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CHAPTER I 

THE RESEARCH PROBLEM 

Introduction 

One of the most important aspects of diagnostic testing in a clinical laboratory is 

maintaining the quality of the results being reported by the laboratory. The results 

reported by such a laboratory are used by physicians and pathologists to diagnose patient 

conditions and monitor patient progress. Therefore, the quality of the results reported is 

of utmost importance, and the quality assurance efforts regarding these results must be 

well planned and effective. 

For many years, control materials have been tested and monitored to ensure the 

continued high quality of the patient results reported. These controls are stable materials 

of known concentrations tested in the same fashion as patient samples, and they serve the 

purpose of signaling when the testing system has experienced a change. The assumption is 

that changes detected by control materials will also impact patient test results in the same 

fashion. 

It is clear that the method for monitoring quality control in the clinical laboratory 

will have a direct impact on the results reported by the laboratory. This research examines 

new approaches to monitoring quality control in the clinical setting. These new 

approaches are compared to one another and current clinical approaches. Comparisons 

among methods are made from both a statistical and a cost perspective. 



The Problem 

Clinical laboratories have been using control charts to monitor the stability of 

control materials (and thereby the measurement system) since the early 1950's. Typical 

approaches involve monitoring multiple levels of control materials ( e.g., high, medium, 

and low concentrations) over time. However, many clinicians utilize limits on their 

control charts at+/- 2 standard deviations (SD) of the measurement system. This practice 

results in almost a 5% probability of false rejection for an individual level when the 

measurement system is stable, and it is a method long ago outlawed in industrial quality 

control practice. Tradition and ease of use, however, continue to make+/- 2 SD limits 

extremely popular in the clinical setting. 

Dr. James Westgard has published a great deal in the clinical literature and 

encouraged the use of runs rules as an alternative to+/- 2 SD limits in the past. Termed 

the "W estgard Multirule Procedure" (Westgard, Barry, and Hunt 1981 ), the approach has 

gained a good deal of support in the literature, but actual implementation in clinical 

laboratories still does not approach the use of+/- 2 SD limits. Westgard' s procedure is 

discussed in detail in Chapter II of this dissertation, but it is essentially a variation of the 

AT&T runs rules. 

Recent work in the clinical area has surrounded the concept of "clinically 

significant errors." The underlying premise is that there are actually changes or shifts in 

the measurement system which are allowable because they are not clinically significant and 

do not have an impact on the utility of the reported patient results. While there has been 
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some work towards designing control procedures to detect these clinically significant 

errors, they have not been widely embraced in clinical laboratories. 

It is clear that if clinicians wish to move towards allowing changes to occur in their 

measurement systems which they deem insignificant from a practical standpoint, new 

methods must be considered. Using the traditional+/- 2 SD limits approach is definitely 

not a method which will allow for clinically significant errors. In fact,+/- 2 SD limits will 

have a high false rejection rate and flag shifts which are non-existent. Part of the 

popularity of+/- 2 SD limits, however, is that the measurement system is considered either 

in-control (acceptable) or out-of-control (unacceptable) each time control materials are 

tested. To the clinician, the use of runs rules can lead to problems. Stopping the process 

due to a run rule means that the process has been operating with a shift for some time 

without detection, and stopping for the run rule brings all previous test results into 

question. For example, if a run rule detects a shift after 4 consecutive points are above or 

below+/- I SD of the measurement system, this means that 3 previous time points also 

experienced that shift and the lab continued to release patient results. There is a sense of 

comfort for clinicians in using a monitoring approach that considers their system either 

acceptable or unacceptable at each time point as opposed to waiting for future data (via 

runs rules) to detect a problem with the measurement system. Therefore, a method which 

in some way incorporates clinical significance without the use of runs rules would be very 

attractive to clinical personnel. 

While there is a reasonably large body of literature surrounding clinical quality 

control approaches, there have been a number of missed opportunities in the field. There 
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has been a limited treatment of cost models applied to clinical quality control methods, but 

the field has largely ignored the cost implications of the quality control procedures 

selected. Some of the current methods used by clinicians can have some very detrimental 

cost implications (i.e., the high false rejection rate associated with+/- 2 SD limits) and 

evaluating these methods on a cost basis can be very enlightening. 

Another dimension to the problem is the multivariate nature of the quality control 

monitoring performed in the clinical setting. Clinicians test multiple levels of control 

material regularly (by law), so multivariate approaches are very applicable to the 

laboratory situation. The clinical quality control literature, however, has not considered 

multivariate methods to this point, and these methods need to be investigated for 

feasibility. 

Given these considerations, it is clear that there is a long history of applying quality 

control methods in the clinical laboratory. However, the methods currently practiced are 

based primarily on traditional application and ease of use rather than statistical or 

economic designs. Even though highly automated systems are available enabling the 

application of sophisticated methods, simple methods are still the choice in the clinical 

laboratory. In addition, consideration to cost issues has largely been ignored. Therefore, 

there is a need to capitalize on the automation resources available and provide clinicians 

with powerful statistical approaches for quality control monitoring. 
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Research Objective 

The objective of this research is to evaluate new approaches to clinical quality 

control monitoring, comparing these methods with current approaches on both a statistical 

and a cost basis. The methods used in the comparison include: 

Traditional clinical approaches: 

1) The strict application of+/- 2 SD limits. 

2) The use of+/- 2 SD limits with an immediate retest. 

3) The Westgard Multirule Procedure. 

Multivariate approaches including: 

a) The T2 chart. 

b) The ·x2 chart. 

c) Principal component charts. 

Research Sub-Objectives 

In order to achieve the research objective, the research effort can be broken into 

two distinct phases or sub-objectives. The first phase is to statistically model the methods 

identified above. This phase allows for the comparison of the methods on a statistical 

basis, but it also results in necessary inputs for the second phase. The·second phase of the 

research is the economic modeling of the methods, resulting in method comparisons on a 

cost basis. The following describes the specific phases considered in the research work. 
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Phase 1: Compare the alternatives statistically: 

The initial phase of the research is to develop models for assessing the statistical 

performance for each of the methods. The goal is to compare the methods statistically in 

terms of average run lengths ( ARLs) for detecting specified shifts in the measurement 

system. For purposes of this modeling, sample sizes of two (corresponding to two 

different levels of control material) and three (three different levels of control material) are 

used. These are the sample sizes frequently encountered in practice, and larger sample 

sizes would be quickly rejected by clinicians. 

Given that multiple levels are modeled ( two or three), the research varies the shifts 

in centering by level. So, ARL comparisons are performed for the case when levels shift 

together and also when the levels are shifted independently. Current clinical quality 

control evaluations always assume that all levels are affected equally by any shifts in 

centering, so this research explores the impact of shifting levels independently. It should 

be noted that this independent shifting in levels is perfectly realistic in the clinical setting. 

Phase 2: Compare the alternatives economically: 

After determining the statistical performance of each of the methods, the focus of 

the research shifts to comparing the methods on a cost basis. Using a variation of cost 

models previously utilized in industrial quality control applications, a new model reflective 

of the clinical setting is developed and used to compare the costs associated with the 

various alternatives. Results from the first phase of the research ( statistical modeling) are 

used as inputs into the economic modeling portion of the research. 

6 



The final stage in the research is to review and analyze the results of the research. 

A number of interesting results and insights are available as a result of the research, and a 

synthesis of these findings is included. 

Research Contribution 

This researph contributes to the statistical quality control body of knowledge in a 

number of respects. The first, the development of new quality control methods for the 

clinical setting, is most relevant to the clinical laboratory. These methods incorporate the 

multivariate information available to the application and classify the measurement system 

as acceptable or unacceptable at each test point. This feature is attractive to clinicians 

reluctant to employ runs rules to detect changes in their system. 

The comparison of the current clinical quality control approaches on a cost basis 

also constitutes a contribution to research in the field. Only a small amount of cost 

modeling work exists in the clinical arena, so the results from this research are very 

powerful in aiding people with the selection of a quality control procedure. Looking at 

the impact that a quality control method can have on costs is a very useful tool for clinical 

personnel. 

Another contribution is the modeling of clinical quality control where the multiple 

levels are shifted independently. Previous research efforts assumed the same size shift in 

each level, but this research explores the effect of shifting the centering of the levels 

independently. Inducing independent shifts in the different control levels can lead to very 

different performance of the current approaches than many clinicians believe. 
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From the traditional quality control perspective, a major research contribution is in 

the development of an economic model for principal component charts. While the T2 

chart has been modeled from the economic perspective, no such attempt has been made 

for the principal component chart. Therefore, the economic modeling of the principal 

component chart constitutes an original contribution to the field of industrial quality 

control. 

It is clear that the research breaks new ground on a number of different fronts. 

While much of the research is geared towards the clinical setting, the economic modeling 

of multivariate charts adds an element of research directly impacting industrial quality 

control applications. 
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CHAPTER II 

LITERATURE REVIEW 

Introduction 

There is a large and varied body of literature relevant to this research effort. The 

clinical laboratory has its own body of knowledge, summarized in the first section of this 

review. Cost modeling of industrial control charts has also long been a topic of interest in 

the literature, and the second section summarizes the pertinent industrial cost modeling 

information along with some cost modeling work in the clinical area. The third section 

reviews multivariate charting techniques and modeling with the final section of the chapter 

summarizing the literature review. 

Quality Control in Clinical Laboratories 

Traditional Approaches 

The original application of statistical methods for monitoring quality control in the 

clinical laboratory dates back to the early fifties (Levey, Jennings 1950). In this original 

application, Levey and Jennings apply a Shewhart chart from industrial quality control and 

use average and range charts for subgroups of size two. Laboratory personnel today often 

refer to plots of quality control values as Levey-Jennings charts, but they are typically 

referringto charts of individual values plotted on a chart with limits set at+/- 2 standard 

deviations (SD). This evolution from the original Levey-Jennings application of average 
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charts to charts of individual values with+/- 2 SD limits occurred gradually. Henry and 

Segalove' s paper (1952) discusses the plotting of single replicates against +/- 2 SD limits, 

and the approach gained popularity in laboratories due to its ease of use. 

This evolution of quality control systems began in the fifties and continues in many 

instances today. Typical approaches for monitoring controls in the clinical laboratory use 

three different levels of control materials (low, medium, and high) with targeted 

concentrations across the measurement range of the diagnostic test. Each of these levels 

is tracked separately with control limits placed at+/- 2 SD limits and applied to individual 

observations. Linnet's work ( 1989-b and 1991) advocates averaging replicate 

observations of control values for monitoring quality control materials and shows the 

increased power of such an approach, but laboratory personnel have not embraced the 

practice. 

In the late seventies, Westgard, Groth, Aronsson, Falk, and de Verdier (1977) 

published the first article assessing the statistical performance characteristics of clinical 

quality control methods. Using computer simulation, their work develops power curves 

for various combinations of runs rules. The graphs display the probability of detecting 

specific errors as a function of the number of control observations evaluated. The graphs 

are based on the probability of detecting a true error (pet1) and the probability of a false 

rejection (pfi.). Additionally, the article discusses the concepts1 of random error (RE) and 

systematic error (SE). Random error is the inherent imprecision, or noise, that a testing 

system will experience in a state of statistical control. A systematic error is a change in 

the centering of the measurement system. Therefore, a change in the random error is a 
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change in the measurement system variability, and a systematic error represents a change 

in the centering of the measurement system. 

· This work by Westgard et al. is extremely important as it set the direction for 

future evaluation of quality control approaches. The use of simulation became standard, 

and future models assumed a common shift to all levels used for monitoring. These 

assumptions, therefore, set the stage for work continuing into the 1990s. 

Westgard, Groth, Aronsson, and de Verdier ( 1977) used the developments of 

power curves to evaluate and propose a monitoring method combining a Shewhart control 

chart with a cumulative sum chart. While the approach performs well statistically, the 

sophistication of the method makes it unattractive to users and it has not been widely 

implemented. 

Continuing the use of computer simulation to evaluate control methods comprised 

of combinations of control rules, Westgard and Groth (1979) published what they termed 

"power function graphs." The graphs are refinements of earlier power curves, displaying 

probabilities of error detection and false rejection versus shifts in centering (..1.SE) and 

spread (ARE). These power function graphs provide a means for assessing a control 

monitoring system's performance and determining the statistical acceptability of a given 

approach. 

Clinical Chemistry published the culmination ofWestgard's work in the late 

seventies and early eighties as a "selected method" (Westgard, Barry, and Hunt 1981). 

Termed the "Multirule Procedure," Westgard describes a combination of control rules to 
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apply to monitoring control materials. The Westgard Multirule Procedure works as 

follows: 

Reject if: 

I point outside+/- 3 SD limits (hs) 

If I point outside+/- 2 SD limits, then consider: 

a) 2 consecutive points outside+/- 2 SD on the same side of the centerline 

(22s) 

b) Range of 2 points greater than 4 SD (R.s) 

c) 4 consecutive points outside +/-1 SD limits on the same side of the 

centerline ( 41s) 

d) IO consecutive points above or below the mean ( 1 Ox) 

While many clinicians endorse the procedure, there is still considerable confusion about its 

application in laboratories. The method can be confusing as there are many comparisons 

required; many laboratories which claim to be using the Westgard Multirule Procedure are 

likely using some variation of the approach rather than the procedure as originally 

published. 

Following the appearance ofWestgard's Multirule Procedure, there continued to 

be publication of other combinations of runs rules. Blum ( 1985) published a method that 

incorporates the use of 10 different runs rules, justifying the selected rules using computer 

simulation. Again, the method has proven too sophisticated for application in the 

laboratory setting. 
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Westgard continued his work in the area of clinical quality control with the 

development of selection grids for planning quality control procedures ~ estgard, Quam, 

and Barry 1990). The grids are tools which allow a user to select a set of control rules for 

a given application. The parameters for selecting the set of rules are the true frequency of 

actual errors in the laboratory and the critical systematic shift (ASE.:) the user wishes to 

detect. Based on these parameters, the user can determine the number of replicates of 

controls to run and the control rules to employ. 

Clinical Significance 

In the traditional quality control approaches described in the previous section, all 

of the methods attempt to detect any statistically significant change in the measurement 

system. Westgard's selection grids, however, involve the use of ASEc as a parameter for 

selecting a method. This marks the appearance of methods designed to detect some 

specific change identified to be clinically significant or relevant. In other words, changes 

less than this amount (ASEc) are considered to be of no consequence in the clinical setting 

while changes this large or larger can have clinical implications. These implications may 

involve changing a patient's dosage or initiating a change in treatment. 

Attempts to define the requirements of clinical laboratory testing systems go back 

to Skendzel, Barnett, and Platt (1984). Skendzel et al. mailed a questionnaire to 

physicians to determine the total precision required for a variety of diagnostic tests. 

Results at that time indicated that almost all the tests considered provided adequate 
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precision for physicians' requirements. The work was also useful for establishing 

medically useful guidelines for analytical precision. 

Linnet ( 1989-a) then used Skendzel et al.' s work to calculate what he called 

"maximum clinically allowable analytical error." Represented by ASEc, this error 

represents the largest error that can be tolerated according to the requirements outlined 

through Skendzel et al.' s survey results. Linnet's approach for calculating AS Ee is as 

follows: 

ASEc = Amed - 1.65 * St 

where Aroed = the median difference of medical importance as reported by the 
physicians in Skendzel et al.' s work 

St= total precision including analytical measuring system, sample 
handling, and patient biological variability 

Linnet's paper includes a similar approach for defining a critical change in the spread of 

the measurement system, AREc. It is clear that the parameters required to calculate the 

maximum clinically allowable error are not easy to estimate and can be sources of debate. 

Koch, Oryall, Quam, Feldbruegge, Dowd, Barry, and Westgard (1990) describe an 

application that incorporates the use of the maximum clinically allowable error in the 

design of the quality control system for a specific analytical system. Their application uses 

a consensus process at the testing site to determine TEa, the total allowable error. Then, 

they calculate ASEc and AREc using the following formulas: 

ASEc = [(TEa - I biasl)/s] - 1.65 

AREc = (TEa - lbiasl)/ 1. 96s 

where TEa = total allowable error for the testing method 
bias= known difference between the laboratory's mean and the true mean 

of the control material 
s = analytical testing system precision 

14 



Control methods (number of control replicates and control rules) can then be selected for 

the individual tests with the requirement of a 90% probability of detecting L\SEc. 

Many other methods are available for determining the maximum clinical allowable 

error as noted by Fraser (1990) and Westgard and Burnett (1990). Also, Petersen and 

Fraser (1994) provide an excellent editorial discussing the issues involved with 

determining this allowable error. Westgard, Seehafer, and Barry ( 1994-b) :further 

developed their approach for defining maximum clinically allowable errors using criteria 

from the Clinical Laboratories Improvement Amendments of 1988 (CLIA 1988). This 

federal regulation outlines total allowable error for many analytical tests. Westgard 

recommends using the total error indicated from CLIA 88 as follows: 

where biaSmeas = 

Smeas = 
z= 

TEa = biaSmeas + L\SEc·Smeas + Z·L\R.Ec·Smeas 

bias in the measurement system 
total precision of the measurement system 
standard normal value that sets the maximum percentage 
beyond TEa 

Using the TEa associated with the test being analyzed, the user can calculate L\SEc and 

AflEc and select an appropriate quality control scheme. 

While there does not yet appear to be any general consensus in the literature 

regarding the best approach for defining changes which are clinically significant, it is clear 

that quality control approaches in the clinical setting are moving towards some amount of 

allowable error. This is a result of the technology in the field providing better precision in 

diagnostic testing. As the variability inherent in these diagnostic tests continues to get 

smaller and smaller, there will be a larger movement in the clinical field away from 

methods which define acceptability limits solely on assay variation (i.e.,+/- 2 SD limits) 
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towards methods which incorporate some allowable error or have a total error 

specification. 

Evaluation Methods 

In the previous section which discusses traditional methods for monitoring control 

materials, researchers typically used computer simulation to evaluate the statistical 

performance of the selected methods. There has been a great deal published in the clinical 

literature concerning the computer simulations used for this work, and the editorial by 

Westgard (1992) provides an excellent summary of the assumptions employed in the 

simulators and lists many of these simulations. Hatjimihail (1992) and Parvin (1991, 

1992) provide examples of recent simulation efforts. The literature also contains other 

approaches including neural networks (Schweiger, Soeregi, Spitzauer, Maenner, and Pohl 

1993) and genetic algorithms (Hatjimihail 1993). 

Analytical approaches to analyzing control methods utilizing runs rules have been 

limited in the clinical laboratory literature until recently. Parvin ( 1993) performed some 

analytical analysis by looking at data within a run, but his results are not widely applicable. 

Bishop and Nix ( 1993) were the first authors in the clinical chemistry literature to obtain 

analytical results by applying Markov chains to procedures incorporating runs rules. 

Using Markov modeling to analyze the Westgard Rules as previously published, their 

work compares their results to previous computer simulation analysis. Bishop and Nix 

also propose the use of a cumulative sum chart for monitoring control levels and provide 

results supporting its utility. While the paper is important in that it applies analytical 
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methods to evaluating clinical quality control procedures, the authors modeled the 

Westgard Rules for samples of size 5 to 15. These sample sizes are not indicative of what 

laboratories actually use (sample sizes two or three would be typical), so it is difficult to 

extrapolate Bishop and Nix' s work to actual practice in the clinical laboratory. 

Lee (1996) has also done some analytical work regarding the use ofWestgard's 

Multirule Procedure. The sample sizes investigated by Lee were much nearer those 

actually implemented in practice, and his results provide good insight into the workings of 

modified approaches to the Westgard Multirule Procedure (i.e., not including the ~s rule 

or using+/- 2 SD limits as a screening criteria). 

Control Chart Cost Modeling 

Cost Modeling in Industrial Quality Control 

There is a large body of literature regarding the application of cost models to the 

use of control charts in the industrial quality control literature. Many models have been 

proposed and used by a number of different researchers with the intent of determining 

optimal approaches for the application of control charts. Two excellent surveys regarding 

control chart cost modeling are available with Ho and Case ( 1994) reviewing the decade 

spanning 1981-1991 and Montgomery (1980) reviewing earlier work. For the purposes of 

this research, the literature review only considers cost modeling approaches applied to 

variables charts. 
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The original use of cost modeling to design control charts dates back to Duncan 

(1956). This paper blazed the trail for future researchers and is the foundation of many of 

the models subsequently developed. In his paper, Duncan identifies the three main control 

parameters of interest when using control charts: the sample size collected (n), the 

interval between samples (h), and the control limits used on the chart (k). 

The objective, according to Duncan, is to maximize the average net income per 

time unit through the selection of the parameters n, h, and k. In order to maximize 

average net income per time unit, Duncan's work uses a net income equation consisting of 

the sum of in-control income and out-of-control income minus the cost for investigating 

false alarms, the cost of investigating true problems, and the cost of maintaining the 

control chart. Duncan converts this income equation into a loss equation, then solves for 

the optimum values of n, h, and k under assumptions regarding costs. 

The basic assumptions in Duncan's model are that the time between process 

changes is exponentially distributed and that there is a single, assignable cause which 

affects the process. Additionally, the model assumes that production does not discontinue 

while investigating a special cause. 

Results show that the selection of the sample size is driven by the shift in the 

process the user wishes to detect. Also, the determination of the control chart limits is 

tied to the cost of investigating false alarms and the magnitude of true process changes: 

Another widely cited paper provides a unified approach to the economic design of 

control charts (Lorenzen and Vance 1986). Lorenzen and Vance provide a general model 

that allows the evaluation of attributes charts as well as variables charts. The model 
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incorporates a general equation for the expected loss per hour of operation. Costs in the 

equation include the cost of operating both in and out-of-control, the cost for investigating 

false alarms and true process changes, and fixed sampling costs. An interesting contrast of 

this model to Duncan's is the use ofan indicator variable to allow the modeler to either 

shut the process down while investigating a signal by the chart or continue production 

while investigating. Results indicate that a considerable savings can be realized by using 

an economic approach to designing the control chart parameters. 

One of the major concerns regarding the use of cost models for designing control 

charts is the complexity of the cost models and the difficulties involved with optimizing 

the sample size, sample interval, and control limits. In an attempt to simplify the design of 

control charts through economic models, Collani ( 1986) developed a simpler approach for 

attaining earlier results published by Montgomery (1982). In his model, Collani assumes a 

constant production speed and designs the chart to minimize the expected loss per item of 

production. In order to simplify the model, Collani reduces the number of parameters in 

the model to two cost parameters. Using his model, Collani was able to produce results 

very similar to Montgomery's earlier findings without the use ofa computer. 

An approach which surfaces in a number of cost modeling articles (Collani 1988) is 

the use of two states to define the status of the process being monitored. One state is 

considered satisfactory performance and the other state is considered unsatisfactory or 

unacceptable. The reasoning behind this approach is that there can be subtle shifts in a 

process which are not causes for alarm, but that larger shifts should result in investigation. 

Arnold (1989) discusses discrimination between these two states and shows the necessity 
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of increased sample sizes when there are small differences between states. Tagaras and 

Lee (1988) took the model further and developed multiple control limits corresponding to 

minor problems and major problems. Their work shows an improvement from a cost 

perspective with their model, but with increased complexity of the monitoring approach. 

Many of the cost models assume deterministic cost parameters and perfect 

knowledge of the cost parameters. Pignatiello and Tsai's work (1988) investigates the 

risk in making these assumptions by using Taguchi's concept of"noise" to model 

uncertainty in the parameters of the cost model. Using a Taguchi design to set the levels 

for the sample size, sample interval, and control limits, Pignatiello and Tsai's research 

shows the danger of assuming no noise in the model parameters when the parameters are 

actually uncertain. 

Additional cost models have been applied to the joint use of average and range 

charts (Saniga 1989). These models are by necessity more complex than models 

considering only average charts. Jones and Case (1981) use Duncan's cost model for their 

work and detail a Markov approach for the state of the process (i.e., out-of-control for 

range chart, out-of-control for both the range and average chart, etc.,). Results from their 

modeling provide values for sample size, sample interval, and control limits for given cost 

assumptions. 

All of the models discussed thus far in this literature review assume an exponential 

time between process changes. Researchers have, however, explored the use of other 

distributions; primarily the Weibull distribution. Bannerjee and Rahim (1988) use cost 

models for average charts with the Weibull distribution for the time between process 
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changes. Additionally, they allow the sample interval to vary over time and show that 

varying the sample interval can reduce costs. Parkihideh and Case ( 1989) also use the 

Weibull distribution and allow the control chart parameters to vary over time with 

encouraging results. McWilliams (1989) uses the Weibull distribution for the time 

between process changes and shows that the economic results are not very sensitive to the 

parameters selected for the Weibull distribution. 

From this review, it is evident that there are a large number of models in the 

literature with varying assumptions. Table 2.1 summarizes some of these models and their 

assumptions. Included in the table is the objective function used for evaluating the cost 

model, the distribution used to model the time between changes in the process, whether a 

single assignable cause or multiple causes can affect the process, and whether or not the 

process is shut down while searching for a special cause. 

Cost Modeling in the Clinical Setting 

While there has been a great deal of work published in the industrial quality control 

literature regarding economic models, there has been relatively little application of 

economic models in the clinical setting. By and large, the focus of the clinical literature is 

on the statistical performance of the quality control method. The statistical performance is 

definitely a priority in selecting a quality control approach, but the cost element must not 

be ignored. Often, multiple approaches can result in the same statistical power for 

detecting changes in the measurement process, but the cost associated with the 

approaches can be drastically different. 
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Table 2.1 - Cost Model Assumption Summary 

Single or 
Objective Failure Multiple Shut 

Author, Date Function Distribution Cause Down? 

Duncan, 1956 Max expected Exponential Single No 
net income/ 
time 

Jones and Max expected Exponential Single No 
Case, 1981 net income/ 

time 

Arnold, 1989 Min average Exponential Single No 
loss/item 

Pignatiello and Min expected Exponential Single No 
Tsai, 1988 cost/unit time 

Saniga, 1989 Min expected Exponential Single No 
cost/unit time 

Collani, Min expected Exponential Single Yes 
1986 loss/item 

Collani, Max profit/ Exponential Single Yes 
1988 unit 

Lorenzen and Min expected Exponential Single Either 
Vance, 1986 cost/hour 

Mc Williams, Min expected Exponential Single Either 
1989 cost/unit time 

Tagaras and Min expected Exponential Multiple No 
Lee, 1988 cost/unit time 

Parkhideh and Min expected Weibull Single No 
Case, 1989 cost/unit time 

Banerjee and Min expected Weibull Single Yes 
Rahim, 1988 cost/hour 
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Although the application of economic models in the clinical setting is limited, 

Westgard and Groth (1983), followed by Westgard, Oryall, and Koch (1990) have done 

some work in the area. In both articles, the authors use a predictive value model to assign 

costs to various approaches for monitoring quality control. Basically, their model 

develops the following four situations: 

1) The quality control method detects a true change. 
2) The quality control method detects a change when there is no change. 
3) The quality control method does not detect a true change. 
4) The quality control method does not detect a change when there is no change. 

Situations 1 and 4 correspond to a correctly working method.while situation 2 

corresponds to a Type I error and situation 3 is a Type II error. The authors develop 

probabilities for being in each of the four situations and costs associated with these 

situations, comparing methods based on these costs. They can then use their model to 

predict "quality" ( essentially the defect rate) and "productivity" ( the test yield). 

Multivariate Quality Control Approaches 

As described previously, the typical application of quality control in the clinical 

setting involves running multiple levels of control material and plotting them on a control 

chart over time. Since these multiple levels of control are tested at the same time, they are 

in fact correlated. This correlation suggests the potential use of multivariate approaches 

to monitoring quality control in the clinical setting. Such work has not been expressly 

proposed in the clinical literature, but there is a long history of the use of multivariate 

approaches to monitoring quality control in the industrial setting. 
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Hotelling' s T2 and the 12 Chart 

Probably the most prevalent multivariate quality control approach is the use of 

Hotelling's T2 chart. Hotelling (1931, 1947) derived the T2 statistic and showed its 

appropriateness for multivariate applications. The T2 statistic for a single observation is 

defined as follows: 

where x is a column vector of observations, xis a column vector of means with dimension 

p, and s-1 is the sample covariance matrix. Hotelling showed that T2 is related to the F 

distribution as follows: 

2 (n-l)p 
T - (n-p) Fp,n-p,a 

where n is the number of observations. Through the relationship of T2 to the F 

distribution, one can set limits for the T2 chart and calculate a probability limits using the 

F distribution. A number of authors develop the T2 chart in more detail and discuss its 

application (Alt 1982 and Jackson 1985). 

As described in the previous paragraph, the T2 control chart is useful for 

monitoring p characteristics when the mean vector and covariance matrix are unknown. 

For the case when the mean vector and covariance matrix are known ( referred to as ~ 

and Lo respectively), then the x.2 chart can be used (Alt 1985). Basically, one can plot 

n(x- µ 0 ) 1L~1(x - µ 0 ) against an upper control limit of X,2p,a and a lower control limit of 

zero where n is the sample size of the x vector. When the calculated statistic exceeds the 

upper limit of the x.2 chart, the process is considered out of control. 
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Furthering the work in multivariate approaches, Tracy, Young, and Mason's 

research (1992) shows that the Beta distribution can be used to obtain exact control limits 

for multivariate charts in the start up phase. Their example shows that the use of the Beta 

distribution can lead to better performance than approximation methods for a small 

number of subgroups. 

Principal Component Charts 

Another approach to applying quality control to multivariate situations is the use 

of principal component charts. Principal components are simply transformations of the 

original data into new variables which are independent of one another. Therefore, these 

principal components can be dealt with as independ~nt variables allowing a great range of 

analysis. Discussed thoroughly by Jackson ( 1980, 1981-a, 1981-b ), principal component 

analysis is also often used to reduce the number of variables considered in a problem. For 

example, often a problem involving ten characteristics or variables can be analyzed using 

two or three principal components without losing much information. 

The advantage of principal component charts is that a probability limits can be 

plotted directly on the chart. Jackson (1956, 1959) shows how principal component 

analysis can be used for control charting purposes for two or more variables. Jackson 

discusses how the transformations created through principal component charts can be used 

for monitoring process stability and provides valuable insight into interpreting the 

transformed variables. Using principal component charts, one can represent the stability 
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of the measurement process itself and simply monitor it to see if the measurement system 

as a whole is in-control. 

Another useful characteristic of the principal component chart is the ability to 

directly plot a specification limit on the chart. Jackson and Bradley (1966) used principal 

component charts successfully to implement a sequential procedure for evaluating 

specifications. 

Also, Jackson and Mudholkar (1979) developed a nice approach for detecting 

outliers in the data using principal component charts. Through this approach or a like 

procedure, new screens can be applied to clinical data to ensure that outliers are not 

affecting the determination of measurement system status. 

Multivariate Cost Modeling 

While there is a reasonably large body of literature surrounding multivariate quality 

control approaches available, very little has been done in the area of economically 

modeling and designing multivariate charts. Montgomery and Klatt ( 1972-a and 1972-b) 

modeled the T2 chart from an economic perspective, and their economic model closely 

resembles earlier work by Duncan (1956) with generalization to the multivariate case. 

The costs incorporated into their model include the expected cost per unit of sampling and 

testing, the expected cost per unit for investigating out of control signals (both true and 

false alarms) and the expected cost per unit for producing defective product. Results from 

the model indicate potential savings may be realized as many actual applications of 
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multivariate control charts use sample sizes in excess of those detennined optimal by 

Montgomery and Klatt. 

There is no evidence of cost modeling applied to principal component charts in the 

literature. Therefore, any work in this area constitutes an original application in the field. 

Summary 

From a critical examination of the literature, it is clear that there are a number of 

research opportunities within these areas. The first opportunity is to apply multivariate · 

approaches for monitoring quality control in the clinical laboratory setting. The use of 

multivariate methods has long gone ignored in clinical quality control approaches, and 

there is a tremendous opportunity to use multivariate methods for this application. 

Another opportunity in the clinical area is the application of economic models for 

evaluating quality control approaches. While there has been a small amount of work in the 

clinical field surrounding the economic impact of the quality control method employed, it 

· is clear that the economic aspects of quality control monitoring have largely gone ignored. 

Finally, the literature search reveals that economic modeling of principal 

component charts has not been pursued in the industrial quality control literature. There 

has been a limited approach to economically modeling multivariate approaches (T2 chart), 

but researchers have not applied economic models to principal component charts to 

evaluate their performance on a cost basis. Given these gaps in the literature, it is evident 

that continued research in these areas is warranted. 
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CHAPTER ID 

STATISTICAL MODELING OF THE QUALITY CONTROL APPROACHES 

Introduction 

In order to compare the performance of clinical quality control monitoring 

approaches, statistical modeling is required. Each method's statistical performance must 

be evaluated, then compared against the other methods in order to understand how the 

methods perform in relation to one another. This chapter takes each of the quality control 

approaches individually and evaluates its statistical performance. Then, the methods are 

compared against one another at the close of the chapter in order to draw some 

conclusions about the performance of the methods with respect to each other. 

As previously stated in this dissertation, a number of different instances of 

measurement system instability are explored. While traditional approaches only assume 

that the same shift is applied to each of the levels being monitored, this research explores 

the performance of the quality control methods when the individual quality control levels 

being monitored shift independently. This potential is very real in the clinical setting. 

Examples of such instances would include an individual level of control material being 

improperly stored, resulting in a shift in the actual value of the control material. Another 

instance would be the case when the calibration curve shifts at one end without shifting at 

the other end. Since multiple levels of control must be monitored by law, there is 

definitely a concern that all levels must be periodically evaluated in order to maintain the 

overall stability of the measurement system. 
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The sample sizes evaluated in this research include samples of size two (N'=2) and 

three (N'=3). These numbers were selected as they are the most likely to be encountered 

in actual laboratories. A minimum of two levels must be run each day, and a maximum of 

three levels is available (low, medium, and high), therefore sample sizes of N'=2 or N'=3 

are justified. Given these sample sizes, there are five scenarios of shifts in the 

measurement system considered in this research. Using notation N=X/Y where X denotes 

the number of levels of controls monitored, and Y denotes the number of levels shifted, 

the scenarios are as follows: 

N=2/2: Two levels of control with the same shift in both levels. 

N=2/l: Two levels of control with only one level being shifted. 

N=3/3: Three levels of control with the same shift in all three levels. 

N=3/2: Three levels of control with 2 levels being shifted. 

N=3/1: Three levels of control with only 1 level being shifted. 

For example, N=3/2 would refer to a situation where three levels of control (low, mid, and 

high) are being monitored, and two of the levels (say low and mid) shift while the 

remaining level (high) remains centered on target. After defining these potentials shifts in 

the measurement process, one can then evaluate the performance of each of the quality 

control approaches under these five circumstances. 

One could consider the case N= 1/1 (i.e., only one level of control is monitored and 

that level is shifted), but the clinical environment will realistically either monitor two or 

three levels of control. Given that federal law mandates a minimum of two levels of 
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control material be tested every twenty four hours, only instances of two or three levels of 

control material are appropriate for this research 

Some assumptions made in this research warrant discussion with the first 

assumption being that all data is normally distributed. This assumption has been shown to 

be appropriate for clinical quality control data in the past, and facilitates the analyses in the 

research. Also, subgroups ( also referred to as QC timepoints, or moments in time when 

control values are tested for quality control purposes) are assumed to be independent of 

one another. The only exception is the instance when shifts are applied to the 

measurement system. Then, the shift would remain until detected by the quality control 

approach and remedied. 

Throughout this research, statistical comparisons of methods are made on the basis 

of the approach's average run length (ARL) for a given circumstance. For methods 

employing runs rules, the ARL is the accepted metric for comparing methods since adding 

additional control rules will reduce the average time to signal a shift, but not increase the 

. probability of detection of an individual subgroup. For instances where a probability of 

detection is available (i.e.,+/- 2 SD limits), the geometric distribution is used to convert 

the probability into an ARL by taking the inverse of the probability of detection. 

+/- 2 SD Limits 

One of the most popular approaches for monitoring measurement system stability 
.;, 

in the clinical laboratory is the strict use of+/- 2 SD limits. The approach stipulates that 

no matter how many levels of control material or samples are run, if any of the replicates 
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plots outside+/- 2 SD limits as determined from historical data, the measurement system 

is considered out-of-control and shut down. This approach is very simple in that 

replicates are compared to a single set of limits and stability determined immediately. 

There is also a long-standing tradition of use of+/- 2 SD limits, so there is a high degree 

of comfort with this approach felt by many laboratorians. 

While the approach may be very convenient for application, the real question is 

how the approach performs statistically. In this case, the statistical performance is easily 

quantifiable. Assuming normally distributed data, one need only calculate the probability 

of being outside+/- 2 SD limits for a specified shift to evaluate its performance. Then, the 

inverse of this probability provides the ARL which can be used for method evaluation. 

For example, consider the case N=2/l with a 1.0 SD shift. This means that two 

levels of control are being monitored, and that one of the levels has experienced a 1. 0 SD 

shift while the other level has remained centered. The probability of detecting this shift 

can be calculated as follows: 

P(detection) = 1-P(neither control value exceeds+/- 2 SD limits) 

P(detection) = l-[(1-0.0456)*(1-(0.1587+0.0013))] 

P(detection) = 0.1983 

ARL = 1/P(detection) = 1/0.1983 = 5.04 

This approach can be used to calculate the ARLs for the various shifts considered in this 

research. 

The ARLs for the+/- 2 SD limits approach are summarized in Table 3.1 and 

Figure 3.1 respectively. The summary shows the ARLs for varying number of controls 
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Table 3.1 - ARLs for +/-2 SD limits by Type of Shift 

Shift N=2/2 N=2/1 N=313 N=312 N=311 

0 11.22 11.22 7.65 7.65 7.65 
0.2 10.3 10.74 7.04 7.23 7.44 
o., 8.19 9.46 5.64 6.17 6.83 
0.6 6.11 7.86 4.25 4.95 5.99 
0.8 4.51 6.33 3.19 3.89 5.09 
1 3.4 5.04 2.46 3.06 4.26 

1.2 2.63 4.02 1.95 2.45 3.54 
1.4 2.11 3.25 1.62 2.01 2.95 
1.6 1.75 2.67 1.39 1.69 2.48 
1.8 1.51 2.24 1.24 1.47 2.12 
2 1.33 1.91 1.14 1.31 1.84 

2.2 1.22 1.67 1.08 1.2 1.62 
2.4 1.13 1.49 1.04 1.13 1.46 
2.6 1.08 1.35 1.02 1.08 1.33 
2.8 1.05 1.25 1.01 1.04 1.24 
3 1.03 1.18 1.004 1.02 1.17 
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Figure 3.1 -ARLs for +/-2 SD limits by Type of Shift 
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and for different shifts in the various control levels. From the graph, it is evident that 

increased subgroup size reduces the ARL for detecting true shifts. However, increased 

subgroup size also has the detrimental effect of decreasing the average number of quality 

control evaluations between false rejections resulting in a method with an extremely high 

rate of false rejections. 

Another insight gained from Table 3.1 and Figure 3.1 is that+/- 2 SD limits is 

more sensitive to a common shift across all levels (either N'=2 or N'=3) than to shifts in 

individual levels. This is not an unexpected result, but it raises an interesting point. The 

method is not as sensitive to changes in individual levels as it is to a change across all 

levels. This means that some clinicians may have a false sense of security in the 

performance of+/- 2 SD limits for all types of shifts when the method actually has a 

reduced ability to detect shifts in individual levels of control materials. 

+/- 2 SD Limits with a Retest 

Another popular approach to monitoring quality control in the clinical laboratory is 

the use of+/- 2 SD limits verified by a retest. Since some laboratory personnel are aware 

that+/- 2 SD limits strictly applied will result in a high rate of false rejection, they choose 

to give the measurement system a "second chance." If the clinician tests controls and a 

replicate is outside +/- 2 SD limits, then the clinician reruns the controls and classifies the 

measurement system as unstable only if a replicate exceeds+/- 2 SD limits on the second 

33 



run. If all control values are within+/- 2 SD limits on the second run, then the 

measurement system is considered stable. 

Again, this approach is easily evaluated statistically. One need only calculate the 

probability of at least one replicate of control exceeding +/- 2 SD limits on two 

consecutive subgroups. Using the assumption of normal data, these probabilities can be 

readily calculated. Then, using the assumption that the signaling of the quality control 

system follows the geometric distribution, the ARL for specified shifts in control levels can 

be determined. These ARLs are summarized in Table 3.2 and Figure 3.2. 

For example, the ARL for the case ofN=2/l with a 1.0 SD shift is calculated as 

follows: 

P(detection) = P(at least one replicate exceeds+/- 2 SD limits consecutively) 

P(detection) = { l-[(l-0.0456)*(1-(0.1587+o.0013))]}2 = 0.039 

ARL = 1/P(detection) = 1/0.029 = 25.43 

Using this approach, the ARLs for all the possible shifts considered can be calculated. 

As is the case with strict+/- 2 SD limits, increased sample size and the same shift 

in all the control levels results in decreased ARLs for detecting true changes in the 

measurement system. The graph also indicates that larger shifts, regardless of sample size 

or number of levels shifted, tend to have small and similar ARLs. The relatively large 

ARL when the measurement system is in control gives the approach its attractiveness. 
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Table 3 .2 - ARLs for +/- 2 SD limits with Retest by Type of Shift 

N=2/2 Na2/1 
125.91 125.91 
106.02 115.3 
67.15 89.46 
37.32 61.8 
20.37 40.09 
11.54 25.43 
6.93 16.19 
4.45 10.56 
3.07 7.13 
2.27 5 
1.78 3.66 
1.48 2.79 
1.29 2.22 
1.17 1.84 
1.1 1.57 
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Figure 3.2 - ARLs for+/- 2 SD limits with Retest by Type of Shift 
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The Westgard Multirule Procedure 

As a reaction to the widespread use of+/- 2 SD limits, W estgard ( 1981) proposed 

a multirule procedure for detecting changes in clinical analyzer systems. Termed the 

"Westgard Multirule Procedure", Westgard's approach was warmly received in the clinical 

literature. Westgard's procedure can be used with either N'=2 or N'=3 samples per 

subgroup, but it is applied slightly differently for the differing sample sizes. Figures 3.3 

and 3.4 show the procedure for N'=2 and N'=3 respectively. 

The motivation for Westgard' s work was to provide clinicians with a viable 

alternative to strict+/- 2 SD limits. Due to the high rate of false rejection, alternatives to 

+/- 2 SD limits needed to be considered. Westgard provided a method that still used +/-2 

SD limits as a ''warning" rule, but he added a series of control rules ( similar to the AT&T 

runs rules) to reduce the incidence of false rejection in the clinical laboratory while 

maintaining a relatively powerful monitoring approach. However, this addition of runs 

rules adds a great deal of complexity to the monitoring approach which has hindered its 

widespread application in laboratories. 

From a statistical modeling perspective, the Westgard Multirule Procedure can be 

evaluated in two ways: using a Markov modeling approach or by simulation. The 

Markov modeling approach would provide exact analytical results for the ARLs of the 

Westgard Rules, but the procedure is extremely complex (as described in Figures 3.3 and 

3.4). Therefore, the transition matrix encountered in using a Markov model would be 

extraordinarily large. Since the focus of this dissertation is to look at many quality control 
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Figure 3.3: The Westgard Multirule Procedure Using Two Levels of Control Material 
(N'=2) 

Step 1: Inspect both data points against+/- 2 SD limits. 

If both values are within+/- 2 SD limits, then the measurement system is 
considered stable. Do not continue to Step 2. 

If either value is outside +/- 2 SD limits, then consider the additional rules. 

Step 2: Inspect control data within the QC timepoint. 

The measurement system is unstable if: 

(131) Either value is outside +/- 3 SD limits. 

(22s) Both values are outside+/- 2 SD limits on the same side of the 
centerline. 

(ll..) The difference between the values is greater than 4 SD. 
(i.e., The case where one level is at least 2 SD below its centerline 
and the other level is at least 2 SD above its centerline.) 

Step 3: Inspect control data across QC timepoints. 

The measurement system is unstable if: 

(22s) Two consecutive values of the same level of control are outside +/2 
2 SD limits on the same side of the centerline. 

( 41.) All four values ( data from this QC timepoint and the previous QC 
timepoint) exceed+/- 1 SD limits on the same side of the centerline. 

(41a) Four values from the same level of control exceed+/- 1 SD limits 
on the same side of the centerline. 

( 10,1) All ten values ( data from this QC timepoint and the four previous 
QC timepoints) are above or below the centerline. 

(l<>x) Ten consecutive values from the same level of control are above or 
below the centerline. 
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Figure 3.4: The Westgard Multirule Procedure Using Three Levels of Control Material 
(N'=3) 

Step 1: Inspect both data points against+/- 2 SD limits. 

If all three values are within+/- 2 SD limits, then the measurement system is 
considered stable. Do not continue to Step 2. 

If any value is outside +/- 2 SD limits, then consider the additional rules. 

Step 2: Inspect control data within the QC timepoint. 

The measurement system is unstable if: 

(ha) Any value is outside+/- 3 SD limits. 

(22s) Two of the three values are outside+/- 2 SD limits on the same side 
of the centerline. 

(31s) All three values exceed+/- 1 SD limits on the same side of the 
centerline. 

<Rts) The difference between any of the values is greater than 4 SD. 
(i.e., The case where one level is at least 2 SD below its centerline 
and either of the other two levels is at least 2 SD above its 
centerline.) 

Step 3: Inspect control data across QC timepoints. 

The measurement system is unstable if: 

(22s) Two consecutive values of the same level of control are outside+/-
2 SD limits on the same side of the centerline. 

(41s) Four values from the same level of control exceed+/- 1 SD limits 
on the same side of the centerline. 

(9x) All nine values (data from this QC timepoint and the two previous 
QC timepoints) are above or below the centerline. 

(9x) Nine consecutive values from the same level of control are above or 
below the centerline. 
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approaches and to focus on their cost impact, simulation is employed for analyzing the 

Westgard Multirule Procedure. Some analytical results of special cases exist for validating 

the simulation, and the simulation results generated can be shown quite accurate and 

adequate for this research. 

Given that a simulation approach is employed for analyzing the Westgard Rules, 

some specific issues regarding the simulation must be addressed. The first is the 

generation of random numbers. For the generation ofUniform (0, 1) variates, the random 

number generator developed by Marse and Roberts (1983) is used. This generator has 

been widely tested and shown to be a solid random numl;ter generator. Also, the polar 

method by Marsaglia and Bray ( 1964) is used for generating Normal variates from the 

Uniform (0,1) variates. Again, this method has a long standing reputation for providing 

good random numbers for simulation purposes. The seeds for random number generation 

are randomly generated between O and 1000, then entered as a part of the simulation input 

in order to allow for the replication of the results reported in this dissertation. 

Two simulation programs are used for this research: one program for the 

Westgard Multirule Procedure applied to two levels of controls and. another program for 

three levels of controls. Written in Turbo Pascal version 6.0, the code for these programs 

appears in Appendices A and B, respectively. While one program could be written to deal 

with both sample sizes, the differences in logic between the N'=2 and N'=3 cases is 

significant enough to warrant separate programs. 

As written, the simulation programs allow the user a great deal of freedom. The 

user can specify which set of control rules to use for evaluation, thus enabling a user to 
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examine other sets of rules than just the set forming the Westgard Multirule Procedure. 

Additionally, the user specifies the amount of shift applied to each level of control 

material. This allows for the evaluation of the set of rules when levels of control material 

are shifted independently. 

In order to validate the simulation and to determine how many realiz.ations are 

required to obtain reliable results, comparison can be made to some existing results. In his 

Master's thesis, Lee (1996) provides some analytical results using Markov modeling for 

some control rule combinations. Lee's work focused on sample sizes N'=2 with the same 

shift being affected to both levels of control material. The work by Lee does not consider 

use of the R.. rule or the 2 SD limit as a warning rule, but the simulation can still be 

compared to special cases considered by Lee. Specifically, two instances considered by 

Lee are used to validate the developed simulation. The first instance ( see summary in 

Table 3.3) considers the set of control rules hJ2is/41JlOx when no shift has been applied 

to the measurement system and the second instance (see summary in Table 3.4) considers 

the same set of control rules but applied to a shift of 2.0 SD in both levels of control 

material. Each of the ten replications shown in the tables are based on running the 

simulation for 10,000 realizations (a realization being the eventual signaling of the control 

system). 

From the summaries in Table 3.3 and Table 3.4, it is clear that the simulation 

provides results that agree with the analytical results. These results also lead to the 

selected number of realizations employed in the simulation. Each simulation result is 

40 



Table 3.3 - Simulation Results for hJ2:w41JIOx when Shift= 0.0 

Replicate 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Lee's Results: 
ARL=73.21 

Simulation Results: 

Seed 
862 
209 
192 
287 
506 
687 
786 
191 
13 
96 

ARL 
73.00 
73.27 
73.96 
73.64 
72.78 
72.20 
72.80 
72.06 
72.22 
72.44 

ARL SD= 70.91 

ARL 95% Confidence Interval= (72.37,73.29) 

ARLSD 
71.92 
71.94 
72.19 
71.46 
71.29 
69.64 
69.43 
69.00 
71.00 
71.64 

Table 3.4 - Simulation Results for hJ2:w41JIOx when Shift= 2.0 SD 

Replicate 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Lee's Results: 
ARL= 1.90 

Simulation Results: 

Seed 
111 
243 
589 
888 
166 
16 

989 
345 
722 
401 

ARL SD= 1.00 

ARL 95% Confidence Interval= (1.89,1.91) 
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ARL 
1.88 
1.90 
1.91 
1.90 
1.89 
1.92 
1.90 
1.91 
1.88 
1.90 

ARLSD 
0.99 
.1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
0.98 
1.00 



detennined by building a 95% confidence interval around 5 replicates consisting of 5,000 

realizations each. In other words, the simulation runs until 5,000 out-of-control signals 

are observed. It calculates the average of the 5,000 times to signal, and this constitutes a 

single replicate. Then, the confidence interval is based on 5 replicates of the 5,000 

realizations. 

Using the simulation just described, the Westgard Multirule Procedure can be 

evaluated for its statistical performance as a function of sample size (N'=2 or N'=3) and 

observed shifts in control materials (all control·materials, a single material, etc.). Table 

3.5 and Figure 3.5 show the ARLs for the Westgard Multirule Procedure for a variety of 

sample sizes and shifts. As is the case for+/- 2 SD limits and+/- 2 SD limits with a retest, 

the Westgard Multirule Procedure has smaller ARLs for larger sample sizes and is less 

able to detect shifts in single levels of control materials as opposed to the same shift across 

all control materials. Additionally, larger shifts are detected relatively similarly regardless 

of the sample size or the number of control levels affected. 

The x_2 Chart 

The quality control approaches for clinical laboratories discussed thus far in the 

research are all methods which have some traditional application in the clinical field. The 

methods covered from this point forward in this chapter are all methods which are new to 

the clinical environment. While these multivariate approaches have been utilized in 

industrial applications for some time, they have not been previously applied in the clinical 

setting. 
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Table 3. 5 - ARLs for the Westgard Multirule Procedure by Type of Shift 

Shift N=2/2 N=2/1 N=3/3 N=3/2 N=3/1 

.;.J 
0::: 
< 

0 
0.2 
0.4 
0.6 
0.8 
1 

1.2 
1.4 
1.6 
1.8 
2 

2.2 
2.4 
2.6 
2.8 
3 

120 

90 

60 

30 

83.95 83.95 
68.25 74.3 
42.14 55.07 
23.87 37.5 
13.71 24.57 
8.59 16.01 
5.81 11.04 
4.08 7.82 
3.09 5.82 
2.45 4.44 
1.99 3.53 
1.71 2.87 
1.49 2.42 
1.34 2.09 
1.21 1.84 
1.14 1.65 

0 C'II ~ CO ~ ..-
0 0 ci 0 

33.72 33.72 33.72 
27.79 29.8 31.72 
17.98 21.89 27.17 
10.92 14.84 21.1 
6.75 9.95 15.68 
4.54 6.88 11.62 
3.17 4.92 8.63 
2.37 3.68 6.43 
1.88 2.87 5 
1.54 2.3 3.93 
1.33 1.91 3.19 
1.2 1.63 2.66 

1.11 1.43 2.27 
1.05 1.28 1.97 
1.02 1.18 1.74 
1.01 1.12 1.57 

I-+-N=2/2 I 
-N=2/1 

1~N=3/31 
l~N=3/2 

I-N=311 I 

..... 
SD Shift 

Figure 3.5 - ARLs for the Westgard Multirule Procedure by Type of Shift 
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The new methods described here are all multivariate in nature. The traditional 

approaches do not explore the underlying correlation structure of the control levels being 

monitored, even though it is readily apparent that these levels are in fact correlated. The 

correlation arises from the fact that all the levels in a given QC timepoint are tested under 

similar conditions. Testing variation in clinical laboratories is typically largest from run to 

run with the sources of variability including environmental variability, technician 

variability, variation within the instrument, and materials variation. When the quality 

control levels are tested side by side, they are all affected by essentially the same run to 

run variation. This creates correlation among the levels. The correlation, however, is not 

perfect as there are some sources of variation that can affect individual levels differently. 

Therefore, it is evident that there is correlation among levels, and that this correlation is 

not complete. 

While actual testing data can be used to show that there is correlation among levels 

and provide estimates of correlation values, this research will use three pre-selected 

correlation structures for investigation. The correlation and covariance matrices are 

shown subsequently. The three conditions assume the same correlation among all levels of 

control material with correlations of 0.80, 0.50. and 0.10 respectively. These correlations 

represent a high degree of correlation (r = 0.80), a moderate degree of correlation (r = 

0.50) and a low degree of correlation (r = 0.10). Given these correlation structures, the 

covariance matrices are determined by using variances from a representative diagnostic 

test. In this fashion, the correlation matrices can be translated into covariance matrices for 

investigation in the research. 
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[ 1.0 0.80 0.80] [O.Q625 0.108 0.152] 
p1 = 0.80 1.0 0.80 LI= 0.108 02916 0.328 

0.80 0.80 1.0 0.152 0.328 0.5776 

. [ 1.0 0.50 050] [0.0625 0.0675 0~5] 
p2 = 0.50 1.0 0.50 Lz = 0.0675 0.2916 0.2052 

0.50 0.50 1.0 0.095 0.2052 0.5776 

[ 1.0 0.10 0.10] . [00625 0.0135 0019] 
p3 = 0.10 1.0 0.10 L3 = 0.0135 0.2916 0.041 

0.10 0.10 1.0 0.019 0.041 0.5776 

After determining the covariance structures for investigation, the next step in the 

research is to analyze the statistical performance of the multivariate approaches, beginning 

with the x.2 chart. This multivariate approach allows for the simultaneous control of p 

quality characteristics. For the clinical application in this research, the number of 

characteristics, p, will correspond to the number of control levels being monitored, N'. 

Additional replicates (N'=2 or N'=3) actually increase the number of characteristics for 

monitoring rather than the sample size from a multivariate perspective. This is because 

additional replicates are in different levels (i.e., low, mid, or high) rather than replicates of 

the same level of control material. 

For the quality control application to multiple quality characteristics, one can test 

the hypothesis that µ=J,Lo where J.1o is a specified vector (the historical mean vector of the 

control level data). The critical region to test this hypothesis is 

j(x-µ 0)L-1(x- µ 0) > x~(a.) wherej is the sample size (in the clinical application, j = 1), 

p is the number of characteristics being monitored (p = 2 or 3 for the clinical case) and x 

is the observed sample mean vector. 
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The assumptions underlying the application of the 'X,2 chart (besides that of 

multivariate normality) are that the specified mean vector (Jlo) and covariance matrix (l:) 

are known. While theoretically impractical, these assumptions may be applied in cases 

where a great deal of data has been collected surrounding the diagnostic measurement 

system. 

After identifying the test statistic used for monitoring the 'X,2 chart, the next 

question is how to statistically model and evaluate the performance of the chart. This is 

achieved through the use of the non-central 'X,2 distribution. Anderson (1958) shows that 

the power function for evaluating the above hypothesis is the non-central x.2 distribution, 

and he provides the density function of the non-central x.2 with non-centrality parameter 

I 

'[2= j(µ - µo) r-1(µ - µo) as: 

f( ) _ --('t +v) -p-1 "" 't p } I 2 I oo ( 2)P } 
V - - 1 e 2 V2 £.J - V 

22P p;o 4 ~!r(~p+~) 

The non-central x.2 distribution, therefore, provides a straightforward approach for 

calculating the probability of detection for the x.2 chart. The upper limit of integration on 

the non-central 'X,2 distribution is set by the selected a level of the x.2 chart, and the non-

centrality parameter -r2 is determined by the amount of shift in the measurement system 

being evaluated. Given the parameters, integration of the non-central x.2 distribution will 

yield the probability of detecting a given shift. As is this case with the traditional quality 

control approaches, this probability can be inverted to yield an ARL for the x.2 chart. 
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For the purposes of this research, Mathcad 6.0, Student Version worksheets are 

used to perform the integration of the non-central x2 distribution. Examples of these 

worksheets are shown in Appendix C with separate worksheets for the cases where p = 2 

( corresponding to N' = 2 from the laboratory perspective) and p = 3 (N' = 3 from the 

laboratory perspective). 

As an example, consider the case of N=2/l where the correlation between the two 

levels is 0.50 and the single level is shifted 3.0 SD while the other level remains centered. 

Since the correlation between levels is 0.50, matrices P2 and L2 provide the standard 

deviation for the single level as 0.25. Since the shift in the single level is 3.0 SD, that 

means the observed shift in the mean vector will be O. 7 5. Using this amount of shift, one 

can calculate the non-centrality parameter for the non-central x2 distribution as follows: 

' · (0.0625 0.0675)-J(0.75) 
t 2 = j(µ-µo) :E-1(µ-µo)= 1·(0.75 o) = 12.0 

0.0675 0.2916 0 

After determining the non-centrality parameter, the next step is to plug it into the equation 

for the non-central x2 distribution and integrate. The limits of integration, however, must 

first be determined. The limits of integration come from the upper limit for the x2 chart. 

In this instance, the a. level is set at 0.01 and the number of characteristics is 2. So, the 

upper limit for the chart is determined from a table for the central x2 distribution as 9.21. 

Using this upper limit in the integral, one can calculate the probability of detecting the 

given shift as follows: 

P(det.) = f" 
9.21 
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Turning this probability of detection into an ARL results in: 

ARL = 1/P(det.) = 1/0.721 = 1.39 

In other words, integrating the non-central x.2 distribution from the upper limit of the r.2 

chart to infinity will yield the probability of detecting the given shift. Then, it is a simple 

matter of translating this probability into an ARL. 

Using this statistical model for the x.2 chart, the performance of the x.2 chart can be 

investigated and evaluated. The first area for investigation is the effect of the correlation 

structure on the performance of the x.2 chart. Using the three correlation structures 

described earlier in this section for each of the different types of shifts investigated in this 

research with a.=0.01, one can gain insight into the impact of correlation on the x.2 chart. 

Tables 3.6 through 3.10, along with corresponding Figures 3.6 through 3.10, summarize 

the effect of the correlation structure on the performance of the X2 chart. 

An interesting insight from analysis of the generated results regards the impact that 

the correlation structure has on the ability to detect different shifts. For the same shift 

across all levels being monitored (N=2/2 and N=3/3), the lower degree of correlation case 

is more sensitive to shifts across all levels. In the situations where the shifts do not occur 

across all levels (N=2/l, N=3/2, and N=3/l), the highly correlated case is the most 

sensitive to the defined shifts. This can be attributed to the shape of the in-control area 

defined by the x.2 chart . In the case where two levels of control materials are monitored, 

the in-control area for the x.2 chart is an ellipse whose axis lies along the regression line 

between the two levels of control material. See Figure 3 .11 for a graphical representation 
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Table 3.6 - 1.2 Chart Correlation Comparison (N=2/2) 

Shift r= 0.80 r= 0.50 r = 0.10 
0 100 100 100 

0.2 90.91 90.91 83.33 
0.4 71.43 66.67 58.82 
0.6 50 43.48 35.71 
0.8 33.33 28.57 21.28 
1 22.22 18.52 13.16 

1.2 15.38 12.35 8.47 
1.4 10.64 8.55 5.71 
1.6 7.63 6.02 4.02 
1.8 5.62 4.42 2.97 
2 4.27 3.87 2.29 

2.2 3.33 2.65 1.85 
2.4 2.67 2.15 1.56 
2.6 2.21 1.81 1.36 
2.8 2.21 1.56 1.23 
3 1.87 1.39 1.14 

100 

90 -+-r= 0.80 

80 -r=0.50 
-+-r= 0.10 

70 

60 
...I 

50 ~ 
c( 

40 

30 

20 

10 

0 
0 N "ii" co CX) 

c:i c:i c:i c:i 
.... ~ .... CX) C') 

N 
SD Shift 

Figure 3.6 - 1.2 Chart Correlation Comparison (N=2/2) 
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Table 3.7 - x2 Chart Correlation Comparison (N=2/l) 

• co 
ci 0 

r= 0.80 
100 

76.92 
45.45 

25 
13.51 
7.87 
4.9 
3.28 
2.35 
1.81 
1.48 
1.28 
1.15 
1.08 
1.04 · 
1.02 

r = 0.50 
100 

90.91 
66.67 
43.48 
28.57 
18;52 
12.35 
8.55 
6.02 
4.42 
3.37 
2.65 
2.15 
1.81 
1.56 
1.39 

r= 0.10 
100 

90.91 
71.43 
52.63 
35.71 
24.39 
16.95 
12.05 
8.62 
6.37 
4.83 
3.76 
3.01 
2.47 
2.07 
1.79 

...,.._r= 0.80 

-r=0.50 
......-r = 0.10 

co 
0 

- ~ ~ ~ ~ N N • CO CO ~ 
- - - - N N N N 

SD Shift 

Figure 3. 7 - x2 Chart Correlation Comparison (N=2/1) 
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Table 3.8 - x2 Chart Correlation Comparison (N=3/3) 

• ~ 
0 0 

r= 0.80 
100 

90.91 
76.92 
55.56 
38.46 
26.32 
18.52 
12.82 
9.17 
6.71 

5 
3.86 
3.05 
2.48 
2.07 
1.77 

c:o .... 
0 

r= 0.50 
100 

90.91 
66.67 
47.62 
31.25 
20.41 
13.51 
9.26 
6.45 
4.67 
3.5 

2.72 
2.18 
1.82 
1.56 
1.38 

r= 0.10 
100 

83.33 
55.56 
33.33 
19.23 
11.36 
7.04 
4.61 
3.21 
2.36 
1.85 
1.52 
1.31 
1.18 
1.09 
1.05 

~r=0.80 

-r=0.50 
....._r=0.10 

~ ~ ~ ~ ('II ('II • ~ c:o ~ 
..- .... .... .... N N N N 

SD Shift 

Figure 3.8 - 1.2 Chart Correlation Comparison (N=3/3) 
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Table 3.9 - x.2 Chart Correlation Comparison (N=3/2) 

...... co 
0 0 

r = 0.80 
100 

76.92 
45.45 
22.22 
11.63 
6.45 
3.91 
2.6 
1.88 
1.48 
1.26 
1.13 
1.06 
1.03 

1.009 
1.003 

co ..-
0 

r = 0.50 
100 

90.91 
62.5 
40 

23.81 
14.92 
9.43 
6.29 
4.35 
3.15 
2.4 
1.91 
1.59 
1.38 
1.24 
1.15 

r = 0.10 
100 

90.91 
62.5 

41.67 
25.64 
16.39 
10.42 
6.94 
4.83 
3.5 

2.65 
2.09 
1.72 
1.47 
1.31 
1.19 

-+-r= 0.80 
-r=0.50 
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Figure 3. 9 - x2 Chart Correlation Comparison (N=3/2) 
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Table 3.10 - x2 Chart Correlation Comparison (N=3/l) 

"lit" U) 

0 ci 

r= 0.80 
100 

76.92 
47.62 
24.39 
13.16 
7.41 
4.5 

2.96 
2.12 
1.63 
1.35 
1.19 
1.1 

1.04 
1.02 

1.007 

r= 0.50 
100 

90.91 
66.67 
47.62 
31.25 
20.41 
13.51 
9.26 
6.45 
4.67 
3.5 

2.72 
2.18 
1.82 
1.56 
1.38 

r = 0.10 
100 

90.91 
76.92 
58.82 
41.67 
29.41 
20.83 
14.93 
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7.94 
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3.61 
2.91 
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Figure 3.10 - 1..2 Chart Correlation Comparison (N=3/l) 
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of this in-control ellipse. The figure shows an in-control ellipse for two levels of control 

material (low and mid) which are highly correlated with the directions for N=2/1 and 

N=2/2 shifts, respectively. It is clear that a shift in the direction ofN=2/1 will move 

outside the in-control ellipse more rapidly than a shift in the direction of N=2/2. This 

means that the x2 chart will be less sensitive to shifts along this regression line (i.e., the 

same shift across both levels of control material) than if a single level of control material 

N=2/2 

N=2/l / 
Mid Control In-Control Ellipse 

Low Control 

Figure 3 .11 - In-Control Ellipse for Two, Highly Correlated Levels of Control Material 
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shifts. While the difference in perfonnance caused by correlation structure is not dramatic, 

it is clear that properly detennining the correct correlation structure for monitoring is an 

important issue when applying the x2 chart. The correlation structure will dictate the 

shape of the in-control ellipse, and thereby impact perfonnance of the x2 chart. 

For further analysis of the x2 chart in this research, the correlation structure is 

fixed as moderate (i.e., r = 0.50). Changing this correlation structure will change the 

comparison of the x2 chart to other methods, but the assumption of moderate correlation 

is appropriate for research. The actual correlation observed by laboratories is bound to 

fluctuate, but the degree of correlation among control levels is probably moderate at a 

minimum. Using a single correlation structure of0.50 allows comparison of a single 

instance for each of the multivariate approaches against the traditional methods. 

After fixing the correlation structure as moderate, the sensitivity of the x2 chart to 

the various shifts considered in the research can be evaluated. Table 3 .11 and Figure 3 .12 

show the perfonnance ofthex2 chart for thedifferent shifts investigated. The x2 chart 

shows similar perfonnance for all the shifts examined in this research. While due in part to 

the moderate correlation structure used for analysis, this in an important characteristic for 

the X2 chart. While the traditional methods investigated in this research have very different 

perfonnance for different shifts, the x2 chart shows comparable perfonnance regardless of 

the type of shift encountered. 
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Table 3.11 - ARLs for the x2 chart (Corr.= 0.50) by Type of Shift 

N=2/2 
100 

90.91 
66.67 
43.48 
28.57 
18.52 
12.35 
8.55 
6.02 
4.42 
3.37 
2.65 
2.15 
1.81 
1.56 
1.39 

0 N -.:r" ~ 00 
C) C) 0 C) 

N=2/1 N=3/3 
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90.91 90.91 
66.67 66.67 
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28.57 31.25 
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12.35 13.51 
8.55 9.26 
6.02 6.45 
4.42 4.67 
3.37 3.5 
2.65 2.72 
2.15 2.18 
1.81 1.82 
1.56 1.56 
1.39 1.38 

SD Shift 
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Figure 3.12 - ARLs for the x2 chart (Corr.= 0.50) by Type of Shift 
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TheT2 Chart 

· As explained in the previous section, the x2 chart is a multivariate approach which 

assumes a known covariance matrix. However, the typical application in practice will 

involve a situation in which the covariance matrix must be estimated from collected data. 

This case would then be an instance in which the covariance matrix is unknown, resulting 

in the requirement of another approach instead of the x2 chart. Such an approach is the T2 

chart which assumes an unknown covariance structure and an unknown mean vector. 

Developed by Hotelling ( 1931 ), the T2 statistic allows one to apply a multivariate control 

monitoring approach to p characteristics when the covariance matrix is unknown. 

In all respects with the exception of the unknown covariance matrix and the mean 

vector, the T2 chart is completely analogous to the x2 chart. Therefore, this research will 

evaluate the T2 chart in the same fashion as the x2 chart realizing that the T2 chart cannot 

be expected to outperform the x2 chart. As the number of subgroups used in establishing 

the T2 chart limits increases to infinity, the T2 chart will approach the x2 chart. So, the 

focus of this section is to identify a workable number of subgroups to collect to set up the 

T2 chart limits. In a later section of the dissertation, the T2 chart's performance will be 

compared directly to the x2 chart along with the rest of the quality control approaches 

selected for study in this research. 

Similarly to the x2 chart, Anderson (1958) shows that the T2 statistic is defined as 

, 
T2 = m{i - 1,10 ) s-1(i - 1,10 ) where S is the sample covariance matrix, m is the number of . 

subgroups of size j collected, i is the mean vector of the sample with dimension p, and 1,1o 
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is the historical mean vector. Anderson goes on to show that (T2/jXm-p)/p is distributed 

, 
as a non-central F distnl>ution with non-centrality parameter t 2 = j(µ - µ0 ) I-1(µ - µo}. 

Using this resuh, Anderson then develops the distribution for T2 as: 

t2 .... t 2 1 ( )

f.l .!.p+jl-1 

I - r -m+P 
f(t)= 0~,t f 2 (m-t) C 

1 
~ 

(m-l)r(!(m- p)l P=O ( 1 )[ t ]2m+ll 
2 ~ p1r -p+p 1+( ) 

2 m-1 

Using this expression for the density function of the T2, one can integrate the function to 

determine a probability for detecting a shift in the mean vector. Appendix D shows 

Mathcad 6.0, Student Edition worksheets used for integrating the T2 distribution to find 

probabilities of detection which are then converted into ARLs. Two worksheets are 

included in the appendix: one for the p=2 case (or N'=2 from the clinical perspective) and 

one for the p=J case (or N'=J from the clinical perspective). 

For example, consider the case N=2/1 where the single level is shifted by 1.4 SD. 

Using the same a limit as before (0.01), 20 subgroups, and a correlation ofr = 0.50 

between the two levels (i.e., using P2 and I2), the probability of detection can be 

calculated. First, the non-centrality parameter·for the non-central T2 distribution must be 

, 
calculated. This non-centrality parameter is t 2 = j(µ-µ 0 ) I-1(µ- µ0 ), or 

2 ( ;\(0.0625 0.0675)-l(O.Jj 
t =1· 0.35 o, = 2.613 

0.0675 02916 0 

Next, the upper limit for the T2 chart is calculated as: 
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.. _ (m-l)p _ (20-1)2 _ 
Upper Lumt - ( ) Fp,m-p,a. - ( ) · 6.01 - 12.69 

m-p 20-2 

Using the non-centrality parameter and the upper limit for the T2 chart, one can then 

calculate the probability for detecting the shift as follows: 

P(det.) = f"' 
J12.69 

I f3 -p+IH 

( 2.613) t 2 r(!. 20 + 13) 
e-~c2.6B) 00 2 (20-1) 2 

(20-1)r(!(20- 2)1 ~ ( 1 ) [ t ]i·20+1l 
2 ') 13,r -·2+f3 1+--

2 (20-1) 

t = 0.086 

ARL = 1/P(det.) = 1/0.086 = 11.63 

As was the case with the x2 chart, the probability of detecting the shift is simply the area 

of the non-central T2 distributiqn outside the upper limit for the central T2 distribution. 

Using the Mathcad worksheets, the effect of the number of subgroups on the 

performance of the T2 chart is evaluated. As is the case with the 1..2 chart, the a level for 

the T2 chart is set at 0.01 to ensure a low rate of false rejection. Tables 3.12 and 3.13 

along with accompanying Figures 3 .13 and 3 .14 show the impact of the number of 

subgroups collected on the performance of the T2 chart. The two sets of tables and 

figures show the effect of the number of subgroups for a 1.0 SD shift and a 2.0 SD shift 

respectively when the shifts occur across all three levels (N=3/3) for the three types of 

correlation structures investigated in this research. These graphics indicate that there is 

diminishing return in increasing the number of subgroups collected for establishing the T2 

chart limits past 20 and that the correlation structure has little effect on the selection of the 

number of subgroups collected. Given that 20 subgroups is often a minimum 

recommended number of subgroups for the establishment of control chart limits in many 
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Table 3.12 - Number of Subgroups Comparison for the T2 Chart (N=3/3, 1.0 SD Shift) 

m 
10 
20 
43 
63 
123 

50 

45 

40 

35 

30 

...J 
~ 25 

20 

15 

10 

5 

0 
10 

r = 0.80 r = 0.50 
45.45 38.46 
34.48 27.78 
30.3 23.26 

28.57 22.73 
27.78 21.28 

20 43 

Number of Subgroups 

63 

r= 0.10 
25 

16.39 
13.51 
12.82 
12.05 

_,._ r = o.so 1 

-r=0.5ol 
__._r = 0.10 

123 

Figure 3.13 - Number of Subgroups Comparison for the T2 Chart (N=3/3, 1.0 SD Shift) 
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Table 3.13 - Number of Subgroups Comparison for the T2 Chart (N=3/3, 2.0 SD Shift) 

m r= 0.80 r = 0.50 
10 13.16 9.62 
20 7.75 5.43 
43 6.06 4.24 
63 5.71 3.98 
123 5.35 3.73 

12 

10 

8 

6 

4 

2 

10 20 43 

Number of Subgroups 

63 

r = 0.10 
5 

2.75 
2.17 
2.06 
1.95 

-+-r= 0.80 
-r=o.sol 

i , .....,_r = 0.101 

123 

Figure 3.14 - Number of Subgroups Comparison for the T2 Chart (N=3/3, 2.0 SD Shift) 
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quality control applications and the fact that this is a realistic number of subgroups to 

attain for a laboratory, 20 subgroups is used for work with the T2 chart throughout the 

remainder of this dissertation. 

After fixing the number of subgroups used in the evaluation of the T2 chart at 20, 

the next question is how the T2 chart performs for the variety of shifts in control material 

considered in the research. This summary is shown in Table 3 .14 and Figure 3 .15. As 

should be expected, the T2 chart mimics the x2 chart in its performance. Additionally, it 

appears that the performance of the T2 chart is similar for all shifts considered. This is 

attributable to the·correlation structure used for the comparison (r = 0.50). 

Principal Component Charts 

Another multivariate approach which merits consideration for the clinical quality 

control application is the use of the principal component chart. While this approach is 

typically used for circumstances where a large number of characteristics are being 

monitored, the principal component chart is of interest to the clinical application because 

individual principal components can have some interesting interpretations in the clinical 

setting. Additionally, a principal components approach may provide some intuitive appeal 

to clinicians over the other multivariate approaches considered in this research. Once. the 

principal components have been determined,· evaluation of the performance of the principal 

component chart is much more straightforward than the other multivariate approaches 

(i.e., it does not require integration of the non-central x2 distribution), thus making the 

approach easier for clinicians to accept and understand. 
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Shift 
0 

0.2 
0.4 
0.6 
0.8 
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1.2 
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1.6 
1.8 
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2.2 
2.4 
2.6 
2.8 
3 

120 

90 

.J 
~ 
er: 60 

30 

Table 3.14 - ARLs for the T2 Chart by Type of Shift 

N=2/2 
100 

90.91 
71.43 

50 
34.48 
23.81 
16.39 
11.63 
8.4 

6.17 
4.69 
3.66 
2.94 
2.42 
2.04 
1.76 

0 N ..,. CO CO 
o o o o 

N=2/1 
100 

90.91 
71.43 

50 
34.48 
23.81 
16.39 
11.63 
8.4 
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4.69 
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90.91 90.91 
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55.56 47.62 

40 32.26 
27.78 20.83 
19.23 14.08 
13.7 9.62 
9.8 6.76 

7.25 4.9 
5.43 3.68 
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1.92 1.44 
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Figure 3 .15 - ARLs for the T2 Chart by Type of Shift 
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As was the case with the x2 chart, analysis of the principal component chart will 

consider two or three levels of control material with a known mean vector and covariance 

matrix. Also, it is assumed that the covariance matrix is unaffected by any changes in the 

mean vector. 

Yu (1994) clearly identifies the method for determining probabilities of detection 

using the principal component chart. He shows that the amount of shift in the ith 

standardized principal component, Zi (i.e., N(O, 12)) is: 

'( ) . u· µ-µ 
Amount of shift for Zi = 1 0 

~ 

where Di is the ith eigenvector of I, ~ is the ith eigenvalue of I, µ is the new mean vector 

upon measurement system shift, and 11c, is the historical, known mean vector. This 

standardized value can then be used with a standard normal table to determine the 

probability of detection for the ith principal component. 

To facilitate the calculation of the ARLs for the principal component chart, 

Mathcad 6.0, Student Edition was again employed. In Appendix E, two worksheets (for 

N'=2 and N'=3, respectively) are displayed. The worksheets calculate the eigenvalues and 

eigenvectors for the given covariance matrix. Then, the amount of shift in the 

standardized principal components is calculated as described above. The bottom section 

of the worksheet calculates a Z value to be read from a standard normal table against an 

upper limit for each principal component. This upper limit is chosen to yield a combined a 

level across the control materials of 0.0 l in order to remain consistent with the other 

multivariate approaches considered. These Z values are then read from a standard normal 
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table and combined into an overall probability of detection for the set of principal 

components. 

As is the case with the other multivariate approaches, a major consideration is the 

impact of the correlation structure on method performance. Tables 3 .15 through 3 .19 and 

corresponding Figures 3 .16 through 3 .20 display the impact of correlation on the 

detection of the types of control level shifts identified for this research. The results for the 

principal component chart are very similar to the results from the 1.,2 chart in that high 

correlation is most effective at detecting shifts in a single level of control material· while 

low correlation is more effective in detecting shifts across levels. 

An original intent of the research was to identify a single principal component for 

monitoring as opposed to monitoring all three principal components. In this fashion, the a 

level could be applied to one chart rather than being split across two or three ( depending 

on the number oflevels being monitored). The problem with that approach is that each 

principal component detects a given type of shift most effectively, but does not detect 

others. For example, consider the case of monitoring three levels. If one wished to detect 

shifts in all three levels simultaneously, one could choose the principal component which is 

positive for all three levels. In so doing, one creates a chart which is very sensitive to a 

shift in all three levels. This principal component, however, is extremely insensitive to a 

shift in a single level. For this reason, it is necessary to monitor all three principal 

components rather than to select a single principal component for monitoring. 
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Table 3 .15 - Principal Component Chart Correlation Comparison (N=2/2) 

Shift 
0 

0.2 
0.4 
0.6 
0.8 
1 

1.2 
1.4 
1.6 
1.8 
2 

2.2 
2.4 
2.6 
2.8 
3 

100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

0 
0 N "lit U) 

C) C) 0 

r= 0.80 
100 

92.84 
. 71.66 

50.2 
34.64 
23.01 
15.77 
10.86 
7.8 

5.68 
4.32 
3.34 
2.67 
2.21 
1.87 
1.63 
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C) 

r = 0.50 

SD Shift 

100 
89.54 
68.27 
46.51 
30.86 
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13.75 
9.4 

6.71 
4.95 
3.77 
2.95 
2.39 
1.99 
1.71 
1.5 

r = 0.10 
100 

87.21 
60.86 
38.86 
24.82 

16 
10.63 
7.35 
5.24 
3.89 
2.98 
2.37 
1.93 
1.65 
1.44 
1.29 

-.-r= 0.80 
-r=0.50 
--....r= 0.10 

Figure 3 .16 - Principal Component Chart Correlation Comparison (N=2/2) 
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Table 3.16 - Principal Component Chart Correlation Comparison (N=2/1) 

Shift 
0 

0.2 
0.4 
0.6 
0.8 
1 

1.2 
1.4 
1.6 
1.8 
2 

2.2 
2.4 
2.6 
2.8 
3 

100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

0 
0 N ~ CD 

0 0 0 

r= 0.80 
100 

80.89 
47.35 
25.37 
13.45 
7.7 

4.75 
3.16 
2.27 
1.74 
1.43 
1.25 
1.14 
1.07 
1.03 

1.015 

co -0 

r= 0.50 
100 

91.16 
67.34 
45.43 
29.03 
18.68 
12.29 
8.34 
5.86 
4.27 
3.23 
2.54 
2.07 
1.74 
1.51 
1.35 

r= 0.10 
100 

92.84 
73.23 
53.38 
37.05 
24.99 
16.8 

11.71 
8.37 
6.14 
4.63 
3.6 

2.87 
2.36 

. 1.99 
1.72 

-+-r= 0.80 
-r=0.50 
-.-r= 0.10 

~ ~ ~ ~ N N ~ ~ CO ~ 

- - - - N N N N 
SD Shift 

Figure 3 .17 - Principal Component Chart Correlation Comparison (N=2/1) 
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Table 3.17 - Principal Component Chart Correlation Comparison (N=3/3) 

Shift 
0 

0.2 
0.4 
0.6 
0.8 
1 

1.2 
1.4 
1.6 
1.8 
2 

2.2 
2.4 
2.6 
2.8 
3 

100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

0 
0 N "lit co 

ci 0 0 

r= 0.80 
100 

93.79 
76.07 
57.1 

39.44 
26.83 
18.24 
12.55 
8.83 
6.38 
4.74 
3.64 
2.87 
2.34 
1.95 
2.48 

r= 0.50 
100 

91.24 
70.74 
50.03 
33.45 
21.88 
14.41 
9.75 
6.87 
4.95 
3.69 
2.88 
2.3 
1.9 

1.62 
1.44 

r = 0.10 
100 

86.54 
60.21 
38.64 
24.3 
15.45 
10.11 
6.9 
4.88 
3.58 
2.73 
2.17 
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1.52 
1.34 
1.21 

--+-r= 0.80 
-r=0.50 
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Figure 3.18 - Principal Component Chart Correlation Comparison (N=3/3) 
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Table 3.18 - Principal Component Chart Correlation Comparison (N=3/2) 

Shift 
0 

0.2 
0.4 
0.6 
0.8 
1 

1.2 
1.4 
1.6 
1.8 
2 

2.2 
2.4 
2.6 
2.8 
3 

100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

0 
0 N • co 

ci 0 0 

r= 0.80 
100 

80.33 
47.24 
25.31 
13.52 
7.74 
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3.09 
2.21 
1.7 
1.39 
1.22 
1.11 
1.05 
1.02 

1.009 

co ..... 
0 

r= 0.50 
100 

89.62 
64.84 
43.78 
28.13 
18.02 
11.81 

8 
5.6 

4.08 
3.08 
2.41 
1.96 
1.65 
1.44 
1.29 

r= 0.10 
100 

90.42 
67.89 
45.56 
29.97 
19.66 
12.98 
8.91 
6.24 
4.58 
3.46 
2.68 
2.16 
1.79 
1.54 
1.37 

-+-r= 0.80 
-r=0.50 
....,._r = 0.10 
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Figure 3.19-Principal Component Chart Correlation Comparison (N=3/2) 
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Table 3.19 - Principal Component Chart Correlation Comparison (N=3/l) 

Shift 
0 

0.2 
0.4 
0.6 
0.8 
1 

1.2 
1.4 
1.6 
1.8 
2 

2.2 
2.4 
2.6 
2.8 
3 

100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

0 
0 N ...,. co 

0 0 0 

r= 0.80 
100 

82.29 
48.09 
24.42 
12.53 
6.85 
4.1 

2.67 
1.94 
1.51 
1.28 
1.14 
1.07 
1.03 
1.012 
1.004 

00 .... 
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r= 0.50 
100 

92.07 
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48.56 
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19.96 
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8:52 
5.91 
4.26 
3.15 
2.47 
1.99 
1.67 
1.45 
1.3 

r=0.10 
100 

94.67 
79.06 
60.87 
43.33 
30.11 
20.4 
14.14 
10.05 
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5.43 
4.15 
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2.17 
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.... .... .... .... N N N N 
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Figure 3.20 - Principal Component Chart Correlation Comparison (N=3/l) 
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The next comparison (shown in Table 3.20 and Figure 3.21) shows how the 

principal component chart perfonns at a correlation of0.50 for the different varieties of 

shifts investigated. As with the other multivariate approaches evaluated, the correlation is 

set at 0.50 to be representative of the clinical application and to also allow comparison of 

a single instance of the principal component chart to other quality control approaches. It 

is clear that by monitoring all principal components, the approach provides similar 

perfonnance for all the shifts considered. This is an important distinction for the principal 

component chart. While a clinician has a sense of security with the traditional methods for 

detecting all changes the measurement system might encounter, the traditional methods in 

fact have very different perfonnance for different kinds of shifts. The principal component 

chart, however, provides the same level of error protection regardless of the type of shift 

encountered by the measurement system. 

Method Comparisons 

After developing the statistical models to analyze and evaluate each of the methods 

chosen for study, the real use of the modeling is to compare the methods to one another in 

order to draw some conclusions regarding the relative perfonnance of the quality control 

methods. Through this statistical comparison, one can truly understand how these 

methods will perfonn in the field and make generalities about their use. 
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Table 3.20 - ARLs for the Principal Component Chart by Type of Shift 

Shift N=2/2 N=2/1 N=3/3 N=3/2 N=3/1 
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Figure 3.21 - ARLs for the Principal Component Chart by Type of Shift 
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Tables 3.21 through 3.25 and corresponding Figures 3.22 through 3.26 show how 

the quality control approaches compare for the shifts in the control levels considered in 

this research. Using this side by side comparison, one can determine the performance of 

the approaches in relation to each other. 

A few notes are in order to clarify the.results shown in the figures. For the x2 and 

T2 charts, the correlation structure for the covariance matrix utilizes a correlation 

coefficient of0.50 for all levels with one another. This would be considered moderate 

correlation and is suitable for the comparison. Also, the sample size for the T2 chart is 20 

subgroups since that is a reasonable sample size to be used in practice. 

A number of conclusions can be drawn from the summary of the research. The 

first is that+/- 2 SD limits has a much higher rate of false rejection than any of the other 

methods. The ARL·curves for+/- 2 SD limits are extremely flat, regardless of the type of 

shift observed, resulting in a high frequency of false rejection. This also results in+/- 2 

SD limits being the most sensitive monitoring approach, but the high rate of false rejection 

compromises the positive impact of this sensitivity. 

Given the negative implications of such a high false rejection rate as is the case for 

+/- 2 SD limits, the results show that the performance of the+/- 2 SD limits with a retest 

reduces the incidence of false rejection while showing competitive sensitivity. While not 

as sensitive as the strict application of+/- 2 SD limits,+/- 2 SD limits with a retest has the 

steepest slope of the approaches evaluated, starting with a longer in-control ARL than 

most methods and resulting in shorter ARLs for larger sized shifts. These are encouraging 
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Table 3.21 - Method Comparison for N=2/2 

SD Shift 2SD 2SD/RT W. Rules Chi-s T-s P-C 
0 11.22 125.91 83.95 100 100 100 

0.2 10.3 106.02 68.25 90.91 90.91 89.54 
0.4 8.19 67.15 42.14 66.67 71.43 68.27 
0.6 6.11 37.32 23.87 43.48 50 46.51 
0.8 4.51 20.37 13.71 28.57 34.48 30.86 
1 3.4 11.54 8.59 18.52 23.81 20.45 

1.2 2.63 6.93 5.81 12.35 16.39 13.75 
1.4 2.11 4.45 4.08 8.55 11.63 9.4 
1.6 1.75 3.07 3.09 6.02 8.4 6.71 
1.8 1.51 2.27 2.45 4.42 6.17 4.95 
2 1.33 1.78 1.99 3.37 4.69 3.77 

2.2 1.22 1.48 1.71 2.65 3.66 2.95 
2.4 1.13 1.29 1.49 2.15 2.94 2.39 
2.6 1.08 1.17 1.34 1.81 2.42 1.99 
2.8 1.05 1.1 1.21 1.56 2.04 1.71 
3 1.03 1.05 1.14 1.39 1.76 1.5 

1000 
-+-2$0 
-2SD/RT 
-W.Rules 

100 "'"*- Chi-sq 
-T-sq 

..J -P-C a:: 
c( 

10 

0 "I -v CO CO o o o o .... ('! .... 
SD shift 

Figure 3 .22 - Method Comparison for N=2/2 
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Table 3.22 -Method Comparison forN=2/1 

2SD 2SD/RT 
11.22 125.91 
10.74 115.3 
9.46 89.46 
7.86 61.8 
6.33 40.09 
5.04 25.43 
4.02 16.19 . 
3.25 10.56 
2.67 7.13 
2.24 5 
1.91 3.66 
1.67 2.79 
1.49 2.22 
1.35 1.84 
1.25 1.57 
1.18 1.39 
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5.82 6.02 8.4 5.86 
4.44 4.42 6.17 4.27 
3.53 3.37 4.69 3.23 
2.87 2.65 3.66 2.54 
2.42 2.15 2.94 2.07 
2.09 1.81 2.42 1.74 
1.84 1.56 2.04 1.51 
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Figure 3 .23 - Method Comparison for N=2/1 
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Table 3 .23 - Method Comparison for N=3/3 

SD Shift 2SD 2SD/RT W. Rules Chi-s T-s P-C 
0 7.65 58.58 33.72 100 100 100 

0.2 7.04 49.54 27.79 90.91 90.91 91.24 
0.4 5.64 31.8 17.98 66.67 76.92 70.74 
0.6 4.25 18.08 10.92 47.62 55.56 50.03 
0.8 3.19 10.2 6.75 31.25 40 33.45 
1 2.46 6.03 4.54 20.41 27.78 21.88 

1.2 1.95 3.82 3.17 13.51 19.23 14.41 
1.4 1.62 2.62 2.37 9.26 13.4 9.75 
1.6 1.39 1.94 1.88 6.45 9.8 6.87 
1.8 1.24 1.54 1.54 4.67 7.25 4.95 
2 1.14 1.31 1.33 3.5 5.43 3.69 

2.2 1.08 1.17 1.2 2.72 4.2 2.88 
2.4 1.04 1.087 1.11 2.18 3.32 2.3 
2.6 1.02 1.043 1.05 1.82 2.7 1.9 
2.8 1.01 1.019 1.02 1.56 2.25 1.62 
3 1.004 1.008 1.01 1.38 1.92 1.44 

100 
-+-2S0 
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Figure 3 .24 - Method Comparison for N=3/3 

76 



Table 3.24 -Method Comparison forN=3/2 

SD Shift 2SD 2 SD/RT W. Rules Chi-s P-C 
0 7.65 58.58 33.72 100 100 100 

0.2 7.23 52.29 29.8 90.91 90.91 89.62 
0.4 6.17 38.07 21.89 62.5 66.67 64.84 
0.6 4.95 24.55 14.84 40 47.62 43.78 
0.8 3.89 15.14 9.95 23.81 32.26 28.13 
1 3.06 9.38 6.88 14.93 20.83 18.02 

1.2 2.45 6 4.92 9.43 14.08 11.81 
1.4 2.01 4.04 3.68 6.29 9.62 8 
1.6 1.69 2.87 2.87 4.35 6.76 5.6 
1.8 1.47 2.16 2.3 3.15 4.9 4.08 
2 1.31 1.72 1.91 2.4 3.68 3.08 

2.2 1.2 1.45 1.63 1.91 2.87 2.41 
2.4 1.13 1.27 1.43 1.59 2.3 1.96 
2.6 1.08 1.16 1.28 1.38 1.91 1.65 
2.8 1.04 1.09 1.18 1.24 1.64 1.44 
3 1.02 1.05 1.12 1.15 1.44 1.29 

100 

-+-2S0 
-2S0/RT j 
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Figure 3 .25 - Method Comparison for N=3/2 
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Table 3.25 - Method Comparison for N=3/l 

SD Shift 2SD 2SD/RT W. Rules Chi-s T-s P-C 
0 7.65 58.58 33.72 100 100 100 

0.2 7.44 55.29 31.72 90.91 90.91 92.07 
0.4 6.83 46.59 27.17 66.67 76.92 71.73 
0.6 5.99 35.86 21.1 47.62 55.56 48.56 
0.8 5.09 25.94 15.68 31.25 40 31.82 
1 4.26 18.13 11.62 20.41 27.78 19.96 

1.2 3.54 12.51 8.63 13.51 19.23 12.97 
1.4 2.95 8.69 6.43 9.26 13.7 8.52 
1.6 2.48 6.16 5 6.45 9.8 5.91 
1.8 2.12 4.48 3.93 4.67 7.25 4.26 
2 1.84 3.37 3.19 3.5 5.43 3.15 

2.2 1.62 2.63 2.66 2.72 4.2 2.47 
2.4 1.46 2.12 2.27 2.18 3.32 1.99 
2.6 1.33 1.78 1.97 1.82 2.7 1.67 
2.8 1.24 1.54 1.74 1.56 2.25 1.45 
3 1.17 1.37 1.57 · 1.38 1.92 1.3 
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-.-2so 
--2so1RT 
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Figure 3.26 -Method Comparison for N=3/l 
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results from the clinical perspective as+/- 2 SD limits with a retest is a simple and 

straightforward method for monitoring quality control. . 

The Westgard Multirule Procedure shows performance similar to +/- 2 SD limits 

with a retest, but the in-control ARL for the Westgard Multirule Procedure is generally 

lower than for+/- 2 SD limits with a retest. Given the similar sensitivity to detecting 

larger shifts along with the fact that it is much easier to implement, many clinicians would 

prefer the use of+/- 2 SD limits with a retest as opposed to the implementation of the 

Westgard Multirule procedure. 

As for the multivariate approaches, they appear to perform very similarly to one 

another. As expected, the T2 chart is the least sensitive for the same in-control ARL since 

it assumes an unknown covariance matrix and uses only 20 subgroups. Its performance, 

however, is not drastically worse than the x.2 chart, the best case given that it assumes a 

known covariance. The principal component chart and x.2 chart have very similar 

performance across the different shifts considered. All of the multivariate approaches, 

though, are hampered from a sensitivity perspective by their in-control ARL of 100. By 

increasing the a level used in the design of the muhivariate approaches, improved 

sensitivity to true shifts can be improved. The+/- 2 SD limits with a·retest approach, 

however, has a longer in~ontrol ARL than the muhivariate methods with better sensitivity 

for the cases where two levels of control material are monitored. This does not, however, 

hold for three levels of control material as the in-control ARL for +/- 2 SD limits with a 

retest drops to 58.58 while the muhivariate approaches retain in-control ARLs of 100. 
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CHAPTERN 

AN ECONOMIC MODEL FOR THE CLINICAL LABORATORY 

Economic Model Description 

While relatively little work has been pursued in the clinical literature regarding cost 

models for monitoring quality control, there is a long history of cost modeling in the 

industrial quality control literature. The model used in this research capitalizes on this 

history, building primarily on the work by Duncan (1956) and Lorenzen and Vance 

(1986). Basically, the model considers a full cycle to consist of starting in a state of 

statistical control (SOSC), eventually experiencing a shift in the measurement process 

becoming out-of-control (OOC), and then returning to SOSC to complete the cycle. The 

assumptions are that the process starts in control, finishes in control, and each repair 

attempt for a true shift is always successful. 

The economic model employed for this research determines the total cost per unit 

time. The costs considered in the model include costs for sampling and testing control 

materials, costs for operating in-control, costs for operating out-of-control, and costs for 

downtime when the testing system is·not in operation. The model allows for three 

different assignable causes to affect.the measurement system with Exponential failure rates 

used for the assignable causes. These three assignable causes allow the model to tie 

different costs to different sizes of shift. The model assumes that these three shifts are 

applied to all levels affected by shifts. For example, if shifts of 1.0 SD, 2.0 SD, and 3.0 

SD are applied to the N=2/ 1 case, this means that one level of control material is affected 
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by these three shifts in the economic model while the other level remains centered and 

unaffected. Another model assumption is that the testing process shuts down ·to look for 

causes when the quality control method signals an out-of-control condition. Figure 4.1 

summarizes the parameters required in the model. 

Figure 4.1 - Cost Model Parameters 

1 = Vector of Exponential failure rates (I/Ai is the average time between shifts in 
the measurement process for the ith assignable cause). 

6 = Vector of possible shifts in the measurement process. 

ARLooc = A vector of average run lengths corresponding to 6 for the quality 
control method when the process is out-of-control. 

SRTooc = A vector of the average search and repair times in hours for shifts in the 
measurement process defined by 6. 

p = A vector of the probabilities for the shifts in 6. · 

ARLsosc = The average run length of the quality control method when the process 
is in-control (i.e., experiencing no shift). 

SRTsosc = The average search and repair time in hours for a false alarm. 

h = sampling interval (the time between quality control samples in hours). 

N = The number of control samples tested at each QC timepoint. 

Ca = The cost per unit time for operating in-control. 

C2 = A vector of costs per unit time for operating out-of-control according to 6. 

C3 = The cost per unit time for downtime or not generating patient results. 

C4 = The cost per control value observation (including labor and materials). 
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Before continuing with the description of the cost model, some further discussion of these 

parameters is warranted. The first notable point concerns the use of a vector (3) of 

possible shifts in the measurement process. A vector is utilized here to allow for varying 

shifts in the measurement process ranging from a very small shift up to a large shift which 

would be considered clinically significant. It should be noted that the search and· repair 

times for given shifts (SRTooc) and the cost to the process after experiencing a shift (C2) 

are also vectors which are functions of the size of the shifts in a. 

For this multiple assignable cause model, the overall failure rate can be taken as the 

sum of the failure rates. Therefore, A.=A.1+A.2+A.3 and is the overall failure rate for the 

model. The individual failure rates define p as pi=A./A.. Again, these failure rates are 

applied only to levels which are being shifted in the economic model. For example, the 

case ofN=3/3 would mean that all three levels of control material are affected by shifts, 

and that the overall failure rate for each level is A.. 

Also, additional detail about the cost factors (C1 through C3) is necessary in order 

to fully understand the model. Cost C 1 is essentially a function of testing volume. It 

includes costs for labor, testing consumables, equipment depreciation, overhead, etc. It 

can be considered the cost of doing business when things are performing as expected. The 

cost factor C2 includes the basic costs related to C1, but there is an additional cost 

component attached. This additional cost relates to reporting patient resuhs.which are 

actually shifted from their true mean. Failing to detect large shifts and operating out-of­

control can resuh in governing bodies shutting the laboratory down, so this additional cost 

is very large for large shifts in the measurement process. Finally, C3 is a cost for not 
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generating results when they are needed. This cost reflects responsiveness of the 

laboratory, and this cost may be extremely high for situations when a physician needs rapid 

tum around of patient results but the laboratory is down or not operating. The cost 

assigned for C3 will include the basic overhead costs incurred in C1, but it will include 

additional costs for having idle resources on hand and may include overtime operations for 

making up lost throughput. 

Given these model parameters, a total cost equation can be determined. Figure 4.2 

graphically illustrates a complete cycle for the economic model which leads to the total 

cost equation. 

Complete Cycle 

Start up 
Shift occurs Detect shift again 

j.-h..j 

I l 1 f t I I 

-~ -------~-D ~'ARLooc--11-f-11--p'SRTooc ---1 

X + E(false alarms)• SRTsosc 

Figure 4.2 - Illustration of a Complete Cycle for the Cost Model 

In the preceding graphic, reference is made to the expected number of false alarms while 

the process is actually in-control, referred to as E(false alarms). Lorenzen and Vance 
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(1986) showed that the following expression can be used for the expected number of false 

alarms when the economic model assumes the process shuts down to look for changes in 

the measurement process. 

e-).h 

(1 -Ah) 
E(false alarms) = - e 

ARLsosc 

Figure 4.2 also refers to D, the amount of time between the last testing point which is in-

control to the point in the sampling interval when the process actually shifts. Duncan 

( l 9S6) developed an expression for the expected time for the shift to occur in an interval 

which can be used to find the following equation for D. 

Next, the pieces of the cycle can be put together to determine the average length of a total 

cycle (TCT). This is the average amount of time starting from an in-control condition, 

experiencing a shift to an out-of-control condition, and being restored to an in-control 

state again. 

After finding an expression for the total cycle time, the percentage of total cycle time 

operating in a state of statistical control (%SOSC) and the percentage of total cycle time 

operating out-of-control (o/oOOC) can both be determined as ratios to the total cycle time. 
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%SOSC= ){ 
TCT 

h• 'ARL - 1-(l+A.h)e-"1 
P ooc ,-(1-e-"1) 

%00C = --------'---'-­
TCT 

In the same manner, the percentage of total cycle time looking for false alarms (%FR) and 

the percentage of total cycle time looking for true shifts (% TR) in the measurement 

process can also be detennined. Since both result in shut down of the system, these two 

percentages can be combined to detennine the total percentage of downtime (o/oDT) for 

the testing system. 

% TR= p'SR'fooc 
TCT 

((1:~~Ah)J 
----• SRT. + p'SRT. ooc ooc 

%OT= ARLsosc 
TCT 

The final piece to be determined for the cost model is the cost for sampling and testing 

control materials (SC). This cost can be determined as follows: 

SC= N'•C4 
h 

Now, all of these costs can be combined into a total cost equation which considers all the 

costs incurred during the operation of the testing system. 
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Total Cost Per Unit Time= %SOSC•C1 + %00C•p'C2 + %DT•C3 +SC 

At this point, the entire model is a single cost equation which can be used to compare the 

various quality control approaches. 

The above model must be slightly altered for the+/- 2 SD limit with a retest 

method. The problem arises in the determination of the sampling cost. For all of the other 

models, the amount of testing is the same for each QC timepoint, but this is not the case 

for+/- 2 SD limits with a retest. For+/- 2 SD limits with a retest, the number of 

observations per QC timepoint will be doubled when a false or true rejection occurs. 

Therefore, the value used for N' in the equation for SC must be altered to reflect the fact 

that the expected sample size will be greater than the assigned sample size. If one assumes 

that the amount of time to do a retest is negligible (the same as the current assumption 

regarding the amount of time to get an initial result), then the only parameter from the cost 

model which must be modified is N' in order to estimate the correct sampling cost. The 

following develops the approach for calculating N' for the+/- 2 SD limits with a retest 

case. 

Let N' = the.expected number of samples per QC timepoint 

n = the original sample size ( either 2 or 3 for this application) 

2n = the sample size upon retest 

).. = the failure rate for the ith shift (i =l,2 or 3) 

A.a= ( 1 )( ) where ARLsosc is the ARL for strict +/- 2 SD limits 
ARLsosc h 

4 

A.tot= !),i 
i=l 
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P(Uli) = the probability of shift i being within +/- 2 SD limits 

P(outi) = the probability of shift i being outside+/- 2 SD limits 

Using this expression for the expected number of samples per QC timepoint, the same 

model as described above can be used for assessing +/- 2 SD limits with a retest. 

The cost model developed above contains a number of attractive features. The 

first is that there is a separation between the statistical modeling of a quality control 

approach and the cost model. The required inputs to the economic model from the 

statistical model are only the ARLs for being in-control and the ARLs for being out-of-

control. While these ARLs will vary from method to method and the approach for 

calculating these ARLs will also vary from method to method, the only statistical 

requirements of the economic model are these ARLs. 

Another attractive aspect of this model is that it easily breaks down the proportion 

of time that the system is in the various operating states. The amount of time spent 

looking for non-existent problems can be broken out by method, allowing clinicians to 

better understand the implications of their selection of a quality control approach. 

Cost Model Validation 

Following the development of the theoretical cost model, it is still of interest to 

validate the model through another approach. The model makes a number of assumptions 
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in its development, and the use of another approach for validation provides an additional 

degree of comfort with the theoretical model. 

The first aspect to explore is the memoryless property of the Exponential failure 

rate employed in the model The model assumes that the testing process is shut down 

during false rejections, so the theoretical model defines the amount of time until a true 

shift (tts) as being: 

tts= X + E(false alanns)• SR'fsosc 

One way to think of this development is that at time O, an unknown time to a true failure is 

generated. Before this time to failure is reached, false rejections may occur. The model 

assumes that the time to failure takes up where it left off once a false rejection has been 

completed. An alternative approach to the failure mechanism is that a completely new 

failure is generated each time a false rejection occurs. In this instance, one would be 

assuming that action taken during a false rejection can affect the underlying failure rate, 

and this is undoubtedly a valid viewpoint. 

With this in mind (i.e., that failures can regenerate themselves during false 

rejections), one can take another approach to the development of the expected time until a 

true shift without considering time for false rejection. If one assumes the time to false 

- . ' ' 

rejection.is also Exponentially distributed, then one can define the failure rate due to false 

rejections as (4). 

1 
A.rr=----

(ARLsosc)(h) 



Then, one can view the situation as four competing failure rates: three true failures 

competing with a failure due to a false rejection. This would make the overall failure rate 

Atot=A. +4. This result can be used to find the probabilities for true and false rejections, 

then to detennine the expected time until a true shift not considering shutdown time for 

false rejections. 

P(true reject) = f = )JAtot 

P(false reject)= 1-f= 'J...r.!Atot 

T=time until a true shift (not considering shutdown time for false rejections) 

I (I I) (I I I) 2 E(T)=-f+ -+- (1-f)f+ -+-+- (1-f) f+··· 
A.tot A.tot A.tot A.tot A.tot A.tot 

I i-, ( )n-1 I I I E(T)=-L-n 1-f f=-•-=-
Atot n= I A.tot f A 

Therefore, it appears that the memoryless property of the Exponential acts such that it 

does not matter how one views the generation of the failure. 

To explore this issue further and to validate the theoretical model, two computer 

simulation programs.of the cost model are employed. The first program (found in 

Appendix F and referred to as CostA) simulates the cost model by generating a single time 

to failure at the beginning of the cycle. Then, it suspends the failure during a false 

rejection, but then continues the time to this failure following the false rejection. The 

second simulation program (found in Appendix F and referred to as CostB) regenerates a 

failure each time a false rejection is realized. In this fashion, both assumptions can be 

tested against the theoretical model for validation purposes. 
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Both programs are coded in Turbo Pascal version 6.0, and the same uniform 

random number generator from Marse and Roberts (1983) is used as in the simulation 

programs concerning the Westgard Multirule Procedure. In addition to generating 

Exponential times to failures and geometric times to false rejections, the simulations also 

generate random search and repair times for all true rejections as well as false rejections. 

The repair times are modeled as uniform random variables in the simulation programs. 

Figure 4 .3 summarizes the input parameters used to compare the theoretical results 

with the simulation results and Table 4.1 shows the results of the comparisons. Table 4.1 

shows the 95% confidence intervals for 5 simulation runs, each consisting of 5,000 

realiz.ations (where a realiz.ation is a completion of the cost cycle). The measures chosen 

for comparison do not include cost figures as the true validation of the model concerns the 

proportion of time the system is. in a given state. It is clear from these results that the 

memoryless property is in effect such that the model is not affected by the assumption 

regarding failure generation (i.e., initially generated or regenerated with each false 

rejection). Additionally, the theoretical results match those of the simulation models, 

indicating that the theoretical model is valid. The only exception is with the %00C 

measure for program CostB, but this can be considered as an a error since 95% limits 

were chosen and 18 confidence intervals were constructed. 

Given the additional simulation and validation work, it is clear that the theoretical 

cost model is indeed appropriate. Therefore, the research effort can use this theoretical 

model for making comparisons among the various quality control approaches. 
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Figure 4.3 - Simulation and Theoretical Results Comparison (Input Parameters) 

[
0.001] 

A= 0.003 

0.005 

[ 
(8,12)] 

SRTooc = (20,30) 

(45,55) 

SRT sosc = (25,35) ARLsosc=2 h=5 

Table 4.1 - Simulation and Theoretical Results Comparison 

Measure 
Ava- time to shift 

E(false rejects) 
D 

TCT 
%S0SC 
%00C 
•4FR 
%TR 
%OT 

Theoretical 
437 

10.86 · 
2.48 

693.96 
0.160 
0.317 
0.47 

0.054 
0.523 

CostA 
(429.9, 445.7) 
(10.68, 11.08) 

(2.45, 2.48) 
(691.71, 704.98) 

(0.158, 0.161) 
(0.313, 0.326) 
(0.462, 0.472) 
(0.053, 0.054) 
(0.516, 0.525) 

CostB 
(436.56, 451.93) 

(10.85, 11.23) 
(2.47, 2.49) 

(691.00, 711.95) 
(0.160, 0.161) 
(0.310, 0.316) 
(0.470, 0.475) 
(0.053, 0.054) 
(0.523, 0.528) 

Method Comparisons Using the Economic Model 

After formulating and validating the theoretical cost model, the next step is to use 

the model to compare quality control approaches on a cost basis. While the statistical 

performance of the methods cannot be ignored, the ultimate question regarding their 

relative performance must be answered on a cost basis. 

A major consideration when comparing the methods from a cost perspective, 

however, is the selection of the cost parameters chosen for the comparisons. The 

parameter values used in this research are shown in Figure 4.4. Note that the sampling 
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interval (h) and the sample size (N') are not mentioned in Figure 4.4 as the research will 

vary these values in order to see their impact on the cost model. 

The selection of the cost parameters in Figure 4 .4 incorporates input from people 

with clinical backgrounds, but there would undoubtedly be disputes among other clinicians 

regarding the values selected for the parameters. Even so, the parameter settings used in 

this research are very representative of real world costs. The purpose of this modeling is 

to determine the relative costs of the examined methods for this particular set of 

parameters, so any ·conclusions drawn will apply specifically to this set of parameters. 

Some discussion about these parameters is, however, warranted. Three different 

shifts are considered with respective magnitudes of 1 SD, 2 SD and 3 SD. These shifts 

represent small, intermediate, and large shifts respectively. The size of the shifts then 

dictate the selection of A, SRTooc, and C2 in tum. The values for 1 used for the model 

translate into the frequency of a 1 SD shift being every SOO hours. the frequency of a 2 SD 

shift is every 1000 hours, and 3 SD shifts occur every 2000 hours. This means that the 

measurement system is relatively stable, and that small shifts occur more frequently than 

Figure 4.4 - Cost Parameters for Method Comparisons 

[
I SD] 

~= 2SD 
3SD 

· [ 0.002] 
1 = 0.001 

o.ooos 
[
4 hrs] 

SRTooc= ~= SRT sosc=S hrs 

[ 
$220/hr] 

C2 = $800/ hr 

$2000/hr 
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large shifts (which is the case in the clinical laboratory). Also tied to A., the SRT times 

reflect the fact that smaller shifts will be more difficult to find than larger shifts, and that 

the amount of time to repair true shifts is relatively small compared to the time between 

shifts occurring. Additionally, the search and repair time for a false rejection is larger than 

the time for true rejections as the search for a phantom problem can be very time 

consuming. The costs assigned to each shift (C2) also reflect the magnitude of the shift. 

The standard cost of doing business (C1) is set at $200/hr, and the costs for C2 are relative 

to this baseline. The cost for a l SD shift is $220/hr, or a l OOA, increase in cost while the 

costs for shifting to 2 SD and 3 SD are fourfold and tenfold increases, respectively. These 

costs reflect the fact that small shifts will have less impact on patient results than will 

larger shifts. Again, .the emphasis is on the costs relative to one another for the identified 

shifts. The same thought process went into the selection ofC3, the cost for downtime, as 

being eight times the cost of regular operation. The remaining cost parameter, C4 ,is a 

standard cost per sample that is reflective of many diagnostic tests. 

In order to facilitate the cost comparisons made in this research, a Turbo Pascal 

program is used to perform the calculations employed in the theoretical cost model. The 

code for this program is included in Appendix G, and all cost model results reported here 

are generated using this program. 

Given the selection of the cost model parameters (shown in Figure 4.4 ), methods 

can be compared from a cost perspective for these parameters. Comparisons for this 

research are made for the six quality control approaches considered. In the spirit of 

traditional economic modeling of control charts, the parameters varied in this research are 
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the traditional n (i.e., the cases N=2/2, N=2/l, etc.,), h (the sampling interval which is 

varied between 8 and 24 hours in this research), and k (typically a control chart limit, but 

dictated by the quality control approach in this research). The cost model results are 

shown in Tables 4.2 through 4.11. The tables show the proportion of the time the system 

is in the various states including the percent time in-control (%SOSC), the percent time 

operating out-of-control (%00C), the percent time investigating false rejections (%FR), 

the percent time investigating true rejections (% TR), the total percent of down time 

(%OT), and finally the total cost per unit time for the system (Cost). 

To better understand the interpretation of the shifts for the cost modeling, N=3/2 

(for example) means that two of three control levels monitored are shifted. They are both 

shifted according to 6, so the two levels being shifted are each shifted by 6 in the cost 

model. The third level, however, remains centered on target. 

The results exhibited in Tables 4.2 through 4.11 lead to some interesting 

conclusions. First, note that each pair of tables (i.e., Table 4.2 and 4.3, Table 4.4 and 4.5, 

etc.,) has the same shift and that the only difference between the pairs is the sampling 

interval, h. Since the same shift is common to the pairs of tables, one can make 

comparisons across pairs of tables to select the least cost alternative. When comparing 

across sampling interval for the same type of shift, the Westgard Multirule Procedure with 

a sampling interval of 8 hours in most instances has the least cost per unit .time of the 

methods considered. For N=2/l, the Westgard Multirule Procedure is not the least cost 

alternative, but it is very close to the least cost alternative,+/- 2 SD limits with a sampling 

interval of8 hours. ForN=3/3, +/- 2 SD limits with a retest narrowly edges out 
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Table 4.2 - Cost Model Method Comparison for N=2/2, h=8 

Method %S0SC %00C %FR %TR %DT Cost 

2SD 89.1 4.9 4.9 1.1 6.0 307.65 

2SDRT 82.9 15.7 0.4 1.0 1.4 291.61 

W.Rules 86.0 12.4 0.6 1.0 1.7 280.24 

Chi-Sq. 75.0 23.6 0.5 0.9 1.4 325.51 

T2 69.9 28.8 0.4 0.8 1.3 346.95 

P.C. 73.1 25.6 0.5 0.9 1.3 333.52 

Table 4.3 - Cost Model Method Comparison for N=2/2, h=24 

Method %S0SC %00C %FR o/oTR %DT Cost 

2SD 83.6 13.9 1.5 1.0 2.5 296.82 

2SDRT 63.2 35.9 0.1 0.8 0.9 371.10 

W.Rules 69.1 29.9 0.2 0.8 1.0 346.24 

Chi-Sq. 51.0 48.2 0.1 0.6 0.7 423.10 

T2 44.5 54.9 0.1 0.5 0.6 451.18 

P.C. 48.5 50.8 0.1 0.6 0.7 434.03 
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Table 4.4 - Cost Model Method Comparison for N=2/l, h=8 

Method o/oSOSC o/oOOC %FR •1oTR o/oDT Cost 

2SD 86.7 7.5 4.8 1.0 5.8 316.79 

2SDRT 69.2 29.6 .0.3 0.8 1.2 349.56 

W.Rules 77.1 21.4 0.6 0.9 1.5 317.42 

Chi-Sq. 75.0 23.6 0.5 0.9 1.4 325.51 

T2 69.9 28.8 0.4 0.8 1.3 346.95 

P.C. 74.9 23.7 0.5 0.9 1.4 325.82 

Table 4.5 - Cost Model Method Comparison for N=2/l, h=24 

Method o/oSOSC o/oOOC o/oFR o/oTR o/oDT Cost 

2SD 77.5 20.2 1.4 0.9 2.3 322.00 

2SDRT 43.5 55.9 0.1 0.5 0.6 455.18 

W.Rules 54.2 45.0 0.1 0.7 0.8 409.95 

Chi-Sq. 51.0 48.2 0.1 0.6 0.7 423.10 

T2 44.5 54.9 0.1 0.5 0.6 451.18 

P.C. 50.9 48.3 0.1 0;6 0.7 423.53 
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Table 4.6 - Cost Model Method Comparison for N=3/3, h=8 

Method o/oSOSC o/oOOC %FR %TR o/oDT Cost 

lSD 88.4 3.4 7.1 1.1 8.2 333.31 

2SDRT 89.3 8.7 0.9 1.1 2.0 270.87 

W.Rules 90.6 6.6 1.7 1.1 2.7 271.41 

Chi-Sq. 73.3 25.4 0.5 0.9 1.3 334.02 

T2 66.7 32.1 0.4 0.8 1.2 362.01 

P.C. 72.0 26.7 0.4 0.9 1.3 339.66 

Table 4. 7 - Cost Model Method Comparison for N=3/3, h=24 

Method o/oSOSC %00C %FR %TR· o/oDT Cost 

2SD 86.6 IO.I 2.3 1.0 3.3 291.72 

lSDRT 76.5 22.3 0.3 0.9 1.2 316.32 

W.Rules 80.7 17.8 0.5 1.0 1.4 299.87 

Chi-Sq. 48.7 50.6 0.1 0.6 0.7 433.46 

T2 40.7 58.8 0.1 0.5 0.6 467.81 

P.C. 47.0 52.4 0.1 0.6 0.7 440.86 
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Table 4.8 - Cost Model Method Comparison for N=3/2, h=8 

Method %S0SC %00C %FR %TR %DT Cost 

2SD 87.6 4.3 7.1 1.1 8.1 336.31 

2SDRT 85.0 13.1 0.9 1.0 1.9 288.94 

W.Rules 87.2 IO.I 1.6 1.0 2.6 285.23 

Chi-Sq. 78.9 19.6 0.5 0.9 1.4 310.21 

T2 72.8 25.8 0.4 0.9 1.3 335.92 

P.C. 75.6 23.0 0.5 0.9 1.4 324.20 

Table 4.9 - Cost Model Method Comparison for N=3/2, h=24 

Method %S0SC o/oOOC %FR %TR %DT Cost 

2SD 84.2 12.6 2.2 1.0 3.2 301.46 

2SDRT 67.7 31.3 0.2 0.8 2.0 353.95 

W.Rules 73.2 · 25.5 0.4 0.9 1.3 331. 74 

Chi-Sq. 56.8 42.4 0.1 0.7 0.8 398.97 

T2 48.1 51.2 0.1 0.6 0.7 435.98 

P.C. 51.9 47.4 0.1 0.6 0.7 419.88 
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Table 4.10 - Cost Model Method Comparison for N=3/l, h=8 

Method %S0SC %00C %FR %TR %DT Cost 

lSD 85.7 6.3 6.9 1.0 7.9 342.65 

lSDRT 75.1 23.2 0.8 0.9 1.7 330.12 

W.Rules 81.0 16.5 1.5 1.0 2.5 310.76 

Chi-Sq. 73.3 25.4 0.5 0.9 1.3 334.02 

T2 66.7 32.1 0.4 0.8 1.2 362.01 

P.C. 73.9 24.8 0.5 0.9 1.3 331.66 

Table 4.11 - Cost Model Method Comparison for N=3/l, h=24 

Method %S0SC o/oOOC %FR %TR %DT Cost 

lSD 79.4 17.6 2.1 1.0 3.0 320.92 

lSDRT 51.5 47.7 0.2 0.6 0.8 422.55 

W.Rules . 61.4 37.5 0.4 0.7 1.1 381.81 

Chi-Sq. 48.7 50.6 0.1 0.6 0.7 433.46 

T2 40.7 58.8 0.1 0.5 0.6 467.81 

P.C. 49.5 49.8 0.1 0.6 0.7 430.28 
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the Westgard Multirule Procedure as the least cost alternative when the sampling interval 

is 8 hours. Closely following the Westgard Multirule Procedure in overall performance is 

the use of+/- 2 SD limits with a retest. Given that the retest procedure is much easier to 

apply in practice, it may be a more attractive alternative than the Westgard Multirule 

Procedure to many clinicians. 

With a sampling interval of 8 hours, the performance of the strict+/- 2 SD limits is 

behind the other traditional approaches selected here on a cost basis. While+/- 2 SD 

limits is definitely the most sensitive approach considered and the percentage of time in a 

state of statistical control (%SOSC) is generally higher for the +/- 2 SD limits approach, 

the costs and downtime associated with the false rejection rate of the method make it 

unattractive economically. It is interesting to note that the performance of+/- 2 SD limits 

actually improves by going from b=:=8 hours to 24 hours relative to the other approaches. 

This is because using a sampling interval of 24 hours will lower the impact of the false 

rejection rate, yet +/- 2 SD limits still has a good ability to detect real shifts as evidenced 

in the %S0SC measure. For all the other methods, the larger interval increases costs as 

their relative insensitivity to true changes begins to increase costs by operating out of 

control (%00C) for a greater period of time. 

The multivariate methods in general did not prove to be as cost effective as the 

traditional methods of+/- 2 SD limits with a retest or the Westgard Multirule Procedure. 

For the instances where not all of the levels shifted together (N=2/l, N=3/2, and N=3/l), 

the 1.2 chart is competitive with the other methods. The multivariate approaches overall, 

however, do not appear sensitive enough to operate cost effectively for the given set of 
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cost model parameter values. The percent of time operating in~control (%SOSC) is 

consistently smaller for the multivariate approaches. This would indicate that the lower 

sensitivity of the multivariate approaches is a handicap for this particular set of model 

parameter settings. As stated earlier in this paper, the lower a rate may be inhibiting the 

performance of the multivariate approaches relative to the traditional clinical approaches. 

Another interesting insight from the cost model results is that for the instances 

where all levels shift together (N=2/2 and N=3/3), the use of three levels of controls is 

preferable. Again, this goes to the fact that more replicates increase the sensitivity of the 

quality control monitoring approach and that the cost per control observation is very small 

compared to the other operating costs. Given this result, clinicians may wish to consider 

increasing their control testing volume from two levels per subgroup to three levels per 

subgroup. They would also be best advised to test control values every 8 hours as 

opposed to every 24 hours if the cost parameters described here apply to their operation 

(unless they choose to use strict+/- 2 SD limits). 

Overall, the cost modeling shows the importance of being sensitive to real changes 

if there are large costs associated with operating shifted away from the target. Since the 

cost of testing control samples is relatively small, increasing testing volume makes 

economical sense for this situation. Additionally, the amount of time required for fixing 

problems (both real and imaginary) is small enough compared to the expected frequency 

of true problems that they have limited impact on the results of the economic model. 

101 



Cost Model Sensitivity Analysis 

In the preceding section, a single set of cost model parameters settings are used for 

comparing the quality control approaches in this research. While these settings are 

probably the most appropriate settings in terms of reflecting the actual costs incurred by 

laboratories, insight into the performance of the methods can be gained by evaluating 

other parameter settings. This sensitivity analysis enables the evaluation of other cost 

scenarios which could potentially be encountered. Therefore, this section considers two 

alternative sets of cost parameters from an economic perspective. 

The first additional set of cost parameters makes only one change to the original 

set of cost parameters. The change is in the cost parameter, C2. While leaving the 

magnitudes of the three assignable causes the same at 1.0 SD, 2.0 SD, and 3.0 SD, the 

cost parameter C2 is altered such that the cost for operating with either a 1.0 SD shift or a 

2.0 SD shift is the same as regular operation ($200/hour). This change effectively_means 

that operating under these smaller shifts does not add any cost to the system, but a large 

shift (3.0 SD) still results in a large cost penalty. The cost parameters for the first 

sensitivity analysis (referred to as "Sensitivity Analysis A") are shown in Figure 4.5. From 

the cost modeling work in the previous section of this paper, it is clear that a sampling 

interval of 8 hours provides the best performance in general, so the sampling interval is 

fixed at 8 hours for the sensitivity analysis. Results of the first sensitivity analysis are 

shown in Tables 4.12 through 4.16 with each table summarizing the results for a different 

type of shift (i.e., N=2/2, N=2/I, etc.,). 
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Figure 4.5 - Cost Parameters for Sensitivity Analysis A 

[1 SD] [ 0.002] [4M] 6= 2SD l = 0.001 
SRTooc= ~= SRT sosc=5 hrs 

3 SD 0.0005 

. [~00/M] 
C1=$200/hr C2 = $200/hr C3=$1600/hr C4=$ l 0/sample 

$2000/hr 

Table 4.12 - Sensitivity Analysis A for N=2/2, h=8 

Method %S0SC o/oOOC %FR %TR %,DT Cost 

2SD 89.1 4.9 4.9 1.1 6.0 298.65 

2SDRT 82.9 15.7 0.4 1.0 1.4 262.93 

W.Rules 86.0 12.4 0,6 1.0 1.7 257.60 

Chi-Sq. 75.0 23.6 . 0.5 0.9 1.4 282.32 

T2 69.9 28.8 0.4 0.8 1.3 294.31 

P.C. 73.1 25.6 0.5 0.9 1.3 286.80 
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Table 4.13 - Sensitivity Analysis A for N=2/1, h=8 

Method %SOSC %00C %FR •A.TR %DT Cost 

2SD 86.7 1.5 4.8 1.0 5.8 303.05 

lSDRT 69.2 29.6 0.3 0.8 1.2 295.42 

W.Rules 77.l 21.4 0.6 0.9 1.5 278.34 

Chi-Sq. 75.0 23.6 0.5 0.9 1.4 282.32 

T2 69.9 28.8 0.4 0.8 1.3 294.31 

P.C. 74.9 23.7 .0.5 0.9 · 1.4 282.49 

Table 4.14 - Sensitivity Analysis A for N=3/3, h=8 

Method o/oSOSC ·%00C o/oFR %TR· %DT Cost 

lSD 88.4 3.4 7.1 1.1 8.2 327.08 

2SDRT 89.3 8.7 0.9 1.1 2.0 255.02 

W.Rules 90.6 6.6 1.7 1.1 2.7 259.25 · 

Chi-Sq. · 73.3 25.4 0.5 0.9 1.3 287.63 

T2 66.7 32.1 0.4 .. 0.8 1.2 303.29 

P.C. 72.0 26.7 0.4 0.9 1.3 290.78 
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Table 4.15 - Sensitivity Analysis A for N=3/2, h=8 

Method %SOSC %00C %FR %TR %DT Cost 

lSD 87.6 4.3 7.1 I. I 8.1 328.37 

lSDRT 85.0 13.1 0.9 1.0 1.9 264.99 

W.Rules 87.2 IO.I 1.6 1.0 2.6 266.73 

Chi-Sq. 78.9 19.6 0.5 0.9 1.4 274.31 

T2 72.8 25.8 0.4 0.9 1.3 288.69 

P.C. 75.6 23.0 0.5 0.9 1.4 282.13 

Table 4.16 - Sensitivity Analysis A for N=3/1, h=8 

Method %SOSC %00C %FR %TR o/oDT Cost 

lSD 85.7 6.3 6.9 1.0 7.9 331.10 

lSDRT 75.1 23.2 0.8 0.9 1.7 287.72 

W.Rules 81.0· 16.5 1.5 1.0 2.5 280.56 

Chi-Sq. 73.3 25.4 0.5 0.9 1.3 287.63 

T2 66.7 32.1 0.4 0.8 1.2 303.29 

P.C. 73.9 24.8 0.5 0.9 1.3 286.31 
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The results from this first sensitivity analysis do not appear to depart substantially 

from the results for the original cost parameter settings. Again, the Westgard Multirule 

Procedure shows very good performance with+/- 2 SD limits with a retest showing 

comparable performance. The multivariate methods, however, show comparatively better 

performance for this set of cost parameters. This is attributable to the fact that the 

sensitivity of the multivariate approaches is less than the other methods, but higher 

sensitivity is not as necessary in this instance since small shifts do not incur any additional 

cost. Coupled with the low false rejection rate of the multivariate approaches, their cost 

performance is nearer the other methods for Sensitivity Analysis A than for the original set 

of cost parameter settings. 

Another set of cost parameter settings is used for Sensitivity Analysis B ( see 

Figure 4.6). The same settings from Sensitivity Analysis Bare used with the exceptions of 

SR T sosc which is increased to 15 hours and the cost of down time, C4, which is increased 

to $3000 per hour. Costs for both 1.0 SD shifts and 2.0 SD shifts remain at $200/hour 

meaning that small shifts do not add additional cost to the system. By using these 

parameter settings, one is basically saying that small shifts do not increase costs, it takes a 

substantial amount of time to resolve false rejections, and down time is very expensive. 

The results for Sensitivity Analysis Bare shown in Tables 4.17 through 4.21. 
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Figure 4. 6 - Cost Parameters for Sensitivity Analysis B 

[! SD] [o.om] SRT={=] 6 = 2SD 1 = 0.001 SRTsosc=15 hrs 

3 SD 0.0005 2 hrs 

[~00/M] 
C1=$200/hr C2 = $200/ hr C3=$3000/hr C4=$ l Of sample 

$2000/hr 

Table 4.17 - Sensitivity Analysis B for N=2/2, h=8 

Method %SOSC %00C %FR %TR .%DT Cost 

2SD 81.2 4.5 13.4 1.0 14.3 615.81 

2SDRT 82.2 15.6 1.2 1.0 2.2 304.44 

W.Rules 84.9 12.2 1.9 1.0 2.9 , 314.80 

Chi-Sq. 74.3 23.4 1.4 0.9 2.3 326.14 

T2 69.3 28.5 1.3 0.8 2.1 335.09 

P.C. 72.5 25.3 1.3 0.9 2.2 329.48 
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Table 4.18 - Sensitivity Analysis B for N=2/l, h=8 

Method o/oSOSC o/oOOC %FR %TR o/oDT Cost 

2SD 79.1 6.9 13.0 0.9 14.0 611.91 

2SDRT 68.8 29.4 1.0 0.8 1.8 329.90 

W.Rules 76.3 21.1 1.7 0.9 2.6 329.50 

Chi-Sq. 74.3 23.4 1.4 0.9 2.3 326.14 

T2 69.3 __ 28.5 1.3 0.8 2.1 335.09 

P.C. 74.3 23.5 1.4 0.9 2.3 326.27 

Table 4.19 - Sensitivity Analysis B for N=3/3, h=8 

Method o/oSOSC 0kOOC %FR •A.TR o/oDT Cost 

2SD 77.4 3.0 18.7 0.9 19.6 761.10 

2SDRT 87.7 8.5 2.8 1.1 3.8 333.38 

W.Rules 87.7 6.4 4.8 1.1 5.9 384.41 

Chi-Sq. 72.6 25.1 1.3 0.9 2.2 330.42 

T2 66.1 31.9 1.2 0.8 2.0 342.11 

P.C. 71.3 26.5 1.3 0.9 2.2 332.77 
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Table 4.20 - Sensitivity Analysis B for N=3/2, h=8 

Method %S0SC %00C %FR %TR %DT Cost 

2SD 76.7 3.8 18.5 0.9 19.5 758.56 

2SDRT 83.5 12.9 2.6 1.0 3.6 339.44 

W.Rules 84.5 9.8 4.6 1.0 5.7 387.16 

Chi-Sq. 78.2 19.4 1.4 0.9 2.4 320.49 

T2 72.2 25.6 1.3 0.9 2.2 331.21 

P.C. 74.9 22.8 1.4 0.9 2.3 326.32 

Table 4.21 - Sensitivity Analysis B forN=3/1, h=8 

Method %S0SC %00C %FR %TR %DT Cost 

2SD 75.3 5.5 18.2 0.9 19.1 753.17 

2SDRT 74.0 22.8 2.3 0.9 3.2 353.32 

W.Rules 78.7 16.0 4.3 0.9 5.3 392.26 

Chi-Sq. 72.6 25.1 1.3 0.9 2.2 330.42 

T2 66.1 31.9 1.2 0.8 2.0 342.11 

P.C. 73.2 24.6 1.4 0.9 2.2 329.43 
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The first observation one can make based on Sensitivity Analysis Bis that+/- 2 SD 

limits does not perform very well at all from an economic perspective for the selected 

parameter settings. This is not surprising since Sensitivity Analysis-8- includes-a- large 

amount of time for investigating false rejections and has a large cost for down time. 

Coupled with its high rate of false rejection, +/- 2 SD limits shows very poor performance 

based on costs for this set of parameters. 

Interestingly, the multivariate approaches perform very well for the parameter 

settings used for Sensitivity Analysis B. The x2 chart is the least cost alternative for three 

of the five types of shifts investigated with the principal component chart being the least 

cost alternative for one of the other two types of shifts. In this instance, the low false 

rejection rates of the multivariate approaches pay dividends by reducing unnecessary down 

time associated with investigating false rejections. Since only large shifts result in major 

cost penalties for this set of parameters, the relative lack of sensitivity of the multivariate 

approaches is not as damaging as for the original set of cost parameters investigated in this 

research. 

While the cost parameter settings used in the sensitivity analysis are probably not 

the most reflective of real world laboratory situations, they do provide insight into the 

performance of the alternatives under investigation. Particularly, the potential harm of the 

high false rejection rate for strict+/- 2 SD limits is highlighted. Additionally, it is clear 

that multivariate approaches can be extremely attractive under the right circumstances. 

110 



CHAPTERV 

SUMMARY 

Conclusions and Recommendations 

As a result of this research, straightforward approaches are available for evaluating 

both the statistical and economic performance of quality control approaches used in the 

clinical laboratory setting. Six different approaches are analyzed in this research, but other 

methods could be evaluated in the same fashion. The important aspects of the evaluations 

are how well the method detects shifts as determined through its respective ARLs and the 

total cost per unit time for the method. By evaluating the method's performance on these 

two fronts, one can make intelligent decisions regarding the appropriateness of the quality 

control approach for his or her situation. 

From the evaluation of the six methods explored in this research, a few overall 

conclusions may be drawn. From a statistical perspective, the traditional methods used by 

laboratorians tend to have good sensitivity to true changes in the measurement system. 

For the strict application of+/- 2 SD limits, this sensitivity is in fact excessive as it results 

in a high rate of false rejection. Both+/- 2 SD limits with a retest and the Westgard 

Multirule Procedure temper this high false rejection rate while maintaining good sensitivity 

to true changes in the measurement system. The+/- 2 SD limits with a retest approach 

may be favored over the Westgard Multirule Procedure as it is easier to implement in a 

laboratory testing situation. Additionally, +/- 2 SD limits with a retest tends to have a 
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longer in-control ARL than the Westgard Multirule Procedure while having comparable 

sensitivity to true shifts. 

For the traditional approaches, the methods all have increased sensitivity with 

higher numbers of replicates. However, this increased sensitivity comes with a price as the 

false rejection rates for the traditional approaches also increase with higher numbers of 

controls. Also, the historical approach of evaluating these methods only for shifts across 

all levels can be very deceiving. As shown in this research, the traditional methods have 

very different performance for shifts in individual levels while the other levels remain 

centered. Clinicians may have a false sense of security in their quality control approach' s 

ability to detect any kind of shift when in fact their method has been designed around 

detecting shifts across all levels of control materials. 

The multivariate approaches considered show excellent promise, but they do not 

quite have the sensitivities of the traditional approaches. One of the advantages of the 

multivariate approaches is that a user can fix the false rejection rate and maintain the same 

false rejection rate regardless of the number of replicates being monitored. For this 

research, the in-control ARL is fixed at I 00 across the board whereas traditional 

approaches have false rejection rates which fluctuate with the number of replicates being 

monitored. 

One aspect of using the multivariate approaches which must be considered is the 

correlation structure of the measurement system. This research shows that the ability of 

the multivariate approaches to detect different types of shifts will be impacted by the 

correlation structure of the data being monitored. Data which is highly correlated among 
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the three levels will result in a multivariate approach which will be less sensitive to shifts 

across all levels of control materials, but sensitive to shifts in individual levels. Low 

correlation results in better sensitivity to shifts across all levels. While a user cannot 

manipulate the correlation of the control levels being monitored, one must be aware of the 

impact that the correlation structure can have on the performance of the multivariate 

approaches. 

For the multivariate approaches examined in this research (i.e., the x2 chart, the T2 

chart, and the principal component chart), the performance of the three approaches is 

surprisingly similar. While the x2 chart will always outperform the T2 chart, it is 

interesting to note that the T2 chart with limits based on 20 subgroups is not dramatically 

outperformed by the x2 chart. Also, the x2 chart and principal component chart show very 

similar performance. 

An. advantage of the multivariate approaches is that they have more consistent 

performance regardless of the type of shift encountered while the traditional approaches 

can have very ditrerent performance depending on the shift. This can change with a 

changing correlation structure, but the work in this research indicates that the multivariate 

approaches have similar sensitivities to all the shifts investigated. This is an advantage for 

the multivariate approaches over the traditional methods as it provides a clinician with a 

given level of error protection, regardless of the nature of the shift. For traditional 

methods, the degree of error protection provided to a clinician will vary by the type of 

shift encountered. 
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From a cost perspective, this research also leads to a number of interesting 

insights. The first is that the Westgard Multirule Procedure is generally the most 

economic approach for a set of cost parameter settings representative of laboratory 

operation. However,+/- 2 SD limits with a retest shows performance very near to the 

Westgard Multirule Procedure. Given that+/- 2 SD limits does not require past testing 

data·and the ease with which it can be implemented,+/- 2 SD limits should be given 

consideration as a valid alternative to the Westgard Multirule Procedure. 

For the cost parameter settings typical of a functioning laboratory, the multivariate 

approaches did not prove to be as cost effective as either the Westgard Multirule 

Procedure or+/- 2 SD limits with a retest. For the instances where not all of the levels 

shifted together (N=2/1, N=3/2, and N=3/l ), the x2 chart is competitive with the other 

methods. The multivariate approaches overall, however, do not appear sensitive enough 

to operate cost effectively for the given set of cost model parameter values. 

As for setting the testing interval from an economic perspective, a testing interval 

of eight hours shows better performance over a 24 hour interval. For+/- 2 SD limits, 

though, increasing the testing interval actually reduces costs since it lowers the impact of 

the high false rejection rate for the method. In general, however, the testing interval of 

eight hours is preferred. 

Another interesting insight from the cost model results is that for the instances 

where all levels shift together (N=2/2 and N=3/3), the use of three levels of control 

materials is preferable. Again, this goes to the fact that more replicates increase the 

sensitivity of the quality control monitoring approach and that the cost per control 
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observation is very small compared to the other operating costs. Given this result, 

clinicians may wish to consider increasing their control testing volume from two levels per 

subgroup to three levels per subgroup. 

The cost model parameter settings typical of laboratory operation are the most 

appropriate for evaluating how the methods will perform in the field, but sensitivity 

analysis in this research also provides some valuable insights into the methods' 

performance. In one sensitivity analysis scenario, no additional cost is added for 1. 0 SD 

or 2.0 SD shifts. The results for this scenario do not depart substantially from the results 

for the original parameter settings, but the multivariate approaches are more competitive 

with the traditional methods. In another sensitivity analysis scenario, the amount of time 

to investigate a false rejection is tripled and the cost per hour for down time is increased 

from $2000 to $3000 per hour. The+/- 2 SD limits approach performs horribly for this 

scenario as its high rate of false rejection proves to be a true handicap. The multivariate 

methods show the best performance for this scenario as they have a low rate of false 

rejection, and there is not an additional cost for small shifts (i.e., 1.0 SD or 2.0 SD). 

Areas for Future Research 

The biggest opportunity for future research in this area is with regards to the 

multivariate approaches investigated. Future research could explore the impact of 

increasing the power of the multivariate approaches to more closely match the traditional 

methods. While this will increase the false rejection rate for the multivariate approaches, 

they will more closely match the sensitivity of the traditional methods. Given that the 
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difference in cost performance of the multivariate approaches from the traditional 

approaches appears to be driven by sensitivity, improving the power of the multivariate 

methods and increasing the false rejection rate could result in cost performance very 

similar to the traditional methods. 

Another potential area for research is the determination of the cost model 

parameter settings used in this research. While the settings considered here are 

representative, further input from a large sample of clinicians could result in better inputs 

to the cost model parameters. As evidenced in the sensitivity analysis of this research, 

changing the model parameter settings can impact the relative performance of the 

methods. Therefore, further information about these model parameter settings would be 

useful. 

As stated in the literature review of this research, the principal component chart 

has not been previously modeled from a cost perspective. This research develops that 

model and analyzes it for the clinical application. This cost model could be adapted and 

used, however, to optimize the principal component chart in general circumstances. 
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APPENDIX A 

Computer Code for Westgard Multirule Procedure (N'=2) 
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program multirule; 
uses crt; 

{This program will determine ARLs for subgroup size 2 using a variety of control rules} 

var 
wam,rult,rultw,rulf,rulxb,rulrfs,m,n,l,i : integer; 
tsdw, blta,alta,bmta,amta,s,flag,tresd,rfs: integer; 
bfw,afw, blfa,alfa, bmfa,amfa: integer; 
btenw,atenw,bltena,altena,bmtena,amtena: integer; 
low,mid,arl,rl,lshft,mshft,diff,sd,uci,lci,x : real; 
sumsq,sum,y,z, vone, vtwo, w,yy,nsum,nsumsq,farl,fas :real; 
seed : longint; 

function RandUnif : real; 

{Function RandUnif generates Uniform 0, 1 variates using the Marse-Roberts code} 

con st 
B2E15 = 32768; 
B2E16 = 65536; 
Modulus= 2147473647; 
Multl = 24112; 
Mult2 = 26143; 

var Hi15, Hi31, Lowl5, Lowprd, Ovtlow,Zi: longint; 

begin 
Zi := Seed; 
Hi15 := Zi DIV B2E16; 
Lowprd := (Zi - Hi15 * B2E16) * Multl; 
Lowl5 := Lowprd DIV B2E16; 
Hi31 := Hi15 * Multl + Low15; 
Ovtlow := Hi31 DIV B2E15; 
Zi := (((Lowprd - Low15 * B2E16)- Modulus)+ 

(Hi31 - Ovtlow * B2E15) * B2E16) + Ovtlow; 
IF Zi < 0 THEN Zi := Zi + Modulus; 
Hi15 := Zi DIV B2E16; 
Lowprd := (Zi - Hi15 * B2E16) * Mult2; 
Lowl5 := Lowprd DIV B2E16; 
Hi31 := Hi15 * Mult2 + Low15; 
Ovtlow := Hi31 DIV B2E 15; 
Zi := (((Lowprd - Low15 * B2E16) - Modulus)+ 

(Hi31 - Ovtlow * B2El5) * B2El6) + Ovtlow; 
IF Zi < 0 THEN Zi := Zi + Modulus; 
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Seed:= Zi; 
RandUnif := (2* (Zi DIV 256) + 1) I 16777216.0; 

end; 

{ The next section allows the user to input the control rules for the simulation} 

begin 
clrscr; 
writeln('This program is specifically for N=2'); 
write In; 
writeln('2 sd as screening? ( 1 =yes, 2=no )'); 
readln( warn); 
writeln('l-3 sd rule? (l=yes, 2=no)'); 
readln( rult ); 
writeln('2-2 sd rule? (l=yes, 2=no)'); 
readln(rultw); 
writeln('4-1 sd rule? (l=yes, 2=no)'); 
readln( rulf); 
writeln('lO xbar rule? (l=yes, 2=no)'); 
readln(rulxb ); 
writeln('R - 4 sd rule? ( 1 =yes, 2=no )'); 
readln( rulrfs ); 
writeln; 
writeln('How many realizations?'); 
readln(m); 
writeln('Enter the seed for the random number generator:'); 
readln( seed); 
writeln('Enter the low control shift in sd: '); 
readln(lshft); 
writeln('Enter the mid control shift in sd: '); 
readln( mshft ); 

rl:=O; flag:=O; tresd:=O; 
rfs:=O; tsdw:=O; blta:=O; alta:=O; 
bmta:=O; amta:=O; bfw:=O; afw:=O; blfa:=O; 
alfa:=O; bmfa:=O; amfa:=O; btenw:=O; atenw:=O; 
bltena:=O; altena:=O; bmtena:=O;amtena:=O; 
nsum:=0; nsumsq :=O; 
clrscr; 
for s:=1 to 5 do 
begin 
sum:=O; sumsq:=O; 

for l:= 1 to m do 
begin 

repeat 
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begin 
repeat 

{Here the program generates two nonnal variates} 

begin 
y:=RandUnif; 
z:=RandUnif; 
vone:=2 *y-1; 
vtwo:=2*z-1; 
w:=vone*vone+vtwo*vtwo; 

end; 
until w<l; 
yy:=sqrt((-2*ln(w))/w); 
low:=lshft+vone*yy; 
mid:=mshft+vtwo*yy; 

{ 3 sd checking logic} 
if (low<-3.0) then tresd:=1; 
if (low>3.0) then tresd:=1; 
if (mid<-3.0) then tresd:=1; 
if (mid>3.0) then tresd:=1; 

{R 4sd checking logic} 
diff:=mid-low; 
if (diff>4.0) or (diff<-4.0) then rfs:=1; 

{2-2 sd checking logic within a run} 
if (low<-2.0) and (mid<-2.0) then tsdw:=1; 
if (low>2.0) and (mid>2.0) then tsdw:=1; 

{2-2 sd checking logic across runs} 
if (low<-2.0) then blta:=blta+ 1 

else blta:=O; 
if(low>2.0) then alta:=alta+ 1 

else alta:=O; 
if (mid<-2.0) then bmta:=bmta+ 1 

else bmta:=O; 
if (mid>2.0) then amta:=amta+ 1 

else amta:=O; 

{ 4 1-sd checking logic within a run} 
if (low<-1.0) and (mid<-1.0) then bfw:=bfw+2 

else bfw:=O; 
if(low>l.O) and (mid>l.O) then afw:=afw+2 
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else afw:=O; 

{ 4 1-sd checking logic across runs} 
if (low<- I. 0) then blfa:=blfa+ 1 

else blfa:=O; 
if (low>l.O) then alfa:=alfa+l 

else alfa:=O; 
if(mid<-1.0) then bmfa:=bmfa+l 

else bmfa:=O; · 
If(mid>l.O) then amfa:=amfa+l 

else amfa:=O; 

{ 10 xbar within} 
if (low<O.O) and (mid<O.O) then btenw:=btenw+2 

else btenw:=0; 
if (low>O.O) and (rnid>O.O) then atenw:=atenw+2 

else atenw:=O; 

{ 10 xbar across runs} 
if (low<=O.O) then bltena:=bltena+ 1 

else bltena:=O; 
if(low>O.O) then altena:=altena+l 

else altena:=O; 
if(mid<=O.O) then bmtena:=bmtena+l 

else bmtena:=0; 
if(mid>O.O) then amtena:=amtena+l 

else amtena:=0; 

{ Summary logic} 
{Ifno 2 sd screen} 
if (warn=2) then 
begin 

if (rult=l) and (tresd=l) then flag:=1; 
if (rulrfs=l) and (rfs=l) then flag:=1; 
if (rultw=l) and (tsdw=l) then flag:=1; 
if (rultw=l) and (blta>=2) then flag:=1; 
if ( rultw= 1) and ( alta>=2) then flag:= 1; 
if(rultw=l) and (bmta>=2) then flag:=l; 
if(rultw=l) and (amta>=2) then flag:=1; 
if(rulf=l) and (bfw=4) then flag:=l; 
if (rulf=l) and (afw=4) then flag:=1; 
if (rulf=l) and (blfa=4) then flag:=1; 
if (rulf=l) and (alfa=4) then flag:=l; 
if(rulf=l) and (bmfa=4) then flag:=l; 
if (rulf=l) and (amfa=4) then flag:=1; 
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if(rulxb=l) and (btenw=lO) then flag:=l; 
if(rulxb=l) and (atenw=lO) then flag:=l; 
if (rulxb=l) and (bltena=lO) then flag:=l; 
if(rulxb=I) and (altena=IO) then flag:=l; 
if(rulxb=l) and (bmtena=IO) then flag:=l; 
if(rulxb=I) and (amtena=IO) then flag:=l; 

end; 

{Using 2 sd screen} 
if (warn= 1) then 
begin 

iftlow<-2.0) or (low>2.0) or (mid<-2.0) or (mid>2.0) then 
begin . 

if (rult=l) and (tresd=I) then flag:=l; 
if (rulrfs=l) and (rfs=l) then flag:=l; 
if (rultw= I) and ( tsdw= 1) then flag:= 1; 
if (rultw=l) and (blta>=2) then flag:=l; 
if (rultw=l) and (alta>=2) then flag:=l; 
if(rultw=l) and (bmta>=2) then flag:=l; 
if (rultw=l) and (amta>=2) then flag:=l; 
if (rulf== 1) and (bfw=4) then flag:= 1; 
if (rulf=l) and (afw=4) then flag:=l; 
if (rulf=l) and (blfa=4) then tlag:=l; 
if (rulf=l) and (alfa=4) then flag:=l; 
if (rulf=l) and (bmfa=4) then flag:=l; 
if (rulf=l) and (amfa=4) then flag:=l; 
if(rulxb=I) and (btenw=lO) then flag:=l; 
if (rulxb=l) and (atenw=IO) then flag:=l; 
if (rulxb=l) and (bltena=IO) then flag:=l; 
if (rulxb=l) and (altena=lO) then flag:=l; 
if (rulxb=l) and (bmtena=lO) then flag:=l; 
if(rulxb=l) and (amtena=IO) then flag:=I; 

end; 
end; 
{ Summary statistics} 
rl:=rl+l; 

end; 
until flag= 1; 

sum:=sum+rl; 
sumsq:=sumsq+(rl*rl); 
rl:=O; 
flag:=O; 
tresd:=O; rfs:=0; tsdw:=O; blta:=O; alta:=O; 
bmta:=O; amta:=0; bfw:=O; afw:=O; blfa:=O; 
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alfa:=O; bmfa:=O; amfa:=O; btenw:=O; atenw:=O; 
bltena:=O; altena:=O; bmtena:=O;amtena:=O; 

end; 
arl:=sum/m; 
sd:=sqrt((sumsq-(m*arl*arl))/(m-1 )); 
writeln('The ARL is ',arl:5:2); 
writeln('The ARLSD is ',sd:5:2); 
nsum:=nsum+arl; 
nsumsq:=nsumsq+(arl*arl); 

end; 

{Final Output} 
writeln('Low Control Shift= ',lshft:5:2); 
writeln('Mid Control Shift= ',mshft:5:2); 
writeln; 
farl :=nsum/5; 
fas:=sqrt((nsumsq-(S*farl*farl))/4); 
uci:=farl+2. 776*(fas/(sqrt(5))); 
lci:=farl-2. 776*(fas/(sqrt(5))); 
writeln('The ARL estimate is ',farl:5:2); 
writeln('The upper 95% Clis ',uci:5:2); 
writeln('The lower 95% CI is ',lci:5:2); 

end. 
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Computer Code for Westgard Multirule Procedure (N'=3) 
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program multirule; 
uses crt; 

{ The program will determine ARLs for subroup size 3 using a variety of control rules} 

var 
warn,rult,rultw,rulf,rulxb,rulrfs,m,n,l,i : integer; 
tsdw, blta,alta,bmta,amta,flag,tresd,rfs,s : integer; 
bfw,afw,blfa,alfa,bmfa,amfa: integer; 
btenw,atenw,bltena,altena,bmtena,amtena: integer; 
bhta,ahta,bhfa,ahfa,bhtena,ahtena: integer; 
low,mid,high,arl,rl,lshft,mshft,hshft,diff,sd : real; 
uci,lc~x,nsum,nsumsq,farl,fas: real; 
sumsq,sum,y,z, vone, vtwo, w,yy,diffa,diflb :real; 
seed : longint; 

function RandUnif: real; 

{Function RandUnif generates Uniform 0, 1 variates using the Marse-Roberts code} 

const 
B2E15 = 32768; 
B2E16 = 65536; 
Modulus= 2147473647; 
Multl = 24112; 
Mult2 = 26143; 

var Hi15, Hi31, Lowl5, Lowprd, Ovflow,Zi : longint; 

begin 
Zi := Seed; 
Hi15 := Zi DIV B2El6; 
Lowprd := (Zi - Hi15 * B2E16) * Multl; 
LowlS := Lowprd DIV B2E16; 
Hi31 := Hi15 * Multl + Lowl5; 
Ovflow := Hi31 DIV B2E15; 
Zi := (((Lowprd - Low15 * B2E16) - Modulus)+ 

(Hi31 - Ovflow * B2E 15) * B2E 16) + Ovflow; 
IF Zi < 0 THEN Zi := Zi + Modulus; 
Hi15 := Zi DIV B2El6; 
Lowprd := (Zi - Hi 15 * B2E 16) * Mult2; 
LowlS := Lowprd DIV B2E16; 
Hi31 := HilS * Mult2 + Low15; 
Ovflow := Hi31 DIV B2E15; 
Zi := (((Lowprd - LowlS * B2E16)- Modulus)+ 
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(Hi3 l - Ovflow * B2E 15) * B2E 16) + Ovflow; 
IF Zi < 0 THEN Zi := Zi + Modulus; 
Seed :=Zi; 
RandUnif := (2* (Zi DIV 256) + 1) I 16777216.0; 

end; 

{The next section allows the user to input the control rules for the simulation} 

begin 
clrscr; 
writeln('This program is specifically for N=3'); 
writeln; 
writeln('2 sd as screenirig? ( 1 =yes, 2=no )'); 
readln( warn); 
writeln('l-3 sd rule? (l=yes, 2=no)'); 
readln( rult ); 
writeln('2-2 sd rule? (l=yes, 2=no)'); 
readln(rultw); 
writeln('4-l sd rule? (l=yes, 2=no)'); 
readln(rult); 
writeln(' 10 xbar rule? ( I =yes, 2=no )'); 
readln(rulxb ); 
writeln('R - 4 sd rule? ( 1 =yes, 2=no )'); 
readln(rulrfs); 
write In; 
writeln('How many realizations? '); 
readln(m); 
writeln('Enter the seed for the random number generator:'); 
readln(seed); 
writeln('Enter the low control shift in sd: '); 
readln(lshft ); 
writeln('Enter the mid control shift in sd: '); 
readln( mshft ); 
writeln('Enter the high control shift in sd: '); 
readln(hshft ); 

nsum:=O; nsumsq:=O; rl:=O; flag:=O; tresd:=O; 
rfs:=0; tsdw:=O; blta:=O; alta:=O; 
bmta:=O; amta:=O; bfw:=O; afw:=O; blfa:=O; 
alfa:=O; bmfa:=0; amfa:=0; btenw:=O; atenw:=O; 
bltena:=O; altena:=O; bmtena:=O;amtena:=O; 
bhta:=0; ahta:=O; bhfa:=O; ahfa:=O; bhtena:=O; ahtena:=O; 

clrscr; 
for s:=l to 5 do 
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begin 
sum:=O; sumsq:=O; 

for l:= I to m do 
begin 

repeat 
begin 

repeat 
begin 

{ This section generates 3 normal variates for the simulation} 

y:=RandUnif; 
z:=RandUnif; 
vone:=2*y-l; 
vtwo:=2*z-l; 
w:=vone*vone+vtwo*vtwo; 

end; 
until w<l; 
yy:=sqrt((-2*ln(w))/w); 
low:=lshft+vone*yy; 
mid:=mshft+vtwo*yy; 

repeat 
begin 

y:=RandUnif; 
z:=RandUnif; 
vone:=2*y-l; 
vtwo:=2*z-l; 
w:=vone*vone+vtwo*vtwo; 

end; 
until w<l; 
yy:=sqrt((-2*ln(w))/w); 
high:=hshft+vone*yy; 

{ 3 sd checking logic} 
if (low<-3.0) then tresd:=l; 
if (low>3.0) then tresd:=1; 
if (mid<-3.0) then tresd:=l; 
if (mid>3.0) then tresd:=1; 
if (high<-3.0) then tresd:=1; 
if (high>3.0) then tresd:=1; 

{ R 4sd checking logic} 
diff:=mid-low; 
diffa:=high-low; 
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diflb:=high-mid; 
if (diff>4.0) or (diff<-4.0) then rfs:=l; 
if (diffa>4.0) or (diffa<-4.0) then rfs:=l; 
if (diftb>4.0) or (diftb<-4.0) then rfs:=l; 

{2-2 sd checking logic within a run} 
if (low<-2.0) and (mid<-2.0) then tsdw:=1; 
if (low>2.0) and (mid>2.0) then tsdw:=l; 
if(low<-2.0) and (high<-2.0) then tsdw:=l; 
if (low>2.0) and (high>2.0) then tsdw:=1; 
if(high<-2.0) and (mid<-2.0) then tsdw:=l; 
if (high>2.0) and (mid>2.0) then tsdw:=1; 

{2-2 sd checking logic across runs} 
if(low<-2.0) then blta:=blta+l 

else blta:=O; 
if (low>2. 0) then alta:=alta+ 1 

else alta:=O; 
if(mid<-2.0) then bmta:=bmta+l 

else bmta:=O; 
if(mid>2.0) then amta:=amta+l 

else amta:=O; 
if (high<-2. 0) then bhta.:=bhta+ 1 

else bhta:=O; 
if(high>2.0) then ahta:=ahta+l 

else ahta:=O; 

{ 3 1-sd checking logic within a run} 
if (low<-1.0) and (mid<-1.0) and (high<-1.0) then bfw:=1; 
if(low>l.O) and (mid>l.O) and (high>l.O) then bfw:=1; 

{ 4 1-sd checking logic across runs} 
if (low<-1. 0) then blfa:=blfa+ 1 

else blfa:=O; 
if(low>l.O) then alfa:=alfa+l 

else alfa:=O; 
if(mid<-1.0) then bmfa:=bmfa+l · 

else bmfa:=O; 
If(mid>l.O) then amfa:=amfa+l 

else amfa:=O; 
if (high<-1. 0) then bhfa:=bhfa+ 1 

else bhfa:=O; 
if (high> I. 0) then ahfa:=ahfa+ 1 

else ahfa:=O; 
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{ 9 xbar within} 
if(low<O.O) and (mid<O.O) and (high<O.O) then btenw:=btenw+3 

else btenw:=O; 
if(low>O.O) and (mid>O.O) and (high>O.O) then atenw:=atenw+3 

else atenw:=O; 

{ 9 xbar across runs} 
if(low<=O.O) then bltena:=bltena+l 

else bltena:=0; 
if(low>O.O) then altena:=altena+l 

else altena:=O; 
if(mid<=O.O) then bmtena:=bmtena+l 

else bmtena:=O; 
if(mid>O.O) then amtena:=amtena+l 

else amtena:=O; 
if (high<=O.O) then bhtena:=bhtena+ 1 

else bhtena:=O; 
if (high>O.O) then ahtena:=ahtena+ 1 

else ahtena:=O; 

{ Summary logic} 
{If no 2 sd screen} 
if ( warn=2) then 
begin 

if (rult=l) and (tresd=l) then tlag:=1; 
if (rulrfs=l) and (rfs=l) then flag:=1; 
if (rultw=l) and (tsdw=l) then flag:=1; 
if (rultw=l) and (blta>=2) then flag:=1; 
if(rultw=l) and (alta>=2) then flag:=1; 
if (rultw=l) and (bmta>=2) then flag:=1; 
if(rultw=l) and (amta>=2) then flag:=1; 
if (rultw=l) and (bhta>=2) then flag:=1; 
if ( rultw= 1) and ( ahta>=2) then flag:= 1; 
if (rulf= 1) and (bfw= 1) then flag:= 1; 
if (rulf=l) and (blfa=4) then flag:=1; 
if (rulf=l) and (alfa=4) then flag:=1; 
if (rulf=l) and (bmfa=4) then flag:=1; 
if (rulf=l) and (amfa=4) then flag:=1; 
if (rulf=l) and (bhfa=4) then flag:=1; 
if (rulf=l) and (ahfa=4) then flag:=1; 
if (rulxb=l) and (btenw=9) then flag:=1; 
if(rulxb=l) and (atenw=9) then tlag:=1; 
if (rulxb=l) and (bltena=9) then flag:=1; 
if (rulxb=l) and (altena=9) then flag:=1; 
if (rulxb=l) and (bmtena=9) then flag:=1; 
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if (rulxb=l) and (amtena=9) then flag:=1; 
if(rulxb=l) and (bhtena=9) then flag:=1; 
if (rulxb=l) and (ahtena=9) then flag:=1; 

end; 

{Using 2 sd screen} 
if (warn= 1) then 
begin 
illJow<-2) or (low>2) or (mid<-2) or (mid>2) or (high<-2) or (high>2) then 

begin 
if (rult=l) and (tresd=l) then flag:=1; 
if (rulrfs=l) and (rfs=l) then tlag:=1; 
if (rultw=l) an~ (tsdw=l) then tlag:=l; 
if (rultw=l) and (blta>=2) then tlag:=1; 
if (rultw=l) and (alta>=2) then tlag:=l; 
if (rultw=l) and (bmta>=2) then tlag:=l; 
if (rultw=l) and (amta>=2)then flag:=l; 
if(rultw=l) and (bhta>=2) then tlag:=l; 
if (rultw=l) and (ahta>=2) then tlag:=l; 
if (rulf=l) and (bfw=l) then tlag:=l; .· · 
if (rulf=l) and (blfa=4) then tlag:=1; 
if (rulf=l) and (alfa=4) then tlag:=1; 
if(rulf=l) and (bmfa=4)then tlag:=l; 
if (rulf=l) and (amfa=4) then tlag:=l; 
if (rulf=l) and (bhfa=4) then tlag:=1; 
if (rulf=l) and (ahfa=4) then tlag:=1; 
if(rulxb=l) and (btenw=9) then tlag:=l; 
if(rulxb=l) and (atenw=9) then flag:=l; 
if (rulxb=l) and (bltena=9) then flag:=1; 
if(rulxb=l) and (altena=9) then flag:=1; 
if (rulxb=l) and (bmtena=9) then flag:=1; 
if(rulxb=l) and (amtena=9) then tlag:=1; 
if (rulxb=l) and (bhtena=9) then flag:=1; 
if(rulxb=l) and (ahtena=9) then tlag:=1; 

end; 
end; 
{ Summary statistics} 
rl:=rl+l; 

end; 
until flag= 1; 

sum:=sum+rl; 
sumsq :=sumsq+( rl *rl); 
rl:=O; 
flag:=O; 
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tresd:=O; rfs:=O; tsdw:=O; blta:=O; alta:=O; 
bmta:=O; amta:=O; bfw:=O; afw:=O; blfa:=O; 
alfa:=O; bmfa:=0; amfa:=0; btenw:=O; atenw:=O; 
bltena:=0; altena:=O; bmtena:=O;amtena:=O; 
bhta:=O; ahta:=O; bhfa:=O; ahfa:=O; bhtena:=O; ahtena:=O; 

end; 
arl:=sum/m; 
sd:=sqrt((sumsq-(m*arl*arl))/(m-1 )); 
writeln('The ARL is ',arl:5:2); 
writeln('The ARLSD is ',sd:5:2); 
nsum:=nsum+arl; 
nsumsq:=nsumsq+(arl*arl); 
end; 

{Final Output} 
writeln('Low Control Shift = ',lshft:5:2); 
writeln('Mid Control Shift= ',mshft:5:2); 
writeln('High Control Shift= ',hshft:5:2); 
writeln; 
farl:=nsum/5; 
fas:=sqrt((nsumsq-(S*farl*farl))/4); 
uci:=farl+2. 776*(fas/(sqrt(5))); 
lci:=farl-2. 776*(fas/( sqrt( 5)) ); 
writeln('The ARL estimate is ',farl:5:2); 
writeln('The upper 95% CI is ',uci:5:2); 
writeln('The lower 95% CI is ',lci:5:2); 

end. 
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Integration of the Non-Central Chi-Sq for N'•2 
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Integration of the Non-Central Chi-Sq for N'=3 
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Integration of the Non-Central T for N'•2 
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Integration of the Non-Central T for N'=3 
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Principal Component Calculations for N'•2 
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Principal Component Calculations for N'=3 
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program costa; 
uses crt, printer; 
var ~n,rj,cause,tlag,num : integer; 

seed : longint; 
efr,ttfr,tottfr,sfr,ttns : real; 
x,h,time,fr,fix,min,tfr : real; 
total, over, shift, blamb, inter, tshift : real; 
totns, ens, tns, d, td, dtot, dfin, tct : real; 
dumb, gen, tlagi, catch, tfix, ttds, totfin : real; 
mint, mintot,tic,tsfr,tcsh : real; 
ffin, tin, par~ iparl, psrt, ipsrt, tottds, fttds, thetds : real; 
psosc,pooc,ptlfr,ptltr,pdt,sc,tcost,cone,ctre : real; 
gtic,gtsfr,gtcsh,gfix,gtin,spsosc,spooc,stlfr,stltr,spdt : real; 
lambda,arl,srt,p,a,b,pfact: array[l..4) of real; 
fai~ctwo ·: array[ 1 .. 3] of real; 

{ This version of the cost model generates a single minimum failure 
from the three failure rates} 

function RandUnif : real; 

{Function RandUnif uses the Marse-Roberts code for generating 
random uniform 0, 1 variates} 

const 
B2El5 = 32768; 
B2El6 = 65536; 
Modulus= 2147473647; 
Multi= 24112; 
Mult2 = 26143; 

var Hil5, Hi31, Lowl5, Lowprd, Ovtlow,Zi: longint; 

begin 
Zi := Seed; 
Hil5 := Zi DIV B2El6; 
Lowprd := (Zi - Hil5 * B2El6) * Multi; 
Lowl5 := Lowprd DIV B2El6; 
Hi31 := Hil5 *Multi+ Lowl5; 
Ovtlow := Hi31 DIV B2El5; 
Zi := (((Lowprd - Lowl5 * B2El6) - Modulus)+ 

(Hi31 - Ovtlow * B2El5) * B2El6) + Ovtlow; 
IF Zi < 0 THEN Zi := Zi + Modulus; 
HilS := Zi DIV B2El6; 
Lowprd := (Zi- Hil5 * B2El6) * Mult2; 
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Lowl5 := Lowprd DIV B2El6; 
Hi31 := Hil5 * Mult2 + Lowl5; 
Ovtlow := Hi31 DIV B2El5; 
Zi := (((Lowprd -Lowl5 * B2El6)- Modulus)+ 

(Hi3 l - Ovtlow * B2E 15) * B2E 16) + Ovtlow; 
IF Zi < 0 THEN Zi := Zi + Modulus; 
Seed :=Zi; 
RandUnif := (2* (Zi DIV 256) + 1) / 16777216.0; 

end; 

begin 
clrscr; 
total:=O; tottfr:=O; totns:=0; dtot:=O; totfin:=O; tottds:=0; 
gtic:=O; gtcsh:=O; gtsfr:=O; gfix:=O; gfin:=O; 

{Upfront information entry} 

write('Enter the 3 failure rates: '); 
readln( lambda[ 1 ], lambda[2], lambda[3 ]); 
writeln; 
write('Enter the 3 arts for the corresponding failure rates: '); 
readln( arl[l], arl[2], arl[3]); 
write In; 
write('Enter SRT a and b for the three failures respectively:'); 
for i:= 1 to 3 do 
readln(a[i],b[i]); 

writeln; 
write('Enter SRT a and b for a false alarm: '); 
readln(a[4],b[4]); 
write In; 
write('Enter the in-control arl: '); 
readln(arl[4]); 
writeln; 
write('Enter the sampling interval (h): '); 
readln(h); 
writeln; 
write('Enter the seed for the random number generator: '); 
readln(Seed); 
write In; 
write('Enter the number of realizations for the simulation: '); 
readln(r); 
write In; 

{ Simulation Section of the program} 
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for j:= I to r do 
begin 

time:=O; flag:=O; shift:=O; min:=O; ttfr:=O; ttns:=O; tfr:=O; 
tic:=O; tsfr:=O; 

{This portion of code generates the minimum failure time of the 
three failure rates} 

for i:= I to 4 do 
pfact[i]:=ln(l-(1/arl[i])); 

for i:= I to 3 do 
fail[i] := -1 *( 1/lambda[i])*ln(Randunit); 

if (fail[l]<fail[2]) and (fail[l]<fail[3]) then 
begin 

min:=fail[ I]; 
cause:=l; 

end; 
if(fail[2]<fail[l]) and (fail[2]<fail[3]) then 

begin 
min:=fail[2]; 
cause:=2; 

end; 
if (fail[3]<fail[l]) and (fail[3]<fail[2]) then 

begin 
min:=fail[3 ]; 
cause:=3; 

end; 

repeat 

{This portion of code compares the failure time with a generated 
time to false rejection. The comparison continues until the 
failure time is reached.} 

begin 
fr:=(trunc( (ln(randunif) )/pfact[ 4 ])+I); 
tfr:=time+((fr)*h); {ttns taken out} 
if tfr<min then 

begin 
time:=tfr; 
tic:=tic+time; 
fix:=a[4]+(b[ 4]-a[ 4])*Randu~ 
tsfr: =tsfr+fix; 
ttfr:=ttfr+ I; 
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time:=time+fix; · 
min:=min+fix; 
ttns:=h-(h*((fix/h)-trunc( (fix/h)) )); 

end 
else 

begin 
shift:=min; 
tlag:=l; 

end; 
end; 
until flag= I; 

d:=(min-timeKtrunc((min-time)lh)*h); 

{This portion of code determines the time to fix the failure 
given which of 3 failures has occurred} 

if cause= I then 
begin 
catch:=(trunc((ln(randunit) )/pfact( I])+ I); 
tfix:=a[ I ]+(b[l ]-a[ I ])*randunif; 

end; 
if cause=2 then 

begin 
catch:=(trunc( (ln(randunit) )/pfact[2])+ I); 
tfix:=a[2]+(b[2]-a[2])*randunif; 

end; 
if cause=3 then 

begin 
. catch:=(trunc((ln(randunit) )/pfact[3 ])+I); 
tfix:=a[3)+(b(3)-a[3 ])*randunif; 

end; 

ttds:=(min-d) + (catch*h); 
tcsh:=ttds-min; 
fin:=ttds+tfix; 

{This portion of code collects information on the amount 
of time the system is in a given state} 

total:=total+shift; 
tottft:=tottfi +ttfi; 
dtot:=dtot+d; 
totfin:=totfin+fin; 

ISO 



gtic:=gtic+(min-tsfr); 
gtsfr:=gtsfr+tsfr; 
gtcsh:=gtcsh+tcsh; 
gfix:=gfix+tfix; 
gfin:=gfin+tin; 

end; 

over:=totaJ/r; 
sfr:=tottfr/r; 
dfin:=dtot/r; 
ffin:=totfin/r; 
spsosc:=gtic/gfin; 
spooc:=gtcsh/gfin; 
stlfr:=gtsfr/gfin; 
stltr:=gfix/gfin; 
spdt:=stlfr+stltr; 

{ theory section } 

iparl:=O; ipsrt:=O; 
blamb:=lambda[ I ]+lambda[2]+lambda[3 ]; 
inter:=exp( (-1 *blamb )*h); 
efr:= (inter/(l-inter))/arl[4]; 
tshift:=(1/blamb )+((inter/( I-inter) )/arl[ 4 ])*(( a[ 4]+b[ 4])/2); 
tns:=(inter/( I-inter)); 
td:=(1-(l +blamb*h)*inter)/(blamb*( I-inter)); 
for i:= I to 3 do 

srt[i] :=( a[i]+b[i])/2; 
for i:= I to 3 do 

. p[i]:=lambda[i]/blamb; 
parl:=p[l]*arl[l]+p[2]*arl[2]+p[3]*arl[3]; 
psrt:=p[ I ]*srt[ I ]+p[2]*srt[2]+p[3]*srt(3 ]; 
thetds:=h*parl; 
tct:=tshift+(h*parl)-td+psrt; 
psosc:=( 1/blamb )/tct; 
pooc:=(h*parl-td)/tct; 
ptlfr:=( efr*(( a[ 4]+b[ 4])/2))/tct; 
ptltr:=psrt/tct; 
pdt:=ptlfr+ptltr; 

{ sc:=(nwn*cfour)/h; 
tcost:=psosc*cone+pooc*(p[ I ]*ctwo[ I ]+p[2]*ctwo[2]+p[3 ]*ctwo[J ])+pdt*ctre+sc;} 

{The following section prints out the comparison between the simulation 
and theoretical remls} 
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writeln('The simulation average time to shift is ',over:4:2); 
writeln('The theoretical average time to shift is ',tshift:4:2); 
writeln('The simulation expected num fr is ',sfr:4:2); 
writeln('The theoretical exp. num fr is ',efr:4:2); 
writeln('The simulation dis ',dfin:4:2); 
writeln('The theoretical dis ',td:4:2); 
writeln('The simulation tct is ',ffin:4:2); 
writeln('The theoretical tct is ',tct:4:2); 
writeln('The simulation percent sosc is ',spsosc:4:3); 
writeln('The theoretical percent sosc is ',psosc:4:3); 
writeln('The simulation percent ooc is ',spooc:4:3); 
writeln(iThe theoretical percent ooc is ',pooc:4:3); 
writeln('The simulation percent time looking for fr is ',stlfr:4:3); 
writeln('The theoretical percent time looking for fr is ',ptlfr:4:3); 
writeln('The simulation percent time looking for tr is ',stltr:4:3); 
writeln('The theoretical percent time looking for tr is ',ptltr:4:3); 
writeln('The simulation percent down time is ',spdt:4:3); 
writeln('Thetheoretical percent down time is ',pdt:4:3); 

end. 
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program costb; 
uses crt, printer; 
var i,n,r,j,cause,flag,num : integer; 

seed : longint; 
efr,ttfr,tottfr,sfr,ttns : real; 
x,h,time,fr,fix,min,tfr : real; 
total, over, shift, blamb, inter, tshift : real; 
totns, ens, tns, d, td, dtot, dfin, tct : real; 
dumb, gen, flag~ catch, tfix, ttds, totfin : real; 
mint, mintot,tic,tsfr,tcsh : real; 
ffin, fin, parl, iparl, psrt, ipsrt, tottds, fttds,thetds : real; 
psosc, pooc, ptlfr, ptltr, pdt, sc, tcost, cone, ctre : real; 
gtic,gtsfr,gtcsh,gfix,gfin,spsosc,spooc,stlfr,stltr,spdt : real; 
lambda,arl,srt,p,a,b,pfact: array(l..4] of real; 
fail,ctwo : array[l..3] of real; 

{This version of the cost model regenerates a failure following 
each false rejection} 

function RandUnif: real; 

{Function RandUnif uses the Marse-Roberts code for generating a 
uniform 0, 1 random variate} 

const 
B2E15 = 32768; 
B2E16 = 65536; 
Modulus= 2147473647; 
Multl = 24112; 
Mult2 = 26143; 

var Hi15, Hi31, Low15, Lowprd, Ovflow,Zi: longint; 

begin 
Zi := Seed; 
Hil5 := Zi DIV B2E16; 
Lowprd := (Zi - Hi15 * B2E16) * Multl; 
Low15 := Lowprd DIV B2E16; 
Hi31 := Hi15 * Multl + Low15; 
Ovflow := Hi31 DIV B2E15; 
Zi := ( ( (Lowprd - Low 15 * B2E 16) - Modulus) + 

(Hi31 - Ovflow * B2E15) * B2El6} + Ovflow; 
IF Zi < 0 THEN Zi := Zi + Modulus; 
Hi15 := Zi DIV B2El6; 
Lowprd := (Zi - Hi 15 * B2E 16) * Mult2; 
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Lowl5 := Lowprd DN B2El6; 
Hi31 := Hil5 * Mult2 + Lowl5; 
Ovflow := Hi3 l DN B2El5; 
Zi := (((Lowprd-Lowl5 * B2El6)-Modulus) + 

(Hi3 l - Ovflow * B2E 15) * B2E 16) + Ovflow; 
IF Zi < 0 THEN Zi := Zi + Modulus; 
Seed :=Zi; 
RandUnif := (2* (Zi DIV 256) + I) I 16777216.0; 

end; 

begin 
clrscr; 
total:=O; tottfr:=O; totns:=O; dtot:=O; totfin:=O; tottds:=O; . 
gtic:=0; gtcsh:=O; gtsfr:=O; gfix:=O; gfin:=O; . 

{Upfront information entry} 

write('Enter the 3 failure rates: '); 
readln(lambda[l], lambda[2], lambda[3]); 
writeln; 
write('Enter the 3 arls for the corresponding failure rates: '); 
readln(arl[l], arl[2], arl[3]); 
writeln; 
write('Enter SRT a and b for the three failures respectively: '); 
for i:= 1 to 3 do 

readln( a[i],b[i]); 
writeln; 
write('Enter SRT a and b for a false alarm:'); 
readln(a[ 4],b[ 4]); 
writeln; 
write('Enter the ·in-control arl: '); 
readln( arl[ 4 ]); 
writeln; 
write('Enter the sampling interval (h): '); 
readln(h); 
writeln; 
write('Enter the seed for the random number generator: '); 
readln(Seed); 
writeln; 
write('Enter the number of realizations for the simulation: '); 
readln(r); 
writeln; 

{ Simulation Section of the program} 
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for j := 1 to r do 
begin 
time:=0; flag:=O; shift:=O; min:=O; ttfr:=O; tic:=O; tsfr:=O; 

{This portion of code generates 3 failures times plus a time to 
false rejection. It takes the minimum of the four and continues 
generating failures untial a failure occurs before a false rejection.} 

for i:= 1 to 4 do 
pfact[i]:=ln(l-(1/arl[i])); 

repeat 
begin 
for i:= 1 to 3 do 

fail[i] := -1 *( 1/lambda[i])*ln(Randunif); 
fr:=(trunc((ln(randunif))/pfact[ 4])+ 1 )*h; 

if (fail[l]<fail[2]) and (fail[l]<fail[3]) and (fail[l]<fr) thtm 
begin 

shift:=time+fail[ 1 ]; 
cause:=};. 
tic:=tic+fail[ 1 ]; 
flag:=}; 

end; 
if (fail[2]<fail[l]) and (fail[2]<fail[3]) and (fail[2]<fr) then 

begin 
shift:=time+fail[2]; 
cause:=2; 
tic:=tic+fail[2]; 
flag:=l; 

end; 
if (fail[3]<fail[l]) and (fail[3]<fail[2]) and (fail[J]<fr) then 

begin 
shift:=time + fail[3 ]; · 
cause:=3; 
tic:=tic+fail[3]; 
flag:=l; 

end; 
if(fr<fail[l]) and (fr<fail[2]) and (fr<fail[3]) then 

begin 
fix:=a[ 4]+(b[ 4]-a[ 4])*Randunif; 
tsfr:=tsfr+fix; 
time:=time+fix+fr; 
tic:=tic+fr; 
ttfr:=ttfr+ 1; 
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end; 

end; 
until flag= 1 ; 

d:=(shift-time)-(trunc((shift-time)/h)*h); 

{ This portion of code determines the time to fix the 
failure given which of the 3 failures has occurred. } 

if cause= 1 then 
begin 

catch:=( trunc( (ln( randunit) )/pfact[ 1 ])+ 1 ); 
tfix:=a[ I ]+(b[ 1 ]-a[ I ])*randunif; 

end; 
if cause=2 then 
begin 

catch:=( trunc( (ln( randunit) )/pfact[2])+ 1 ); 
tfix:=a[2]+(b[2]-a[2])*randunif; 

end; 
if cause=3 then 
begin 

catch:=( trunc( (ln( randunit) )/pfact[3 ])+I); 
tfix:=a[3 ]+(b[3 ]-a[3 ])*randunif; 

end; 

ttds:=(shift-d) + (catch*h); 
tcsh:=ttds-shift; 
fin:=ttds+tfix; 

{This portion of code collects information on the amount of 
time the system is in a given state.} 

total :=total+shift; 
tottfr:=tottfr+ttfr; 
dtot:=dtot+d; 
totfin:=totfin+fin; 
gtic:=gtic+tic; 
gtsfr:=gtsfr+tsfr; 
gtcsh:=gtcsh+tcsh; 
gfix:=gfix+tfix; 
gfin:=gfin+fin; 

end; 
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over:=totaVr; 
sfr:=tottfr/r; 
dfin:=dtot/r; 
ffin:=totfin/r; 
spsosc:=gtic/gfin; 
spooc:=gtcsh/gfin; 
stlfr:=gtsfr/ gfin; 
stltr:=gfix/ gfin; 
spdt:=stlfr+stltr; 

{ Theory section of the program} 

iparl:=O; ipsrt:=O; 
blamb:=lambda[l]+lambda[2]+lambda[3]; 
inter:=exp((-1 *blamb )*h); 
efr:= (inter/(l-inter))/arl[4]; 
tshift:=(l/blamb)+((inter/(l-inter))/arl[4])*((a[4]+b[4])/2); 
tns:=(inter/( I-inter)); 
td:=(1-(1 +blamb*h)*inter)/(blamb*(l-inter)); 
for i:= 1 to 3 do 

srt[i] :=( a[i]+b[i])/2; 
for i:= 1 to 3 do 

p[i] :=lambda[i]/blamb; 
parl:=p[l]*arl[l]+p[2]*arl[2]+p[3]*arl[3]; 
psrt:=p[ 1 ]*srt[ I ]+p[2]*srt[2]+p[3]*srt[3]; 
thetds:=h*parl; 
tct:=tshift+(h*parl)-td+psrt; 
psosc:=( 1/blamb )/tct; 
pooc:=(h*parl-td)/tct; 
ptlfr:=( efr*((a[ 4]+b[ 4])/2))/tct; 
ptltr:=psrt/tct; 
pdt:=ptlfr+ptltr; 

{ sc:=(num*cfour)/h; 
tcost:=psosc*cone+pooc*(p[l]*ctwo[l]+p[2]*ctwo[2]+p[3]*ctwo[3])+pdt*ctre+sc;} 

{ The following section prints out the comparison between the 
simulation and theoretical results.} 

writeln('The simulation average time to shift is ',over:4:2); 
writeln('The theoretical average time to shift is ',tshift:4:2); 
writeln('The simulation expected number of false rejects is ',sfr:4:2); 
writeln('The theoretical expected number of false rejects is ',efr:4:2); 
writeln('The simulation dis ',dfin:4:2); 
writeln('The theoretical dis ',td:4:2); 
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writeln('The simulation total cycle time (tct) is ',ffin:4:2); 
writeln('The theoretical total cycle time (tct) is ',tct:4:2); 
writeln('The simulation percent sosc is ',spsosc:4:3); 
writeln('The theoretical percent sosc is ',psosc:4:3); 
writeln('The simulation percent ooc is ',spooc:4:3); 
writeln('The theoretical percent ooc is ',pooc:4:3); 
writeln('The simulation percent time looking for false rejects is ',stlfr:4:3); 
writeln('The theoretical percent time looking for false rejects is ',ptlfr:4:3); 
writeln('The simulation percent time looking for true rejects is ',stltr:4:3); 
writeln('The theoretical percent time looking for true rejects is ',ptltr:4:3); 
writeln('The simulation percent down time is ',spdt:4:3); 
writeln('The theoretical percent down time is ',pdt:4:3); 

end. 
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APPENDIXG 

Computer Code for Theoretical Cost Model 
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program costc; 
uses crt,printer; 
var ~n,rj : integer; 

efr,ttfr,tottfr,sfr,ttns,thetds,num : real; 
x,hr, h, blamb, inter, tshift, ens, tns, td, tct : real; 
dumb, gen, flagi, catch, parl, iparl, psrt, ipsrt : real; 
psosc,pooc,ptlfr,ptltr,pdt,sc, tcost,cone,ctre,cfoui : real; 
lambda,arl,srt,p,pfact : array[l..4] of real; 
ctwo: array[l..3] of real; 

{ This program contains only the theoretical cost model results without any simulation} 

begin 
clrscr; 

{Upfront information entry} 

write('Enter the 3 failure rates: '); 
readln( lambda[l], lambda[2], lambda[3]); 
writeln; 
write('Enter the 3 arls for the corresponding failure rates: '); 
readln( arl[ I], arl[2], arl[3 ]); 
write In; 
write('Enter expected SRTs for the three failures respectively: '); 
for i:= I to 3 do 
readln(srt[i]); 

write In; 
write('Enter the expected SRT for a false alarm:'); 
readln( srt[ 4 ]); 
writeln; 
write('Enter the in-control arl: '); 
readln( arl[ 4]); 
writeln; 
write('Enter the sampling interval (h): '); 
readln(h); · 
writeln; 
write('Enter cost factor CI: '); 
readln( cone); 
writeln; 
write('Enter the three respective costs for C2: '); 
for i:= I to 3 do 

readln( ctwo[i]); 
write In; 
write('Enter the cost factor C3: '); 
readln( ctre ); 
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writeln; 
write('Enter the cost factor C4: '); 
readln( cfour); 
write In; 
write('Enter the sample size, N: '); 
readln(num); 
write In; 

{Theory calculation section of the program} 

iparl:=O; ipsrt:=O; 
blamb:=lambda[ 1 ]+lambda[2]+lambda[3 ]; 
inter:=exp( (-1 *blamb )*h); 
efr:= (inter/{l-inter))/arl[4]; 
tshift:=(1/blamb )+((inter/(1-inter))/arl[ 4])*(srt[ 4]); 
tns:=(inter/( 1-inter)); 
td:=(1-(l+blamb*h)*inter)/(blamb*(l-inter)); 
for i:= 1 to 3 do 

p[i] :=lambda[i]/blamb; 
parl:=p[l ]*arl[l ]+p[2]*arl[2]+p[3]*arl[3 ]; 
psrt:=p[l]*srt[l]+p[2]*srt[2]+p[3]*srt[3]; 
thetds:=h*parl; 
tct:=tshift+(h*parl)-td+psrt; 
psosc:=(1/blamb)/tct; 
pooc:=(h*parl-td)/tct; 
ptlfr:=( efr*( srt[ 4 ]) )/tct; 
ptltr:=psrt/tct; 
pdt:=ptlfr+ptltr; 
sc:=(num*cfour)/h; 
tcost:=psosc*cone+pooc*(p[ I ]*ctwo[ I ]+p[2]*ctwo[2]+p[3 ]*ctwo[3 ])+pdt*ctre+sc; 

{The following section prints out the results.} 

writeln('The theoretical percent sosc is ',psosc:4:3); 
writeln('The theoretical percent ooc is ',pooc:4:3); 
writeln('The theoretical percent time looking for false rejects is ',ptlfr:4:3); 
writeln('The theoretical percent time looking for true rejects is ',ptltr:4:3); 
writeln('The theoretical percent down time is ',pdt:4:3); 
writeln('The total cost per unit time is ',tcost:4:3); 

end. 
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