimization algorithms play an essential role in

solving challenging real-world problems efficiently.

An example use-case of combinatorial optimization is modeling the problem of

finding an optimal route for an airplane through an existing set of waypoints. In

real-world aircraft navigation, commercial aircraft navigate using a network of ge-

6

ographical locations referred to as waypoints or fixes. These waypoints help pilots

draft a trajectory without requiring access to visuals of the airplane surround-

ings. Thus, a trajectory for a commercial airliner is a list of different waypoints

that the pilot will visit. Provided that a plane has a finite amount of fuel, the

problem of drafting a trajectory encompasses selecting a set of waypoints to opti-

mize resources. This problem can be modeled as an orienteering problem [Golden

et al., 1987b], where the waypoints are nodes, and the goal is to find a trajectory

that uses the least amount of fuel. If we remove the many complexities of air

navigation, the aforementioned problem can be solved simply using an algorithm

to solve an orienteering problem.

Despite the excellent understanding of combinatorial optimization problems,

many problems lack efficient algorithms [Russell and Norvig, 2020]. Specifically,

as the problem size increases, algorithms tend to become computationally in-

tractable due to the fast increase of the set of solutions to the problem, which an

algorithm must traverse. This problem is encapsulated within the P vs NP prob-

lem. It is unknown whether a polynomial-time deterministic algorithm exists to

solve NP problems, a class to which many combinatorial optimization problems

belong.

2.1.1 Definition of Traveling Salesman

This thesis will make use of the Traveling Salesman Problem (TSP) to compare

two heuristic algorithms. This problem is chosen given the historical importance

of the problem as well as its straightforward formulation.

Among all the TSP variants, I use a classical variant of the problem (same

used in [Kool et al., 2019]) where the objective is to find the shortest route among

7

graph nodes without re-visiting a node. Specifically, a TSP comprises a graph G

containing a finite number of nodes N ∈ R2. The graph of nodes is assumed to

be fully connected; thus, an edge always exists that connects any two nodes in

the graph. With this setting, a problem solution would entail an ordered set of

nodes where no node is repeated. Because of the constraint on the repetition of

nodes, all solutions will always have a cardinality equal to the total number of

nodes used in the problem. A solution is said to solve the problem if its length

of travel is the smallest among all possible solutions. Here, the length of travel

is defined as the sum of the Euclidean distances between each node following the

order of the solution:
∑|S|−2

i=0 ||Si+1 − Si||.

Figure 2.1: Example TSP problem. A solution to this problem would connect all
points in the graph, forming a network with minimal distance to visit all nodes.

8

2.2 Heuristic Approach through Deep Learning

As previously mentioned, classical (or exact) algorithms for combinatorial opti-

mization problems often struggle with time complexity. These algorithms possess

a guarantee that an optimal solution will always be found. Unfortunately, by

holding this guarantee, classical algorithms become computationally intractable

as the problem size increases.

Given the importance of combinatorial optimization problems in real life,

where problems can become intractable, recent research has focused on alterna-

tives to classical algorithms. This field of study looks at heuristic algorithms,

which forego the guarantee that the algorithms will always find an optimal so-

lution, instead allowing some degree of error. Breaking this guarantee permits

heuristical algorithms to obtain low inference times for finding solutions.

The current state-of-the-art heuristic algorithms use artificial intelligence,

where neural network models have been most successful [Russell and Norvig,

2020]. These models extract information from the input problem to find a so-

lution that is most likely to be optimal. Compared to classical algorithms, the

time to find a solution depends on how long the information is fore-propagated

in a neural network, which is often very fast in modern hardware.

Despite lacking the theoretical guarantees of classical, exact algorithms, neu-

ral network approaches to combinatorial optimization have achieved significant

results, finding the best solution to problems with high probability. For exam-

ple, the state-of-the-art algorithm for graph combinatorial optimization problems,

the dynamic attention model [Peng et al., 2020], can find solutions to problems

within seconds with deviance of a small percentage from the solutions generated

by classical, exact algorithms. This quality of heuristic approaches makes them

9

even more useful for real-world problems, where the importance of fast solutions

may supersede optimality.

2.3 Neural Networks

Current state-of-the-art approaches, such as the Dynamic Attention Model [Peng

et al., 2020], utilize several different types of artificial neural networks. This

section presents an overview of the history and theory behind artificial neural

network models to facilitate understanding of the theory of the attention model

presented in Sections 2.4, 2.5, and 2.6. First, the biological inspiration for neural

networks is presented. Then, a historical description of the first ANN models is

given, emphasizing the transition from biology to computational models. Finally,

the distinction between ANN and deep learning models is provided.

2.3.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are a type of connectivist machine learning

model inspired by the brain’s inner workings. Here, connectivity describes ANNs

as a computational model where small, simple, and independent computational

units are combined to create more powerful computations. Neural networks have

become a promising field of research due to the remarkable progress these models

have achieved in many different areas and problems.

The atomic unit of an ANN is the neuron, which is inspired by the biological

neuron. Within the brain, neurons are cells composed of three main parts: a

cell body called the Soma, a series of terminals that receive electric impulses

called the Dendrites, and a long appendage that communicates outgoing signals

called the Axon (see figure 2.2). Neuronal cells communicate information and

10

Figure 2.2: Anatomy of a biological neuron.

conduct computations through the emission and reception of electrical pulses,

also called spikes. These spikes travel from a sending neuron’s (pre-synaptic

neuron) Soma, down its Axon, and into a receiving neuron (post-synaptic neuron)

through a synapse between the dendrites of the post-synaptic and the axon on the

pre-synaptic neuron. Through the synapse, a very small space formed between

dendrites and an axon, electrical current can be transferred by releasing chemicals

from an Axon, creating an electrical charge that accumulates on the Soma of the

post-synaptic neuron.

As neurons exchange electrical currents, an electrical charge builds on the neu-

rons’ neuronal membrane, accumulating over time. When some specific electrical

amount is reached, namely the neuron’s threshold, the neuron is said to activate

and release an electrical charge that travels through its axon. The stored elec-

tricity in the Soma is depleted, thus bringing the neuron to a state where the

electrical charge can accumulate again.

Commonly, in the brain, neurons belong to larger brain structures where

neurons process specific stimuli and relay information to other parts of the brain.

These interactions can be observed in real-time with the help of an EEG. Activity

in the different parts of the brain tends to increase as information flows or is

processed. Oftentimes, high activation is related to the ”detection” of specific

11

stimuli a brain structure attends to. This hierarchy from the individual, simply-

behaved neurons up to entire structures capable of perceiving and processing

complex stimuli constitutes the essence of connectivism in biological systems

that inspires artificial neural networks. The myriad of chemical reactions and

interactions among neurons is often complex and not fully understood, so artificial

neural networks resort to approximating these processes rather than precisely

simulating them.

One of the first computational models developed as a simplification of the

interactions within the brain is the Perceptron. The perceptron was developed

by Rosenblatt [1958]. The core observation behind the model is the preference of

neurons for specific pre-synaptic inputs. Specifically, Axons are covered on a fatty

substance, the myelin sheet, that aids in transporting electrical charge from the

neuron’s body. The myelin sheet is variable among Axons, and it has been found

that the myelin sheet is most present in axons of neurons that are most crucial

for the detection of the targeted stimuli by a neural structure. In this way, spikes

arrive faster to post-synaptic neurons from Axons with a thick myelin sheet than

from Axons with a thin one. In this way, synapses whose axons have a thick

myelin sheet have a more substantial influence on post-synaptic activation. The

variability of the myelin sheet works as an indicator of the importance of the

input, essentially working as a type of memory based on previous interactions.

Following the idea that the myelin sheet contains information on the input’s

importance, the perceptron defines a vector of weights that indicates the im-

portance of a given input, modeling the myelin sheet. Then, by computing the

product of input information with its respective weight, the perceptron obtains a

new weighted vector that is summed over to model the post-synaptic activation

that a biological neuron would receive. Finally, an activation function is applied

12

to the sum of products. In the perceptron, this activation is the signed function,

which outputs 1 if the sum of products is larger than some threshold or zero

otherwise.

Figure 2.3: Visual representation of the Perceptron model.

While the perceptron demonstrated initial promise to solve challenging prob-

lems, excitement disappeared after proving that the model could not correctly

model simple, non-linearly separable functions such as an exclusive or (xor) gate.

This loss of hope in the model would lead to the ”winter of AI,” where the idea

of neural networks was abandoned [Russell and Norvig, 2020].

Fortunately, some researchers kept working to help neural networks improve.

Progress arrived once the backpropagation algorithm was developed and popu-

larized. Using multi-layer models had been identified as a possible solution to

model non-linear problems, but training such networks was challenging. Back-

propagation provided a theoretically-grounded way to train even the largest of

neural networks. Additionally, the perceptron activation function was replaced

with continuous, differentiable functions to allow neural networks to perform re-

gression. This progress launched artificial neural networks as the leading force

behind the AI revolution in the 21st century.

13

2.3.2 Deep Neural Networks

Figure 2.4: Overview of a single neural network layer. A linear transformation is
applied to the input information before a summation and activation function are
applied. Stacking these layers produces a multi-layered model.

Modern artificial neural networks utilize non-linear activation functions. The

most popular activation functions are the logistic sigmoid (often referred to simply

as sigmoid), hyperbolic tangent (tanh), and rectified linear (ReLU1) functions,

given their fast computation and differentiability properties.

Sigmoid Tanh ReLU
1

1+e−x

(ex−e−x)
ex+e−x max(0, x)

Table 2.1: Sigmoid, Tanh, and ReLU equations.

Additionally, modern networks are composed of many layers of varying sizes.

This characteristic earns them the name of deep neural networks, distinguishing

these models from their earlier, shallower, and simpler ancestors.

Despite the great success of neural networks, certain classes of problems

proved to be still challenging to solve with regular neural networks. It was soon

found that the simple computation of dot products passed through non-linear

1Although ReLU is not differentiable at 0, a constant value tends to be chosen to allow
differentiation as a piecewise function.

14

functions may be blind to structural information not captured by this process.

As a response, research developed new types of deep learning models, such as

recurrent neural networks [Jordan, 1986], convolutional neural networks [Good-

fellow et al., 2016], and attention [Bahdanau et al., 2015]. This diversification of

neural networks has allowed the creation of hybrid models capable of exploiting

the best qualities of each sub-type of ANN to push the state-of-the-art on many

problems.

2.4 The Transformer: An Attention-based En-

coder Decoder

One of the most impactful deep learning architectures is the Transformer. Ini-

tially presented in the seminal paper “Attention is all you need” by Vaswani et al.

[2017], the authors proposed a new deep learning architecture that achieved state-

of-the-art in language translation and modeling. The Transformer was unique in

that it deviated from the popular neural network model used for language transla-

tion at the time (recurrent neural networks RNNs). Instead, it used a technique

called attention, which was shown to help circumvent the many problems of

RNNs.

Given the complexity of the transformer, this section will present the back-

ground information on the previous research that lead to the Transformer. First,

a survey of the transition from RNNs to encoder-decoder models is presented.

Then, a study of attention mechanisms is given. In the next section (section 2.5),

the transformer model will be presented in its entirety.

15

2.4.1 Encoder-Decoders

Figure 2.5: The Encoder-Decoder architecture as defined by Cho et al. [2014].
Note that the x values are assumed to come in as embedded inputs; hi is the
hidden state of the encoder; si is the hidden state of the decoder; function q is
simply the last hidden state. In Cho et al. [2014] q is simply the last hidden state
ht; f is some activation function; g is softmax.

The encoder-decoder architecture was initially presented in Cho et al. [2014],

and as its name suggests, it is comprised of two neural networks called an encoder

and decoder (Figure 2.5). The architecture developed from research looking to

better model the natural language processing problems. The model’s core objec-

tive in using an encoder module is to produce a new representation of the input

text that summarizes the whole sentence in some latent space. This latent-spaced

context would contain abstract information over the whole input sentence that

16

should be most useful for translation.

The decoder in the architecture is designed to model a probability distribution

over some vocabulary. Following statistical machine translation (SMT), we can

define the translation process as a two-part distribution:

p(f |e) ∝ p(e|f)p(f) (2.1)

Where the left hand is the translation model ; the right hand is the language

model ; e is some sentence in some language; f is the translation into some other

language. In language translation, the interest is in modeling p(f |e). We can

further define this probability as:
∏Lf

i=0 p(fi|e), where Lf is the length of the

translation and fi is the ith translated word over the vocabulary. This product of

probabilities defines the individual conditional probabilities on what words are

most likely to be in the translation at every point in the translated sentence given

some sentence e. Cho et al. [2014] showed that we could model the individual

conditional probabilities p(fi|e) using a recurrent neural network after encoding

the input sentence into some latent space. This encoding, also called the sentence

context, is computed by the encoder.

The decoder, which models a probability distribution to find words most likely

to be the translation, utilizes the information produced by the encoder (context

c) to produce conditional probabilities. The probability distribution would be

with respect to the vocabulary available to the model, defined during training.

First, the RNN computes the hidden state using the function f(st−1, yt−1, c). This

will return a ”score of likelihood” on the word most likely to be the translation

word. Then, function g(st, yt−1, c), commonly softmax, is applied to obtain the

conditional probability. The word with the highest probability is chosen as the

17

predicted word by the decoder as yt. As decoding progresses, these produced

words, and the hidden states are fed back into the RNN. At some point, the

decoder will output some end-of-sentence token (defined when the model was

being trained) to indicate the end of decoding/translation.

2.4.2 Attention Mechanisms

Attention mechanisms were first presented by Bahdanau et al. [2015] in their

seminal work titled ”Neural Machine Translation by Jointly Learning to Align and

Translate.” This paper became a revolutionary push forward in natural language

processing. Since then, attention has evolved and expanded, culminating with

the development of self-attention as presented in the Transformer paper [Vaswani

et al., 2017].

Bahdanau Attention

Figure 2.6: Recurrent Neural Network. The inputs X1, ... can be sequential
information such as a word in a sentence. The cell processes them one at a time
and maintains a certain amount of information via its recurrent hidden state
h. This hidden state is similar to a flip-flop in hardware circuits, except that
it is ”fuzzy.” Since this hidden state is the only means of memory preservation,
information from previous inputs may be lost if the input is sufficiently large.

The idea behind additive attention mechanisms developed from the idea that

18

some words within a sentence may have a higher importance in the translation

of the sentence than others. The encoder-decoder architecture presented by Cho

et al. [2014] only used the context produced at the very end of the encoding

process (figure 2.5 context c). A problem that was observed when only using

this information was that information computed at the beginning of an input

sentence tended to be lost, which caused models to underperform in large sentence

translations. The cause for this loss of performance was due to the information

pipeline that RNNs use. During encoding, individual words are passed through

an RNN network where the previous outputs produced are reused to maintain a

sense of memory (see figure 2.6). The problem with this idea is that information

has to travel through this hidden state memory, and since its size is fixed by the

number of output units of the RNN, data would eventually be lost in a large-

enough sentence.

Bahdanau attention was thus introduced to attempt to fix this problem. The

authors observed that the final context produced by the RNN encoder is always

dependent on the information produced by previous passes through the RNN.

Using the idea that some of the previous states may be more important than

others, a ”selection” mechanism that weights each state on the importance for

the final translation was used. Then, a context would be computed at the end

of processing the input sentence, allowing the model to better retain information

introduced earlier in the sentence.

Attention in the Encoder/Decoder

Based on the Encoder/Decoder architecture, Bahdanau et al. [2015] modified how

the context information from the decoder was computed. First, they defined the

context information to be generated by a function q(h1, ..., hTx) that is dependent

19

on the hidden states produced by the encoder rather than q(h1, ..., hTx) = hTx ,

as Cho et al. [2014] defined it. This allows the function q to have discretion

on the information to select, tailoring the context to the decoder’s state. This

information pathway can be appreciated in figure 2.5:

ci =
Tx∑
j=1

αij · hj

s.t. αij =
exp(uij)∑Tx

k=1 exp(uik)

uij = a(si−1, hj)

(2.2)

Where ci is the context to be used when producing the ith conditional distribution

(output of decoder); hj is the j
th hidden state produced by the encoder; it is also

called the annotation of the jth input; αij is the alignment weight of the jth anno-

tation for making the ith translation; uij is the score of the alignment of the j th

annotation concerning the ith translation; a(si−1, hj) is some function (an ANN

in Bahdanau et al. [2015]) that provides a score on the alignment, or importance,

of information. This alignment weight indicates how vital the annotation hj is

for producing the following translation with the highest probability of actually

being in the translation. This can also be seen as a primary attention mechanism

for identifying the importance of annotations. Using this alignment model, the

decoder has discretion on what information to include in the context vector c.

The decoder can filter the available information using additive attention, creating

a more ”relevant” context vector.

20

2.5 Attention is All You Need (Transformer)

Vaswani et al. [2017] introduced the Transformer alongside the idea of self-

attention, an improved type of global, dot-product attention. The architecture

managed state-of-the-art performance on language translation problems by using

only attention and foregoing recurrent neural networks. The encoder/decoder

used dot product global self-attention to obtain information across the entire in-

put encoding. This greatly decreased the computational complexity required to

access information across a sentence as constant time complexity.

2.5.1 Overview of Architecture

Figure 2.7 presents a visual overview of the transformer. Here, the input words

are fed to an input embedding layer that transforms the word into a vector. Then,

information on its position is added by using a positional encoding. The resulting

input is then passed through N encoder modules, where each module has a multi-

head attention layer whose output is combined with residual information from the

input and normalized to then be passed through a feed-forward neural network

whose output is also added with residual information from the attention layer’s

output and normalized. Once encoding is complete, we are left with annotations

on the input words, similar to those found in other encoder-decoders. The decoder

uses these annotations to produce the output translation.

The decoder first embeds the inputs received and adds positional informa-

tion via a positional encoding (similar to encoding). Then, the resulting input is

passed through N layers (the same number as the encoder), where the informa-

tion from the annotations is used. Within a decoder unit, the information is first

passed through a masked multi-head attention layer where the information from

21

Figure 2.7: The Transformer encoder-decoder architecture. The encoder can be
appreciated on the left and the decoder on the right. Note that each of the
modules is stacked N times. The words selected by the decoder are re-encoded
and fed to the next decoding process until an ”end-of-sentence” token is given.
[Vaswani et al., 2017]

future words is masked. Then, this information is combined with the input via

residual connection and normalized. Next, the output is passed through another

multi-head attention layer where the encoder’s annotations are introduced. Af-

ter adding residual connection and normalizing, the output is passed through a

feed-forward neural network to produce a final output (added with residual infor-

mation and normalized). The output of the decoder stack is linearly transformed

(mapping from embedding space to vocabulary space) to produce scores on the

most likely vocabulary words. Finally, the output is converted into a probability

distribution through a softmax layer, and the most likely word is chosen.

22

A more detailed explanation of the processing and computation of data is

be provided in the next subsections. Each subsection gives detailed input and

output matrix and tensor shapes as they are processed. The main objective in

introducing such detail is to allow a better understanding on the inner workings

of the model, as these computations will be used by the model presented in this

thesis. Additionally, this level of detail should allow any reader with knowledge

of tensor and matrix computation software to implement their own version of the

model presented independently of the provided implementation.

2.5.2 Encoder Operation

Assume that we are given a matrix of dimensions nexamples×nwords as input, where

nexamples is the number of examples to process; nwords is the number of words in

each sentence. Note that each example may not have the same number of words,

and this is fine, assuming that each example is independent of the others. If we

want to process paragraphs, these shall all be included in the same example.

Input Embedding

The nexamples × nwords matrix is embedded using an embedding layer to produce

a tensor of shape nexamples × nwords × dmodel, where dmodel is the dimension of the

embedding, and it is chosen as a hyperparameter. The embedding layer can also

be learned or pre-selected.

Positional Encoding

The embedded input is enhanced with positional information by adding a po-

sitional encoding. Because the Transformer lacks recurrence and the output

23

translations are dependent on the temporal information of the input, Positional

Encodings introduce this information by computing vectors of dimension dmodel.

In the paper, Vaswani et al. define the encoding to be:

PE(pos,2i) = sin

(
pos

10, 0002i/dmodel

)
PE(pos,2i+1) = cos

(
pos

10, 0002i/dmodel

) (2.3)

The positional encoding information is then added to the embedding informa-

tion, conserving the shape of the matrix (nexamples×nwords× dmodel). There is no

particular reason why the positional information is added rather than introduced

with another operation.

Multi-Head Attention

Figure 2.8: Multi-Headed Attention. Note that the module’s output will not have
any dimension of h since the concatenation drops that dimension. One can think
of the h heads as different attention mechanisms that look at different types of
information on the inputs. [Vaswani et al., 2017]

After embedding and positional encoding, the input is passed through an at-

tention layer that creates a custom context vector. The input is used as query, key,

24

Figure 2.9: Multiplicative attention. This attention is used by multi-headed
attention.

and value. The multi-head mechanism is characterized by h stacked dot-product

attention modules whose output is concatenated and linearly transformed. This

produces a nexamples×nwords×dmodel-shaped matrix. The output is added with a

residual connection coming from the input after embedding, positional encoding,

and normalization.

Feed Forward Neural Network

The output matrix by the multi-head attention is passed through a fully-connected

neural network. The output is then added and normalized as well. This output

constitutes the annotations that are commonplace in encoder/decoder architec-

ture.

2.5.3 Decoder Operation

New input of shape nexamples × nwords (either an initial decoding token, or the

previously-generated encoded word) is embedded into nexamples × nwords × dmodel

25

and positionally-encoded as in the encoder. After inference, the output of the

decoder is reintroduced every time as the input of the decoder.

Masked Multi-Headed Attention

The input is passed through a masked multi-headed attention module as query,

key, and value, where a mask is introduced to avoid paying attention to informa-

tion that is not yet available, ensuring that the ith prediction is dependent only on

the previously-generated words. This layer produces a nexamples × nwords × dmodel

that is then added and normalized using the embedded and positionally-encoded

input.

Multi-Head Attention

The output from the masked multi-headed attention module is introduced as the

query, while the annotations from the encoder provide the key and values. The

intuition behind this module is that we can search the collected information pro-

duced by the encoder to find information that may be related to the information

known for decoding. Since the key and values are the annotations from the en-

coder, the attention mechanism will search for information most relevant to the

input data. The output is added and normalized with respect to the output from

the masked multi-headed attention module.

Feed Forward Neural Network

Finally, the output from the attention module is passed through a fully connected

feed-forward neural network. The network’s output is then added and normalized

concerning the output of the multi-headed attention mechanism via a residual

connection.

26

Output Probabilities

The ANN output is linearly transformed into a matrix of shape nexamples×nwords×

dvocabulary where dvocabulary is the dimension of the vocabulary vector, which can

be seen as a bag of words. The linear transformation essentially provides a score

value for the likelihood of being in the translation for each word in the vocabu-

lary. This score is passed through a softmax layer to produce the final conditional

probabilities. The Transformer would output the word with the highest proba-

bility as the chosen word. This produced word is reintroduced as the next input

of the next decoding cycle.

2.6 The Attention Model

The transformer, since its introduction, has influenced different fields of research

outside of language translation. An example of this influence is the develop-

ment of the attention model [Kool et al., 2019], which achieved state-of-the-art

on combinatorial optimization problems through the adoption of the Transformer

architecture to use as part of a Graph Attention (GAT) model. A short survey

on the development of graph neural networks, which would catalyze Graph At-

tention GAT models, is presented. Then, the theory behind the attention model

is introduced.

2.6.1 Graph Neural Networks and Graph Attention

Graph neural networks (GNNs) are a subtype of deep neural networks that are

capable of solving graph problems [Scarselli et al., 2009]. Traditional DNNs,

despite their high performance on many other problems, have shown to be in-

27

capable of generalizing on graph problems. The main reason for this challenge

is the requirement to vectorize graph problems, which removes graph structural

information that may be important for solving a problem. To solve this problem,

Graph Neural Networks (GNNs) emerged as DNN models capable of retaining

the graph problem structure information for solving the problem.

Graph Neural Networks

While the idea of GNNs comes from the paper by Scarselli et al. [2009], it was not

until later that formalization on the architecture of GNNs was given by Gilmer

et al. [2017]. All graph neural networks (GNN) can extract structural graph

information by assigning network units to each node of a graph. In doing this,

the network topology is used to introduce the graph structure information. Then,

through a message-passing protocol, information can be propagated through the

network, sharing the information belonging to each node and using incoming

information to update the state of a node (modeled as a neuron or a part of the

network).

The message-passing protocol is one of the most important parts of a GNN.

The simplest description of these protocols follows the equation:

F (t+ 1) = α S F (t) + (1− α)Y (2.4)

where F is the information of some node at time t+1; α is some variable weight

to control the alignment of the current state of the graph (F (t)) and the ”ground”

initial information (Y); S is some adjacency matrix where the graph structure is

encoded, often modeled by a neural network; Y is the initial labels of the nodes.

In a nutshell, the equation is a weighted sum that controls the speed at which

28

information is updated, making it ”harder” or ”easier” to change the values of

each node as iterations go by.

Despite the great success of solving graph problems, the fine-tuning of α tends

to be a challenging part of training the network. This is mainly caused by the

hardness of gauging what parts of a graph are more or less important for each

individual neuron, which can be problem-dependent. Graph attention (GAT)

networks emerged to solve this problem by using attention to automatically learn

the best choice for α. This modification to the original GNN model allowed the

model to best focus on the most relevant parts of the input graph, achieving

state-of-the-art on many problems.

Graph Attention Network

A different perspective is taken in graph attention models, but the core idea re-

mains. Attention replaces the idea of a message-passing protocol by becoming

the protocol itself. Attention layers, as previously discussed, look at incoming

information, compute an alignment score, and then, weigh the available informa-

tion with respect to the incoming input to compute the most relevant information

for the given input.

Attention can be seen as a message-passing protocol by observing that the

computation of available information dependent on the key/value information

gathers the information of the nodes to compute a new state for the query node.

This follows equation 2.4, where α is defined as the alignment score. This modifi-

cation has allowed GAT models to achieve state-of-the-art performance on many

graph-related problems.

29

2.7 Attention Model

In the paper ”Attention! Learn to Solve Routing Problems,” Kool et al. [2019]

presented a new Transformer-based GAT model that efficiently processed graph

information to solve several combinatorial optimization problems such as trav-

eling salesman, vehicle routing, and orienteering problems, among other vari-

ants. The attention model (AM) achieved state-of-the-art performance, surpass-

ing many other heuristic algorithms and closing the gap between classical, exact

algorithm and heuristic best performance.

The use of reinforcement learning (RL) is special about the AM algorithm.

RL is a family of learning algorithms that use rewards to guide learning. Unlike

supervised learning, where the solution to a problem is used to guide learning,

reinforcement learning merely uses a signal to indicate the model’s fitness. The

advantage of this learning style becomes evident when faced with a problem where

labeling is non-trivial. This is the case for TSP, where large problems become

intractable. Fortunately, computing a fitness function on a problem instance

is trivial and quick. This makes RL well-suited for combinatorial optimization

problems, which tend to belong to the NP family of problems.

Similarly to the detailed explanation given for the Transformer, the following

subsections explain the inner workings of the different parts of the AM. Spe-

cial note is taken of the shapes of matrices and tensors to allow any reader to

implement their own version of the attention model.

2.7.1 Encoder

The encoder presented by Kool et al. [2019] is used to serve a slightly-different

purpose from the original transformer for natural language processing: update

30

Figure 2.10: Encoder/Decoder architecture used in Attention Model.

node embeddings to contain information with respect to the rest of the graph.

The output from the encoder is thus a list of nodes embedded into a different

latent space, using attention to serve as the message-passing protocol as described

in GNNs.

Input Embedding

The first significant difference between the transformer and the attention model

is the absence of a positional encoder. In the Transformer, the positional encoder

introduced linear relationships among the words in a sentence to allow the model

to operate over the order of the words in the sentence. In the case of combinatorial

problems, the order in which graph nodes are processed is irrelevant.

The first step in processing is similar to the transformer in that all the graph

31

nodes are linearly projected into a latent space. Recall that the input problem

is represented by a graph G = {xi ∈ Rdx}. Each node is of dimensions dx, which

in this case is dx = 2 (2D Euclidean). Using the following linear projection, the

input is embedded into a vector of dimension dh.

h⃗
(0)
i = WX x⃗i + b⃗x (2.5)

such that WX are the embedding parameters of dimension dh×dx; x⃗i is a column

vector from the input matrix of shape dx × 1; b⃗x is an additional parameter that

represents some bias in the embedding of shape dh × 1; h⃗
(0)
i is the resulting

embedding of shape dh× 1. This embedding is then fed into the encoder module,

where the latent space dimensions will be retained in the output from the encoder.

Attention Modules

The initial embedded nodes first enter the encoder through a Multi-Headed Self-

Attention mechanism of 8 heads. Inside the layer, the module computes the

query, key, and value vectors to use in computing attention

qℓi = WQ · h⃗d
i

kℓ
i = WK · h⃗d

i

vℓi = WV · h⃗d
i

(2.6)

where qℓi is the query of shape dk× 1; kℓ
i is the key of shape dk× 1; vℓi is the value

of shape dv × 1. Because this attention uses self-attention, query, key, and value

computations all use the input graph nodes. WQ is the projection matrix used

in calculating the query and has shape dk × dh; W
K is the projection matrix of

32

the key and has shapes dk× 1; W V is the projection vector of the values and has

shapes dv × 1. Note that the shapes of the query and key vectors are the same.

This is necessary for conducting the “query-key comparison.”

The query and key vectors compute the weights of each node’s message values.

First, the compatibility scores uℓ
i,j are calculated

uℓ
i,j =

q⊤i kj√
dt

(2.7)

where q⊤(c), kj, and dt are as described in equation 2.6. This is similar to the

Transformer’s use of dot-product attention.

Next, the compatibility scores are passed through a softmax layer to produce

the weights for each value. These attention weights represent the similarity be-

tween the information searched for and the similarity of each key/value pair with

it

ai,j =
eui,j∑
k e

ui,k
= softmax(ui,j,u) (2.8)

where ai,j is the attention similarity weight (a real number) for the compatibility

score between ith query and jth key; u is the matrix containing each comparison

weight between all queries and all keys.

Finally, the weighted values are computed and summed up to produce the final

node embeddings (or final state if seen from the message-passing perspective)

h′
i =

∑
j

ai,j · vj (2.9)

the resultant h′
i has dimensions dv × 1 and is the final node embedding produced

by one head. In the case where we have multiple heads, we denote the message

as h′
i,m, being the message produced by the mth head. The respective attention

33

head embeddings (or node states) are combined into one single final embedding

by applying a linear projection and summing the resultant

M∑
m=1

WO
m · h′

i,m = MHAi(h1, ..., hn). (2.10)

Note that WO
m is a matrix of shape dh × dv that essentially maps each head

message back to a dh vector. This matrix is learned and can be seen as the

importance of each head in the context of the final produced message.

Residual (Skip) Connection and Batch Normalization

The output vector message of shape dh × 1 is summed with the input used by

the attention module. This is often done to maintain certain information from

the raw input and speed up learning (since training begins at identity function).

Batch normalization then avoids gradient explosion and speeds up learning

ĥℓ
i = BN ℓ(h

(ℓ−1)
i +MHAℓ

i(h
ℓ−1
1 , ..., hℓ−1

n)) (2.11)

BN(hi) = wbn ⊙BN(hi) + bbn (2.12)

where ĥℓ
i maintains its dimensions with respect to the output of the attention

layer and residual layer (dh × 1). Note that a special implementation of batch

normalization is used. First, regular batch normalization is computed. Then, an

affine transformation is applied using a dh vector, where the element-wise product

is applied. The shape of the input is maintained as a result.

34

Feed-Forward Layer

A feed-forward neural network is used for computing the final embedding of the

N th encoder module. ĥℓ
i is passed through a fully connected neural network of

dh input and output neurons and one hidden layer of 512 neurons and ReLU

activation

FF (ĥℓ
i) = Wff,1 · ReLU(Wff,0 · ĥℓ

i + bff,0) + bff,1 (2.13)

where Wff,0 and Wff,1 are the synaptic weights for the input-hidden layer and

hidden-output layer with respective bias vectors bff,0 and bff,1. It is important

to note that the activation of the hidden layer differs from the activation of the

output layer (ReLU and none, respectively). Finally, a residual connection is

added to the output of the neural network, and the sum is batch-normalized (in

similitude to the output of the attention layer).

2.7.2 Encoder Output

After the embeddings have been passed through all N encoder modules, the final

node embeddings are expected to contain information on the individual nodes

combined with the information of other nodes dependent on the structure of the

input graph. These node embeddings are used by the decoder (as well as other

information pertaining to the state of the problem as the model solves it) to

predict the solutions to the input problem.

An additional piece of information computed from the node embeddings pro-

duced is the graph embedding. The graph embedding is defined in the Attention

Model as

h
(N)
(g) = h

(N)
=

1

n

n∑
i=1

hℓ
1. (2.14)

35

This establishes that the graph embedding will be the average of all graph

node embeddings, retaining the dimension dh × 1 (same as node embeddings).

The intuition behind this piece of information is that by averaging the graph

node embeddings, we obtain a latent representation of the structure of the input

graph. This graph embedding is concatenated along with state information on

the problem (e.g, initial and current selected node in TSP) during decoding.

2.7.3 Decoder

The decoder significantly differs from the Transformer architecture in that only

one module is used (rather than N modules), no batch normalization or residual

connections are used, and no feed-forward network layers are used.

Context Embedding

After producing the graph node embeddings and the graph embedding (average

of node embeddings), a problem context is created, which contains crucial infor-

mation for the algorithm to know the state of the problem. The context encoder

uses the graph embedding alongside the embedding of the first and last nodes

produced by the decoder in the case of TSP. At the beginning of the decoding

operation, a random start node is used (which is reused as the last node)

h
(N)
(c) =

 {h
(N)
(g) , h

(N)
πt−1 , h

(N)
π1 } t > 1

{h(N)
(g) , h

(N)
π1 , h

(N)
π1 } t = 1

(2.15)

where the operation {., ., .} represents the concatenation operation. The shape

of the context vector is 3 · dh × 1.

36

Multi-Headed Attention

A multi-headed masked attention module is used where the node annotations

serve as key and value while the context vector h
(N)
(c) is used as a query. The

process of computing the query, key, and values is similar to 2.6, where instead of

using h⃗d
i , we use h

(N)
(c) for query (WQ has dimensions dq× 3 · dh) and h

(N)
1 , ..., h

(N)
n

for key and value

q(c) = WQ · h(N)
(c)

ki = WK · hi

vi = WV · hi.

(2.16)

Then, a mask is applied to any node that cannot be visited. For example, in

TSP, nodes that have been visited are no longer available. The similarity scores

are computed similar to 2.7:

uℓ
(c),j =


q⊤
(c)

kj
√
dt

if j ̸= πt′ ∀ t0 < t

−∞ otherwise.
(2.17)

Finally, the attention weights are computed to obtain the messages for each

head as in equation 2.8 and 2.9 and the heads are combined following equation

2.10. Kool et al. refer to this result to be a ”glimpse,” producing vector h
(N+1)
(c) .

Single-Headed Attention

Once h
(N+1)
(c) has been computed, a single-headed attention module is (partially)

used. First, we reuse equation 2.16 for query, key, and values. Then, we modify

37

eq. 2.17 to ”clip” the similarity scores (now interpreted as logits)

uℓ
(c),j =

 C · tanh(
q⊤
(c)

kj
√
dt

) if j ̸= πt′ ∀t′ < t

−∞ otherwise.
(2.18)

Finally, we compute the attention weights following equation 2.8. We define

the attention weights to be pi = pθ(πt = i|s, π1:t−1), the conditional probability

of the next node to produce is i. The produced node will then be used as the last

visited node.

2.7.4 Reinforcement Learning

As previously mentioned, the Attention Model is trained using reinforcement

learning (RL). The reason for using RL is that combinatorial optimization prob-

lems are, as mentioned, computationally intractable. Because of this, traditional

supervised learning may be hard to accomplish in large problems. To circumvent

this problem, RL allows the use of unlabeled data, using a performance signal

to guide learning. This signal can be computed from the function used to es-

tablish fitness among problem instances. In the case of TSP, this function is the

Euclidean distance of the selected path.

Theory

More precisely, the REINFORCE algorithm with baseline is used for training

the Attention Model in Kool et al. [2019], Peng et al. [2020]. Given that the

attention model produces a distribution over the actions to take, and the model

is a continuous, differentiable function, we can approach training using a policy

gradient, approximating Monte Carlo methods.

38

Within Reinforcement Learning, policy gradient algorithms operate similarly

to backpropagation: gradients of reward with respect to model parameters are

computed to change the model [Williams, 1992]. These methods are desirable

given their better convergence properties over other reinforcement learning al-

gorithms, and the use of neural networks within these methods (as well as the

existence of fast neural network derivation libraries) facilitates implementation

[Sutton and Barto, 2018].

First, we denote by L(θ|s) to be the loss function by which we will opti-

mize our model, defined to maximize reward. As for the reward, we model the

collected rewards using the function R(st−1, a, st), which defines the reward col-

lected when the environment is in state st−1 and action a is taken, transitioning

the environment to st. We derive the gradient of the loss function as

∇θL(θ|s) = ∇θ

∑
a

R(s0, a, s) · πθ(s0, a)

=
∑
a

R(s0, a, s) · ∇θπθ(s0, a)

=
∑
a

R(s0, a, s) · πθ(s0, a) ·
∇θπθ(s0, a)

πθ(s0, a)

= E
[
R(s0, a, s) ·

∇θπθ(s0, a)

πθ(s0, a)

]
≈ 1

N

N∑
j=1

R(s0, a, s) ·
∇θπθ(s0, a)

πθ(s0, a)

=
1

N

N∑
j=1

R(s0, a, s) · ∇θln(πθ(s, aj))

(2.19)

where L(πθ) is the loss incurred by policy π, parametrized by θ; πθ(s, a) is the

probability of the policy parametrized by θ from taking action a when the en-

vironment is at state s. Following the derivation, we obtain the following loss

39

function equation

∇L(θ|s) = Epθ(π|s)[L(π)∇logepθ(π|s)] (2.20)

where pθ(π|s) is the probability of trajectory π to be produced for the combina-

torial problem s. Notice that an expected value defines the gradient of the loss.

Because of this, Monte Carlo methods are used to approximate this gradient.

Baselines

Due to the nature of Monte Carlo sampling methods, we can expect the expected

value of the gradient to have a high variance [Sutton and Barto, 2018]. This

occurs because different environments may give significantly different rewards.

To address this, Williams [1992] introduced the idea of baselines where a function

dependent on each presented state is used to ”even out” these differences:

∇L(θ|s) = Epθ(π|s)[(L(π)− b(s))∇logepθ(π|s)] (2.21)

Where b(s) is our baseline function. A good intuition about how the baseline

affects learning is that the baseline acts as a function that scores what an expected

reward could be. This may be similar to ”grading” the difficulty of a given

instance problem. In doing this, it can be easier for the learning algorithm to

differentiate gain in performance through as changes occur.

Kool et al. [2019] propose using three types of baselines: exponential, critic,

and rollout, of which rollout is favored given its faster convergence. The exponen-

tial baseline utilizes the loss function L(π) obtained during the first iteration of

learning. Then, for every successive learning iteration, the baseline loss is modi-

40

fied as βL(π)+(1−β)L(π), using the latest loss inquired. Critic baseline utilizes

a value function v̂(s, w), which can be modeled with a neural network to produce

the expected reward on problem s (that being the expected future reward to ex-

pect when transitioning to state s). Finally, rollout utilizes the attention model

learned so far to obtain the reward collected on the problem s greedily (always

choosing the most likely path π). Doing this helps gain a more accurate estimate

of how complex a problem is concerning the attention model. The baseline is

then ”rolled out” when the improved model surpasses the model statistically.

Algorithm 1 REINFORCE with Rollout Baseline

1: input: number of epochs E, steps per epoch T , batch size B, significance α
2: Init θ, θBL ← θ
3: for epoch = 1, ..., E do
4: for step = 1, ..., T do
5: si ← RandomInstance() ∀ i ∈ {1, ..., B}
6: πi ← SampleRollout(si, pθ)
7: πBL

i ← GreedyRollout(si, pθBL)
8: ∇L ←

∑B
i=1(L(π)− L(πθBL))∇θlogepθ(πi)

9: θ ← Adam(θ,∇L)
10: end for
11: if OneSidePairedTTest(pθ, pθBL) < α then
12: θBL ← θ
13: end if
14: end for

2.7.5 The Dynamic Attention Model (AM-D)

Following the work of Kool et al. [2019] on the attention model, Peng et al. [2020]

presents an improved Attention Model that removes illegal nodes directly from

the problem graph and re-encodes the nodes and graph to maintain ”fresh” in-

formation. Peng et al. [2020] modified the encoder-decoder inference algorithm

to re-encode the graph and nodes dynamically. This change aims to allow the

41

model to better re-focus itself as an input problem becomes partially solved. The

dynamic attention model (AM-D) was shown to surpass the classical Attention

Model (AM) in the Vehicle Routing Problem. Additionally, AM-D achieved com-

petitive results on problems with many nodes by training with only a fraction of

the number of nodes in the problem.2

Differences to Attention Model (AM)

Figure 2.11: Figure from [Peng et al., 2020]. Comparison between AM (a) and
AM-D (b). Note that the biggest difference is that a single pass through the
encoder and into decoding is done by AM (a). In comparison, AM-D (b) re-
encodes and decodes to produce partial solutions added at the end to produce
the final trajectory. During re-encoding, illegal nodes are removed, thus reducing
the problem’s complexity as progress is made.

Most of the architecture presented in Kool et al. [2019] is kept in Peng et al.

[2020]; the main difference is the encoder-decoder information flow (Fig. 2.11).

During inference, the AM-D architecture encodes each node to produce node

embeddings, later used to produce a graph embedding by averaging them out.

Then, the graph embedding is concatenated with the currently produced node

embedding (from the decoder) and the relevant problem state information. This

context vector is then passed through the decoder to produce the next node.

2Kool et al. [2019] nor Peng et al. [2020] do not present results to the generalization scores
on the vanilla attention model.

42

Then, the entire graph is re-encoded once the problem reaches a state of partial

completeness. An example of an event triggering re-encoding could be the arrival

at a goal node from a list of goals to reach during a plane’s trajectory. The

encoding process will refresh and mask any nodes whose state has changed or have

become illegal nodes to traverse (like in TSP, where nodes are only allowed to be

visited once). Training occurs using the same reinforcement learning Algorithm

presented in algorithm 1.

2.8 Topological Machine Learning and Persis-

tence

A very promising subfield of machine learning that could be useful in solving

combinatorial optimization problems is Topological Machine Learning (TML)

[Pun et al., 2018]. This subfield of machine learning developed independently

from graph neural networks, and research attempted to allow machine learning

and neural network models to access information through mathematical analysis

of input problems. To perform this analysis, researchers use algebraic topology

to convert input data into a format that allows analysis. The flagship tool used

from topology is persistence homology, where signatures are extracted from the

input data, which would in turn allow machine learning to distinguish among

input data structures. The use of persistence homology in machine learning is

called persistent-homology machine learning (PHML) [Pun et al., 2018].

This section will be separated into several subsections that will build under-

standing and intuition of the field of topology and topological data analysis, with

a particular focus on the concepts of persistent homology. Finally, the challenges

43

of using these tools with machine learning will be introduced, followed by some

solutions presented in the literature.

2.8.1 Algebraic Topology

The field of algebraic topology focuses on studying the general shape of objects

and what unique characteristics remain as deformations to the object are ap-

plied [Carlsson and Vejdemo-Johansson, 2021]. Topology differs from geometry

because topology does not perform analysis over the structure defined by some

metric (e.g., Euclidean distance). Instead, topology studies the structure of ob-

jects through the observation that specific characteristics (e.g., holes or sharp

corners) are retained by objects when continuous, linear transformations are ap-

plied.

(a) (b)

Figure 2.12: Visualization of the seven bridges of Königsberg. (a) Is the original
form of the problem. (b) Is the graph form of the problem. Note that in (b), we
must traverse from D to/from A, B, and C once, and between A to/from B, and
B to/from C twice. No direct bridge exists between A and C.

A good example that provides intuition and motivation for the study of topol-

ogy is the so-called ”Bridges of Königsberg.” This problem, which Euler first

studied, asks whether a person can travel through all bridges connecting four

sections of the city of Königsberg exactly once and ending at the starting point.

44

This problem can be observed in figure 2.12a. Euler realized that this problem

could be re-formulated in infinite ways by keeping certain characteristics consis-

tent, namely the number of bridges and the land they connect. This idea can

be pictured in figure 2.12b, where the bridges are represented as legs of a graph

connecting four nodes (where direct paths exist among all nodes except between

A and C.) All of these representations, although visually different, represent the

same original problem where deformation has been applied. Essentially, these

problems all belong to the same topological class. Through this perspective,

Euler proved no solution exists.

2.8.2 Topological Data Analysis

While Topology is a mature field of mathematics, its application to data has

received attention only recently. Since the inception of Topology, much analy-

sis has been reserved for the elemental study of the characteristics of important

shapes such as tori and spheres. As computational techniques for topology began

to be developed, researchers realized that real-world data could undergo similar

analysis by modeling data points (a.k.a. point cloud data) as topological struc-

tures. Then, topological analysis tools could be used to analyze these topological

structures [Carlsson and Vejdemo-Johansson, 2021].

Simplices and Simplicial Complexes

To model point cloud data as a topological space, the notion of simplices is

used to model the atomic units of the data. A standard n-simplex is written as

45

∆n ⊆ Rn+1 and it is defined by the set:

{(x0, x1, ..., xn)|
∑
i

xi = 1 and xi ≥ 0 ∀ i} (2.22)

Where each xi element is a point of some dimensionality. Note that a 0-simplex

represents a single point, a 1-simplex represents a line, a 2-simplex represents

a triangle, a 3-simplex represents a tetrahedron, and so on. An example of

geometrical representation can be seen in figure 2.13

Figure 2.13: Geometrical visualization of different simplices.

In topological data analysis, points from point-cloud data are represented as

0-simplices. Combining all the point-cloud data creates a simplicial complex.

Note that such a simplicial complex has no connected elements; thus, no higher

n-simplices. This can be a problem, as these n-simplices allow us to perform

analysis on the point cloud. To solve this problem, several simplicial complex-

building algorithms have been developed, each creating simplicial complexes.

46

Figure 2.14: Example Čech complex construction at ϵ = 0.1, ϵ = 0.2, ϵ = 0.4, and
ϵ = 0.5. As spheres connect, 1-simplices and 2-simplices are created. Note that
for a 2-simplex to form, three spheres must connect (see bottom two figures.)

Čech Complex

Let the point cloud be represented by Z ⊂ Rn. Given a value ϵ ∈ R, the Čech

complex at scale ϵ is defined by some covering UCech
ϵ of Euclidean balls over each

point with radius ϵ: {B(z, ϵ)}z∈Z . This complex is then constructed by finding the

nerve of the covering UCech
ϵ , which is defined as the set of non-empty collections

zi0 ∩ ... ∩ zis = ∅

Figure 2.14 demonstrates the complex construction process for some simple

point clouds at different ϵ scales. Intuitively, at ϵ = 0.0, the simplicial complex

comprises 0-simplices (points). This remains true as we increase ϵ to 0.1 and 0.2.

As shown in figure 2.14, when ϵ = 0.4, several 1-simplex, and one 2-simplex are

created, shown as lines and a triangle, respectively. As we increase the value for

ϵ, more simplices are created.

47

The Čech complex has the theoretical guarantee that the complex formed by

the nerve of the covering, as described previously, is homotopy-equivalent to the

topological space it was formed from. This theoretical guarantee establishes the

validity of using a formed Čech complex to perform topological analysis, safely

assuming that the same topological characteristics of the original point-cloud data

will remain intact. This theoretical guarantee is called the Nerve theorem, and it is

proven by showing that for any covering, there exists a homotopic transformation

(a transformation that only bends, shrinks or expands, never cutting) that can

convert the complex created by the nerve back to the original topological space

of the point-cloud data.

Vietoris-Rips Complex

Figure 2.15: Example Rips construction. The values used for ϵ are 0.0, 0.1, 0.3,
0.5.

While the Čech Complex has many desirable theoretical guarantees, it can

become computationally expensive to compute the simplices since their construc-

tion depends on verifying the non-emptiness of interceptions among spheres. To

circumvent this problem, the Vietoris-Rips complex was developed to simplify

computation.

48

The Vietoris-Rips complex on a point cloud Z at some scale ϵ, represented as

V R(X, ϵ), is defined by the k-simplices spanned when:

d(zi, zj) ≤ ϵ (2.23)

where d is some function belonging to a metric space.

The intuition behind the Vietoris-Rips complex, whose construction can be

exemplified in figure 2.15, is similar to the construction of the Čech complex. A

group of ϵ radius spheres are placed on top of the 0-simplices. Then, a new simplex

is formed when the distance between two spheres is less than ϵ. Because distance

is used, computational complexity is decreased. Note that Rips complexes do

tend to have higher simplex counts.

The main drawback behind Rips complexes is the loss of theoretical guaran-

tees. Specifically, the Nerve theorem does not always hold for Rips complexes.

Despite this, theoretical guarantees prove that Čech complexes can be contained

within Rips complexes. More exactly, there exists an inclusion as follows:

VR(X, ϵ/2) ⊂ CČech(X, ϵ) (2.24)

While several more complex schemes exist, only Vietoris-Rips and Čech com-

plexes are presented since these are most relevant to this work. Any interested

readers seeking to learn more about other complexes are referred to the excellent

books by Edelsbrunner and Harer [2010], and Dey and Wang [2022].

49

2.8.3 Homology

Given a built topological space (either Čech, Vietoris-Rips, or any other), ho-

mology is the most common type of topological analysis performed. The core

idea behind homology is that topological spaces can be differentiated by looking

at the multi-dimensional connected components (informally, holes) these spaces

own. Computation of homology requires the definition of a chain complex, which

essentially encodes the information of the topological space X. Then, homology

groups can be formed by looking at the image and kernel of functions defined

over the chain complex.

Cycles

Figure 2.16: Example topological space where cycles are distinguished.

Since homology is interested in the analysis of cycles, it is essential to under-

stand how these concepts operate within the topological space. Consider figure

2.16, where a topological space is constructed from the given data point cloud.

It is easy to distinguish the existence of a hole in the center of the space, but

50

defining such a characteristic can be challenging. For example, note in the bot-

tom left figure how two blue segments can represent a segment of the hole. Many

more possible segments can represent essentially the same segment of a cycle.

For this reason, defining these segments as part of a family or group of segments

can be helpful. We achieve this by defining such a family of segments by some

mapping that can convert any given segment into any other segment belonging

to the family.

Note that while all segments on the upper side of the space connecting the

green and red points belong to the same family, any segment from the lower side

of the space would not. The brown segment cannot be transformed to fit any

of the segments at the top of the shape, including the blue segments, because

such a mapping would require the segment to be broken. This raises the notion

of direction in segments, where the blue segments have a different direction than

the brown segment. This idea can be visualized by the cycle in the bottom right

in figure 2.16, where a clockwise cycle can be observed. If one were to create a

cycle starting and ending at the green node that is counter-clockwise, it would

be easy to see that these cycles would not belong to the same cycle family.

Chain Complexes and Homology

Having defined cycle groups, which can have different dimensionality, chain com-

plexes are used to extract topological information for analysis. A chain complex

is defined to operate over some set of abelian groups of modules, connected by a

set of maps connecting these groups

...
∂i+1−−→ Ci

∂i−→ ...
∂2−→ C1

∂1−→ C0
∂0−→= 0 (2.25)

51

These maps ∂i are referred to as boundary maps and have the special property

that ∂i−1 ◦∂i = 0. Within this definition of chain complexes, we can compute the

groups of cycles as

Zp = {c ∈ Cp : ∂p(c) = 0} = Ker(∂p). (2.26)

Chains also have attached to them a way to compute the boundary objects in

the topological space. These can be computed as

Bp = {c ∈ Cp : (∃b ∈ Cp + 1 : ∂i+1 = c)} = Im(∂n+1). (2.27)

Using these definitions of cycles and boundaries, it is possible to compute nth

homology group of the space, which describes the number of n-dimensional holes

that exist within the topological space. Homology is defined as:

Hn = Ker(∂n)/Im(∂n+q) = Zn(Σ)/Bn(Σ) (2.28)

Where Σ is the topological space.

Homology is crucial for topological analysis as this tool permits us to quantify

the different-dimensional holes that exist within a topological space. Homology

essentially serves as a kind of signature unique for families of topological spaces

that share certain characteristics in common.

2.8.4 Persistent Homology

As shown in figure 2.15, different choices of ϵ affect the simplicial complex’s char-

acteristics. For example, when ϵ = 0.3, a hole can be appreciated, disappearing

52

later as it gets filled up at ϵ = 0.5. Since homology pays attention to these types

of characteristics, this raises the question of how we can choose the right ϵ that

is relevant to our analysis. The answer to this problem is to analyze the change

in topological characteristics, namely the change in the homology of the space,

as ϵ is modified. This idea gives birth to Persistent Homology.

First, the filtration concept formalizes that different topological simplicial

complexes are generated as ϵ changes. With Z being the topological space over

which analysis is to be performed, filtration is defined as

∅ = Z0 ⊆ Z1 ⊆ ... ⊆ Z. (2.29)

One of the key uses of filtration is in analyzing changes in homology. Specif-

ically, by studying the homology of topological spaces through filtration, it is

possible to capture a sense of persistence in certain topological features. A sig-

nificant hypothesis within the field is that capturing this information is unique

to families of objects and can give rise to a topological signature. This analysis is

called persistent homology.

The main technique used for creating topological signatures from filtration is

the Persistence diagram (PD). The PD can be created by computing homology

through a given filtration, keeping track of the times at which a particular n-

dimensional hole appears and disappears. The time at which a hole appears is

called its birth time, while the time it disappears is called it’s death time. Plotting

this information can provide a visual representation of the topological signature

of a topological space.

Figure 2.17 gives a visual example of the computation of a persistence di-

agram. First, filtration is created through the construction of a Vietoris-Rips

53

Figure 2.17: Example computation of a persistence diagram through persistent
homology. Left figures visually represent the topological space at some filtration
value. The right figure is a persistence diagram with some key moments marked
by a) through d). Red dots in PD represent 0-cycles (nodes). Green dots represent
1-cycles (holes).

complex. Then, each hole’s birth and death times are tracked. At filtration time

(a), no holes exist other than nodes. Nodes are 0-cycles, which are represented

in the PD as red dots. As the filtration continues, 1-simplices start appearing

as legs connecting nodes in the topological space. By time (b), these 1-simplices

have not produced any holes. Between time (b) and (c), 1-simplices connect to

create holes represented by green dots. Additionally, some 2-simplices appear.

Between time (c) and (d), creating more simplices closes one of the holes while

some holes suddenly appear and disappear.

The persistence diagram in figure 2.17 is a topological signature. The PD also

provides information on the persistence of holes. For example, note that the hole

in the left side of the topological space of figure 2.17 persists for a long time as

filtration occurs. This characteristic is represented in the diagram by the green

dot that is high in the diagram. Dots that sit high in the diagram belong to holes

54

that are most important to the topology of the topological space. Points that sit

closer to the diagonal tend to be holes that disappear soon after birth and tend

to be related to noise.

55

Chapter 3

Persistence Attention Model

(AM-P)

Inspired by the recent progress of topological machine learning, it seems fitting to

study the impact of Persistent Homology signatures within the field of heuristic

combinatorial optimization. Because combinatorial optimization often deals with

problems that can be presented in graph form, an intrinsic graph structure exists

that could be useful for solving problems like Traveling Salesman. As a matter of

fact, Persistence has been used for several years to solve problems related to graph

labeling or network optimization Pun et al. [2018]. This suggests persistence could

be a tool that could aid combinatorial optimization heuristic algorithms.

As presented in the background section, the Attention Model is the current

state-of-the-art model capable of solving combinatorial optimization problems.

The model uses an encoder-decoder architecture where the encoder takes in a

graph problem. Then, through a series of computations by neural networks and

self-attention layers, the encoder produces a new representation of the nodes in

some latent dimension presumed to contain information about the graph’s struc-

56

ture. Finally, the model uses its decoder using the newly-computed graph encod-

ing to produce a probability distribution indicating the nodes with the highest

likelihood to be in the optimal path. By obtaining new probability distributions

as the problem becomes solved, the model produces a trajectory with the highest

likelihood of being the optimal solution to the problem.

While it is known that GNN and GAT models tend to the graph’s structure,

it is unknown what kind of information is extracted. Understanding the nature

of the information computed by these models could shed light to better ways to

understand the problems these algorithms solve. Further, this knowledge could

help in designing better models that could further close the gap between heuristic

and exact algorithms.

3.1 Persistence Attention Model

This thesis proposes a variant of the Attention Model, the Persistence Attention

Model (AM-P) (see figure 3.1). The model retains much of the architecture of the

AM and AM-D models presented by Kool et al. [2019] and Peng et al. [2020] with

the distinction that the graph embedding used by the decoder uses Persistence

signatures to replace the average operation employed by the AM/AM-D models.

Including persistent homology information through graph encoding best fits

the AM/AM-D architecture theory. The original models use graph encoding to

retain global information on the graph’s structure throughout decoding [Peng

et al., 2020]. Since persistent homology provides a topological signature over the

entire graph input, it fits within the context of the graph encoding.

The persistent signature layer comprises three sub-layers: persistence diagram

computation, diagram vectorization and concatenation, and projection sublayers

57

Figure 3.1: Proposed architecture. The main modification includes a persistence
signature layer, which performs persistent homology analysis and vectorizes the
signature to use in the decoder.

(see figure 3.2). In the persistence diagram computation layer, the input graph

problem is converted to a topological space by creating a simplicial complex

(e.g. Čech, Vietoris-Rips, etc). A filtration is then computed over the simplicial

complex, and a persistence diagram over the first n-homologies is created.

While a persistence diagram is a topological signature, it cannot be directly

passed to machine learning models because the data lack an algebraic struc-

ture. Specifically, persistence diagrams are not within a Hilbert or Banach space

[Carrière et al., 2019]. This problem arises from the fact that many persistence

diagrams can have a different number of points, and some vector space opera-

tions are not well-defined [Carrière et al., 2019]. For this reason, a vectorization

58

Figure 3.2: Persistent homology signature computation and vectorization layer.
The choice taken for the AM-P presented uses Vietoris-Rips complexes to perform
persistent homology analysis. Then, Persistent Landscapes are used to vectorize
the diagrams. Finally, the vectors are concatenated and projected to dm.

operation is required to introduce this crucial structure for machine learning.

In the literature, there are different approaches to performing vectorization

on persistence diagrams. Approaches can be divided into three branches: di-

rect vectorization, kernel methods, and learned vectorization. Direct vectorization

performs a series of transformations to map a persistence diagram into a Ba-

nach or Hilbert space. A kernel method utilizes the kernel trick to introduce

the diagram information without the computational burden required by direct

vectorization. Learned vectorization encompasses the use of machine learning to

find a vectorization function.

Due to the sheer number of different approaches to vectorize persistence di-

agrams, it is left to future work on comparing these approaches with respect to

the model performance. After comparing different vectorization methods, the

tested implementation in this thesis makes use of a type of direct vectorization

technique called Persistence Landscapes [Bubenik, 2015].

Persistence landscapes were introduced in Bubenik [2015] and utilize a series

of mappings to rotate and obtain ”layers of influence” under the area created

by a point in a persistence diagram (see figure 3.3). First, given a persistence

59

Figure 3.3: Visualization of the process for computing persistence landscapes. A
mapping is applied to perform a clockwise rotation on a given persistence dia-
gram. Then, persistence landscapes can be ”peeled back using tent functions.” In
the rightmost figure, 4 landscapes can be appreciated. The vector representation
would encompass n samples of each landscape.

diagram defined as D = {(bi, di)}i∈I , an auxiliary function can be chosen, which

is defined in Bubenik [2015] as f(b,d)(t) = max{0,min{t − b, d − t}}. Then, the

k-th persistence landscape is defined by the function:

λ(k, t) = k-max{f(bi,di)(t)}i∈I (3.1)

To obtain the vector form, the function is sub-sampled to create a vector of some

specified dimension.

After obtaining a vector representation of the persistence diagram, the first

k-persistence landscapes in vector form are concatenated and projected to dm

dimensions. This linear projection is intended to maintain a fixed vector length

that can be concatenated with the rest of the problem context to run the decoder

module.

The computation of the persistence diagrams and the persistence landscapes

is done through the open-source library Gudhi [Maria et al., 2014]. While other

possible libraries implement similar tools to carry out Topological Data Analy-

sis, Gudhi was found to have a more robust repertoire that best fits the code

60

implementation for AM-P. Additionally, the library’s authors used code directly

provided from the papers where persistence landscapes were presented.

The model is trained following the same REINFORCE with baseline algorithm

presented in algorithm 1. To solve the Traveling Salesman problems, the reward

function used was the negative of the distance traveled. This choice of reward

function follows that chosen in the literature [Kool et al., 2019].

The implementation used for this thesis can be found in the linked github

repository.

61

https://github.com/aguilarjose11/TopologicalAttentionModel.git
https://github.com/aguilarjose11/TopologicalAttentionModel.git

Chapter 4

Investigating Persistence and

Graph Attention

4.1 Goals

The main question investigated through the presented experiments is how per-

sistence homology relates to the attention model. While it is understood the

mechanism by which the attention model extracts graph structural information

(via GATs), it is unknown what kind of information is used. To learn more about

the structure information AM uses, specifically whether information related to

homology is extracted, a series of experiments test the performance of the AM

with and without access to persistent homology information. It is hoped that by

observing the change in performance by the AM we can gain a better understand-

ing about whether GATs extract information similar to Persistent Homology.

62

4.2 Investigating Impact of Persistence as Graph-

Wide Embedding

In the first set of experiments, the original Attention Model and the presented

Persistence Attention Model are trained to solve the Traveling Salesman Problem

over graph sizes of 10, 20, and 50 nodes. The models are trained with a similar

architecture configuration, defined in table 4.1. Additionally, similar hyperpa-

rameters are used as those from [Peng et al., 2020], which are presented in table

4.2. Training occurs as defined in algorithm 2, which is a modification from 1 to

include computation of validation costs.

Parameter Value
Encoder Layers (N) 3
Attention Heads (h) 8
Neural Network Layer (dff) 512
Model Latent Dimensions (dm, dk, dv) (128, 64, 64)
Training Samples 1,280,000
Learning Rate 1e−4

Table 4.1: Model and training hyperparameters.

Parameter Value
Epochs 30

Batch Size 512
Training Data 1,280,000 (per epoch)
Graph Nodes 10, 20, 50 (consistent over experiment)
Architecture 3 encoder layers
Learning Rate 1e−4

Table 4.2: Experiment parameters based on Peng et al. [2020] paper.

Once results are collected, statistical testing is performed to see whether the

performance and/or overall training behavior of the trained models is statistically

similar or different. For this, the validation scores obtained over 10,000 TSP

63

Algorithm 2 Experiment #1’s train function.

Require: Optimization function φ. Model M . Baseline Mb. Gradient clipping
value ρ. Number of epochs εmax. Baseline Mb. Datasets Dtrain and Dvalidate

1: Split Dtrain into ϖ batches (D(ϖ)
train)

2: Evaluate baselineMb on all batched data D(ϖ)
train. Store results into cost matrix

C
(ϖ,i)
b , where i is the ith sample from the ϖ batch.

3: for all batches ϖ in D(ϖ)
train do

4: Forepropagate D(ϖ)
train in model M .

5: Calculate error and cost, and compute gradients using C
(ϖ,i)
b .

6: Clip gradients by global norm to ρ.
7: Use optimizer φ to backpropagate gradients through model M .
8: Store training error (ε

(ϖ,i)
M) and cost (C

(ϖ,i)
M) for this batch.

9: end for
10: Compute Costs on validation dataset Dvalidate by both M and Mb, and store

into CM,val and Cb,val

11: if p-value(CM,val, Cb,val) < 0.05 then
12: Mb ←−M
13: end if
14: return M,CM , CM,val

problems of 10, 20, and 50 nodes each are collected.

The statistical tests used to compare the training curves follow those pre-

sented in Piater et al. [1998]. The statistical hypothesis testing investigates the

existence of the algorithm effect and/or the interaction effect. The algorithm

effect is defined as the situation where the performance of a training curve ex-

hibits superior performance over other training curves. The interaction effect, on

the other hand, describes the situation where performance achieved described in

a learning curve is dependent on the algorithm used. Intuitively, the algorithm

effect looks at statistical differences in the performance among learning curves,

while the interaction effect looks at the statistical difference in the overall shape of

training curves. A threshold p-value of 0.05 is used following standard statistical

testing.

64

4.3 Investigating Generalization to Different Graph

Problem Sizes

An exciting result presented in Peng et al. [2020] shows the ability of the AM to

generalize across problem sizes. The authors showed that it is possible to train

the AM with smaller problems and achieve good performance on problem sizes

much larger than initially trained with. This opens the possibility to accelerate

learning by re-using models to solve larger problems. We believe that part of

the reason why the model could retain good relative performance on different

problem sizes is its ability to use graph structural information.

To study this idea, an experiment is presented to compare the performance

obtained by the AM and AM-P models as they are validated on larger or smaller

Traveling Salesman Problems. The models are validated over 10,000 TSP prob-

lems of 10, 20, and 50 nodes each. The scores for each problem size are then

statistically tested with a t-test to accept or reject the hypothesis that the AM-

P model’s performance and/or overall training behavior differs from that of the

original AM model on any of the problem sizes that the tested problems were

not originally trained on. Again, a threshold p-value of 0.05 is used following

standard statistical testing.

65

Chapter 5

Results

5.1 Experiment 1

For experiment 1, 10 instances of the AM and AM-P models were trained on

traveling salesman problems of sizes 10, 20, and 50. Each training session was

run for 30 epochs following the hyperparameters described in table 4.1. During

training, the average reward achieved by the models was collected for each epoch.

To gain a more accurate representation of the average learning curve, 10 AM and

AM-P models were trained for each of the problem sizes. The average learning

curve over each experiment for each model can be appreciated in figure 5.1.

A statistical analysis was performed on the data collected. The experiment

analysis described by Piater et al. [1998] is used for a randomized ANOVA analysis

for statistical hypothesis testing. Two hypotheses are tested:

• Halg
o : The mean performances of the attention model and Persistence at-

tention model are the same (algorithm effect).

• H int
o : The relationship between training time and performance does not

66

depend on the algorithm (interaction effect).

The results from the ANOVA experiment can be seen in tables 5.1, 5.2, and

5.3:

df SS MS F P
Algorithm 1 0.0006 0.0006 0.5282 0.4676
Interaction 29 1.1129 0.0038 0.9547 0.1319

Table 5.1: ANOVA table collected over AM and AM-P trained on TSP of 10
nodes.

df SS MS F P
Algorithm 1 0.0133 0.0133 1.6288 0.2024
Interaction 29 0.8287 0.0028 0.6522 0.3198

Table 5.2: ANOVA table collected over AM and AM-P trained on TSP of 20
nodes.

df SS MS F P
Algorithm 1 0.0155 0.0155 3.5118 0.1147
Interaction 29 1.4296 0.1183 1.4398 0.0855

Table 5.3: ANOVA table collected over AM and AM-P trained on TSP of 50
nodes.

Additionally, to explore for similarities in the solutions chosen by the models,

a random model (both AM and AM-P) trained on each problem size (10, 20, and

50) was chosen to undergo visualization. For this, a random problem was created,

and the selected models were tasked with solving it. The trajectories generated

can be appreciated in figure 5.2.

5.2 Experiment 2

For experiment 2, the trained models were tested to compare how well the AM

and AM-P models generalize to different problem sizes, and whether there are any

67

(a) Experiment on 10 nodes.

(b) Experiment on 20 nodes.

(c) Experiment on 50 nodes.

Figure 5.1: Average training rewards over 30 epochs. The shaded region shows
the first standard deviation at each epoch.

68

differences in performance. Similarly to the visualization of solutions presented in

experiment #1, models trained on 10, 20, or 50 nodes were selected to undergo

experimentation. These models were validated over 8,192 randomly-generated

TSP problems on different sizes (10, 20, and 50 nodes), and their average reward

and standard deviation was computed. Results can be seen in table 5.4. Instead

of showing the reward values, the average distance traveled is presented to provide

a more intuitive comparison of their performance. Note that the reward function

is defined as the negative distance traveled.

Training Validation
Problem Problem
Size Size

10 20 50

10
AM 2.44± 0.0397 3.92± 0.0434 6.49± 0.0493
AM-P 2.43± 0.0410 3.93± 0.0433 6.48± 0.0503

20
AM 2.54± 0.0406 3.97± 0.0389 6.44± 0.0434
AM-P 2.51± 0.0415 3.94± 0.0391 6.47± 0.0446

50
AM 2.86± 0.0511 4.16± 0.0486 6.02± 0.0494
AM-P 2.85± 0.0515 4.11± 0.0492 6.05± 0.0488

Table 5.4: Average distance traveled across different Traveling Salesman Problem
sizes. Models were originally trained on a single size of the traveling salesman
problem, and then they were validated to observe how well the model could
generalize to other problem sizes. First standard deviations are included.

Validation Training Problem Size
Problem size 10 20 50

10 0.6321 0.5351 0.4421
20 0.3234 0.1523 0.2322
50 0.4191 0.2457 0.2000

Table 5.5: P-values reported from t-test between the rewards collected between
AM and AM-P trained on the same problem size.

69

(a) Example validation
TSP-50 problem.

(b) Solution selected by a
random model.

(c) AM trained on 10
nodes.

(d) AM trained on 20
nodes.

(e) AM trained on 50
nodes.

(f) AM-P trained on 10
nodes.

(g) AM-P trained on 20
nodes.

(h) AM-P trained on 50
nodes.

Figure 5.2: Solutions to Traveling Salesman Problem of 50 nodes chosen by dif-
ferent models.

70

Chapter 6

Discussion & Conclusions

The results observed in experiment 1 seem to contradict the hypothesis that

introducing persistent homology will improve the performance of the attention

model. Figure 5.1 presents the behavior of the average learning curve while 10

models are being trained. In the three figures, the average plot over 10 train

models (for each model type and problem size) are close together and seem to

converge towards a similar value. This behavior is a bit different in figure 5.1c,

where the average lines seem to be more random, yet the lines still seem to

converge to a close value.

Statistical hypothesis testing was performed to support the aforementioned

observations that no statistically significant difference exists in the mean training

curves collected. A randomized ANOVA as described by Piater et al. [1998] is

used for testing. The following hypotheses are tested:

• Halg
o : The mean performances of the Attention Model and Persistence At-

tention Model are the same. Also called the algorithm null hypothesis.

• H int
o : The relationship between training time and performance does not

71

depend on the algorithm.

The null hypotheses state that the difference between the two algorithms with

respect to performance is statistically insignificant with respect to the difference

in the means (algorithm effect) and the behavior of the curves caused by training

throughout time (interaction effect). We use a threshold p-value of 0.05 for our

hypothesis testing.

The resulting statistics from the analysis can be appreciated in tables 5.1, 5.2,

and 5.3. The p-values reported for the algorithm effect hypothesis (Halg
o) suggest

an inability to reject the algorithm null hypothesis due to lack of evidence; thus,

we accept this hypothesis. It is important to note that this only proves that the

difference between the training curves was not statistically significant.

With respect to the interaction hypothesis (H int
o), the p-values reported again

suggest an inability to reject the null hypotheses due to a lack of evidence. An

interesting result can be observed in table 5.3, where the p-value was rather low.

It can be observed in figure 5.1c how both training curves do differ but follow a

general direction in learning.

As problem size increases, the p-values seem to suggest that the statistical

difference between both algorithms increases. While we do not make any claims

on whether the AM and AM-P models differ in TSP problems higher than 50

nodes, it could be worthwhile to study whether the models would differ in larger

problem settings. This is left for future work.

Further, results from experiment # 2 further show how close the performance

between the Attention Model and Persistent Attention Model is (see table 5.4).

In the table, it can be appreciated the validation scores for both models stay close

even when tested on problems for the models that were not trained originally.

72

Additionally, the standard deviation reported shows a similar rate of noise within

the validation scores obtained. The means of the Attention Model and Persistent

Attention Model both fall within the first standard deviation for all of the results,

further making the case that the distributions produced by the validation scores

are similar.

An additional interesting result is the similarity of the solutions generated

by the models. Figure 5.2 shows the trajectory generated by an AM and AM-P

model trained on different problem sizes. The models solve a TSP of 50 nodes. It

is possible to observe similarities in the overall shape of the generated solutions,

only differing in certain locations.

Like experiment # 1, hypothesis testing (a t-test in this case) is carried out

to ensure these observations are statistically sounding. The null hypothesis is the

following:

• Ho: The mean reward of the Attention Model and Persistence Attention

Model is the same when validated over the same TSP.

As 5.5 shows, the p-values indicate no significant differences between the means

obtained. for this reason, we accept the null hypothesis. Note that this result

only demonstrates there is not a statistically-significant difference between the

models.

These results are rather surprising, as they do not follow the trend observed in

the literature, where a performance boost to models using persistence has been

observed Pun et al. [2018]. There may be many different reasons behind this

behavior. A possibility, given that the Attention Model already achieves good

performance in TSP, is that persistent homology information is being extracted

through the Graph Attention mechanisms used by the Attention Model. The

73

attention model may not compute this information exactly as the persistent ho-

mology tools do, but it could be possible that GAT mechanisms approximate this

information well enough, that providing the model with such information is not

beneficial.

Another reason for the belief that persistent homology may be used by the

Attention Model through its GAT mechanisms is the fact that solutions to the

Traveling Salesman problem tend to have certain characteristics. Some classical,

exact algorithms for solving the TSP problems have noted the usability of the

convex hull in finding the optimal solution to a problem [Allison and Noga, 1984].

This has motivated some work to study ways in which the structure of a graph

problem, through persistent homology, could help solve TSP problem instances.

Some recent work by Carlsson et al. [2022] has explored this idea through the use

of TDA to improve the performance of imperfect TSP solutions. The positive

results obtained by their approach through the use of persistence information

motivate the usability of persistence in solving TSP problems.

While this hypothesis could be likely, the results presented are not enough to

make statements past the fact that the attention model, through its persistent

attention model variant, does not seem to gain any significant performance in-

crease in Traveling Salesman. It could be possible that the chosen vectorization

approach may not capture enough information about the problem. On a simi-

lar note, only Vietoris-Rips complexes were used for analysis, and the impact of

other simplicial complexes were not assessed. Verification of this hypothesis as

well as the impact of other persistent homology representations and tools would

be left for future work.

74

Chapter 7

Future Work

As mentioned in the discussion and conclusion section, it remains uncertain

whether persistent homology could be indeed extracted through the GAT mech-

anisms of the attention model. Initial results hereby presented suggest that the

introduction of persistent homology is not as helpful for solving TSP with the at-

tention model, which one possible hypothesis is that the information is partially

extracted through the GAT mechanisms of the model. It is uncertain how much

of this information is obtained by the GAT mechanisms, and how similar it is to

the signatures extracted by existing persistent homology techniques. Exploring

the extent to which the Attention Model may utilize such persistence homology

information could open the way for mathematical rigor, as it could be possible

that some of the theoretical results obtained in other machine learning models

using persistence homology could apply to the Attention Model Hensel et al.

[2021]

A possible increment to this work could be investigating the algorithm and

interaction effects of the AM and AM-P models on larger TSP problems. As noted

in tables 5.1, 5.2, and 5.3, p-values seem to decrease as the TSP problem size

75

is increased. It could be possible that a difference among the algorithms exists

in larger TSP problem environments. Unfortunately, training the models over

TSP problems larger than 50 nodes tends to become computationally expensive,

with experiments lasting several days on modern GPUs (used a GTX 1060 ti and

Tesla k20m). It would left for future work to investigate whether AM and AM-P

algorithms differ in problems larger than TSP-50.

Another possible direction of future research is to investigate whether AM-

P could have better resistance to adversarial attacks. An important result from

topology is the stability of persistence diagrams with respect to noise [Edelsbrun-

ner and Harer, 2010], [Carlsson and Vejdemo-Johansson, 2021]. Some research

into the capability of persistent homology to transfer stability and resistance to

adversarial attacks has shown promising results to the applicability of TDA to im-

prove the robustness of machine learning models [Brüel-Gabrielsson et al., 2020].

Within the realm of Graph Neural Networks, of which GAT models are a part

of, some adversarial attacks have been shown to derail learning and decrease the

performance of Graph Neural Network models [Sun et al., 2020], [Zhang and Zit-

nik, 2020]. Future research on the AM-P model hereby presented should explore

this question and compare the robustness of the model with respect to adversarial

attacks that target graph problems direction like node injection as presented in

Sun et al. [2020].

76

Bibliography

Donald C.S. Allison and M.T. Noga. The l1 traveling salesman problem. Infor-
mation Processing Letters, 18(4):195–199, 1984. ISSN 0020-0190. doi: https://
doi.org/10.1016/0020-0190(84)90110-8. URL https://www.sciencedirect.

com/science/article/pii/0020019084901108.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-
lation by jointly learning to align and translate. In Yoshua Bengio and Yann Le-
Cun, editors, 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,
2015. URL http://arxiv.org/abs/1409.0473.

Rickard Brüel-Gabrielsson, Bradley J. Nelson, Anjan Dwaraknath, and Primoz
Skraba. A topology layer for machine learning. In Silvia Chiappa and Roberto
Calandra, editors, Proceedings of the Twenty Third International Conference
on Artificial Intelligence and Statistics, volume 108 of Proceedings of Machine
Learning Research, pages 1553–1563. PMLR, 26–28 Aug 2020. URL https:

//proceedings.mlr.press/v108/gabrielsson20a.html.

Peter Bubenik. Statistical topological data analysis using persistence landscapes.
J. Mach. Learn. Res., 16(1):77–102, jan 2015. ISSN 1532-4435.

Erik Carlsson, John Gunnar Carlsson, and Shannon Sweitzer. Applying topo-
logical data analysis to local search problems, 2022. URL /article/id/

621de62b2d80b7479e4357cd.

Gunnar Carlsson and Mikael Vejdemo-Johansson. Topological Data Analysis with
Applications. Cambridge University Press, 2021. doi: 10.1017/9781108975704.

Mathieu Carrière, Frédéric Chazal, Yuichi Ike, Théo Lacombe, Martin Royer,
and Yuhei Umeda. Perslay: A neural network layer for persistence diagrams
and new graph topological signatures. In International Conference on Artificial
Intelligence and Statistics, 2019.

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN

77

https://www.sciencedirect.com/science/article/pii/0020019084901108
https://www.sciencedirect.com/science/article/pii/0020019084901108
http://arxiv.org/abs/1409.0473
https://proceedings.mlr.press/v108/gabrielsson20a.html
https://proceedings.mlr.press/v108/gabrielsson20a.html
/article/id/621de62b2d80b7479e4357cd
/article/id/621de62b2d80b7479e4357cd

encoder-decoder for statistical machine translation. CoRR, abs/1406.1078,
2014. URL http://arxiv.org/abs/1406.1078.

Tamal Krishna Dey and Yusu Wang. Computational Topology for Data Analysis.
Cambridge University Press, 2022. doi: 10.1017/9781009099950.

Herbert Edelsbrunner and John Harer. Computational Topology - an Introduc-
tion. American Mathematical Society, 2010. ISBN 978-0-8218-4925-5.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and
George E. Dahl. Neural message passing for quantum chemistry. In Doina
Precup and Yee Whye Teh, editors, Proceedings of the 34th International Con-
ference on Machine Learning, volume 70 of Proceedings of Machine Learn-
ing Research, pages 1263–1272. PMLR, 06–11 Aug 2017. URL https://

proceedings.mlr.press/v70/gilmer17a.html.

Bruce Golden, L. Levy, and Rakesh Vohra. The orienteering problem. Nav
Res Logist, 34:307–318, 06 1987a. doi: 10.1002/1520-6750(198706)34:3⟨307::
AID-NAV3220340302⟩3.0.CO;2-D.

Bruce L. Golden, Larry Levy, and Rakesh Vohra. The orienteering problem.
Naval Research Logistics (NRL), 34(3):307–318, 1987b. doi: https://doi.
org/10.1002/1520-6750(198706)34:3⟨307::AID-NAV3220340302⟩3.0.CO;2-D.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/1520-6750%

28198706%2934%3A3%3C307%3A%3AAID-NAV3220340302%3E3.0.CO%3B2-D.

Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, Cambridge, MA, USA, 2016. http://www.deeplearningbook.org.

Felix Hensel, Michael Moor, and Bastian Rieck. A survey of topological machine
learning methods. Frontiers in Artificial Intelligence, 4, 2021. ISSN 2624-
8212. doi: 10.3389/frai.2021.681108. URL https://www.frontiersin.org/

articles/10.3389/frai.2021.681108.

Holger H. Hoos and Thomas Stützle. 1 - INTRODUCTION. The Morgan Kauf-
mann Series in Artificial Intelligence. Morgan Kaufmann, San Francisco, 2005.
ISBN 978-1-55860-872-6. doi: https://doi.org/10.1016/B978-155860872-6/
50018-4. URL https://www.sciencedirect.com/science/article/pii/

B9781558608726500184.

M I Jordan. Serial order: a parallel distributed processing approach. technical
report, june 1985-march 1986. 5 1986. URL https://www.osti.gov/biblio/

6910294.

78

http://arxiv.org/abs/1406.1078
https://proceedings.mlr.press/v70/gilmer17a.html
https://proceedings.mlr.press/v70/gilmer17a.html
https://onlinelibrary.wiley.com/doi/abs/10.1002/1520-6750%28198706%2934%3A3%3C307%3A%3AAID-NAV3220340302%3E3.0.CO%3B2-D
https://onlinelibrary.wiley.com/doi/abs/10.1002/1520-6750%28198706%2934%3A3%3C307%3A%3AAID-NAV3220340302%3E3.0.CO%3B2-D
http://www.deeplearningbook.org
https://www.frontiersin.org/articles/10.3389/frai.2021.681108
https://www.frontiersin.org/articles/10.3389/frai.2021.681108
https://www.sciencedirect.com/science/article/pii/B9781558608726500184
https://www.sciencedirect.com/science/article/pii/B9781558608726500184
https://www.osti.gov/biblio/6910294
https://www.osti.gov/biblio/6910294

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing
problems! In International Conference on Learning Representations, 2019.
URL https://openreview.net/forum?id=ByxBFsRqYm.

Clément Maria, Jean-Daniel Boissonnat, Marc Glisse, and Mariette Yvinec. The
gudhi library: Simplicial complexes and persistent homology. In Hoon Hong
and Chee Yap, editors, Mathematical Software – ICMS 2014, pages 167–174,
Berlin, Heidelberg, 2014. Springer Berlin Heidelberg. ISBN 978-3-662-44199-2.

Bo Peng, Jiahai Wang, and Zizhen Zhang. A deep reinforcement learning al-
gorithm using dynamic attention model for vehicle routing problems. CoRR,
abs/2002.03282, 2020. URL https://arxiv.org/abs/2002.03282.

Justus H. Piater, Paul R. Cohen, Xiaoqin Zhang, and Michael Atighetchi. A
randomized anova procedure for comparing performance curves. In Proceedings
of the Fifteenth International Conference on Machine Learning, ICML ’98,
pages 430–438, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers
Inc. ISBN 1558605568.

Chi Seng Pun, Kelin Xia, and Si Xian Lee. Persistent-homology-based machine
learning and its applications – a survey. arXiv, 2018(0), 2018. URL http:

//dml.mathdoc.fr/item/1811.00252.

F. Rosenblatt. The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological Review, 65(6):386–408, 1958.
ISSN 0033-295X. doi: 10.1037/h0042519. URL http://dx.doi.org/10.1037/

h0042519.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach
(4th Edition). Pearson, 2020. ISBN 9780134610993. URL http://aima.cs.

berkeley.edu/.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. The graph neural network model. IEEE Transactions
on Neural Networks, 20(1):61–80, 2009. doi: 10.1109/TNN.2008.2005605.

Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh, and Vasant Honavar.
Adversarial attacks on graph neural networks via node injections: A hierarchi-
cal reinforcement learning approach. In Proceedings of The Web Conference
2020, WWW ’20, pages 673–681, New York, NY, USA, 2020. Association for
Computing Machinery. ISBN 9781450370233. doi: 10.1145/3366423.3380149.
URL https://doi.org/10.1145/3366423.3380149.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduc-
tion. The MIT Press, second edition, 2018. URL http://incompleteideas.

net/book/the-book-2nd.html.

79

https://openreview.net/forum?id=ByxBFsRqYm
https://arxiv.org/abs/2002.03282
http://dml.mathdoc.fr/item/1811.00252
http://dml.mathdoc.fr/item/1811.00252
http://dx.doi.org/10.1037/h0042519
http://dx.doi.org/10.1037/h0042519
http://aima.cs.berkeley.edu/
http://aima.cs.berkeley.edu/
https://doi.org/10.1145/3366423.3380149
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Er-
han, Ian J. Goodfellow, and Rob Fergus. Intriguing properties of neural net-
works. In Yoshua Bengio and Yann LeCun, editors, 2nd International Con-
ference on Learning Representations, ICLR 2014, Banff, AB, Canada, April
14-16, 2014, Conference Track Proceedings, 2014. URL http://arxiv.org/

abs/1312.6199.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
CoRR, abs/1706.03762, 2017. URL http://arxiv.org/abs/1706.03762.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In
C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 28. Curran As-
sociates, Inc., 2015. URL https://proceedings.neurips.cc/paper/2015/

file/29921001f2f04bd3baee84a12e98098f-Paper.pdf.

R. J. Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8:229–256, 1992.

Xiang Zhang and Marinka Zitnik. Gnnguard: Defending graph neural networks
against adversarial attacks. In Proceedings of the 34th International Conference
on Neural Information Processing Systems, NIPS’20, Red Hook, NY, USA,
2020. Curran Associates Inc. ISBN 9781713829546.

80

http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1706.03762
https://proceedings.neurips.cc/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	Background
	Combinatorial Optimization Problems
	Definition of Traveling Salesman

	Heuristic Approach through Deep Learning
	Neural Networks
	Artificial Neural Networks
	Deep Neural Networks

	The Transformer: An Attention-based Encoder Decoder
	Encoder-Decoders
	Attention Mechanisms

	Attention is All You Need (Transformer)
	Overview of Architecture
	Encoder Operation
	Decoder Operation

	The Attention Model
	Graph Neural Networks and Graph Attention

	Attention Model
	Encoder
	Encoder Output
	Decoder
	Reinforcement Learning
	The Dynamic Attention Model (AM-D)

	Topological Machine Learning and Persistence
	Algebraic Topology
	Topological Data Analysis
	Homology
	Persistent Homology

	Persistence Attention Model (AM-P)
	Persistence Attention Model

	Investigating Persistence and Graph Attention
	Goals
	Investigating Impact of Persistence as Graph-Wide Embedding
	Investigating Generalization to Different Graph Problem Sizes

	Results
	Experiment 1
	Experiment 2

	Discussion & Conclusions
	Future Work
	Bibliography

