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Abstract

In recent work conducted at the University of Oklahoma’s Advanced Radar Re-

search Center, it has been shown that using orthogonal frequency-division multiplex-

ing (OFDM) offers a significant time reduction in taking wideband radar cross section

(RCS) measurements, compared with traditional techniques. This has led to an interest

as to whether or not the reduced measurement time enables wideband RCS measure-

ments of moving targets. In an attempt to answer this question, this thesis presents a

simulation framework for RCS extraction of a moving target.

Because the target is moving, it is assumed that measurements are taken in an out-

door environment. As such, ground clutter is the primary competing interference. It

is shown that in order to recover the target RCS, range-Doppler filtering must be per-

formed. As a result, the filter shape, available Doppler resolution, and signal-to-noise

ratio become the primary determiners of performance. Some closed-form expressions

are derived to help determine acceptable system parameters and improve performance.

Interfering signals from other transmitters are also considered in this work. It is

shown that if an interfering signal corrupts part of the spectrum, filtering is impossible

because the target cannot be located in the range-Doppler space. To combat this, the

spectrum is nulled at points where interference occurs. This enables filtering to be

applied; however, nulls will exist in the RCS measurement. Finally, some spectral

reconstruction techniques are discussed and tested with the purpose of estimating pieces

of the spectrum that were lost.

xiii



Chapter 1

Introduction

Traditionally, taking radar cross section (RCS) measurements is a time-consuming

process that requires the target to be stationary. Taking RCS measurements can be

time-consuming due to not only the dependence on the transmitted wave’s incidence

angle, but also its frequency. Stepped frequency continuous wave (SFCW) radars are

typically employed, which move through discrete frequency steps to measure RCS as a

function of frequency [2] [3]. For a large amount of frequency steps, the measurement

time can be quite long, since the frequencies are sent individually. On the other hand,

orthogonal frequency-division multiplexing (OFDM) waveforms have the capability of

sending many frequencies simultaneously in a single pulse. OFDM waveforms were

designed this way for use in wireless communications, since data can be modulated

onto the different frequencies, allowing for fast data transfer. Despite the fact that

OFDM is traditionally a communications waveform, work has been done in developing

processing techniques for the received OFDM signal so that radar measurements (range,

velocity, etc.) can be obtained [4] [5].

Recent experiments at the University of Oklahoma’s Advanced Radar Research

Center have shown that OFDM can be used to obtain RCS measurements for frequen-

cies contained in the OFDM waveform. This fact has led to a considerable decrease

in the amount of time required to take RCS measurements. As a result, it is of inter-
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est to see if this increased speed allows for wideband RCS measurements to be taken

of moving targets. This thesis presents a simulation framework that was developed

to assess the feasibility and signal processing requirements for RCS measurements of

moving targets using OFDM. The goal is to provide insight and analysis for each step

of the process in order to justify and enable future real-world experiments. In addition,

a congested spectrum problem is presented in order to provide analysis on the effect of

interfering signals from other transmitters, as well as how to mitigate this interference.

1.1 Outline

Chapter 2 presents the fundamental information required to understand the simu-

lation model and subsequent analysis. The first topic is a brief derivation of the radar

range equation, which is central to the RCS extraction process. The concept of RCS is

then discussed, which provides some useful background into the quantity that we are in-

terested in. Next, a quick sprint through random variable and random process theory is

provided. This theory relates to both the foundation of the simulation model, as well as

spectral estimation theory that is discussed at the end of this thesis. Finally, the OFDM

signal model is presented, as well as the fundamentals of OFDM radar processing.

Chapter 3 discusses the MATLAB simulation. It starts by discussing how the base

model was developed, including target information, noise, and ground clutter. It then

discusses window selection for filtering and how the filters are applied. This natu-

rally leads to RCS extraction, where several results are presented. Some equations are

then derived to help determine simulation parameters, as well as improve performance.

Lastly, some important practical considerations for performing real-world tests are dis-

cussed.

Chapter 4 considers what happens if an interfering signal has corrupted part of

2



the spectrum. The problem statement is provided first, followed by an analysis of the

effect of including nulls in the spectrum. A few simulation tests are then presented,

followed by a discussion of how concepts from spectral estimation theory may be used

to reconstruct the spectrum.

Chapter 5 presents the conclusions and discusses possible avenues of future work.

3



Chapter 2

Background

Before discussing the simulation model and subsequent work, some background

information must be provided to ensure sufficient understanding. This chapter is dedi-

cated to providing detailed explanations of the requisite knowledge. This includes the

radar range equation, radar cross section, fundamental random variable and random

process theory, as well as foundations for the OFDM signal model and OFDM radar

processing.

2.1 Radar Range Equation

Let us start by considering a radar transmitter that transmits a total peak power Pt

(watts). If the antenna of this transmitter has an isotropic radiation pattern, then the

power density Qi (W/m2) is given by the total power divided by the surface area of a

sphere with radius R

Qi =
Pt

4πR2
(2.1)

For an antenna that is nonisotropic (all realizable antennas), the power density will be

concentrated in a specific direction; this is called a directional antenna. Such an antenna

has a directivity, which is the ratio of its radiation intensity to that of an isotropic source,

defined over all possible directions [6]. Now consider a directional antenna that has

4



some transmit gain G. The gain of a directional antenna is the directivity reduced

by losses that arise from the antenna’s radiation efficiency, as well as other losses in

the transmitter system [6]. Denoting the transmit gain as Gt, the power density for a

directional antenna is given by

Qi =
PtGt

4πR2
(2.2)

Upon incidence with a target, part of the transmitted signal will be reflected back

towards the radar. The power of this reflected signal is the product of the incident

power density, Qi, and a factor called the radar cross section (RCS) σ. RCS will be

discussed in more detail in the next section. For now, it is only important to note that

RCS has units of square meters (m2). The total reflected power, Prefl (watts), can now

be expressed as

Prefl = Qiσ =
PtGtσ

4πR2
(2.3)

The reflected power density at the radar, Qr, is found by dividing the total reflected

power by the surface area of a sphere with radius R

Qr =
Prefl

4πR2
=

PtGtσ

(4π)2R4
(2.4)

The received power, Pr (watts), from a target at range R at the receive antenna is given

by [7]

Pr = QrAe =
PtGtAeσ

(4π)2R4
(2.5)

where Ae is the effective area of the receiving antenna (m2). [6] gives the effective

antenna area as

Ae =
λ2G

4π
(2.6)

where λ is the operating wavelength and G is the antenna gain. By inserting (2.6) into

5



(2.5) and changing G to Gr, we obtain a typical form of the radar range equation

Pr =
PtGtGrλ

2σ

(4π)3R4
(2.7)

By including an extra loss term L into (2.7), we obtain a more complete version of

the radar range equation that accounts for various losses that can occur. For a given

radar configuration and scenario, the loss term can vary greatly, so L is calculated on

a case-by-case basis. More information about possible sources of loss can be found in

[7]. The complete version of the radar range equation is given by

Pr =
PtGtGrλ

2σ

(4π)3R4L
(2.8)

Although (2.8) is but one of many configurations that the radar range equation can

take, it is quite easy to rearrange this form to directly solve for RCS

σ =
Pr(4π)

3R4L

PtGtGrλ2
(2.9)

As long as all of the variables on the right side of (2.9) are accurately measured or

estimated, it should be possible to calculate the target RCS.

2.2 Radar Cross Section

The topic of radar cross section will now be discussed in further detail. A general

description will be given first to provide intuitive understanding, followed by a brief in-

troduction to different scattering regimes. Finally, the RCS of a sphere will be discussed

because of its importance to this work.

6



2.2.1 General Description

The IEEE dictionary of standard terms [8] defines radar cross section (RCS) as “4π

times the ratio of the power per unit solid angle scattered in a specified direction of the

power per unit area in a plane wave incident on the scatterer from a specified direction.

More precisely, it is the limit of that ratio as the distance from the scatterer to the point

where the scatterer power is measured approaches infinity.” This definition is given

mathematically by [1] as

σ = lim
R→∞

4πR2 |E
scat|2

|Einc|2
= lim

R→∞
4πR2Ps

Pi

(2.10)

where Escat is the scattered electric field, Einc is the incident electric field, Ps is the

scattered power density (W/m2), Pi is the incident power density, and R is the distance

between the target and point of measurement. Because of the limit that appears in

(2.10), it is assumed that the measurement point is a sufficient distance away from the

target so that near-field effects can be ignored.

As with the radar range equation, a brief derivation is helpful for understanding.

[1] provides such a derivation for the RCS definition given in (2.10). We begin by

assuming an incident power density Pi W/m2 at the target. The reradiated power is

then given by the multiplication of the incident power density and the target’s RCS.

This gives the reradiated power as σPi W. From here, it is assumed that the reradiated

power is scattered uniformly in all 4π steradians of space, which gives the scattered

power density at a distance R from the target as [1]

Ps =
σPi

4πR2
(2.11)

7



(2.11) can then be solved for σ, giving

σ = 4πR2Ps

Pi

(2.12)

By adding the limit as R goes to infinity (point of measurement is in far-field) to (2.12),

we obtain the RCS definition given by (2.10).

In general, RCS is dependent on the target’s shape, material, and orientation, as

well as the transmitted signal’s frequency and polarization [1]. RCS is also typically

expressed on a logarithmic power scale because of the wide range of values that RCS

can take. This unit is denoted as dBsm (decibels per square meter) and is given by [1]

σdBsm = 10 log10

(
σm2

σref

)
(2.13)

where σm2 is the RCS expressed in square meters and σref is a reference RCS (typically

1 m2).

2.2.2 Scattering Regimes & Sphere RCS

The details of the interaction between the incident EM wave and target are critical

for characterizing RCS. In particular, the electrical size of the target is an important

feature that affects RCS. The electrical size of a target is given by the ratio of its physical

length to the wavelength of the incident wave. Depending on the value of electrical

size, three primary scattering regimes can be observed for the target RCS; the Rayleigh

region, resonant region, and optics region. The typical illustration of RCS over these

regions is that of a sphere and is shown in Figure 2.1. [9] provides an equation for the
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normalized RCS of a perfectly conducting sphere, which is a Mie series given by

σ

πa2
=

j

ka

∞∑
n=1

(−1)n(2n+ 1)bn (2.14)

where

bn =
kaJn−1(ka)− nJn(ka)

kaH
(1)
n−1(ka)− nH

(1)
n (ka)

− Jn(ka)

H
(1)
n (ka)

(2.15)

where a is the radius of the sphere, k is the wavenumber (k = 2π/λ), λ is the wave-

length, Jn is a n-order spherical Bessel function of the first kind, H(1)
n is a n-order

Hankel function given by

H(1)
n = Jn(ka) + jYn(ka) (2.16)

and Yn is a n-order spherical Bessel function of the second kind [9].

Figure 2.1: Radar cross section of a metallic sphere over the three scattering regimes
[1]
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The first scattering region, known as Rayleigh scattering, occurs when the incident

wavelength is much larger than the target size. Because the wavelength is much larger,

the incident wave phase is approximately constant across the target body. As a result,

each part of the target experiences the same incident field, which means that this situ-

ation can be solved as a static field problem (although the incident field still changes

with time). Because of the spatially static fields, a dipole moment is induced across the

target, which is the primary scattering mechanism of Rayleigh scattering [1]. A dipole

moment is given by

p = qd (2.17)

where q is the separated charge and d is the charge separation. Because the dipole mo-

ment increases with increasing charge separation d, an incident wave that is polarized

parallel to a larger dimension of the target body will experience greater scattering (i.e.,

a larger RCS). From Figure 2.1 it can be seen that through the Rayleigh region the RCS

increases quite dramatically with increasing frequency. This is also an important char-

acteristic of Rayleigh scattering. From [1], we have that the scattered electric field Es

is proportional to ωJ and that the current density J is given by

J =
dq

dt
= jωq (2.18)

where ω is the angular frequency of the incident wave. It then follows that Es ∝ ω2q,

which means that the RCS (proportional to (Es)2) is proportional to ω4 [1]:

σ ∝ ω4 (2.19)

The next scattering regime, known as the resonant region, occurs when the incident

wavelength is on the order of the target size; that is, the target is between 1 and 10λ in
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size [1]. In this region, the phase of the incident field varies greatly over the extent of

the target body. Because of this, we see new surface wave effects that play an important

role in EM scattering. For the case of a sphere, a wave of EM energy stays attached

to the surface and travels around the entire structure; this is known as a creeping wave.

Due to interference from this creeping wave, we see an oscillatory behavior in the

resonant region of Figure 2.1.

When the incident wavelength becomes much smaller than the target size, we enter

the optics region. The optics region has several different scattering mechanisms that can

affect the target RCS, including specular scattering, end-region scattering, diffraction,

and multiple-bounce [1]. In the case of a sphere, the primary mechanisms are likely

to be specular scatting and multiple-bounce because of the smooth geometry. Specular

scattering is the typical optics scattering in which the angle of reflection is equal to

the angle of incidence. If the wavelength is sufficiently small enough compared to

the target size (and the target is smooth), an approximation can be made where the

target surface is modeled by a conducting plane tangential to the surface [10]. This can

provide a simple expression for the radar cross section; however, multiple-bounce may

also be an important factor, depending on the scenario. Multiple-bounce occurs when

the scattered field reflects off the primary target and makes additional reflections before

arriving back again at the radar receiver.

2.3 Random Variables & Processes

Throughout this work there are times where some background in probability and

statistics is helpful for understanding. As such, this section provides a brief overview

of the fundamentals of random variables and random processes. Since this topic is large

in scope, only the necessities are discussed; more details can be found in [11].
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2.3.1 Random Variable Fundamentals

In the most general sense, a random variable is a function that maps a set of possible

outcomes to a set of numbers. The set of possible outcomes is viewed through the lens

of probability. For example, take the case of rolling a dice. Assuming that the dice

is fair, we assign a 1/6 chance that the dice will land on any given face. For a given

dice roll, or trial, the face that the dice lands on is recorded and assigned some number.

We can do this for each dice face, that is, we have developed a mapping from the dice

outcomes to a set of numbers. For this simple example, we have developed a discrete

random variable; however, from here on out the discussion will focus on continuous

random variables. The principles are the same for both, but it should be noted that for a

continuous random variable x, the probability that x takes on a specific value P (x = x)

is zero.

For a random variable we can define a function Fx(x) = P (x < x), which is known

as the cumulative distribution function (CDF). This function describes the probability

accumulation of the random variable. For example, Fx(10) = P (x < 10) yields a

number that gives the probability that the random variable x takes on a value less than

10. It is important to note that Fx(−∞) = 0 and Fx(∞) = 1. Furthermore, the CDF

monotonically increases between these points, i.e., its slope is always greater than or

equal to 0. The derivative of the CDF gives the probability density function (PDF):

fx(x) =
dFx(x)

dx
(2.20)

it then follows that ∫ ∞

−∞
fx(x)dx = 1. (2.21)

The PDF and CDF can also be used to determine the probability that x lies between
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some values x1 and x2

P (x1 < x < x2) = Fx(x2)− Fx(x1) =

∫ x2

x1

fx(x)dx. (2.22)

Some common continuous random variables include the Gaussian, exponential, uni-

form, and Rayleigh random variables; their PDFs are provided below for reference.

Gaussian:

fx(x) =
1√
2πσ2

e−(x−µ)2/(2σ2) (2.23)

Exponential:

fx(x) =


λe−λx x ≥ 0

0 otherwise
(2.24)

Uniform:

fx(x) =


1

b−a
a ≤ x ≤ b

0 otherwise
(2.25)

Rayleigh:

fx(x) =


x
σ2 e

−x2/(2σ2) x ≥ 0

0 otherwise
(2.26)

Two important attributes of random variables are mean and variance. The mean, or

expected value, of a random variable is defined as

µx = E{x} =

∫ ∞

−∞
xfx(x)dx (2.27)

More generally, the mean is the first moment of a random variable. The moments for a

13



random variable are defined for n ≥ 1 as

mn = E{xn} =

∫ ∞

−∞
xnfx(x)dx (2.28)

The variance is defined as

σ2
x = Var{x} = E

{
(x − µx)

2
}
=

∫ ∞

−∞
(x− µx)

2fx(x)dx. (2.29)

The variance is more generally called the second central moment. The central moments

for a random variable are defined for n ≥ 1 as

ζn = E {(x − µx)
n} =

∫ ∞

−∞
(x− µx)

nfx(x)dx. (2.30)

The last important concept for random variables is that you can have joint probabil-

ity distributions for multiple random variables. If we consider the random variables x

and y, the joint PDF is given by fxy(x, y). We can then define the correlation of x and

y as

COR(x, y) = E{xy} =

∫ ∞

−∞

∫ ∞

−∞
xyfxy(x, y)dxdy. (2.31)

We also define the covariance as

COV(x, y) = E{(x−µx)(y−µy)} =

∫ ∞

−∞

∫ ∞

−∞
(x−µx)(y−µy)fxy(x, y)dxdy. (2.32)

The covariance and correlation are related by

E{(x − µx)(y − µy)} = E{xy} − E{x}E{y}. (2.33)

x and y are said to be uncorrelated if E{xy} = E{x}E{y}, i.e., the covariance is zero.

14



If the correlation of x and y is zero (E{xy} = 0), then they are said to be orthogonal.

2.3.2 Random Processes

Up to this point, we have been concerned with the statistical properties of a single

event through the use of random variables. In order to allow for practical application,

we must now add an extra dimension to include random measurements that may vary

over time and/or space. The mean is now generalized as being time-varying and is

given by

µx(t) = E{x(t)} =

∫ ∞

−∞
xf(x, t)dx. (2.34)

The autocorrelation of a random process is defined as

Rx(t1, t2) ≜ E{x(t1)x∗(t2)}. (2.35)

where ∗ denotes complex conjugation. The autocovariance is then given by

Cx(t1, t2) = Rx(t1, t2)− µx(t1)µ
∗
x(t2). (2.36)

A random process is said to be wide-sense stationary (WSS) if the mean is a constant

and the autocorrelation function (ACF) depends only on the difference between time

indices. Mathematically, E{x(t)} = µx and E{x(t1)x∗(t2)} = Rx(t1 − t2) = Rx(τ).

This naturally leads to a restatement of (2.36) for a WSS process

Cx(τ) = Rx(τ)− |µx|2. (2.37)

Another useful fact for WSS processes is that the Fourier transform of the ACF

describes the spectral content of the random process, known as the power spectral
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density (PSD). The PSD represents the density of average power versus frequency and

is formally given by

Sx(f) =

∫ ∞

−∞
Rx(τ)e

−j2πfτdτ. (2.38)

Note that the average power of the process is given by the integral of the PSD:

∫ ∞

−∞
Sx(f)df = Rx(0) = PAV E. (2.39)

For a WSS process that is said to be white, the PSD is a constant k. Since the PSD

is a constant, the ACF is a delta function scaled by this constant, R(τ) = kδ(τ). In

other words, a white process is one that is only correlated to itself when compared at

the same point in time.

The final property about random processes to be mentioned involves the output of

a linear, time-invariant (LTI) system when a WSS random process is the input. For a

LTI system with impulse response h(t), if the input random process has an ACF Rx(τ),

then the output ACF Ry(τ) is given by

Ry(τ) = Rx(τ)⊛ h∗(−τ)⊛ h(τ). (2.40)

where ⊛ denotes convolution. Taking the Fourier transform of (2.40), we obtain

Sy(f) = Sx(f)H
∗(f)H(f) = Sx(f)|H(f)|2. (2.41)

2.4 OFDM Signal Model

Orthogonal frequency-division multiplexing (OFDM) is a type of waveform that is

a popular choice for broadband wired and wireless communication systems. This is
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for a number of reasons, including its resilience to intersymbol interference (caused

by multipath propagation) and its excellent scalability with faster data rates [12]. Of

course, the primary interest of OFDM in this work is a radar application. However,

before moving on to the radar signal processing, an understanding of the OFDM signal

must be developed. As such, this section will present an OFDM signal model to set the

foundation for the OFDM radar processing.

Let the complex baseband representation for a single-carrier signal be given by

x(t) =

Nsym−1∑
i=0

Xi rect
(
t− iTc

Tc

)
(2.42)

where Nsym is the number of symbols, Xi is the modulation of the ith symbol, Tc is

the symbol duration, and rect() is the rectangular function. The symbol modulations

are typically pulled from phase shift keying (PSK) or quadrature amplitude modulation

(QAM) schemes [12] [5]. The resulting signal is a series of Nsym rectangular pulses

that are modulated according to the chosen modulation scheme. Now, to make the leap

from single-carrier to OFDM, let us take a step back for a moment and consider a single,

simple pulse. For the simple pulse (a rect function), the Fourier transform results in a

sinc function. The sinc function is defined for nonzero values of x as sinc(x) = sin(πx)
πx

and is “1” at x = 0. The Rayleigh bandwidth, βr, of this pulse is given by [13]

βr =
1

τ
(2.43)

where τ is the pulse width. Visually, it can be seen that the Rayleigh bandwidth is the

peak-to-null bandwidth. Figure 2.2 shows the frequency response for a 1 microsecond

pulse. A pulse width of 1 microsecond corresponds to a Rayleigh bandwidth of 1 MHz,

which is confirmed by observing that the peak-to-null bandwidth is indeed 1 MHz.
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Figure 2.2: Simple pulse Rayleigh bandwidth visualization

As it will be seen, the Rayleigh bandwidth is a key component of constructing the

OFDM signal. The single-carrier signal is only able to have one modulation per sym-

bol. With OFDM however, each symbol contains multiple modulations across different

subcarriers, with all of the information stored in the frequency domain. This is best

illustrated with another simple example. Consider a 1 microsecond pulse of a 10 MHz

sinusoid, shown in Figure 2.3a. The frequency domain response is a sinc function

centered about the sinusoid center frequency, shown in Figure 2.3b. We also see a mir-

roring of the sinc function due to the fact that the sinusoid is real-valued. Now consider

two additional pulses with center frequencies shifted up and down by the Rayleigh

bandwidth. The time and frequency domain responses of these pulses are shown in

Figure 2.3c and Figure 2.3d, respectively. Looking at the frequency domain content, it

is clear that the peak of each sinc function lies at a null of the others. This means that

a modulation can be stored at the peak of each sinc function without interference from

other modulations. In other words, multiple modulations can be stored in a single time

domain pulse.
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Figure 2.3: Adding subcarriers to single-carrier pulse. (a) Single-carrier time domain
(b) Single-carrier frequency domain (c) Multi-carrier time domain (d) Multi-carrier
frequency domain

Now that an intuitive understanding of the multi-carrier structure of OFDM has

been provided, let’s develop a mathematical description of the signal. To start, let the

discrete Fourier transform (DFT) be defined by

Xk =
1√
N

N−1∑
n=0

xn exp

(
−j2πkn

N

)
, k = 0, . . . , N − 1 (2.44)

and the inverse discrete Fourier transform (IDFT) by

xn =
1√
N

N−1∑
k=0

Xk exp

(
j2πkn

N

)
, n = 0, . . . , N − 1. (2.45)

The benefit of defining the DFT and IDFT in this way is that the signal energy

is conserved across both domains [12]. Using (2.45), the continuous time signal of a
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single OFDM symbol with Nsub subcarriers is given by

x(t) =
1√
Nsub

rect
(

t

Tc

)Nsub−1∑
k=0

Xk exp

(
j2πkt

Tc

)
(2.46)

where Tc is the symbol duration and Xk is the modulation of the kth subcarrier. For a

generalized OFDM signal with Nsym symbols, we can expand (2.46) to [5]

x(t) =
1√
Nsub

Nsym−1∑
i=0

rect
(
t− iTc

Tc

)Nsub−1∑
k=0

Xi,k exp

(
j2πkt

Tc

)
(2.47)

with Xk,i being the modulation for the kth subcarrier of the ith symbol. Notice that

each subcarrier is spaced by ∆f = 1
Tc

Hz, the Rayleigh bandwidth of the rectangular

window.

In addition to the OFDM symbols, a cyclic prefix is typically attached to the be-

ginning of each symbol. This helps prevent intersymbol interference and allows for

frequency domain channel estimation and equalization [5]. A cyclic prefix that has

NCP samples will be composed of the last NCP samples of the symbol that it is at-

tached to. The total OFDM symbol duration (including the cyclic prefix) is then given

by TOFDM = Tc + TCP , where TCP is the time duration of the cyclic prefix. The full

OFDM signal structure is illustrated in Figure 2.4.

Figure 2.4: OFDM signal structure
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Now that the transmitted signal model has been defined, attention will now be given

to the received signal. First, assume that the received signal is perfectly synchronized

and that it follows the typical stop-and-hop assumption. The stop-and-hop approxima-

tion is a common model used in pulsed radar system analysis which states that a target

in motion can be modeled as stationary for the pulse transit time, but then “hops” to its

next position in space for the next pulse [13]. That is, a target’s continuous movement

can be discretized across pulses. In the context of OFDM, the stop-and-hop approxi-

mation assumes that the target is stationary over the duration of a symbol’s transit time,

but that it moves across multiple symbols. With these assumptions, the continuous time

signal received from a target at range R and radial velocity vr m/s is [5]

x(t) = A(t)ej2πfDt

Nsym−1∑
i=0

rect

(
t− iTOFDM − 2R

c

TOFDM

)
Nsub−1∑
k=0

Xi,ke
j2πk∆f(t− 2R

c
)

(2.48)

where A(t) is the received signal amplitude, c is the speed of propagation, and fD = 2vr
λc

is the Doppler frequency shift with λc being the transmit wavelength corresponding to

the center frequency fc. The primary differences between (2.48) and (2.47) are the am-

plitude variable A(t), the Doppler frequency shift fD across symbols, and the time de-

lay 2R
c

corresponding to the total signal propagation time to and from the target. These

characteristics of the received signal are central to OFDM radar processing, which will

now be discussed in detail.

2.5 OFDM Radar Processing

The first step in understanding OFDM radar processing is to view the transmitted

and received signal as a matrix. Using the Xi,k notation, the transmitted data matrix is
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given by [4]

DTX =



X0,0 X1,0 . . . XNsym−1,0

X0,1 X1,1 . . . XNsym−1,1

...
... . . . ...

X0,Nsub−1 X1,Nsub−1 . . . XNsym−1,Nsub−1


. (2.49)

Next, looking back at (2.48) yields insight as to what is happening in the range and

Doppler dimensions. Across subcarriers (the range dimension), we see that there is an

additional phase shift corresponding to the propagation time to and from the target. As-

suming that we have a vector kR ∈ CNsub to describe the phase shift across subcarriers,

the values of this vector are [5] [4]

kR(k) = exp

(
−j2πk∆f

2R

c

)
. (2.50)

We can also observe that there is a Doppler shift fD applied over the entire signal.

Using the stop-and-hop assumption that was discussed earlier, this Doppler shift is only

applied across symbols. Given a new vector kD ∈ CNsym , the values for the Doppler

vector are [5] [4]

kD(i) = exp

(
j2πiTOFDM

2vrfc
c

)
(2.51)

where iTOFDM is the discretized time and 2vrfc
c

= 2vr
λc

= fD is the Doppler shift. Using

(2.49), (2.50), and (2.51), the received data matrix can be represented as

DRX = A⊙DTX ⊙ (kRk
T
D) (2.52)

where A is a matrix of amplitudes and ⊙ denotes element-wise multiplication. By

performing an element-wise division we can remove the transmitted modulations from
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the received signal [4]

Ddiv = DRX ⊘DTX = A⊙ (kRk
T
D) (2.53)

where ⊘ represents element-wise division.

Now that we have the data-free received matrix given by (2.53), we can perform an

IDFT and DFT to obtain our range and Doppler responses, respectively. Because the

IDFT is the matched filter for the range response [4], we start by applying the IDFT

defined in (2.45) to (2.50)

R(n) = IDFT[kR(k)] =
1√
Nsub

Nsub−1∑
k=0

kR(k) exp

(
j2πkn

Nsub

)

=
1√
Nsub

Nsub−1∑
k=0

exp

(
−j2πk∆f

2R

c

)
exp

(
j2πkn

Nsub

)
n = 0, . . . , Nsub − 1

(2.54)

which yields the range response. By considering the multiplication of two complex

exponentials in (2.54) a complex number, it is clear that this equation will be at a max

when the complex numbers sum as constructively as possible. This occurs when the

exponentials multiply to unity due to their exponents being additive inverses of each

other and results when

n =

⌊
2R∆fNsub

c

⌋
(2.55)

meaning that a peak in the range response will occur at this index value. The Doppler
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response is created by applying the DFT defined in (2.44) to (2.51)

D(m) = DFT[kD(i)] =
1√
Nsym

Nsym−1∑
i=0

kD(i) exp

(
−j2πim

Nsym

)

=
1√
Nsym

Nsym−1∑
i=0

exp

(
j2πiTOFDM

2vrfc
c

)
exp

(
−j2πim

Nsym

)
m = 0, . . . , Nsym − 1

(2.56)

Once again, considering the case where the complex exponentials multiply to unity, the

index of maximum Doppler response is given by

m =

⌊
2TOFDMvrfcNsym

c

⌋
. (2.57)

The result of the processing described in this section is a sinc-shaped response in

both range and Doppler dimensions [4], which will be better illustrated in the next

chapter.
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Chapter 3

Simulation

In this chapter, a MATLAB simulation is presented that models the received OFDM

signal for a moving target. The data is processed using the radar processing techniques

discussed in Section 2.5. The processed data is then filtered in order to extract the

target’s radar cross section. In addition to the simulation framework, some helpful

expressions are derived, and a signal-to-noise ratio performance evaluation is given.

Finally, some practical considerations are discussed, including the influence of Doppler

shift and the role of a calibration object in RCS extraction.

3.1 Receive Signal Construction

In order to construct the received signal, the transmit signal for a single symbol

must be built first. Let us assume that we have transmitted an OFDM signal where

each subcarrier has been modulated with 1 + 0j. We modulate with “1” because our

primary interest is not to transmit data, but instead to measure RCS. Assuming that

the spectrum is perfectly Nyquist sampled, the resulting frequency domain shape is a

constant. Because the signal is Nyquist sampled, the resulting time domain signal will

appear as a delta function as illustrated in Figure 3.1. This is because the underlying

sinc function is being sampled at its nulls, that is, the sidelobes aren’t going to appear.
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Figure 3.2 shows that if the signal is oversampled, then the time domain sidelobes will

begin to appear. The rect/sinc Fourier transform relationship and how they are sampled

is important when analyzing the shape of the range/Doppler responses, as will be seen

soon.

Figure 3.1: Nyquist sampled spectrum

Figure 3.2: Oversampling by a factor of 2
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3.1.1 Target Information

Now that the foundation for a single symbol has been built, target information may

be added. There are three primary characteristics to the target information; range,

Doppler, and received power. The range and Doppler information comes from (2.50)

and (2.51), respectively. The received power is derived using the radar range equa-

tion from (2.8) and is combined with the range-Doppler data via (2.53). After target

information has been added, an inverse fast Fourier transfrom (IFFT) is taken across

subcarriers and a fast Fourier transform (FFT) across symbols.

The result of this processing is best illustrated with an example. Table 3.1 gives the

radar system and OFDM parameters used for this example scenario. Note that some

of the system parameters are highly idealized. This is so that we have a high signal-

to-noise ratio for preliminary tests. Later in this work, different signal-to-noise ratios

will be explored more thoroughly. The wavelength and RCS are not given because

these values change over subcarriers, that is, they are frequency dependent. In reality,

the antenna gain is also frequency dependent, but is assumed to be constant for this

work. Calculating the wavelength as a function of frequency is simple, but the RCS is

much more complex. For this work, a script made by an ARRC PhD student, Rachel

Jarvis, was used to calculate the RCS of a 12 inch sphere over the range of subcarrier

Table 3.1: Example Scenario 1 Parameters

System Parameters OFDM Parameters
Parameter Value Parameter Value
Ppeak 10 W BW 150 MHz
fc 5 GHz ∆f 200 kHz
Gt 40 dB Tcp 4.5 µs
Gr 40 dB Tc

1
∆f

= 5 µs

Ls 6 dB TOFDM Tcp + Tc = 9.5 µs
fs 150 MHz Nsym 700
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frequencies. This script uses the equations presented in Section 2.2.2 to calculate the

RCS. From Table 3.1, it is also important to note that Ppeak is the peak power of the

time domain signal, which is the power of the time domain signal when all subcarriers

superimpose with the same phase. Lastly, note that because the sampling frequency fs

is equal to the OFDM symbol bandwidth, the signal is Nyquist sampled.

Figure 3.3: Example 1 range and Doppler profiles, R = 40 m, v = 50 m/s

Figure 3.3 shows the range and Doppler profiles for a target with a range of 40

meters and a radial velocity of 50 m/s. Notice that the sidelobe structure does not appear

in either profile, which is a byproduct of being Nyquist sampled in both dimensions.

Sidelobes will appear in the range profile if the signal is oversampled, which will be

shown shortly. In Doppler, zero padding before the FFT would produce a similar result.

Given the system and target parameters of this scenario, the radar range equation yields

an average received power of -106.41 dBW. However, due to the IFFT and FFT we

obtain a processing gain of NsubNsym [4], which comes out to 57.2 dB for this example.

This yields a final target power of about -49.2 dBW.
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It can also be seen from Figure 3.3 that the unambiguous velocity is quite high (not

all of it is shown), while the maximum unambiguous range is quite low. The maximum

unambiguous range is given by

Rua =
cTc

2
(3.1)

which yields Rua = 750 m for this scenario. Because the symbol duration Tc is the

inverse of the subcarrier spacing, increasing the subcarrier spacing will reduce Rua. In

general, for a pulse-Doppler radar the unambiguous velocity is given by

vua = ±
(
PRF

2

)(
λc

2

)
(3.2)

where λc is the carrier frequency wavelength and PRF is the pulse repetition frequency.

In the context of OFDM, the pulse repetition frequency is 1/TOFDM , which gives

vua = ± λc

4TOFDM

(3.3)

which yields vua = ±1578 m/s for this scenario. Because TOFDM is inversely pro-

portional to the subcarrier spacing, increasing the subcarrier spacing will increase vua.

Furthermore, the total number of symbols directly relates to the Doppler resolution. In

this example, the Doppler resolution is 2|vua|/Nsym = 4.51 m/s.

Before moving on to discussion about the noise and clutter model, Figures 3.4 and

3.5 are provided for additional visualization and insight. Figure 3.4 shows the range-

Doppler map (RDM) for the scenario. Range-Doppler maps are a popular way of vi-

sualizing radar data and will be seen multiple times throughout this work. Figure 3.5

provides a look at how oversampling causes sidelobes to appear in the range profile.

Note that Doppler sidelobes are still not present due to the fact that the data in the

Doppler dimension has not been zero padded.
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Figure 3.4: Example 1 zoomed-in range-Doppler map, R = 40 m, v = 50 m/s

Figure 3.5: Example 1 range and Doppler profiles with 2x oversampling
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3.1.2 Noise & Clutter Model

Thermal noise is an inescapable phenomenon of a radar receiver’s hardware com-

ponents. As such, it must be included in the simulation model. By the central limit

theorem, the overall probability distribution of the sum of many independent random

events is Gaussian [11]. In the case of thermal noise, these independent random events

are the movements of electrons. When sampled in time, a given noise sample is com-

pletely uncorrelated to samples at other times. In the context of random processes, this

means that the autocorrelation function R(τ) is zero everywhere except τ = 0. That

is, the autocorrelation function is an impulse at τ = 0. Because the power spectral

density is given by the Fourier transform of the autocorrelation function [11], the noise

power is constant across all frequencies. Noise with this property is known as “white”

noise. As such, thermal noise is modeled by additive white Gaussian noise (AWGN).

The power of thermal noise is given by [7]

Pn = kTFB (3.4)

where k is Boltzmann’s constant, T is the standard temperature (290 K), F is the re-

ceiver noise figure (unitless), and B is the receiver bandwidth in Hz.

With the addition of thermal noise, a new principle may be introduced: signal-to-

noise ratio. The signal-to-noise ratio (SNR) is the ratio of the received signal power to

thermal noise power. Dividing (2.8) by (3.4), the SNR is given as

SNR =
Pr

Pn

=
PtGtGrλ

2σ

(4π)3R4LkTFB
. (3.5)

SNR is probably the most critical performance metric in the field of radar signal pro-

cessing. If the SNR is not sufficient, no amount of processing is going to be able to
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recover the signal. From (3.5) it is seen that increasing the transmit power will in-

crease SNR; however, another reasonable solution is to integrate pulses together. When

integrating pulses, the target signal will sum constructively and the noise will sum de-

structively, which improves SNR. However, there are types of interference that can sum

constructively across pulses, including ground clutter. Thus, pulse integration may help

SNR but may not have a considerable effect on improving the signal-to-interference-

plus-noise ratio (SINR), which is given by

SINR =
Pr

Pn + Pi

(3.6)

where Pi is the interference power.

With the noise model presented, a brief discussion about the ground clutter model

will now be given. Ground clutter is a type of radar interference that occurs when

the transmitted signal is reflected off of the ground or objects on the ground such as

buildings, trees, etc. A common model for the signal envelope amplitude of ground

clutter is the Rayleigh distribution [14]. A random variable R is Rayleigh distributed

if R =
√
X2 + Y 2, where X and Y are independent Gaussian random variables [11].

Due to this fact, the magnitude of a complex Gaussian distributed random variable has

a Rayleigh distribution (|X + jY | =
√
X2 + Y 2). For this reason, the received voltage

signal for ground clutter has been modeled by a complex Gaussian random vector. This

random vector is duplicated for each symbol, i.e., the ground clutter response does not

change over symbols. Because the power is proportional to the magnitude squared,

the power distribution is exponential. In other words, the square of a Rayleigh random

variable yields an exponential random variable [11].

Figure 3.6 gives the range and Doppler responses for the scenario previously dis-

cussed, including noise and clutter. The noise figure F is set to 8 dB, which yields a
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noise power of -114.2 dBW using (3.4). The pre-processing SINR is set to -20 dB,

which gives a clutter power of -86.4 dBW after rearranging (3.6) and solving for Pi.

However, the clutter appears at a higher power post-processing because of a processing

gain. This comes from the fact that the clutter is unchanging across symbols, there-

fore a processing gain of Nsym is observed. Applying this gain, the post-processing

clutter power is -58 dBW, which gives the post-processing SINR as 8.76 dB. Figure

3.7 gives the range-Doppler map of this data, which has once again been zoomed in

for clarity. The ground clutter occupies the zero Doppler cut, as expected. Note that

although ground clutter is approximately zero velocity, in reality there may be elements

of the clutter that have non-zero velocity from wind effects (such as trees moving in the

wind). These are considered negligible in this work.

Figure 3.6: Example 1 range and Doppler profile, including noise and clutter
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Figure 3.7: Example 1 range-Doppler map, including noise and clutter

3.2 Filtering

In order to accurately extract a target’s RCS from radar data, interference must be

filtered out. Luckily, a moving target is separated from the stationary ground clutter

region after processing, which makes filtering a relatively easy process. For this work,

filtering will be applied in both the range and Doppler dimensions. Filtering in range

will have little effect on suppressing clutter, but will help reduce noise power. Filtering

in Doppler will also help reduce noise power, but has the main purpose of removing

clutter. In order to filter, we must first choose a windowing function. Ideally, the

chosen window will remove as much clutter as possible, while retaining most of the

target information. This section focuses on choosing a windowing function based on a

couple of criteria that will be outlined shortly.
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Before comparing windows, a fact about windowing in general will be explored.

In range, windowing is done in the time domain, but for Doppler it is in the frequency

domain. What they share in common, however, is that the responses being windowed

are both sinc shaped. This means that we aren’t interested in which domain the win-

dowing is being applied in; the only interest is the effect of windowing on the shape

of the opposite domain. So, the domains are simply labeled “A” and “B,” rather than

picking time or frequency. Figure 3.8 illustrates that a rect function in one domain

yields a sinc in the other. By applying a window to the sinc function and convert-

Figure 3.8: Visualization showing that a rect function in one domain yields a sinc
function in the other

ing back to the other domain, the effect of the window can be observed. Figure 3.9

shows the domain A response after applying a Gaussian window in domain B. It can

be seen that applying a window to the sinc function will result in a tapering of the

rect function. This is due to the Fourier transform property that a multiplication in one

domain is a convolution in the other. Thus, the rect function is being convolved with

the Fourier transform of the windowing function. The “unchanged” trace of Figure
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Figure 3.9: Windowing the sinc function in domain B tapers the rect function in domain
A

3.9 shows the part of the response that has been minimally affected by the windowing.

That is, this part of the response represents the region of the convolution where both

signals are mostly overlapped (the exact definition of “mostly overlapped” depends on

the window). The tapering effect is important because windowing in range will pro-

duce a tapering in the subcarriers at the edges of the OFDM bandwidth. This means

that by windowing in range, the RCS at the edges of the bandwidth will be incorrect. If

one were to forgo windowing in range, then the extracted RCS could either be a little

or very noisy, depending on the SNR. Luckily, for a single target, the range window

doesn’t have to be super tight. Figure 3.10 shows that the tapering is reduced when

using a wider window. Of course, the Doppler window may have to be quite narrow,

especially for slow-moving targets that lie near the clutter region. Figure 3.11 shows

that a heavy taper results from using a narrow window. The effect of tapering on RCS

extraction will be seen more in the next section.
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Figure 3.10: Using a wide window tapers domain A less

Figure 3.11: Using a narrow window tapers domain A more
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Now that the tapering has been discussed, a performance evaluation of some com-

mon windows will be made. The primary performance consideration is the minimiza-

tion of ripple. In order to ensure an accurate RCS measurement, the windowed result

must be mostly flat along the top. Some common windows were chosen for the com-

parison, including the Gaussian, Hanning, Blackman, Hamming, and Tukey windows

[15]. Figure 3.12 shows the results of windowing a sinc function with these windows

and taking a DFT. Immediately it is clear that some of the windows have noticeable

ripple throughout the response. Zooming into one of the corners provides a clearer

view of the results, which is shown in Figure 3.13. With a better view, it appears as if a

tradeoff exists between the amount of ripple and the width of the taper. The Hanning,

Figure 3.12: Window comparison showing a zoomed-in view of the top
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Figure 3.13: Window comparison zoomed-in on one of the corners

Hamming, and Tukey windows have a smaller taper than the other windows, but they

suffer from ripple. Conversely, the Blackman and Gaussian windows have a wider taper

but less ripple.

The tradeoff between taper and ripple is somewhat expected considering the ex-

treme case of a rectangular window, which yields very little taper but has intense rip-

ple. The result of using a rectangular window is shown in Figure 3.14 for completeness.

With these considerations in mind, the window of choice is the Gaussian window. Al-

though the Gaussian has the widest taper, it is still acceptable and satisfies the primary

requirement of minimal ripple. In addition to this, the Gaussian function is well-known

and should be easy to work with. The MATLAB implementation of the Gaussian win-
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dow is given by

x(n) = exp

(
−1

2

(
α

n

(L− 1)/2

)2
)

(3.7)

where L is the window length and α is the “width factor.” An alternate form is given as

x(n) = exp

(
− n2

2σ2

)
(3.8)

where σ = (L−1)/(2α) is the standard deviation. Figure 3.15 illustrates how the shape

of the window is affected by α, which will be tweaked frequently to obtain optimal RCS

extraction.

Figure 3.14: Illustration of ripple that results from using a rectangular window
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Figure 3.15: Increasing the width factor α makes the Gaussian window narrower

3.3 RCS Extraction

After filtering, the data is transformed back to its original form and (2.9) is used to

extract RCS, which is repeated here for convenience.

σ =
Pr(4π)

3R4L

PtGtGrλ2
(3.9)

A big caveat is that in simulation, the variables are explicitly known. In reality, there

needs to be some sort of calibration procedure so that parameters such as antenna gain

and system losses are accurately represented. Section 3.5 discusses some of these prac-

tical considerations in more detail. In this section, we will assume that the system

characteristics are well-known and that the radar range equation can be solved directly.

Table 3.2 gives parameters for a new simulation scenario. Note that the SINR listed
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is the post-processing SINR. After using the processing techniques discussed in Section

2.5, the RDM of Figure 3.16 is obtained. From this point, a Gaussian window is applied

in both the range and Doppler dimensions in order to isolate the target’s energy. For this

filtering, width factors of αr = 40 and αd = 250 were used for the range and Doppler

dimensions respectively. Figure 3.17 shows the filtered RDM result after applying the

Gaussian windows. From this point the processing is undone, that is, a DFT is taken

across the range dimension and an IDFT across Doppler. The result of this backwards

processing is shown in Figure 3.18. The effects of the windowing are clear; across both

subcarriers and symbols there is a taper at the edges. In addition to the taper, there is

also a decrease in power across subcarriers moving from top to bottom. This primarily

relates to the RCS of the sphere, since over this bandwidth the RCS is decreasing with

increasing frequency. The final step is to take the average complex voltage of each

subcarrier (so averaging across the symbol dimension) and convert to power, which is

used to solve RCS. Of course, the tapered region is not used when taking the average

to ensure accurate results. Before averaging however, the Doppler shift of the target

must be undone. To do this, the Doppler shift must be estimated. A good method for

estimating the Doppler shift is discussed later in this chapter. The results after using

(3.9) to solve for RCS are given in Figure 3.19 in units of dBsm.

Table 3.2: Example Scenario 2 Parameters

System Parameters OFDM Parameters
Parameter Value Parameter Value
Ppeak 100 W BW 150 MHz
fc 5 GHz ∆f 200 kHz
Gt 40 dB Tcp 4.5 µs
Gr 40 dB Tc

1
∆f

= 5 µs

Ls 6 dB TOFDM Tcp + Tc = 9.5 µs
fs 150 MHz Nsym 700

SINR 10 dB - -
F 8 dB - -
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Figure 3.16: Example 2 zoomed-in range-Doppler map, R = 40 m, v = 50 m/s

Figure 3.17: Example 2 filtered range-Doppler map, αr = 40, αd = 250
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Figure 3.18: Example 2 filtered data with processing undone for αd = 250

Figure 3.19: Example 2 RCS extraction result for αd = 250, simulated values (blue)
and truth values (red)
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The results show that we have indeed extracted the general shape of the target’s

RCS, however there is some error (ignoring the edge tapering, which has been estab-

lished is a result of the windowing) in the form of a bias. This bias is due to Doppler

bin straddling. We can try to correct this by going back and adjusting the width factor

in the Doppler dimension, which will be changed to αd = 80. Figures 3.20, 3.21, and

3.22 show the filtered RDM, unprocessed RDM, and RCS extraction results for the new

width factor, respectively. These results show that the extracted RCS is much closer to

the true value on average; however, widening the window has also allowed energy from

the clutter region into the signal, which means we may have just compensated with

clutter power (which clearly isn’t acceptable). A better bin straddling solution may be

to simply add ’ones’ to the top of the Gaussian window, thus creating a window with

a flat top. However, there may not be enough Doppler bins to include the flat top and

also attenuate the clutter properly.

Figure 3.20: Example 2 filtered range-Doppler map, αr = 40, αd = 80
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Figure 3.21: Example 2 filtered data with processing undone for αd = 80

Figure 3.22: Example 2 RCS extraction result for αd = 80, simulated values (blue) and
truth values (red)
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Let us now consider a scenario with less ideal parameters. Table 3.3 gives the pa-

rameters for this new scenario. The peak power has been dropped from 100 W to 10

W, and the target range has been moved up to 115 m. These two changes have the

combined effect of greatly lowering the SNR. In addition, the post-processing SINR

has been set to 0 dB, and the Doppler width factor has been set to αd = 200. Figure

3.23 shows that the simulated RCS measurement has been degraded as a result of the

decreased SNR and SINR. The best way to combat this is to increase the coherent pro-

cessing interval (CPI), that is, increase the number of symbols. The CPI, T , is given by

TOFDMNsym, which in all of the previous examples has been (9.5µs)(700) = 6.65ms.

Increasing the CPI will address both the SNR and SINR issues. The SNR will be im-

proved because increasing the number of symbols raises the target processing gain.

In the case of SINR, more symbols provides finer Doppler resolution, thus making it

easier to separate the target from clutter. Increased Doppler resolution also decreases

windowing error that results from the target straddling Doppler bins. As mentioned

earlier, a flat top window may be a solution to bin straddling; however, another tech-

nique is presented in the next section to compensate for this effect. Figure 3.24 shows

the simulation result of increasing Nsym to 14000, which yields a coherent processing

interval of (9.5µs)(14000) = 133ms.

Table 3.3: Example Scenario 3 Parameters

System Parameters OFDM Parameters
Parameter Value Parameter Value
Ppeak 10 W BW 150 MHz
fc 5 GHz ∆f 200 kHz
Gt 40 dB Tcp 4.5 µs
Gr 40 dB Tc

1
∆f

= 5 µs

Ls 6 dB TOFDM Tcp + Tc = 9.5 µs
fs 150 MHz Nsym 700

SINR 0 dB - -
F 8 dB - -
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Figure 3.23: Example 3 RCS extraction result for αd = 200, R = 115 m, v = 50 m/s,
simulated values (blue) and truth values (red)

Figure 3.24: Example 3 RCS extraction result after raising CPI, Nsym = 14000, αd =
200, simulated values (blue) and truth values (red)
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3.4 Further Analysis

3.4.1 Helpful Equations

This section is dedicated to deriving equations that aim to assist with RCS extraction

performance. Let us first consider that we wish to perform a real-world test of the

techniques discussed in this work. In order to do so, a controlled velocity must be

established for the target being measured, but how fast should the target be moving? In

other words, what is the minimum velocity required to effectively distinguish the target

from ground clutter? This is primarily a question about the shape of our window and

the available Doppler resolution. Let us begin with (3.7), which is repeated here for

convenience

x(n) = exp

(
−1

2

(
α

n

(L− 1)/2

)2
)

= exp

(
− n2

2σ2

)
. (3.10)

The first step is to establish the desired attenuation of the clutter region. Let the

clutter attenuation A in dBW be given by

A = −20 log10(x(n)) = −20 log10

(
exp

(
− n2

2σ2

))
. (3.11)

Notice that the window is treated as a voltage quantity because windowing is applied to

voltages. The goal now is to solve for the value of n that gives the desired attenuation.

Dividing A by 20 and undoing the logarithm yields

10−A/20 = e−n2/(2σ2). (3.12)

Taking the natural logarithm of both sides, rearranging some terms, and using a log rule
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yields
2 ln(10)Aσ2

20
= n2. (3.13)

After rearranging and substituting σ = (L− 1)/2α, we obtain

n =
L− 1

2α

√
0.1 ln(10)A (3.14)

which gives the value of n that is required to achieve the desired attenuation A given

the width factor α and window size L.

Although (3.14) is already helpful, it is not in a form that means anything physi-

cally, that is, we still need to incorporate our system parameters. To do this, n will be

converted to vmin, the minimum velocity that achieves the desired clutter attenuation.

In a previous section it was mentioned that the resolution of the velocity axis is given

by 2|vua|/Nsym, where vua is the unambiguous velocity defined in (3.3). Given the

Doppler resolution, the minimum velocity vmin is then given by

vmin = n
2|vua|
Nsym

=
nλc

2TOFDMNsym

. (3.15)

In this form, the value of n is continuous, meaning that the discrete nature of the ve-

locity axis is not represented. To fix this, the value of n should be rounded either up

or down. In this case, n will be rounded up so that the desired attenuation is achieved.

Because of this, the realized clutter attenuation will be higher than A. As the Doppler

resolution increases (Nsym increases), the realized attenuation will approach A. Given

this change, (3.15) becomes

vmin =
⌈n⌉λc

2TOFDMNsym

. (3.16)
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where ⌈⌉ is the ceiling function. Adding this into (3.14) and substituting Nsym for L

results in

vmin =
λc

2TOFDMNsym

⌈
Nsym − 1

2α

√
0.1 ln(10)A

⌉
(3.17)

It may also be helpful to solve for other variables, which is easily accomplished by

rearranging (3.17). The window width factor is then given as

α =
Nsym − 1

2
⌊
2vTOFDMNsym

λc

⌉√0.1 ln (10)A (3.18)

and the clutter attenuation by

A =
10

ln(10)

2α
⌊
2vTOFDMNsym

λc

⌉
Nsym − 1

2

(3.19)

where ⌊⌉ denotes rounding.

Another highly beneficial derivation to perform is the closed-form expression for

the windowed Doppler response. This will be used to compensate for the Doppler bin

straddling loss that was seen in a previous section. The first step in the derivation is

to find the unwindowed Doppler response. Recall from (2.29) that the values for the

Doppler vector are given by

kD(n) = exp (j2πnTOFDMfD) . (3.20)

Note that we are assuming the true Doppler shift, fD, is known. We will later discuss a

method of estimating the true Doppler shift (this method is used in all of the simulation
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results). The unwindowed Doppler response is then given by the DFT of (3.20)

KD(m) =
1√
Nsym

Nsym−1∑
n=0

kD(n)e
−j2πmn
Nsym

=
1√
Nsym

Nsym−1∑
n=0

ej2πnTOFDMfDe
−j2πmn
Nsym

=
1√
Nsym

Nsym−1∑
n=0

ej2πn(TOFDMfD−m/Nsym)

=
1√
Nsym

Nsym−1∑
n=0

[
ej2π(TOFDMfD−m/Nsym)

]n
(3.21)

Now consider the following summation formula

n∑
k=0

ak =
1− an+1

1− a
, a ̸= 1 (3.22)

which when applied to (3.21) yields

KD(m) =
1√
Nsym

1− ej2π(TOFDMfD−m/Nsym)Nsym

1− ej2π(TOFDMfD−m/Nsym)
. (3.23)

Letting β = TOFDMfD −m/Nsym and performing some manipulations gives

KD(m) =
1√
Nsym

1− ej2πβNsym

1− ej2πβ
=

1√
Nsym

ejπβNsym
(
e−jπβNsym − ejπβNsym

)
ejπβ (e−jπβ − ejπβ)

=
1√
Nsym

−2j sin(πβNsym)e
jπβNsym

−2j sin(πβ)ejπβ

=
1√
Nsym

sin(πβNsym)

sin(πβ)
ejπβ(Nsym−1)

(3.24)

Finally, substituting the value for β back into (3.24) gives the equation for the unwin-
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dowed Doppler response

KD(m) =
1√
Nsym

sin(πTOFDMfDNsym − πm)

sin(πTOFDMfD − πm/Nsym)
ejπ(TOFDMfD−m/Nsym)(Nsym−1)

(3.25)

The windowing function (3.10) will now be applied to (3.25), but first a couple tweaks

need to be made to the windowing function. First, n should be shifted by −⌈(Nsym −

1)/2⌉ to ensure a symmetric response. The ceiling function ensures that the peak of the

window is always being sampled, otherwise there would be a large loss of energy. In

addition to the shift applied to n, the full window vector is circularly shifted by C cells

to the peak of the Doppler response, with C given by m in (2.35). The values of the

windowing function are then given by

x(n) = e
−0.5

α

n−
⌈
Nsym−1

2

⌉
(Nsym−1)/2

2

(3.26)

At last, the windowed Doppler response is given as a vector by

WD = KD ⊙ (x)C (3.27)

where KD is the vector formed by values of KD(m) from m = 0 to Nsym − 1, x is the

vector formed by values of x(n) from n = 0 to Nsym − 1, ()C denotes circular shifting,

and ⊙ denotes element-wise multiplication.

The windowed Doppler response given by (3.27) is helpful for determining the

energy lost from the windowing process. Let the energy of a signal x[n] be given by

Ex =
∞∑

n=−∞

|x[n]|2. (3.28)
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The energy of WD is thus given by

EW =

Nsym−1∑
i=0

|WDi
|2. (3.29)

where WDi
is the ith element of WD. The percent energy lost by windowing is then

one minus the ratio of the energy in the windowed response to the original response

Elost =

[
1−

∑Nsym−1
i=0 |WDi

|2∑Nsym−1
i=0 |KDi

|2

]
× 100. (3.30)

Although (3.30) gives an idea of how much energy of the response is being windowed

out, it doesn’t say anything about where this is occurring in the opposite domain. That

is, in the opposite domain the lost energy mostly comes from the tapered edges (as it

was seen in Section 3.2). We mostly care about the energy lost between the edges, so to

find the answer to this an IDFT of (3.27) needs to be taken. After that, the magnitude of

the central part of the response is used to correct windowing errors that result from bin

straddling. An example of this is provided in Figure 3.25, which shows the magnitude

of the IDFT of (3.27). Notice that the peak of the central part of the response is well

below one, which indicates bin straddling. In a case where there is no bin straddling,

the peak would be very close to one. With this information, we can simply adjust the

RCS measurement using the different between one and the peak of the response.

Throughout the previous derivation, we have assumed that we know the true Doppler

shift of the target. Of course, we don’t know the true value in reality; we only know an

estimation based on our discrete Doppler samples. A good Doppler estimate will not

only ensure that our bin straddling compensation technique is usable, but also that we

can undo the target Doppler shift for the averaging operation across symbols (which is

a part of the RCS extraction process discussed in a previous section). Luckily, [7] pro-
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Figure 3.25: Peak magnitude (dotted line) of the IDFT of (3.27) is below one for bin
straddled target

vides an excellent Doppler shift estimation technique for a critically sampled Doppler

response. Given the bin location of the peak of the Doppler response, the true Doppler

shift can be estimated using a quadratic interpolation. We start by estimating the (likely

non-integer) bin corresponding to the peak of the interpolated response:

b′ = b0 +∆b = b0 +Re

{
R[b0 + 1]−R[b0 − 1]

R[b0 − 1]− 2R[b0] +R[b0 + 1]

}
(3.31)

where b0 is the bin corresponding to the peak of the complex voltage response R, and b′

is the bin corresponding to the peak of the interpolated response. We can then convert

b′ from a bin number to frequency, which yields the estimated Doppler shift.

To quickly demonstrate the usefulness of the derived equations, let us consider a
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new scenario with parameters given by Table 3.4. Consider that on receive, a target at

approximately 40 m in range moving at 24 m/s has been located. In addition, assume

that we wish to use a Doppler window with αd = 300. Using (3.19), the approximate

attenuation of the clutter region is given as 96.7 dBW. This clutter attenuation should

be more than enough, given that our post-processing SINR is 0 dB. Figures 3.26, 3.27,

3.28, and 3.29 give the RDM, range/Doppler profiles, filtered RDM, and RCS extrac-

tion results respectively. Notice that in Figure 3.29, the simulated RCS values are

slightly off as a result of the narrow window. From our previous analysis however, we

are able to compensate for the lost energy in the middle part of the response, which

gives a result that is centered better around the true values. A big caveat, however, is

that as the window becomes narrower this adjustment will grow to be inaccurate. So,

in order to ensure that the adjustment is better than the measured result, the Doppler

window must not be too narrow. As a general rule of thumb, the Doppler window width

factor should be kept below 1000.

Despite mathematical compensation being a successful strategy for alleviating strad-

dle loss, it may not be the best strategy computationally. Instead, it was alluded to pre-

viously that a better approach might be to create a hybrid window that has a flat top

and Gaussian tapered edges. The flat top ensures that there is no straddle loss without

having to jump through mathematical hoops. It is also important to consider that bin

straddling can occur in the range dimension as well. If the target spans multiple range

bins over the duration of the CPI, then a flat top will be necessary to retain all of the

target information. However, in the case of Doppler filtering, there may not be enough

resolution between the target and clutter to use a flat top window. These decisions are

ultimately specific to the application and scenario.
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Table 3.4: Example Scenario 4 Parameters

System Parameters OFDM Parameters
Parameter Value Parameter Value
Ppeak 10 W BW 150 MHz
fc 5 GHz ∆f 200 kHz
Gt 40 dB Tcp 4.5 µs
Gr 40 dB Tc

1
∆f

= 5 µs

Ls 6 dB TOFDM Tcp + Tc = 9.5 µs
fs 150 MHz Nsym 1400

SINR 0 dB - -
F 8 dB - -

Figure 3.26: Example 4 range-Doppler map, R = 40 m, v = 24 m/s
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Figure 3.27: Example 4 range and Doppler profiles (blue) with windows overlaid (red),
αr = 40, αd = 300

Figure 3.28: Example 4 filtered range-Doppler map, αr = 40, αd = 300
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Figure 3.29: Example 4 RCS extraction result, simulated values (blue), adjusted values
(red), true values (yellow)

3.4.2 SNR Performance Evaluation

An additional test was run to determine the performance for a given SNR. For the

test, ground clutter has been removed and the targets are stationary (v = 0 m/s). The

percent error in the simulated RCS measurement is plotted against the window width

factor, α, which is swept for both the range and Doppler dimensions simultaneously.

The percent error is given as

%Error =
|σtruth − σsim|

σtruth

× 100 (3.32)

where σtruth and σsim are the true and simulated RCS values in m2, respectively. Note

that (3.32) gives the percent error for a single frequency bin, but since the percent

error can fluctuate across bins, the average percent error is used. Figure 3.30 gives
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the average percent error versus α for different post-processing SNRs. For the test,

the number of symbols is equal to the number of subcarriers, and the window width

factors for range and Doppler dimensions are also kept equal to each other. It can be

seen that for high/medium SNRs, slight windowing is helpful, although at a certain

point windowing has a negative impact. This is expected since the SNR is already

quite good, so windowing is mainly going to discard target information. For lower

SNRs, it can be seen that windowing becomes much more important, although there

are diminishing returns as the windows become increasingly narrow.

Figure 3.30: RCS percent error versus window width factor α for medium/high SNRs
(left) and low SNRs (right), Nsub = Nsym = 750

These results provide some general insight, but it is more beneficial to look at SNR

as a function of specifically range or Doppler window width. That is, we will perform

the same test two more times but hold one of the windowing dimensions constant.

Figure 3.31 shows the results from holding the Doppler window constant and sweeping

the range window width. Figure 3.32 shows similar results, but for holding the range

window constant and sweeping the Doppler window width. From these results, we can

see that the Doppler window width has little impact on the average percent error. This
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Figure 3.31: RCS percent error versus range window width factor α for medium/high
SNRs (left) and low SNRs (right), Nsub = Nsym = 750, Doppler alpha set to 100

Figure 3.32: RCS percent error versus Doppler window width factor α for medium/high
SNRs (left) and low SNRs (right), Nsub = Nsym = 750, range alpha set to 100

is a sensible result, considering that we are taking an average across the symbols as part

of the RCS extraction process, which averages out noise in the Doppler dimension. The

range window is thus the primary tool for influencing the RCS extraction result in the

face of poor SNR.

Some additional insight about what the range window is doing can be gained from
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looking at a specific scenario and modifying the range window width while holding

the Doppler width constant. Figure 3.33 illustrates a specific scenario with a post-

processing SNR of 33 dB. Each plot shows the result for a different range window

width, with the width decreasing from left to right. As the window becomes narrower,

we can see a smoothing behavior. This can be explained by considering that as the win-

dow becomes narrower, we are convolving in the other domain with a wider Gaussian.

As a result, we are essentially applying a Gaussian smoothing filter to the result. This

is helpful for reducing our measurement variance and eliminating noise; however, it

should also be noted that the edge subcarrier taper increases as well. As a result, it is

important to try to apply range filtering in moderation.

Figure 3.33: RCS extraction result for SNR of 33 dB, Doppler window held constant
(αd = 100), range window αr = 10 (left), αr = 40 (middle), αr = 80 (right)

3.5 Practical Considerations

Before concluding this chapter, some comments will be given about practical con-

siderations outside of the simulation environment. Although there are many considera-

tions when it comes to a real-world test of the ideas presented in this work, the two that

are most relevant have been chosen.
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3.5.1 Calibration Object

The topic of a calibration object arises from the discussion of RCS extraction in

Section 3.3. In simulation, the radar range equation can be used to solve for RCS

explicitly because all of the variable are exactly known. Of course, in reality it is much

more difficult to accurately know these variables. To work around this problem, an

object with a known RCS is used for calibration. Using an object with a known RCS

allows for the other variables to be solved for together as a single constant [2] [3]. To

better illustrate this idea, consider the form of the radar range equation given in (2.8),

which is repeated here for convenience.

Pr =
PtGtGrλ

2σ

(4π)3R4L
(3.33)

Considering that the ratio of Pr to Pt is known from a vector network analyzer (VNA)

measurement, (3.33) can be written as

Pr

Pt

=
GtGrλ

2σ

(4π)3R4L
. (3.34)

The unknown variables can then be lumped into a single constant k, which is solved for

using the calibration object
Pr

Pt

= kσ. (3.35)

The calculation of this constant is the first step to making accurate RCS measure-

ments; however, the fact that the target for this work is moving means that there are

challenges to overcome for the calibration process. As an example of one such chal-

lenge, assume that a radar system needs to be calibrated in an outdoor environment

for tests. Further assume that we wish to give the calibration object some velocity to
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separate it from the clutter zone. In order to move the calibration target in a controlled

manner, it must be mounted to some type of vehicle that can hold a steady velocity.

Additionally, the mounting structure and vehicle should be constructed in a way such

that they do not interfere with the calibration measurement; this will require some con-

siderable thought.

It is also important to remember that the calibration set will change as a function of

range. This introduces a unique challenge, since the target will be at slightly different

ranges across the duration of the CPI. If the calibration object is measured while mov-

ing, then it will be important that the calibration object ranges coincide with the target

under test. Clearly, there are many considerations to the calibration procedure that will

have to be analyzed prior to performing a real-world test.

3.5.2 Doppler Shift & Orthogonality

As it has been well established, a key component of the OFDM signal is the orthogo-

nality of its subcarriers. Unfortunately, the Doppler shift imparted upon each subcarrier

by target motion impacts this orthogonality by shifting each subcarrier. As such, it is

important to consider the maximum allowable Doppler shift for a given subcarrier spac-

ing. As a general rule of thumb to ensure orthogonality, the subcarrier spacing should

be chosen such that ∆f > 10fD,max, where fD,max is the maximum expected Doppler

shift [4] [16]. As a quick example, recall that all of the previous scenarios presented

in this work had a subcarrier spacing ∆f = 200 kHz. This sets the maximum Doppler

shift to 20 kHz, which corresponds to a maximum velocity vmax =
fD,maxλc

2
= 600 m/s

for a radar with a center frequency of 5 GHz.
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Chapter 4

Interference

Up to this point, it has been assumed that the spectrum is clear of competing signals.

That is, there is no interference from other nearby transmitters. In reality, there may be

parts of the spectrum that are corrupted by unwanted RF signals, most likely commu-

nications signals. This is especially true if operating near popular frequency bands for

wireless broadband cellular networks such as 4G LTE and 5G. This chapter discusses a

possible solution to this type of interference, how the solution affects the matched filter

response, and how it impacts the RCS extraction result. Lastly, a possible technique for

spectral reconstruction is presented.

4.1 Problem Statement

All of the previous examples in Chapter 3 have used a center frequency of 5 GHz

and a bandwidth of 150 MHz, which we will maintain here. Assume that an outdoor

test is being performed; during the test, the receiver intercepts some unknown com-

munications transmission. Further assume that the interfering signal is much stronger

than the reflected signal from the target under test (a reasonable assumption, especially

if the interference is from a source in direct line of sight). For illustration purposes,

let the interfering signal have a center frequency of 5.01 GHz with a bandwidth of 20
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MHz. The amplitude of the interference is set to be 500 times stronger than the re-

flected signal from the target, which is a 20 log10(500) = 54 dBW increase. Finally,

the interfering signal is given random amplitude/phase modulations according to a 16-

QAM modulation scheme. Of course, the data from the interfering signal need not be

random (and mostly likely wouldn’t be); however, the data modulations would likely

appear “random” since the interfering transmitter is operating under a different set of

system parameters. In other words, the receiver is not “lined up” with the interfering

signal. Figure 4.1 provides a look at the raw data matrix (i.e., before radar processing)

for this scenario, and Figure 4.2 gives the same data in a 3-dimensional view.

When taking a look at the data in this form, the interfering signal is clearly distin-

guishable from the rest of the data. However, it is important to remember that this data

also contains the ground clutter information. That is, we still need to perform radar

processing on the data, window out the clutter, and then return to this domain for RCS

extraction. After radar processing the raw data matrix, we obtain the range-Doppler

map shown in Figure 4.3. This is where the problem becomes apparent; there is no way

to find the target because the interference is completely masking the important details.

Of course, the ideal solution to this problem would be to take new measurements when

the interference is not present. However, in situations where new measurements cannot

be obtained, the data we have needs to be salvaged.

The proposed solution is quite intuitive, which is to simply null out the interference

in the raw data matrix. What is meant by this is to observe the received data and

set the data to zero at subcarriers where interference is believed to exist. Emphasis

should be given to the fact that nulls are added to the received data after observation,

i.e., we assume here that nothing is known about the interference before transmission.

Although this strategy can be quickly applied to the simulation model, first a general

analysis of how nulls affect the matched filter response will be given.
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Figure 4.1: View of the raw data matrix with an interfering signal, 2-dimensional

Figure 4.2: View of the raw data matrix with an interfering signal, 3-dimensional
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Figure 4.3: Range-Doppler map after radar processing the raw data with the interfering
signal

4.2 Analyzing the Effect of Nulls

The effect of nulls on the matched filter response will now be analyzed. First, the

metrics used for analysis are presented, followed by the sets of null locations. Finally,

the results are presented and then discussed.

4.2.1 Metrics

There are three metrics used for the following analysis, the peak sidelobe level

(PSL), integrated sidelobe level (ISL), and the mainlobe width ratio. The PSL and ISL

are typical metrics used for waveform sidelobe analysis, while the mainlobe width ratio

is intended to, of course, provide information about the mainlobe of the response. It

has been shown throughout this work that the matched filter response for the OFDM
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signal has a sinc shape. As such, consider a sinc-shaped response r(n) that corresponds

to a highly oversampled range response. Figure 4.4 gives the plot of r(n) on a decibel

scale. The mainlobe (green) is the central part of the response, and the sidelobes (blue)

are the parts of the response outside of the mainlobe. From these two regions there

are two obvious maxima: the peak of the entire response and the peak sidelobe. The

PSL is given as the ratio of these maxima. To develop a more concrete mathematical

description of the PSL, let us assume that our response has N = 2048 samples and

that the first nulls to the left and right of the mainlobe occur at indices n− and n+

respectively. Utilizing the fact that the response is symmetrical, the PSL is given by

PSL = max

{
|r(n)|2

|r(0)|2

}
, n ∈ [n+, 1024]. (4.1)

Figure 4.4: Sinc-shaped range response, mainlobe (green), sidelobes (blue)
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The ISL also compares the sidelobes with the mainlobe; however, instead of being

a ratio of the peaks, it is a ratio of the total energy in each region. For the 2048 sample

signal used previously, the ISL is given by

ISL =

∑n−
n=−1023 |r(n)|2 +

∑1024
n=n+

|r(n)|2∑n+−1
n−+1 |r(n)|2

(4.2)

where the numerator is the energy contained in the sidelobes, and the denominator is

the energy contained in the mainlobe. The PSL and ISL together give some idea as

to how energy is distributed throughout the response. If energy is distributed more

evenly across the response (as opposed to being concentrated in the mainlobe), then

windowing the response could throw away more energy than is acceptable.

The last metric is the mainlobe width ratio, which is defined for this work as the

ratio of the mainlobe width of the nulled signal to the mainlobe width of the null-free

signal. This metric is intended to tell if the addition of nulls has made the mainlobe

wider or narrower when compared to the null-free case. This also gives some insight

into how windowing may affect the final result. For example, if the mainlobe width is

significantly wider with nulls, a wider window may need to be used in order to retain

energy.

4.2.2 Null Locations

Before displaying test results, the null locations need to be defined. There are four

primary tests, each with a different way of placing nulls in the signal. The first test

places all of the nulls together in a single group and sweeps them left to right along the

signal. This test is described as “grouped” nulls and is shown in Figure 4.5. The second

test is similar to the grouped nulls; however, the nulls are split evenly into two groups

and are swept symmetrically to the center of the signal as shown in Figure 4.6. The
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final two tests involve a random placement of the nulls. One method places each null

randomly, while the other places groups of 10 randomly. The null and group positions

are obtained by generating a random uniform permutation of the possible locations,

which is accomplished using randperm() in MATLAB. Four different trials for each

random placement technique are shown in Figures 4.7 and 4.8. Lastly, it is important

to note that for each test the percentage of the signal to be nulled is specified. In each

of these examples, 10% of the signal has been nulled (the signal has 1000 samples, so

there are 100 nulls). Of course, there are many combinations of null locations that can

be explored, but the hope is that these general cases will provide enough insight.

Figure 4.5: Grouped nulls for 4 different sweep locations

Figure 4.6: Symmetric nulls for 4 different sweep locations

Figure 4.7: Four different trials for the random placement of each null
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Figure 4.8: Four different trials for the random placement of 10 null groups

4.2.3 Results

Figures 4.9, 4.10, 4.11, 4.12, 4.13, and 4.14 provide results for a rectangular func-

tion that has been nulled 1%, 2%, 5%, 10%, 20%, and 50% of its total length respec-

tively. The figures provide the results of each of the three metrics for each of the four

nulling techniques. Clearly there are many plots. As a result, instead of discussing each

one individually, general trends and interesting features will be the main focus.

The most obvious trend is that as the number of nulls increases, the signal increas-

ingly deviates from its original state (which is the null-free case). In other words, all

of the metrics experience a wider range of values that they can take. The PSL and ISL

primarily trend upwards as the nulls increase, while the mainlobe width ratio generally

increases in both directions (above and below 1). A more interesting result is that the

symmetric nulls resemble the left half of the grouped nulls result for lower null per-

centages. As the null percentage increases however, this resemblance begins to fade.

When looking at the two random cases, it is clear that the trials using groups of 10 nulls

experience a wider variance. That is, when the nulls are in groups they appear to tend

towards degrading the response worse than ungrouped nulls.

At higher nulling percentages, there is strange behavior that deserves to be men-

tioned in some of the results. The behavior is best seen by looking at the grouped

mainlobe width ratio results of Figures 4.13 and 4.14. In these plots we see some large
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discontinuities, so what is causing this? These discontinuities have to do with how the

mainlobe is being defined. For all of the plots shown, the mainlobe is defined as the

region that is contained by the first minima found by starting in the center and moving

in either direction. As the response is distorted, these minima can shift and even dis-

appear entirely, while new ones can be created in unexpected places. The reason that

the mainlobe width ratios suddenly drop in these plots is that two new minima have

appeared inside of the previous mainlobe. This also explains why the PSL and ISL also

jump upwards with a similar discontinuity.

So why not just redefine what qualifies as a zero? That is, we could set an additional

criterion for the mainlobe; there could be a minima requirement, as well as a threshold

requirement (minima must be below threshold to qualify as “zero”). The problem with

this approach is that if you specify a threshold for what zero is, then you will get

different results for different thresholds. This naturally leads to the question as to which

result is correct; what would “correct” even mean? Because of this issue, it is best to

just keep the minima requirement as the sole requirement. Ultimately, it comes down

to the fact that if you throw away a significant amount of your signal, the resulting

response could be severely distorted and it may be hard to make any sense of it.

To recap, we have found that there is indeed a correlation between the amount of

nulls and signal distortion. It appears that the symmetrically placed nulls have similar

behavior to the grouped nulls for low nulling percentages. From the random trials,

it appears as if nulls that are found in groups have a higher change of degrading the

response worse than individually placed nulls. It was also found that if about 20% or

more of the response has been nulled, the signal can experience sharp and unexpected

distortions in the mainlobe region. For smaller percentages however, the degradation is

not super significant. To get a better idea how it these results may affect RCS extraction,

we will now perform nulling tests with the main simulation.
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Figure 4.9: Results for 1% nulled signal, nulled signal (blue) and null-free signal (red)
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Figure 4.10: Results for 2% nulled signal, nulled signal (blue) and null-free signal (red)
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Figure 4.11: Results for 5% nulled signal, nulled signal (blue) and null-free signal (red)
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Figure 4.12: Results for 10% nulled signal, nulled signal (blue) and null-free signal
(red)
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Figure 4.13: Results for 20% nulled signal, nulled signal (blue) and null-free signal
(red)
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Figure 4.14: Results for 50% nulled signal, nulled signal (blue) and null-free signal
(red)
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4.3 Simulation Tests

This section will now present the simulation results with the inclusion of nulls. Note

that scenario 4 parameters will be used for each simulation. The first example revisits

the interference scenario presented in Section 4.1, i.e., the frequencies between 5 and

5.02 GHz have been corrupted. Figure 4.15 shows that the subcarriers occupying these

frequencies have been nulled out. OFDM radar processing is then performed on the

data as usual, with an IFFT taken across subcarriers and a DFT across symbols. The

resulting range-Doppler map and range/Doppler profiles are provided in Figures 4.16

and 4.17 respectively. From both figures it is clear that the range profile is messier

than usual as a result of the nulled subcarriers. By contrast, the Doppler profile has

remained intact, which is not particularly surprising considering that the null locations

are the same across symbols. Despite the nulls, the target is still clearly distinguishable

from the clutter region.

Figure 4.15: Subcarriers occupying frequencies between 5 and 5.02 GHz are nulled out
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Figure 4.16: Range-Doppler map result with subcarriers between 5 and 5.02 GHz
nulled out

Figure 4.17: Range/Doppler profiles with subcarriers between 5 and 5.02 GHz nulled
out
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The question then becomes how the RCS extraction has been affected by nulling out

subcarriers. The RCS extraction result is shown in Figure 4.18. As expected, we have

completely lost the information in the region that has been nulled. Notice that we have

also lost information to the left and right of the nulled region, which is a result of the

tapering effect from windowing. Luckily, nulling the signal uniformly across symbols

only affects the range/subcarrier dimension. Since our window in this dimension is

quite wide, the tapering is not too significant. We can reduce this taper by widening the

range window, as will be shown shortly.

Figure 4.18: RCS extraction result with subcarriers between 5 and 5.02 GHz nulled out

We will now consider a new case where there is additional narrowband interference

below 5 GHz. This interference has a bandwidth of 10 MHz and is centered about 4.985

GHz. In other words, the interference occupies frequencies between 4.98 and 4.99 GHz.

Figure 4.19 shows the subcarriers that have been nulled out as a result of the additional

interference. From our previous analysis in Section 4.2, we know that the response

becomes increasingly distorted with more nulls. The RDM and range/Doppler profiles
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shown in Figures 4.20 and 4.21 confirm that the range response looks slightly degraded

with the additional nulls. Despite the degraded range response, the target is still clearly

identified in the RDM, so windowing and RCS extraction are easily performed.

Figure 4.22 shows the RCS extraction result. From this it is clear that we have lost

the entire region between 4.98 and 5.02 GHz, despite having subcarrier information

between 4.99 and 5 GHz. This is a result of the range windowing, which has tapered

away the small region between interference zones. To remedy this, we can widen the

range window; however, this results in a higher measurement variance. Figures 4.23

and 4.24 show that for a widened range window, the previously lost region can be

recovered at the cost of a noiser measurement. To recap, the addition of nulls degrades

the range response, but does not affect the Doppler response. Also, the degradation

should not affect RCS extraction apart from losing the nulled regions, assuming that

the target can be identified in the RDM. However, range window width may need to be

a consideration for closely-spaced null regions.

Figure 4.19: Subcarriers occupying frequencies 4.98 to 4.99 GHz and 5 to 5.02 GHz
are nulled out
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Figure 4.20: Range-Doppler map result with subcarriers inside 4.98 to 4.99 GHz and 5
to 5.02 GHz nulled out

Figure 4.21: Range/Doppler profiles with subcarriers inside 4.98 to 4.99 GHz and 5 to
5.02 GHz nulled out
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Figure 4.22: RCS extraction result with subcarriers inside 4.98 to 4.99 GHz and 5 to
5.02 GHz nulled out

Figure 4.23: Range/Doppler profiles with subcarriers inside 4.98 to 4.99 GHz and 5 to
5.02 GHz nulled out, increased range window width
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Figure 4.24: RCS extraction result with subcarriers inside 4.98 to 4.99 GHz and 5 to
5.02 GHz nulled out, increased range window width

If the range window must be widened to reduce taper, considerable noise may ap-

pear in the final measurement, depending on the SNR. An unweighted moving average

(MA) filter (see next section for general MA filter discussion) may help reduce mea-

surement variance as a result of inadequate windowing, poor SNR, or a combination

of the two. To illustrate this, we will alter the target range of the scenario that has

been presented in this section. The target range is changed from 40 m to 250 m, which

results in a reduced SNR. From the range-Doppler map shown in Figure 4.25, it can

be seen that the target response is mostly embedded in the noise floor except for the

central peak. Figure 4.26 shows the RCS extraction result and the result after applying

a 30-point MA filter. The MA filter helps smooth out the RCS result; however, we

see that we have introduced significant tapering once again. As the MA filter length is

increased, the smoothing gets better, but the tapers get worse. This is a similar tradeoff

to what we observed with the range window width.
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Figure 4.25: Range-Doppler map after moving the target to 250 m

Figure 4.26: RCS extraction result with and without a 30-point moving average filter
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4.4 Spectral Estimation & Reconstruction

Up to this point, we have seen how nulling subcarriers throws away RCS data at

those frequency points. However, with spectral estimation techniques it may be pos-

sible to reconstruct the power spectrum and obtain RCS measurements across the full

symbol bandwidth. Since there is a great deal of literature on spectral estimation, only

basic principles will be presented in this section. For more details, see [17].

4.4.1 Fundamental Theory

The goal of spectral estimation is ultimately to determine the spectral content of a

random process from a finite number of samples of that process. Formally, the spec-

tral content of a random process is called the power spectral density (PSD), and it

describes the distribution of power across different frequencies. For a wide sense sta-

tionary (WSS) random process, the PSD and autocorrelation function (ACF) R(τ) form

a Fourier transform pair. This implies that a complete PSD requires an infinite number

of points in the ACF, which is clearly impractical since we can only obtain a finite num-

ber of time domain samples. Since determining the exact PSD is an impossible task,

the best we can do is estimate it.

An example of a common spectral estimator is the periodogram. Given a finitely

sampled signal x[n] with Fourier transform X(f), the periodogram is given by |X(f)|2

and is usually normalized by the signal length N . Spectral estimators such as the peri-

odogram operate under the assumption that data outside of the observation window is

zero; however, this is typically not a realistic assumption. Rather than assume that the

data is zero outside of the observation window, we may make some assumptions about

the random process or make use of a priori information. In other words, we can develop

a model that tries to approximate the random process, and the model parameters can
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be derived from the observation data. If the model is accurately chosen, this modeling

approach can usually obtain a better result.

The models of interest fall under a class known as rational transfer function mod-

els. They are the autoregressive (AR) model, moving average (MA) model, and the

autoregressive-moving average (ARMA) model. Consider a WSS random process x[n]

that is the output of a BIBO stable LTI system with input w[n], where w[n] is a white

process following a Gaussian distribution with zero mean and variance σ2. Suppose

that the present input can be written as a linear combination of the present output and

past outputs as

w[n] = x[n] + a1x[n− 1] + a2x[n− 2] + · · ·+ apx[n− p] (4.3)

or equivalently,

x[n] = −
p∑

k=1

akx[n− k] + w[n] (4.4)

This form represents an AR model of order p and is sometimes referred to as an all-pole

model. This is because the transfer function contains only poles. The transfer function

is given by
X(z)

W (z)
=

1

A(z)
=

1∑p
k=0 akz

−k
, a0 = 1 (4.5)

where X(z) and W (z) are the z-transforms of the output and input respectively.

Now consider that the present output is modeled as linear combinations of the cur-

rent and past inputs as

x[n] = b0w[n] + b1w[n− 1] + b2w[n− 2] + · · ·+ bqw[n− q] (4.6)
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or equivalently,

x[n] =

q∑
k=0

bkw[n− k] (4.7)

This form is a MA model of order q and is sometimes referred to as an all-zero model,

since the transfer function contains only zeros. The transfer function is given by

X(z)

W (z)
= B(z) =

q∑
k=0

bkz
−k (4.8)

Finally, (4.4) and (4.7) may be combined to form the ARMA model, which has a

linear difference equation of the form

x[n] = −
p∑

k=1

akx[n− k] +

q∑
k=0

bkw[n− k] (4.9)

The transfer function then follows easily

H(z) =
B(z)

A(z)
=

∑q
k=0 bkz

−k∑p
k=0 akz

−k
(4.10)

With the transfer functions of (4.5), (4.8), and (4.10) in mind, recall that the ACF and

PSD are a Fourier transform pair for a WSS process. Also recall that for a WSS process,

the output ACF is related to the input ACF by the system transfer function as

Ryy(τ) = Rxx(τ) ∗ h∗(−τ) ∗ h(τ) (4.11)

So, the z-transform of the output ACF is given for the ARMA model as

Pxx(z) = H(z)H∗(1/z∗)Pww(z) =
B(z)B∗(1/z∗)

A(z)A∗(1/z∗)
Pww(z) (4.12)

which when evaluated along the unit circle (z = exp(j2πf)) yields the output PSD
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Pxx(f) for the ARMA model [17]

PARMA(f) = Pxx(f) = σ2

∣∣∣∣B(f)

A(f)

∣∣∣∣2 (4.13)

Through the same technique we can obtain the PSD for the AR and MA models [17]

PAR(f) =
σ2

|A(f)|2
(4.14)

PMA(f) = σ2|B(f)|2 (4.15)

So, how does spectral estimation theory apply to our problem? Spectral estimation

tries to determine the PSD for a finitely sampled random process. In our case, this isn’t

exactly what we want; we want to reconstruct missing pieces of our spectrum. If we

were to estimate the spectrum from the time domain data, then we would be creating a

model that still contains gaps in the spectrum. Because of this, we will not be solving a

spectral estimation problem, but instead will use principles to reconstruct our RCS. In

particular, we will use a rational transfer function model to try to model the spectrum

itself. With this model, we can predict values for gaps in the spectrum.

4.4.2 AR Model Tests

Now that the general form of each model has been presented, some tests will be

presented that try to fill the gaps in our RCS using an AR model. The AR model is

chosen for testing because it is generally easier to solve for the model parameters. This

is because given the ACF it is possible to determine the AR parameters by solving a set

of linear equations; however, for MA and ARMA models this relationship is nonlinear

[17]. Luckily for this scenario, a MATLAB function already exists that achieves what

we are trying to do. The MATLAB function fillgaps() fills signal gaps based on an AR
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model. This function chooses the AR model order p such that the Akaike information

criterion (AIC) [18] is minimized. The AIC seeks to address the trade-off space that

exists when trying to determine the model order. That is, the AIC tries to weight the risk

of underfitting (model order is too low) and overfitting (model order is too high) . After

determining the model order, the Burg method is used to estimate the AR parameters;

more information about the Burg method can be found in [17].

Figure 4.27 shows the result after using an AR model to estimate the RCS from

the nulled spectrum RCS result of Figure 4.24. The AR model is used to fill in the

gaps, and then the result is smoothed. Clearly, the model has produced an accurate

estimation of the missing RCS measurements. Let us consider another scenario where

the bandwidth has been greatly increased to 1 GHz in order to observe a wider variation

in RCS. Additionally, the target range has been set to 10 m in order to retain a high SNR.

Subcarriers from 4.9 to 5.1 GHz have been nulled out, and the results after applying the

AR model and smoothing are shown in Figure 4.28. In this scenario, it is clear that

the model order was not chosen properly by fillgaps(). This was not evident from the

previous test shown in Figure 4.27 because the RCS across the nulled regions was

approximately linear. In general, since our data is noisy, we require a high model order

to appropriately model the data. A manual increase of the model order results in a

much better result and is shown in Figure 4.29. Note that the model order p was chosen

somewhat arbitrarily as the number of RCS samples divided by two (p = 2500 in this

case).

It is important to remember that these tests have been run with high SNRs (around

70 dB). For low SNRs, it is expected that some level of range windowing is required

to avoid being noise-limited (meaning that the noise is too strong to make an accurate

RCS measurement). In order to analyze how range windowing affects the AR modeling

approach, let us consider many different simulation runs.

92



Figure 4.27: RCS extraction result from Figure 4.24 after applying AR model and
smoothing

Figure 4.28: RCS extraction result with AR model after increasing bandwidth to 1 GHz
and nulling out 4.9 to 5.1 GHz
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Figure 4.29: RCS extraction result with AR model from Figure 4.28 with increased
model order

Figures 4.30, 4.31, and 4.32 each contain results from 110 simulation runs. Each

cell represents the percent error of the AR model reconstruction compared with the true

RCS. For each simulation, the post-processing SNR and “percent nulled” is specified.

The percent nulled determines what percentage of the signal to null, with the nulls

consisting of a single group centered at the waveform center frequency. Each simulation

run has 1.5 GHz of bandwidth, which allows for several of the RCS oscillations to be

captured. Additionally, after the AR models have been applied, an unweighted moving

average filter is used to smooth the result. To keep the results consistent, the model

order is the number of RCS samples divided by two, which is p = 3750 for all results

shown.

Figure 4.30 shows results that do not utilize a range window. We can see that for

high SNRs, there is excellent reconstruction performance overall. However, at low

SNRs our overall performance quickly becomes noise limited, which can be seen by
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the sharp increase in the percent error. To remedy this noise limitation, we will apply a

range window with width factor αr = 10. The results, which are given in Figure 4.31,

show that with range windowing we are able to improve our performance at lower SNRs

while retaining a low percent error for high SNRs. However, some of the simulation

runs still report a somewhat high percent error, so we will make our window slightly

narrower by raising αr to 15. The results for αr = 15, which are shown in Figure 4.32,

show that we have slightly improved our low SNR results; however, we can also see

that we have degraded our high SNR performance. This is because as the range window

is made narrower, our RCS result is increasingly smoothed. For smooth signals, the

sensitivity to overfitting increases, which is why some trials in Figure 4.32 have a high

percent error. In other words, if we apply a range window such that our RCS result is

smoothed, then we have to lower the model order compared to the case in which we do

not range window. The question of how to determine the proper model order from the

data is something that still needs to be explored in future work.

Figure 4.30: AR modeling simulation results with no range windowing
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Figure 4.31: AR modeling simulation results with αr = 10

Figure 4.32: AR modeling simulation results with αr = 15
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Chapter 5

Conclusions & Future Work

5.1 Conclusions

This thesis has shown that from a simulation standpoint, it is indeed possible to

extract RCS from a moving target using OFDM. In order to be successful, ground

clutter occupying the zero Doppler portion of the range-Doppler map must be filtered

out. It has been seen that in order to filter effectively, there must be adequate Doppler

spacing between the target and clutter region, as well as fine enough Doppler resolution.

For targets that straddle Doppler bins, there may be some reduction in power due to

windowing with the Gaussian window; however, it was shown that this effect can be

compensated for. The RCS extraction performance was also seen to be a strong function

of SNR. To increase the SNR, it proved helpful to increase the number of transmitted

symbols. This raised the Doppler processing gain for the target, thus helping SNR;

however, it was also seen that the same processing gain was applied to the ground

clutter. As a result, increasing the number of symbols helps with SNR, but has little

effect on improving SINR. It was also shown that range windowing plays an important

part in fighting low SNR, since windowing in range helps filter noise and acts like a

smoothing filter.

It was also shown that for an interfering signal from another transmitter, nulling out
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the corrupted spectrum proved crucial for identifying the target in the range-Doppler

space. Although spectral nulls distort the ideal sinc-shaped time domain response, they

have little effect on the RCS extraction process, other than zeroing out RCS values in

the final result. Finally, it was observed that parametric modeling techniques may prove

helpful for reconstructing parts of the spectrum that were nulled out; however, it is clear

that attention should be given to model order selection to ensure accurate results.

5.2 Future Work

With this thesis completing the simulation analysis, the natural next step is to begin

real-world tests. In order to perform such tests, there are practical issues that must

be researched. One of the more glaring issues concerns how to mount a calibration

target on a moving vehicle to separate it from the clutter zone. Assuming that these

obstacles are overcome and the tests are successful, there are still more scenarios to be

considered. For instance, throughout this work we have restricted our discussion to that

of a single target, but there may be multiple targets present at one time. This greatly

changes how the filtering problem should be formulated, since now there are competing

target returns in both the range and Doppler dimensions. There may even be additional

filtering considerations depending on the degrees of freedom that you wish to allow

for. For example, if the radar itself is moving, then the clutter zone could be shifted

and possibly distorted. Types of clutter other than ground clutter may pose additional

challenges.

Additional work can also be done in analyzing spectral reconstruction models. In

this thesis, only the AR model was considered; however, a different model may pro-

vide better results. Before analyzing different models however, additional work on

model order selection should probably be conducted. In addition, other reconstruction
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approaches such as interpolation-based methods may prove beneficial for narrowband

reconstruction. Interpolation-based methods are likely more efficient computationally,

but may also be more accurate than a parametric model in cases where the training data

is not representative of the missing data.
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