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ABSTRACT 

In planning large scale carbon sequestration projects, one of the key parameters affecting project 

economics is the selection of optimal pipeline transportation networks connecting physical 

locations of carbon sources to sinks (or injection sites). This network is usually determined based 

on several limiting factors including existing right-of-way, densely populated regions, topology, 

etc. Open-source tools such as SimCCS2.0 do an effective job in proposing provably optimal routes 

for construction of new pipelines but are unable to accommodate existing pipelines in techno-

economic optimization. With the newly amended 45Q laws offering 70% more tax credits for 

carbon sequestration than it did in the 2018 amendment, energy companies are looking more into 

repurposing gas and liquid transportation lines for CO2 transportation to abandoned oil and gas 

wells for carbon storage and this has further bolstered the need to have a method to account for 

existing pipelines in sequestration economics. 

This project demonstrates a method to account for existing pipelines by 1 introducing zero cost 

paths into the cost surface to represent pipelines, 2 allowing for tie points into the existing pipeline 

by use of cost exclusion zones around zero cost paths and then, 3 calculating least cost paths and 

defining transshipment nodes along pipeline intersections. Doing this allowed for a reformulation 

of the alternate network paths between sources and sinks, and the network was then solved as 

Minimum-Cost-Network-Flow-Problem (MCNFP) modeled as a mixed integer programming 

problem. 

The solution was developed using Python programming language and demo test cases are shown 

to illustrate the effectiveness of the solution in assessing cost reduction associated with CO2 

transfer from sources tied into locations along existing transport pipelines to sinks. 
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This solution has been packaged into a software name Sequestrix and has been made publicly 

available on GitHub for researchers and economic analysts to take advantage of for evaluating 

large scale CCUS projects, and to encourage further development and collaboration. 
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CHAPTER 1: Introduction 

The concentration of CO2 in the atmosphere has rapidly increased since the start of the industrial 

revolution in 1750, this increase is primarily due to CO2 emissions rates being increasingly higher 

than the rates at which natural sinks on land (via as plants and micro-organisms) and oceans (via 

inorganic dissolution) can absorb CO2 (NOAA, 2022). This occurrence, as illustrated in figure 1, 

has led to increasing effects of global warming which have become impossible to dismiss as any 

form of scientific conspiracy to promote an increasing share of renewable energy sources in the 

global energy mix. 

 

Figure 1: Changes in atmospheric CO2 concentration (blue line) with CO2 emissions (black line) since 

the start of the industrial revolution (1750) till late 2021. Source (NOAA climate.gov) 
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According to the Intergovernmental Panel on Climate Change, IPCC, the effects of climate change 

can be (and is projected to be) felt across multiple spheres including (1) ecosystem disruptions – 

where increasing temperatures in the arctic sea has led to increased migration of species from 

warmer land and sea areas and declining population of ice-dependent species such as polar bears, 

(2) agriculture and food security – where rapid changes in temperature is causing disruptions to 

harvest stability and livestock yield, (3) to human communities, livelihoods and lifestyles – where 

climate change has led to increased wildfires close to large settlements (e.g., in California, USA), 

increased risk of flooding and displacement in coastal settlements where majority of the residents 

are low – middle income earners (IPCC, 2022),. Figure 2 below illustrates the interactions between 

these spheres and the associated risk levels.  

 

 

Figure 2: Illustration of interactions across key risks associated with climate change (IPCC, 2022) 
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The primary source of climate change has been linked to greenhouse gas emissions, particularly 

carbon dioxide and methane. The Petroleum industry has for decades been a major contributor to 

these emissions which is sustained by a growing demand for energy as  3rd world populations move 

from poverty into middle class economic status. 

The current world energy outlook (IEA, 2022) suggests that fossil fuels will still play a role in 

energy generation up to 2035 and beyond due to the growing energy demands with renewable 

energy production growing significantly with advancements in technology. World governments 

and climate researchers had realized this fact a few years ago and started to proffer solutions to 

greenhouse gas emissions. One of the major solutions proffered was carbon capture and 

sequestration. 

Carbon capture and sequestration involves capturing CO2 directly from emission sources or from 

the atmosphere via direct air capture and injecting (or storing) it in geological formations. In the 

oil and gas industry, the practice of CO2 injection started in the 1970s as a means for improving 

oil production from reservoirs (Núñez-López & Moskal, 2019), this process is called CO2 EOR. 

Oil and CO2 are miscible at defined reservoir pressure and temperature conditions and the 

dissolved CO2 reduces the oil density and alters interfacial tension thus improving mobility making 

it easier for the oil to travel within pore spaces.  

In more recent times, the concept of storing CO2 in deep saline aquifers have become more 

mainstream as they offer vast potential storage for captured CO2 (McPherson & Cole, 2000). One 

of the major challenges involved in developing large scale CO2 sequestration projects, especially 

in saline aquifers, is project economics. In contrast to CO2 EOR where capture and storage costs 
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may be offset by additional oil production, sequestration in saline aquifers offer no direct economic 

reward.  

Out of the three major costs for CO2 sequestration, injection costs are known with high certainty 

based on decades of oil and gas operations, capture costs are site specific and based on current 

technology can also be reasonably estimated to range between 11 and 75 $/metric ton of CO2 

(Abramson et al., 2020), however, transportation costs require a level of sophistication to 

adequately estimate. CO2 can be transported via several means including – rail cargos, ships, 

trucks, and pipelines, however, most large-scale CO2 projects require pipeline transportation 

connecting a network of sources and sinks across a large geographic area. 

Before these pipelines are constructed and during the project scoping phase, a method for 

estimating the best and most cost-effective pipeline route must be established and this is usually 

achieved via graph network optimization. There has been recent research and advancement in the 

field, with working solutions such as SimCCS  (Middleton & Bielicki, 2009) and SimCCS2.0 

(Middleton et al., 2020)  developed and currently commercialized under Carbon Solutions LLC. 

These tools can calculate provably correct pipeline routes between multiple geo locations and 

estimate resultant transport costs for given transport volume of CO2. While these tools can 

suggest/calculate routes for new pipeline construction for use in economical evaluation of 

sequestration projects, they have one major limitation – handling existing pipelines. 

With the recent drive by energy companies to meet environmental, social and government (ESG) 

goals for CO2 reduction, and due to the recent increase in 45Q  tax credits (26 U.S.C. § 45Q), 

operators are seeking to repurpose existing pipelines to transport CO2 from sources to sequestration 
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sites and require a method for accounting for existing pipeline routes, capacities, and cost in 

economic evaluation of sequestration projects. 

1.1 Scope of Thesis 

This thesis introduces a method to bridge the gap in the current computational framework needed 

for assessing sequestration economics, taking into account preferred existing pipeline routes and 

constraints. It expands on existing knowledge of creating potential routes for new pipelines, 

allowing the integration of existing pipelines and adjustment of flow constraints before solving the 

CO2 network optimization problem. The thesis offers a recommended workflow for manual entry 

of tie-in points or mathematical estimation, which operators can apply in sequestration projects. 

1.2 Working Hypothesis 

The working hypothesis for this thesis is that existing pipelines can be embedded by modifying 

the cost surface graph with zero cost paths thereby forcing shortest path algorithms to divert flow 

via existing pipelines when it is cost effective. 

1.3 Organization of Thesis 

This thesis is divided into five chapters which are cover the following themes: 

● Chapter 1: Introduces background and motivation of this study, describes the scope, 

working hypothesis and organization of the thesis. 

● Chapter 2: Literature review on CO2 sequestration history, current sequestration 

infrastructure, economics, and network optimization 
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● Chapter 3: Describes the methodology for translating pipeline coordinates to graph 

coordinates, modifying cost surface graph, assigning or calculating tie-in points and 

generating alternate pipeline networks for sequestration. Network optimization and 

visualization frameworks utilized are also discussed. 

● Chapter 4: Introduces new tool called Sequestrix and highlights the results of 3 demo cases 

that benchmarks new tool performance against SimCCS and showcases pipeline 

embedding capabilities for CO2 sequestration projects. 

● Chapter 5: Summarizes key conclusions and outlines future work. 
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CHAPTER 2: Literature Review 

2.1 CO2 Sequestration History 

CO2 Sequestration has a long-related history with Enhanced Oil Recovery (EOR) projects, which 

sought to improve oil production from declining reservoirs. Although the first carbon capture plant 

was proposed in the late 1930’s, the first large scale CO2 underground injection project began in 

Sharon Ridge oilfield, Texas in 1972 (Núñez-López & Moskal, 2019) where ExxonMobil utilized 

the CO2 for EOR. The Sleipner project, which was launched in 1996, is the world’s first true 

integrated Carbon Capture and Storage (CCS) project and it was developed by Statoil to avoid 

carbon taxes imposed by the Norwegian government (Beckwith, 2011). According to the Global 

CCS Institute, as of 2022, there are 30 commercially operating CCS projects worldwide with 11 

more being constructed and over 100 in different development stages. 

Defined as the injection and permanent storage of carbon dioxide in underground geologic 

formations, CO2 sequestration requires a closed loop path for some or all of the carbon injected 

such that there is minimal recycling back into the atmosphere (Hepburn et al., 2019). This 

definition has some implications for how Carbon sequestration is assessed in EOR and via 

injection in saline aquifers. CO2 storage is also possible in Coal Beds to recover methane, (Gorucu 

et al., 2005) and Shales but with greater difficulty due to very low permeabilities, however the CO2 

trapping mechanism will be by adsorption (Fakher & Imqam, 2019). 

2.1.1 Sequestration in Hydrocarbon Reservoirs 

In EOR operations, the CO2 which is injected with water in alternating cycles into the producing 

reservoir - a process known as Water-Alternating-Gas (WAG) injection, is miscible in oil, altering 
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the interfacial tension and causing the oil droplets to swell and become more mobile in the reservoir 

(Gu & Yang, 2004). This, in combination with other inherent rock properties such as wettability 

and capillary pressure, control the amount of additional recovery obtained by CO2 flooding, which 

may range from 8–16% of the original oil in place (Christensen et al., 2001; Rogers & Grigg, 2001) 

 

Figure 3: Illustration of WAG CO2 -EOR, extracted from NETL CO2 primer. 
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Injection of CO2 for EOR purposes is not viewed as a fully closed loop sequestration system 

because some of the CO2 is dissolved in the oil and is produced back at surface as illustrated in 

figure 3. Laboratory Studies have shown that in WAG, carbonated water injection (CWI) and their 

respective variants, CO2 storage may range from 5-65% (Ajoma et al., 2021). 

2.1.2 Sequestration in Saline Aquifers 

The consideration for storage of CO2 in deep geological saline aquifers are the results of effort to 

have a fully closed loop sequestration system. Saline aquifers have very large storage potential and 

may hold CO2 emissions for decades (McPherson & Cole, 2000). The method of CO2 storage in 

saline aquifers is by dissolution or mineralization (preferred) due to rock-fluid interactions in 

carbonate aquifers (Tarrahi & Afra, 2015). Mineralization serves as a very effective way of storing 

CO2 since it remains in solid state, however, concerns around formation damage in heterogeneous 

carbonate aquifers due to pore space plugging by precipitated calcium carbonates may limit 

practical application (Mohamed & Nasr-El-Din, 2012). In deploying large scale sequestration 

projects in saline aquifers, pressures must be consistently measured especially for bounded 

reservoirs. This is primarily because as CO2 is injected, the pressure in the reservoir builds, and if 

it goes above the fracture gradient of the cap rock, then the geologic seals fracture, and CO2 starts 

to leak into underground sources of drinking water (USDW) or may seep up to the surface 

(Achanta et al., 2012). Sequestration induced seismicity is also a concern and may be assessed 

through probabilistic methods before project implementation (Burghardt & Appriou, 2021; Ochie 

et al., 2022). 
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2.2 Sequestration Infrastructure 

2.2.1 CO2 Capture Technology 

Large sources, such as fossil fuel power plants, fuel processing plants, and other industrial facilities 

are the primary targets for CO2 capture as capturing CO2 directly from smaller sources in the 

transportation and residential sectors is anticipated to be more challenging and costly (IPCC, 2005) 

IPCC in their 2005 report on Carbon Dioxide Capture and Storage detail 4 basic systems for 

capturing CO2 from use of fossil fuels: 

1. Industrial process stream capture – This is a long-standing process that has been ongoing 

for decades and involves CO2 capture as part of chemical processes such as natural gas 

treatment and ammonia manufacturing (Kohl & Nielsen, 1997). Koch industries in 

collaboration with Anadarko Petroleum capture CO2 from the Enid fertilizer (ammonia) 

plant and transport it to the Purdy field in Oklahoma for CO2 EOR purposes (Callahan et 

al., 2014). 

2. Post-Combustion stream capture – Involves capture of flue gas that are byproducts of 

fossil fuel combustion and may be achieved using chemical sorbent process. They have 

current applications in coal and natural gas power plants but may be more efficiently 

applied to supercritical pulverized coal fired plants and natural gas combined cycle 

(NGCC) plants (IEA, 2005). 

3. Oxy-fuel combustion capture – Here, high purity O2 is used for combustion rather than 

air, this results in the production of CO2 and H2O as the major by-products. Doing this 

ensure higher purity CO2 being produced from the system making it easier to separate and 
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capture. This technology may also be applied to plants utilizing fossil fuel as power source 

if cost effective oxygen separation from air is available. 

4. Pre-combustion capture – Technology is more complex than Post and Oxy-fuel 

combustion in that it involves generation of a synthetic fuel gas (which contains CO and 

H2) by reacting the fossil fuel and oxygen. The CO then reacts with steam to form CO2 and 

hydrogen and the CO2 is separated downstream using physical or chemical processes. A 

major by-product of these systems are hydrogen rich fuels which can be used in running 

large industrial plant equipment. There is current application of Pre-combustion capture in 

Integrated Gasification Combined Cycle power (IGCC) plants, however, IGCC power 

plants are not common. 

These capture technologies (including future technologies being developed) and their applications 

to different industry types lead to variability in estimating CO2 capture costs for project economic 

analysis. Researchers at the Great Plains Institute (GPI) published a white paper (Abramson et al., 

2020) summarizing near and medium term facilities in the US and their estimated cost ranges. 

Table 1: Summary of near- and medium-term facilities, capture targets and cost estimates, source: 

(Abramson et al., 2020) 
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2.2.2 Transport Alternatives 

There are several alternatives for transporting CO2 from source to sink including pipeline 

transportation (typically in gas or supercritical phase) and transport with trucks, railway, or ships 

after CO2 has gone through liquefication process. For most large-scale CO2 sequestration projects, 

pipelines will be the most cost-effective means of transport and for the rest of this study, CO2 

transport will simply refer to pipeline transportation. 

2.3 Sequestration Economics 

Whilst many manufacturing companies would like to curb carbon emissions by improving 

chemical filtration processes within plant operations, the required technology to achieve this comes 

at a substantial cost (power related costs + equipment and workforce costs + plant modification 

downtime related costs). To completely ensure that the chemically removed CO2 is not re-released 

into the environment at some point in the lifecycle, they must develop utilization means, which 

permanently transforms CO2 to a state where it cannot vaporize into the atmosphere. (Hepburn et 

al., 2019) documents 10 utilization pathways for CO2 but suggests that only CO2-EOR, concrete 

manufacturing, bioenergy CCS, and enhanced weathering provided fully or partial closed 

pathways for storage. When CO2 is not being utilized for any of these processes that typically 

generate some form of revenue, the only reliable form of safely and permanently removing CO2 

from the atmosphere is through CCS via sequestration in saline aquifers. 

A significant constraint in creating extensive pure CO2 sequestration projects is the financial aspect 

of capturing CO2 at the emission source, constructing efficient and affordable transport pipelines 

(for land-based transportation), injecting it into new or existing wells in saline aquifers, and 

monitoring for potential leakages due to geological events during injection periods. These capital-
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intensive processes must be executed while understanding that the project will not generate direct 

revenue, and operators must depend on societal benefits and government incentives to ensure 

success. 

2.3.1 Role of Government Incentives 

The United States introduced carbon tax credits in section 45Q of the United States Internal 

Revenue Code (26 U.S.C. § 45Q) in 2008 as a means to incentivize rapid adoption and 

implementation of CCS projects within the country. Since its introduction, only 16 CCUS projects 

have been implemented and this was primarily due to the relatively small tax credits offered, which 

in most cases could not offset running costs. Majority of these projects are related to 

commercialized removal of CO2 at gas processing facilities or fertilizer manufacturing plants and 

utilization in CO2 EOR projects (Callahan et al., 2014).  

In 2018, the government acknowledged the inadequacy of the tax credits provided and revised 

them, granting up to $35 in tax credits per metric ton of CO2 used in manufacturing with closed 

pathway storage or geologically stored through EOR projects. Additionally, they offered up to $50 

per metric ton of CO2 for geological storage not used for EOR, signifying pure sequestration. 

Accessing those credits came with strict requirements – to qualify, an operator must meet one of 

the following criteria: 

Emission source eligibility 

• Capture at least 500,000 mTCO2/yr for power plants. 

• Capture at least 100,000 mTCO2/yr for other industries. 
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Storage and Utilization Requirements 

• Captured CO2 must be injected into underground geologic formations and permanently 

sequestered. This includes injection into oil and gas reservoirs (EOR projects), deep saline 

formations and coal bed seams. 

• At least 25,000 mTCO2/yr must be utilized and permanently fixed in a commercial product. 

Eligibility is dependent on a life cycle analysis to ensure carbon is permanently stored and 

not emitted by the same commercial product. 

With the 2018 increase, small scale sequestration projects with source and sinks in relatively close 

proximity became cost effective, however much larger scale projects involving building pipelines 

across county lines in mid-sized US states were still uneconomical (DaneshFar et al., 2021). 

In 2022, the United States government again amended the 45Q tax credits, offering a 43% increase 

in tax credits for carbon stored via CO2-EOR projects (from $35/tCO2 to $50/tCO2), a 70% increase 

tax credits for pure sequestration ($50/tCO2 to $85/tCO2) and up to $180/tCO2 for direct air capture 

with storage via pure sequestration. Additionally, eligibility capture thresholds were lowered 

significantly, point source capture requirements are now a minimum of 12,500 mTCO2/yr with 

18,750 mTCO2/yr for power plants and 1,000 mTCO2/yr for direct air capture.  

These recent changes mean that most projects that were deemed commercially unviable with unit 

total sequestration project costs of less than $15/tCO2 could now break-even and perhaps make 

significant profits.   
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2.4 Network Optimization of CO2 Sequestration 

Medium to large scale carbon sequestration projects involve multiple point CO2 source locations 

and sinks (which may be geological fields or wells within the fields), and the key questions that 

must be answered when planning these projects are (1) How to represent pipeline construction 

costs on a geographical surface (2) what are the possible pipeline routes for transportation that 

connect sources to sinks? (3) what are the optimal transport routes that minimize overall 

sequestration costs? 

2.4.1 Representing Pipeline Routing and Construction Costs on A Geographic Surface 

The first question poses a geographical network challenge as it requires Geographical information 

Systems (GIS) representation. Ideally, the shortest path connecting any 2 points by distance is a 

straight line and whilst the distance between source and sink is a major factor in this allocation, 

other social, environmental, and engineering costs must be considered. Some of the key factors 

that must considered when planning pipeline routes include: 

• Terrain Topography 

• Population Density 

• Neighboring settlements 

• Presence of barriers, e.g., streams and rivers 

• Existing Right of Way 

The Least Cost Path (LCP) can be defined as the most cost-effective path from a start point to a 

destination and LCP analysis allows for definition of costs associated with movement along a path 
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based on  GIS. Early application of LCP analysis saw researchers combining viewshed information 

from digital elevation models to determine scenic, strategic, hidden and withdrawn paths for 

military and environmental planning (Stucky, 1998), with extensions to roadway planning (Yu et 

al., 2003). Other researchers utilized data gathered from radio tracking of hedgehogs to determine 

LCP and investigated variations of cost surface values with least cost habitat graphs (Driezen et 

al., 2007; Rayfield et al., 2010). 

Development of surface cost graphs and the determination of LCP are based on concepts relating 

to graph theory. In practice, when rasterized surface cost graph has been made available, Dijkstra’s 

shortest path algorithms (Dijkstra, 1959) are run to find the LCP between any 2 geo-locations, this 

fundamentally always return the LCP (which may be non-unique) provided the graph edge weights 

are non-negative. 

Raster-based cost surfaces calculate edge weights by combining social and environmental factors, 

accounting for minimized distance between node pairs (Hopkins, 1973). The queen's kernel, 

commonly used in generating these cost surfaces balances computational speed and proximity 

distortion (Huber & Church, 1985), however, accurate weighing of cell barriers is crucial, 

especially when designing for pipeline infrastructure (Lugschitz, 2017). 

 

CostMAP 

In 2019, researchers from Los Alamos National Lab and Montana State University introduced an 

open-source software package called the Cost Surface Multi-Layer Aggregation Program 

(CostMAP) for developing these rasterized cost surfaces. CostMAP utilized available pre-
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processed GIS data on land cover, slope, population density, natural and man-made barriers and 

pipeline networks right of way to build weighted cost graphs (Hoover et al., 2019).   

 

Figure 4: An example of aggregated cell weight generated using the traditional Queen's kernel (a-c) vs 

using CostMAP (d-f) source: (Hoover et al., 2019) 

CostMAP offers advancements over traditional methods in the computation of edge weights when 

barriers such as rivers or roads are present by more accurately identifying these barriers and 

corridors. Instead of simply treating a cell as a crossing or a barrier if any part of the cell contains 

a linear feature, CostMAP uses a fine-scale raster to carefully check for actual crossings or 

corridors within the cell. This approach prevents the overestimation of costs incurred by barriers 

and helps find feasible routes that other methods might not identify. By using Major and Minor 

Cells, CostMAP refines the detection of actual crossings between adjacent cells, leading to a more 

precise estimation of the edge weights in the presence of barriers, this is highlighted in figure 4. 
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The output of CostMAP is a weighted-cost network and an aggregated cost raster, which can be 

used for LCP calculations in any GIS-aware software. 

 

Figure 5: Generating Right of Way (ROW) and  Construction cost surface graphs (Middleton et al., 2012) 

 

In 2022, a newer version called CostMAPPRO was introduced  to majorly address scale challenges 

for large scale sequestration projects (Talsma et al., 2022). The software produces higher 

resolution routing surfaces, ranging from 90m to 720m, with the ability to model routes at 10m. 

Additionally, CostMAPPRO can separate routing and construction cost weights, offering greater 

flexibility in avoiding specific features without affecting construction costs. Finally, CostMAPPRO 

allows users to input custom weights to create tailored cost surfaces, enhancing its adaptability to 

various stakeholder needs, such as avoiding river crossings. 
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2.4.2 Generating Alternate Pipeline Transport Networks 

Alternate pipeline transport network generation involves determining a network of LCP that 

connects a set of sources to sinks, such that a path exists connecting every source to every sink. 

(Middleton, Kuby, et al., 2012) outlined 5 steps for generating alternate pipeline transport networks 

(called candidate networks): (1) Define or Import a cost surface, from CostMAP or similar tools 

(2) Extract Raster LCP through shortest path algorithms like Dijkstra’s, (3) Raster to vector 

conversion which essentially reduces LCPs to a set of discrete nodes and arcs, (4) Removing 

redundancy caused by duplicate edges along identical cost paths as illustrated in figure 6, and (5) 

Network refining which involves algorithms defined to further simply the network, by say, 

collapsing triangles and merging nodes, figure 7. 

 

Figure 6: The candidate network methodology's process for converting raster-to-vector is depicted in these 

steps. In part (a), the cost surface forms raster paths or corridors, while parts (b) and (c) demonstrate the 

extraction of a vector network from these paths. Finally, part (d) shows how to strip two or more paths of 

the same cost between two nodes by removing arcs and nodes. Source (Middleton, Kuby, et al., 2012) 
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Figure 7: Shown on the left are three methods for refining the network, along with their effects on the 

candidate network depicted on the right. As the tolerance level is raised, the candidate network 

undergoes further refinement, resulting in a decrease in the number of nodes and arcs (Middleton, Kuby, 

et al., 2012) 

In connecting sources and sinks on a large graph with several edges, many routes may exist and if 

one desires to get routes between several pairs of nodes, the problem may become intractable or 

computationally inefficient. (Yaw et al., 2019) while researching on efficient network design 

proposed the Greedy Subset Spanner (GSS) algorithm as a means of designing provably optimal 

pipeline transport routes. In their paper, they noted that GSS could reduce the number of edges 

from a base graph by over 99.9% (figure 8) whilst generating alternate routes with a cost increase 
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of only ~6% over base Steiner trees which are the most optimal. The use of Delaunay Triangulation 

(DT), (Delaunay, 1934) to generate set of node pairs for which cost paths can be determined has 

proven an effective simplified approach to solving this problem, however because of the geospatial 

nature of the pipeline network generation problem, the distance guarantee of at most 2.418 times 

the Euclidean distance on any path between 2 points does not hold (Keil & Gutwin, 1992).  

 

Figure 8: Performance metrics for Base Steiner Trees, Greedy Spanner (GS), Delaunay Triangulation 

(DT) and Greedy Subset Spanner (GSS) (Yaw et al., 2019) 

Although the GSS algorithm offered significant improvements, DT came in a close second with 

similar edge reduction and better costs. Following the 5-step workflow and using DT in step 2 can 

lead to the generation of provably optimal candidate networks as illustrated in figure 9 a-c. 
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Figure 9: This illustration showcases the LCP analysis performed by SIMCCS2.0. To generate an 

idealized Candidate Network for CCS pipelines, SIMCCS2.0 employs a combination of Delaunay 

triangles, as shown in (a), to determine the best spatial configuration. Additionally, SIMCCS2.0 uses a cost 

surface and Dijkstra's algorithm to calculate the least cost path across the surface, as seen in (b), in 

order to create the Candidate Network, as shown in (c). 

 

2.4.3 Determination of Optimal Transport Routes  

The next step after generating the alternate pipeline routes based on the cost surface graph, 

Delaunay triangulation, and Dijkstra’s shortest path algorithm, is the formulation and 

implementation of a mathematical optimization model to find optimal transport routes and 

minimize overall CO2 sequestration costs. The Overall optimization problem is stated below: 

Given: 

● A set of CO2 capture sources with associated capture costs in $ per metric ton of CO2 

captured and total CO2 capture capacity. 

● A set of CO2 storage locations with associated storage or injection costs in $ per metric ton 

of CO2 injected and total CO2 storage capacity. 

● A set of alternate pipeline routes with associated construction costs in $ per metric ton of 

CO2 transported. 
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● Possible existing pipeline routes with zero associated construction cost, fixed volume 

capacity limits and transportation costs in $ per metric ton of CO2 transported. 

● A target CO2 capture amount. 

Find the minimum cost network that ensures CO2 target capture amount is met, honoring the 

following constraints: 

1. CO2 captured and stored must be less than or equal to the capture and storage capacities. 

2. Existing pipeline capacity limits are not violated. 

3. Flow is unidirectional along existing pipeline. 

2.4.4 Mathematical Model Formulation 

Translating the description to mathematical terms which can be used as a basis for building the 

CO2 optimization model is trivial since an existing formulation was developed and implemented 

in SimCCS (Middleton et. al, 2020). The mathematical model, which borrows its notations from 

SimCCS is given below: 

Sets 

 
S    Set of all CO2 capture source nodes. 

R    Set of all CO2 sinks or injection sites nodes. 

N    Set of all Transshipment nodes. 

I   Set of all nodes. 

C   Set of pipeline trends. 

A   Set of all nodes to node arcs representing alternate and existing pipelines. 

P ϵ A   Set of all existing pipeline arcs. 
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Parameters 

 

𝑄𝑖
𝑆   CO2 annual capture capacity at source i (MtCO2/yr). 

𝑄𝑗
𝑅   CO2 storage capacity at sink j (MtCO2). 

𝐹𝑖
𝑆   Fixed capture cost of CO2 at source i ($M). 

𝐹𝑗
𝑅   Fixed storage cost of CO2 at sink j ($M). 

𝑉𝑖
𝑆   Variable capture cost of CO2 at source i ($/tCO2). 

𝑉𝑗
𝑅   Variable capture cost of CO2 at sink j ($/tCO2). 

𝑄𝑎𝑐
𝑚𝑎𝑥   Maximum annual capacity of pipeline arc a with trend c (MtCO2/yr). 

𝑄𝑎𝑐
𝑚𝑖𝑛   Minimum annual capacity of pipeline arc a with trend c(MtCO2/yr). 

𝛼𝑎𝑐   Transportation cost of pipeline arc a with trend c ($/tCO2). 

𝛽𝑎𝑐   Build cost of pipeline arc a with trend c ($M/yr). 

 

 

Decision Variables 

 
𝑠𝑖 ∈  {0, 1}  Binary variable indicating if a source i is activated. 

𝑟𝑗  ∈  {0, 1}  Binary variable indicating if a sink j is activated. 

𝑦𝑎𝑐  ∈  {0, 1}  Binary variable indicating if a pipeline arc a with trend c is built. 

𝑎𝑖   ∈   ℝ  The amount of CO2 captured at source i (tCO2/yr). 

𝑏𝑗   ∈   𝑅  The amount of CO2 stored at sink j (tCO2/yr). 

𝑓𝑎𝑐   ∈   𝑅  The amount of CO2 flow in pipeline arc a built with trend c (tCO2/yr). 

𝐶𝑂2𝑇  ∈   𝑅  The target amount of CO2 to be sequestered during project life. 

 

The model formulation is a MIP problem and the objective function as described in the previous 

section is to minimize sequestration cost. Sequestration costs consist of capture cost, storage cost, 

pipeline build cost and transportation cost. Written mathematically as: 

min ∑ (𝑭𝒊
𝑺𝑠𝑖  +  𝑽𝒊

𝑺𝑎𝑖)𝒊∈𝑺  + ∑ (𝑭𝒋
𝑹𝑟𝑗  +  𝑽𝒋

𝑹𝑏𝑗)𝒋∈𝑹    +  ∑ ∑ 𝛽𝑎𝑐𝑦𝑎𝑐𝒄∈𝑪𝒂∈𝑨   +  ∑ ∑ 𝛼𝑎𝑐𝑓𝑎𝑐𝒄∈𝑪𝒂∈𝑨    

 capture                     storage     pipe build           transportation 

Subject to the following constraints 

Arc capacity bounds: 𝑄𝑎𝑐
𝑚𝑖𝑛 ≤  𝑓𝑎𝑐 ≤  𝑄𝑎𝑐

𝑚𝑎𝑥       ∀ 𝑎 ∈ 𝐴, ∀ 𝑐 ∈ 𝐶    
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Single direction arc flow: ∑ 𝑦𝑎𝑐𝑐∈𝐶 ≤ 1     ∀ 𝑎 ∈ 𝐴 

Flow balance: ∑ ∑ 𝑓𝑎𝑐𝒄∈𝑪𝒂∈𝑨 −  ∑ ∑ 𝑓𝑎𝑐𝒄∈𝑪𝒂∈𝑨 = 0     𝑖𝑓 𝑛 ∈ 𝑁 

Demand balance: ∑ ∑ 𝑓𝑎𝑐𝒄∈𝑪𝒂∈𝑨 −  ∑ ∑ 𝑓𝑎𝑐𝒄∈𝑪𝒂∈𝑨 = −𝑏𝑛   if n ∈ R       

      src(k)=n              dst(k) = n 

Supply balance: ∑ ∑ 𝑓𝑎𝑐𝒄∈𝑪𝒂∈𝑨 −  ∑ ∑ 𝑓𝑎𝑐𝒄∈𝑪𝒂∈𝑨 = 𝑎𝑛       if n ∈ S    

      src(k)=n              dst(k) = n 

Capture capacity bounds: 𝑎𝑖 ≤ 𝑸𝒊
𝑺𝑠𝑖   ∀i ∈ S 

Storage capacity bounds: 𝑏𝑗   ≤ 𝑸𝒋
𝑹𝑟𝑗   ∀j ∈ R 

Target capture: ∑ 𝑎𝑖 𝒊∈𝑺 ≥ 𝐶𝑂2𝑇   

Pipeline Build cost: 𝑪𝟏 ∗  𝑓𝑎𝑐 +  𝑪𝟐 = 𝛼𝑎𝑐  ∀a ∈ A  where 𝑪𝟏 & 𝑪𝟐 are trendline constants 

The constants 𝑪𝟏 ∈  𝐶 and 𝑪𝟐  ∈  𝐶 are based on trend lines used to represent cost per unit distance 

profiles for given CO2 volume. Representing CO2 transportation costs with linearized trends was 

proposed in (Middleton, 2013) where pipeline transportation costs were a function of the volume 

of CO2 being transported. In other publications, (Jones et al., 2022; Whitman et al., 2022), 

researchers demonstrated the utilization of 2 linear trends that cover 11 distinct pipeline capacities 

in SimCCS. The generation of these trends are discussed in the next section. 

2.4.5 Representing CO2 pipeline Construction Costs with Trendlines 

Determining the required capital investment for constructing CO2 pipelines is a complex process 

that involves considering several factors. Pipeline length, expected flow rates, inlet and outlet 

pipeline pressures, elevation changes, and topography are just a few of the crucial factors that must 
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be evaluated when assessing pipeline construction costs and, optimizing these costs in 

sequestration project planning is a non-trivial problem. This challenge led the US Department of 

Energy (DOE) Office of Fossil Energy and Carbon Management (FECM) to collaborate with the 

National Energy Technology Laboratory (NETL) to develop the FECM/NETL CO2 Transport Cost 

Model (CO2_T_COM). This excel-based software, powered by Visual Basic for Applications 

(VBA) macros, takes input from users, and generates realistic cost breakdowns, including capital 

and operating costs, based on specific financial and engineering inputs (Morgan et al., 2022) 

While CO2_T_COM is useful for in-depth analysis, its output needs to be translated into a format 

that can be used in the network optimization model. Inputs from table 2 were used to generate 

total transport costs for different CO2 annual flow rates by (Jones et al., 2022). They derived two 

linear trends to represent the cost of CO2 in $M per kilometer (figure 10). This cost trends were 

applied in the SimCCS optimization model, and the costs generated were compared to 

CO2_T_COM resulting in an acceptable average absolute error (AAE) of 3%. 

Choosing a linear approximation instead of a quadratic curve was due to anticipated computational 

complexity. Mixed-integer linear programming (MILP) which is a branch of mathematics and 

operations research that focuses on linear optimization, requires constraints and objective 

functions to be linear; otherwise, the problem becomes a mixed-integer quadratic programming 

(MIQP) problem, which is harder to solve even with state-of-the-art solvers. Although a lower 

AAE could be achieved by a quadratic function, the increased solve time is not a desirable tradeoff. 
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Table 2: Assumptions for CO2_T_COM transport cost trends used in SimCCS. 

Input Values 

Segment Length 80km (50 miles) 

Segment Inlet Pressure 15 Mpa (2175 psi) 

Segment Outlet Pressure 8.6 Mpa (1250 psi) 

Pumps per 100 miles 2 

Construction Cost Model PARKER 

Region MW (Midwest) 

Pipeline Capacity Factor 0.8 

Capital Charge Factor 0.11 

 

 

Figure 10: Linear trend approximation of pipeline cost (Whitman et al., 2022) 

 

2.5 Existing Solutions and Limitations 

There are several solutions for optimizing deployment scenarios for CCS projects including JRC 

InfraCCS (Morbee et al., 2011), GETCO (Gale et al., 2001), however, there has been a wide 
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adoption of SimCCS (and SIMCCS2.0) since release and it has become the industry standard for 

evaluating CCS projects.  

Published use cases of SimCCS in large scale sequestration planning include evaluations carried 

out in North America, Western Europe and Asia (Bielicki et al., 2014; Middleton & Brandt, 2013; 

Stauffer et al., 2014). Other evaluations cover utilization with different capture sources types – 

such as power plants, chemical and oil refining plants (Middleton et al., 2014; Middleton, Keating, 

et al., 2012), and different sink types apart from saline aquifers and  – such as producing sands for 

CO2-EOR (Middleton et al., 2011), depleted hydrocarbon bearing shales (Bielicki et al., 2018) 

and,  stacked reservoir systems (Ellett et al., 2017). There have also been recent publications on 

the application of SimCCS to the evaluation of sequestration economics in localized regions with 

the US, leveraging on carbon tax credits to determine optimal source sink pairings (DaneshFar et 

al., 2021). 

Limitations 

Limitations reported in literature typically refer to solving large scale sequestration projects that 

involve multiple sources and sinks spread over a large geographic region. To address these 

challenges, upscaling cost surface graphs was proposed to increase speed of generating alternate 

paths and the use of greedy subset spanner (GSS) to find effective albeit less optimal routes have 

been proposed (Talsma et al., 2022; Yaw et al., 2019). (Lobo, 2017) proposed speeding up the 

MIP network optimization by adding valid inequalities to strengthen the original SimCCS 

mathematical formulation. 

One Major limitation that has remained unaddressed is embedding existing pipelines in techno-

economic optimization tools like SimCCS, and that limitation is addressed by this research. 
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CHAPTER 3: Methodology 

3.1 Translating Geographical Coordinates to Graph Coordinates 

The cost surface graphs were obtained from open source published results of CostMAP simulations 

generated for SimCCS usage and were represented as numbered grid cells with the southwestern 

corner point and the grid cell spacing given.  

To translate these corner points to latitude and longitude coordinates, algorithms were proposed 

by the developers of SimCCS in their GitHub repository (SimCCS, 2021). The code for this was 

adapted and utilized in this research and is detailed in “geotransformations.py” in the Appendix. 

3.2 Generating Alternate Transport Routes 

3.2.1 Delaunay Triangulation  

Implementation of Delaunay Triangulation (DT) in Python was done using the Delaunay class in 

SciPy Python package. First steps involved translating the latitude and longitude of our sources 

and sinks into positional X and Y locations on our graph surface and this was done using methods 

outlined in “geotransformation.py” in the Appendix. Next those X and Y points are used to 

generate Delaunay triangles with successive pairs of nodes connected by lines. The pair of nodes 

are returned as outputs for use in computation of shortest distances. An example of the results of 

Delaunay triangulation given the following (x, y) points: {(10, 18), (20, 75), (50, 50), (80, 35), 

(80, 90)} is illustrated in figure 11 below: 
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Figure 11: Plot of Delaunay Triangle generated from specified input data. 

 

3.2.2 Embedding Existing Pipeline Routes 

The previous section discusses generating node pairs which will be used to define shortest paths 

on a cost graph surface assuming that we intend to build new pipelines to kickstart the CO2 

sequestration project. While this is useful, one key aspect of alternate routing is how to capture 

existing pipeline routes within our graph. This is the focus of this research and the proposed 

implementation details are discussed briefly. 
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Proposed Solution and Implementation 

Given that costs associated with transportation of CO2 are determined by the chosen transportation 

route which is selected based on LCPs on the surface cost graph, the obvious, albeit difficult to 

implement solution, is to modify the cost graph with zero cost edges along an existing pipeline 

route. 

To achieve this, the following assumptions are made: 

1. Long transport pipelines (kilometers or miles in length) are made up of discrete shorter 

fixed length pipelines with pipe fittings such as elbows, tee-connections, reducers, etc., 

2. The shorter fixed length pipelines are joined together by welding or coupling using fittings. 

3. The length of the pipe fittings can be neglected over long pipeline network distances and 

only the length of short, fixed pipe is considered. 

4. The ends of each fixed pipeline represent a physical location with an actual latitude and 

longitude location; hence the entire length of the pipeline can be represented by a discrete 

set of Lat-Long points. 

The above assumptions allow for, if available, one to directly modify the edges representing the 

existing pipeline and set their weights to zero. For this to occur however, the exact edges must 

exist on the surface cost graph, and this may not be practicable for a few reasons:  

● Reason 1: The shorter pipelines are of fixed length meaning that regardless of orientation, 

the distance between two ends is the same. Based on the spherical nature of the earth, 

distances between consecutive grid points may not be the same, hence there will be a 

mismatch of pipe Lat-Long and grid Lat-Long.  
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● Reason 2: To work around reason one, one may consider generating a very fine-precision 

cost graph by modifying reducing the grid spacing to say one meter. This work-around 

becomes impractical due to limitations with graph generation and shortest distance 

calculations. Generating the cost graph grid points is at least 𝑂(𝑛2) time complexity and 

the Dijkstra’s shortest path algorithm is at least of 𝑂((𝑉 + 𝐸)𝑙𝑜𝑔 𝑉) time complexity 

where V is number of vertices and E is number of edges. This means as the grid spacing 

reduces, the number of vertices and edges increases, and the computational time increases 

quadratically on average. Storage space also becomes a huge concern for finer grids, 

storing a 200 x 400 grid is much more efficient than an 8000 x 9000 grid. 

With the limitations described above, coupled with the fact that most operators/researchers do not 

have an exact set of discrete Lat-Long points along all pipe segments in a pipeline network, a more 

practicable solution was developed. 

Given any existing pipeline network, obtain sparse Lat-Long coordinates representing sections 

along the pipeline from either the operator or manually using the US National Pipeline Mapping 

system (NPMS). Each section is assumed to be linear and can be connected by a straight line. 

Using the geo locations of these sections, approximate x and y grid coordinates can be calculated 

using methods outlined “geotransformation.py” in the Appendix. If an edge exists in the map 

between successive geolocation grid points, we modify the weight (or cost) of the edge to zero, 

however if an edge does not exist, we may formulate some.  

The process of formulation involves calculation of shortest paths between the two grid points in 

the graph using weighted edges. Once the grid points and edges along these shortest paths have 
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been identified, we add those points to the set of pipeline Lat-Long points and set the edge weights 

(or costs) to zero.  

An algorithm designed to implement this is shown below: 
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ALGORITHM TO ADD EXISTING PIPELINE TO NETWORK GRAPH 

 
Step 1: Convert discrete pipeline lat-long points to edges 

Input: loc_points, a set of discrete pipeline lat-long points 

Output: loc_pair, a list of edge pairs 

    Create a new variable: loc_pair = list() 

    for i in range(len(loc_points) - 1): 

        loc_pair.append((loc_points[i], loc_points[i+1])) 

   end for 

    Find cell location of loc_pair points and assign to cell_pair using findCell function 

    for i in range(len(loc_pair)): 

        cell1 = findCell(loc_pair[i][0]) 

        cell2 = findCell(loc_pair[i][1]) 

        cell_pair.append((cell1, cell2)) 

   end for 

 

Step 2: Modify cell_pair to include edges from shortest paths algorithm 

Input: cell_pair, a list of edge pairs; edges, a set of edges in G(V, E) 

Output: cell_pair_mod, a modified list of edge pairs 

    Create a new variable: cell_pair_mod = list() 

    forall nodepair in cell_pair: 

        if nodepair in edges: 

            cell_pair_mod.append(nodepair) 

        else: 

            path = shortest_path(source=nodepair[0], destination=nodepair[1]) 

            forall edge in path: 

                cell_pair_mod.append(edge) 

 end for 

        end if 

   end for 

 

Step 3: Modify graph G(V, E) and set all edge weights for edges in cell_pair_mod to zero 

Input: G(V, E), a cost surface graph; cell_pair_mod, a modified list of edge pairs 

Output: G'(V, E'), a modified cost surface graph with some edge weights set to zero 

    forall nodepair in cell_pair_mod: 

        G.edges[nodepair][weight] = 0 

   end for 
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3.2.3 Tie-in Points – Calculate or Assign 

Once the graph cost surface has been modified with zero weight edges to represent existing 

pipelines, one key concern becomes how to limit entry and exit points from pipelines. The major 

reason this concern arises is that, since a zero-weight path exists in the graph, finding the shortest 

path between any two locations within the vicinity of the pipeline may lead to multiple entry and 

exit points around the pipeline. This is illustrated in figure 12 below. In 12(a), the shortest paths 

between two location pairs are shown if no pipeline (zero cost path) exists, a zero-cost pipeline is 

introduced in 12(b) and in 12(c), we see how the shortest path changes once the pipeline has been 

added. We also see multiple entry and exit points along a single pipeline. 

 

Figure 12: Illustration of effect of adding zero cost path to LCP generated by Dijkstra's Algorithm. In (a) 

the zero-cost path does not exist, and the blue paths represent the LCP, (b) shows the introduction of a 

zero-cost path in red and (c) shows the new LCP generated which utilizes the zero-cost path. 

In practice, having multiple entry and exit points along a single pipeline is usually unwanted as 

pressure at entry points must be level or graded properly to discourage backflow of fluid from 

entry point with higher pressure to entry point with lower pressure. Doing this requires installation 

of compressors and pressure instrumentation to monitor pressure levels along the pipeline 

consistently, all of which are expensive operations.  
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Assuming an operator has decide to allow only a single tie-in entry location on an existing pipeline, 

allowing CO2 from a nearby capture sites to be routed through pipeline, and this same operator is 

open to having multiple exit locations where CO2 will be routed to storage site, the question then 

arises - should the tie-in points be selected based on regional knowledge, land agreements and 

company preferences, or should it be assigned based on some shortest path calculation? 

There are four scenarios to consider when implementing tie-in points and “exclusion” zones. 

Exclusion zones represent regions of your pipeline where you want no tie-in location and become 

practical for pipelines where certain sections are in residential or hilly areas. The possible scenarios 

are given below and illustrated in figure 13 below: 

● Case 1: 2 tie-in points (entry and exit) along a given pipeline, exclusion elsewhere. 

● Case 2: 2 tie-in points with exclusion at ends 

● Case 3: Singe tie-in point with all exclusion but source or sink. 

● Case 4: Single tie-in point with exclusion before or after 
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Figure 13: Illustration of the 4 methods to define tie-in points along an existing pipeline. (a) Case 1: 2 

tie-in points are explicitly defined with exclusion everywhere else in pipe, (b) Case 2: 2 tie-in points with 

exclusion at ends, (c) single tie-in point with exclusion everywhere else but source/sink, (d) Single point 

with exclusion before or after. 

 

Case 1:  2 Tie-In Points (Entry and Exit) Along A Given Pipeline, Exclusion Elsewhere 

Given two preferred tie in-locations along an existing pipeline, the cost graph can again be 

modified to ensure that for any optimal CO2 transport network that may be designed utilizing 

segments of the existing pipeline, the preferred tie-in locations are honored. To achieve this, set 

the edge weight for all inbound and outbound edges from vertices along the pipeline to a large 

number, all vertices but the ones representing the preferred tie-in locations. This is done to 

discourage the shortest path algorithms from using those points during generation of alternate 

routes. The Algorithm to achieve this is as follows: 
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Algorithm 1 

 
Input: G(V, E) a cost surface graph; P(V), a list of graph vertices along an existing pipeline;  

tie_points, a list containing geolocation of 2 preferred tie-in points on existing pipeline 

Output: G'(V, E'), a modified cost surface graph with some edge weights along pipeline vertices 

set to 1e9 

 

Create A list: tie_vertices = list() 

forall nodepair in tie_points: 

    cell = findCell(nodepair) 

    tie_vertices.append(cell) 

end for 

 

forall edges in G.edges: 

    #in 

    if (edges[1] in P) and (edges[0] not in P) and (edges[1] != tie_vertices[0]) and (edges[1] != 

tie_vertices[1]): 

        G.edges[edges][weight] = 1e9 

   end if 

    #out 

    if (edges[0] in P) and (edges[1] not in P) and (edges[0] !+ tie_vertices[0]) and (edges[0] != 

tie_vertices[1]): 

        G.edges[edges][weight] = 1e9 

   end if 

end for 

 

Case 2:  2 Tie-In Points with Exclusion at Ends 

In this case, as illustrated in figure 13(b) above, you want to exclude regions of the pipeline before 

and after certain tie-in locations. The result of this step gives you an open segment of the pipeline 

where any two tie-in points may exist, and the exact locations will be determined by the shortest 

path algorithms. To implement this, a slight modification is made to Algorithm 1, and the nodes 

along the pipeline before and after tie-in point indexes have their in and outbound edge weights 

increased as shown in Algorithm 2 below: 
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Algorithm 2 

 
Input: G(V, E) a cost surface graph; P(V), a list of graph vertices along an existing pipeline;  

tie_points, a list containing geolocation of 2 preferred tie-in points on existing pipeline 

Output: G'(V, E'), a modified cost surface graph with some edge weights along pipeline vertices 

set to 1e9 

 

Create A list: tie_vertices = list() 

forall nodepair in tie_points: 

    cell = findCell(nodepair) 

    tie_vertices.append(cell) 

end for 

 

Create A list: exclusion = list() 

idx_1 = P.index(tie_vertices[0]) #index location of point1 

idx_2 = P.index(tie_vertices[1]) #index location of point2 

exclusion = P[:idx_1] + P[idx_2:] #slice P and get points before and after tie points on both sides 

 

forall edges in G.edges: 

    #in 

    if (edges[1] in exclusion) and (edges[0] not in P) and (edges[1] != tie_vertices[0]) and 

(edges[1] != tie_vertices[1]): 

        G.edges[edges][weight] = 1e9 

   end if 

    #out 

    if (edges[0] in exclusion) and (edges[1] not in P) and (edges[0] != tie_vertices[0]) and 

(edges[0] != tie_vertices[1]): 

        G.edges[edges][weight] = 1e9 

   end if 

end for 

 

Case 3:  Singe Tie-In Point with All Exclusion but Source or Sink 

This case models a scenario where an operator wants to have only one tie-in point on the pipeline, 

this is because on either end of the pipeline there is an existing sink you want to feed CO2 into. 

Assuming the pipeline has additional transport capacity, that location on the pipeline can be used 



40 

 

to tie-in extra CO2 sources. This is illustrated in figure 13(c) and the algorithm is based on a 

modification of algorithm 2 presented above. 

Algorithm 3 

 
Input: G(V, E) a cost surface graph; P(V), a list of graph vertices along an existing pipeline;  

tie_points, a list containing geolocation of 1 preferred tie-in point on existing pipeline 

Output: G'(V, E'), a modified cost surface graph with some edge weights along pipeline vertices 

set to 1e9 

 

Create A list: tie_vertices = list() 

forall nodepair in tie_points: 

    cell = findCell(nodepair) 

    tie_vertices.append(cell) 

end for 

 

Create A list: exclusion = list() 

exclusion = P[:-1] #assuming source/sink is at end of pipeline OR 

exclusion = P[1:] #assuming source/sink is at beginning of pipeline 

 

forall edges in G.edges: 

    #in 

    if (edges[1] in exclusion) and (edges[0] not in P) and (edges[1] != tie_vertices[0]) and 

(edges[1] != tie_vertices[1]): 

        G.edges[edges][weight] = 1e9 

   end if 

    #out 

    if (edges[0] in exclusion) and (edges[1] not in P) and (edges[0] != tie_vertices[0]) and 

(edges[0] != tie_vertices[1]): 

        G.edges[edges][weight] = 1e9 

   end if 

end for 
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Case 4:  Single Tie-In Point with Exclusion Before or After 

This case solves for the scenario where an operator only wants to exclude a section of a pipeline, 

to the left or right of a single geolocation; it is a more relaxed version of case 2 as illustrated in 

figure 13(d). The algorithm to achieve this is as follows: 

Algorithm 4 

 
Input: G(V, E) a cost surface graph; P(V), a list of graph vertices along an existing pipeline;  

tie_points, a list containing geolocation of 1 preferred tie-in point on existing pipeline 

Output: G'(V, E'), a modified cost surface graph with some edge weights along pipeline vertices 

set to 1e9 

 

Create A list: tie_vertices = list() 

forall nodepair in tie_points: 

    cell = findCell(nodepair) 

    tie_vertices.append(cell) 

end for 

 

Create A list: exclusion = list() 

exclusion = P[:P.index(tie_vertices[0])] #assuming exclusion zone is before tie-in point OR 

exclusion = P[P.index(tie_vertices[0])+1:] #assuming exclusion zone is after tie-in point 

 

forall edges in G.edges: 

    #in 

    if (edges[1] in exclusion) and (edges[0] not in P) and (edges[1] != tie_vertices[0]) and 

(edges[1] != tie_vertices[1]): 

        G.edges[edges][weight] = 1e9 

   end if 

        #out 

    if (edges[0] in exclusion) and (edges[1] not in P) and (edges[0] != tie_vertices[0]) and 

(edges[0] != tie_vertices[1]): 

        G.edges[edges][weight] = 1e9 

   end if 

end for 
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In summary, as a response to the question posed earlier – assigning, or calculating tie-in points, 

algorithms 1 allows for fully constrained tie-in location assignment while 2 - 4 offers some 

flexibility with that choice, whilst still allowing an operator to limit selection to preferred regions. 

 

3.2.4 Shortest Connecting Path Estimation 

Considering that the cost surface graph is simply a directed graph with non-negative edge weights, 

Dijkstra's algorithm was used in estimating shortest paths. To achieve this, pairs of vertices 

generated from Delaunay triangulation discussed in section 3.2.1 are used and since distance(v1, 

v2) = distance(v2, v1), any shortest path generated, and the corresponding weighted cost can be 

utilized for building bidirectional arcs when running the network optimization. 

The open-source Python program, NetworkX, has a custom implementation of Dijkstra’s 

algorithm and since the alternate route candidate network class was built as an abstraction of the 

Digraph class in NetworkX (shown in “alternateNetworGeo.py” in the Appendix), it became 

redundant to attempt any manual implementation. 

Using this library, it is also possible to use bellman-ford algorithm for shortest path estimation, 

this may become necessary if the operator seeks to further incentivize flow through pipeline and 

during embedding, sets pipeline graph edge weights to negative values. 

 

3.2.5 Solving with Intersecting Shortest Paths in Practice 

In practice, generating shortest paths in sequence using vertex pairs generated by the Delaunay 

triangulation may lead to intersecting paths being generated. This frequently occurs if the CO2 
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sources or sinks are in proximity and there is a region of the cost surface graph with significantly 

smaller edge weights. Intersecting paths are undesirable as they require significant engineering 

work to design - one pipeline must be buried deeper than the other or raised using elbows above 

the other.  

To solve this problem, a diagonal exclusion zone may be generated around alternate pipeline paths 

after each pass of resulting DT vertices through Dijkstra’s algorithm. This diagonal exclusion zone 

is generated easily by using simple properties of a rectangular grid.  

If n is the grid width, where the grid width is the number of points on a row - 1, then the distance 

between any 2 diagonal grid points is either n+2 or n. This is illustrated in figure 14(a) below 

where a 4x5 grid point with n = 4-1 = 3 is illustrated. There are two pipelines (line 1 in blue and 

line 2 in red) that intersect at 2 sections, the first intersection occurring between nodes 5 and 2 in 

a downward diagonal (n difference), and the second occurring between nodes 7 and 12 in an 

upward diagonal (n+2 difference). 

 

Figure 14: Illustration showing the effects of the diagonal exclusion zones algorithm. (a) shows paths 

crossing prior to implementation of diagonal exclusion zones (b) shows one possible realization of path 

generated after diagonal exclusion zone has been implemented, (c) another possible realization of path 

generation where 2 paths follow the same nodes in a segment. 
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Given these properties, the following algorithm for enforcing diagonal exclusion zones was 

implemented: 

ALGORITHM FOR DIAGONAL EXCLUSION ZONES 

 
Input: G(V, E) a cost surface graph; P(E), a list of graph edges along a generated alternate 

pipeline; pipeline width n 

Output: G'(V, E'), a modified cost surface graph with some edge weights along pipeline vertices 

set to 1e9 

 

forall edgepair in P: 

    if diff(edgepair) = n+2: 

        lower_diag = min(edgepair)+1 

        upper_diag = max(nodepair)-1 

        G.edges[(lower_diag, upper_diag)][weight] = 1e9 

     

    else if diff(edgepair) = n: 

        lower_diag = min(nodepair)-1 

        upper_diag = max(nodepair)+1 

        G.edges[(lower_diag, upper_diag)][weight] = 1e9 

    end if 

end for 

 

It becomes important to note that while diagonal edge paths are discouraged by assigning 

exponentially higher costs, leading to selection of paths that avoid diagonals as shown in figure 

14(b), sometimes, pipes may be routed through the same edges as shown in 14(c). Routing through 

the same edges may be interpreted in one of two ways: 

● Pipelines are built side-by-side on the same physical location OR 

● Pipelines merge into a larger diameter pipeline and exit as separate streams after some 

distance. 
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The actual implementation then becomes a function of operator preferences and technical 

specifications. The algorithm also presented can be used for existing pipelines to ensure no 

intersecting path is created across an existing pipeline. Also note that implementing this algorithm 

each time a new pipeline path is generated is computationally intensive and thus may be switched 

off if desired. 

When scenario (c) occurs, the inlet and outlet points of these merged routes are modeled as 

transshipment nodes which are utilized in network optimization modeling. 

 

3.3 Sequestration Network Optimization Implementation 

3.3.3 Solver Selection 

There are various commercial and open-source optimization solvers that are available to solve 

linear programming (LP) and mixed-integer programming (MIP) problems. The selection of a 

solver usually depends on individual preferences, although certain solvers are widely recognized 

as state-of-the-art in operations research. These solvers include: 

● CPLEX, which was developed by IBM and is available for academic use with 

commercial restrictions. 

● Gurobi, which is available as open-source software with commercial limitations. 

The SimCCS project utilized CPLEX as the underlying solver for CO2 sequestration optimization. 

However, running optimization scenarios locally requires complex installation procedures for the 

ILOG CPLEX Optimization Studio software, which can be avoided by using the SimCCS web 

version that runs scenarios on pre-installed cloud-based machines. 
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Gurobi is considered the fastest solver in the world, as demonstrated by benchmark tests for 

standard optimization tasks, and can be customized to enhance speed using multiple parameters 

that can be iteratively optimized with grid-search tuning. The Gurobi Application Programming 

Interface (API) is compatible with various programming languages, including Java, C++, and 

Python. Since this thesis project is implemented in Python, Gurobi was the preferred choice for 

implementing the mathematical optimization model. The Gurobi-Python API (gurobipy) can be 

easily installed using a "pip install" command, and the commands are intuitive, with extensive 

documentation, training examples, and support available on the Gurobi website. 

Both CPLEX and Gurobi solvers are used in operations research for large-scale optimization 

across multiple industries, including transportation, supply chain, chemical, medical, and others. 

As such, their software has been commercialized, with licensed versions available for purchase. 

Free versions of the software are also available but have restrictions on the number of variables 

and constraints that they can solve. For instance, the CPLEX free version is limited to 1000 

variables and 1000 constraints, while the Gurobi free version is limited to 2000 variables and 2000 

constraints.  

Gurobi's ability to solve problems that are twice the size of CPLEX's free version was another 

reason for its selection for implementation. If the model becomes too large to solve using the 

Gurobi free version, a Mathematical Programming System ".mps" file of the mathematical 

formulation of the problem generated by Gurobi can be saved and passed on to another Python 

package called PuLP, which uses the completely open-source COIN-OR Branch-and-Cut (CBC) 

as its default solver. The main drawback of using CBC is that the solve speed is significantly 
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slower than CPLEX or Gurobi. Therefore, to remove all restrictions on large-scale sequestration 

optimization projects, it is recommended to apply for a Gurobi academic or professional license. 

 

3.4 Solution Visualization 

The results of the network optimization can be grouped into two major classes, geospatial and 

numerical. The geospatial results are inferred indirectly from the selected pipeline arcs to be built 

connecting the required CO2 sources to sinks and based on the initial cost graph and the shortest 

path generated, a set of Lat-Long points are available and can be used to generate shape files to be 

used for external visualization. The numerical results include the volume of CO2 captured, 

transported, and stored, the lengths of the suggested transport pipelines, and a detailed cost 

projection. 

To visualize the results in an interactive way with high level summaries crucial for 

operators/researchers, powerful data visualization libraries including Plotly, Mapbox and 

Matplotlib were leveraged. These packages were used to create dashboard-like summaries that are 

hosted on the Python web platform called Streamlit. The details of the implementation can be 

found on the GitHub platform where the software is open-sourced, and in chapter 4, demo cases 

are used to illustrate and compare/contrast between the tool and SimCCS. 
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CHAPTER 4: Results and Discussion 

The efforts to develop a solution that can be deployed across multiple user systems and on the web 

led to the packing of all the code and software into a Streamlit app. This app is called Sequestrix™ 

CO2 Network Optimization Software and for the remainder of this document will simply be 

referred to as Sequestrix.  

In this section, a presentation of three demo cases is made, each serving a different purpose. The 

first demo gives a detailed description of the user interface developed for Sequestrix and highlights 

a simple example which is used for benchmarking. The benchmarking is done by comparing results 

with SimCCS which is currently the industry standard. Once the comparison has been made and 

the results verified, a second comparison is done in demo 2, this time to showcase Sequestrix’s 

ability to handle large scale optimization cases. In the third demo, the ability to include existing 

pipeline routes as part of the optimization problem is extensively explored. 

4.1 Demo 1 (Benchmarking) – Proposing Optimization Routes for New Pipelines 

4.1.1 Problem and Dataset Description 

For benchmarking, a simple sequestration problem was formulated as such - There are 3 CO2 

emission sources (capture sites) and two storage sites representing saline aquifers for pure 

sequestration. These sources and sinks are within a 50-mile radius and as such are relatively close 

by physical distance. The total annual CO2 available for capture is 40 MTCO2/yr. The two sinks 

are large saline aquifers with a combined CO2 storage capacity of 145 MTCO2. Other details of 

the sources and sinks are given in Table 3 and 4 below. 
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The goal of the optimization is as follows: 

Given the source capacities, geolocations, and unit costs (capture costs for sources and storage 

costs for sinks), find: 

● Alternate pipeline routes through which CO2 can be routed from the sources to the sinks. 

● Calculate the optimal pipeline path to store at least the set target capacity of the duration 

of the with the minimum cost of the entire project. 

● Assess the quality of the results from Sequestrix and make benchmark comparisons to 

existing SimCCS. 

 

Table 3: Demo 1 Benchmarking Input Sources 

ID UNIQUE NAME Capture Capacity (MTCO2/yr) Total Unit Cost ($/tCO2) Lat Lon 

1 Manhattan 10 2 35.882 -97.112 

2 Germain 20 1.5 36.139 -97.057 

3 Tbag 10 1.8 36.026 -96.890 

 

Table 4: Demo 1 Benchmarking Input Sinks 

ID UNIQUE NAME Storage Capacity (MTCO2) Total Unit Cost ($/tCO2) Lat Lon 

3 carlos1 80 -55 35.958 -96.723 

4 carlos1-2h 65 -80 36.206 -96.724 
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4.1.2 Introduction to Sequestrix User-Interface and Results 

 

Figure 15: Landing page of SequestrixTM 

The landing or home page of Sequestrix simply gives a high-level introduction to what the software 

is about as shown in figure 15. There are three other pages: 

• The Input page: which can be used to upload csv files with the required information as 

specified in input tables above. The input page can also be used to import pipeline 

information in an excel file format and customize specific pipeline settings, however this 

aspect is further explored in section 4.3 under demo 3. The input page also serves as a 

dashboard to summarize the data related to the CO2 sources and sinks as is shown in figure 

16-18 below: 
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Figure 16: Sequestrix input data page showing summary dashboard of CO2 sources. 

 

Figure 17: Sequestrix input data page showing summary dashboard of CO2 sinks. 
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Figure 18: Sequestrix input data page showing geographic location of sources and sinks in Demo 1 on 

map. 

• The Solve Page: This page can be used to specify three major additional inputs and then 

run the Network optimization MIP program in the backend. The duration of the project is 

entered, followed by the minimum CO2 to be sequestered within the specified duration 

(target) and finally the capital recovery factor. The capital recovery factor (CRF) is defined 

“the ratio of a constant annuity to the present value of receiving that annuity for a given 

length of time” and is used to determine the present value of a series of equal annual 

payments for the transport network to be built over the sequestration duration. 

The results of the solve page for demo 1 inputs are the Delaunay triangulation results, the 

alternate paths generated connecting all sources to sinks within the network, and finally, 

the optimal pipeline route selected by the optimization engine running locally on the 

computer. These results are shown in figure 19-21 below: 
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Figure 19:Sequestrix Solve page showing Delaunay Triangles generated for Demo 1 

 

 

Figure 20: Sequestrix Solve page showing alternate pipeline network generated for Demo 1 based on 

Delaunay Triangulation 
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Figure 21: Sequestrix Solve page with optimal solution path for Demo 1 highlighted in green. 

 

• The Results Dashboard Page: This page was specifically designed to give analytical 

representation of the key results of network optimization. This is done to highlight key 

evaluation metrics and to speed up decision making. The results of the optimization are 

also saved in a csv file which can be inspected for further details. 

The dashboard consists of four sections: 

• Overview section – which gives key metrics including project duration, total 

volume of CO2 sequestered, number of sources and sink used and a breakdown of 

the expected unit costs for sequestration.  
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Figure 22: Sequestrix Results Dashboard page showing key overview results for Demo 1 

 

• Capture section – The Capture section in Sequestrix provides a more detailed 

breakdown of the CO2 capture results, elaborating on the selected sources, total 

annual capture costs in millions of dollars, capture volumes, and any deviations 

from the set target. Deviations usually occur if there is a bottleneck in the system. 

In the provided example, the target capture input into Sequestrix is 40 MTCO2/yr. 

However, based on the storage capacity of the two sinks provided (145 MTCO2) 

and the duration of the project (10 years), only a maximum of 14.5 MTCO2/yr can 

be stored. The 40 MTCO2/yr target was intentionally selected to illustrate the built-

in adaptability features of the model. Sequestrix can recognize and adjust to such 

bottlenecks, providing a more realistic optimization result based on the constraints 

in the system. This adaptability feature is an advantage when working with 
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Sequestrix, as it automatically identifies and adjusts for potential bottlenecks in the 

system, allowing for more accurate and reliable optimization results. 

 

Figure 23: Sequestrix Results Dashboard page showing CO2 Capture results for Demo 1 

• Storage Section – gives a detailed breakdown of the storage results, as was done 

with capture. Plots of costs and storage volumes illustrated. 

 

Figure 24: Sequestrix Results Dashboard page showing CO2 storage results for Demo 1 
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• Transport section – here all the major start and end pipeline points are recorded, 

this includes sources, sinks, existing or pre-imported pipelines and proposed 

transshipment nodes along proposed routes. The cost of these pipelines based on 

calculations detailed in section 3 is also presented. 

 

Figure 25: Sequestrix Results Dashboard page showing transport pipeline result details for Demo 1 

4.1.3 SimCCS Interface and Results 

To conduct an unbiased comparison, a local instance of SimCCS was run on a personal computer 

(an MSI GE Raider 66, with 32GB RAM, 11th gen core i9 3.0Ghz processor). A similar CSV 

input file was generated for SimCCS, which can be uploaded to the tool, and the three main inputs 

(duration, CRF, and target) were entered before running the model. 

Upon completion of the optimization, the suggested optimal transport route connecting the sources 

and sinks can be displayed, and a high-level summary of the unit and annual costs are shown on 
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the tool. A more detailed breakdown of the pipeline connections is exported to a solution CSV file, 

which can be inspected for further details. 

It is important to note that the local version of SimCCS does not have a feature that allows it to 

check for bottlenecks during optimization and adjust capture or storage properties. The user must 

inspect the input data to ensure the optimization will work before solving with CPLEX. This 

limitation requires users to be more cautious when preparing their input data and setting up the 

optimization problem, as opposed to the automated bottleneck checking and adjustments provided 

in Sequestrix. Figure 26 shows the SimCCS interface and results. 

 

Figure 26: SimCCS user interface showing results summary for Demo 1 
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4.1.4 Sequestrix vs SimCCS Detailed Benchmarking 

To conduct proper benchmarking, three key metrics were defined to compare the solutions. These 

metrics include: 

1. Speed(Runtime): This includes the time taken to generate alternate pipeline routes and the 

time taken to solve the optimization problem. 

2. Unit Costs: These include capture, storage, and transport costs. 

3. Pipeline Lengths: The total length of the pipelines in the solutions. 

In addition to these metrics, a qualitative evaluation was also conducted, examining the generated 

alternate pipeline routes and the selection of source and sink pairings. This qualitative assessment 

provided insights into the differences in the solutions proposed by the two platforms, Sequestrix 

and SimCCS, and helped to further evaluate their performance and effectiveness in solving CO2 

sequestration network optimization problems. 

Quantitative Metrics 

Table 5: Comparison of SimCCS and Sequestrix results for Demo 1 

Metric SimCCS (local) Sequestrix 

Unit Capture Cost ($/ton CO2) 1.67 1.50 

Unit Transport Cost ($/ton CO2) 0.33 0.49 

Unit Storage Cost ($/ton CO2) -66.21 -66.21 

Unit Total Cost ($/ton CO2) -64.21 -64.22 

Runtime 600 190 

Total Pipeline Length (km) 51.99 70.98 
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Analysis of table 5 above reveals that solutions generated by Sequestrix and SimCCS are 

comparable but slightly different. The sources chosen for capture in SimCCS are Germain and 

Tbag, each source providing 6.5 MTCO2/yr and 8 MTCO2/yr, respectively. On the other hand, 

Sequestrix selects generates a solution where the entire 14.5MTCO2/yr is taken from Germain 

which is the cheapest source of CO2 capture, and as such, the overall unit capture cost is lower. 

This is flipped when considering transportation costs, as in the SimCCS solution, two shorter 

length pipelines are built from Germain to carlos1-2h sink and from Tbag to carlos1 sink, while 2 

pipelines are built from Germain to both sinks in the Sequestrix solution. Overall, the reduction in 

capture cost achieved by Sequestrix is balanced out by the increased transport cost, however, when 

considering the overall unit total cost, Sequestrix slightly edges out the solution generated by 

SimCCS. 

A MIP objective function may have several non-unique optimal solutions which lie along a pareto 

plane. Each solution that lies on this pareto plane has a different combination of the decision 

variable solutions which generate comparable results. The number of optimal solutions generated 

also depends on the MIP gap set during optimization, which denotes an acceptable deviation from 

the most optimal solution. Both SimCCS and Sequestrix do not have a set MIP gap and hence 

CPLEX and Gurobi use default MIP gap values in generating solutions. 

There is also a 68% speed improvement in running SimCCS vs Sequestrix on the specified local 

PC and this becomes useful especially when planning for multiple scenarios. 
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Figure 27: Comparison Plot of SimCCS vs Sequestrix results for Demo 1 

 

Qualitative Metrics 

A more detailed examination of the alternate pipeline routes generated by both tools reveal slight 

differences in the paths. Ideally since the paths generated rely on Dijkstra’s shortest path algorithm 

in both tools, and the cost surface graph is also the same for both tools, one would expect that the 

selected shortest paths should converge, but this may not necessarily happen as illustrated in figure 

28(b), where the circle highlights the path connecting Manhattan Source to carlos1 sink is visibly 

different. These differences can be attributed to two reasons explained briefly below: 

• Non-unique shortest paths – the Dijkstra’s algorithm is a greedy algorithm which 

aims to return the first shortest path it finds, and while the length of this path is 

guaranteed to the shortest, there may be multiple other paths with the same path 

length. 

• Pre-defined post-processing pipeline algorithms – Because multiple shortest paths 

are generated between different source sink pairs because of the Delaunay 
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triangulation, sometimes the paths generated between two different node pairs may 

fall along the same route except for a few nodes on the graph, these odd-looking 

paths generated may require post processing before the MIP optimization is carried 

out. The difference in post-processing algorithms may lead to different final paths.  

 

Figure 28: Detailed graphical comparison of solutions generated by SimCCS and Sequestrix for Demo 1. 

Plots for Sequestrix are located above and  SimCCS below. (a) shows the results of Delaunay 

triangulation  which look identical for both tools, (b) shows the alternate (or candidate) networks 

generated by both tools. The yellow oval line highlights differences in LCP generated, (c) shows the 

resulting optimal network selected after optimization, different paths are selected for both tools. 

In summary, demo 1 has illustrated that Sequestrix is at least as good as SimCCS in solving the 

small-scale CO2 Network optimization problem and suggesting optimal transport routes. This 

comes with the added benefits of better visual representation of results and faster runtimes.  
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4.2 Demo 2 (Scalability) – Solving Large Scale Problems Across Oklahoma 

In Demo 1, the key thing that was highlighted is the ability of Sequestrix to formulate and solve 

the CO2 network optimization problem. As such, the geolocation of sources and sinks and all 

associated costs were arbitrarily assigned and had no scientific basis. Having satisfactorily 

demonstrated Sequestrix’ ability, more care is taken in demo 2 to assess a research problem with 

real sources, sinks, geolocations, and associated costs. 

Demo 2 tests Sequestrix on a problem previously solved and published in a self-authored SPE 

paper (Jamal et al, 2021). The geographical scope of the problem covers the entire Oklahoma state 

and allows a demonstration of scalability in usage of Sequestrix. 

4.2.1 Problem Description 

Oklahoma is recognized for its abundant CO2 sources, pipelines, and reservoirs where oil and gas 

companies have been employing CO2 injection into geological structures for enhanced oil recovery 

(EOR) for several years. We employed Sequestrix and SimCCS, software tools that combines 

economic and engineering aspects, to consolidate infrastructure concerning CO2 sources, 

pipelines, and geological formations. The IRS-endorsed tax incentive initiative, 45Q, has 

encouraged many oil and gas companies to contribute to CO2 reduction and global warming 

mitigation by capturing CO2 from a variety of sources, identifying optimal pipeline routes, and 

selecting the most secure locations for EOR-based injections or deep saline aquifers for 

sequestration. 
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4.2.2 Costs – Capture, Transport and Storage 

Capture costs. 

For this study, capture costs were obtained from ranges published by The Great Plains Institute in 

as discussed in section 2. 

Transport costs 

The transportation costs utilized for this study are the same as generated using the linear trendlines 

described in section 2.4.5 which are based on the amount of CO2 flow in pipeline. 

Storage costs 

Estimating storage costs relies on the storage type, with CO2 potentially stored in oil and gas 

reservoirs, saline aquifers, coal bed seams, deep oceans, or via mineral carbonization. Oklahoma, 

a terrestrial region without surrounding oceans, considers only geological storage. Storage costs 

vary depending on whether CO2 is used for enhanced oil recovery (EOR) or simply for storage. 

Injection costs depend on location and depth, with shallow onshore wells having the lowest costs 

and deep offshore wells the highest. Injection costs are estimated to range between $0.3-$8 USD 

per ton of CO2 stored. The 2021 45Q tax credit of $35/tCO2 stored in hydrocarbon reservoirs is 

applied, but the revenue from additional hydrocarbon production is not represented due to data 

unavailability. For the Oklahoma study, a pessimistic value of -$31/tCO2 is used as the storage 

cost for further evaluation. 
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4.2.3 CO2 Emission sources  

CO2 sources 

The U.S. Environmental Protection Agency (EPA) monitors greenhouse gas emissions and their 

sources, storing the information in their Facility Level Information on Green House gases 

(FLIGHT) tool. As at the time of this study in 2021, the FLIGHT tool warehoused GHG emissions 

data from 2010 to 2019 for individual states, categorized into nine major sectors. In 2019, 

Oklahoma had 151 total emission sources, with contributing facilities ranked across these sectors, 

as depicted in figure 29. 

 

Figure 29: 2019 GHG emissions in Oklahoma by sector (Source: EPA FLIGHT Tool) 

 

The power sector emerged as the primary emission source in Oklahoma, accounting for over 60% 

of GHG emissions. It is followed by the chemical, refining, petroleum and natural gas processing, 
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and minerals industries. This study utilizes the average annual emission per plant from 2016 to 

2019 to represent CO2 emissions in megatons (MT) of CO2 per year. Figure 30 displays the 

distribution of these plants across various counties and demographic areas in Oklahoma. 

 

Figure 30: Map of Oklahoma Showing CO2 emissions from sources across counties, bubble size 

represents emission volume (DaneshFar et al., 2021) 

Streamlining CO2 source selection 

To further refine the selection of CO2 emission sources in Oklahoma, the sources were assessed 

based on the 2018 45Q federal tax credit system requirements. This screening process identified 

the top 36 CO2 emission sources eligible for 45Q tax credits due to their emission capacity.  
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Table 6: Demo 2 top 36 Sources Obtained after application of  45Q eligibility screening 

 

4.2.4 CO2 Storage  

Storage Assets and Sites 

CO2 sink candidates in Oklahoma were pinpointed as injection wells. The Oklahoma Corporation 

Commission collects underground injection data, including well names, operators, geolocations, 

and annual injection volumes, making it accessible to the public via their online repository. The 

database contained yearly injection volumes  and data from 2011 to 2019 were selected.  

ID UNIQUE NAME Capture Capacity (MTCO2/yr) Total Unit Cost ($/tCO2) Lat Lon

1 Chisholm Plant 0.1 14 35.775 -97.741

2 Cana Gas Plant 0.1 14 35.535 -98.099

3 OHL NGLP Medford Plant 0.1 14 36.776 -97.756

4 KOCH FERITLIZER ENID LLC ENID NITROGEN PLT 0.4 17 36.379 -97.761

5 VERDIGRIS PLT 0.4 17 36.234 -95.719

6 Redbud Power Plant 2.3 75 35.685 -97.224

7 Sooner 3.3 56 36.454 -97.053

8 Chouteau Power Plant 2.2 75 36.221 -95.276

9 Northeastern 3 75 36.432 -95.701

10 Tenaska Kiamichi Generating Station 1.9 75 34.683 -95.935

11 TERRA INTERNATIONAL (OKLAHOMA) INC 0.2 17 36.437 -99.471

12 Green Country Energy, LLC 1.6 75 35.983 -95.935

13 McClain Energy Facility 0.9 75 35.298 -97.590

14 PRYOR CHEMICAL COMPANY 0.1 17 36.241 -95.278

15 Oneta Energy Center 1.8 75 36.012 -95.697

16 Grand River Dam Authority 0.8 75 36.191 -95.289

17 Seminole (2956) 1 56 34.968 -96.724

18 Muskogee 1.1 75 35.762 -95.285

19 Hugo 0.6 56 34.016 -95.321

20 Horseshoe Lake 0.6 75 35.509 -97.179

21 River Valley Generating Station 0.7 56 35.193 -94.647

22 Mustang 0.5 75 35.471 -97.673

23 EAGLE MATERIALS, INC. 0.3 56 36.194 -95.812

24 CONTINENTAL CARBON Ponca City Plant 0.2 30 36.666 -97.072

25 HOLCIM INCORPORATED 0.4 56 34.768 -96.697

26 Phillips 66 Ponca City Refinery 1.7 56 36.682 -97.090

27 LONE STAR IND INC DBA BUZZI UNICEM USA PRYOR CEMENT PLANT 0.3 56 36.272 -95.223

28 US LIME COMPANY-ST. CLAIR 0.1 56 35.582 -94.819

29 VALERO REFINING CO -OKLAHOMA VALERO ARDMORE REFINERY 0.9 56 34.206 -97.104

30 OXBOW CALCINING LLC 0.3 56 36.518 -97.839

31 WYNNEWOOD REFINING CO 0.7 56 34.629 -97.169

32 HOLLYFRONTIER TULSA REFINING LLC - EAST 0.5 56 36.118 -96.001

33 HOLLYFRONTIER TULSA REFINING LLC - WEST 0.4 56 36.140 -96.015

34 Covanta WBH 0.1 39 36.132 -96.017

35 GP MUSKOGEE MILL 0.5 39 35.740 -95.287

36 International Paper - Valliant Mill 0.3 39 33.998 -95.112

DEMO 2  SOURCES
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Sink Clusters 

An effort was made to aggregate CO2 injection sites, or sinks, into clusters to reduce redundancy 

and computational time for the subsequent source-sink matching discussed in later sections. To 

create these clusters, a machine learning clustering algorithm called 'K-MEANS clustering' (Lloyd, 

1957) was utilized. This algorithm grouped injection sites into clusters using Euclidean distances 

and calculated a centroid to represent them. The well names and geographic locations were the 

only information used to generate these clusters. The implementation of this algorithm resulted in 

seven clusters belonging to six operators and 14 independent injection sites that fell under the same 

six operators and an additional two operators. This effectively reduced 245 injection sites to 21. 

The average CO2 injection rate per well per operator was estimated by averaging the annual 

injection volumes between 2011 and 2018 and dividing by the maximum number of wells within 

those years. This generated a pessimistic value with significant potential upsides. The value was 

aggregated for the clusters containing more than one well.  
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Table 7: Demo 2 Sink clusters obtained after application of K-MEANS to point injection wells 

 

 

4.2.5 CO2 Network Optimization Modeling Results 

The annual sequestration target was 2.14 MTCO2/yr for a duration of 20 years. This target 

represents the total storage capacity of all sinks divided by the sequestration duration. A capital 

recovery factor of 10% was selected for this run and the results for both Sequestrix and SimCCS 

are presented in table 8 with pipeline routes shown in figure 31 and 32. 

Table 8: Comparison of SimCCS and Sequestrix results for Demo 2 

Metric 
SimCCS 
(local) Sequestrix 

Unit Capture Cost ($/ton CO2) 23.87 23.91 

Unit Transport Cost ($/ton CO2) 21.03 19.48 

Unit Storage Cost ($/ton CO2) -31.00 -31.00 

Unit Total Cost ($/ton CO2) 13.90 12.39 

Runtime (seconds) 1800 280 

Total Pipeline Length (km) 1108.98 1206.58 

ID UNIQUE NAME Storage Capacity (MTCO2) Total Unit Cost ($/tCO2) Lat Lon

1 Cluster 1 4.01 -31 36.747 -101.100

2 Cluster 2 3.43 -31 34.790 -97.615

3 Cluster 3 20.99 -31 36.876 -101.630

4 Cluster 4 1.8 -31 35.300 -98.295

5 Cluster 5 4.18 -31 36.515 -100.912

6 Cluster 6 3.24 -31 34.473 -97.441

7 Cluster 7 2.49 -31 34.421 -97.614

8 i1 0.11 -31 35.182 -98.201

9 i2 0.11 -31 35.184 -98.201

10 i3 0.11 -31 35.189 -98.201

11 i4 0.31 -31 36.886 -101.511

12 i5 0.31 -31 36.876 -101.800

13 i6 0.31 -31 36.891 -101.013

14 i7 0.31 -31 36.843 -101.506

15 i8 0.31 -31 36.856 -101.211

16 i9 0.31 -31 36.567 -101.664

17 i10 0.12 -31 34.482 -97.707

18 i11 0.12 -31 34.506 -97.598

19 i12 0.12 -31 35.045 -97.852

20 i13 0.12 -31 35.060 -97.738

21 i14 0.01 -31 34.932 -98.148

DEMO 2 SINKS
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In the results generated by Sequestrix, the unit capture cost is higher than in SimCCS, but the 

transport cost is significantly lower. Consequently, the overall total cost of the solution produced 

by Sequestrix is $1.51 cheaper than that generated by SimCCS, although it necessitates a longer 

pipeline length. A detailed analysis of the candidate and solution networks generated by these two 

solutions provides insight into the differences in pipeline length. 

 

Figure 31: Sequestrix result view on map surface, the green circles represent CO2 sinks, red represents 

CO2 sources and yellow are transshipment nodes. The green path highlighted is the optimal pipeline 

network while the other blue lines represent alternate pipeline networks. 
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Figure 32: SimCCS results for Demo 2. The red circles represent CO2 sources and blue represents CO2 

sinks. Circles that are highlighted are the selected optimal assets and the green path shows the optimal 

pipeline network while the other purple lines represent the candidate network. 

 

In Figure 33(a) and 33(b), it is evident that the selected sinks in the mid-southern section of 

Oklahoma are not the same, resulting in varying pipeline routes. In Figure 34(a) and 34(b), we 

observe that in the mid-north to northwest regions, the pipeline routes differ between SimCCS and 

Sequestrix. Although the paths in Sequestrix results are longer, the construction costs are lower, 

highlighting the significance of generating alternate pipeline routes, as well as other factors such 

as post-processing algorithms, MIP gap, and solver selection. 
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Figure 33: Zoomed in image of LOWER pipeline path for optimal solutions generated by Sequestrix (a) 

and SimCCS (b). 

 

Figure 34: Zoomed in image of UPPER pipeline path for optimal solutions generated by Sequestrix (a) 

and SimCCS (b). 
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4.3 Demo 3 – New Features, Adding Enid-Purdy Pipeline to CO2 Optimization 

Network 

Demo 3 showcases the significant accomplishments of this research project which is incorporating 

existing pipelines into the cost surface graph and solving optimal CO2 sequestration routes. This 

demo will concentrate solely on Sequestrix, as SimCCS currently lacks a mechanism for importing 

existing pipelines into the network. 

4.3.1 Enid Purdy Pipeline  

The US Department of Energy (DOE), in collaboration with the National Energy Technology 

Laboratory (NETL), published a report (Callahan et al., 2014) detailing the existing CO2 

infrastructure in the United States. In the mid-continent region, there are five major pipelines 

located in Oklahoma and lower Kansas that supply CO2 from various industrial sources to oil and 

gas operators for use in CO2-EOR. Figure 35 presents a map highlighting these five CO2 pipelines, 

and Table 9 provides a summary of their operators, lengths, and capacities. 
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Figure 35: Mid-Continent CO2 pipeline infrastructure spanning Oklahoma and lower Kansas (Callahan 

et al., 2014) 

 

Table 9: Ownership details and specifications of Mid-Continent transport pipelines(Callahan et al., 2014) 

Scale  Pipeline  Operator  
Locatio

n  
Length 

(mi)  
Diameter 

(in)  

Estimated Flow 
Capacity 

(MMSCF/D)  

Small Scale 
Distribution 

Systems  

Coffeyville- 
Burbank  

Chaparral 
Energy  

KS, OK  68 8 80 

Enid-Purdy 
(Central 

Oklahoma)  
Anadarko  OK  117 8 80 

TransPetco  TransPetco  TX, OK  110 8 80 

TexOk  
Chaparral 

Energy  
OK  95 6 70 

Borger  
Chaparral 

Energy  
TX, OK  86 4 50 
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To highlight Sequestrix's capability to integrate existing pipelines into network optimization, the 

Enid-Purdy Pipeline in central Oklahoma was selected. The primary reason for this choice is that, 

as observed in Demo 2, there are numerous CO2 sources and sinks in the surrounding area, and the 

pipeline is strategically positioned to facilitate thorough utilization of the various scenarios that 

Sequestrix can handle. 

4.3.2 CO2 Sources and Sinks Dataset 

A subset of the sinks and sources used for demo 2 were selected for demo 3. Additional Sinks 

representing oil and gas fields the Enid-Purdy pipeline currently injects CO2 into is also included. 

A detailed list of sources, sinks, their geo-locations, and capacities are given in tables 10 and 11.  

Table 10: Demo 2 CO2 sources information 

 

Table 11: Demo 3 CO2 sinks information 

 

ID UNIQUE NAME Capture Capacity (MTCO2/yr) Total Unit Cost ($/tCO2) Lat Lon

1 OXBOW CALCINING LLC 0.32 56 36.545 -97.850

2 Mustang 0.53 75 35.471 -97.673

3 WYNNEWOOD REFINING CO 0.63 75 34.629 -97.169

4 Redbud Power Plant 2.30 75 35.685 -97.224

5 Horseshoe Lake 0.60 75 35.509 -97.179

6 Cana Gas Plant 0.10 14 35.535 -98.099

7 OHL NGLP Medford Plant 0.10 14 36.776 -97.756

8 TERRA INTERNATIONAL (OKLAHOMA) INC 0.20 17 36.437 -99.471

DEMO 3 SOURCES

ID UNIQUE NAME Storage Capacity (MTCO2) Total Unit Cost ($/tCO2) Lat Lon

1 Field Outlet1 4 -31 34.381 -97.749

2 Purdy Field 3.4 -31 34.758 -97.605

3 i1-i3 0.33 -31 35.184 -98.201

4 i10 0.12 -31 34.482 -97.707

5 i11 0.12 -31 34.506 -97.598

6 Cluster 6 3.24 -31 34.473 -97.441

7 Cluster 7 2.49 -31 34.421 -97.614

8 Cluster 4 1.8 -31 35.300 -98.295

DEMO 3 SINKS
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In summary, there are 8 sources with a combined annual capture capacity of 4.77 MTCO2/yr, and 

8 sinks with a combined annual storage capacity of 15.5 MTCO2. 

4.3.3 Base Case – CO2 Network Optimization with No Pipeline 

A base case was defined as a standard CO2 network optimization considering the given sources 

and sinks. This base case will serve as a reference point for comparison when embedding existing 

pipelines and exploring the various modes available in Sequestrix. The base case was solved for a 

duration of 10 years, targeting an annual capture of 1.55 MTCO2/yr and a Capital Recovery Factor 

(CRF) of 10%. 

Figure 36 a, b, and c display the Delaunay triangulation results, the alternative new pipeline routes 

generated, and the selected optimal pipeline built, with all results produced within Sequestrix. 

Table 12 summarizes the outcome of the base case model. 

 

Figure 36: Demo 3 Base case (no existing pipeline) Sequestrix Solution. (a) Delaunay triangulation 

results, (b) alternate pipeline routes, (c) Optimal pipeline path selected 
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Table 12: Demo 3 Base Case Sequestrix results 

Metric 
Sequestrix Base 

Case 

Unit Capture Cost ($/ton CO2) 55.77 

Unit Transport Cost ($/ton 
CO2) 12.39 

Unit Storage Cost ($/ton CO2) -31.00 

Unit Total Cost ($/ton CO2) 37.15 

Runtime (seconds) 108 

Total Pipeline Length (km) 572.56 

 

4.3.4 Case 1 – Optimization with Enid-Purdy Pipeline 0.5MTCO2/yr Cap No Tie-in No 

Exclusion 

In Case 1, the Enid-Purdy Pipeline is introduced into the cost surface graph for the first time. As 

described in Section 3, a subset of the pipeline coordinates is extracted from the National Pipeline 

Mapping System (NPMS) and imported into Sequestrix. This subset is utilized to generate a 

comprehensive representation of the pipeline through Dijkstra's shortest path augmentation for 

unconnected edges. 

Based on Table 9, the estimated pipeline capacity is 80 MMSCF/D (1.5 MTCO2/yr), and according 

to partner information, approximately 67% of this capacity is currently in use. Consequently, for 

the purpose of simulation, the pipeline capacity is set to 0.5 MTCO2/yr to account for the remaining 

33%. To utilize this feature in Sequestrix, one simply needs to complete the provided template 

pipeline file, ensuring that the pipeline geolocations are populated in the direction of the flow 

through the pipe (upstream to downstream) if it is a unidirectional pipeline. A smaller subset of 

the Enid-Purdy pipeline used as part of the input file, and the input section detailing where it is 

uploaded into Sequestrix is displayed in Figure 37 for reference. The resulting source-sink map 
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with the unrefined pipeline path imported is shown in Figure 38. The process of pipeline location 

refinement and gap-filling using Dijkstra's algorithm occurs during the solve step, as outlined in 

Section 3.2.2. 

 

Figure 37:(a) Raw Enid-Purdy pipeline input template with latitude, longitude, and capacity 

specifications. (b) Sequestrix interface for importing existing pipelines 
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Figure 38: Sequestrix input page showing map coordinates of the sources and sinks (in red and green 

respectively) and the raw Enid-Purdy pipeline path (in purple) for Demo 3 case 1 

By default, Sequestrix assumes the pipeline to be unidirectional with no tie-in points or exclusion 

points, as defined in Section 3. Consequently, during the shortest paths generation, tie-ins into the 

pipeline are permitted at any point along the pipeline path. This default selection can be modified, 

and specific tie-in locations and exclusion zones can be specified, as demonstrated in Cases 2 to 

6. 

The alternative flow network is generated using the same source and sink inputs as well as the 

Enid-Purdy pipeline, and the new optimization is solved. The results are presented in Figure 39 

and Table 13. 
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Figure 39: Sequestrix results for Demo 3, Case 1 - Embedding Enid-Purdy Pipeline with no tie-in 

locations. (a) Alternate network generated, (b) Optimal solution path passing through existing Pipeline 

Path 

A qualitative observation reveals that the alternative new pipeline paths generated in Case 2 differ 

significantly from the results in Case 1, and the selected solution allows some flow to occur along 

the Enid-Purdy Pipeline, exiting at various points to connect to nearby sinks for sequestration. As 

shown in Table 13, the unit transportation cost decreases from $12.39 per ton of CO2 to 

approximately $9.91 per ton of CO2 transported, representing an estimated cost reduction of 20%. 

However, there are limitations to this interpretation. In Sequestrix, the cost surface graph is 

modified so that an existing pipeline has a total path edge weight of 0. When estimating 

transportation costs, this edge weight is multiplied by the costs calculated from transportation cost 

trends, effectively reducing the cost to zero for existing pipelines. In practice, while construction 
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costs will be zero, operational and maintenance costs will persist, though they are relatively 

insignificant compared to construction expenses. 

Table 13: Demo 3, Case 1 Sequestrix results 

Metric Sequestrix Case 1 

Unit Capture Cost ($/ton CO2) 55.77 

Unit Transport Cost ($/ton CO2) 9.91 

Unit Storage Cost ($/ton CO2) -31.00 

Unit Total Cost ($/ton CO2) 34.68 

Runtime (seconds) 197 

Enid-Purdy Pipeline Utilized (km) 279.68 

Total New Pipeline Length (km) 422.03 

 

The total length of new pipeline required to achieve the sequestration target also decreases by 27%, 

from 572 km to 422 km. This reduction is the primary driver of lower transport costs. Based on 

the results from Case 1, there are seven tie-in points along the pipeline with varying geolocations 

and connections to different sources and sinks, as illustrated in Figure 40. Case 1's results clearly 

demonstrate that if an existing pipeline with lower transport costs than a new pipeline is predefined, 

the optimization algorithm will recommend connecting to this pipeline to transport the maximum 

amount of CO2 possible. 
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Figure 40: Zoomed-in results for Demo 3, Case 1, showing all the tie-in points along the Enid-Purdy 

pipeline suggested by Sequestrix (a) highlights 4 tie-ins with one being an inlet point and the rest being 

outlet points, (b) Tie-in point towards the begiing of the pipeline facility at Koch Fertiizer plant (c) 2 

incoming Tie-in points along Enid-Purdy pipeline path 

 

4.3.5 Case 2 – Enid-Purdy Pipeline 2MTCO2/yr Cap 2 Tie-in points No Exclusion 

Case 2 depicts a situation in which a pipeline operator has designated only two tie-in locations 

along the entire pipeline. This scenario more accurately reflects real-world circumstances, as there 

are often limitations on the number of tie-in locations an operator is willing to accommodate along 

a pipeline, which may be due to topographical, environmental, or land rights constraints. 
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As before, the Enid-Purdy pipeline is utilized in this case; however, the annual transport capacity 

is now set at 2 MTCO2/yr. The purpose of increasing the capacity beyond the known (or estimated) 

capacity is to test the optimization limits, promoting the pipeline as the primary transport path. The 

specified tie-in locations are Lat 35° 57' 1.7" N, Lon -97° 47' 30.58" W, in the northern section of 

the pipeline, and Lat 35° 0' 42.03" N, -97° 46' 52.54" W in the middle to lower pipeline section. 

These tie-in points along the pipeline can be entered into the Sequestrix sidebar, as demonstrated 

in Figures 41 and 42 below. 

 

 

Figure 41: Sequestrix input page showing tie-in points that were entered on the left sidebar plotted along 

the Enid-Purdy pipeline. 
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Figure 42: Zoomed in view of the Enid-Purdy pipeline and 2 tie-in points(colored yellow) with 

surrounding sources and sinks (colored red and green) 

 

Upon specifying the tie-in points and rerunning the optimization, a summary of the results is 

presented in Table 14. In Figure 43, it is evident that the Enid-Purdy pipeline remains unused when 

specific tie-in locations are established. Furthermore, since the pipeline cannot be accessed from 

any other location except the designated tie-in points, the proposed paths connecting sources in 

the north to sinks in the south follow a lengthier route, resulting in a total new pipeline distance 

that is longer than the base case (575 km vs. 572 km). This extended pipeline consequently impacts 

the unit transport cost, which is also higher than the base case. In summary, setting specific tie-in 

locations along the pipeline without allowing for variation proves to be counterproductive in 

enhancing sequestration economics. 
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Figure 43: Resulting Optimal pipeline generated by Sequestrix for Demo 3 Case 2 

 

Table 14: Sequestrix Summary of Results for Demo 3 Case 2 

Metric Sequestrix Case 2 

Unit Capture Cost ($/ton CO2) 55.77 

Unit Transport Cost ($/ton CO2) 12.69 

Unit Storage Cost ($/ton CO2) -31.00 

Unit Total Cost ($/ton CO2) 37.45 

Runtime (seconds) 237 

Enid-Purdy Pipeline Utilized (km) 0 

Total New Pipeline Length (km) 575.32 

 

4.3.6 Case 3 – Enid-Purdy Pipeline 2MTCO2/yr Cap 2 Tie-in pts Exclusion at Ends 

Here the operator specifies 2 geolocations defining a region where any tie-in is allowed. This refers 

to scenario 2 discussed in section 3.2.3. The tie-in point geolocations chosen for this case are Lat 
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36° 18' 53.71", Lon -97° 46' 58.06" for point 1 and Lat 36° 39' 27.32”, Lon -97° 46' 58.06" for 

point 2. The results are summarized in table 15 and figure 44. 

 

Figure 44: Sequestrix Input and Solve page map plots for Demo 3 Case 3. (a) shows the Enid-Purdy 

pipeline with the tie-in points specified. This time an exclusion zone before the tie-in points are activated, 

(b) shows the optimal pipeline network generated which utilizes the pipeline route. 
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Figure 45: Zoomed in plot of Demo 3 Case 3 showing that the exclusion zones above and below the 2 tie-

in points are honored by Sequestrix 

 

Table 15: Sequestrix Summary of Results for Demo 3 Case 3 

Metric Sequestrix Case 3 

Unit Capture Cost ($/ton CO2) 55.77 

Unit Transport Cost ($/ton CO2) 7.80 

Unit Storage Cost ($/ton CO2) -31.00 

Unit Total Cost ($/ton CO2) 32.57 

Runtime (seconds) 204 

Enid-Purdy Pipeline Utilized (km) 258.3 

Total New Pipeline Length (km) 323.45 

 

Figure 45 a and b display a magnified view of the solution map, highlighting that Sequestrix 

adheres to the specified constraints and that no pipeline tie-in occurs before or after the designated 
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points 1 and 2. In Case 3, the transport cost associated with utilizing 258 km of the Enid-Purdy 

pipeline is reduced, which is notably lower than the scenario where the entire pipeline length is 

available for tie-in. This outcome can be attributed to the fact that during the generation of shortest 

paths between paired nodes (source-sink, source-source, or sink-sink), the overall transportation 

cost and potential transport volume are not considered, as they are only optimized after alternative 

paths have been proposed. Dijkstra's algorithm solely minimizes the total edge weight, which could 

be seen as a greedy approach to problem-solving. Consequently, exiting the pipeline at a higher 

(relative to downstream exit of pipeline) location along the path may not yield the lowest edge 

weights but might facilitate better connections between sources and sinks. This observation 

becomes evident only after the MIP network optimization problem has been resolved. 

A 37% reduction in the unit transportation cost and a 12% decrease in the overall sequestration 

cost can be observed, which is associated with a shorter length of new pipeline proposed that still 

effectively delivers the target sequestration volume. This cost reduction is also due to the upgraded 

pipeline capacity of the base case (from 0.5 to 2 MTCO2/yr) which allows for more flow to be 

routed through existing pipeline 

 

4.3.7 Case 4 – Enid-Purdy Pipeline 2MTCO2/Yr Cap Single Tie-In Point with Exclusion 

Before 

Here the operator has only one single point along the pipeline, beyond which no tie in is allowed. 

The geolocation of this tie in point is Lat 36° 40' 27.42" N and Lon -97° 47' 2.04" W. Sequestrix 

comfortably solves this case, and the results are shown in table 16 and figure 46 below: 
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Figure 46: Zoomed in plot of Demo 3 Case 4 showing that the exclusion zones above and below the single 

tie-in point is honored by Sequestrix. 

 

Table 16: Sequestrix Summary of Results for Demo 3 Case 4 

Metric Sequestrix Case 4 

Unit Capture Cost ($/ton CO2) 55.77 

Unit Transport Cost ($/ton CO2) 9.43 

Unit Storage Cost ($/ton CO2) -31.00 

Unit Total Cost ($/ton CO2) 34.20 

Runtime (seconds) 210.66 

Enid-Purdy Pipeline Utilized (km) 138.07 

Total New Pipeline Length (km) 567.25 

 

A notable increase in the total length of new pipeline employed can be observed, approaching the 

original length. Nevertheless, the overall cost remains significantly lower than the base case, as a 
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portion of the flow is transported through the 138 km of the Enid-Purdy pipeline. This occurs 

because a new pipeline is constructed parallel to the existing Enid-Purdy pipeline along the 

excluded zone length, to convey the necessary volume of CO2 to the storage sites. The choice of a 

single tie-in point with an exclusion zone preceding the point proves to be ineffective for this demo 

case. 

 

4.3.8 Summary of Embedding Pipelines in CO2 Sequestration Network Optimization 

After creating four separate scenarios (1-4), each involving various interactions with the Enid-

Purdy pipeline as dictated by the input data and demonstrating Sequestrix's capability to manage 

multiple tie-in points based on user preferences or limit access to specific areas along the pipeline, 

a thorough comparison with the base case (excluding the pipeline) can be summarized as follows: 

1. Assigning specific tie-in points along an existing pipeline may result in a 

suboptimal solution compared to a scenario without an integrated existing pipeline, 

as these tie-in points may not be utilized during the Dijkstra’s LCP process. 

2. Allowing Sequestrix to identify the optimal tie-in locations without constraints or 

designating tie-in points with exclusion zones is an effective approach to leverage 

existing pipeline routes. 

3. A general increase in runtime (2x in Demo 3, cases 1-4) is observed when 

incorporating an existing pipeline, which can be attributed to the preprocessing of 

sparse pipeline latitude and longitude points and interpolation using Dijkstra's 

shortest path algorithm. 
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4. Employing tie-in points with exclusion zones can decrease transportation costs by 

up to 37%, resulting in an overall cost reduction of 12%.  

 

Figure 47: Overall Comparison plots for Demo 3. (a) shows varying how the transport cost from base 

case to case 4 affects the total unit cost for project, (b) plots other metrics such as runtime, existing 

pipeline utilization and new pipeline length proposed. 
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CHAPTER 5: Conclusions 

5.1 Concluding Remarks 

The primary aim of this research was to develop a method for incorporating existing pipelines into 

CO2 sequestration network optimization, for which six algorithms were devised. The initial 

algorithm presents a technique for adjusting the edge weights of the cost surface graph, setting 

them to zero for grid cells representing the geolocation of a pipeline route. The subsequent four 

algorithms enable users to designate tie-in points and exclusion zones along any given pipeline, 

managing the ingress and egress of new pipeline streams. The final algorithm restricts diagonal 

crossover along existing pipeline routes. 

These six algorithms, combined with supplementary path post-processing algorithms delineated in 

the APPENDIX, and established algorithms from SimCCS, the preeminent platform for techno-

economic CO2 sequestration network optimization, facilitated the creation of a novel software 

package called Sequestrix. Developed using the Python programming language and various open-

source front-end applications, Sequestrix offers users the flexibility to assess multiple 

sequestration scenarios and obtain verifiably accurate estimates of capture, transport, and storage 

costs for CCS projects. 

To ensure the software's reliability, Sequestrix was subjected to benchmark testing against 

SimCCS on a local computer. The results demonstrated a considerable improvement in 

performance, with a 68% reduction in runtime. These enhancements can be partially attributed to 

solver selection (Gurobi over CPLEX) but primarily to the manner in which the input cost surface 
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graph is processed. Importantly, these improvements did not compromise the quality of 

Sequestrix's output, as discussed in the preceding section. 

Sequestrix Demo 3 illustrated various scenarios for assigning or calculating tie-in points along the 

Enid-Purdy pipeline. Compared to the base case without the pipeline, utilizing the pipeline can 

result in up to a 12% decrease in the unit total cost of sequestration. However, specifying single 

tie-in points without exclusion zones may adversely affect sequestration economics, potentially 

leading to an increase in unit total sequestration costs compared to the base case, however this  can 

only be verified for the cases tested. 

Currently, Sequestrix is hosted on GitHub and can be accessed at 

https://github.com/davidpcg01/CO2-TRANSPORT-NETWORK-OPTIMIZATION-PROJECT.  

The choice to develop Sequestrix in Python was deliberate, enabling straightforward deployment 

on multiple local computers, with all required components installable via the pip installer for 

Python. In the future, the software may be made publicly available on a dedicated website. 

5.2 Future Work 

To further extend this work, researchers may consider modifying the cost along existing pipeline 

path to a fixed user input number to account for operational cost or utilizing a new set of linearized 

pipeline operational costs which will only be applied to transmission nodes along an existing 

pipeline. In doing this, care must be taken to ensure it is applied after initially defining the zero-

cost path and finding all LCP that will traverse the tie-in points and exclusion zones. 

Also, the diagonal pipeline exclusion algorithm may be applied on new paths whilst generating 

LCP,  however an optimized heuristic is required determine the sequence in which these LCPs are 

https://github.com/davidpcg01/CO2-TRANSPORT-NETWORK-OPTIMIZATION-PROJECT
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generated, one suggested way is to assign importance weights to nodepair connections, the paths 

can then be generated in ranked order of importance. 

To account for geologic uncertainty related to the volume of CO2 that can be stored, when running 

optimization, one may use probabilistic storage capacities with assigned likelihood of actually 

meeting that target. Designing alternate pipeline networks can now be done in a way such that the 

routes generated will honor the target sequestration volume by function of storage volume and 

likelihood of success. 

Finally, this theoretical background behind the development of optimized transport networks and 

embedding existing pipelines can also be transferred to solving similar routing challenges for 

hydrogen storage, which is crucial to energy transition. In this case, the sources and the sinks geo 

information must be modified to represent physical hydrogen generation plants, and underground 

storage facilities. 
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NOMENCLATURE 

CCS   Carbon Capture and Storage 

CO2   Carbon Dioxide 

CUSP   Carbon, Utilization, Storage Partnership 

EOR   Enhanced Oil Recovery 

GIS   Geographical Information System 

IEA   International Energy Agency 

IPCC   Intergovernmental Panel on Climate Change 

LCP   Least Cost Path 

MT   Megatons (Mega metric tons) 

mT   Metric Tons 

MIP   Mixed Integer Programming 

MILP   Mixed Integer Linear Programming 

MIQP   Mixed Integer Quadratic Programming 

SimCCS  Scalable Infrastructure Model for CCS 
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APPENDIX 

Sequestrix Source Code 

Key code components that power the Sequestrix application is given in this appendix, all the other 

code and input files are publicly available on GitHub via the following link: 

https://github.com/davidpcg01/CO2-TRANSPORT-NETWORK-OPTIMIZATION-PROJECT 

 

geotranformation.py 

import pandas as pd 
import numpy as np 
from csv import reader 
import time 
from geopy.point import Point 
from geopy.distance import distance 
from bisect import bisect_left, bisect_right 
from pathlib import Path 
 
ROOT_PATH = Path(__file__).parent.parent.resolve() 
# FILE_PATH = ROOT_PATH.joinpath("Construction Costs.csv") 
FILE_PATH = ROOT_PATH.joinpath("construction-costs-subset.csv") 
 
 

class geoTransformation: 
    def __init__(self) -> None: 
        self.costFilePath = FILE_PATH 
        self.gridcost = {} 
        self.gridCostList = [] 
        self.gridTranslated = False 
        self.north = 40.422261 
        self.south = 33.615165 
        self.east = -92.284113 
        self.west = -103.665777 
 
    def _loadgeogrid(self) -> None: 
        with open(self.costFilePath, 'r') as read_obj: 
            csv_reader = reader(read_obj) 
            i = 0 
            while i < 2: 
                next(csv_reader) 
                i += 1 
            self.gridWidth = int(next(csv_reader)[1]) 

https://github.com/davidpcg01/CO2-TRANSPORT-NETWORK-OPTIMIZATION-PROJECT
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            self.gridHeight = int(next(csv_reader)[1]) 
            self.lowerLeftX = float(next(csv_reader)[1]) 
            self.lowerLeftY = float(next(csv_reader)[1]) 
            self.cellSize = float(next(csv_reader)[1]) 
            self.noDataValue = next(csv_reader)[1] 
 
        self.gridVertices = [i for i in range(1, 
((self.gridWidth*self.gridHeight) + 1))] 
 
                 
     
    def _loadcost(self): 
         
        with open(self.costFilePath, 'r') as read_obj: 
            csv_reader = reader(read_obj) 
            i = 0 
            while i < 8: 
                next(csv_reader) 
                i += 1 
            edgeConn = next(csv_reader) 
            while edgeConn != ['']: 
                edgeCost = next(csv_reader) 
                startnode = int(edgeConn[0]) 
                for i in range(len(edgeCost)): 
                    key = (startnode, int(edgeConn[i+1])) 
                    if self._checkBound(key): 
                        self.gridcost[key] =  float(edgeCost[i]) 
                edgeConn = read_obj.readline().split(",") 
                edgeConn[-1] = edgeConn[-1].split("\n")[0] 
 
 

    def create_grid(self): 
        nrows = self.gridHeight 
        ncols = self.gridWidth 
        grid = [] 
        counter = 1 
        for row in range(nrows): 
            row_list = [] 
            for col in range(ncols): 
                row_list.append(counter) 
                counter += 1 
            grid.append(row_list) 
        return grid 
     
    def translate_grid(self): 
        nrows = self.gridHeight 
        ncols = self.gridWidth 
        grid = [] 
        for row in range(nrows): 
            row_list = [] 
            for col in range(ncols): 
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                cell_number = (nrows - row) * ncols - col 
                row_list.append(cell_number) 
            row_list.reverse() 
            grid.append(row_list) 
        return grid 
     
 
    def _generateGridCostList(self): 
        for key in self.gridcost.keys(): 
            self.gridCostList.append([key[0], key[1], {'weight': 
self.gridcost[key]}]) 
 
    def _getNeighbors(self, cell): 
        neighbors = [cell+1, cell-1, cell + self.gridWidth, cell - 
self.gridWidth, cell + self.gridWidth + 1,  
                    cell + self.gridWidth - 1, cell - self.gridWidth + 1, cell - 
self.gridWidth - 1] 
        for i in range(len(neighbors)): 
            if (neighbors[i] < 0) or (neighbors[i] > self.gridHeight * 
self.gridWidth): 
                neighbors[i] = 0 
        return neighbors 
                 
    def _initializeCostgrid(self): 
        for i in self.gridVertices: 
            neighbors = self._getNeighbors(i) 
            for neighbor in neighbors: 
                if neighbor != 0: 
                    self.gridcost[(i, neighbor)] = 1e6 
 

    def _vicenty(self, distance_km, point_a): 
        lat_a = point_a[0] 
        lon_a = point_a[1] 
 
        # calculate the distance between two points separated by 1 degree of 
longitude at point_a's latitude 
        lon_degrees_offset = distance(point_a, Point(lat_a, lon_a + 1)).km 
         
        # calculate the distance in degrees to travel to move distance_km east 
        lon_degrees_to_travel = distance_km / lon_degrees_offset 
         
        # calculate the longitude of point_b 
        lon_b = lon_a + lon_degrees_to_travel 
 
        # return a Point object for point_b 
        return Point(latitude=lat_a, longitude=lon_b) 
 
    def _latlonToCell(self, lat, lon): 
        y = self.gridHeight - (int((lat - self.lowerLeftY) / self.cellSize) + 1) 
+ 1 
        x = int((lon - self.lowerLeftX) / self.cellSize) + 1 
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        return self._xyToCell(x, y) 
     
    def _xyToCell(self, x, y): 
        return (y -1) * self.gridWidth + x 
     
    def _cellToXY(self, cell): 
        cell = cell 
        y = int((cell - 1) / self.gridWidth + 1) 
        x = int(cell - (y - 1) * self.gridWidth) 
        return [x,y] 
 
    def _cellToLatLon(self, cell): 
        cell = cell 
        xy = self._cellToXY(cell) 
        xy[0] -= .5 
        xy[1] -= .5 
        lat = (self.gridHeight - xy[1]) * self.cellSize + self.lowerLeftY 
        lon = xy[0] * self.cellSize + self.lowerLeftX 
        return lat, lon 
         
     
    def _latlonToXY(self, lat, lon): 
        y = self.gridHeight - (int((lat - self.lowerLeftY) / self.cellSize) + 1) 
+ 1 
        x = int((lon - self.lowerLeftX) / self.cellSize) + 1 
        return [x,y] 
     
    def _getDistance(self, cell1, cell2): 
        lat1, lon1 = self._cellToLatLon(cell1) 
        lat2, lon2 = self._cellToLatLon(cell2) 
        point1 = Point(lat1, lon1) 
        point2 = Point(lat2, lon2) 
        dist = distance(point1, point2).kilometers 
        return dist 
 
     
    def _xyToLatLon(self, x, y): 
        cell = self._xyToCell(x, y) 
        return self._cellToLatLon(cell) 
     
    def getVertices(self): 
        return self.gridVertices 
     
    def getEdgesList(self): 
        return self.gridCostList 
     
    def getEdegsDict(self): 
        return self.gridcost 
     
    def processGeoCost(self): 
        start_time = time.time() 
        print("Loading geo grid...") 
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        self._loadgeogrid() 
        print("loaded geogrid. Time Elapsed: %s seconds" %(time.time() - 
start_time)) 
        print("") 
        print("Subsetting Cost grid...") 
        self._subsetGrid() 
        print("Subsetting cost grid completed. Time Elapsed: %s seconds" 
%(time.time() - start_time)) 
        print("") 
        print("Loading cost...") 
        self._loadcost() 
        print("loaded cost. Time Elapsed: %s seconds" %(time.time() - 
start_time)) 
        print("") 
         
     
 
    def _subsetGrid(self): 
        # nrows = self.gridHeight 
        ncols = self.gridWidth 
 
        sw = self._latlonToCell(self.south, self.west) 
        se = self._latlonToCell(self.south, self.east) 
        nw = self._latlonToCell(self.north, self.west) 
        ne = self._latlonToCell(self.north, self.east) 
 
        inputdata = [sw, se, nw, ne] 
 

        newWidth = max((inputdata[1] - inputdata[0]), (inputdata[3] - 
inputdata[2]))+1 
        newHeight = max(abs(inputdata[2] - inputdata[0]), abs(inputdata[3] - 
inputdata[1]))+ncols 
         
         
        start = inputdata[0] 
 
        n_nrows = round(newHeight/ncols) 
 
         
 
        self.leftbounds = [] 
        self.rightbounds = [] 
        for i in range(n_nrows): 
            start_x = start - (i*ncols) 
            self.leftbounds.append(start_x) 
            self.rightbounds.append(start_x + newWidth - 1) 
 
        self.leftbounds.reverse() 
        self.rightbounds.reverse() 
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    def _checkBound(self, data): 
        n = len(self.leftbounds) 
        left_idx = bisect_right(self.leftbounds, data[0]) - 1 
        right_idx = bisect_left(self.rightbounds, data[1]) 
 
        validLeft = (left_idx >= 0 and self.leftbounds[left_idx] <= data[0] <= 
self.rightbounds[left_idx]) 
        validRight = (right_idx < n and self.leftbounds[right_idx] <= data[1] <= 
self.rightbounds[right_idx]) 
 
        valid = validLeft and validRight 
        return valid 
 
    def getHeight(self): 
        return self.gridHeight 
     
    def getWidth(self): 
        return self.gridWidth 
     
    def getCellSize(self): 
        return self.cellSize 
     

 

alternateNetworkGeo.py 

import time 
import pandas as pd 
import numpy as np 
from dummyCostSurface import dummyCostSurface 
from networkDelanunay import networkDelanunay 
from geotransformation import geoTransformation 
from networkx import DiGraph 
import networkx as nx 
from matplotlib import rcParams 
import matplotlib.pyplot as plt 
from itertools import combinations 
import plotly.express as px 
import plotly.graph_objects as go 
import random 
 

rcParams['figure.figsize'] = 10, 8 
 
class alternateNetworkGeo(DiGraph): 
    def __init__(self, width=100, height=100): 
        super().__init__() 
        self.width = width 
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        self.height = height 
        self.existingPath = {} 
        self.existingPathVertices = {} 
        self.existingPathType = {} 
        self.sources = {} 
        self.sinks = {} 
        self.spathsCost = {} 
        self.spaths = {} 
        self.assetsXY = {} 
        self.assetsLatLon = {} 
        self.assetsPT = {} 
        self.assetNameFromPT = {} 
        self.assetNameFromXY = {} 
        self.initial_pipe_spaths = {} 
        self.assetCap = {} 
        self.existingPathBounds = {} 
        self.spathsLength = {} 
        self.spathsWeight = {} 
         
         
     
    def initialize_dummy_cost_surface(self): 
        C = dummyCostSurface(width=self.width, height=self.height, lowcost=1, 
highcost=60, ctype='float') 
        C.generate_cost_surface() 
         
        self.add_nodes_from(C.get_vertices()) 
        self.add_edges_from(C.get_ebunch()) 
         
    def initialize_cost_surface(self): 
        self.gt = geoTransformation() 
        self.gt.processGeoCost() 
 
        self.width = self.gt.getWidth() 
        self.height = self.gt.getHeight() 
 
        edges = self.gt.getEdegsDict() 
 
        cellsize = self.gt.getCellSize() 
 

        start_time = time.time() 
        print("Adding graph vertices...") 
        self.add_nodes_from(self.gt.getVertices()) 
        print("Added Vertices. Time Taken: %s seconds" %(time.time() - 
start_time)) 
        print("") 
 
        # self.add_edges_from(self.gt.getEdgesList()) 
 
        start_time = time.time() 
        print("Adding graph Edges...") 
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        diagonal_l = np.sqrt(2)*(cellsize/0.008333) 
        for key in edges.keys(): 
            # print(key[0], key[1], edges[key]) 
            if (abs(key[0] - key[1]) == self.width+1) or (abs(key[0] - key[1]) == 
self.width-1): 
                # approx_l = self.gt._getDistance(key[0], key[1]) #km only cal 
for diagonals TODO: Too time consurming to compute actual diagonal distance 
                approx_l = diagonal_l 
            else: 
                approx_l = cellsize/0.008333 #km 
            self.add_edge(key[0], key[1], weight=edges[key], length=approx_l) 
        print("Added Edges. Time Taken: %s seconds" %(time.time() - start_time)) 
        print("") 
     
     
    def add_vertices_from_list(self, vertices): 
        self.add_nodes_from(vertices) 
         
    def add_edges_from_list(self, edgelist): 
        self.add_edges_from(edgelist) 
         
         
    def import_pipeline(self, input_dir, pathname, flowtype='bidirectional'): 
        pipeline = pd.read_excel(input_dir) 
        pipe_nodes = [] 
        start_nodes = pipeline['Start'].values 
        end_nodes = pipeline['End'].values 
        lower_bound = pipeline['Lower Cap'].values[0] 
        upper_bound = pipeline['Upper Cap'].values[0] 
         
        for i in range(len(pipeline)): 
            pipe_nodes.append((start_nodes[i], end_nodes[i])) 
             
        self.add_existing_zero_cost_path(pathname, pipe_nodes, flowtype) 
        self.existingPathType[pathname] = flowtype 
        self.existingPathBounds[pathname] = [lower_bound, upper_bound] 
 

    def import_pipeline_lat_long(self, input_dir, flowtype='bidirectional'): 
        print("Importing Pipeline...") 
        pipeline = pd.read_excel(input_dir) 
        pipe_nodes = [] 
        start_nodes = [] 
        end_nodes = [] 
         
        pathname = pipeline["Name"][0] 
        lower_bound = pipeline['Lower Cap'].values[0] 
        upper_bound = pipeline['Upper Cap'].values[0] 
         
        for i in range(len(pipeline)): 
            cell = self.gt._latlonToCell(pipeline["Lat"][i], pipeline["Long"][i]) 
            if i == 0: 
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                start_nodes.append(cell) 
            elif i == len(pipeline)-1: 
                end_nodes.append(cell) 
            else: 
                start_nodes.append(cell) 
                end_nodes.append(cell) 
     
        for i in range(len(start_nodes)): 
            if start_nodes[i] != end_nodes[i]: 
                pipe_nodes.append((start_nodes[i], end_nodes[i])) 
 
        # print("PIPE NODES") 
        # print(pipe_nodes) 
 
        edges = [edge for edge in self.edges] 
        # print(edges) 
        pipe_nodes_mod = [] 
        for nodepair in pipe_nodes: 
            if nodepair in edges: 
                pipe_nodes_mod.append(nodepair) 
            else: 
                start_list = [] 
                end_list = [] 
                s_p = nx.shortest_path(self, nodepair[0], nodepair[1], 
weight='weight') 
                for i in range(len(s_p)): 
                    if i == 0: 
                        start_list.append(s_p[i]) 
                    elif i == len(s_p) - 1: 
                        end_list.append(s_p[i]) 
                    else: 
                        start_list.append(s_p[i]) 
                        end_list.append(s_p[i]) 
                 
                for i in range(len(start_list)): 
                    pipe_nodes_mod.append((start_list[i], end_list[i])) 
         
        # print("PIPE NODE MOD: ", pipe_nodes_mod) 
 
        print("Embedding zero cost path...") 
        self.add_existing_zero_cost_path(pathname, pipe_nodes_mod, flowtype) 
        self.existingPathType[pathname] = flowtype 
        self.existingPathBounds[pathname] = [lower_bound, upper_bound] 
        print("Finished Adding Pipeline.") 
        print("") 
 
         
 
         
 
         
    def add_existing_zero_cost_path(self, pathname, path_nodes, flowtype): 
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        existingPathVertices = {} 
        np = 0 
        edges = [edge for edge in self.edges] 
        for nodepair in path_nodes: 
            # self.edges[nodepair[0], nodepair[1]]['weight'] = 0 
            if flowtype == 'bidirectional': 
                if (nodepair[0], nodepair[1]) in edges: 
                    self.edges[nodepair[0], nodepair[1]]['weight'] = 0 
                else: 
                    self.add_edge(nodepair[0], nodepair[1], weight=0) 
 
                if (nodepair[1], nodepair[0]) in edges: 
                    self.edges[nodepair[1], nodepair[0]]['weight'] = 0 
                else: 
                    self.add_edge(nodepair[1], nodepair[0], weight=0) 
            elif flowtype == 'unidirectional': 
                if (nodepair[0], nodepair[1]) in edges: 
                    self.edges[nodepair[0], nodepair[1]]['weight'] = 0 
                else: 
                    self.add_edge(nodepair[0], nodepair[1], weight=0) 
 
                if (nodepair[1], nodepair[0]) in edges: 
                    self.edges[nodepair[1], nodepair[0]]['weight'] = 1e9 
                else: 
                    self.add_edge(nodepair[1], nodepair[0], weight=1e9) 
             
            if pathname in self.existingPath: 
                self.existingPath[pathname].append(nodepair) 
            else: 
                self.existingPath[pathname] = [nodepair] 
             
            if pathname in existingPathVertices: 
                existingPathVertices[pathname].append(nodepair[0]) 
            else: 
                existingPathVertices[pathname] = [nodepair[0]] 
                 
            np = nodepair[1] 
         
        existingPathVertices[pathname].append(np) 
        self.existingPathVertices = existingPathVertices 
         
    def get_existing_zero_cost_path(self): 
        return self.existingPath 
     
    def get_existing_zero_cost_path_vertices(self): 
        return self.existingPathVertices 
     
    def get_initial_pipe_spaths(self): 
        return self.initial_pipe_spaths 
     
    def enforce_pipeline_tie_point(self, pathname=None, point1=None, point2=None, 
exclusion=False, etype='before', onlyin=False, onlyout=False): 
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        #convert x,y to points on the graph 
        # if point1: 
        #     point1 = self.gt._xyToCell(point1[0], point1[1]) 
        # if point2: 
        #     point2 = self.gt._xyToCell(point2[0], point2[1]) 
        print("Enforcing Pipeline Tie-in Points") 
        if point1: 
            point1 = self.gt._latlonToCell(float(point1[0]), float(point1[1])) 
        if point2: 
            point2 = self.gt._latlonToCell(float(point2[0]), float(point2[1])) 
 
        # print("POINT1 & 2: ", point1, point2) 
 
        if pathname is None: 
            keys = [key for key in self.existingPath.keys()] 
            pathname = keys[0] 
         
         
        #case 1: 2 tie in points with all exclusion 
        if point1 and point2 and (not exclusion): 
            print("case 1: 2 tie in points with all exclusion") 
            for edge in self.edges: 
                #in 
                if (edge[1] in self.existingPathVertices[pathname]) and (edge[0] 
not in self.existingPathVertices[pathname]) \ 
                    and (edge[1] != point1) and (edge[1] != point2): 
                    self.edges[edge]['weight'] = 1e9 
                     
                #out 
                if (edge[0] in self.existingPathVertices[pathname]) and (edge[1] 
not in self.existingPathVertices[pathname]) \ 
                    and (edge[0] != point1) and (edge[0] != point2): 
                    self.edges[edge]['weight'] = 1e9 
 
                if onlyin: 
                    if ((edge[0] == point1) or (edge[0] == point2)) and (edge[1] 
not in self.existingPathVertices[pathname]): 
                        self.edges[edge]['weight'] = 1e9 
 
                if onlyout: 
                    if ((edge[1] == point1) or (edge[1] == point2)) and (edge[0] 
not in self.existingPathVertices[pathname]): 
                        self.edges[edge]['weight'] = 1e9 
                 
             
        #case 2: 2 tie in points with exclusion at ends 
        elif point1 and point2 and exclusion: 
            print("#case 2: 2 tie in points with exclusion at ends") 
            #get all the vertices before and after point 1 and 2 
            pathvertices = self.existingPathVertices[pathname].copy() 
            minidx, maxidx = map(pathvertices.index, (point1, point2)) 
            minidx, maxidx = min(minidx, maxidx), max(minidx, maxidx) 
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            not_excluded = pathvertices[minidx:maxidx+1] 
            exclusion_list = [i for i in pathvertices if i not in not_excluded] 
             
            for edge in self.edges: 
                #in 
                if (edge[1] in exclusion_list) and (edge[0] not in pathvertices) 
\ 
                    and (edge[1] != point1) and (edge[1] != point2): 
                    self.edges[edge]['weight'] = 1e9 
                 
                #out 
                if (edge[0] in exclusion_list) and (edge[1] not in pathvertices) 
\ 
                    and (edge[0] != point1) and (edge[0] != point2): 
                    self.edges[edge]['weight'] = 1e9 
 
                if onlyin: 
                    if (edge[0] in not_excluded) and (edge[1] not in 
self.existingPathVertices[pathname]): 
                        self.edges[edge]['weight'] = 1e9 
 
                if onlyout: 
                    if (edge[1] in not_excluded) and (edge[0] not in 
self.existingPathVertices[pathname]): 
                        self.edges[edge]['weight'] = 1e9 
                     
         
        else: 
            #case 3 single point with all exclusion but source/sink 
            if (point1 or point2) and (not exclusion): 
                print("#case 3 single point with all exclusion but source/sink") 
                point = point1 or point2 
                pathvertices = self.existingPathVertices[pathname].copy() 
                if pathvertices[0] > pathvertices[-1]: #make the path always read 
from left to right 
                    pathvertices.reverse() 
                if etype == 'before': 
                    exclusion_list = pathvertices[:-1] #means source/sink is at 
end of path 
                else: 
                    exclusion_list = pathvertices[1:] #means source/sink is at 
begining of path 
                 
                for edge in self.edges: 
                    #in 
                    if (edge[1] in exclusion_list) and (edge[0] not in 
pathvertices) \ 
                        and (edge[1] != point): 
                        self.edges[edge]['weight'] = 1e9 
                    #out     
                    if (edge[0] in exclusion_list) and (edge[1] not in 
pathvertices) \ 
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                        and (edge[0] != point): 
                        self.edges[edge]['weight'] = 1e9 
 
                    #enforce onlyin 
                    if onlyin: 
                        if (edge[0] == point) and (edge[1] not in pathvertices): 
                            self.edges[edge]['weight'] = 1e9 
 
                    #enforce onlyin 
                    if onlyout: 
                        if (edge[1] == point) and (edge[0] not in pathvertices): 
                            self.edges[edge]['weight'] = 1e9 
 
                 
             
            #case 4 single point with before or after exclusion on one end 
            elif (point1 or point2) and exclusion: 
                print("#case 4 single point with before or after exclusion on one 
end") 
                point = point1 or point2 
                pathvertices = self.existingPathVertices[pathname].copy() 
                if pathvertices[0] > pathvertices[-1]: #make the path always read 
from left to right 
                    pathvertices.reverse() 
                if etype == 'before': 
                    exclusion_list = pathvertices[:pathvertices.index(point)] 
                else: 
                    exclusion_list = pathvertices[pathvertices.index(point)+1:] 
 
                end1 = pathvertices[0] 
                end2 = pathvertices[-1] 
                     
                for edge in self.edges: 
                    #in 
                    if (edge[1] in exclusion_list) and (edge[0] not in 
pathvertices) \ 
                        and (edge[1] != point): 
                        self.edges[edge]['weight'] = 1e9 
                     
                    #out 
                    if (edge[0] in exclusion_list) and (edge[1] not in 
pathvertices) \ 
                        and (edge[0] != point): 
                        self.edges[edge]['weight'] = 1e9 
 
                     
                    if onlyin: 
                        if (edge[0] in pathvertices) and (edge[0] not in 
exclusion_list) \ 
                            and (edge[0] != end2) and (edge[0] != end1) and 
(edge[1] not in pathvertices): 
                            self.edges[edge]['weight'] = 1e9 
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                    if onlyout: 
                        if (edge[1] in pathvertices) and (edge[1] not in 
exclusion_list) \ 
                            and (edge[1] != end2) and (edge[1] != end1) and 
(edge[0] not in pathvertices): 
                            self.edges[edge]['weight'] = 1e9 
        print("") 
                 
 
     
    def enforce_no_pipeline_diagonal_Xover(self): 
        print("Enforcing no diagonal pipeline crossing...") 
        edges = [edge for edge in self.edges] 
 
        for pathname in self.existingPath.keys(): 
            for nodepair in self.existingPath[pathname]: 
                if abs(nodepair[0] - nodepair[1]) == self.width+2: 
                    lower_diag = min(nodepair) + 1 
                    upper_diag = max(nodepair) - 1 
                     
                    if (lower_diag, upper_diag) in edges: 
                        self.edges[(lower_diag, upper_diag)]['weight'] = 1e9 
                    if (upper_diag, lower_diag) in edges: 
                        self.edges[(upper_diag, lower_diag)]['weight'] = 1e9 
                     
                elif abs(nodepair[0] - nodepair[1]) == self.width: 
                    lower_diag = min(nodepair) - 1 
                    upper_diag = max(nodepair) + 1 
                     
                    if (lower_diag, upper_diag) in edges: 
                        self.edges[(lower_diag, upper_diag)]['weight'] = 1e9 
                    if (upper_diag, lower_diag) in edges: 
                        self.edges[(upper_diag, lower_diag)]['weight'] = 1e9 
        print('No pipeline diaginal crossing enforced') 
        print("") 
        return 
     
    def enforce_no_path_diagonal_Xover(self, path_tup): 
        print("Enforcing no diagonal path crossing...") 
        edges = [edge for edge in self.edges] 
 
        for nodepair in path_tup: 
            if abs(nodepair[0] - nodepair[1]) == self.width+2: 
                lower_diag = min(nodepair) + 1 
                upper_diag = max(nodepair) - 1 
                     
                if (lower_diag, upper_diag) in edges: 
                    self.edges[(lower_diag, upper_diag)]['weight'] = 1e9 
                if (upper_diag, lower_diag) in edges: 
                    self.edges[(upper_diag, lower_diag)]['weight'] = 1e9 
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            elif abs(nodepair[0] - nodepair[1]) == self.width: 
                lower_diag = min(nodepair) - 1 
                upper_diag = max(nodepair) + 1 
                     
                if (lower_diag, upper_diag) in edges: 
                    self.edges[(lower_diag, upper_diag)]['weight'] = 1e9 
                if (upper_diag, lower_diag) in edges: 
                    self.edges[(upper_diag, lower_diag)]['weight'] = 1e9 
        print('No pipeline diaginal crossing enforced') 
        print("") 
        return 
     
     
    def add_sources(self, sourcelist): 
        for source in sourcelist: 
            self.sources[source[0]] = [source[1], source[2]] 
            self.assetsLatLon[source[0]] = [source[1], source[2]] 
            xy = self.gt._latlonToXY(source[1], source[2]) 
            self.assetsXY[source[0]] = [xy[0], xy[1]] 
            self.assetCap[source[0]] = source[3] 
             
    def add_sinks(self, sinklist): 
        for sink in sinklist: 
            self.sinks[sink[0]] = [sink[1], sink[2]] 
            self.assetsLatLon[sink[0]] = [sink[1], sink[2]] 
            xy = self.gt._latlonToXY(sink[1], sink[2]) 
            self.assetsXY[sink[0]] = [xy[0], xy[1]] 
            self.assetCap[sink[0]] = -sink[3] 
             
    def _generate_assetsPT(self): 
        for key in self.assetsXY.keys(): 
            self.assetsPT[key] = self.gt._xyToCell(self.assetsXY[key][0], 
self.assetsXY[key][1]) 
             
        for key in self.assetsPT.keys(): 
            self.assetNameFromPT[self.assetsPT[key]] = key 
             
        for key in self.assetsXY.keys(): 
            self.assetNameFromXY[(self.assetsXY[key][0], self.assetsXY[key][1])] 
= key 
             
     
     
    def generateDelaunayNetwork(self): 
        print("Generating Delanuay Network...") 
        self.D = networkDelanunay(width=self.width, height=self.height) 
        assets = [] 
        for key, asset in self.assetsXY.items(): 
            assets.append(asset) 
             
        assets = np.array(assets) 
        self.D.add_points_from_list(assets) 
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        self.D.createDelaunayNetwork() 
        print("Delaunay network generated") 
        print('') 
 
         
    def showDelaunayNetwork(self): 
        self.D.plotNetwork()     
             
    def add_Delaunay_tiepoints(self, tieptslist): 
        for tiepts in tieptslist: 
            if tiepts[0] in self.sources.keys(): 
                node1 = self.sources[tiepts[0]] 
            elif tiepts[0] in self.sinks.keys(): 
                node1 = self.sinks[tiepts[0]] 
                 
            if tiepts[2] in self.sources.keys(): 
                node2 = self.sources[tiepts[2]] 
            elif tiepts[2] in self.sinks.keys(): 
                node2 = self.sinks[tiepts[2]] 
             
            self.assetsXY[f"Tnode from {tiepts[0]} to pipeline1"] = tiepts[1] 
            self.assetsXY[f"Tnode from {tiepts[2]} to pipeline1"] = tiepts[3] 
             
                 
            self.D.add_tie_in_point(node1,tiepts[1]) 
            self.D.add_tie_in_point(node2, tiepts[3]) 
            self.D.add_tie_in_point(tiepts[1], tiepts[3]) 
            self.D.delete_line_path(node1, node2) 
             
            self.enforce_pipeline_tie_point(tiepts[4], tiepts[1], tiepts[3]) 
             
        return 
     
    def get_sources(self): 
        return self.sources 
     
    def get_sinks(self): 
        return self.sinks 
         
    def print_edges(self): 
        for edge in self.edges: 
            print(edge, self.edges[edge]) 
                 
    def weight_func(self, distance, time): 
        return distance * time 
     
    def get_shortest_path_and_length(self, source, destination): 
        # slength = nx.shortest_path_length(self, source, destination, 
weight=lambda u, v, d: self.weight_func(d['weight'], d['length'])) 
        # spath = nx.shortest_path(self, source, destination, weight=lambda u, v, 
d: self.weight_func(d['weight'], d['length'])) 
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        slength = nx.shortest_path_length(self, source, destination, 
weight='weight') 
        spath = nx.shortest_path(self, source, destination, weight='weight') 
        return slength, spath 
     
    def get_all_source_sink_shortest_paths(self): 
        print('Generating all Delaunay pair shortest path...') 
        self.lines = self.D.getDelaunayNetwork() 
        for line in self.lines: 
            cost, path = self.get_shortest_path_and_length(line[0], line[1]) 
            self.spathsCost[(line[0], line[1])] = cost 
            self.spaths[(line[0], line[1])] = path 
            self.initial_pipe_spaths[(line[0], line[1])] = path 
             
            path_tup = [(path[i], path[i+1]) for i in range(len(path)-1)] 
            # self.enforce_no_path_diagonal_Xover(path_tup) 
         
        self._generate_assetsPT() 
        print('Done generating shortest paths.') 
        print("") 
             
    def get_spathsCost(self): 
        return self.spathsCost 
     
    def print_candidate_shortest_paths(self): 
        print("The lengths are: ", self.spathsLength) 
        print("") 
        print("The weights are: ", self.spathsWeight) 
        print("") 
        print("The weighted costs are: ", self.spathsCost) 
        print("") 
        print("The shortest paths are: ", self.spaths) 
        print("") 
        print(len(self.spathsCost), len(self.spaths)) 
         
    def print_assets(self): 
        print(self.assetsPT) 
        print(self.assetsXY) 
        print(len(self.assetsPT), len(self.assetsXY)) 
     
    def show_candidate_network(self): 
        rcParams['figure.figsize'] = 20, 20 
         
        # ptslist = self.nodes 
        ptslist = self.edges 
         
        self._generate_assetsPT() 
         
         
        #plot the shortest paths between nodes 
        for key in self.spaths.keys(): 
            xs = [] 
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            ys = [] 
            for pt in self.spaths[key]: 
                xy = self.gt._cellToXY(pt) 
                xs.append(xy[0]) 
                ys.append(xy[1]) 
            plt.plot(xs, ys, label=f"path between {self.assetNameFromPT[key[0]]} 
and {self.assetNameFromPT[key[1]]}", lw = 5) 
         
        #plot all existing pipelines 
        for key in self.existingPathVertices.keys(): 
            xp = [] 
            yp = [] 
            for pt in self.existingPathVertices[key]: 
                xy = self.gt._cellToXY(pt) 
                xp.append(xy[0]) 
                yp.append(xy[1]) 
            plt.plot(xp, yp, 'red', lw=6, alpha=0.5) 
         
         
        #plot asset markers 
        for key in self.assetsXY.keys(): 
            x = self.assetsXY[key][0] 
            y = self.assetsXY[key][1] 
            if "node" in key: 
                plt.plot(x,y, marker='o', mfc='orange', ms=5, mec='black') 
            elif "source" in key: 
                plt.plot(x,y, marker="s", mfc='black', ms=5, mec='black') 
                plt.plot(x,y, marker=f"${key}$", mfc='black', ms=40, mec='black') 
            elif "sink" in key: 
                plt.plot(x,y, marker="s", mfc='yellow', ms=5, mec='red') 
                plt.plot(x,y, marker=f"${key}$", mfc='yellow', ms=30, mec='red') 
         
        plt.title("Candidate CO2 Sequestration Network") 
        plt.xlabel("X location") 
        plt.ylabel("Y location") 
#         plt.legend() 
        plt.show() 
         
        return 
     
    def extract_network(self): 
        return 
     
    def get_pipe_trans_nodes(self): 
        print('Generating Pipeline transshipment nodes...') 
        existingPathVertices = self.existingPathVertices.copy()        
        spaths = self.spaths.copy() 
         
        trans_nodes = {} 
        conn_to_del = [] 
        for pathname in existingPathVertices.keys(): 
            for nodepair in spaths.keys(): 
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                entry = False 
                start = self.spaths[nodepair][0] 
                end = self.spaths[nodepair][-1] 
                for i in range(len(spaths[nodepair])): 
                    if (entry == False) and (spaths[nodepair][i] in 
existingPathVertices[pathname]): 
                        entry = True 
                        trans_nodes[(pathname, nodepair)] = [spaths[nodepair][i]] 
                    if (entry == True) and (spaths[nodepair][i] not in 
existingPathVertices[pathname]): 
                        trans_nodes[(pathname, 
nodepair)].append(spaths[nodepair][i-1]) 
                        break 
                 
                if (entry == True) and (len(trans_nodes[(pathname, nodepair)]) == 
1): 
                    trans_nodes[(pathname, nodepair)].append(spaths[nodepair][-
1]) 
                 
                if entry == True: 
                    node1 = trans_nodes[(pathname, nodepair)][0] 
                    node2 = trans_nodes[(pathname, nodepair)][1] 
                    idx1 = spaths[nodepair].index(node1) 
                    idx2 = spaths[nodepair].index(node2) 
                     
                    self._generate_assetsPT() 
                                     
  
                    self.spaths[(node1, node2)] = 
self.spaths[nodepair][idx1:idx2+1] 
                    self.spaths[(start, node1)] = self.spaths[nodepair][0:idx1+1] 
                    self.spaths[(node2, end)] = self.spaths[nodepair][idx2:] 
                     
                     
                    cost_1 = 0 
                    cost_2 = 0 
                    for i in range(len(self.spaths[(start, node1)])-1): 
                        cost_1 += self.edges[self.spaths[(start, node1)][i], 
self.spaths[(start, node1)][i+1]]['weight'] 
                    for i in range(len(self.spaths[(node2, end)])-1): 
                        cost_2 += self.edges[self.spaths[(node2, end)][i], 
self.spaths[((node2, end))][i+1]]['weight'] 
                     
                     
                    self.spathsCost[(node1, node2)] = 0 
                    self.spathsCost[(start, node1)] = cost_1 
                    self.spathsCost[(node2, end)] = cost_2 
                     
                     
                     
                    from_name = self.assetNameFromPT[nodepair[0]] 
                    to_name = self.assetNameFromPT[nodepair[1]] 
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                    self.assetsXY[pathname + f" from {from_name} to {to_name} 
node1"] = self.gt._cellToXY(node1) 
                    self.assetsXY[pathname + f" from {from_name} to {to_name} 
node2"] = self.gt._cellToXY(node2) 
                     
                    conn_to_del.append((start, end)) 
         
        for conn in conn_to_del:             
            del self.spaths[conn] 
            del self.spathsCost[conn] 
                         
        print('Pipeline Transshipment Nodes generated.') 
        print('')             
        return 
                 
         
    def pipe_post_process(self): 
        print("Post processing Pipeline Paths...") 
        self._generate_assetsPT()  
         
        for pathname in self.existingPath.keys(): 
            nodes_on_pipe = [] 
            for key in self.assetNameFromPT.keys(): 
                if key in self.existingPathVertices[pathname]: 
                    nodes_on_pipe.append((key, 
self.existingPathVertices[pathname].index(key))) 
            nodes_on_pipe = list(set(nodes_on_pipe)) 
            nodes_on_pipe.sort(key=lambda x: x[1]) 
            nodes_on_pipe = [i for (i, j) in nodes_on_pipe] 
             
            list_combinations = list() 
             
            for n in range(len(nodes_on_pipe)+1): 
                list_combinations += list((combinations(nodes_on_pipe, n))) 
                 
            list_combinations = [tup for tup in list_combinations if len(tup) == 
2] 
             
            joints = [(nodes_on_pipe[i], nodes_on_pipe[i+1]) for i in 
range(len(nodes_on_pipe)-1)] 
            edges_to_remove = [tup for tup in list_combinations if tup not in 
joints] 
             
            #remove redundant edges 
            for edge in edges_to_remove: 
                if edge in self.spaths.keys(): 
                    del self.spaths[edge] 
                if edge in self.spathsCost.keys(): 
                    del self.spathsCost[edge] 
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            #add edges with cost 
            for edge in joints: 
                slength, spath = self.get_shortest_path_and_length(edge[0], 
edge[1]) 
                self.spaths[edge] = spath 
                self.spathsCost[edge] = slength 
                 
        self._generate_assetsPT() 
        print("Pipeline post process complete.") 
        print('') 
             
             
    def _print_assetNameFromPT(self): 
        print(self.assetNameFromPT) 
        print(len(self.assetNameFromPT)) 
     
    def get_trans_nodes(self): 
        print('Generating paths transshipment nodes...') 
        self._generate_assetsPT()    
        spaths = self.spaths.copy() 
 
        trans_nodes = {} 
        conn_to_del = [] 
         
        for pathname in spaths.keys(): 
            for nodepair in spaths.keys(): 
                entry = False 
                start = spaths[nodepair][0] 
                end = spaths[nodepair][-1] 
 
                for i in range(len(spaths[nodepair])): 
                    if (entry == False) and (spaths[nodepair][i] in 
spaths[pathname]): 
                        entry = True 
                        trans_nodes[(pathname, nodepair)] = [spaths[nodepair][i]] 
                    if (entry == True) and (spaths[nodepair][i] not in 
spaths[pathname]): 
                        trans_nodes[(pathname, 
nodepair)].append(spaths[nodepair][i-1]) 
                        break 
                 
                 
                if entry == True: 
                    if len(trans_nodes[(pathname, nodepair)]) == 1: 
                        trans_nodes[(pathname, 
nodepair)].append(spaths[nodepair][-1]) 
                     
                    if trans_nodes[(pathname, nodepair)][0] == 
trans_nodes[(pathname, nodepair)][1]: 
                        pass 
                    else: 
                        node1 = trans_nodes[(pathname, nodepair)][0] 
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                        node2 = trans_nodes[(pathname, nodepair)][1] 
                        idx1 = spaths[nodepair].index(node1) 
                        idx2 = spaths[nodepair].index(node2) 
 
                         
                        self._generate_assetsPT() 
                 
 
                        if start != node1: 
                            self.spaths[(start, node1)] = 
self.spaths[nodepair][0:idx1+1] 
                            cost_1 = 0 
                            for i in range(len(self.spaths[(start, node1)])-1): 
                                cost_1 += \ 
                                self.edges[self.spaths[(start, node1)][i], 
self.spaths[(start, node1)][i+1]]['weight'] 
                            self.spathsCost[(start, node1)] = cost_1 
                         
                        if node1 != node2: 
                            self.spaths[(node1, node2)] = 
self.spaths[nodepair][idx1:idx2+1] 
                            cost_2 = 0 
                            for i in range(len(self.spaths[(node1, node2)])-1): 
                                cost_2 += \ 
                                self.edges[self.spaths[(node1, node2)][i], 
self.spaths[((node1, node2))][i+1]]['weight'] 
                            self.spathsCost[(node1, node2)] = cost_2 
                         
                        if node2 != end: 
                            self.spaths[(node2, end)] = 
self.spaths[nodepair][idx2:] 
                            cost_3 = 0 
                            for i in range(len(self.spaths[(node2, end)])-1): 
                                cost_3 += \ 
                                self.edges[self.spaths[(node2, end)][i], 
self.spaths[((node2, end))][i+1]]['weight'] 
                            self.spathsCost[(node2, end)] = cost_3 
                         
                        from_name = self.assetNameFromPT[nodepair[0]] 
                        to_name = self.assetNameFromPT[nodepair[1]] 
                         
                             
                        if node1 in self.assetNameFromPT.keys(): 
                            if ('sink' not in self.assetNameFromPT[node1]) \ 
                                and ('source' not in 
self.assetNameFromPT[node1]): 
                                self.assetsXY[str(pathname) + f" from {from_name} 
to {to_name} node1"] = \ 
                                self.gt._cellToXY(node1) 
                        else: 
                            self.assetsXY[str(pathname) + f" from {from_name} to 
{to_name} node1"] = \ 



127 

 

                            self.gt._cellToXY(node1) 
                         
                        if node2 in self.assetNameFromPT.keys(): 
                            if ('sink' not in self.assetNameFromPT[node2]) \ 
                                and ('source' not in 
self.assetNameFromPT[node2]): 
                                self.assetsXY[str(pathname) + f" from {from_name} 
to {to_name} node2"] = \ 
                                self.gt._cellToXY(node2)    
                        else: 
                            self.assetsXY[str(pathname) + f" from {from_name} to 
{to_name} node2"] = \ 
                            self.gt._cellToXY(node2) 
 
                        conn_to_del.append((start, end)) 
#                         self._generate_assetsPT() 
         
        for conn in list(set(conn_to_del)):             
            del self.spaths[conn] 
            del self.spathsCost[conn] 
                         
        print('pipe transshipment nodes generated.') 
        print('')                 
        return 
     
    def trans_node_post_process(self): 
        print('Started post processing of path transshipment nodes...') 
        self._generate_assetsPT()  
         
        for pathname in self.initial_pipe_spaths.keys(): 
            nodes_on_pipe = [] 
            for key in self.assetNameFromPT.keys(): 
                if key in self.initial_pipe_spaths[pathname]: 
                    nodes_on_pipe.append((key, 
self.initial_pipe_spaths[pathname].index(key))) 
            nodes_on_pipe = list(set(nodes_on_pipe)) 
            nodes_on_pipe.sort(key=lambda x: x[1]) 
            nodes_on_pipe = [i for (i, j) in nodes_on_pipe] 
             
            list_combinations = list() 
             
            for n in range(len(nodes_on_pipe)+1): 
                list_combinations += list((combinations(nodes_on_pipe, n))) 
                 
            list_combinations = [tup for tup in list_combinations if len(tup) == 
2] 
             
            joints = [(nodes_on_pipe[i], nodes_on_pipe[i+1]) for i in 
range(len(nodes_on_pipe)-1)] 
            edges_to_remove = [tup for tup in list_combinations if tup not in 
joints] 
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            #remove redundant edges 
            for edge in edges_to_remove: 
                if edge in self.spaths.keys(): 
                    del self.spaths[edge] 
                if edge in self.spathsCost.keys(): 
                    del self.spathsCost[edge] 
             
             
            #add edges with cost 
            for edge in joints: 
                slength, spath = self.get_shortest_path_and_length(edge[0], 
edge[1]) 
                self.spaths[edge] = spath 
                self.spathsCost[edge] = slength 
                 
        self._generate_assetsPT() 
        print('path transhipment nodes processing done.') 
        print('') 
         
    def plot_extracted_graph(self): 
        res = [] 
        for key in self.spathsCost.keys(): 
            pt1 = self.gt._cellToXY(key[0]) 
            pt2 = self.gt._cellToXY(key[1]) 
            res.append((pt1, pt2)) 
             
        for line in res: 
            x = [] 
            y = [] 
            x.append(line[0][0]) 
            y.append(line[0][1]) 
            x.append(line[1][0]) 
            y.append(line[1][1]) 
            plt.plot(x, y,  marker='o', mfc='green', mec='green', label=f"from 
{line[0]} to {line[1]}") 
         
        plt.title('2D visualization of extracted Graph') 
        plt.xlabel("X location") 
        plt.ylabel('Y location') 
        # plt.legend() 
        plt.show() 
         
    def shortest_paths_post_process(self): 
        print('Post processing of shortest paths initiated...') 
        spaths = self.spaths.copy() 
        spathsCost = self.spathsCost.copy() 
         
        for key in self.spaths.keys(): 
            if ((key[0], key[1]) in spaths.keys()) and ((key[1], key[0]) in 
spaths.keys()): 
                del spaths[(key[1], key[0])] 
                del spathsCost[(key[1], key[0])] 



129 

 

                 
        self.spaths = spaths.copy() 
        self.spathsCost = spathsCost.copy() 
 
        for key in spaths.keys(): 
            t_length = 0 
            t_weight = 0 
            for i in range(len(spaths[key]) - 1): 
                nodelist = spaths[key] 
                t_weight += self.edges[(nodelist[i], nodelist[i+1])]['weight'] 
                t_length += self.edges[(nodelist[i], nodelist[i+1])]['length'] 
            self.spathsWeight[key] = t_weight 
            self.spathsLength[key] = t_length 
         
        print('shortest paths post processing completed.') 
        print('') 
 
     
    def _getMappingData(self): 
        print('Generating Mapping Data...') 
        assets_df = {"Name": [], 
                "Lat": [], 
                "Lon": [], 
                "Type": []} 
 
        for key in self.assetsXY.keys(): 
            x = self.assetsXY[key][0] 
            y = self.assetsXY[key][1] 
            lat, lon = self.gt._xyToLatLon(x, y) 
            assets_df["Name"].append(key) 
            assets_df["Lat"].append(lat) 
            assets_df["Lon"].append(lon) 
            if "node" in key: 
                assets_df["Type"].append("node") 
            elif "source" in key: 
                assets_df["Type"].append("source") 
            elif "sink" in key: 
                assets_df["Type"].append("sink") 
 

        self.assets_df = pd.DataFrame(assets_df) 
 
        pipelines_df = {"Name": [], 
                        "Lat": [], 
                        "Lon": []} 
 
        for key in self.spaths.keys(): 
            for pt in self.spaths[key]: 
                lat, lon = self.gt._cellToLatLon(pt) 
                pipelines_df["Name"].append(key) 
                pipelines_df["Lat"].append(lat) 
                pipelines_df["Lon"].append(lon) 
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        self.pipelines_df = pd.DataFrame(pipelines_df) 
 
        self.unique_pipes = self.pipelines_df["Name"].unique() 
 

        existing_path_df = {"Name": [], 
                        "Lat": [], 
                        "Lon": []} 
         
        for key in self.existingPathVertices.keys(): 
            for pt in self.existingPathVertices[key]: 
                lat, lon = self.gt._cellToLatLon(pt) 
                existing_path_df["Name"].append(key) 
                existing_path_df["Lat"].append(lat) 
                existing_path_df["Lon"].append(lon) 
 
        self.existing_path_df = pd.DataFrame(existing_path_df) 
         
        # self.lines = self.D.getDelaunayNetwork() 
        print('Mapping Data sucessfully generated.') 
        print('') 
 

    def _getDelaunayMapFig(self): 
        assets_subset = self.assets_df[self.assets_df["Type"].isin(["source", 
"sink"])] 
        fig1 = px.scatter_mapbox(assets_subset, lat="Lat", lon="Lon", 
hover_name="Name", color="Type", zoom=7, height=1000, width=1000, size="Lat",  
                                color_discrete_map={"source":"red", 
"sink":"green"}) 
        fig1.update_layout(mapbox_style="open-street-map") 
 

        for line in self.lines: 
            lat1, lon1 = self.gt._cellToLatLon(line[0]) 
            lat2, lon2 = self.gt._cellToLatLon(line[1]) 
            fig1.add_trace(go.Scattermapbox( 
                mode = "lines", 
                lat = [lat1, lat2], 
                lon = [lon1, lon2], 
                showlegend=False, 
                line={'color':'black'} 
            )) 
 
        return fig1 
 
    def _getAlternateNetworkMapFig(self): 
        fig2 = px.scatter_mapbox(self.assets_df, lat="Lat", lon="Lon", 
hover_name="Name", color="Type", zoom=7, height=1000, width=1000, size="Lat",  
                                color_discrete_map={"source":"red", 
"sink":"green",  "node":"orange"}) 
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        fig2.update_layout(mapbox_style="open-street-map") 
 
        for pipe in self.unique_pipes:  
            fig2.add_trace(go.Scattermapbox( 
                mode = "lines", 
                lat = self.pipelines_df[self.pipelines_df.Name == pipe]["Lat"], 
                lon = self.pipelines_df[self.pipelines_df.Name == pipe]["Lon"], 
                showlegend=False, 
                line={'color':'blue'}, 
                name = str(pipe) 
            ))   
 
        #addpipeline plot 
        for path in self.existingPath.keys(): 
            fig2.add_trace(go.Scattermapbox( 
                mode = "lines", 
                lat = self.existing_path_df[self.existing_path_df.Name == 
path]["Lat"], 
                lon = self.existing_path_df[self.existing_path_df.Name == 
path]["Lon"], 
                showlegend=True, 
                opacity=0.5, 
                line={'width': 5, 'color':'purple'}, 
                name = str(path) 
            )) 
 

        return fig2 
     
    def _getSolnNetworkMapFig(self, soln_arcs, point1=None, point2=None, 
show_alt=True):               
        fig3 = px.scatter_mapbox(self.assets_df, lat="Lat", lon="Lon", 
hover_name="Name", color="Type", zoom=7, height=1000, width=1000, size="Lat",  
                                color_discrete_map={"source":"red", 
"sink":"green",  "node":"orange"}) 
        fig3.update_layout(mapbox_style="open-street-map") 
 
        if show_alt: 
            for pipe in self.unique_pipes:  
                fig3.add_trace(go.Scattermapbox( 
                    mode = "lines", 
                    lat = self.pipelines_df[self.pipelines_df.Name == 
pipe]["Lat"], 
                    lon = self.pipelines_df[self.pipelines_df.Name == 
pipe]["Lon"], 
                    showlegend=False, 
                    line={'color':'blue'}, 
                    name = str(pipe) 
                )) 
         
        if point1: 
            if point1 != ["", ""]: 
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                fig3.add_trace(go.Scattermapbox( 
                        mode = "markers", 
                        lat = [point1[0]], 
                        lon = [point1[1]], 
                        showlegend=True, 
                        opacity=0.8, 
                        marker={'size': 20, 'color':'orange'}, 
                        name = str("Tie-in Point 1") 
                        )) 
                fig3.add_trace(go.Scattermapbox( 
                mode = "markers", 
                lat = [point1[0]], 
                lon = [point1[1]], 
                showlegend=False, 
                opacity=0.8, 
                marker={'size': 10, 'color':'black'}, 
                name = str("Tie-in Point 1") 
                )) 
 
        if point2: 
            if point2 != ["", ""]: 
                fig3.add_trace(go.Scattermapbox( 
                        mode = "markers", 
                        lat = [point2[0]], 
                        lon = [point2[1]], 
                        showlegend=True, 
                        opacity=0.8, 
                        marker={'size': 20, 'color':'orange'}, 
                        name = str("Tie-in Point 2") 
                        )) 
                fig3.add_trace(go.Scattermapbox( 
                mode = "markers", 
                lat = [point2[0]], 
                lon = [point2[1]], 
                showlegend=False, 
                opacity=0.8, 
                marker={'size': 10, 'color':'black'}, 
                name = str("Tie-in Point 2") 
                )) 
 
        #addpipeline plot 
        for path in self.existingPath.keys(): 
            fig3.add_trace(go.Scattermapbox( 
                mode = "lines", 
                lat = self.existing_path_df[self.existing_path_df.Name == 
path]["Lat"], 
                lon = self.existing_path_df[self.existing_path_df.Name == 
path]["Lon"], 
                showlegend=True, 
                opacity=0.5, 
                line={'width': 5, 'color':'purple'}, 
                name = str(path) 
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            )) 
 
        #highlight soln 
        for pipe in self.unique_pipes: 
            if ((self.nodesdict[pipe[0]], self.nodesdict[pipe[1]]) in 
soln_arcs.keys()) or \ 
                ((self.nodesdict[pipe[1]], self.nodesdict[pipe[0]]) in 
soln_arcs.keys()) :  
                fig3.add_trace(go.Scattermapbox( 
                    mode = "lines", 
                    lat = self.pipelines_df[self.pipelines_df.Name == 
pipe]["Lat"], 
                    lon = self.pipelines_df[self.pipelines_df.Name == 
pipe]["Lon"], 
                    showlegend=False,  
                    opacity=0.5, 
                    line={'width': 10, 'color':'green'} 
                     
                ))     
 
        return fig3 
     
 
    def _getSolnResults(self, soln_arcs): 
        solnkeys = [] 
        for pipe in self.unique_pipes: 
            if ((self.nodesdict[pipe[0]], self.nodesdict[pipe[1]]) in 
soln_arcs.keys()): 
                solnkeys.append((pipe[0], pipe[1], 'n')) 
            elif ((self.nodesdict[pipe[1]], self.nodesdict[pipe[0]]) in 
soln_arcs.keys()): 
                solnkeys.append((pipe[0], pipe[1], 'r')) 
 
        resultdict2 = {} 
        for solnkey in solnkeys: 
            path = self.spaths[(solnkey[0], solnkey[1])] 
            path_geo = [] 
            length_act = 0 
            for i in range(len(path)-1): 
                lat1, lon1 = self.gt._cellToLatLon(path[i]) 
                lat2, lon2 = self.gt._cellToLatLon(path[i+1]) 
                path_geo.append(((lat1, lon1), (lat2, lon2))) 
                length_act += self.gt._getDistance(path[i], path[i+1]) 
            length1 = self.spathsLength[(solnkey[0], solnkey[1])] 
            length = length_act 
            if solnkey[2] == 'n': 
                resultdict2[(self.nodesdict[solnkey[0]], 
self.nodesdict[solnkey[1]])] = {"length": length, "path": path_geo} 
            else: 
                path_geo.reverse() 
                resultdict2[(self.nodesdict[solnkey[1]], 
self.nodesdict[solnkey[0]])] = {"length": length, "path": path_geo} 
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        return resultdict2 
 

         
    def export_network(self): 
        self.nodesdict = {} 
        nodenames = [] 
        idx = 1 
        pipe_idx = 1 
        for key,value in self.assetNameFromPT.items(): 
            for pipeline in self.existingPath.keys(): 
                if pipeline in value: 
                    self.nodesdict[key] = f'{pipeline}_TS'+str(pipe_idx) 
                    nodenames.append(f'{pipeline}_TS'+str(pipe_idx)) 
                    pipe_idx+=1 
                    break            
            if ('from' in value) and (key not in self.nodesdict.keys()): 
                self.nodesdict[key] = 'TS'+str(idx) 
                nodenames.append('TS'+str(idx)) 
                idx+=1 
            elif key not in self.nodesdict.keys(): 
                self.nodesdict[key] = value 
                nodenames.append(value) 
                 
        # print("nodesdict: ", nodesdict) 
        arcsCost = {} 
        arcsLength = {} 
        arcsWeight = {} 
        arcsPath = {} 
        arcs = [] 
         
         
        for key, value in self.spathsCost.items(): 
            node1 = self.nodesdict[key[0]] 
            node2 = self.nodesdict[key[1]] 
            arc_1 = node1.split("_")[0] 
            arc_2 = node2.split("_")[0] 
            if (arc_1 == arc_2) and (arc_1 in self.existingPathBounds.keys()): 
                if (self.existingPathType[arc_1] == "unidirectional"): 
                    arcsCost[(node1, node2)] = value 
                    arcsLength[(node1, node2)] = self.spathsLength[key] 
                    arcsWeight[(node1, node2)] = self.spathsWeight[key] 
                    arcsPath[(node1, node2)] = self.spaths[key] 
                    arcs.append((node1, node2)) 
                else: 
                    arcsCost[(node1, node2)] = value 
                    arcsCost[(node2, node1)] = value 
                    arcsLength[(node1, node2)] = self.spathsLength[key] 
                    arcsLength[(node2, node1)] = self.spathsLength[key] 
                    arcsWeight[(node1, node2)] = self.spathsWeight[key] 
                    arcsWeight[(node2, node1)] = self.spathsWeight[key] 
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                    arcsPath[(node1, node2)] = self.spaths[key] 
                    arcsPath[(node2, node1)] = [i for i in 
reversed(self.spaths[key])] 
                    arcs.append((node1, node2)) 
                    arcs.append((node2, node1)) 
            else: 
                arcsCost[(node1, node2)] = value 
                arcsCost[(node2, node1)] = value 
                arcsLength[(node1, node2)] = self.spathsLength[key] 
                arcsLength[(node2, node1)] = self.spathsLength[key] 
                arcsWeight[(node1, node2)] = self.spathsWeight[key] 
                arcsWeight[(node2, node1)] = self.spathsWeight[key] 
                arcsPath[(node1, node2)] = self.spaths[key] 
                arcsPath[(node2, node1)] = [i for i in 
reversed(self.spaths[key])] 
                arcs.append((node1, node2)) 
                arcs.append((node2, node1)) 
 
         
        #get b values for network graph 
        nodes_b ={key:0 for key in nodenames} 
 
        for node in nodes_b: 
            if node in self.assetCap.keys(): 
                nodes_b[node] = self.assetCap[node] 
 
        #define all arc info [length, weight, w_cost, lower_bound, upper_bound] 
        arcsInfo = {key:[arcsLength[key],arcsWeight[key],arcsCost[key], 0, 1e9] 
for key in arcsCost.keys()} 
 
        for arc in arcs: 
            arc_1 = arc[0].split("_")[0] 
            arc_2 = arc[1].split("_")[0] 
            if arc_1 == arc_2: 
                if arc_1 in self.existingPathBounds.keys(): 
                    arcsInfo[arc][3] = self.existingPathBounds[arc_1][0] 
                    arcsInfo[arc][4] = self.existingPathBounds[arc_1][1] 
 
        return nodenames, arcs, arcsInfo, arcsPath, nodes_b 

 

math_model.py 

import os 
import pulp as pl 
from pulp import * 
from typing import Dict, List, Set 
import pandas as pd 
import numpy as np 



136 

 

import gurobipy as gp 
import logging 
import os 
from gurobipy import GRB 
from alternateNetworkGeo import alternateNetworkGeo 
import time 
import datetime 
 

MPS_FILE_PATH = 
os.path.join("Sequestrix/app/solver_files/CO2_network_optimization.mps") 
LP_FILE_PATH = 
os.path.join("Sequestrix/app/solver_files/CO2_network_optimization.lp") 
SOL_FILE_PATH = 
os.path.join("Sequestrix/app/solver_files/CO2_network_optimization.sol") 
ILP_FILE_PATH = 
os.path.join("Sequestrix/app/solver_files/CO2_network_optimization.ilp") 
 
LOGGER = logging.getLogger(__name__) 
FORMAT = '%(asctime)s - %(name)s - %(levelname)s - %(message)s' 
logging.basicConfig(filename='model_solve.log', filemode='w', 
level=logging.DEBUG, format=FORMAT) 
START_TIME = time.time() 
 
class Math_model: 
    def __init__(self, nodes, nodesValue, arcs, arcsInfo, paths, nodesCost, 
duration, target_cap, crf=0.1) -> None: 
        self.nodes = nodes #contains nodenames in format [node1, node2] 
        self.arcs = arcs #contains arcs in the format [(node1, node2)] 
        self.nodesValue = nodesValue #contains node capacity values in format 
{node:cap} 
        self.arcsInfo = arcsInfo #contains info about arcs in format {(node1, 
node2): [length, weight, weighted_cost, lowerbound, upperbound]} 
        self.paths = paths #contains the list of nodes connected in path for 
reconstruction 
        self.nodesCost = nodesCost #contains capture and storage cost for sources 
and sinks in data in format {source:cap_cost, sink:storage_cost} 
        self.duration = duration #duration of project 
        self.target_cap = target_cap  #amount of C02 you want to be stored in 
tCO2/yr. note input will be given as MTCO2/yr 
        self.crf = crf 
 

        self._initialize_sets() 
        self._initialize_source_parameters() 
        self._initialize_sink_parameters() 
        self._initialize_arcs_parameters() 
        self._initialize_pipeline_parameters() 
 
        self.vars: Dict[str, gp.tupledict] = {} 
        self.cons: Dict[str, gp.tupledict] = {} 
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        self.Big_M = 56.46 #max flow allowed in a pipeline tCO2/yr 
        self.LTrend = 6.86 #upperbound flow for lower pipeline trend tCO2/yr 
 
        self.costTrend = {"Slope": [0.1157192, 0.0783067], 
                          "Intercept": [0.4316551, 0.770037]} #trends of pipeline 
cost relating MTCO2/ to $M/yr 
         
        self.c = len(self.costTrend["Slope"]) 
     
 
     
     
    def _initialize_sets(self) -> None: 
        self.asset: Set = set() #all assets 
        self.src: Set = set() #all source nodes 
        self.sink: Set = set() #all storage nodes 
        self.node: Set = set() #all transhipment nodes 
        self.epipe: Set = set() #all existing pipelines 
        self.a_a: Set = set() #all node to node connections 
        self.two_way_arcs: Dict = set() #two way arcs, for (a, a') and (a', a) in 
self.a_a, only take (a, a') 
 

    def _initialize_source_parameters(self) -> None: 
        self.source_annual_cap: Dict = {} #amount of CO2 that can be captured at 
source annually (MtCO2/yr) 
        self.capture_cost: Dict = {} #capture cost of CO2 at source in $/tCO2 
        self.capture_fixed_cost: Dict = {} #fixed capture cost of CO2 at source 
in $M 
        self.capture_var_cost: Dict = {} #variable capture cost of CO2 at source 
in $/tCO2 
 
    def _initialize_sink_parameters(self) -> None: 
        self.sink_cap: Dict = {} #total amount of CO2 that can be stored at a 
sink in MTCO2 
        self.storage_cost: Dict = {} #storage cost of CO2 at source in $/tCO2 
        self.storage_fixed_cost: Dict = {} #fixed capture cost of CO2 at source 
in $M 
        self.storage_var_cost: Dict = {} #variable capture cost of CO2 at source 
in $/tCO2 
 
    def _initialize_arcs_parameters(self) -> None: 
        self.max_arc_cap: Dict = {} #maximum amout of CO2 an arc/or pipeline can 
transport annually (MtCO2/yr) 
        self.min_arc_cap: Dict = {} #minimum amout of CO2 an arc/or pipeline can 
transport annually (MtCO2/yr) 
        self.arc_length: Dict = {} #length of arc/or pipeline in KM 
        self.arc_weight: Dict = {} #weight of constructing arc. This corresponds 
to the terrain 
        self.arc_cost: Dict = {} #weighted cost of constructing arc (this is the 
build cost) 
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    def _initialize_pipeline_parameters(self) -> None: 
        self.pipe_nodes: Dict = {} 
     
    def _generate_sets(self) -> None: 
        self.asset = set(self.nodes) 
        self.src = set([node for node in self.nodes if 'source' in node]) 
        self.sink = set([node for node in self.nodes if 'sink' in node]) 
        self.node = set([node for node in self.nodes if ((node not in self.src) 
and (node not in self.sink))]) 
        self.epipe = set([node.split("_")[0] for node in self.nodes if ("_" in 
node) and ('source' not in node) and ('sink' not in node)]) 
        self.a_a = set(self.arcs) 
         
        #extract 2 way arcs 
        seen = {} 
        result = [] 
 
        for (a, b) in self.a_a: 
            if (a, b) not in seen: 
                seen[(a,b)] = True 
                if (b, a) in seen: 
                    result.append((b,a)) 
 
        self.two_way_arcs = set(result) 
 
    def _generate_parameters(self) -> None: 
        #source parameters 
        self.source_annual_cap = {key:self.nodesValue[key] for key in self.src} 
        self.capture_cost = {key:self.nodesCost[key][0] for key in self.src} 
        self.capture_fixed_cost = {key:self.nodesCost[key][1] for key in 
self.src} 
        self.capture_var_cost = {key:self.nodesCost[key][2] for key in self.src} 
 
        self.capture_v_cost = {key:self.capture_cost[key] if 
(self.capture_var_cost[key] == 0) 
                                and (self.capture_fixed_cost[key] == 0) 
                                else self.capture_var_cost[key] for key in 
self.src} 
 
        #sink parameters 
        self.sink_cap = {key:self.nodesValue[key] for key in self.sink} 
        self.storage_cost = {key:self.nodesCost[key][0] for key in self.sink} 
        self.storage_fixed_cost = {key:self.nodesCost[key][1] for key in 
self.sink} 
        self.storage_var_cost = {key:self.nodesCost[key][2] for key in self.sink} 
 
        self.storage_v_cost = {key:self.storage_cost[key] if 
(self.storage_var_cost[key] == 0)  
                                and (self.storage_fixed_cost[key] == 0) 
                                else self.storage_var_cost[key] for key in 
self.sink} 
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        #arc parameters 
        self.MaxCap = sum(self.source_annual_cap.values()) #maximum possible flow 
        self.MidCap = ((self.costTrend["Intercept"][1] - 
self.costTrend["Intercept"][0]) / (self.costTrend["Slope"][0] - 
self.costTrend["Slope"][1])) 
 

        # self.max_arc_cap = {key:self.arcsInfo[key][4] for key in self.a_a} 
        self.max_arc_cap = {(akey[0], akey[1], ckey):self.arcsInfo[akey][4] if 
self.arcsInfo[akey][4] < self.MidCap else self.MidCap if ckey == 0 else 
self.MaxCap  
                            for akey in self.a_a for ckey in range(self.c)} 
 
        # self.min_arc_cap = {key:self.arcsInfo[key][3] for key in self.a_a} 
        self.min_arc_cap = {(akey[0], akey[1], ckey):self.arcsInfo[akey][3] if 
self.arcsInfo[akey][3] > 0 else 0 
                            for akey in self.a_a for ckey in range(self.c)} 
        self.arc_length = {key:self.arcsInfo[key][0] for key in self.a_a}  
        self.arc_weight = {key:self.arcsInfo[key][1] for key in self.a_a}  
        self.arc_cost = {key:self.arcsInfo[key][2] for key in self.a_a} 
         
 
        #pipeline parameters 
        self.pipe_nodes = {key:[pipenode for pipenode in self.node if key in 
pipenode] for key in self.epipe} 
 
    def _validation_checks(self) -> None: 
        #if target cap greater than total source cap, then set target cap to 
source cap 
        total_source_cap = sum(self.source_annual_cap.values()) #MTCO2/yr 
        total_sink_cap = -sum(self.sink_cap.values()) / self.duration #MTCO2/yr 
        total_max_arc_flow = sum(self.max_arc_cap.values()) #MTCO2/yr 
         
        # print(total_source_cap, total_sink_cap, total_max_arc_flow) 
        LOGGER.info(f'Target capacity (MTCO2/yr): {self.target_cap}') 
        LOGGER.info(f'Total source capacity (MTCO2/yr): {total_source_cap}') 
        LOGGER.info(f'Total sink capacity (MTCO2/yr): {total_sink_cap}') 
        LOGGER.info(f'Total pipe capacity (MTCO2/yr): {total_max_arc_flow}') 
         
        limiting_flow = min(total_source_cap, total_sink_cap, total_max_arc_flow) 
 
        LOGGER.info(f'Limiting Flow (MTCO2/yr): {limiting_flow}') 
 
        if self.target_cap > limiting_flow: 
            LOGGER.warning('Target cap greater than limiting flow, resetting 
target to limiting flow') 
            self.target_cap = limiting_flow 
     
 
    def create_sets_and_parameters(self): 
        self._generate_sets() 
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        self._generate_parameters() 
        self._validation_checks() 
     
     
    def create_variables(self) -> None: 
        #flow from node 1 to node 2 in network (tCO2/yr) 
        index = ((node1, node2, c) for (node1, node2) in self.a_a for c in 
range(self.c)) 
        self.vars['arc_flow'] = self.model.addVars(index, name='arc_flow', lb=0, 
vtype=GRB.CONTINUOUS) 
 
        #amount of CO2 captured at source (tCO2/yr) 
        index = (src for src in self.src) 
        self.vars['CO2_captured'] = self.model.addVars(index, 
name='CO2_captured', lb=0, vtype=GRB.CONTINUOUS) 
 
        #amount of CO2 stored at sink (tCO2/yr) 
        index = (sink for sink in self.sink) 
        self.vars['CO2_injected'] = self.model.addVars(index, 
name='CO2_injected', lb=0, vtype=GRB.CONTINUOUS) 
 
        #indicator for if pipeline arc connecting node 1 to 2 is built 
        index = ((node1, node2, c) for (node1, node2) in self.a_a for c in 
range(self.c)) 
        self.vars['arc_built'] = self.model.addVars(index, name='arc_built', 
vtype=GRB.BINARY) 
 
        #indicator is source is opened 
        index = (src for src in self.src) 
        self.vars['src_opened'] = self.model.addVars(index, name='src_opened', 
vtype=GRB.BINARY) 
 
        #indicator is sink is opened 
        index = (sink for sink in self.sink) 
        self.vars['sink_opened'] = self.model.addVars(index, name='sink_opened', 
vtype=GRB.BINARY) 
 
 

    def _initialize_gurobi(self) -> None: 
        self.env = gp.Env(empty=True) 
        self.env.start() 
        self.model = gp.Model("CO2_network_optimization", env=self.env) 
 

    def _arc_upper_lower_bound_cons(self) -> None: 
        cons_name = 'arc_lower_bound' 
        constr = ((self.min_arc_cap[node1, node2, c]) * 
self.vars['arc_built'][node1, node2, c] #conversion min cap from MTCO2/yr to 
tCO2/yr  
                    <= self.vars['arc_flow'][node1, node2, c]  
                    for (node1, node2) in self.a_a 
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                    for c in range(self.c)) 
        self.cons[cons_name] = self.model.addConstrs(constr, name=cons_name) 
 
        cons_name = 'arc_upper_bound' 
        constr = ((self.max_arc_cap[node1, node2, c]) * 
self.vars['arc_built'][node1, node2, c] #conversion max cap from MTCO2/yr to 
tCO2/yr  
                    >= self.vars['arc_flow'][node1, node2, c]   
                    for (node1, node2) in self.a_a 
                    for c in range(self.c)) 
        self.cons[cons_name] = self.model.addConstrs(constr, name=cons_name) 
 

    def _single_direction_arc_flow_cons(self) -> None: 
        cons_name = 'arc_single_dir_flow' 
        constr = (sum(self.vars['arc_built'][node1, node2, c] for c in 
range(self.c)) <= 1 
                  for (node1, node2) in self.a_a) 
        self.cons[cons_name] =  self.model.addConstrs(constr, name=cons_name) 
 

    def _node_balance_cons(self) -> None: 
        asset_to_node = {n:[a for a in self.asset 
                            if (a,n) in self.a_a] 
                        for n in self.node} 
        node_to_asset = {n:[a for a in self.asset 
                            if (n,a) in self.a_a] 
                        for n in self.node} 
 
        cons_name = 'node_balance' 
        constr = (sum(self.vars['arc_flow'][a,n,c1] for a in asset_to_node[n] for 
c1 in range(self.c)) 
                    == sum(self.vars['arc_flow'][n,a,c2] for a in 
node_to_asset[n] for c2 in range(self.c)) 
                    for n in self.node) 
        self.cons[cons_name] = self.model.addConstrs(constr, name=cons_name) 
         
     
    def _demand_balance_cons(self) -> None: 
        asset_to_demand = {d:[a for a in self.asset 
                            if (a,d) in self.a_a] 
                        for d in self.sink} 
        demand_to_asset = {d:[a for a in self.asset 
                            if (d,a) in self.a_a] 
                        for d in self.sink} 
 
        cons_name = 'demand_balance' 
        constr = (sum(self.vars['arc_flow'][a,d,c1] for a in asset_to_demand[d] 
for c1 in range(self.c))*self.duration  #convert tCO2/yr to MTCO2 
                    - sum(self.vars['arc_flow'][d,a,c2] for a in 
demand_to_asset[d] for c2 in range(self.c))*self.duration  
                    == self.vars['CO2_injected'][d] #MTCO2 
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                    for d in self.sink) 
        self.cons[cons_name] = self.model.addConstrs(constr, name=cons_name) 
     
 
    def _supply_balance_cons(self) -> None: 
        asset_to_supply = {s:[a for a in self.asset 
                            if (a,s) in self.a_a] 
                        for s in self.src} 
        supply_to_asset = {s:[a for a in self.asset 
                            if (s,a) in self.a_a] 
                        for s in self.src} 
 
        cons_name = 'supply_balance' 
        constr = (sum(self.vars['arc_flow'][a,s,c1] for a in asset_to_supply[s] 
for c1 in range(self.c))  #convert tCO2/yr to MTCO2/yr 
                    - sum(self.vars['arc_flow'][s,a,c2] for a in 
supply_to_asset[s] for c2 in range(self.c))  
                    == -self.vars['CO2_captured'][s] #MTCO2/yr 
                    for s in self.src) 
        self.cons[cons_name] = self.model.addConstrs(constr, name=cons_name) 
 

    def _capture_limit_cons(self) -> None: 
        cons_name = 'capture_limit' 
        constr = (self.vars['CO2_captured'][s] #MTCO2/yr 
                    <= self.source_annual_cap[s] * self.vars['src_opened'][s]  
                    for s in self.src) 
        self.cons[cons_name] = self.model.addConstrs(constr, name=cons_name) 
 
     
    def _storage_limit_cons(self) -> None: 
        cons_name = 'storage_limit' 
        constr = (self.vars['CO2_injected'][d]  
                    <= -self.sink_cap[d] * self.vars['sink_opened'][d] #1e6 
converts MTCO2 to tCO2 
                    for d in self.sink) 
        self.cons[cons_name] = self.model.addConstrs(constr, name=cons_name) 
 

    def _capture_target_cons(self) -> None: 
        cons_name = 'CO2_capture_target' 
        constr = (sum(self.vars['CO2_captured'][s] for s in self.src) 
                    >= self.target_cap) 
        self.cons[cons_name] = self.model.addConstr(constr, name=cons_name) 
 
 
 
 
 

    def create_constraints(self) -> None: 
        self._arc_upper_lower_bound_cons() 
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        msg = ("'Arc Bounds' constraint: Time elapsed: %.2f seconds" 
               % (time.time() - START_TIME)) 
        print(msg) 
        LOGGER.info(msg) 
        self._single_direction_arc_flow_cons() 
        msg = ("'Single Direction' constraint: Time elapsed: %.2f seconds" 
               % (time.time() - START_TIME)) 
        print(msg) 
        LOGGER.info(msg) 
        self._node_balance_cons() 
        msg = ("'Supply Balance' constraint: Time elapsed: %.2f seconds" 
               % (time.time() - START_TIME)) 
        print(msg) 
        LOGGER.info(msg) 
        self._demand_balance_cons() 
        msg = ("'Demand Balance' constraint: Time elapsed: %.2f seconds" 
               % (time.time() - START_TIME)) 
        print(msg) 
        LOGGER.info(msg) 
        self._supply_balance_cons() 
        msg = ("'Supply Balance' constraint: Time elapsed: %.2f seconds" 
               % (time.time() - START_TIME)) 
        print(msg) 
        LOGGER.info(msg) 
        self._capture_limit_cons() 
        msg = ("'Capture Limit' constraint: Time elapsed: %.2f seconds" 
               % (time.time() - START_TIME)) 
        print(msg) 
        LOGGER.info(msg) 
        self._storage_limit_cons() 
        msg = ("'Storage Limit' constraint: Time elapsed: %.2f seconds" 
               % (time.time() - START_TIME)) 
        print(msg) 
        LOGGER.info(msg) 
        self._capture_target_cons() 
        msg = ("'Capture Target' constraint: Time elapsed: %.2f seconds" 
               % (time.time() - START_TIME)) 
        print(msg) 
        LOGGER.info(msg) 
 
 
 

    def build_model(self) -> None: 
        self._initialize_gurobi() 
        print('\nInitialized Gurobi model instance\n') 
        LOGGER.info('\nInitialized Gurobi model instance') 
        LOGGER.info('Creating sets and parameters...') 
        print('Creating sets and parameters...') 
        self.create_sets_and_parameters() 
        print('Sets and parameters are generated') 
        print("Time elapsed: %.2f seconds" % (time.time() - START_TIME)) 
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        LOGGER.info('Sets and parameters are generated') 
        LOGGER.info("Time elapsed: %.2f seconds" % (time.time() - START_TIME)) 
        LOGGER.info('Setting variables...') 
        print('\nSetting variables...') 
        self.create_variables() 
        print('Variables are defined') 
        print("Time elapsed: %.2f seconds" % (time.time() - START_TIME)) 
        LOGGER.info('Variables are defined') 
        LOGGER.info("Time elapsed: %.2f seconds" % (time.time() - START_TIME)) 
        LOGGER.info('Imposing constraints...') 
        print('\nImposing constraints...') 
        self.create_constraints() 
        print('Constraints are enforced\n') 
        LOGGER.info('Constraints are enforced') 
        print('Solving model...\n') 
 

    def create_objective(self) -> None: 
        #capture cost + transport flow cost + arc build cost + storage cost 
        capture_cost = sum((self.capture_fixed_cost[s] * 
self.vars['src_opened'][s]) + # $M * {0,1} = $M 
                            (self.capture_v_cost[s] * 
self.vars['CO2_captured'][s] * self.duration) for s in self.src) # $/tCO2 * 
MTCO2/yr * yr = $M 
         
        storage_cost = sum((self.storage_fixed_cost[d] * 
self.vars['sink_opened'][d]) + # $M * {0,1} = $M 
                            (self.storage_v_cost[d] * 
self.vars['CO2_injected'][d]) for d in self.sink) # $/tCO2 * MTCO2 = $M 
         
 
        transport_flow_cost = sum((self.costTrend["Slope"][c] * 
self.vars['arc_flow'][node1, node2, c])  
                                  *  self.arc_cost[node1, node2] * self.crf * 
self.duration 
                                        for (node1, node2) in self.a_a 
                                        for c in range(self.c)) # $M * {0, 1} = 
$M 
 
 

        pipeline_build_cost = sum((self.costTrend["Intercept"][c] * 
self.vars['arc_built'][node1, node2, c])  
                                  *  self.arc_cost[node1, node2] * self.crf * 
self.duration 
                                        for (node1, node2) in self.a_a 
                                        for c in range(self.c)) # $M * {0, 1} = 
$M 
 
        obj =  capture_cost + storage_cost + transport_flow_cost + 
pipeline_build_cost 
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        self.model.setObjective(obj, GRB.MINIMIZE) 
        self.model.update() 
 
    def solve_model(self) -> None: 
        LOGGER.info('Evauating "minimum cost" objective function') 
        self.create_objective() 
        LOGGER.info('Objective function "mimumum cost" evaluated') 
        self.use_pulp = False 
         
        #set numrerical focus to 2 
        # self.model.setParam('NumericFocus', 2) 
        #output lp and mps files 
        self.model.write(LP_FILE_PATH) 
        self.model.write(MPS_FILE_PATH) 
         
        if (self.model.NumVars <= 2000) and (self.model.NumConstrs <= 2000): 
            #solve model 
            self.model.optimize() 
            LOGGER.info(f'Model Status: {self.model.status}') 
            if self.model.status == GRB.INFEASIBLE: 
                self.model.computeIIS() 
                self.model.write(ILP_FILE_PATH) 
            elif self.model.status == GRB.INF_OR_UNBD: 
                self.model.setParam('DualReductions', 0) 
                self.model.optimize() 
                if self.model.status == GRB.INFEASIBLE: 
                    self.model.computeIIS() 
                    self.model.write(ILP_FILE_PATH) 
            else: 
                self.objective = self.model.ObjVal 
 
                #write solution 
                self.model.write(SOL_FILE_PATH) 
                self.extract_results() 
            LOGGER.info("Time elapsed: %.2f seconds" % (time.time() - 
START_TIME)) 
        else: 
            LOGGER.info("Model is too large for Gurobipy free licence, switching 
to CPLEX") 
            self.use_pulp=True 
            self.pulp_var, self.pulp_model = LpProblem.fromMPS(MPS_FILE_PATH) 
            self.pulp_solver = pl.CPLEX_CMD(options=['mipdisplay=0']) 
            self.pulp_model.solve(self.pulp_solver) 
            if self.pulp_model.status == 1: 
                #write soln 
                self.extract_pulp_variables() 
                self.extract_results() 
            LOGGER.info("Time elapsed: %.2f seconds" % (time.time() - 
START_TIME)) 
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    def extract_pulp_variables(self) -> None: 
        prob1 = self.pulp_model 
        arc_flow_keys = {} 
        CO2_captured_keys = {} 
        CO2_injected_keys = {} 
        arc_built_keys = {} 
        src_opened_keys = {} 
        sink_opened_keys = {} 
 
        for v in prob1.variables(): 
            if "arc_flow" in v.name: 
                key1 = v.name.split(",")[0][9:] 
                key2 = v.name.split(",")[1] 
                key3 = int(v.name.split(",")[2].split("_")[0]) 
                arc_flow_keys[(key1, key2, key3)] = v.varValue 
            if "CO2_captured" in v.name: 
                key = v.name.split("_")[2] + "_" + v.name.split("_")[3] 
                CO2_captured_keys[key] = v.varValue 
            if "CO2_injected" in v.name: 
                key = v.name.split("_")[2] + "_" + v.name.split("_")[3] 
                CO2_injected_keys[key] = v.varValue 
            if "arc_built" in v.name: 
                key1 = v.name.split(",")[0][10:] 
                key2 = v.name.split(",")[1] 
                key3 = int(v.name.split(",")[2].split("_")[0]) 
                arc_built_keys[(key1, key2, key3)] = v.varValue 
            if "src_opened" in v.name: 
                key = v.name.split("_")[2] + "_" + v.name.split("_")[3] 
                src_opened_keys[key] = v.varValue 
            if "sink_opened" in v.name: 
                key = v.name.split("_")[2] + "_" + v.name.split("_")[3] 
                sink_opened_keys[key] = v.varValue 
 
        # Write the solution to a .sol file 
        with open(SOL_FILE_PATH, "w") as f: 
            f.write("# Solution for model CO2_network_optimization \n") 
            f.write(f"# Objective value = {value(prob1.objective)} \n") 
            for key in arc_flow_keys.keys(): 
                f.write(f"arc_flow[{key[0]},{key[1]},{key[2]}] 
{arc_flow_keys[key]} \n") 
            for key in CO2_captured_keys.keys(): 
                f.write(f"CO2_captured[{key}] {CO2_captured_keys[key]} \n") 
            for key in CO2_injected_keys.keys(): 
                f.write(f"CO2_injected[{key}] {CO2_injected_keys[key]} \n") 
            for key in arc_built_keys.keys(): 
                f.write(f"arc_built[{key[0]},{key[1]},{key[2]}] 
{int(arc_built_keys[key])} \n") 
            for key in src_opened_keys.keys(): 
                f.write(f"src_opened[{key}] {int(src_opened_keys[key])} \n") 
            for key in sink_opened_keys.keys(): 
                f.write(f"sink_opened[{key}] {int(sink_opened_keys[key])} \n") 



147 

 

 
        self.arc_flow_keys = arc_flow_keys 
        self.CO2_captured_keys = CO2_captured_keys 
        self.CO2_injected_keys = CO2_injected_keys 
        self.arc_built_keys = arc_built_keys 
        self.src_opened_keys = src_opened_keys 
        self.sink_opened_keys = sink_opened_keys 
 
         
 
     
    def extract_soln_arcs(self) -> None: 
        self.soln_arcs = {} 
        for arc in self.vars['arc_flow']: 
            if self.vars['arc_flow'][arc].X > 0: 
                self.soln_arcs[arc] = self.vars['arc_flow'][arc].X 
         
        self.soln_arcs_a = {(arc[0], arc[1]):self.soln_arcs[arc] for arc in 
self.soln_arcs.keys()} 
 
    def extract_activated_source(self) -> None: 
        self.soln_sources = {} 
        for src in self.vars['CO2_captured']: 
            if self.vars['CO2_captured'][src].X > 0: 
                self.soln_sources[src] = self.vars['CO2_captured'][src].X 
 
    def extract_activated_sinks(self) -> None: 
        self.soln_sinks = {} 
        for sink in self.vars['CO2_injected']: 
            if self.vars['CO2_injected'][sink].X > 0: 
                self.soln_sinks[sink] = self.vars['CO2_injected'][sink].X 
 
    def extract_costs(self) -> None: 
        self.soln_cap_costs = {} #$M 
        self.soln_storage_costs = {} #$M 
        self.soln_transport_costs = {} 
         
        for src in self.soln_sources.keys(): 
            c_cost = (self.capture_fixed_cost[src] + (self.capture_v_cost[src] * 
self.soln_sources[src] * self.duration))  
            self.soln_cap_costs[src] = c_cost 
         
        for sink in self.soln_sinks.keys(): 
            s_cost = self.storage_fixed_cost[sink] + (self.storage_v_cost[sink] * 
self.soln_sinks[sink]) 
            self.soln_storage_costs[sink] = s_cost 
         
        for arc in self.soln_arcs.keys(): 
            print("arc: ", arc) 
            print("slope: ", self.costTrend["Slope"][arc[2]]) 
            print("intercept: ", self.costTrend["Intercept"][arc[2]]) 
            print("flow: ", self.vars['arc_flow'][arc].x) 
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            print("built: ", self.vars['arc_built'][arc].x) 
            print("weight: ", self.arc_cost[(arc[0], arc[1])]) 
            print("crf: ", self.crf) 
            print("duration: ", self.duration) 
             
 
            tf_cost = (self.costTrend["Slope"][arc[2]] * 
self.vars['arc_flow'][arc].x) *  self.arc_cost[(arc[0], arc[1])] * self.crf * 
self.duration 
            tb_cost = (self.costTrend["Intercept"][arc[2]] * 
self.vars['arc_built'][arc].x) *  self.arc_cost[(arc[0], arc[1])] * self.crf * 
self.duration 
 
            t_cost = tf_cost + tb_cost 
 
            print("transfer: ", tf_cost) 
            print("build: ", tb_cost) 
            print("total: ", t_cost) 
            print("") 
 
            self.soln_transport_costs[arc] = t_cost 
 
            self.soln_transport_costs_a = {(arc[0], 
arc[1]):self.soln_transport_costs[arc] for arc in 
self.soln_transport_costs.keys()} 
 

    def extract_soln_arcs_p(self) -> None: 
        self.soln_arcs = {} 
        for arc in self.arc_flow_keys.keys(): 
            if self.arc_flow_keys[arc] > 0: 
                self.soln_arcs[arc] = self.arc_flow_keys[arc] 
         
        self.soln_arcs_a = {(arc[0], arc[1]):self.soln_arcs[arc] for arc in 
self.soln_arcs.keys()} 
     
    def extract_activated_source_p(self) -> None: 
        self.soln_sources = {} 
        for src in self.CO2_captured_keys.keys(): 
            if self.CO2_captured_keys[src] > 0: 
                self.soln_sources[src] = self.CO2_captured_keys[src] 
 
    def extract_activated_sinks_p(self) -> None: 
        self.soln_sinks = {} 
        for sink in self.CO2_injected_keys.keys(): 
            if self.CO2_injected_keys[sink] > 0: 
                self.soln_sinks[sink] = self.CO2_injected_keys[sink] 
     
 
    def extract_costs_p(self) -> None: 
        self.soln_cap_costs = {} #$M 
        self.soln_storage_costs = {} #$M 
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        self.soln_transport_costs = {} 
         
        for src in self.soln_sources.keys(): 
            c_cost = (self.capture_fixed_cost[src] + (self.capture_v_cost[src] * 
self.soln_sources[src] * self.duration))  
            self.soln_cap_costs[src] = c_cost 
         
        for sink in self.soln_sinks.keys(): 
            s_cost = self.storage_fixed_cost[sink] + (self.storage_v_cost[sink] * 
self.soln_sinks[sink]) 
            self.soln_storage_costs[sink] = s_cost 
         
        for arc in self.soln_arcs.keys(): 
            print("arc: ", arc) 
            print("slope: ", self.costTrend["Slope"][arc[2]]) 
            print("intercept: ", self.costTrend["Intercept"][arc[2]]) 
            print("flow: ", self.arc_flow_keys[arc]) 
            print("built: ", self.arc_built_keys[arc]) 
            print("weight: ", self.arc_cost[(arc[0], arc[1])]) 
            print("crf: ", self.crf) 
            print("duration: ", self.duration) 
            tf_cost = (self.costTrend["Slope"][arc[2]] * self.arc_flow_keys[arc]) 
*  self.arc_cost[(arc[0], arc[1])] * self.crf * self.duration 
            tb_cost = (self.costTrend["Intercept"][arc[2]] * 
self.arc_built_keys[arc]) *  self.arc_cost[(arc[0], arc[1])] * self.crf * 
self.duration 
 
            t_cost = tf_cost + tb_cost 
             
            print("transfer: ", tf_cost) 
            print("build: ", tb_cost) 
            print("total: ", t_cost) 
            print("") 
 
            self.soln_transport_costs[arc] = t_cost 
 
            self.soln_transport_costs_a = {(arc[0], 
arc[1]):self.soln_transport_costs[arc] for arc in 
self.soln_transport_costs.keys()} 
 
     
 
      
    def extract_results(self) -> None: 
        if self.use_pulp: 
            self.extract_soln_arcs_p() 
            self.extract_activated_source_p() 
            self.extract_activated_sinks_p() 
            self.extract_costs_p() 
        else: 
            self.extract_soln_arcs() 
            self.extract_activated_source() 
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            self.extract_activated_sinks() 
            self.extract_costs() 
 
    def get_soln_arcs(self): 
        return self.soln_arcs_a 
     
    def get_soln_sources(self): 
        return self.soln_sources 
     
    def get_soln_sinks(self): 
        return self.soln_sinks 
     
    def get_soln_cap_costs(self): 
        return self.soln_cap_costs 
     
    def get_soln_storage_costs(self): 
        return self.soln_storage_costs 
     
    def get_soln_transport_costs(self): 
        return self.soln_transport_costs_a 
     
    def get_all_soln_results(self): 
        return self.soln_arcs_a, self.soln_sources, self.soln_sinks, 
self.soln_cap_costs, self.soln_storage_costs, self.soln_transport_costs_a 

 

 


	ACKNOWLEDGEMENTS
	Table of Contents
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	CHAPTER 1: Introduction
	1.1 Scope of Thesis
	1.2 Working Hypothesis
	1.3 Organization of Thesis

	CHAPTER 2: Literature Review
	2.1 CO2 Sequestration History
	2.1.1 Sequestration in Hydrocarbon Reservoirs
	2.1.2 Sequestration in Saline Aquifers

	2.2 Sequestration Infrastructure
	2.2.1 CO2 Capture Technology
	2.2.2 Transport Alternatives

	2.3 Sequestration Economics
	2.3.1 Role of Government Incentives

	2.4 Network Optimization of CO2 Sequestration
	2.4.1 Representing Pipeline Routing and Construction Costs on A Geographic Surface
	2.4.2 Generating Alternate Pipeline Transport Networks
	2.4.3 Determination of Optimal Transport Routes
	2.4.4 Mathematical Model Formulation
	2.4.5 Representing CO2 pipeline Construction Costs with Trendlines

	2.5 Existing Solutions and Limitations

	CHAPTER 3: Methodology
	3.1 Translating Geographical Coordinates to Graph Coordinates
	3.2 Generating Alternate Transport Routes
	3.2.1 Delaunay Triangulation
	3.2.2 Embedding Existing Pipeline Routes
	3.2.3 Tie-in Points – Calculate or Assign
	3.2.4 Shortest Connecting Path Estimation
	3.2.5 Solving with Intersecting Shortest Paths in Practice

	3.3 Sequestration Network Optimization Implementation
	3.3.3 Solver Selection

	3.4 Solution Visualization

	CHAPTER 4: Results and Discussion
	4.1 Demo 1 (Benchmarking) – Proposing Optimization Routes for New Pipelines
	4.1.1 Problem and Dataset Description
	4.1.2 Introduction to Sequestrix User-Interface and Results
	4.1.3 SimCCS Interface and Results
	4.1.4 Sequestrix vs SimCCS Detailed Benchmarking

	4.2 Demo 2 (Scalability) – Solving Large Scale Problems Across Oklahoma
	4.2.1 Problem Description
	4.2.2 Costs – Capture, Transport and Storage
	4.2.3 CO2 Emission sources
	4.2.4 CO2 Storage
	4.2.5 CO2 Network Optimization Modeling Results

	4.3 Demo 3 – New Features, Adding Enid-Purdy Pipeline to CO2 Optimization Network
	4.3.1 Enid Purdy Pipeline
	4.3.2 CO2 Sources and Sinks Dataset
	4.3.3 Base Case – CO2 Network Optimization with No Pipeline
	4.3.4 Case 1 – Optimization with Enid-Purdy Pipeline 0.5MTCO2/yr Cap No Tie-in No Exclusion
	4.3.5 Case 2 – Enid-Purdy Pipeline 2MTCO2/yr Cap 2 Tie-in points No Exclusion
	4.3.6 Case 3 – Enid-Purdy Pipeline 2MTCO2/yr Cap 2 Tie-in pts Exclusion at Ends
	4.3.7 Case 4 – Enid-Purdy Pipeline 2MTCO2/Yr Cap Single Tie-In Point with Exclusion Before
	4.3.8 Summary of Embedding Pipelines in CO2 Sequestration Network Optimization


	CHAPTER 5: Conclusions
	5.1 Concluding Remarks
	5.2 Future Work

	References
	NOMENCLATURE
	APPENDIX
	Sequestrix Source Code
	geotranformation.py
	alternateNetworkGeo.py
	math_model.py



