

UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

TECHNO-OPTIMIZATION OF CO2 TRANSPORT NETWORKS WITH CONSTRAINED

PIPELINE PARAMETERS

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE

By

DAVID NNAMDI NNAMDI

Norman, Oklahoma

2023

TECHNO-OPTIMIZATION OF CO2 TRANSPORT NETWORKS WITH CONSTRAINED

PIPELINE PARAMETERS

A THESIS APPROVED FOR THE

MEWBOURNE SCHOOL OF PETROLEUM AND GEOLOGICAL ENGINEERING

BY THE COMMITTEE CONSISTING OF

Dr. Rouzbeh G. Moghanloo, Committee Chair

Dr. Deepak Devegowda, Committee Member

Dr. Sean Yaw, Committee Member

© Copyright by DAVID NNAMDI NNAMDI 2023

All Rights Reserved.

iv

Dedicated to God.

v

ACKNOWLEDGEMENTS

I would like to thank my research advisor, Dr. Rouzbeh Moghanloo, for his tremendous support

and guidance throughout my Master’s Degree. Under his tutelage, I have gained extensive

exposure and research experience in Carbon Sequestration and economic optimization through

several projects over the years. Special thanks to all the members of the Carbon Utilization and

Storage Partnership (CUSP). To Dr. Sean Yaw and DaneshFar Jamal, I appreciate the time I spent

working with you and for all the creative guidance in my earlier publications.

I would also like to thank all the professors I worked under as a Teaching Assistant during my

time at OU, to Dr. Ali Tinni, Dr. Mohammed, Late Dr. Carl Sondergeld and finally Dr. Rai. I can

proudly say I worked for some of the best professors the department had to offer, and I am very

grateful for that opportunity. Special thanks are in order to Katie Shapiro, Sonya Grant and Francey

Freeman for always responding to my many requests for information and academic related help.

Thank you to my OU SPE family where I humbly served as external liaison, which was one of the

most wonderful experiences I had at OU.

Finally, I would like to thank my parents: Mr. and Mrs. Nnamdi Nosike for all their prayers and

encouragements, and my siblings: Jessie, Melissa, Nancy for always offering me words of comfort

when I felt down and alone. To my closest friends, Ayomide Hamzat, Karen Ochie and Chinedu

Nwosu, thank you for being my source of encouragement every day, this journey is very special

because of you all. All the other members of the Nigerian OU community, my wonderful friends,

thank you for genuine friendship, I will forever cherish all the memories we made.

vi

Table of Contents

ACKNOWLEDGEMENTS .. V

TABLE OF CONTENTS ... VI

LIST OF FIGURES .. IX

LIST OF TABLES .. XV

ABSTRACT .. XVII

CHAPTER 1: INTRODUCTION .. 1

1.1 SCOPE OF THESIS .. 5

1.2 WORKING HYPOTHESIS ... 5

1.3 ORGANIZATION OF THESIS ... 5

CHAPTER 2: LITERATURE REVIEW .. 7

2.1 CO2 SEQUESTRATION HISTORY ... 7

2.1.1 Sequestration in Hydrocarbon Reservoirs .. 7

2.1.2 Sequestration in Saline Aquifers .. 9

2.2 SEQUESTRATION INFRASTRUCTURE .. 10

2.2.1 CO2 Capture Technology .. 10

2.2.2 Transport Alternatives ... 12

2.3 SEQUESTRATION ECONOMICS .. 12

2.3.1 Role of Government Incentives .. 13

2.4 NETWORK OPTIMIZATION OF CO2 SEQUESTRATION ... 15

2.4.1 Representing Pipeline Routing and Construction Costs on A Geographic Surface 15

2.4.2 Generating Alternate Pipeline Transport Networks .. 19

2.4.3 Determination of Optimal Transport Routes ... 22

vii

2.4.4 Mathematical Model Formulation ... 23

2.4.5 Representing CO2 pipeline Construction Costs with Trendlines .. 25

2.5 EXISTING SOLUTIONS AND LIMITATIONS .. 27

CHAPTER 3: METHODOLOGY ... 29

3.1 TRANSLATING GEOGRAPHICAL COORDINATES TO GRAPH COORDINATES 29

3.2 GENERATING ALTERNATE TRANSPORT ROUTES .. 29

3.2.1 Delaunay Triangulation .. 29

3.2.2 Embedding Existing Pipeline Routes ... 30

3.2.3 Tie-in Points – Calculate or Assign .. 35

3.2.4 Shortest Connecting Path Estimation .. 42

3.2.5 Solving with Intersecting Shortest Paths in Practice ... 42

3.3 SEQUESTRATION NETWORK OPTIMIZATION IMPLEMENTATION .. 45

3.3.3 Solver Selection .. 45

3.4 SOLUTION VISUALIZATION ... 47

CHAPTER 4: RESULTS AND DISCUSSION .. 48

4.1 DEMO 1 (BENCHMARKING) – PROPOSING OPTIMIZATION ROUTES FOR NEW PIPELINES 48

4.1.1 Problem and Dataset Description .. 48

4.1.2 Introduction to Sequestrix User-Interface and Results ... 50

4.1.3 SimCCS Interface and Results ... 57

4.1.4 Sequestrix vs SimCCS Detailed Benchmarking ... 59

4.2 DEMO 2 (SCALABILITY) – SOLVING LARGE SCALE PROBLEMS ACROSS OKLAHOMA 63

4.2.1 Problem Description ... 63

4.2.2 Costs – Capture, Transport and Storage .. 64

4.2.3 CO2 Emission sources ... 65

4.2.4 CO2 Storage ... 67

viii

4.2.5 CO2 Network Optimization Modeling Results.. 69

4.3 DEMO 3 – NEW FEATURES, ADDING ENID-PURDY PIPELINE TO CO2 OPTIMIZATION NETWORK

 .. 73

4.3.1 Enid Purdy Pipeline .. 73

4.3.2 CO2 Sources and Sinks Dataset .. 75

4.3.3 Base Case – CO2 Network Optimization with No Pipeline .. 76

4.3.4 Case 1 – Optimization with Enid-Purdy Pipeline 0.5MTCO2/yr Cap No Tie-in No

Exclusion ... 77

4.3.5 Case 2 – Enid-Purdy Pipeline 2MTCO2/yr Cap 2 Tie-in points No Exclusion 82

4.3.6 Case 3 – Enid-Purdy Pipeline 2MTCO2/yr Cap 2 Tie-in pts Exclusion at Ends 85

4.3.7 Case 4 – Enid-Purdy Pipeline 2MTCO2/Yr Cap Single Tie-In Point with Exclusion

Before .. 88

4.3.8 Summary of Embedding Pipelines in CO2 Sequestration Network Optimization 90

CHAPTER 5: CONCLUSIONS .. 92

5.1 CONCLUDING REMARKS ... 92

5.2 FUTURE WORK .. 93

REFERENCES .. 95

NOMENCLATURE .. 104

APPENDIX .. 105

SEQUESTRIX SOURCE CODE ... 105

geotranformation.py ... 105

alternateNetworkGeo.py .. 110

math_model.py ... 135

ix

LIST OF FIGURES

Figure 1: Changes in atmospheric CO2 concentration (blue line) with CO2 emissions (black line)

since the start of the industrial revolution (1750) till late 2021. Source (NOAA climate.gov) ---- 1

Figure 2: Illustration of interactions across key risks associated with climate change (IPCC, 2022)

 --- 2

Figure 3: Illustration of WAG CO2 -EOR, extracted from NETL CO2 primer. ---------------------- 8

Figure 4: An example of aggregated cell weight generated using the traditional Queen's kernel (a-

c) vs using CostMAP (d-f) source: (Hoover et al., 2019) -- 17

Figure 5: Generating Right of Way (ROW) and Construction cost surface graphs (Middleton et

al., 2012) --- 18

Figure 6: The candidate network methodology's process for converting raster-to-vector is depicted

in these steps. In part (a), the cost surface forms raster paths or corridors, while parts (b) and (c)

demonstrate the extraction of a vector network from these paths. Finally, part (d) shows how to

strip two or more paths of the same cost between two nodes by removing arcs and nodes. Source

(Middleton, Kuby, et al., 2012) -- 19

Figure 7: Shown on the left are three methods for refining the network, along with their effects on

the candidate network depicted on the right. As the tolerance level is raised, the candidate network

undergoes further refinement, resulting in a decrease in the number of nodes and arcs (Middleton,

Kuby, et al., 2012) -- 20

x

Figure 8: Performance metrics for Base Steiner Trees, Greedy Spanner (GS), Delaunay

Triangulation (DT) and Greedy Subset Spanner (GSS) (Yaw et al., 2019) -------------------------- 21

Figure 9: This illustration showcases the LCP analysis performed by SIMCCS2.0. To generate an

idealized Candidate Network for CCS pipelines, SIMCCS2.0 employs a combination of Delaunay

triangles, as shown in (a), to determine the best spatial configuration. Additionally, SIMCCS2.0

uses a cost surface and Dijkstra's algorithm to calculate the least cost path across the surface, as

seen in (b), in order to create the Candidate Network, as shown in (c). ------------------------------ 22

Figure 10: Linear trend approximation of pipeline cost (Whitman et al., 2022) -------------------- 27

Figure 11: Plot of Delaunay Triangle generated from specified input data. ------------------------- 30

Figure 12: Illustration of effect of adding zero cost path to LCP generated by Dijkstra's Algorithm.

In (a) the zero-cost path does not exist, and the blue paths represent the LCP, (b) shows the

introduction of a zero-cost path in red and (c) shows the new LCP generated which utilizes the

zero-cost path. -- 35

Figure 13: Illustration of the 4 methods to define tie-in points along an existing pipeline. (a) Case

1: 2 tie-in points are explicitly defined with exclusion everywhere else in pipe, (b) Case 2: 2 tie-in

points with exclusion at ends, (c) single tie-in point with exclusion everywhere else but

source/sink, (d) Single point with exclusion before or after. --- 37

Figure 14: Illustration showing the effects of the diagonal exclusion zones algorithm. (a) shows

paths crossing prior to implementation of diagonal exclusion zones (b) shows one possible

realization of path generated after diagonal exclusion zone has been implemented, (c) another

possible realization of path generation where 2 paths follow the same nodes in a segment. ------ 43

xi

Figure 15: Landing page of SequestrixTM --- 50

Figure 16: Sequestrix input data page showing summary dashboard of CO2 sources. ------------- 51

Figure 17: Sequestrix input data page showing summary dashboard of CO2 sinks. ---------------- 51

Figure 18: Sequestrix input data page showing geographic location of sources and sinks in Demo

1 on map. -- 52

Figure 19:Sequestrix Solve page showing Delaunay Triangles generated for Demo 1 ------------ 53

Figure 20: Sequestrix Solve page showing alternate pipeline network generated for Demo 1 based

on Delaunay Triangulation -- 53

Figure 21: Sequestrix Solve page with optimal solution path for Demo 1 highlighted in green. - 54

Figure 22: Sequestrix Results Dashboard page showing key overview results for Demo 1 ------- 55

Figure 23: Sequestrix Results Dashboard page showing CO2 Capture results for Demo 1 ------- 56

Figure 24: Sequestrix Results Dashboard page showing CO2 storage results for Demo 1 -------- 56

Figure 25: Sequestrix Results Dashboard page showing transport pipeline result details for Demo

1 --- 57

Figure 26: SimCCS user interface showing results summary for Demo 1 --------------------------- 58

Figure 27: Comparison Plot of SimCCS vs Sequestrix results for Demo 1 -------------------------- 61

Figure 28: Detailed graphical comparison of solutions generated by SimCCS and Sequestrix for

Demo 1. Plots for Sequestrix are located above and SimCCS below. (a) shows the results of

xii

Delaunay triangulation which look identical for both tools, (b) shows the alternate (or candidate)

networks generated by both tools. The yellow oval line highlights differences in LCP generated,

(c) shows the resulting optimal network selected after optimization, different paths are selected for

both tools. -- 62

Figure 29: 2019 GHG emissions in Oklahoma by sector (Source: EPA FLIGHT Tool) ---------- 65

Figure 30: Map of Oklahoma Showing CO2 emissions from sources across counties, bubble size

represents emission volume (DaneshFar et al., 2021) --- 66

Figure 31: Sequestrix result view on map surface, the green circles represent CO2 sinks, red

represents CO2 sources and yellow are transshipment nodes. The green path highlighted is the

optimal pipeline network while the other blue lines represent alternate pipeline networks. ------ 70

Figure 32: SimCCS results for Demo 2. The red circles represent CO2 sources and blue represents

CO2 sinks. Circles that are highlighted are the selected optimal assets and the green path shows

the optimal pipeline network while the other purple lines represent the candidate network. ----- 71

Figure 33: Zoomed in image of LOWER pipeline path for optimal solutions generated by

Sequestrix (a) and SimCCS (b). -- 72

Figure 34: Zoomed in image of UPPER pipeline path for optimal solutions generated by Sequestrix

(a) and SimCCS (b). --- 72

Figure 35: Mid-Continent CO2 pipeline infrastructure spanning Oklahoma and lower Kansas

(Callahan et al., 2014) --- 74

xiii

Figure 36: Demo 3 Base case (no existing pipeline) Sequestrix Solution. (a) Delaunay triangulation

results, (b) alternate pipeline routes, (c) Optimal pipeline path selected ----------------------------- 76

Figure 37:(a) Raw Enid-Purdy pipeline input template with latitude, longitude, and capacity

specifications. (b) Sequestrix interface for importing existing pipelines ----------------------------- 78

Figure 38: Sequestrix input page showing map coordinates of the sources and sinks (in red and

green respectively) and the raw Enid-Purdy pipeline path (in purple) for Demo 3 case 1 -------- 79

Figure 39: Sequestrix results for Demo 3, Case 1 - Embedding Enid-Purdy Pipeline with no tie-in

locations. (a) Alternate network generated, (b) Optimal solution path passing through existing

Pipeline Path -- 80

Figure 40: Zoomed-in results for Demo 3, Case 1, showing all the tie-in points along the Enid-

Purdy pipeline suggested by Sequestrix (a) highlights 4 tie-ins with one being an inlet point and

the rest being outlet points, (b) Tie-in point towards the begiing of the pipeline facility at Koch

Fertiizer plant (c) 2 incoming Tie-in points along Enid-Purdy pipeline path ------------------------ 82

Figure 41: Sequestrix input page showing tie-in points that were entered on the left sidebar plotted

along the Enid-Purdy pipeline. --- 83

Figure 42: Zoomed in view of the Enid-Purdy pipeline and 2 tie-in points(colored yellow) with

surrounding sources and sinks (colored red and green) --- 84

Figure 43: Resulting Optimal pipeline generated by Sequestrix for Demo 3 Case 2 --------------- 85

Figure 44: Sequestrix Input and Solve page map plots for Demo 3 Case 3. (a) shows the Enid-

Purdy pipeline with the tie-in points specified. This time an exclusion zone before the tie-in points

xiv

are activated, (b) shows the optimal pipeline network generated which utilizes the pipeline route.

 -- 86

Figure 45: Zoomed in plot of Demo 3 Case 3 showing that the exclusion zones above and below

the 2 tie-in points are honored by Sequestrix --- 87

Figure 46: Zoomed in plot of Demo 3 Case 4 showing that the exclusion zones above and below

the single tie-in point is honored by Sequestrix. --- 89

Figure 47: Overall Comparison plots for Demo 3. (a) shows varying how the transport cost from

base case to case 4 affects the total unit cost for project, (b) plots other metrics such as runtime,

existing pipeline utilization and new pipeline length proposed. --------------------------------------- 91

xv

LIST OF TABLES

Table 1: Summary of near- and medium-term facilities, capture targets and cost estimates, source:

(Abramson et al., 2020) .. 11

Table 2: Assumptions for CO2_T_COM transport cost trends used in SimCCS. 27

Table 3: Demo 1 Benchmarking Input Sources .. 49

Table 4: Demo 1 Benchmarking Input Sinks .. 49

Table 5: Comparison of SimCCS and Sequestrix results for Demo 1 .. 59

Table 6: Demo 2 top 36 Sources Obtained after application of 45Q eligibility screening 67

Table 7: Demo 2 Sink clusters obtained after application of K-MEANS to point injection wells 69

Table 8: Comparison of SimCCS and Sequestrix results for Demo 2 .. 69

Table 9: Ownership details and specifications of Mid-Continent transport pipelines(Callahan et al.,

2014) ... 74

Table 10: Demo 2 CO2 sources information ... 75

Table 11: Demo 3 CO2 sinks information... 75

Table 12: Demo 3 Base Case Sequestrix results ... 77

Table 13: Demo 3, Case 1 Sequestrix results ... 81

Table 14: Sequestrix Summary of Results for Demo 3 Case 2 ... 85

xvi

Table 15: Sequestrix Summary of Results for Demo 3 Case 3 ... 87

Table 16: Sequestrix Summary of Results for Demo 3 Case 4 ... 89

xvii

ABSTRACT

In planning large scale carbon sequestration projects, one of the key parameters affecting project

economics is the selection of optimal pipeline transportation networks connecting physical

locations of carbon sources to sinks (or injection sites). This network is usually determined based

on several limiting factors including existing right-of-way, densely populated regions, topology,

etc. Open-source tools such as SimCCS2.0 do an effective job in proposing provably optimal routes

for construction of new pipelines but are unable to accommodate existing pipelines in techno-

economic optimization. With the newly amended 45Q laws offering 70% more tax credits for

carbon sequestration than it did in the 2018 amendment, energy companies are looking more into

repurposing gas and liquid transportation lines for CO2 transportation to abandoned oil and gas

wells for carbon storage and this has further bolstered the need to have a method to account for

existing pipelines in sequestration economics.

This project demonstrates a method to account for existing pipelines by 1 introducing zero cost

paths into the cost surface to represent pipelines, 2 allowing for tie points into the existing pipeline

by use of cost exclusion zones around zero cost paths and then, 3 calculating least cost paths and

defining transshipment nodes along pipeline intersections. Doing this allowed for a reformulation

of the alternate network paths between sources and sinks, and the network was then solved as

Minimum-Cost-Network-Flow-Problem (MCNFP) modeled as a mixed integer programming

problem.

The solution was developed using Python programming language and demo test cases are shown

to illustrate the effectiveness of the solution in assessing cost reduction associated with CO2

transfer from sources tied into locations along existing transport pipelines to sinks.

xviii

This solution has been packaged into a software name Sequestrix and has been made publicly

available on GitHub for researchers and economic analysts to take advantage of for evaluating

large scale CCUS projects, and to encourage further development and collaboration.

1

CHAPTER 1: Introduction

The concentration of CO2 in the atmosphere has rapidly increased since the start of the industrial

revolution in 1750, this increase is primarily due to CO2 emissions rates being increasingly higher

than the rates at which natural sinks on land (via as plants and micro-organisms) and oceans (via

inorganic dissolution) can absorb CO2 (NOAA, 2022). This occurrence, as illustrated in figure 1,

has led to increasing effects of global warming which have become impossible to dismiss as any

form of scientific conspiracy to promote an increasing share of renewable energy sources in the

global energy mix.

Figure 1: Changes in atmospheric CO2 concentration (blue line) with CO2 emissions (black line) since

the start of the industrial revolution (1750) till late 2021. Source (NOAA climate.gov)

0

5

10

15

20

25

30

35

40

260

280

300

320

340

360

380

400

420

440

1750 1780 1810 1840 1870 1900 1930 1960 1990 2020

C
O

2
e

m
is

si
o

n
 (

G
ig

aT
o

n
s)

A
tm

o
sp

h
e

ri
c

C
O

2
(p

p
m

)

Year

2

According to the Intergovernmental Panel on Climate Change, IPCC, the effects of climate change

can be (and is projected to be) felt across multiple spheres including (1) ecosystem disruptions –

where increasing temperatures in the arctic sea has led to increased migration of species from

warmer land and sea areas and declining population of ice-dependent species such as polar bears,

(2) agriculture and food security – where rapid changes in temperature is causing disruptions to

harvest stability and livestock yield, (3) to human communities, livelihoods and lifestyles – where

climate change has led to increased wildfires close to large settlements (e.g., in California, USA),

increased risk of flooding and displacement in coastal settlements where majority of the residents

are low – middle income earners (IPCC, 2022),. Figure 2 below illustrates the interactions between

these spheres and the associated risk levels.

Figure 2: Illustration of interactions across key risks associated with climate change (IPCC, 2022)

3

The primary source of climate change has been linked to greenhouse gas emissions, particularly

carbon dioxide and methane. The Petroleum industry has for decades been a major contributor to

these emissions which is sustained by a growing demand for energy as 3rd world populations move

from poverty into middle class economic status.

The current world energy outlook (IEA, 2022) suggests that fossil fuels will still play a role in

energy generation up to 2035 and beyond due to the growing energy demands with renewable

energy production growing significantly with advancements in technology. World governments

and climate researchers had realized this fact a few years ago and started to proffer solutions to

greenhouse gas emissions. One of the major solutions proffered was carbon capture and

sequestration.

Carbon capture and sequestration involves capturing CO2 directly from emission sources or from

the atmosphere via direct air capture and injecting (or storing) it in geological formations. In the

oil and gas industry, the practice of CO2 injection started in the 1970s as a means for improving

oil production from reservoirs (Núñez-López & Moskal, 2019), this process is called CO2 EOR.

Oil and CO2 are miscible at defined reservoir pressure and temperature conditions and the

dissolved CO2 reduces the oil density and alters interfacial tension thus improving mobility making

it easier for the oil to travel within pore spaces.

In more recent times, the concept of storing CO2 in deep saline aquifers have become more

mainstream as they offer vast potential storage for captured CO2 (McPherson & Cole, 2000). One

of the major challenges involved in developing large scale CO2 sequestration projects, especially

in saline aquifers, is project economics. In contrast to CO2 EOR where capture and storage costs

4

may be offset by additional oil production, sequestration in saline aquifers offer no direct economic

reward.

Out of the three major costs for CO2 sequestration, injection costs are known with high certainty

based on decades of oil and gas operations, capture costs are site specific and based on current

technology can also be reasonably estimated to range between 11 and 75 $/metric ton of CO2

(Abramson et al., 2020), however, transportation costs require a level of sophistication to

adequately estimate. CO2 can be transported via several means including – rail cargos, ships,

trucks, and pipelines, however, most large-scale CO2 projects require pipeline transportation

connecting a network of sources and sinks across a large geographic area.

Before these pipelines are constructed and during the project scoping phase, a method for

estimating the best and most cost-effective pipeline route must be established and this is usually

achieved via graph network optimization. There has been recent research and advancement in the

field, with working solutions such as SimCCS (Middleton & Bielicki, 2009) and SimCCS2.0

(Middleton et al., 2020) developed and currently commercialized under Carbon Solutions LLC.

These tools can calculate provably correct pipeline routes between multiple geo locations and

estimate resultant transport costs for given transport volume of CO2. While these tools can

suggest/calculate routes for new pipeline construction for use in economical evaluation of

sequestration projects, they have one major limitation – handling existing pipelines.

With the recent drive by energy companies to meet environmental, social and government (ESG)

goals for CO2 reduction, and due to the recent increase in 45Q tax credits (26 U.S.C. § 45Q),

operators are seeking to repurpose existing pipelines to transport CO2 from sources to sequestration

5

sites and require a method for accounting for existing pipeline routes, capacities, and cost in

economic evaluation of sequestration projects.

1.1 Scope of Thesis

This thesis introduces a method to bridge the gap in the current computational framework needed

for assessing sequestration economics, taking into account preferred existing pipeline routes and

constraints. It expands on existing knowledge of creating potential routes for new pipelines,

allowing the integration of existing pipelines and adjustment of flow constraints before solving the

CO2 network optimization problem. The thesis offers a recommended workflow for manual entry

of tie-in points or mathematical estimation, which operators can apply in sequestration projects.

1.2 Working Hypothesis

The working hypothesis for this thesis is that existing pipelines can be embedded by modifying

the cost surface graph with zero cost paths thereby forcing shortest path algorithms to divert flow

via existing pipelines when it is cost effective.

1.3 Organization of Thesis

This thesis is divided into five chapters which are cover the following themes:

● Chapter 1: Introduces background and motivation of this study, describes the scope,

working hypothesis and organization of the thesis.

● Chapter 2: Literature review on CO2 sequestration history, current sequestration

infrastructure, economics, and network optimization

6

● Chapter 3: Describes the methodology for translating pipeline coordinates to graph

coordinates, modifying cost surface graph, assigning or calculating tie-in points and

generating alternate pipeline networks for sequestration. Network optimization and

visualization frameworks utilized are also discussed.

● Chapter 4: Introduces new tool called Sequestrix and highlights the results of 3 demo cases

that benchmarks new tool performance against SimCCS and showcases pipeline

embedding capabilities for CO2 sequestration projects.

● Chapter 5: Summarizes key conclusions and outlines future work.

7

CHAPTER 2: Literature Review

2.1 CO2 Sequestration History

CO2 Sequestration has a long-related history with Enhanced Oil Recovery (EOR) projects, which

sought to improve oil production from declining reservoirs. Although the first carbon capture plant

was proposed in the late 1930’s, the first large scale CO2 underground injection project began in

Sharon Ridge oilfield, Texas in 1972 (Núñez-López & Moskal, 2019) where ExxonMobil utilized

the CO2 for EOR. The Sleipner project, which was launched in 1996, is the world’s first true

integrated Carbon Capture and Storage (CCS) project and it was developed by Statoil to avoid

carbon taxes imposed by the Norwegian government (Beckwith, 2011). According to the Global

CCS Institute, as of 2022, there are 30 commercially operating CCS projects worldwide with 11

more being constructed and over 100 in different development stages.

Defined as the injection and permanent storage of carbon dioxide in underground geologic

formations, CO2 sequestration requires a closed loop path for some or all of the carbon injected

such that there is minimal recycling back into the atmosphere (Hepburn et al., 2019). This

definition has some implications for how Carbon sequestration is assessed in EOR and via

injection in saline aquifers. CO2 storage is also possible in Coal Beds to recover methane, (Gorucu

et al., 2005) and Shales but with greater difficulty due to very low permeabilities, however the CO2

trapping mechanism will be by adsorption (Fakher & Imqam, 2019).

2.1.1 Sequestration in Hydrocarbon Reservoirs

In EOR operations, the CO2 which is injected with water in alternating cycles into the producing

reservoir - a process known as Water-Alternating-Gas (WAG) injection, is miscible in oil, altering

8

the interfacial tension and causing the oil droplets to swell and become more mobile in the reservoir

(Gu & Yang, 2004). This, in combination with other inherent rock properties such as wettability

and capillary pressure, control the amount of additional recovery obtained by CO2 flooding, which

may range from 8–16% of the original oil in place (Christensen et al., 2001; Rogers & Grigg, 2001)

Figure 3: Illustration of WAG CO2 -EOR, extracted from NETL CO2 primer.

9

Injection of CO2 for EOR purposes is not viewed as a fully closed loop sequestration system

because some of the CO2 is dissolved in the oil and is produced back at surface as illustrated in

figure 3. Laboratory Studies have shown that in WAG, carbonated water injection (CWI) and their

respective variants, CO2 storage may range from 5-65% (Ajoma et al., 2021).

2.1.2 Sequestration in Saline Aquifers

The consideration for storage of CO2 in deep geological saline aquifers are the results of effort to

have a fully closed loop sequestration system. Saline aquifers have very large storage potential and

may hold CO2 emissions for decades (McPherson & Cole, 2000). The method of CO2 storage in

saline aquifers is by dissolution or mineralization (preferred) due to rock-fluid interactions in

carbonate aquifers (Tarrahi & Afra, 2015). Mineralization serves as a very effective way of storing

CO2 since it remains in solid state, however, concerns around formation damage in heterogeneous

carbonate aquifers due to pore space plugging by precipitated calcium carbonates may limit

practical application (Mohamed & Nasr-El-Din, 2012). In deploying large scale sequestration

projects in saline aquifers, pressures must be consistently measured especially for bounded

reservoirs. This is primarily because as CO2 is injected, the pressure in the reservoir builds, and if

it goes above the fracture gradient of the cap rock, then the geologic seals fracture, and CO2 starts

to leak into underground sources of drinking water (USDW) or may seep up to the surface

(Achanta et al., 2012). Sequestration induced seismicity is also a concern and may be assessed

through probabilistic methods before project implementation (Burghardt & Appriou, 2021; Ochie

et al., 2022).

10

2.2 Sequestration Infrastructure

2.2.1 CO2 Capture Technology

Large sources, such as fossil fuel power plants, fuel processing plants, and other industrial facilities

are the primary targets for CO2 capture as capturing CO2 directly from smaller sources in the

transportation and residential sectors is anticipated to be more challenging and costly (IPCC, 2005)

IPCC in their 2005 report on Carbon Dioxide Capture and Storage detail 4 basic systems for

capturing CO2 from use of fossil fuels:

1. Industrial process stream capture – This is a long-standing process that has been ongoing

for decades and involves CO2 capture as part of chemical processes such as natural gas

treatment and ammonia manufacturing (Kohl & Nielsen, 1997). Koch industries in

collaboration with Anadarko Petroleum capture CO2 from the Enid fertilizer (ammonia)

plant and transport it to the Purdy field in Oklahoma for CO2 EOR purposes (Callahan et

al., 2014).

2. Post-Combustion stream capture – Involves capture of flue gas that are byproducts of

fossil fuel combustion and may be achieved using chemical sorbent process. They have

current applications in coal and natural gas power plants but may be more efficiently

applied to supercritical pulverized coal fired plants and natural gas combined cycle

(NGCC) plants (IEA, 2005).

3. Oxy-fuel combustion capture – Here, high purity O2 is used for combustion rather than

air, this results in the production of CO2 and H2O as the major by-products. Doing this

ensure higher purity CO2 being produced from the system making it easier to separate and

11

capture. This technology may also be applied to plants utilizing fossil fuel as power source

if cost effective oxygen separation from air is available.

4. Pre-combustion capture – Technology is more complex than Post and Oxy-fuel

combustion in that it involves generation of a synthetic fuel gas (which contains CO and

H2) by reacting the fossil fuel and oxygen. The CO then reacts with steam to form CO2 and

hydrogen and the CO2 is separated downstream using physical or chemical processes. A

major by-product of these systems are hydrogen rich fuels which can be used in running

large industrial plant equipment. There is current application of Pre-combustion capture in

Integrated Gasification Combined Cycle power (IGCC) plants, however, IGCC power

plants are not common.

These capture technologies (including future technologies being developed) and their applications

to different industry types lead to variability in estimating CO2 capture costs for project economic

analysis. Researchers at the Great Plains Institute (GPI) published a white paper (Abramson et al.,

2020) summarizing near and medium term facilities in the US and their estimated cost ranges.

Table 1: Summary of near- and medium-term facilities, capture targets and cost estimates, source:

(Abramson et al., 2020)

12

2.2.2 Transport Alternatives

There are several alternatives for transporting CO2 from source to sink including pipeline

transportation (typically in gas or supercritical phase) and transport with trucks, railway, or ships

after CO2 has gone through liquefication process. For most large-scale CO2 sequestration projects,

pipelines will be the most cost-effective means of transport and for the rest of this study, CO2

transport will simply refer to pipeline transportation.

2.3 Sequestration Economics

Whilst many manufacturing companies would like to curb carbon emissions by improving

chemical filtration processes within plant operations, the required technology to achieve this comes

at a substantial cost (power related costs + equipment and workforce costs + plant modification

downtime related costs). To completely ensure that the chemically removed CO2 is not re-released

into the environment at some point in the lifecycle, they must develop utilization means, which

permanently transforms CO2 to a state where it cannot vaporize into the atmosphere. (Hepburn et

al., 2019) documents 10 utilization pathways for CO2 but suggests that only CO2-EOR, concrete

manufacturing, bioenergy CCS, and enhanced weathering provided fully or partial closed

pathways for storage. When CO2 is not being utilized for any of these processes that typically

generate some form of revenue, the only reliable form of safely and permanently removing CO2

from the atmosphere is through CCS via sequestration in saline aquifers.

A significant constraint in creating extensive pure CO2 sequestration projects is the financial aspect

of capturing CO2 at the emission source, constructing efficient and affordable transport pipelines

(for land-based transportation), injecting it into new or existing wells in saline aquifers, and

monitoring for potential leakages due to geological events during injection periods. These capital-

13

intensive processes must be executed while understanding that the project will not generate direct

revenue, and operators must depend on societal benefits and government incentives to ensure

success.

2.3.1 Role of Government Incentives

The United States introduced carbon tax credits in section 45Q of the United States Internal

Revenue Code (26 U.S.C. § 45Q) in 2008 as a means to incentivize rapid adoption and

implementation of CCS projects within the country. Since its introduction, only 16 CCUS projects

have been implemented and this was primarily due to the relatively small tax credits offered, which

in most cases could not offset running costs. Majority of these projects are related to

commercialized removal of CO2 at gas processing facilities or fertilizer manufacturing plants and

utilization in CO2 EOR projects (Callahan et al., 2014).

In 2018, the government acknowledged the inadequacy of the tax credits provided and revised

them, granting up to $35 in tax credits per metric ton of CO2 used in manufacturing with closed

pathway storage or geologically stored through EOR projects. Additionally, they offered up to $50

per metric ton of CO2 for geological storage not used for EOR, signifying pure sequestration.

Accessing those credits came with strict requirements – to qualify, an operator must meet one of

the following criteria:

Emission source eligibility

• Capture at least 500,000 mTCO2/yr for power plants.

• Capture at least 100,000 mTCO2/yr for other industries.

14

Storage and Utilization Requirements

• Captured CO2 must be injected into underground geologic formations and permanently

sequestered. This includes injection into oil and gas reservoirs (EOR projects), deep saline

formations and coal bed seams.

• At least 25,000 mTCO2/yr must be utilized and permanently fixed in a commercial product.

Eligibility is dependent on a life cycle analysis to ensure carbon is permanently stored and

not emitted by the same commercial product.

With the 2018 increase, small scale sequestration projects with source and sinks in relatively close

proximity became cost effective, however much larger scale projects involving building pipelines

across county lines in mid-sized US states were still uneconomical (DaneshFar et al., 2021).

In 2022, the United States government again amended the 45Q tax credits, offering a 43% increase

in tax credits for carbon stored via CO2-EOR projects (from $35/tCO2 to $50/tCO2), a 70% increase

tax credits for pure sequestration ($50/tCO2 to $85/tCO2) and up to $180/tCO2 for direct air capture

with storage via pure sequestration. Additionally, eligibility capture thresholds were lowered

significantly, point source capture requirements are now a minimum of 12,500 mTCO2/yr with

18,750 mTCO2/yr for power plants and 1,000 mTCO2/yr for direct air capture.

These recent changes mean that most projects that were deemed commercially unviable with unit

total sequestration project costs of less than $15/tCO2 could now break-even and perhaps make

significant profits.

15

2.4 Network Optimization of CO2 Sequestration

Medium to large scale carbon sequestration projects involve multiple point CO2 source locations

and sinks (which may be geological fields or wells within the fields), and the key questions that

must be answered when planning these projects are (1) How to represent pipeline construction

costs on a geographical surface (2) what are the possible pipeline routes for transportation that

connect sources to sinks? (3) what are the optimal transport routes that minimize overall

sequestration costs?

2.4.1 Representing Pipeline Routing and Construction Costs on A Geographic Surface

The first question poses a geographical network challenge as it requires Geographical information

Systems (GIS) representation. Ideally, the shortest path connecting any 2 points by distance is a

straight line and whilst the distance between source and sink is a major factor in this allocation,

other social, environmental, and engineering costs must be considered. Some of the key factors

that must considered when planning pipeline routes include:

• Terrain Topography

• Population Density

• Neighboring settlements

• Presence of barriers, e.g., streams and rivers

• Existing Right of Way

The Least Cost Path (LCP) can be defined as the most cost-effective path from a start point to a

destination and LCP analysis allows for definition of costs associated with movement along a path

16

based on GIS. Early application of LCP analysis saw researchers combining viewshed information

from digital elevation models to determine scenic, strategic, hidden and withdrawn paths for

military and environmental planning (Stucky, 1998), with extensions to roadway planning (Yu et

al., 2003). Other researchers utilized data gathered from radio tracking of hedgehogs to determine

LCP and investigated variations of cost surface values with least cost habitat graphs (Driezen et

al., 2007; Rayfield et al., 2010).

Development of surface cost graphs and the determination of LCP are based on concepts relating

to graph theory. In practice, when rasterized surface cost graph has been made available, Dijkstra’s

shortest path algorithms (Dijkstra, 1959) are run to find the LCP between any 2 geo-locations, this

fundamentally always return the LCP (which may be non-unique) provided the graph edge weights

are non-negative.

Raster-based cost surfaces calculate edge weights by combining social and environmental factors,

accounting for minimized distance between node pairs (Hopkins, 1973). The queen's kernel,

commonly used in generating these cost surfaces balances computational speed and proximity

distortion (Huber & Church, 1985), however, accurate weighing of cell barriers is crucial,

especially when designing for pipeline infrastructure (Lugschitz, 2017).

CostMAP

In 2019, researchers from Los Alamos National Lab and Montana State University introduced an

open-source software package called the Cost Surface Multi-Layer Aggregation Program

(CostMAP) for developing these rasterized cost surfaces. CostMAP utilized available pre-

17

processed GIS data on land cover, slope, population density, natural and man-made barriers and

pipeline networks right of way to build weighted cost graphs (Hoover et al., 2019).

Figure 4: An example of aggregated cell weight generated using the traditional Queen's kernel (a-c) vs

using CostMAP (d-f) source: (Hoover et al., 2019)

CostMAP offers advancements over traditional methods in the computation of edge weights when

barriers such as rivers or roads are present by more accurately identifying these barriers and

corridors. Instead of simply treating a cell as a crossing or a barrier if any part of the cell contains

a linear feature, CostMAP uses a fine-scale raster to carefully check for actual crossings or

corridors within the cell. This approach prevents the overestimation of costs incurred by barriers

and helps find feasible routes that other methods might not identify. By using Major and Minor

Cells, CostMAP refines the detection of actual crossings between adjacent cells, leading to a more

precise estimation of the edge weights in the presence of barriers, this is highlighted in figure 4.

18

The output of CostMAP is a weighted-cost network and an aggregated cost raster, which can be

used for LCP calculations in any GIS-aware software.

Figure 5: Generating Right of Way (ROW) and Construction cost surface graphs (Middleton et al., 2012)

In 2022, a newer version called CostMAPPRO was introduced to majorly address scale challenges

for large scale sequestration projects (Talsma et al., 2022). The software produces higher

resolution routing surfaces, ranging from 90m to 720m, with the ability to model routes at 10m.

Additionally, CostMAPPRO can separate routing and construction cost weights, offering greater

flexibility in avoiding specific features without affecting construction costs. Finally, CostMAPPRO

allows users to input custom weights to create tailored cost surfaces, enhancing its adaptability to

various stakeholder needs, such as avoiding river crossings.

19

2.4.2 Generating Alternate Pipeline Transport Networks

Alternate pipeline transport network generation involves determining a network of LCP that

connects a set of sources to sinks, such that a path exists connecting every source to every sink.

(Middleton, Kuby, et al., 2012) outlined 5 steps for generating alternate pipeline transport networks

(called candidate networks): (1) Define or Import a cost surface, from CostMAP or similar tools

(2) Extract Raster LCP through shortest path algorithms like Dijkstra’s, (3) Raster to vector

conversion which essentially reduces LCPs to a set of discrete nodes and arcs, (4) Removing

redundancy caused by duplicate edges along identical cost paths as illustrated in figure 6, and (5)

Network refining which involves algorithms defined to further simply the network, by say,

collapsing triangles and merging nodes, figure 7.

Figure 6: The candidate network methodology's process for converting raster-to-vector is depicted in these

steps. In part (a), the cost surface forms raster paths or corridors, while parts (b) and (c) demonstrate the

extraction of a vector network from these paths. Finally, part (d) shows how to strip two or more paths of

the same cost between two nodes by removing arcs and nodes. Source (Middleton, Kuby, et al., 2012)

20

Figure 7: Shown on the left are three methods for refining the network, along with their effects on the

candidate network depicted on the right. As the tolerance level is raised, the candidate network

undergoes further refinement, resulting in a decrease in the number of nodes and arcs (Middleton, Kuby,

et al., 2012)

In connecting sources and sinks on a large graph with several edges, many routes may exist and if

one desires to get routes between several pairs of nodes, the problem may become intractable or

computationally inefficient. (Yaw et al., 2019) while researching on efficient network design

proposed the Greedy Subset Spanner (GSS) algorithm as a means of designing provably optimal

pipeline transport routes. In their paper, they noted that GSS could reduce the number of edges

from a base graph by over 99.9% (figure 8) whilst generating alternate routes with a cost increase

21

of only ~6% over base Steiner trees which are the most optimal. The use of Delaunay Triangulation

(DT), (Delaunay, 1934) to generate set of node pairs for which cost paths can be determined has

proven an effective simplified approach to solving this problem, however because of the geospatial

nature of the pipeline network generation problem, the distance guarantee of at most 2.418 times

the Euclidean distance on any path between 2 points does not hold (Keil & Gutwin, 1992).

Figure 8: Performance metrics for Base Steiner Trees, Greedy Spanner (GS), Delaunay Triangulation

(DT) and Greedy Subset Spanner (GSS) (Yaw et al., 2019)

Although the GSS algorithm offered significant improvements, DT came in a close second with

similar edge reduction and better costs. Following the 5-step workflow and using DT in step 2 can

lead to the generation of provably optimal candidate networks as illustrated in figure 9 a-c.

22

Figure 9: This illustration showcases the LCP analysis performed by SIMCCS2.0. To generate an

idealized Candidate Network for CCS pipelines, SIMCCS2.0 employs a combination of Delaunay

triangles, as shown in (a), to determine the best spatial configuration. Additionally, SIMCCS2.0 uses a cost

surface and Dijkstra's algorithm to calculate the least cost path across the surface, as seen in (b), in

order to create the Candidate Network, as shown in (c).

2.4.3 Determination of Optimal Transport Routes

The next step after generating the alternate pipeline routes based on the cost surface graph,

Delaunay triangulation, and Dijkstra’s shortest path algorithm, is the formulation and

implementation of a mathematical optimization model to find optimal transport routes and

minimize overall CO2 sequestration costs. The Overall optimization problem is stated below:

Given:

● A set of CO2 capture sources with associated capture costs in $ per metric ton of CO2

captured and total CO2 capture capacity.

● A set of CO2 storage locations with associated storage or injection costs in $ per metric ton

of CO2 injected and total CO2 storage capacity.

● A set of alternate pipeline routes with associated construction costs in $ per metric ton of

CO2 transported.

23

● Possible existing pipeline routes with zero associated construction cost, fixed volume

capacity limits and transportation costs in $ per metric ton of CO2 transported.

● A target CO2 capture amount.

Find the minimum cost network that ensures CO2 target capture amount is met, honoring the

following constraints:

1. CO2 captured and stored must be less than or equal to the capture and storage capacities.

2. Existing pipeline capacity limits are not violated.

3. Flow is unidirectional along existing pipeline.

2.4.4 Mathematical Model Formulation

Translating the description to mathematical terms which can be used as a basis for building the

CO2 optimization model is trivial since an existing formulation was developed and implemented

in SimCCS (Middleton et. al, 2020). The mathematical model, which borrows its notations from

SimCCS is given below:

Sets

S Set of all CO2 capture source nodes.

R Set of all CO2 sinks or injection sites nodes.

N Set of all Transshipment nodes.

I Set of all nodes.

C Set of pipeline trends.

A Set of all nodes to node arcs representing alternate and existing pipelines.

P ϵ A Set of all existing pipeline arcs.

24

Parameters

𝑄𝑖
𝑆 CO2 annual capture capacity at source i (MtCO2/yr).

𝑄𝑗
𝑅 CO2 storage capacity at sink j (MtCO2).

𝐹𝑖
𝑆 Fixed capture cost of CO2 at source i ($M).

𝐹𝑗
𝑅 Fixed storage cost of CO2 at sink j ($M).

𝑉𝑖
𝑆 Variable capture cost of CO2 at source i ($/tCO2).

𝑉𝑗
𝑅 Variable capture cost of CO2 at sink j ($/tCO2).

𝑄𝑎𝑐
𝑚𝑎𝑥 Maximum annual capacity of pipeline arc a with trend c (MtCO2/yr).

𝑄𝑎𝑐
𝑚𝑖𝑛 Minimum annual capacity of pipeline arc a with trend c(MtCO2/yr).

𝛼𝑎𝑐 Transportation cost of pipeline arc a with trend c ($/tCO2).

𝛽𝑎𝑐 Build cost of pipeline arc a with trend c ($M/yr).

Decision Variables

𝑠𝑖 ∈ {0, 1} Binary variable indicating if a source i is activated.

𝑟𝑗 ∈ {0, 1} Binary variable indicating if a sink j is activated.

𝑦𝑎𝑐 ∈ {0, 1} Binary variable indicating if a pipeline arc a with trend c is built.

𝑎𝑖 ∈ ℝ The amount of CO2 captured at source i (tCO2/yr).

𝑏𝑗 ∈ 𝑅 The amount of CO2 stored at sink j (tCO2/yr).

𝑓𝑎𝑐 ∈ 𝑅 The amount of CO2 flow in pipeline arc a built with trend c (tCO2/yr).

𝐶𝑂2𝑇 ∈ 𝑅 The target amount of CO2 to be sequestered during project life.

The model formulation is a MIP problem and the objective function as described in the previous

section is to minimize sequestration cost. Sequestration costs consist of capture cost, storage cost,

pipeline build cost and transportation cost. Written mathematically as:

min ∑ (𝑭𝒊
𝑺𝑠𝑖 + 𝑽𝒊

𝑺𝑎𝑖)𝒊∈𝑺 + ∑ (𝑭𝒋
𝑹𝑟𝑗 + 𝑽𝒋

𝑹𝑏𝑗)𝒋∈𝑹 + ∑ ∑ 𝛽𝑎𝑐𝑦𝑎𝑐𝒄∈𝑪𝒂∈𝑨 + ∑ ∑ 𝛼𝑎𝑐𝑓𝑎𝑐𝒄∈𝑪𝒂∈𝑨

 capture storage pipe build transportation

Subject to the following constraints

Arc capacity bounds: 𝑄𝑎𝑐
𝑚𝑖𝑛 ≤ 𝑓𝑎𝑐 ≤ 𝑄𝑎𝑐

𝑚𝑎𝑥 ∀ 𝑎 ∈ 𝐴, ∀ 𝑐 ∈ 𝐶

25

Single direction arc flow: ∑ 𝑦𝑎𝑐𝑐∈𝐶 ≤ 1 ∀ 𝑎 ∈ 𝐴

Flow balance: ∑ ∑ 𝑓𝑎𝑐𝒄∈𝑪𝒂∈𝑨 − ∑ ∑ 𝑓𝑎𝑐𝒄∈𝑪𝒂∈𝑨 = 0 𝑖𝑓 𝑛 ∈ 𝑁

Demand balance: ∑ ∑ 𝑓𝑎𝑐𝒄∈𝑪𝒂∈𝑨 − ∑ ∑ 𝑓𝑎𝑐𝒄∈𝑪𝒂∈𝑨 = −𝑏𝑛 if n ∈ R

 src(k)=n dst(k) = n

Supply balance: ∑ ∑ 𝑓𝑎𝑐𝒄∈𝑪𝒂∈𝑨 − ∑ ∑ 𝑓𝑎𝑐𝒄∈𝑪𝒂∈𝑨 = 𝑎𝑛 if n ∈ S

 src(k)=n dst(k) = n

Capture capacity bounds: 𝑎𝑖 ≤ 𝑸𝒊
𝑺𝑠𝑖 ∀i ∈ S

Storage capacity bounds: 𝑏𝑗 ≤ 𝑸𝒋
𝑹𝑟𝑗 ∀j ∈ R

Target capture: ∑ 𝑎𝑖 𝒊∈𝑺 ≥ 𝐶𝑂2𝑇

Pipeline Build cost: 𝑪𝟏 ∗ 𝑓𝑎𝑐 + 𝑪𝟐 = 𝛼𝑎𝑐 ∀a ∈ A where 𝑪𝟏 & 𝑪𝟐 are trendline constants

The constants 𝑪𝟏 ∈ 𝐶 and 𝑪𝟐 ∈ 𝐶 are based on trend lines used to represent cost per unit distance

profiles for given CO2 volume. Representing CO2 transportation costs with linearized trends was

proposed in (Middleton, 2013) where pipeline transportation costs were a function of the volume

of CO2 being transported. In other publications, (Jones et al., 2022; Whitman et al., 2022),

researchers demonstrated the utilization of 2 linear trends that cover 11 distinct pipeline capacities

in SimCCS. The generation of these trends are discussed in the next section.

2.4.5 Representing CO2 pipeline Construction Costs with Trendlines

Determining the required capital investment for constructing CO2 pipelines is a complex process

that involves considering several factors. Pipeline length, expected flow rates, inlet and outlet

pipeline pressures, elevation changes, and topography are just a few of the crucial factors that must

26

be evaluated when assessing pipeline construction costs and, optimizing these costs in

sequestration project planning is a non-trivial problem. This challenge led the US Department of

Energy (DOE) Office of Fossil Energy and Carbon Management (FECM) to collaborate with the

National Energy Technology Laboratory (NETL) to develop the FECM/NETL CO2 Transport Cost

Model (CO2_T_COM). This excel-based software, powered by Visual Basic for Applications

(VBA) macros, takes input from users, and generates realistic cost breakdowns, including capital

and operating costs, based on specific financial and engineering inputs (Morgan et al., 2022)

While CO2_T_COM is useful for in-depth analysis, its output needs to be translated into a format

that can be used in the network optimization model. Inputs from table 2 were used to generate

total transport costs for different CO2 annual flow rates by (Jones et al., 2022). They derived two

linear trends to represent the cost of CO2 in $M per kilometer (figure 10). This cost trends were

applied in the SimCCS optimization model, and the costs generated were compared to

CO2_T_COM resulting in an acceptable average absolute error (AAE) of 3%.

Choosing a linear approximation instead of a quadratic curve was due to anticipated computational

complexity. Mixed-integer linear programming (MILP) which is a branch of mathematics and

operations research that focuses on linear optimization, requires constraints and objective

functions to be linear; otherwise, the problem becomes a mixed-integer quadratic programming

(MIQP) problem, which is harder to solve even with state-of-the-art solvers. Although a lower

AAE could be achieved by a quadratic function, the increased solve time is not a desirable tradeoff.

27

Table 2: Assumptions for CO2_T_COM transport cost trends used in SimCCS.

Input Values

Segment Length 80km (50 miles)

Segment Inlet Pressure 15 Mpa (2175 psi)

Segment Outlet Pressure 8.6 Mpa (1250 psi)

Pumps per 100 miles 2

Construction Cost Model PARKER

Region MW (Midwest)

Pipeline Capacity Factor 0.8

Capital Charge Factor 0.11

Figure 10: Linear trend approximation of pipeline cost (Whitman et al., 2022)

2.5 Existing Solutions and Limitations

There are several solutions for optimizing deployment scenarios for CCS projects including JRC

InfraCCS (Morbee et al., 2011), GETCO (Gale et al., 2001), however, there has been a wide

28

adoption of SimCCS (and SIMCCS2.0) since release and it has become the industry standard for

evaluating CCS projects.

Published use cases of SimCCS in large scale sequestration planning include evaluations carried

out in North America, Western Europe and Asia (Bielicki et al., 2014; Middleton & Brandt, 2013;

Stauffer et al., 2014). Other evaluations cover utilization with different capture sources types –

such as power plants, chemical and oil refining plants (Middleton et al., 2014; Middleton, Keating,

et al., 2012), and different sink types apart from saline aquifers and – such as producing sands for

CO2-EOR (Middleton et al., 2011), depleted hydrocarbon bearing shales (Bielicki et al., 2018)

and, stacked reservoir systems (Ellett et al., 2017). There have also been recent publications on

the application of SimCCS to the evaluation of sequestration economics in localized regions with

the US, leveraging on carbon tax credits to determine optimal source sink pairings (DaneshFar et

al., 2021).

Limitations

Limitations reported in literature typically refer to solving large scale sequestration projects that

involve multiple sources and sinks spread over a large geographic region. To address these

challenges, upscaling cost surface graphs was proposed to increase speed of generating alternate

paths and the use of greedy subset spanner (GSS) to find effective albeit less optimal routes have

been proposed (Talsma et al., 2022; Yaw et al., 2019). (Lobo, 2017) proposed speeding up the

MIP network optimization by adding valid inequalities to strengthen the original SimCCS

mathematical formulation.

One Major limitation that has remained unaddressed is embedding existing pipelines in techno-

economic optimization tools like SimCCS, and that limitation is addressed by this research.

29

CHAPTER 3: Methodology

3.1 Translating Geographical Coordinates to Graph Coordinates

The cost surface graphs were obtained from open source published results of CostMAP simulations

generated for SimCCS usage and were represented as numbered grid cells with the southwestern

corner point and the grid cell spacing given.

To translate these corner points to latitude and longitude coordinates, algorithms were proposed

by the developers of SimCCS in their GitHub repository (SimCCS, 2021). The code for this was

adapted and utilized in this research and is detailed in “geotransformations.py” in the Appendix.

3.2 Generating Alternate Transport Routes

3.2.1 Delaunay Triangulation

Implementation of Delaunay Triangulation (DT) in Python was done using the Delaunay class in

SciPy Python package. First steps involved translating the latitude and longitude of our sources

and sinks into positional X and Y locations on our graph surface and this was done using methods

outlined in “geotransformation.py” in the Appendix. Next those X and Y points are used to

generate Delaunay triangles with successive pairs of nodes connected by lines. The pair of nodes

are returned as outputs for use in computation of shortest distances. An example of the results of

Delaunay triangulation given the following (x, y) points: {(10, 18), (20, 75), (50, 50), (80, 35),

(80, 90)} is illustrated in figure 11 below:

30

Figure 11: Plot of Delaunay Triangle generated from specified input data.

3.2.2 Embedding Existing Pipeline Routes

The previous section discusses generating node pairs which will be used to define shortest paths

on a cost graph surface assuming that we intend to build new pipelines to kickstart the CO2

sequestration project. While this is useful, one key aspect of alternate routing is how to capture

existing pipeline routes within our graph. This is the focus of this research and the proposed

implementation details are discussed briefly.

31

Proposed Solution and Implementation

Given that costs associated with transportation of CO2 are determined by the chosen transportation

route which is selected based on LCPs on the surface cost graph, the obvious, albeit difficult to

implement solution, is to modify the cost graph with zero cost edges along an existing pipeline

route.

To achieve this, the following assumptions are made:

1. Long transport pipelines (kilometers or miles in length) are made up of discrete shorter

fixed length pipelines with pipe fittings such as elbows, tee-connections, reducers, etc.,

2. The shorter fixed length pipelines are joined together by welding or coupling using fittings.

3. The length of the pipe fittings can be neglected over long pipeline network distances and

only the length of short, fixed pipe is considered.

4. The ends of each fixed pipeline represent a physical location with an actual latitude and

longitude location; hence the entire length of the pipeline can be represented by a discrete

set of Lat-Long points.

The above assumptions allow for, if available, one to directly modify the edges representing the

existing pipeline and set their weights to zero. For this to occur however, the exact edges must

exist on the surface cost graph, and this may not be practicable for a few reasons:

● Reason 1: The shorter pipelines are of fixed length meaning that regardless of orientation,

the distance between two ends is the same. Based on the spherical nature of the earth,

distances between consecutive grid points may not be the same, hence there will be a

mismatch of pipe Lat-Long and grid Lat-Long.

32

● Reason 2: To work around reason one, one may consider generating a very fine-precision

cost graph by modifying reducing the grid spacing to say one meter. This work-around

becomes impractical due to limitations with graph generation and shortest distance

calculations. Generating the cost graph grid points is at least 𝑂(𝑛2) time complexity and

the Dijkstra’s shortest path algorithm is at least of 𝑂((𝑉 + 𝐸)𝑙𝑜𝑔 𝑉) time complexity

where V is number of vertices and E is number of edges. This means as the grid spacing

reduces, the number of vertices and edges increases, and the computational time increases

quadratically on average. Storage space also becomes a huge concern for finer grids,

storing a 200 x 400 grid is much more efficient than an 8000 x 9000 grid.

With the limitations described above, coupled with the fact that most operators/researchers do not

have an exact set of discrete Lat-Long points along all pipe segments in a pipeline network, a more

practicable solution was developed.

Given any existing pipeline network, obtain sparse Lat-Long coordinates representing sections

along the pipeline from either the operator or manually using the US National Pipeline Mapping

system (NPMS). Each section is assumed to be linear and can be connected by a straight line.

Using the geo locations of these sections, approximate x and y grid coordinates can be calculated

using methods outlined “geotransformation.py” in the Appendix. If an edge exists in the map

between successive geolocation grid points, we modify the weight (or cost) of the edge to zero,

however if an edge does not exist, we may formulate some.

The process of formulation involves calculation of shortest paths between the two grid points in

the graph using weighted edges. Once the grid points and edges along these shortest paths have

33

been identified, we add those points to the set of pipeline Lat-Long points and set the edge weights

(or costs) to zero.

An algorithm designed to implement this is shown below:

34

ALGORITHM TO ADD EXISTING PIPELINE TO NETWORK GRAPH

Step 1: Convert discrete pipeline lat-long points to edges

Input: loc_points, a set of discrete pipeline lat-long points

Output: loc_pair, a list of edge pairs

 Create a new variable: loc_pair = list()

 for i in range(len(loc_points) - 1):

 loc_pair.append((loc_points[i], loc_points[i+1]))

 end for

 Find cell location of loc_pair points and assign to cell_pair using findCell function

 for i in range(len(loc_pair)):

 cell1 = findCell(loc_pair[i][0])

 cell2 = findCell(loc_pair[i][1])

 cell_pair.append((cell1, cell2))

 end for

Step 2: Modify cell_pair to include edges from shortest paths algorithm

Input: cell_pair, a list of edge pairs; edges, a set of edges in G(V, E)

Output: cell_pair_mod, a modified list of edge pairs

 Create a new variable: cell_pair_mod = list()

 forall nodepair in cell_pair:

 if nodepair in edges:

 cell_pair_mod.append(nodepair)

 else:

 path = shortest_path(source=nodepair[0], destination=nodepair[1])

 forall edge in path:

 cell_pair_mod.append(edge)

 end for

 end if

 end for

Step 3: Modify graph G(V, E) and set all edge weights for edges in cell_pair_mod to zero

Input: G(V, E), a cost surface graph; cell_pair_mod, a modified list of edge pairs

Output: G'(V, E'), a modified cost surface graph with some edge weights set to zero

 forall nodepair in cell_pair_mod:

 G.edges[nodepair][weight] = 0

 end for

35

3.2.3 Tie-in Points – Calculate or Assign

Once the graph cost surface has been modified with zero weight edges to represent existing

pipelines, one key concern becomes how to limit entry and exit points from pipelines. The major

reason this concern arises is that, since a zero-weight path exists in the graph, finding the shortest

path between any two locations within the vicinity of the pipeline may lead to multiple entry and

exit points around the pipeline. This is illustrated in figure 12 below. In 12(a), the shortest paths

between two location pairs are shown if no pipeline (zero cost path) exists, a zero-cost pipeline is

introduced in 12(b) and in 12(c), we see how the shortest path changes once the pipeline has been

added. We also see multiple entry and exit points along a single pipeline.

Figure 12: Illustration of effect of adding zero cost path to LCP generated by Dijkstra's Algorithm. In (a)

the zero-cost path does not exist, and the blue paths represent the LCP, (b) shows the introduction of a

zero-cost path in red and (c) shows the new LCP generated which utilizes the zero-cost path.

In practice, having multiple entry and exit points along a single pipeline is usually unwanted as

pressure at entry points must be level or graded properly to discourage backflow of fluid from

entry point with higher pressure to entry point with lower pressure. Doing this requires installation

of compressors and pressure instrumentation to monitor pressure levels along the pipeline

consistently, all of which are expensive operations.

36

Assuming an operator has decide to allow only a single tie-in entry location on an existing pipeline,

allowing CO2 from a nearby capture sites to be routed through pipeline, and this same operator is

open to having multiple exit locations where CO2 will be routed to storage site, the question then

arises - should the tie-in points be selected based on regional knowledge, land agreements and

company preferences, or should it be assigned based on some shortest path calculation?

There are four scenarios to consider when implementing tie-in points and “exclusion” zones.

Exclusion zones represent regions of your pipeline where you want no tie-in location and become

practical for pipelines where certain sections are in residential or hilly areas. The possible scenarios

are given below and illustrated in figure 13 below:

● Case 1: 2 tie-in points (entry and exit) along a given pipeline, exclusion elsewhere.

● Case 2: 2 tie-in points with exclusion at ends

● Case 3: Singe tie-in point with all exclusion but source or sink.

● Case 4: Single tie-in point with exclusion before or after

37

Figure 13: Illustration of the 4 methods to define tie-in points along an existing pipeline. (a) Case 1: 2

tie-in points are explicitly defined with exclusion everywhere else in pipe, (b) Case 2: 2 tie-in points with

exclusion at ends, (c) single tie-in point with exclusion everywhere else but source/sink, (d) Single point

with exclusion before or after.

Case 1: 2 Tie-In Points (Entry and Exit) Along A Given Pipeline, Exclusion Elsewhere

Given two preferred tie in-locations along an existing pipeline, the cost graph can again be

modified to ensure that for any optimal CO2 transport network that may be designed utilizing

segments of the existing pipeline, the preferred tie-in locations are honored. To achieve this, set

the edge weight for all inbound and outbound edges from vertices along the pipeline to a large

number, all vertices but the ones representing the preferred tie-in locations. This is done to

discourage the shortest path algorithms from using those points during generation of alternate

routes. The Algorithm to achieve this is as follows:

38

Algorithm 1

Input: G(V, E) a cost surface graph; P(V), a list of graph vertices along an existing pipeline;

tie_points, a list containing geolocation of 2 preferred tie-in points on existing pipeline

Output: G'(V, E'), a modified cost surface graph with some edge weights along pipeline vertices

set to 1e9

Create A list: tie_vertices = list()

forall nodepair in tie_points:

 cell = findCell(nodepair)

 tie_vertices.append(cell)

end for

forall edges in G.edges:

 #in

 if (edges[1] in P) and (edges[0] not in P) and (edges[1] != tie_vertices[0]) and (edges[1] !=

tie_vertices[1]):

 G.edges[edges][weight] = 1e9

 end if

 #out

 if (edges[0] in P) and (edges[1] not in P) and (edges[0] !+ tie_vertices[0]) and (edges[0] !=

tie_vertices[1]):

 G.edges[edges][weight] = 1e9

 end if

end for

Case 2: 2 Tie-In Points with Exclusion at Ends

In this case, as illustrated in figure 13(b) above, you want to exclude regions of the pipeline before

and after certain tie-in locations. The result of this step gives you an open segment of the pipeline

where any two tie-in points may exist, and the exact locations will be determined by the shortest

path algorithms. To implement this, a slight modification is made to Algorithm 1, and the nodes

along the pipeline before and after tie-in point indexes have their in and outbound edge weights

increased as shown in Algorithm 2 below:

39

Algorithm 2

Input: G(V, E) a cost surface graph; P(V), a list of graph vertices along an existing pipeline;

tie_points, a list containing geolocation of 2 preferred tie-in points on existing pipeline

Output: G'(V, E'), a modified cost surface graph with some edge weights along pipeline vertices

set to 1e9

Create A list: tie_vertices = list()

forall nodepair in tie_points:

 cell = findCell(nodepair)

 tie_vertices.append(cell)

end for

Create A list: exclusion = list()

idx_1 = P.index(tie_vertices[0]) #index location of point1

idx_2 = P.index(tie_vertices[1]) #index location of point2

exclusion = P[:idx_1] + P[idx_2:] #slice P and get points before and after tie points on both sides

forall edges in G.edges:

 #in

 if (edges[1] in exclusion) and (edges[0] not in P) and (edges[1] != tie_vertices[0]) and

(edges[1] != tie_vertices[1]):

 G.edges[edges][weight] = 1e9

 end if

 #out

 if (edges[0] in exclusion) and (edges[1] not in P) and (edges[0] != tie_vertices[0]) and

(edges[0] != tie_vertices[1]):

 G.edges[edges][weight] = 1e9

 end if

end for

Case 3: Singe Tie-In Point with All Exclusion but Source or Sink

This case models a scenario where an operator wants to have only one tie-in point on the pipeline,

this is because on either end of the pipeline there is an existing sink you want to feed CO2 into.

Assuming the pipeline has additional transport capacity, that location on the pipeline can be used

40

to tie-in extra CO2 sources. This is illustrated in figure 13(c) and the algorithm is based on a

modification of algorithm 2 presented above.

Algorithm 3

Input: G(V, E) a cost surface graph; P(V), a list of graph vertices along an existing pipeline;

tie_points, a list containing geolocation of 1 preferred tie-in point on existing pipeline

Output: G'(V, E'), a modified cost surface graph with some edge weights along pipeline vertices

set to 1e9

Create A list: tie_vertices = list()

forall nodepair in tie_points:

 cell = findCell(nodepair)

 tie_vertices.append(cell)

end for

Create A list: exclusion = list()

exclusion = P[:-1] #assuming source/sink is at end of pipeline OR

exclusion = P[1:] #assuming source/sink is at beginning of pipeline

forall edges in G.edges:

 #in

 if (edges[1] in exclusion) and (edges[0] not in P) and (edges[1] != tie_vertices[0]) and

(edges[1] != tie_vertices[1]):

 G.edges[edges][weight] = 1e9

 end if

 #out

 if (edges[0] in exclusion) and (edges[1] not in P) and (edges[0] != tie_vertices[0]) and

(edges[0] != tie_vertices[1]):

 G.edges[edges][weight] = 1e9

 end if

end for

41

Case 4: Single Tie-In Point with Exclusion Before or After

This case solves for the scenario where an operator only wants to exclude a section of a pipeline,

to the left or right of a single geolocation; it is a more relaxed version of case 2 as illustrated in

figure 13(d). The algorithm to achieve this is as follows:

Algorithm 4

Input: G(V, E) a cost surface graph; P(V), a list of graph vertices along an existing pipeline;

tie_points, a list containing geolocation of 1 preferred tie-in point on existing pipeline

Output: G'(V, E'), a modified cost surface graph with some edge weights along pipeline vertices

set to 1e9

Create A list: tie_vertices = list()

forall nodepair in tie_points:

 cell = findCell(nodepair)

 tie_vertices.append(cell)

end for

Create A list: exclusion = list()

exclusion = P[:P.index(tie_vertices[0])] #assuming exclusion zone is before tie-in point OR

exclusion = P[P.index(tie_vertices[0])+1:] #assuming exclusion zone is after tie-in point

forall edges in G.edges:

 #in

 if (edges[1] in exclusion) and (edges[0] not in P) and (edges[1] != tie_vertices[0]) and

(edges[1] != tie_vertices[1]):

 G.edges[edges][weight] = 1e9

 end if

 #out

 if (edges[0] in exclusion) and (edges[1] not in P) and (edges[0] != tie_vertices[0]) and

(edges[0] != tie_vertices[1]):

 G.edges[edges][weight] = 1e9

 end if

end for

42

In summary, as a response to the question posed earlier – assigning, or calculating tie-in points,

algorithms 1 allows for fully constrained tie-in location assignment while 2 - 4 offers some

flexibility with that choice, whilst still allowing an operator to limit selection to preferred regions.

3.2.4 Shortest Connecting Path Estimation

Considering that the cost surface graph is simply a directed graph with non-negative edge weights,

Dijkstra's algorithm was used in estimating shortest paths. To achieve this, pairs of vertices

generated from Delaunay triangulation discussed in section 3.2.1 are used and since distance(v1,

v2) = distance(v2, v1), any shortest path generated, and the corresponding weighted cost can be

utilized for building bidirectional arcs when running the network optimization.

The open-source Python program, NetworkX, has a custom implementation of Dijkstra’s

algorithm and since the alternate route candidate network class was built as an abstraction of the

Digraph class in NetworkX (shown in “alternateNetworGeo.py” in the Appendix), it became

redundant to attempt any manual implementation.

Using this library, it is also possible to use bellman-ford algorithm for shortest path estimation,

this may become necessary if the operator seeks to further incentivize flow through pipeline and

during embedding, sets pipeline graph edge weights to negative values.

3.2.5 Solving with Intersecting Shortest Paths in Practice

In practice, generating shortest paths in sequence using vertex pairs generated by the Delaunay

triangulation may lead to intersecting paths being generated. This frequently occurs if the CO2

43

sources or sinks are in proximity and there is a region of the cost surface graph with significantly

smaller edge weights. Intersecting paths are undesirable as they require significant engineering

work to design - one pipeline must be buried deeper than the other or raised using elbows above

the other.

To solve this problem, a diagonal exclusion zone may be generated around alternate pipeline paths

after each pass of resulting DT vertices through Dijkstra’s algorithm. This diagonal exclusion zone

is generated easily by using simple properties of a rectangular grid.

If n is the grid width, where the grid width is the number of points on a row - 1, then the distance

between any 2 diagonal grid points is either n+2 or n. This is illustrated in figure 14(a) below

where a 4x5 grid point with n = 4-1 = 3 is illustrated. There are two pipelines (line 1 in blue and

line 2 in red) that intersect at 2 sections, the first intersection occurring between nodes 5 and 2 in

a downward diagonal (n difference), and the second occurring between nodes 7 and 12 in an

upward diagonal (n+2 difference).

Figure 14: Illustration showing the effects of the diagonal exclusion zones algorithm. (a) shows paths

crossing prior to implementation of diagonal exclusion zones (b) shows one possible realization of path

generated after diagonal exclusion zone has been implemented, (c) another possible realization of path

generation where 2 paths follow the same nodes in a segment.

44

Given these properties, the following algorithm for enforcing diagonal exclusion zones was

implemented:

ALGORITHM FOR DIAGONAL EXCLUSION ZONES

Input: G(V, E) a cost surface graph; P(E), a list of graph edges along a generated alternate

pipeline; pipeline width n

Output: G'(V, E'), a modified cost surface graph with some edge weights along pipeline vertices

set to 1e9

forall edgepair in P:

 if diff(edgepair) = n+2:

 lower_diag = min(edgepair)+1

 upper_diag = max(nodepair)-1

 G.edges[(lower_diag, upper_diag)][weight] = 1e9

 else if diff(edgepair) = n:

 lower_diag = min(nodepair)-1

 upper_diag = max(nodepair)+1

 G.edges[(lower_diag, upper_diag)][weight] = 1e9

 end if

end for

It becomes important to note that while diagonal edge paths are discouraged by assigning

exponentially higher costs, leading to selection of paths that avoid diagonals as shown in figure

14(b), sometimes, pipes may be routed through the same edges as shown in 14(c). Routing through

the same edges may be interpreted in one of two ways:

● Pipelines are built side-by-side on the same physical location OR

● Pipelines merge into a larger diameter pipeline and exit as separate streams after some

distance.

45

The actual implementation then becomes a function of operator preferences and technical

specifications. The algorithm also presented can be used for existing pipelines to ensure no

intersecting path is created across an existing pipeline. Also note that implementing this algorithm

each time a new pipeline path is generated is computationally intensive and thus may be switched

off if desired.

When scenario (c) occurs, the inlet and outlet points of these merged routes are modeled as

transshipment nodes which are utilized in network optimization modeling.

3.3 Sequestration Network Optimization Implementation

3.3.3 Solver Selection

There are various commercial and open-source optimization solvers that are available to solve

linear programming (LP) and mixed-integer programming (MIP) problems. The selection of a

solver usually depends on individual preferences, although certain solvers are widely recognized

as state-of-the-art in operations research. These solvers include:

● CPLEX, which was developed by IBM and is available for academic use with

commercial restrictions.

● Gurobi, which is available as open-source software with commercial limitations.

The SimCCS project utilized CPLEX as the underlying solver for CO2 sequestration optimization.

However, running optimization scenarios locally requires complex installation procedures for the

ILOG CPLEX Optimization Studio software, which can be avoided by using the SimCCS web

version that runs scenarios on pre-installed cloud-based machines.

46

Gurobi is considered the fastest solver in the world, as demonstrated by benchmark tests for

standard optimization tasks, and can be customized to enhance speed using multiple parameters

that can be iteratively optimized with grid-search tuning. The Gurobi Application Programming

Interface (API) is compatible with various programming languages, including Java, C++, and

Python. Since this thesis project is implemented in Python, Gurobi was the preferred choice for

implementing the mathematical optimization model. The Gurobi-Python API (gurobipy) can be

easily installed using a "pip install" command, and the commands are intuitive, with extensive

documentation, training examples, and support available on the Gurobi website.

Both CPLEX and Gurobi solvers are used in operations research for large-scale optimization

across multiple industries, including transportation, supply chain, chemical, medical, and others.

As such, their software has been commercialized, with licensed versions available for purchase.

Free versions of the software are also available but have restrictions on the number of variables

and constraints that they can solve. For instance, the CPLEX free version is limited to 1000

variables and 1000 constraints, while the Gurobi free version is limited to 2000 variables and 2000

constraints.

Gurobi's ability to solve problems that are twice the size of CPLEX's free version was another

reason for its selection for implementation. If the model becomes too large to solve using the

Gurobi free version, a Mathematical Programming System ".mps" file of the mathematical

formulation of the problem generated by Gurobi can be saved and passed on to another Python

package called PuLP, which uses the completely open-source COIN-OR Branch-and-Cut (CBC)

as its default solver. The main drawback of using CBC is that the solve speed is significantly

47

slower than CPLEX or Gurobi. Therefore, to remove all restrictions on large-scale sequestration

optimization projects, it is recommended to apply for a Gurobi academic or professional license.

3.4 Solution Visualization

The results of the network optimization can be grouped into two major classes, geospatial and

numerical. The geospatial results are inferred indirectly from the selected pipeline arcs to be built

connecting the required CO2 sources to sinks and based on the initial cost graph and the shortest

path generated, a set of Lat-Long points are available and can be used to generate shape files to be

used for external visualization. The numerical results include the volume of CO2 captured,

transported, and stored, the lengths of the suggested transport pipelines, and a detailed cost

projection.

To visualize the results in an interactive way with high level summaries crucial for

operators/researchers, powerful data visualization libraries including Plotly, Mapbox and

Matplotlib were leveraged. These packages were used to create dashboard-like summaries that are

hosted on the Python web platform called Streamlit. The details of the implementation can be

found on the GitHub platform where the software is open-sourced, and in chapter 4, demo cases

are used to illustrate and compare/contrast between the tool and SimCCS.

48

CHAPTER 4: Results and Discussion

The efforts to develop a solution that can be deployed across multiple user systems and on the web

led to the packing of all the code and software into a Streamlit app. This app is called Sequestrix™

CO2 Network Optimization Software and for the remainder of this document will simply be

referred to as Sequestrix.

In this section, a presentation of three demo cases is made, each serving a different purpose. The

first demo gives a detailed description of the user interface developed for Sequestrix and highlights

a simple example which is used for benchmarking. The benchmarking is done by comparing results

with SimCCS which is currently the industry standard. Once the comparison has been made and

the results verified, a second comparison is done in demo 2, this time to showcase Sequestrix’s

ability to handle large scale optimization cases. In the third demo, the ability to include existing

pipeline routes as part of the optimization problem is extensively explored.

4.1 Demo 1 (Benchmarking) – Proposing Optimization Routes for New Pipelines

4.1.1 Problem and Dataset Description

For benchmarking, a simple sequestration problem was formulated as such - There are 3 CO2

emission sources (capture sites) and two storage sites representing saline aquifers for pure

sequestration. These sources and sinks are within a 50-mile radius and as such are relatively close

by physical distance. The total annual CO2 available for capture is 40 MTCO2/yr. The two sinks

are large saline aquifers with a combined CO2 storage capacity of 145 MTCO2. Other details of

the sources and sinks are given in Table 3 and 4 below.

49

The goal of the optimization is as follows:

Given the source capacities, geolocations, and unit costs (capture costs for sources and storage

costs for sinks), find:

● Alternate pipeline routes through which CO2 can be routed from the sources to the sinks.

● Calculate the optimal pipeline path to store at least the set target capacity of the duration

of the with the minimum cost of the entire project.

● Assess the quality of the results from Sequestrix and make benchmark comparisons to

existing SimCCS.

Table 3: Demo 1 Benchmarking Input Sources

ID UNIQUE NAME Capture Capacity (MTCO2/yr) Total Unit Cost ($/tCO2) Lat Lon

1 Manhattan 10 2 35.882 -97.112

2 Germain 20 1.5 36.139 -97.057

3 Tbag 10 1.8 36.026 -96.890

Table 4: Demo 1 Benchmarking Input Sinks

ID UNIQUE NAME Storage Capacity (MTCO2) Total Unit Cost ($/tCO2) Lat Lon

3 carlos1 80 -55 35.958 -96.723

4 carlos1-2h 65 -80 36.206 -96.724

50

4.1.2 Introduction to Sequestrix User-Interface and Results

Figure 15: Landing page of SequestrixTM

The landing or home page of Sequestrix simply gives a high-level introduction to what the software

is about as shown in figure 15. There are three other pages:

• The Input page: which can be used to upload csv files with the required information as

specified in input tables above. The input page can also be used to import pipeline

information in an excel file format and customize specific pipeline settings, however this

aspect is further explored in section 4.3 under demo 3. The input page also serves as a

dashboard to summarize the data related to the CO2 sources and sinks as is shown in figure

16-18 below:

51

Figure 16: Sequestrix input data page showing summary dashboard of CO2 sources.

Figure 17: Sequestrix input data page showing summary dashboard of CO2 sinks.

52

Figure 18: Sequestrix input data page showing geographic location of sources and sinks in Demo 1 on

map.

• The Solve Page: This page can be used to specify three major additional inputs and then

run the Network optimization MIP program in the backend. The duration of the project is

entered, followed by the minimum CO2 to be sequestered within the specified duration

(target) and finally the capital recovery factor. The capital recovery factor (CRF) is defined

“the ratio of a constant annuity to the present value of receiving that annuity for a given

length of time” and is used to determine the present value of a series of equal annual

payments for the transport network to be built over the sequestration duration.

The results of the solve page for demo 1 inputs are the Delaunay triangulation results, the

alternate paths generated connecting all sources to sinks within the network, and finally,

the optimal pipeline route selected by the optimization engine running locally on the

computer. These results are shown in figure 19-21 below:

53

Figure 19:Sequestrix Solve page showing Delaunay Triangles generated for Demo 1

Figure 20: Sequestrix Solve page showing alternate pipeline network generated for Demo 1 based on

Delaunay Triangulation

54

Figure 21: Sequestrix Solve page with optimal solution path for Demo 1 highlighted in green.

• The Results Dashboard Page: This page was specifically designed to give analytical

representation of the key results of network optimization. This is done to highlight key

evaluation metrics and to speed up decision making. The results of the optimization are

also saved in a csv file which can be inspected for further details.

The dashboard consists of four sections:

• Overview section – which gives key metrics including project duration, total

volume of CO2 sequestered, number of sources and sink used and a breakdown of

the expected unit costs for sequestration.

55

Figure 22: Sequestrix Results Dashboard page showing key overview results for Demo 1

• Capture section – The Capture section in Sequestrix provides a more detailed

breakdown of the CO2 capture results, elaborating on the selected sources, total

annual capture costs in millions of dollars, capture volumes, and any deviations

from the set target. Deviations usually occur if there is a bottleneck in the system.

In the provided example, the target capture input into Sequestrix is 40 MTCO2/yr.

However, based on the storage capacity of the two sinks provided (145 MTCO2)

and the duration of the project (10 years), only a maximum of 14.5 MTCO2/yr can

be stored. The 40 MTCO2/yr target was intentionally selected to illustrate the built-

in adaptability features of the model. Sequestrix can recognize and adjust to such

bottlenecks, providing a more realistic optimization result based on the constraints

in the system. This adaptability feature is an advantage when working with

56

Sequestrix, as it automatically identifies and adjusts for potential bottlenecks in the

system, allowing for more accurate and reliable optimization results.

Figure 23: Sequestrix Results Dashboard page showing CO2 Capture results for Demo 1

• Storage Section – gives a detailed breakdown of the storage results, as was done

with capture. Plots of costs and storage volumes illustrated.

Figure 24: Sequestrix Results Dashboard page showing CO2 storage results for Demo 1

57

• Transport section – here all the major start and end pipeline points are recorded,

this includes sources, sinks, existing or pre-imported pipelines and proposed

transshipment nodes along proposed routes. The cost of these pipelines based on

calculations detailed in section 3 is also presented.

Figure 25: Sequestrix Results Dashboard page showing transport pipeline result details for Demo 1

4.1.3 SimCCS Interface and Results

To conduct an unbiased comparison, a local instance of SimCCS was run on a personal computer

(an MSI GE Raider 66, with 32GB RAM, 11th gen core i9 3.0Ghz processor). A similar CSV

input file was generated for SimCCS, which can be uploaded to the tool, and the three main inputs

(duration, CRF, and target) were entered before running the model.

Upon completion of the optimization, the suggested optimal transport route connecting the sources

and sinks can be displayed, and a high-level summary of the unit and annual costs are shown on

58

the tool. A more detailed breakdown of the pipeline connections is exported to a solution CSV file,

which can be inspected for further details.

It is important to note that the local version of SimCCS does not have a feature that allows it to

check for bottlenecks during optimization and adjust capture or storage properties. The user must

inspect the input data to ensure the optimization will work before solving with CPLEX. This

limitation requires users to be more cautious when preparing their input data and setting up the

optimization problem, as opposed to the automated bottleneck checking and adjustments provided

in Sequestrix. Figure 26 shows the SimCCS interface and results.

Figure 26: SimCCS user interface showing results summary for Demo 1

59

4.1.4 Sequestrix vs SimCCS Detailed Benchmarking

To conduct proper benchmarking, three key metrics were defined to compare the solutions. These

metrics include:

1. Speed(Runtime): This includes the time taken to generate alternate pipeline routes and the

time taken to solve the optimization problem.

2. Unit Costs: These include capture, storage, and transport costs.

3. Pipeline Lengths: The total length of the pipelines in the solutions.

In addition to these metrics, a qualitative evaluation was also conducted, examining the generated

alternate pipeline routes and the selection of source and sink pairings. This qualitative assessment

provided insights into the differences in the solutions proposed by the two platforms, Sequestrix

and SimCCS, and helped to further evaluate their performance and effectiveness in solving CO2

sequestration network optimization problems.

Quantitative Metrics

Table 5: Comparison of SimCCS and Sequestrix results for Demo 1

Metric SimCCS (local) Sequestrix

Unit Capture Cost ($/ton CO2) 1.67 1.50

Unit Transport Cost ($/ton CO2) 0.33 0.49

Unit Storage Cost ($/ton CO2) -66.21 -66.21

Unit Total Cost ($/ton CO2) -64.21 -64.22

Runtime 600 190

Total Pipeline Length (km) 51.99 70.98

60

Analysis of table 5 above reveals that solutions generated by Sequestrix and SimCCS are

comparable but slightly different. The sources chosen for capture in SimCCS are Germain and

Tbag, each source providing 6.5 MTCO2/yr and 8 MTCO2/yr, respectively. On the other hand,

Sequestrix selects generates a solution where the entire 14.5MTCO2/yr is taken from Germain

which is the cheapest source of CO2 capture, and as such, the overall unit capture cost is lower.

This is flipped when considering transportation costs, as in the SimCCS solution, two shorter

length pipelines are built from Germain to carlos1-2h sink and from Tbag to carlos1 sink, while 2

pipelines are built from Germain to both sinks in the Sequestrix solution. Overall, the reduction in

capture cost achieved by Sequestrix is balanced out by the increased transport cost, however, when

considering the overall unit total cost, Sequestrix slightly edges out the solution generated by

SimCCS.

A MIP objective function may have several non-unique optimal solutions which lie along a pareto

plane. Each solution that lies on this pareto plane has a different combination of the decision

variable solutions which generate comparable results. The number of optimal solutions generated

also depends on the MIP gap set during optimization, which denotes an acceptable deviation from

the most optimal solution. Both SimCCS and Sequestrix do not have a set MIP gap and hence

CPLEX and Gurobi use default MIP gap values in generating solutions.

There is also a 68% speed improvement in running SimCCS vs Sequestrix on the specified local

PC and this becomes useful especially when planning for multiple scenarios.

61

Figure 27: Comparison Plot of SimCCS vs Sequestrix results for Demo 1

Qualitative Metrics

A more detailed examination of the alternate pipeline routes generated by both tools reveal slight

differences in the paths. Ideally since the paths generated rely on Dijkstra’s shortest path algorithm

in both tools, and the cost surface graph is also the same for both tools, one would expect that the

selected shortest paths should converge, but this may not necessarily happen as illustrated in figure

28(b), where the circle highlights the path connecting Manhattan Source to carlos1 sink is visibly

different. These differences can be attributed to two reasons explained briefly below:

• Non-unique shortest paths – the Dijkstra’s algorithm is a greedy algorithm which

aims to return the first shortest path it finds, and while the length of this path is

guaranteed to the shortest, there may be multiple other paths with the same path

length.

• Pre-defined post-processing pipeline algorithms – Because multiple shortest paths

are generated between different source sink pairs because of the Delaunay

62

triangulation, sometimes the paths generated between two different node pairs may

fall along the same route except for a few nodes on the graph, these odd-looking

paths generated may require post processing before the MIP optimization is carried

out. The difference in post-processing algorithms may lead to different final paths.

Figure 28: Detailed graphical comparison of solutions generated by SimCCS and Sequestrix for Demo 1.

Plots for Sequestrix are located above and SimCCS below. (a) shows the results of Delaunay

triangulation which look identical for both tools, (b) shows the alternate (or candidate) networks

generated by both tools. The yellow oval line highlights differences in LCP generated, (c) shows the

resulting optimal network selected after optimization, different paths are selected for both tools.

In summary, demo 1 has illustrated that Sequestrix is at least as good as SimCCS in solving the

small-scale CO2 Network optimization problem and suggesting optimal transport routes. This

comes with the added benefits of better visual representation of results and faster runtimes.

63

4.2 Demo 2 (Scalability) – Solving Large Scale Problems Across Oklahoma

In Demo 1, the key thing that was highlighted is the ability of Sequestrix to formulate and solve

the CO2 network optimization problem. As such, the geolocation of sources and sinks and all

associated costs were arbitrarily assigned and had no scientific basis. Having satisfactorily

demonstrated Sequestrix’ ability, more care is taken in demo 2 to assess a research problem with

real sources, sinks, geolocations, and associated costs.

Demo 2 tests Sequestrix on a problem previously solved and published in a self-authored SPE

paper (Jamal et al, 2021). The geographical scope of the problem covers the entire Oklahoma state

and allows a demonstration of scalability in usage of Sequestrix.

4.2.1 Problem Description

Oklahoma is recognized for its abundant CO2 sources, pipelines, and reservoirs where oil and gas

companies have been employing CO2 injection into geological structures for enhanced oil recovery

(EOR) for several years. We employed Sequestrix and SimCCS, software tools that combines

economic and engineering aspects, to consolidate infrastructure concerning CO2 sources,

pipelines, and geological formations. The IRS-endorsed tax incentive initiative, 45Q, has

encouraged many oil and gas companies to contribute to CO2 reduction and global warming

mitigation by capturing CO2 from a variety of sources, identifying optimal pipeline routes, and

selecting the most secure locations for EOR-based injections or deep saline aquifers for

sequestration.

64

4.2.2 Costs – Capture, Transport and Storage

Capture costs.

For this study, capture costs were obtained from ranges published by The Great Plains Institute in

as discussed in section 2.

Transport costs

The transportation costs utilized for this study are the same as generated using the linear trendlines

described in section 2.4.5 which are based on the amount of CO2 flow in pipeline.

Storage costs

Estimating storage costs relies on the storage type, with CO2 potentially stored in oil and gas

reservoirs, saline aquifers, coal bed seams, deep oceans, or via mineral carbonization. Oklahoma,

a terrestrial region without surrounding oceans, considers only geological storage. Storage costs

vary depending on whether CO2 is used for enhanced oil recovery (EOR) or simply for storage.

Injection costs depend on location and depth, with shallow onshore wells having the lowest costs

and deep offshore wells the highest. Injection costs are estimated to range between $0.3-$8 USD

per ton of CO2 stored. The 2021 45Q tax credit of $35/tCO2 stored in hydrocarbon reservoirs is

applied, but the revenue from additional hydrocarbon production is not represented due to data

unavailability. For the Oklahoma study, a pessimistic value of -$31/tCO2 is used as the storage

cost for further evaluation.

65

4.2.3 CO2 Emission sources

CO2 sources

The U.S. Environmental Protection Agency (EPA) monitors greenhouse gas emissions and their

sources, storing the information in their Facility Level Information on Green House gases

(FLIGHT) tool. As at the time of this study in 2021, the FLIGHT tool warehoused GHG emissions

data from 2010 to 2019 for individual states, categorized into nine major sectors. In 2019,

Oklahoma had 151 total emission sources, with contributing facilities ranked across these sectors,

as depicted in figure 29.

Figure 29: 2019 GHG emissions in Oklahoma by sector (Source: EPA FLIGHT Tool)

The power sector emerged as the primary emission source in Oklahoma, accounting for over 60%

of GHG emissions. It is followed by the chemical, refining, petroleum and natural gas processing,

66

and minerals industries. This study utilizes the average annual emission per plant from 2016 to

2019 to represent CO2 emissions in megatons (MT) of CO2 per year. Figure 30 displays the

distribution of these plants across various counties and demographic areas in Oklahoma.

Figure 30: Map of Oklahoma Showing CO2 emissions from sources across counties, bubble size

represents emission volume (DaneshFar et al., 2021)

Streamlining CO2 source selection

To further refine the selection of CO2 emission sources in Oklahoma, the sources were assessed

based on the 2018 45Q federal tax credit system requirements. This screening process identified

the top 36 CO2 emission sources eligible for 45Q tax credits due to their emission capacity.

67

Table 6: Demo 2 top 36 Sources Obtained after application of 45Q eligibility screening

4.2.4 CO2 Storage

Storage Assets and Sites

CO2 sink candidates in Oklahoma were pinpointed as injection wells. The Oklahoma Corporation

Commission collects underground injection data, including well names, operators, geolocations,

and annual injection volumes, making it accessible to the public via their online repository. The

database contained yearly injection volumes and data from 2011 to 2019 were selected.

ID UNIQUE NAME Capture Capacity (MTCO2/yr) Total Unit Cost ($/tCO2) Lat Lon

1 Chisholm Plant 0.1 14 35.775 -97.741

2 Cana Gas Plant 0.1 14 35.535 -98.099

3 OHL NGLP Medford Plant 0.1 14 36.776 -97.756

4 KOCH FERITLIZER ENID LLC ENID NITROGEN PLT 0.4 17 36.379 -97.761

5 VERDIGRIS PLT 0.4 17 36.234 -95.719

6 Redbud Power Plant 2.3 75 35.685 -97.224

7 Sooner 3.3 56 36.454 -97.053

8 Chouteau Power Plant 2.2 75 36.221 -95.276

9 Northeastern 3 75 36.432 -95.701

10 Tenaska Kiamichi Generating Station 1.9 75 34.683 -95.935

11 TERRA INTERNATIONAL (OKLAHOMA) INC 0.2 17 36.437 -99.471

12 Green Country Energy, LLC 1.6 75 35.983 -95.935

13 McClain Energy Facility 0.9 75 35.298 -97.590

14 PRYOR CHEMICAL COMPANY 0.1 17 36.241 -95.278

15 Oneta Energy Center 1.8 75 36.012 -95.697

16 Grand River Dam Authority 0.8 75 36.191 -95.289

17 Seminole (2956) 1 56 34.968 -96.724

18 Muskogee 1.1 75 35.762 -95.285

19 Hugo 0.6 56 34.016 -95.321

20 Horseshoe Lake 0.6 75 35.509 -97.179

21 River Valley Generating Station 0.7 56 35.193 -94.647

22 Mustang 0.5 75 35.471 -97.673

23 EAGLE MATERIALS, INC. 0.3 56 36.194 -95.812

24 CONTINENTAL CARBON Ponca City Plant 0.2 30 36.666 -97.072

25 HOLCIM INCORPORATED 0.4 56 34.768 -96.697

26 Phillips 66 Ponca City Refinery 1.7 56 36.682 -97.090

27 LONE STAR IND INC DBA BUZZI UNICEM USA PRYOR CEMENT PLANT 0.3 56 36.272 -95.223

28 US LIME COMPANY-ST. CLAIR 0.1 56 35.582 -94.819

29 VALERO REFINING CO -OKLAHOMA VALERO ARDMORE REFINERY 0.9 56 34.206 -97.104

30 OXBOW CALCINING LLC 0.3 56 36.518 -97.839

31 WYNNEWOOD REFINING CO 0.7 56 34.629 -97.169

32 HOLLYFRONTIER TULSA REFINING LLC - EAST 0.5 56 36.118 -96.001

33 HOLLYFRONTIER TULSA REFINING LLC - WEST 0.4 56 36.140 -96.015

34 Covanta WBH 0.1 39 36.132 -96.017

35 GP MUSKOGEE MILL 0.5 39 35.740 -95.287

36 International Paper - Valliant Mill 0.3 39 33.998 -95.112

DEMO 2 SOURCES

68

Sink Clusters

An effort was made to aggregate CO2 injection sites, or sinks, into clusters to reduce redundancy

and computational time for the subsequent source-sink matching discussed in later sections. To

create these clusters, a machine learning clustering algorithm called 'K-MEANS clustering' (Lloyd,

1957) was utilized. This algorithm grouped injection sites into clusters using Euclidean distances

and calculated a centroid to represent them. The well names and geographic locations were the

only information used to generate these clusters. The implementation of this algorithm resulted in

seven clusters belonging to six operators and 14 independent injection sites that fell under the same

six operators and an additional two operators. This effectively reduced 245 injection sites to 21.

The average CO2 injection rate per well per operator was estimated by averaging the annual

injection volumes between 2011 and 2018 and dividing by the maximum number of wells within

those years. This generated a pessimistic value with significant potential upsides. The value was

aggregated for the clusters containing more than one well.

69

Table 7: Demo 2 Sink clusters obtained after application of K-MEANS to point injection wells

4.2.5 CO2 Network Optimization Modeling Results

The annual sequestration target was 2.14 MTCO2/yr for a duration of 20 years. This target

represents the total storage capacity of all sinks divided by the sequestration duration. A capital

recovery factor of 10% was selected for this run and the results for both Sequestrix and SimCCS

are presented in table 8 with pipeline routes shown in figure 31 and 32.

Table 8: Comparison of SimCCS and Sequestrix results for Demo 2

Metric
SimCCS
(local) Sequestrix

Unit Capture Cost ($/ton CO2) 23.87 23.91

Unit Transport Cost ($/ton CO2) 21.03 19.48

Unit Storage Cost ($/ton CO2) -31.00 -31.00

Unit Total Cost ($/ton CO2) 13.90 12.39

Runtime (seconds) 1800 280

Total Pipeline Length (km) 1108.98 1206.58

ID UNIQUE NAME Storage Capacity (MTCO2) Total Unit Cost ($/tCO2) Lat Lon

1 Cluster 1 4.01 -31 36.747 -101.100

2 Cluster 2 3.43 -31 34.790 -97.615

3 Cluster 3 20.99 -31 36.876 -101.630

4 Cluster 4 1.8 -31 35.300 -98.295

5 Cluster 5 4.18 -31 36.515 -100.912

6 Cluster 6 3.24 -31 34.473 -97.441

7 Cluster 7 2.49 -31 34.421 -97.614

8 i1 0.11 -31 35.182 -98.201

9 i2 0.11 -31 35.184 -98.201

10 i3 0.11 -31 35.189 -98.201

11 i4 0.31 -31 36.886 -101.511

12 i5 0.31 -31 36.876 -101.800

13 i6 0.31 -31 36.891 -101.013

14 i7 0.31 -31 36.843 -101.506

15 i8 0.31 -31 36.856 -101.211

16 i9 0.31 -31 36.567 -101.664

17 i10 0.12 -31 34.482 -97.707

18 i11 0.12 -31 34.506 -97.598

19 i12 0.12 -31 35.045 -97.852

20 i13 0.12 -31 35.060 -97.738

21 i14 0.01 -31 34.932 -98.148

DEMO 2 SINKS

70

In the results generated by Sequestrix, the unit capture cost is higher than in SimCCS, but the

transport cost is significantly lower. Consequently, the overall total cost of the solution produced

by Sequestrix is $1.51 cheaper than that generated by SimCCS, although it necessitates a longer

pipeline length. A detailed analysis of the candidate and solution networks generated by these two

solutions provides insight into the differences in pipeline length.

Figure 31: Sequestrix result view on map surface, the green circles represent CO2 sinks, red represents

CO2 sources and yellow are transshipment nodes. The green path highlighted is the optimal pipeline

network while the other blue lines represent alternate pipeline networks.

71

Figure 32: SimCCS results for Demo 2. The red circles represent CO2 sources and blue represents CO2

sinks. Circles that are highlighted are the selected optimal assets and the green path shows the optimal

pipeline network while the other purple lines represent the candidate network.

In Figure 33(a) and 33(b), it is evident that the selected sinks in the mid-southern section of

Oklahoma are not the same, resulting in varying pipeline routes. In Figure 34(a) and 34(b), we

observe that in the mid-north to northwest regions, the pipeline routes differ between SimCCS and

Sequestrix. Although the paths in Sequestrix results are longer, the construction costs are lower,

highlighting the significance of generating alternate pipeline routes, as well as other factors such

as post-processing algorithms, MIP gap, and solver selection.

72

Figure 33: Zoomed in image of LOWER pipeline path for optimal solutions generated by Sequestrix (a)

and SimCCS (b).

Figure 34: Zoomed in image of UPPER pipeline path for optimal solutions generated by Sequestrix (a)

and SimCCS (b).

73

4.3 Demo 3 – New Features, Adding Enid-Purdy Pipeline to CO2 Optimization

Network

Demo 3 showcases the significant accomplishments of this research project which is incorporating

existing pipelines into the cost surface graph and solving optimal CO2 sequestration routes. This

demo will concentrate solely on Sequestrix, as SimCCS currently lacks a mechanism for importing

existing pipelines into the network.

4.3.1 Enid Purdy Pipeline

The US Department of Energy (DOE), in collaboration with the National Energy Technology

Laboratory (NETL), published a report (Callahan et al., 2014) detailing the existing CO2

infrastructure in the United States. In the mid-continent region, there are five major pipelines

located in Oklahoma and lower Kansas that supply CO2 from various industrial sources to oil and

gas operators for use in CO2-EOR. Figure 35 presents a map highlighting these five CO2 pipelines,

and Table 9 provides a summary of their operators, lengths, and capacities.

74

Figure 35: Mid-Continent CO2 pipeline infrastructure spanning Oklahoma and lower Kansas (Callahan

et al., 2014)

Table 9: Ownership details and specifications of Mid-Continent transport pipelines(Callahan et al., 2014)

Scale Pipeline Operator
Locatio

n
Length

(mi)
Diameter

(in)

Estimated Flow
Capacity

(MMSCF/D)

Small Scale
Distribution

Systems

Coffeyville-
Burbank

Chaparral
Energy

KS, OK 68 8 80

Enid-Purdy
(Central

Oklahoma)
Anadarko OK 117 8 80

TransPetco TransPetco TX, OK 110 8 80

TexOk
Chaparral

Energy
OK 95 6 70

Borger
Chaparral

Energy
TX, OK 86 4 50

75

To highlight Sequestrix's capability to integrate existing pipelines into network optimization, the

Enid-Purdy Pipeline in central Oklahoma was selected. The primary reason for this choice is that,

as observed in Demo 2, there are numerous CO2 sources and sinks in the surrounding area, and the

pipeline is strategically positioned to facilitate thorough utilization of the various scenarios that

Sequestrix can handle.

4.3.2 CO2 Sources and Sinks Dataset

A subset of the sinks and sources used for demo 2 were selected for demo 3. Additional Sinks

representing oil and gas fields the Enid-Purdy pipeline currently injects CO2 into is also included.

A detailed list of sources, sinks, their geo-locations, and capacities are given in tables 10 and 11.

Table 10: Demo 2 CO2 sources information

Table 11: Demo 3 CO2 sinks information

ID UNIQUE NAME Capture Capacity (MTCO2/yr) Total Unit Cost ($/tCO2) Lat Lon

1 OXBOW CALCINING LLC 0.32 56 36.545 -97.850

2 Mustang 0.53 75 35.471 -97.673

3 WYNNEWOOD REFINING CO 0.63 75 34.629 -97.169

4 Redbud Power Plant 2.30 75 35.685 -97.224

5 Horseshoe Lake 0.60 75 35.509 -97.179

6 Cana Gas Plant 0.10 14 35.535 -98.099

7 OHL NGLP Medford Plant 0.10 14 36.776 -97.756

8 TERRA INTERNATIONAL (OKLAHOMA) INC 0.20 17 36.437 -99.471

DEMO 3 SOURCES

ID UNIQUE NAME Storage Capacity (MTCO2) Total Unit Cost ($/tCO2) Lat Lon

1 Field Outlet1 4 -31 34.381 -97.749

2 Purdy Field 3.4 -31 34.758 -97.605

3 i1-i3 0.33 -31 35.184 -98.201

4 i10 0.12 -31 34.482 -97.707

5 i11 0.12 -31 34.506 -97.598

6 Cluster 6 3.24 -31 34.473 -97.441

7 Cluster 7 2.49 -31 34.421 -97.614

8 Cluster 4 1.8 -31 35.300 -98.295

DEMO 3 SINKS

76

In summary, there are 8 sources with a combined annual capture capacity of 4.77 MTCO2/yr, and

8 sinks with a combined annual storage capacity of 15.5 MTCO2.

4.3.3 Base Case – CO2 Network Optimization with No Pipeline

A base case was defined as a standard CO2 network optimization considering the given sources

and sinks. This base case will serve as a reference point for comparison when embedding existing

pipelines and exploring the various modes available in Sequestrix. The base case was solved for a

duration of 10 years, targeting an annual capture of 1.55 MTCO2/yr and a Capital Recovery Factor

(CRF) of 10%.

Figure 36 a, b, and c display the Delaunay triangulation results, the alternative new pipeline routes

generated, and the selected optimal pipeline built, with all results produced within Sequestrix.

Table 12 summarizes the outcome of the base case model.

Figure 36: Demo 3 Base case (no existing pipeline) Sequestrix Solution. (a) Delaunay triangulation

results, (b) alternate pipeline routes, (c) Optimal pipeline path selected

77

Table 12: Demo 3 Base Case Sequestrix results

Metric
Sequestrix Base

Case

Unit Capture Cost ($/ton CO2) 55.77

Unit Transport Cost ($/ton
CO2) 12.39

Unit Storage Cost ($/ton CO2) -31.00

Unit Total Cost ($/ton CO2) 37.15

Runtime (seconds) 108

Total Pipeline Length (km) 572.56

4.3.4 Case 1 – Optimization with Enid-Purdy Pipeline 0.5MTCO2/yr Cap No Tie-in No

Exclusion

In Case 1, the Enid-Purdy Pipeline is introduced into the cost surface graph for the first time. As

described in Section 3, a subset of the pipeline coordinates is extracted from the National Pipeline

Mapping System (NPMS) and imported into Sequestrix. This subset is utilized to generate a

comprehensive representation of the pipeline through Dijkstra's shortest path augmentation for

unconnected edges.

Based on Table 9, the estimated pipeline capacity is 80 MMSCF/D (1.5 MTCO2/yr), and according

to partner information, approximately 67% of this capacity is currently in use. Consequently, for

the purpose of simulation, the pipeline capacity is set to 0.5 MTCO2/yr to account for the remaining

33%. To utilize this feature in Sequestrix, one simply needs to complete the provided template

pipeline file, ensuring that the pipeline geolocations are populated in the direction of the flow

through the pipe (upstream to downstream) if it is a unidirectional pipeline. A smaller subset of

the Enid-Purdy pipeline used as part of the input file, and the input section detailing where it is

uploaded into Sequestrix is displayed in Figure 37 for reference. The resulting source-sink map

78

with the unrefined pipeline path imported is shown in Figure 38. The process of pipeline location

refinement and gap-filling using Dijkstra's algorithm occurs during the solve step, as outlined in

Section 3.2.2.

Figure 37:(a) Raw Enid-Purdy pipeline input template with latitude, longitude, and capacity

specifications. (b) Sequestrix interface for importing existing pipelines

79

Figure 38: Sequestrix input page showing map coordinates of the sources and sinks (in red and green

respectively) and the raw Enid-Purdy pipeline path (in purple) for Demo 3 case 1

By default, Sequestrix assumes the pipeline to be unidirectional with no tie-in points or exclusion

points, as defined in Section 3. Consequently, during the shortest paths generation, tie-ins into the

pipeline are permitted at any point along the pipeline path. This default selection can be modified,

and specific tie-in locations and exclusion zones can be specified, as demonstrated in Cases 2 to

6.

The alternative flow network is generated using the same source and sink inputs as well as the

Enid-Purdy pipeline, and the new optimization is solved. The results are presented in Figure 39

and Table 13.

80

Figure 39: Sequestrix results for Demo 3, Case 1 - Embedding Enid-Purdy Pipeline with no tie-in

locations. (a) Alternate network generated, (b) Optimal solution path passing through existing Pipeline

Path

A qualitative observation reveals that the alternative new pipeline paths generated in Case 2 differ

significantly from the results in Case 1, and the selected solution allows some flow to occur along

the Enid-Purdy Pipeline, exiting at various points to connect to nearby sinks for sequestration. As

shown in Table 13, the unit transportation cost decreases from $12.39 per ton of CO2 to

approximately $9.91 per ton of CO2 transported, representing an estimated cost reduction of 20%.

However, there are limitations to this interpretation. In Sequestrix, the cost surface graph is

modified so that an existing pipeline has a total path edge weight of 0. When estimating

transportation costs, this edge weight is multiplied by the costs calculated from transportation cost

trends, effectively reducing the cost to zero for existing pipelines. In practice, while construction

81

costs will be zero, operational and maintenance costs will persist, though they are relatively

insignificant compared to construction expenses.

Table 13: Demo 3, Case 1 Sequestrix results

Metric Sequestrix Case 1

Unit Capture Cost ($/ton CO2) 55.77

Unit Transport Cost ($/ton CO2) 9.91

Unit Storage Cost ($/ton CO2) -31.00

Unit Total Cost ($/ton CO2) 34.68

Runtime (seconds) 197

Enid-Purdy Pipeline Utilized (km) 279.68

Total New Pipeline Length (km) 422.03

The total length of new pipeline required to achieve the sequestration target also decreases by 27%,

from 572 km to 422 km. This reduction is the primary driver of lower transport costs. Based on

the results from Case 1, there are seven tie-in points along the pipeline with varying geolocations

and connections to different sources and sinks, as illustrated in Figure 40. Case 1's results clearly

demonstrate that if an existing pipeline with lower transport costs than a new pipeline is predefined,

the optimization algorithm will recommend connecting to this pipeline to transport the maximum

amount of CO2 possible.

82

Figure 40: Zoomed-in results for Demo 3, Case 1, showing all the tie-in points along the Enid-Purdy

pipeline suggested by Sequestrix (a) highlights 4 tie-ins with one being an inlet point and the rest being

outlet points, (b) Tie-in point towards the begiing of the pipeline facility at Koch Fertiizer plant (c) 2

incoming Tie-in points along Enid-Purdy pipeline path

4.3.5 Case 2 – Enid-Purdy Pipeline 2MTCO2/yr Cap 2 Tie-in points No Exclusion

Case 2 depicts a situation in which a pipeline operator has designated only two tie-in locations

along the entire pipeline. This scenario more accurately reflects real-world circumstances, as there

are often limitations on the number of tie-in locations an operator is willing to accommodate along

a pipeline, which may be due to topographical, environmental, or land rights constraints.

83

As before, the Enid-Purdy pipeline is utilized in this case; however, the annual transport capacity

is now set at 2 MTCO2/yr. The purpose of increasing the capacity beyond the known (or estimated)

capacity is to test the optimization limits, promoting the pipeline as the primary transport path. The

specified tie-in locations are Lat 35° 57' 1.7" N, Lon -97° 47' 30.58" W, in the northern section of

the pipeline, and Lat 35° 0' 42.03" N, -97° 46' 52.54" W in the middle to lower pipeline section.

These tie-in points along the pipeline can be entered into the Sequestrix sidebar, as demonstrated

in Figures 41 and 42 below.

Figure 41: Sequestrix input page showing tie-in points that were entered on the left sidebar plotted along

the Enid-Purdy pipeline.

84

Figure 42: Zoomed in view of the Enid-Purdy pipeline and 2 tie-in points(colored yellow) with

surrounding sources and sinks (colored red and green)

Upon specifying the tie-in points and rerunning the optimization, a summary of the results is

presented in Table 14. In Figure 43, it is evident that the Enid-Purdy pipeline remains unused when

specific tie-in locations are established. Furthermore, since the pipeline cannot be accessed from

any other location except the designated tie-in points, the proposed paths connecting sources in

the north to sinks in the south follow a lengthier route, resulting in a total new pipeline distance

that is longer than the base case (575 km vs. 572 km). This extended pipeline consequently impacts

the unit transport cost, which is also higher than the base case. In summary, setting specific tie-in

locations along the pipeline without allowing for variation proves to be counterproductive in

enhancing sequestration economics.

85

Figure 43: Resulting Optimal pipeline generated by Sequestrix for Demo 3 Case 2

Table 14: Sequestrix Summary of Results for Demo 3 Case 2

Metric Sequestrix Case 2

Unit Capture Cost ($/ton CO2) 55.77

Unit Transport Cost ($/ton CO2) 12.69

Unit Storage Cost ($/ton CO2) -31.00

Unit Total Cost ($/ton CO2) 37.45

Runtime (seconds) 237

Enid-Purdy Pipeline Utilized (km) 0

Total New Pipeline Length (km) 575.32

4.3.6 Case 3 – Enid-Purdy Pipeline 2MTCO2/yr Cap 2 Tie-in pts Exclusion at Ends

Here the operator specifies 2 geolocations defining a region where any tie-in is allowed. This refers

to scenario 2 discussed in section 3.2.3. The tie-in point geolocations chosen for this case are Lat

86

36° 18' 53.71", Lon -97° 46' 58.06" for point 1 and Lat 36° 39' 27.32”, Lon -97° 46' 58.06" for

point 2. The results are summarized in table 15 and figure 44.

Figure 44: Sequestrix Input and Solve page map plots for Demo 3 Case 3. (a) shows the Enid-Purdy

pipeline with the tie-in points specified. This time an exclusion zone before the tie-in points are activated,

(b) shows the optimal pipeline network generated which utilizes the pipeline route.

87

Figure 45: Zoomed in plot of Demo 3 Case 3 showing that the exclusion zones above and below the 2 tie-

in points are honored by Sequestrix

Table 15: Sequestrix Summary of Results for Demo 3 Case 3

Metric Sequestrix Case 3

Unit Capture Cost ($/ton CO2) 55.77

Unit Transport Cost ($/ton CO2) 7.80

Unit Storage Cost ($/ton CO2) -31.00

Unit Total Cost ($/ton CO2) 32.57

Runtime (seconds) 204

Enid-Purdy Pipeline Utilized (km) 258.3

Total New Pipeline Length (km) 323.45

Figure 45 a and b display a magnified view of the solution map, highlighting that Sequestrix

adheres to the specified constraints and that no pipeline tie-in occurs before or after the designated

88

points 1 and 2. In Case 3, the transport cost associated with utilizing 258 km of the Enid-Purdy

pipeline is reduced, which is notably lower than the scenario where the entire pipeline length is

available for tie-in. This outcome can be attributed to the fact that during the generation of shortest

paths between paired nodes (source-sink, source-source, or sink-sink), the overall transportation

cost and potential transport volume are not considered, as they are only optimized after alternative

paths have been proposed. Dijkstra's algorithm solely minimizes the total edge weight, which could

be seen as a greedy approach to problem-solving. Consequently, exiting the pipeline at a higher

(relative to downstream exit of pipeline) location along the path may not yield the lowest edge

weights but might facilitate better connections between sources and sinks. This observation

becomes evident only after the MIP network optimization problem has been resolved.

A 37% reduction in the unit transportation cost and a 12% decrease in the overall sequestration

cost can be observed, which is associated with a shorter length of new pipeline proposed that still

effectively delivers the target sequestration volume. This cost reduction is also due to the upgraded

pipeline capacity of the base case (from 0.5 to 2 MTCO2/yr) which allows for more flow to be

routed through existing pipeline

4.3.7 Case 4 – Enid-Purdy Pipeline 2MTCO2/Yr Cap Single Tie-In Point with Exclusion

Before

Here the operator has only one single point along the pipeline, beyond which no tie in is allowed.

The geolocation of this tie in point is Lat 36° 40' 27.42" N and Lon -97° 47' 2.04" W. Sequestrix

comfortably solves this case, and the results are shown in table 16 and figure 46 below:

89

Figure 46: Zoomed in plot of Demo 3 Case 4 showing that the exclusion zones above and below the single

tie-in point is honored by Sequestrix.

Table 16: Sequestrix Summary of Results for Demo 3 Case 4

Metric Sequestrix Case 4

Unit Capture Cost ($/ton CO2) 55.77

Unit Transport Cost ($/ton CO2) 9.43

Unit Storage Cost ($/ton CO2) -31.00

Unit Total Cost ($/ton CO2) 34.20

Runtime (seconds) 210.66

Enid-Purdy Pipeline Utilized (km) 138.07

Total New Pipeline Length (km) 567.25

A notable increase in the total length of new pipeline employed can be observed, approaching the

original length. Nevertheless, the overall cost remains significantly lower than the base case, as a

90

portion of the flow is transported through the 138 km of the Enid-Purdy pipeline. This occurs

because a new pipeline is constructed parallel to the existing Enid-Purdy pipeline along the

excluded zone length, to convey the necessary volume of CO2 to the storage sites. The choice of a

single tie-in point with an exclusion zone preceding the point proves to be ineffective for this demo

case.

4.3.8 Summary of Embedding Pipelines in CO2 Sequestration Network Optimization

After creating four separate scenarios (1-4), each involving various interactions with the Enid-

Purdy pipeline as dictated by the input data and demonstrating Sequestrix's capability to manage

multiple tie-in points based on user preferences or limit access to specific areas along the pipeline,

a thorough comparison with the base case (excluding the pipeline) can be summarized as follows:

1. Assigning specific tie-in points along an existing pipeline may result in a

suboptimal solution compared to a scenario without an integrated existing pipeline,

as these tie-in points may not be utilized during the Dijkstra’s LCP process.

2. Allowing Sequestrix to identify the optimal tie-in locations without constraints or

designating tie-in points with exclusion zones is an effective approach to leverage

existing pipeline routes.

3. A general increase in runtime (2x in Demo 3, cases 1-4) is observed when

incorporating an existing pipeline, which can be attributed to the preprocessing of

sparse pipeline latitude and longitude points and interpolation using Dijkstra's

shortest path algorithm.

91

4. Employing tie-in points with exclusion zones can decrease transportation costs by

up to 37%, resulting in an overall cost reduction of 12%.

Figure 47: Overall Comparison plots for Demo 3. (a) shows varying how the transport cost from base

case to case 4 affects the total unit cost for project, (b) plots other metrics such as runtime, existing

pipeline utilization and new pipeline length proposed.

92

CHAPTER 5: Conclusions

5.1 Concluding Remarks

The primary aim of this research was to develop a method for incorporating existing pipelines into

CO2 sequestration network optimization, for which six algorithms were devised. The initial

algorithm presents a technique for adjusting the edge weights of the cost surface graph, setting

them to zero for grid cells representing the geolocation of a pipeline route. The subsequent four

algorithms enable users to designate tie-in points and exclusion zones along any given pipeline,

managing the ingress and egress of new pipeline streams. The final algorithm restricts diagonal

crossover along existing pipeline routes.

These six algorithms, combined with supplementary path post-processing algorithms delineated in

the APPENDIX, and established algorithms from SimCCS, the preeminent platform for techno-

economic CO2 sequestration network optimization, facilitated the creation of a novel software

package called Sequestrix. Developed using the Python programming language and various open-

source front-end applications, Sequestrix offers users the flexibility to assess multiple

sequestration scenarios and obtain verifiably accurate estimates of capture, transport, and storage

costs for CCS projects.

To ensure the software's reliability, Sequestrix was subjected to benchmark testing against

SimCCS on a local computer. The results demonstrated a considerable improvement in

performance, with a 68% reduction in runtime. These enhancements can be partially attributed to

solver selection (Gurobi over CPLEX) but primarily to the manner in which the input cost surface

93

graph is processed. Importantly, these improvements did not compromise the quality of

Sequestrix's output, as discussed in the preceding section.

Sequestrix Demo 3 illustrated various scenarios for assigning or calculating tie-in points along the

Enid-Purdy pipeline. Compared to the base case without the pipeline, utilizing the pipeline can

result in up to a 12% decrease in the unit total cost of sequestration. However, specifying single

tie-in points without exclusion zones may adversely affect sequestration economics, potentially

leading to an increase in unit total sequestration costs compared to the base case, however this can

only be verified for the cases tested.

Currently, Sequestrix is hosted on GitHub and can be accessed at

https://github.com/davidpcg01/CO2-TRANSPORT-NETWORK-OPTIMIZATION-PROJECT.

The choice to develop Sequestrix in Python was deliberate, enabling straightforward deployment

on multiple local computers, with all required components installable via the pip installer for

Python. In the future, the software may be made publicly available on a dedicated website.

5.2 Future Work

To further extend this work, researchers may consider modifying the cost along existing pipeline

path to a fixed user input number to account for operational cost or utilizing a new set of linearized

pipeline operational costs which will only be applied to transmission nodes along an existing

pipeline. In doing this, care must be taken to ensure it is applied after initially defining the zero-

cost path and finding all LCP that will traverse the tie-in points and exclusion zones.

Also, the diagonal pipeline exclusion algorithm may be applied on new paths whilst generating

LCP, however an optimized heuristic is required determine the sequence in which these LCPs are

https://github.com/davidpcg01/CO2-TRANSPORT-NETWORK-OPTIMIZATION-PROJECT

94

generated, one suggested way is to assign importance weights to nodepair connections, the paths

can then be generated in ranked order of importance.

To account for geologic uncertainty related to the volume of CO2 that can be stored, when running

optimization, one may use probabilistic storage capacities with assigned likelihood of actually

meeting that target. Designing alternate pipeline networks can now be done in a way such that the

routes generated will honor the target sequestration volume by function of storage volume and

likelihood of success.

Finally, this theoretical background behind the development of optimized transport networks and

embedding existing pipelines can also be transferred to solving similar routing challenges for

hydrogen storage, which is crucial to energy transition. In this case, the sources and the sinks geo

information must be modified to represent physical hydrogen generation plants, and underground

storage facilities.

95

References

Abramson, E., McFarlane, D., & Brown, J. (2020). WHITEPAPER ON REGIONAL

INFRASTRUCTURE FOR MIDCENTURY DECARBONIZATION.

Achanta, D. S., Balch, R. S., & Grigg, R. B. (2012, February 7). Simulation of Leakage Scenarios

for CO2 Storage at Gordon Creek, Utah. Carbon Management Technology Conference.

https://doi.org/10.7122/151483-MS

Ajoma, E., Sungkachart, T., Saira, -, Yin, H., & Le-Hussain, F. (2021). A Laboratory Study of

Coinjection of Water and CO2 to Improve Oil Recovery and CO2 Storage: Effect of

Fraction of CO2 Injected. SPE Journal, 26(04), 2139–2147.

https://doi.org/10.2118/204464-PA

Beckwith, R. (2011). Carbon Capture and Storage: A Mixed Review. Journal of Petroleum

Technology, 63(05), 42–45. https://doi.org/10.2118/0511-0042-JPT

Bielicki, J. M., Calas, G., Middleton, R. S., & Ha-Duong, M. (2014). National corridors for climate

change mitigation: Managing industrial CO2 emissions in France. Greenhouse Gases:

Science and Technology, 4(3), 262–277. https://doi.org/10.1002/ghg.1395

Bielicki, J. M., Langenfeld, J. K., Tao, Z., Middleton, R. S., Menefee, A. H., & Clarens, A. F.

(2018). The geospatial and economic viability of CO2 storage in hydrocarbon depleted

fractured shale formations. International Journal of Greenhouse Gas Control, 75(C),

Article LA-UR-17-24674. https://doi.org/10.1016/j.ijggc.2018.05.015

96

Burghardt, J., & Appriou, D. (2021, June 18). State of Stress Uncertainty Quantification and

Geomechanical Risk Analysis for Subsurface Engineering. 55th U.S. Rock

Mechanics/Geomechanics Symposium.

https://onepetro.org/ARMAUSRMS/proceedings-abstract/ARMA21/All-

ARMA21/468335

Callahan, K., Goudarzi, L., Wallace, M., & Wallace, R. (2014). A Review of the CO2 Pipeline

Infrastructure in the U.S. (DOE/NETL-2014/1681). National Energy Technology Lab.

(NETL), Albany, OR (United States). https://doi.org/10.2172/1487233

Christensen, J. R., Stenby, E. H., & Skauge, A. (2001). Review of WAG Field Experience. SPE

Reservoir Evaluation & Engineering, 4(02), 97–106. https://doi.org/10.2118/71203-PA

DaneshFar, J., Nnamdi, D., Moghanloo, R. G., & Ochie, K. (2021). Economic Evaluation of CO2

Capture, Transportation, and Storage Potentials in Oklahoma. Day 1 Tue, September 21,

2021, D011S003R002. https://doi.org/10.2118/206106-MS

Delaunay, B. (1934). Sur la sphère vide. A la mémoire de Georges Voronoï. Bulletin de l’Académie

des Sciences de l’URSS. Classe des sciences mathématiques et na, 6, 793–800.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische

Mathematik, 1(1), 269–271. https://doi.org/10.1007/BF01386390

Driezen, K., Adriaensen, F., Rondinini, C., Doncaster, C. P., & Matthysen, E. (2007). Evaluating

least-cost model predictions with empirical dispersal data: A case-study using

radiotracking data of hedgehogs (Erinaceus europaeus). Ecological Modelling, 209(2),

314–322.

97

Ellett, K. M., Middleton, R. S., Stauffer, P. H., & Rupp, J. A. (2017). Facilitating CCS Business

Planning by Extending the Functionality of the SimCCS Integrated System Model. Energy

Procedia, 114, 6526–6535. https://doi.org/10.1016/j.egypro.2017.03.1788

Fakher, S., & Imqam, A. (2019). A review of carbon dioxide adsorption to unconventional shale

rocks methodology, measurement, and calculation. SN Applied Sciences, 2(1), 5.

https://doi.org/10.1007/s42452-019-1810-8

Gale, J., Christensen, N. P., Cutler, A., & Torp, T. A. (2001). Demonstrating the Potential for

Geological Storage of CO2: The Sleipner and GESTCO Projects. Environmental

Geosciences, 8(3), 160–165. https://doi.org/10.1046/j.1526-0984.2001.008003160.x

Gorucu, F. B., Jikich, S. A., Bromhal, G. S., Sams, W. N., Ertekin, T., & Smith, D. H. (2005).

Matrix shrinkage and swelling effects on economics of enhanced coalbed methane

production and CO 2 sequestration in coal: Society of Petroleum Engineers Eastern

Regional Meeting 2005.

http://www.scopus.com/inward/record.url?scp=84858562446&partnerID=8YFLogxK

Gu, Y., & Yang, D. (2004). Interfacial Tensions and Visual Interactions of Crude Oil-Brine-CO

Systems Under Reservoir Conditions. Canadian International Petroleum Conference.

Canadian International Petroleum Conference, Calgary, Alberta.

https://doi.org/10.2118/2004-083

Hepburn, C., Adlen, E., Beddington, J., Carter, E. A., Fuss, S., Mac Dowell, N., Minx, J. C., Smith,

P., & Williams, C. K. (2019). The technological and economic prospects for CO2

98

utilization and removal. Nature, 575(7781), 87–97. https://doi.org/10.1038/s41586-019-

1681-6

Hoover, B., Middleton, R. S., & Yaw, S. (2019). CostMAP: An open-source software package for

developing cost surfaces.

Hopkins, L. D. (1973). Design method evaluation—An experiment with corridor selection. Socio-

Economic Planning Sciences, 7(5), 423–436.

Huber, D. L., & Church, R. L. (1985). TRANSMISSION CORRIDOR LOCATION MODELING.

Journal of Transportation Engineering, 111(2), Article Reprint.

https://trid.trb.org/view/270278

IEA. (2022). World Energy Outlook.

IPCC. (2005). IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by

Working Group III of the Intergovernmental Panel on Climate Change [Metz, B., O.

Davidson, H. C. de Coninck, M. Loos, and L. A. Meyer (eds.)]. (p. 442 pp). Cambridge

University Press.

IPCC. (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of

Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on

Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K.

Mintenbeck, A. Alegr. Cambridge University Press. doi:10.1017/9781009325844

99

Jones, E. C., Yaw, S., Bennett, J. A., Ogland-Hand, J. D., Strahan, C., & Middleton, R. S. (2022).

Designing multi-phased CO 2 capture and storage infrastructure deployments. Renewable

and Sustainable Energy Transition, 2, 100023. https://doi.org/10.1016/j.rset.2022.100023

Keil, J. M., & Gutwin, C. A. (1992). Classes of graphs which approximate the complete euclidean

graph. Discrete & Computational Geometry, 7(1), 13–28.

https://doi.org/10.1007/BF02187821

Lobo, L. J. (2017). An Improved Mathematical Formulation For the Carbon Capture and Storage

(CCS) Problem. University of Arizona.

Lugschitz, H. (2017). Overhead Lines and Underground Cables. In K. O. Papailiou (Ed.),

Overhead Lines (pp. 1299–1318). Springer International Publishing.

https://doi.org/10.1007/978-3-319-31747-2_19

McPherson, B. J. O. L., & Cole, B. S. (2000). Multiphase CO2 flow, transport and sequestration

in the Powder River Basin, Wyoming, USA. Journal of Geochemical Exploration, 69–70,

65–69. https://doi.org/10.1016/S0375-6742(00)00046-7

Middleton, R. S. (2013). A new optimization approach to energy network modeling:

Anthropogenic CO2 capture coupled with enhanced oil recovery. International Journal

of Energy Research, 37(14), 1794–1810. https://doi.org/10.1002/er.2993

Middleton, R. S., & Bielicki, J. M. (2009). A scalable infrastructure model for carbon capture and

storage: SimCCS. Energy Policy, 37(3), 1052–1060.

https://doi.org/10.1016/j.enpol.2008.09.049

100

Middleton, R. S., Bielicki, J. M., Keating, G. N., & Pawar, R. J. (2011). Jumpstarting CCS using

refinery CO2 for enhanced oil recovery. Energy Procedia, 4, 2185–2191.

https://doi.org/10.1016/j.egypro.2011.02.105

Middleton, R. S., & Brandt, A. R. (2013). Using Infrastructure Optimization to Reduce

Greenhouse Gas Emissions from Oil Sands Extraction and Processing. Environmental

Science & Technology, 47(3), 1735–1744. https://doi.org/10.1021/es3035895

Middleton, R. S., Clarens, A. F., Liu, X., Bielicki, J. M., & Levine, J. S. (2014). CO2 Deserts:

Implications of Existing CO2 Supply Limitations for Carbon Management.

Environmental Science & Technology, 48(19), 11713–11720.

https://doi.org/10.1021/es5022685

Middleton, R. S., Keating, G. N., Stauffer, P. H., Jordan, A. B., Viswanathan, H. S., Kang, Q. J.,

Carey, J. W., Mulkey, M. L., Sullivan, E. J., Chu, S. P., Esposito, R., & Meckel, T. A.

(2012). The cross-scale science of CO2 capture and storage: From pore scale to regional

scale. Energy & Environmental Science, 5(6), 7328–7345.

https://doi.org/10.1039/C2EE03227A

Middleton, R. S., Kuby, M. J., & Bielicki, J. M. (2012). Generating candidate networks for

optimization: The CO2 capture and storage optimization problem. Computers,

Environment and Urban Systems, 36(1), 18–29.

https://doi.org/10.1016/j.compenvurbsys.2011.08.002

101

Middleton, R. S., Yaw, S. P., Hoover, B. A., & Ellett, K. M. (2020). SimCCS: An open-source

tool for optimizing CO2 capture, transport, and storage infrastructure. Environmental

Modelling & Software, 124, 104560. https://doi.org/10.1016/j.envsoft.2019.104560

Mohamed, I. M., & Nasr-El-Din, H. A. (2012, February 15). Formation Damage Due to CO2

Sequestration in Deep Saline Carbonate Aquifers. SPE International Symposium and

Exhibition on Formation Damage Control. https://doi.org/10.2118/151142-MS

Morbee, J., Serpa, J., & Tzimas, E. (2011). Optimal planning of CO2 transmission infrastructure:

The JRC InfraCCS tool. Energy Procedia, 4, 2772–2777.

https://doi.org/10.1016/j.egypro.2011.02.180

Morgan, D., Guinan, A., & Sheriff, A. (2022). FECM/NETL CO2 Transport Cost Model (2022):

Description and User’s Manual (DOE/NETL-2022/3218). National Energy Technology

Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States).

https://doi.org/10.2172/1856355

NOAA. (2022). Climate Change: Atmospheric Carbon Dioxide. http://www.climate.gov/news-

features/understanding-climate/climate-change-atmospheric-carbon-dioxide

Núñez-López, V., & Moskal, E. (2019). Potential of CO2-EOR for Near-Term Decarbonization.

Frontiers in Climate, 1. https://www.frontiersin.org/articles/10.3389/fclim.2019.00005

Ochie, K., Burghardt, J., Rouzbeh, M., & Daneshfar, J. (2022, September 26). A Probability

Evaluation of Seismicity Risks Associated with CO2 Injection into Arbuckle Formation.

SPE Annual Technical Conference and Exhibition. https://doi.org/10.2118/210345-MS

102

Rayfield, B., Fortin, M. J., & Fall, A. (2010). The sensitivity of least-cost habitat graphs to relative

cost surface values. Landscape Ecology, 25(4), 519–532.

Rogers, J., & Grigg, R. (2001). A Literature Analysis of the WAG Injectivity Abnormalities in the

CO2 Process. SPE Reservoir Evaluation & Engineering - SPE RESERV EVAL ENG, 4,

375–386. https://doi.org/10.2118/73830-PA

SimCCS. (2021). SimCCS. https://github.com/simccs/SimCCS

Stauffer, P., Middleton, R., Bing, B., Ellett, K., Rupp, J., & Xiaochun, L. (2014). System

integration linking CO2 Sources, Sinks, and Infrastructure for the Ordos Basin, China.

Energy Procedia, 63, 2702–2709. https://doi.org/10.1016/j.egypro.2014.11.292

Stucky, J. L. D. (1998). On applying viewshed analysis for determining least-cost paths on Digital

Elevation Models. International Journal of Geographical Information Science, 12(8),

891–905. https://doi.org/10.1080/136588198241554

Talsma, C., Middleton, E., & Middleton, R. (2022). Costmappro: Addressing the Massive-Scale

Co2 Pipeline Challenge. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4273192

Tarrahi, M., & Afra, S. (2015). Optimization of Geological Carbon Sequestration in

Heterogeneous Saline Aquifers through Managed Injection for Uniform CO2

Distribution. All Days, CMTC-440233-MS. https://doi.org/10.7122/440233-MS

Whitman, C., Yaw, S., Hoover, B., & Middleton, R. (2022). Scalable algorithms for designing

CO2 capture and storage infrastructure. Optimization and Engineering, 23(2), 1057–1083.

https://doi.org/10.1007/s11081-021-09621-3

103

Yaw, S., Middleton, R. S., & Hoover, B. (2019). Graph Simplification for Infrastructure Network

Design. In Y. Li, M. Cardei, & Y. Huang (Eds.), Combinatorial Optimization and

Applications (Vol. 11949, pp. 576–589). Springer International Publishing.

https://doi.org/10.1007/978-3-030-36412-0_47

Yu, C., Lee, J., & Munro-Stasiuk, M. J. (2003). Research Article: Extensions to least-cost path

algorithms for roadway planning. International Journal of Geographical Information

Science, 17(4), 361–376. https://doi.org/10.1080/1365881031000072645

104

NOMENCLATURE

CCS Carbon Capture and Storage

CO2 Carbon Dioxide

CUSP Carbon, Utilization, Storage Partnership

EOR Enhanced Oil Recovery

GIS Geographical Information System

IEA International Energy Agency

IPCC Intergovernmental Panel on Climate Change

LCP Least Cost Path

MT Megatons (Mega metric tons)

mT Metric Tons

MIP Mixed Integer Programming

MILP Mixed Integer Linear Programming

MIQP Mixed Integer Quadratic Programming

SimCCS Scalable Infrastructure Model for CCS

105

APPENDIX

Sequestrix Source Code

Key code components that power the Sequestrix application is given in this appendix, all the other

code and input files are publicly available on GitHub via the following link:

https://github.com/davidpcg01/CO2-TRANSPORT-NETWORK-OPTIMIZATION-PROJECT

geotranformation.py

import pandas as pd
import numpy as np
from csv import reader
import time
from geopy.point import Point
from geopy.distance import distance
from bisect import bisect_left, bisect_right
from pathlib import Path

ROOT_PATH = Path(__file__).parent.parent.resolve()
FILE_PATH = ROOT_PATH.joinpath("Construction Costs.csv")
FILE_PATH = ROOT_PATH.joinpath("construction-costs-subset.csv")

class geoTransformation:
 def __init__(self) -> None:
 self.costFilePath = FILE_PATH
 self.gridcost = {}
 self.gridCostList = []
 self.gridTranslated = False
 self.north = 40.422261
 self.south = 33.615165
 self.east = -92.284113
 self.west = -103.665777

 def _loadgeogrid(self) -> None:
 with open(self.costFilePath, 'r') as read_obj:
 csv_reader = reader(read_obj)
 i = 0
 while i < 2:
 next(csv_reader)
 i += 1
 self.gridWidth = int(next(csv_reader)[1])

https://github.com/davidpcg01/CO2-TRANSPORT-NETWORK-OPTIMIZATION-PROJECT

106

 self.gridHeight = int(next(csv_reader)[1])
 self.lowerLeftX = float(next(csv_reader)[1])
 self.lowerLeftY = float(next(csv_reader)[1])
 self.cellSize = float(next(csv_reader)[1])
 self.noDataValue = next(csv_reader)[1]

 self.gridVertices = [i for i in range(1,
((self.gridWidth*self.gridHeight) + 1))]

 def _loadcost(self):

 with open(self.costFilePath, 'r') as read_obj:
 csv_reader = reader(read_obj)
 i = 0
 while i < 8:
 next(csv_reader)
 i += 1
 edgeConn = next(csv_reader)
 while edgeConn != ['']:
 edgeCost = next(csv_reader)
 startnode = int(edgeConn[0])
 for i in range(len(edgeCost)):
 key = (startnode, int(edgeConn[i+1]))
 if self._checkBound(key):
 self.gridcost[key] = float(edgeCost[i])
 edgeConn = read_obj.readline().split(",")
 edgeConn[-1] = edgeConn[-1].split("\n")[0]

 def create_grid(self):
 nrows = self.gridHeight
 ncols = self.gridWidth
 grid = []
 counter = 1
 for row in range(nrows):
 row_list = []
 for col in range(ncols):
 row_list.append(counter)
 counter += 1
 grid.append(row_list)
 return grid

 def translate_grid(self):
 nrows = self.gridHeight
 ncols = self.gridWidth
 grid = []
 for row in range(nrows):
 row_list = []
 for col in range(ncols):

107

 cell_number = (nrows - row) * ncols - col
 row_list.append(cell_number)
 row_list.reverse()
 grid.append(row_list)
 return grid

 def _generateGridCostList(self):
 for key in self.gridcost.keys():
 self.gridCostList.append([key[0], key[1], {'weight':
self.gridcost[key]}])

 def _getNeighbors(self, cell):
 neighbors = [cell+1, cell-1, cell + self.gridWidth, cell -
self.gridWidth, cell + self.gridWidth + 1,
 cell + self.gridWidth - 1, cell - self.gridWidth + 1, cell -
self.gridWidth - 1]
 for i in range(len(neighbors)):
 if (neighbors[i] < 0) or (neighbors[i] > self.gridHeight *
self.gridWidth):
 neighbors[i] = 0
 return neighbors

 def _initializeCostgrid(self):
 for i in self.gridVertices:
 neighbors = self._getNeighbors(i)
 for neighbor in neighbors:
 if neighbor != 0:
 self.gridcost[(i, neighbor)] = 1e6

 def _vicenty(self, distance_km, point_a):
 lat_a = point_a[0]
 lon_a = point_a[1]

 # calculate the distance between two points separated by 1 degree of
longitude at point_a's latitude
 lon_degrees_offset = distance(point_a, Point(lat_a, lon_a + 1)).km

 # calculate the distance in degrees to travel to move distance_km east
 lon_degrees_to_travel = distance_km / lon_degrees_offset

 # calculate the longitude of point_b
 lon_b = lon_a + lon_degrees_to_travel

 # return a Point object for point_b
 return Point(latitude=lat_a, longitude=lon_b)

 def _latlonToCell(self, lat, lon):
 y = self.gridHeight - (int((lat - self.lowerLeftY) / self.cellSize) + 1)
+ 1
 x = int((lon - self.lowerLeftX) / self.cellSize) + 1

108

 return self._xyToCell(x, y)

 def _xyToCell(self, x, y):
 return (y -1) * self.gridWidth + x

 def _cellToXY(self, cell):
 cell = cell
 y = int((cell - 1) / self.gridWidth + 1)
 x = int(cell - (y - 1) * self.gridWidth)
 return [x,y]

 def _cellToLatLon(self, cell):
 cell = cell
 xy = self._cellToXY(cell)
 xy[0] -= .5
 xy[1] -= .5
 lat = (self.gridHeight - xy[1]) * self.cellSize + self.lowerLeftY
 lon = xy[0] * self.cellSize + self.lowerLeftX
 return lat, lon

 def _latlonToXY(self, lat, lon):
 y = self.gridHeight - (int((lat - self.lowerLeftY) / self.cellSize) + 1)
+ 1
 x = int((lon - self.lowerLeftX) / self.cellSize) + 1
 return [x,y]

 def _getDistance(self, cell1, cell2):
 lat1, lon1 = self._cellToLatLon(cell1)
 lat2, lon2 = self._cellToLatLon(cell2)
 point1 = Point(lat1, lon1)
 point2 = Point(lat2, lon2)
 dist = distance(point1, point2).kilometers
 return dist

 def _xyToLatLon(self, x, y):
 cell = self._xyToCell(x, y)
 return self._cellToLatLon(cell)

 def getVertices(self):
 return self.gridVertices

 def getEdgesList(self):
 return self.gridCostList

 def getEdegsDict(self):
 return self.gridcost

 def processGeoCost(self):
 start_time = time.time()
 print("Loading geo grid...")

109

 self._loadgeogrid()
 print("loaded geogrid. Time Elapsed: %s seconds" %(time.time() -
start_time))
 print("")
 print("Subsetting Cost grid...")
 self._subsetGrid()
 print("Subsetting cost grid completed. Time Elapsed: %s seconds"
%(time.time() - start_time))
 print("")
 print("Loading cost...")
 self._loadcost()
 print("loaded cost. Time Elapsed: %s seconds" %(time.time() -
start_time))
 print("")

 def _subsetGrid(self):
 # nrows = self.gridHeight
 ncols = self.gridWidth

 sw = self._latlonToCell(self.south, self.west)
 se = self._latlonToCell(self.south, self.east)
 nw = self._latlonToCell(self.north, self.west)
 ne = self._latlonToCell(self.north, self.east)

 inputdata = [sw, se, nw, ne]

 newWidth = max((inputdata[1] - inputdata[0]), (inputdata[3] -
inputdata[2]))+1
 newHeight = max(abs(inputdata[2] - inputdata[0]), abs(inputdata[3] -
inputdata[1]))+ncols

 start = inputdata[0]

 n_nrows = round(newHeight/ncols)

 self.leftbounds = []
 self.rightbounds = []
 for i in range(n_nrows):
 start_x = start - (i*ncols)
 self.leftbounds.append(start_x)
 self.rightbounds.append(start_x + newWidth - 1)

 self.leftbounds.reverse()
 self.rightbounds.reverse()

110

 def _checkBound(self, data):
 n = len(self.leftbounds)
 left_idx = bisect_right(self.leftbounds, data[0]) - 1
 right_idx = bisect_left(self.rightbounds, data[1])

 validLeft = (left_idx >= 0 and self.leftbounds[left_idx] <= data[0] <=
self.rightbounds[left_idx])
 validRight = (right_idx < n and self.leftbounds[right_idx] <= data[1] <=
self.rightbounds[right_idx])

 valid = validLeft and validRight
 return valid

 def getHeight(self):
 return self.gridHeight

 def getWidth(self):
 return self.gridWidth

 def getCellSize(self):
 return self.cellSize

alternateNetworkGeo.py

import time
import pandas as pd
import numpy as np
from dummyCostSurface import dummyCostSurface
from networkDelanunay import networkDelanunay
from geotransformation import geoTransformation
from networkx import DiGraph
import networkx as nx
from matplotlib import rcParams
import matplotlib.pyplot as plt
from itertools import combinations
import plotly.express as px
import plotly.graph_objects as go
import random

rcParams['figure.figsize'] = 10, 8

class alternateNetworkGeo(DiGraph):
 def __init__(self, width=100, height=100):
 super().__init__()
 self.width = width

111

 self.height = height
 self.existingPath = {}
 self.existingPathVertices = {}
 self.existingPathType = {}
 self.sources = {}
 self.sinks = {}
 self.spathsCost = {}
 self.spaths = {}
 self.assetsXY = {}
 self.assetsLatLon = {}
 self.assetsPT = {}
 self.assetNameFromPT = {}
 self.assetNameFromXY = {}
 self.initial_pipe_spaths = {}
 self.assetCap = {}
 self.existingPathBounds = {}
 self.spathsLength = {}
 self.spathsWeight = {}

 def initialize_dummy_cost_surface(self):
 C = dummyCostSurface(width=self.width, height=self.height, lowcost=1,
highcost=60, ctype='float')
 C.generate_cost_surface()

 self.add_nodes_from(C.get_vertices())
 self.add_edges_from(C.get_ebunch())

 def initialize_cost_surface(self):
 self.gt = geoTransformation()
 self.gt.processGeoCost()

 self.width = self.gt.getWidth()
 self.height = self.gt.getHeight()

 edges = self.gt.getEdegsDict()

 cellsize = self.gt.getCellSize()

 start_time = time.time()
 print("Adding graph vertices...")
 self.add_nodes_from(self.gt.getVertices())
 print("Added Vertices. Time Taken: %s seconds" %(time.time() -
start_time))
 print("")

 # self.add_edges_from(self.gt.getEdgesList())

 start_time = time.time()
 print("Adding graph Edges...")

112

 diagonal_l = np.sqrt(2)*(cellsize/0.008333)
 for key in edges.keys():
 # print(key[0], key[1], edges[key])
 if (abs(key[0] - key[1]) == self.width+1) or (abs(key[0] - key[1]) ==
self.width-1):
 # approx_l = self.gt._getDistance(key[0], key[1]) #km only cal
for diagonals TODO: Too time consurming to compute actual diagonal distance
 approx_l = diagonal_l
 else:
 approx_l = cellsize/0.008333 #km
 self.add_edge(key[0], key[1], weight=edges[key], length=approx_l)
 print("Added Edges. Time Taken: %s seconds" %(time.time() - start_time))
 print("")

 def add_vertices_from_list(self, vertices):
 self.add_nodes_from(vertices)

 def add_edges_from_list(self, edgelist):
 self.add_edges_from(edgelist)

 def import_pipeline(self, input_dir, pathname, flowtype='bidirectional'):
 pipeline = pd.read_excel(input_dir)
 pipe_nodes = []
 start_nodes = pipeline['Start'].values
 end_nodes = pipeline['End'].values
 lower_bound = pipeline['Lower Cap'].values[0]
 upper_bound = pipeline['Upper Cap'].values[0]

 for i in range(len(pipeline)):
 pipe_nodes.append((start_nodes[i], end_nodes[i]))

 self.add_existing_zero_cost_path(pathname, pipe_nodes, flowtype)
 self.existingPathType[pathname] = flowtype
 self.existingPathBounds[pathname] = [lower_bound, upper_bound]

 def import_pipeline_lat_long(self, input_dir, flowtype='bidirectional'):
 print("Importing Pipeline...")
 pipeline = pd.read_excel(input_dir)
 pipe_nodes = []
 start_nodes = []
 end_nodes = []

 pathname = pipeline["Name"][0]
 lower_bound = pipeline['Lower Cap'].values[0]
 upper_bound = pipeline['Upper Cap'].values[0]

 for i in range(len(pipeline)):
 cell = self.gt._latlonToCell(pipeline["Lat"][i], pipeline["Long"][i])
 if i == 0:

113

 start_nodes.append(cell)
 elif i == len(pipeline)-1:
 end_nodes.append(cell)
 else:
 start_nodes.append(cell)
 end_nodes.append(cell)

 for i in range(len(start_nodes)):
 if start_nodes[i] != end_nodes[i]:
 pipe_nodes.append((start_nodes[i], end_nodes[i]))

 # print("PIPE NODES")
 # print(pipe_nodes)

 edges = [edge for edge in self.edges]
 # print(edges)
 pipe_nodes_mod = []
 for nodepair in pipe_nodes:
 if nodepair in edges:
 pipe_nodes_mod.append(nodepair)
 else:
 start_list = []
 end_list = []
 s_p = nx.shortest_path(self, nodepair[0], nodepair[1],
weight='weight')
 for i in range(len(s_p)):
 if i == 0:
 start_list.append(s_p[i])
 elif i == len(s_p) - 1:
 end_list.append(s_p[i])
 else:
 start_list.append(s_p[i])
 end_list.append(s_p[i])

 for i in range(len(start_list)):
 pipe_nodes_mod.append((start_list[i], end_list[i]))

 # print("PIPE NODE MOD: ", pipe_nodes_mod)

 print("Embedding zero cost path...")
 self.add_existing_zero_cost_path(pathname, pipe_nodes_mod, flowtype)
 self.existingPathType[pathname] = flowtype
 self.existingPathBounds[pathname] = [lower_bound, upper_bound]
 print("Finished Adding Pipeline.")
 print("")

 def add_existing_zero_cost_path(self, pathname, path_nodes, flowtype):

114

 existingPathVertices = {}
 np = 0
 edges = [edge for edge in self.edges]
 for nodepair in path_nodes:
 # self.edges[nodepair[0], nodepair[1]]['weight'] = 0
 if flowtype == 'bidirectional':
 if (nodepair[0], nodepair[1]) in edges:
 self.edges[nodepair[0], nodepair[1]]['weight'] = 0
 else:
 self.add_edge(nodepair[0], nodepair[1], weight=0)

 if (nodepair[1], nodepair[0]) in edges:
 self.edges[nodepair[1], nodepair[0]]['weight'] = 0
 else:
 self.add_edge(nodepair[1], nodepair[0], weight=0)
 elif flowtype == 'unidirectional':
 if (nodepair[0], nodepair[1]) in edges:
 self.edges[nodepair[0], nodepair[1]]['weight'] = 0
 else:
 self.add_edge(nodepair[0], nodepair[1], weight=0)

 if (nodepair[1], nodepair[0]) in edges:
 self.edges[nodepair[1], nodepair[0]]['weight'] = 1e9
 else:
 self.add_edge(nodepair[1], nodepair[0], weight=1e9)

 if pathname in self.existingPath:
 self.existingPath[pathname].append(nodepair)
 else:
 self.existingPath[pathname] = [nodepair]

 if pathname in existingPathVertices:
 existingPathVertices[pathname].append(nodepair[0])
 else:
 existingPathVertices[pathname] = [nodepair[0]]

 np = nodepair[1]

 existingPathVertices[pathname].append(np)
 self.existingPathVertices = existingPathVertices

 def get_existing_zero_cost_path(self):
 return self.existingPath

 def get_existing_zero_cost_path_vertices(self):
 return self.existingPathVertices

 def get_initial_pipe_spaths(self):
 return self.initial_pipe_spaths

 def enforce_pipeline_tie_point(self, pathname=None, point1=None, point2=None,
exclusion=False, etype='before', onlyin=False, onlyout=False):

115

 #convert x,y to points on the graph
 # if point1:
 # point1 = self.gt._xyToCell(point1[0], point1[1])
 # if point2:
 # point2 = self.gt._xyToCell(point2[0], point2[1])
 print("Enforcing Pipeline Tie-in Points")
 if point1:
 point1 = self.gt._latlonToCell(float(point1[0]), float(point1[1]))
 if point2:
 point2 = self.gt._latlonToCell(float(point2[0]), float(point2[1]))

 # print("POINT1 & 2: ", point1, point2)

 if pathname is None:
 keys = [key for key in self.existingPath.keys()]
 pathname = keys[0]

 #case 1: 2 tie in points with all exclusion
 if point1 and point2 and (not exclusion):
 print("case 1: 2 tie in points with all exclusion")
 for edge in self.edges:
 #in
 if (edge[1] in self.existingPathVertices[pathname]) and (edge[0]
not in self.existingPathVertices[pathname]) \
 and (edge[1] != point1) and (edge[1] != point2):
 self.edges[edge]['weight'] = 1e9

 #out
 if (edge[0] in self.existingPathVertices[pathname]) and (edge[1]
not in self.existingPathVertices[pathname]) \
 and (edge[0] != point1) and (edge[0] != point2):
 self.edges[edge]['weight'] = 1e9

 if onlyin:
 if ((edge[0] == point1) or (edge[0] == point2)) and (edge[1]
not in self.existingPathVertices[pathname]):
 self.edges[edge]['weight'] = 1e9

 if onlyout:
 if ((edge[1] == point1) or (edge[1] == point2)) and (edge[0]
not in self.existingPathVertices[pathname]):
 self.edges[edge]['weight'] = 1e9

 #case 2: 2 tie in points with exclusion at ends
 elif point1 and point2 and exclusion:
 print("#case 2: 2 tie in points with exclusion at ends")
 #get all the vertices before and after point 1 and 2
 pathvertices = self.existingPathVertices[pathname].copy()
 minidx, maxidx = map(pathvertices.index, (point1, point2))
 minidx, maxidx = min(minidx, maxidx), max(minidx, maxidx)

116

 not_excluded = pathvertices[minidx:maxidx+1]
 exclusion_list = [i for i in pathvertices if i not in not_excluded]

 for edge in self.edges:
 #in
 if (edge[1] in exclusion_list) and (edge[0] not in pathvertices)
\
 and (edge[1] != point1) and (edge[1] != point2):
 self.edges[edge]['weight'] = 1e9

 #out
 if (edge[0] in exclusion_list) and (edge[1] not in pathvertices)
\
 and (edge[0] != point1) and (edge[0] != point2):
 self.edges[edge]['weight'] = 1e9

 if onlyin:
 if (edge[0] in not_excluded) and (edge[1] not in
self.existingPathVertices[pathname]):
 self.edges[edge]['weight'] = 1e9

 if onlyout:
 if (edge[1] in not_excluded) and (edge[0] not in
self.existingPathVertices[pathname]):
 self.edges[edge]['weight'] = 1e9

 else:
 #case 3 single point with all exclusion but source/sink
 if (point1 or point2) and (not exclusion):
 print("#case 3 single point with all exclusion but source/sink")
 point = point1 or point2
 pathvertices = self.existingPathVertices[pathname].copy()
 if pathvertices[0] > pathvertices[-1]: #make the path always read
from left to right
 pathvertices.reverse()
 if etype == 'before':
 exclusion_list = pathvertices[:-1] #means source/sink is at
end of path
 else:
 exclusion_list = pathvertices[1:] #means source/sink is at
begining of path

 for edge in self.edges:
 #in
 if (edge[1] in exclusion_list) and (edge[0] not in
pathvertices) \
 and (edge[1] != point):
 self.edges[edge]['weight'] = 1e9
 #out
 if (edge[0] in exclusion_list) and (edge[1] not in
pathvertices) \

117

 and (edge[0] != point):
 self.edges[edge]['weight'] = 1e9

 #enforce onlyin
 if onlyin:
 if (edge[0] == point) and (edge[1] not in pathvertices):
 self.edges[edge]['weight'] = 1e9

 #enforce onlyin
 if onlyout:
 if (edge[1] == point) and (edge[0] not in pathvertices):
 self.edges[edge]['weight'] = 1e9

 #case 4 single point with before or after exclusion on one end
 elif (point1 or point2) and exclusion:
 print("#case 4 single point with before or after exclusion on one
end")
 point = point1 or point2
 pathvertices = self.existingPathVertices[pathname].copy()
 if pathvertices[0] > pathvertices[-1]: #make the path always read
from left to right
 pathvertices.reverse()
 if etype == 'before':
 exclusion_list = pathvertices[:pathvertices.index(point)]
 else:
 exclusion_list = pathvertices[pathvertices.index(point)+1:]

 end1 = pathvertices[0]
 end2 = pathvertices[-1]

 for edge in self.edges:
 #in
 if (edge[1] in exclusion_list) and (edge[0] not in
pathvertices) \
 and (edge[1] != point):
 self.edges[edge]['weight'] = 1e9

 #out
 if (edge[0] in exclusion_list) and (edge[1] not in
pathvertices) \
 and (edge[0] != point):
 self.edges[edge]['weight'] = 1e9

 if onlyin:
 if (edge[0] in pathvertices) and (edge[0] not in
exclusion_list) \
 and (edge[0] != end2) and (edge[0] != end1) and
(edge[1] not in pathvertices):
 self.edges[edge]['weight'] = 1e9

118

 if onlyout:
 if (edge[1] in pathvertices) and (edge[1] not in
exclusion_list) \
 and (edge[1] != end2) and (edge[1] != end1) and
(edge[0] not in pathvertices):
 self.edges[edge]['weight'] = 1e9
 print("")

 def enforce_no_pipeline_diagonal_Xover(self):
 print("Enforcing no diagonal pipeline crossing...")
 edges = [edge for edge in self.edges]

 for pathname in self.existingPath.keys():
 for nodepair in self.existingPath[pathname]:
 if abs(nodepair[0] - nodepair[1]) == self.width+2:
 lower_diag = min(nodepair) + 1
 upper_diag = max(nodepair) - 1

 if (lower_diag, upper_diag) in edges:
 self.edges[(lower_diag, upper_diag)]['weight'] = 1e9
 if (upper_diag, lower_diag) in edges:
 self.edges[(upper_diag, lower_diag)]['weight'] = 1e9

 elif abs(nodepair[0] - nodepair[1]) == self.width:
 lower_diag = min(nodepair) - 1
 upper_diag = max(nodepair) + 1

 if (lower_diag, upper_diag) in edges:
 self.edges[(lower_diag, upper_diag)]['weight'] = 1e9
 if (upper_diag, lower_diag) in edges:
 self.edges[(upper_diag, lower_diag)]['weight'] = 1e9
 print('No pipeline diaginal crossing enforced')
 print("")
 return

 def enforce_no_path_diagonal_Xover(self, path_tup):
 print("Enforcing no diagonal path crossing...")
 edges = [edge for edge in self.edges]

 for nodepair in path_tup:
 if abs(nodepair[0] - nodepair[1]) == self.width+2:
 lower_diag = min(nodepair) + 1
 upper_diag = max(nodepair) - 1

 if (lower_diag, upper_diag) in edges:
 self.edges[(lower_diag, upper_diag)]['weight'] = 1e9
 if (upper_diag, lower_diag) in edges:
 self.edges[(upper_diag, lower_diag)]['weight'] = 1e9

119

 elif abs(nodepair[0] - nodepair[1]) == self.width:
 lower_diag = min(nodepair) - 1
 upper_diag = max(nodepair) + 1

 if (lower_diag, upper_diag) in edges:
 self.edges[(lower_diag, upper_diag)]['weight'] = 1e9
 if (upper_diag, lower_diag) in edges:
 self.edges[(upper_diag, lower_diag)]['weight'] = 1e9
 print('No pipeline diaginal crossing enforced')
 print("")
 return

 def add_sources(self, sourcelist):
 for source in sourcelist:
 self.sources[source[0]] = [source[1], source[2]]
 self.assetsLatLon[source[0]] = [source[1], source[2]]
 xy = self.gt._latlonToXY(source[1], source[2])
 self.assetsXY[source[0]] = [xy[0], xy[1]]
 self.assetCap[source[0]] = source[3]

 def add_sinks(self, sinklist):
 for sink in sinklist:
 self.sinks[sink[0]] = [sink[1], sink[2]]
 self.assetsLatLon[sink[0]] = [sink[1], sink[2]]
 xy = self.gt._latlonToXY(sink[1], sink[2])
 self.assetsXY[sink[0]] = [xy[0], xy[1]]
 self.assetCap[sink[0]] = -sink[3]

 def _generate_assetsPT(self):
 for key in self.assetsXY.keys():
 self.assetsPT[key] = self.gt._xyToCell(self.assetsXY[key][0],
self.assetsXY[key][1])

 for key in self.assetsPT.keys():
 self.assetNameFromPT[self.assetsPT[key]] = key

 for key in self.assetsXY.keys():
 self.assetNameFromXY[(self.assetsXY[key][0], self.assetsXY[key][1])]
= key

 def generateDelaunayNetwork(self):
 print("Generating Delanuay Network...")
 self.D = networkDelanunay(width=self.width, height=self.height)
 assets = []
 for key, asset in self.assetsXY.items():
 assets.append(asset)

 assets = np.array(assets)
 self.D.add_points_from_list(assets)

120

 self.D.createDelaunayNetwork()
 print("Delaunay network generated")
 print('')

 def showDelaunayNetwork(self):
 self.D.plotNetwork()

 def add_Delaunay_tiepoints(self, tieptslist):
 for tiepts in tieptslist:
 if tiepts[0] in self.sources.keys():
 node1 = self.sources[tiepts[0]]
 elif tiepts[0] in self.sinks.keys():
 node1 = self.sinks[tiepts[0]]

 if tiepts[2] in self.sources.keys():
 node2 = self.sources[tiepts[2]]
 elif tiepts[2] in self.sinks.keys():
 node2 = self.sinks[tiepts[2]]

 self.assetsXY[f"Tnode from {tiepts[0]} to pipeline1"] = tiepts[1]
 self.assetsXY[f"Tnode from {tiepts[2]} to pipeline1"] = tiepts[3]

 self.D.add_tie_in_point(node1,tiepts[1])
 self.D.add_tie_in_point(node2, tiepts[3])
 self.D.add_tie_in_point(tiepts[1], tiepts[3])
 self.D.delete_line_path(node1, node2)

 self.enforce_pipeline_tie_point(tiepts[4], tiepts[1], tiepts[3])

 return

 def get_sources(self):
 return self.sources

 def get_sinks(self):
 return self.sinks

 def print_edges(self):
 for edge in self.edges:
 print(edge, self.edges[edge])

 def weight_func(self, distance, time):
 return distance * time

 def get_shortest_path_and_length(self, source, destination):
 # slength = nx.shortest_path_length(self, source, destination,
weight=lambda u, v, d: self.weight_func(d['weight'], d['length']))
 # spath = nx.shortest_path(self, source, destination, weight=lambda u, v,
d: self.weight_func(d['weight'], d['length']))

121

 slength = nx.shortest_path_length(self, source, destination,
weight='weight')
 spath = nx.shortest_path(self, source, destination, weight='weight')
 return slength, spath

 def get_all_source_sink_shortest_paths(self):
 print('Generating all Delaunay pair shortest path...')
 self.lines = self.D.getDelaunayNetwork()
 for line in self.lines:
 cost, path = self.get_shortest_path_and_length(line[0], line[1])
 self.spathsCost[(line[0], line[1])] = cost
 self.spaths[(line[0], line[1])] = path
 self.initial_pipe_spaths[(line[0], line[1])] = path

 path_tup = [(path[i], path[i+1]) for i in range(len(path)-1)]
 # self.enforce_no_path_diagonal_Xover(path_tup)

 self._generate_assetsPT()
 print('Done generating shortest paths.')
 print("")

 def get_spathsCost(self):
 return self.spathsCost

 def print_candidate_shortest_paths(self):
 print("The lengths are: ", self.spathsLength)
 print("")
 print("The weights are: ", self.spathsWeight)
 print("")
 print("The weighted costs are: ", self.spathsCost)
 print("")
 print("The shortest paths are: ", self.spaths)
 print("")
 print(len(self.spathsCost), len(self.spaths))

 def print_assets(self):
 print(self.assetsPT)
 print(self.assetsXY)
 print(len(self.assetsPT), len(self.assetsXY))

 def show_candidate_network(self):
 rcParams['figure.figsize'] = 20, 20

 # ptslist = self.nodes
 ptslist = self.edges

 self._generate_assetsPT()

 #plot the shortest paths between nodes
 for key in self.spaths.keys():
 xs = []

122

 ys = []
 for pt in self.spaths[key]:
 xy = self.gt._cellToXY(pt)
 xs.append(xy[0])
 ys.append(xy[1])
 plt.plot(xs, ys, label=f"path between {self.assetNameFromPT[key[0]]}
and {self.assetNameFromPT[key[1]]}", lw = 5)

 #plot all existing pipelines
 for key in self.existingPathVertices.keys():
 xp = []
 yp = []
 for pt in self.existingPathVertices[key]:
 xy = self.gt._cellToXY(pt)
 xp.append(xy[0])
 yp.append(xy[1])
 plt.plot(xp, yp, 'red', lw=6, alpha=0.5)

 #plot asset markers
 for key in self.assetsXY.keys():
 x = self.assetsXY[key][0]
 y = self.assetsXY[key][1]
 if "node" in key:
 plt.plot(x,y, marker='o', mfc='orange', ms=5, mec='black')
 elif "source" in key:
 plt.plot(x,y, marker="s", mfc='black', ms=5, mec='black')
 plt.plot(x,y, marker=f"${key}$", mfc='black', ms=40, mec='black')
 elif "sink" in key:
 plt.plot(x,y, marker="s", mfc='yellow', ms=5, mec='red')
 plt.plot(x,y, marker=f"${key}$", mfc='yellow', ms=30, mec='red')

 plt.title("Candidate CO2 Sequestration Network")
 plt.xlabel("X location")
 plt.ylabel("Y location")
plt.legend()
 plt.show()

 return

 def extract_network(self):
 return

 def get_pipe_trans_nodes(self):
 print('Generating Pipeline transshipment nodes...')
 existingPathVertices = self.existingPathVertices.copy()
 spaths = self.spaths.copy()

 trans_nodes = {}
 conn_to_del = []
 for pathname in existingPathVertices.keys():
 for nodepair in spaths.keys():

123

 entry = False
 start = self.spaths[nodepair][0]
 end = self.spaths[nodepair][-1]
 for i in range(len(spaths[nodepair])):
 if (entry == False) and (spaths[nodepair][i] in
existingPathVertices[pathname]):
 entry = True
 trans_nodes[(pathname, nodepair)] = [spaths[nodepair][i]]
 if (entry == True) and (spaths[nodepair][i] not in
existingPathVertices[pathname]):
 trans_nodes[(pathname,
nodepair)].append(spaths[nodepair][i-1])
 break

 if (entry == True) and (len(trans_nodes[(pathname, nodepair)]) ==
1):
 trans_nodes[(pathname, nodepair)].append(spaths[nodepair][-
1])

 if entry == True:
 node1 = trans_nodes[(pathname, nodepair)][0]
 node2 = trans_nodes[(pathname, nodepair)][1]
 idx1 = spaths[nodepair].index(node1)
 idx2 = spaths[nodepair].index(node2)

 self._generate_assetsPT()

 self.spaths[(node1, node2)] =
self.spaths[nodepair][idx1:idx2+1]
 self.spaths[(start, node1)] = self.spaths[nodepair][0:idx1+1]
 self.spaths[(node2, end)] = self.spaths[nodepair][idx2:]

 cost_1 = 0
 cost_2 = 0
 for i in range(len(self.spaths[(start, node1)])-1):
 cost_1 += self.edges[self.spaths[(start, node1)][i],
self.spaths[(start, node1)][i+1]]['weight']
 for i in range(len(self.spaths[(node2, end)])-1):
 cost_2 += self.edges[self.spaths[(node2, end)][i],
self.spaths[((node2, end))][i+1]]['weight']

 self.spathsCost[(node1, node2)] = 0
 self.spathsCost[(start, node1)] = cost_1
 self.spathsCost[(node2, end)] = cost_2

 from_name = self.assetNameFromPT[nodepair[0]]
 to_name = self.assetNameFromPT[nodepair[1]]

124

 self.assetsXY[pathname + f" from {from_name} to {to_name}
node1"] = self.gt._cellToXY(node1)
 self.assetsXY[pathname + f" from {from_name} to {to_name}
node2"] = self.gt._cellToXY(node2)

 conn_to_del.append((start, end))

 for conn in conn_to_del:
 del self.spaths[conn]
 del self.spathsCost[conn]

 print('Pipeline Transshipment Nodes generated.')
 print('')
 return

 def pipe_post_process(self):
 print("Post processing Pipeline Paths...")
 self._generate_assetsPT()

 for pathname in self.existingPath.keys():
 nodes_on_pipe = []
 for key in self.assetNameFromPT.keys():
 if key in self.existingPathVertices[pathname]:
 nodes_on_pipe.append((key,
self.existingPathVertices[pathname].index(key)))
 nodes_on_pipe = list(set(nodes_on_pipe))
 nodes_on_pipe.sort(key=lambda x: x[1])
 nodes_on_pipe = [i for (i, j) in nodes_on_pipe]

 list_combinations = list()

 for n in range(len(nodes_on_pipe)+1):
 list_combinations += list((combinations(nodes_on_pipe, n)))

 list_combinations = [tup for tup in list_combinations if len(tup) ==
2]

 joints = [(nodes_on_pipe[i], nodes_on_pipe[i+1]) for i in
range(len(nodes_on_pipe)-1)]
 edges_to_remove = [tup for tup in list_combinations if tup not in
joints]

 #remove redundant edges
 for edge in edges_to_remove:
 if edge in self.spaths.keys():
 del self.spaths[edge]
 if edge in self.spathsCost.keys():
 del self.spathsCost[edge]

125

 #add edges with cost
 for edge in joints:
 slength, spath = self.get_shortest_path_and_length(edge[0],
edge[1])
 self.spaths[edge] = spath
 self.spathsCost[edge] = slength

 self._generate_assetsPT()
 print("Pipeline post process complete.")
 print('')

 def _print_assetNameFromPT(self):
 print(self.assetNameFromPT)
 print(len(self.assetNameFromPT))

 def get_trans_nodes(self):
 print('Generating paths transshipment nodes...')
 self._generate_assetsPT()
 spaths = self.spaths.copy()

 trans_nodes = {}
 conn_to_del = []

 for pathname in spaths.keys():
 for nodepair in spaths.keys():
 entry = False
 start = spaths[nodepair][0]
 end = spaths[nodepair][-1]

 for i in range(len(spaths[nodepair])):
 if (entry == False) and (spaths[nodepair][i] in
spaths[pathname]):
 entry = True
 trans_nodes[(pathname, nodepair)] = [spaths[nodepair][i]]
 if (entry == True) and (spaths[nodepair][i] not in
spaths[pathname]):
 trans_nodes[(pathname,
nodepair)].append(spaths[nodepair][i-1])
 break

 if entry == True:
 if len(trans_nodes[(pathname, nodepair)]) == 1:
 trans_nodes[(pathname,
nodepair)].append(spaths[nodepair][-1])

 if trans_nodes[(pathname, nodepair)][0] ==
trans_nodes[(pathname, nodepair)][1]:
 pass
 else:
 node1 = trans_nodes[(pathname, nodepair)][0]

126

 node2 = trans_nodes[(pathname, nodepair)][1]
 idx1 = spaths[nodepair].index(node1)
 idx2 = spaths[nodepair].index(node2)

 self._generate_assetsPT()

 if start != node1:
 self.spaths[(start, node1)] =
self.spaths[nodepair][0:idx1+1]
 cost_1 = 0
 for i in range(len(self.spaths[(start, node1)])-1):
 cost_1 += \
 self.edges[self.spaths[(start, node1)][i],
self.spaths[(start, node1)][i+1]]['weight']
 self.spathsCost[(start, node1)] = cost_1

 if node1 != node2:
 self.spaths[(node1, node2)] =
self.spaths[nodepair][idx1:idx2+1]
 cost_2 = 0
 for i in range(len(self.spaths[(node1, node2)])-1):
 cost_2 += \
 self.edges[self.spaths[(node1, node2)][i],
self.spaths[((node1, node2))][i+1]]['weight']
 self.spathsCost[(node1, node2)] = cost_2

 if node2 != end:
 self.spaths[(node2, end)] =
self.spaths[nodepair][idx2:]
 cost_3 = 0
 for i in range(len(self.spaths[(node2, end)])-1):
 cost_3 += \
 self.edges[self.spaths[(node2, end)][i],
self.spaths[((node2, end))][i+1]]['weight']
 self.spathsCost[(node2, end)] = cost_3

 from_name = self.assetNameFromPT[nodepair[0]]
 to_name = self.assetNameFromPT[nodepair[1]]

 if node1 in self.assetNameFromPT.keys():
 if ('sink' not in self.assetNameFromPT[node1]) \
 and ('source' not in
self.assetNameFromPT[node1]):
 self.assetsXY[str(pathname) + f" from {from_name}
to {to_name} node1"] = \
 self.gt._cellToXY(node1)
 else:
 self.assetsXY[str(pathname) + f" from {from_name} to
{to_name} node1"] = \

127

 self.gt._cellToXY(node1)

 if node2 in self.assetNameFromPT.keys():
 if ('sink' not in self.assetNameFromPT[node2]) \
 and ('source' not in
self.assetNameFromPT[node2]):
 self.assetsXY[str(pathname) + f" from {from_name}
to {to_name} node2"] = \
 self.gt._cellToXY(node2)
 else:
 self.assetsXY[str(pathname) + f" from {from_name} to
{to_name} node2"] = \
 self.gt._cellToXY(node2)

 conn_to_del.append((start, end))
self._generate_assetsPT()

 for conn in list(set(conn_to_del)):
 del self.spaths[conn]
 del self.spathsCost[conn]

 print('pipe transshipment nodes generated.')
 print('')
 return

 def trans_node_post_process(self):
 print('Started post processing of path transshipment nodes...')
 self._generate_assetsPT()

 for pathname in self.initial_pipe_spaths.keys():
 nodes_on_pipe = []
 for key in self.assetNameFromPT.keys():
 if key in self.initial_pipe_spaths[pathname]:
 nodes_on_pipe.append((key,
self.initial_pipe_spaths[pathname].index(key)))
 nodes_on_pipe = list(set(nodes_on_pipe))
 nodes_on_pipe.sort(key=lambda x: x[1])
 nodes_on_pipe = [i for (i, j) in nodes_on_pipe]

 list_combinations = list()

 for n in range(len(nodes_on_pipe)+1):
 list_combinations += list((combinations(nodes_on_pipe, n)))

 list_combinations = [tup for tup in list_combinations if len(tup) ==
2]

 joints = [(nodes_on_pipe[i], nodes_on_pipe[i+1]) for i in
range(len(nodes_on_pipe)-1)]
 edges_to_remove = [tup for tup in list_combinations if tup not in
joints]

128

 #remove redundant edges
 for edge in edges_to_remove:
 if edge in self.spaths.keys():
 del self.spaths[edge]
 if edge in self.spathsCost.keys():
 del self.spathsCost[edge]

 #add edges with cost
 for edge in joints:
 slength, spath = self.get_shortest_path_and_length(edge[0],
edge[1])
 self.spaths[edge] = spath
 self.spathsCost[edge] = slength

 self._generate_assetsPT()
 print('path transhipment nodes processing done.')
 print('')

 def plot_extracted_graph(self):
 res = []
 for key in self.spathsCost.keys():
 pt1 = self.gt._cellToXY(key[0])
 pt2 = self.gt._cellToXY(key[1])
 res.append((pt1, pt2))

 for line in res:
 x = []
 y = []
 x.append(line[0][0])
 y.append(line[0][1])
 x.append(line[1][0])
 y.append(line[1][1])
 plt.plot(x, y, marker='o', mfc='green', mec='green', label=f"from
{line[0]} to {line[1]}")

 plt.title('2D visualization of extracted Graph')
 plt.xlabel("X location")
 plt.ylabel('Y location')
 # plt.legend()
 plt.show()

 def shortest_paths_post_process(self):
 print('Post processing of shortest paths initiated...')
 spaths = self.spaths.copy()
 spathsCost = self.spathsCost.copy()

 for key in self.spaths.keys():
 if ((key[0], key[1]) in spaths.keys()) and ((key[1], key[0]) in
spaths.keys()):
 del spaths[(key[1], key[0])]
 del spathsCost[(key[1], key[0])]

129

 self.spaths = spaths.copy()
 self.spathsCost = spathsCost.copy()

 for key in spaths.keys():
 t_length = 0
 t_weight = 0
 for i in range(len(spaths[key]) - 1):
 nodelist = spaths[key]
 t_weight += self.edges[(nodelist[i], nodelist[i+1])]['weight']
 t_length += self.edges[(nodelist[i], nodelist[i+1])]['length']
 self.spathsWeight[key] = t_weight
 self.spathsLength[key] = t_length

 print('shortest paths post processing completed.')
 print('')

 def _getMappingData(self):
 print('Generating Mapping Data...')
 assets_df = {"Name": [],
 "Lat": [],
 "Lon": [],
 "Type": []}

 for key in self.assetsXY.keys():
 x = self.assetsXY[key][0]
 y = self.assetsXY[key][1]
 lat, lon = self.gt._xyToLatLon(x, y)
 assets_df["Name"].append(key)
 assets_df["Lat"].append(lat)
 assets_df["Lon"].append(lon)
 if "node" in key:
 assets_df["Type"].append("node")
 elif "source" in key:
 assets_df["Type"].append("source")
 elif "sink" in key:
 assets_df["Type"].append("sink")

 self.assets_df = pd.DataFrame(assets_df)

 pipelines_df = {"Name": [],
 "Lat": [],
 "Lon": []}

 for key in self.spaths.keys():
 for pt in self.spaths[key]:
 lat, lon = self.gt._cellToLatLon(pt)
 pipelines_df["Name"].append(key)
 pipelines_df["Lat"].append(lat)
 pipelines_df["Lon"].append(lon)

130

 self.pipelines_df = pd.DataFrame(pipelines_df)

 self.unique_pipes = self.pipelines_df["Name"].unique()

 existing_path_df = {"Name": [],
 "Lat": [],
 "Lon": []}

 for key in self.existingPathVertices.keys():
 for pt in self.existingPathVertices[key]:
 lat, lon = self.gt._cellToLatLon(pt)
 existing_path_df["Name"].append(key)
 existing_path_df["Lat"].append(lat)
 existing_path_df["Lon"].append(lon)

 self.existing_path_df = pd.DataFrame(existing_path_df)

 # self.lines = self.D.getDelaunayNetwork()
 print('Mapping Data sucessfully generated.')
 print('')

 def _getDelaunayMapFig(self):
 assets_subset = self.assets_df[self.assets_df["Type"].isin(["source",
"sink"])]
 fig1 = px.scatter_mapbox(assets_subset, lat="Lat", lon="Lon",
hover_name="Name", color="Type", zoom=7, height=1000, width=1000, size="Lat",
 color_discrete_map={"source":"red",
"sink":"green"})
 fig1.update_layout(mapbox_style="open-street-map")

 for line in self.lines:
 lat1, lon1 = self.gt._cellToLatLon(line[0])
 lat2, lon2 = self.gt._cellToLatLon(line[1])
 fig1.add_trace(go.Scattermapbox(
 mode = "lines",
 lat = [lat1, lat2],
 lon = [lon1, lon2],
 showlegend=False,
 line={'color':'black'}
))

 return fig1

 def _getAlternateNetworkMapFig(self):
 fig2 = px.scatter_mapbox(self.assets_df, lat="Lat", lon="Lon",
hover_name="Name", color="Type", zoom=7, height=1000, width=1000, size="Lat",
 color_discrete_map={"source":"red",
"sink":"green", "node":"orange"})

131

 fig2.update_layout(mapbox_style="open-street-map")

 for pipe in self.unique_pipes:
 fig2.add_trace(go.Scattermapbox(
 mode = "lines",
 lat = self.pipelines_df[self.pipelines_df.Name == pipe]["Lat"],
 lon = self.pipelines_df[self.pipelines_df.Name == pipe]["Lon"],
 showlegend=False,
 line={'color':'blue'},
 name = str(pipe)
))

 #addpipeline plot
 for path in self.existingPath.keys():
 fig2.add_trace(go.Scattermapbox(
 mode = "lines",
 lat = self.existing_path_df[self.existing_path_df.Name ==
path]["Lat"],
 lon = self.existing_path_df[self.existing_path_df.Name ==
path]["Lon"],
 showlegend=True,
 opacity=0.5,
 line={'width': 5, 'color':'purple'},
 name = str(path)
))

 return fig2

 def _getSolnNetworkMapFig(self, soln_arcs, point1=None, point2=None,
show_alt=True):
 fig3 = px.scatter_mapbox(self.assets_df, lat="Lat", lon="Lon",
hover_name="Name", color="Type", zoom=7, height=1000, width=1000, size="Lat",
 color_discrete_map={"source":"red",
"sink":"green", "node":"orange"})
 fig3.update_layout(mapbox_style="open-street-map")

 if show_alt:
 for pipe in self.unique_pipes:
 fig3.add_trace(go.Scattermapbox(
 mode = "lines",
 lat = self.pipelines_df[self.pipelines_df.Name ==
pipe]["Lat"],
 lon = self.pipelines_df[self.pipelines_df.Name ==
pipe]["Lon"],
 showlegend=False,
 line={'color':'blue'},
 name = str(pipe)
))

 if point1:
 if point1 != ["", ""]:

132

 fig3.add_trace(go.Scattermapbox(
 mode = "markers",
 lat = [point1[0]],
 lon = [point1[1]],
 showlegend=True,
 opacity=0.8,
 marker={'size': 20, 'color':'orange'},
 name = str("Tie-in Point 1")
))
 fig3.add_trace(go.Scattermapbox(
 mode = "markers",
 lat = [point1[0]],
 lon = [point1[1]],
 showlegend=False,
 opacity=0.8,
 marker={'size': 10, 'color':'black'},
 name = str("Tie-in Point 1")
))

 if point2:
 if point2 != ["", ""]:
 fig3.add_trace(go.Scattermapbox(
 mode = "markers",
 lat = [point2[0]],
 lon = [point2[1]],
 showlegend=True,
 opacity=0.8,
 marker={'size': 20, 'color':'orange'},
 name = str("Tie-in Point 2")
))
 fig3.add_trace(go.Scattermapbox(
 mode = "markers",
 lat = [point2[0]],
 lon = [point2[1]],
 showlegend=False,
 opacity=0.8,
 marker={'size': 10, 'color':'black'},
 name = str("Tie-in Point 2")
))

 #addpipeline plot
 for path in self.existingPath.keys():
 fig3.add_trace(go.Scattermapbox(
 mode = "lines",
 lat = self.existing_path_df[self.existing_path_df.Name ==
path]["Lat"],
 lon = self.existing_path_df[self.existing_path_df.Name ==
path]["Lon"],
 showlegend=True,
 opacity=0.5,
 line={'width': 5, 'color':'purple'},
 name = str(path)

133

))

 #highlight soln
 for pipe in self.unique_pipes:
 if ((self.nodesdict[pipe[0]], self.nodesdict[pipe[1]]) in
soln_arcs.keys()) or \
 ((self.nodesdict[pipe[1]], self.nodesdict[pipe[0]]) in
soln_arcs.keys()) :
 fig3.add_trace(go.Scattermapbox(
 mode = "lines",
 lat = self.pipelines_df[self.pipelines_df.Name ==
pipe]["Lat"],
 lon = self.pipelines_df[self.pipelines_df.Name ==
pipe]["Lon"],
 showlegend=False,
 opacity=0.5,
 line={'width': 10, 'color':'green'}

))

 return fig3

 def _getSolnResults(self, soln_arcs):
 solnkeys = []
 for pipe in self.unique_pipes:
 if ((self.nodesdict[pipe[0]], self.nodesdict[pipe[1]]) in
soln_arcs.keys()):
 solnkeys.append((pipe[0], pipe[1], 'n'))
 elif ((self.nodesdict[pipe[1]], self.nodesdict[pipe[0]]) in
soln_arcs.keys()):
 solnkeys.append((pipe[0], pipe[1], 'r'))

 resultdict2 = {}
 for solnkey in solnkeys:
 path = self.spaths[(solnkey[0], solnkey[1])]
 path_geo = []
 length_act = 0
 for i in range(len(path)-1):
 lat1, lon1 = self.gt._cellToLatLon(path[i])
 lat2, lon2 = self.gt._cellToLatLon(path[i+1])
 path_geo.append(((lat1, lon1), (lat2, lon2)))
 length_act += self.gt._getDistance(path[i], path[i+1])
 length1 = self.spathsLength[(solnkey[0], solnkey[1])]
 length = length_act
 if solnkey[2] == 'n':
 resultdict2[(self.nodesdict[solnkey[0]],
self.nodesdict[solnkey[1]])] = {"length": length, "path": path_geo}
 else:
 path_geo.reverse()
 resultdict2[(self.nodesdict[solnkey[1]],
self.nodesdict[solnkey[0]])] = {"length": length, "path": path_geo}

134

 return resultdict2

 def export_network(self):
 self.nodesdict = {}
 nodenames = []
 idx = 1
 pipe_idx = 1
 for key,value in self.assetNameFromPT.items():
 for pipeline in self.existingPath.keys():
 if pipeline in value:
 self.nodesdict[key] = f'{pipeline}_TS'+str(pipe_idx)
 nodenames.append(f'{pipeline}_TS'+str(pipe_idx))
 pipe_idx+=1
 break
 if ('from' in value) and (key not in self.nodesdict.keys()):
 self.nodesdict[key] = 'TS'+str(idx)
 nodenames.append('TS'+str(idx))
 idx+=1
 elif key not in self.nodesdict.keys():
 self.nodesdict[key] = value
 nodenames.append(value)

 # print("nodesdict: ", nodesdict)
 arcsCost = {}
 arcsLength = {}
 arcsWeight = {}
 arcsPath = {}
 arcs = []

 for key, value in self.spathsCost.items():
 node1 = self.nodesdict[key[0]]
 node2 = self.nodesdict[key[1]]
 arc_1 = node1.split("_")[0]
 arc_2 = node2.split("_")[0]
 if (arc_1 == arc_2) and (arc_1 in self.existingPathBounds.keys()):
 if (self.existingPathType[arc_1] == "unidirectional"):
 arcsCost[(node1, node2)] = value
 arcsLength[(node1, node2)] = self.spathsLength[key]
 arcsWeight[(node1, node2)] = self.spathsWeight[key]
 arcsPath[(node1, node2)] = self.spaths[key]
 arcs.append((node1, node2))
 else:
 arcsCost[(node1, node2)] = value
 arcsCost[(node2, node1)] = value
 arcsLength[(node1, node2)] = self.spathsLength[key]
 arcsLength[(node2, node1)] = self.spathsLength[key]
 arcsWeight[(node1, node2)] = self.spathsWeight[key]
 arcsWeight[(node2, node1)] = self.spathsWeight[key]

135

 arcsPath[(node1, node2)] = self.spaths[key]
 arcsPath[(node2, node1)] = [i for i in
reversed(self.spaths[key])]
 arcs.append((node1, node2))
 arcs.append((node2, node1))
 else:
 arcsCost[(node1, node2)] = value
 arcsCost[(node2, node1)] = value
 arcsLength[(node1, node2)] = self.spathsLength[key]
 arcsLength[(node2, node1)] = self.spathsLength[key]
 arcsWeight[(node1, node2)] = self.spathsWeight[key]
 arcsWeight[(node2, node1)] = self.spathsWeight[key]
 arcsPath[(node1, node2)] = self.spaths[key]
 arcsPath[(node2, node1)] = [i for i in
reversed(self.spaths[key])]
 arcs.append((node1, node2))
 arcs.append((node2, node1))

 #get b values for network graph
 nodes_b ={key:0 for key in nodenames}

 for node in nodes_b:
 if node in self.assetCap.keys():
 nodes_b[node] = self.assetCap[node]

 #define all arc info [length, weight, w_cost, lower_bound, upper_bound]
 arcsInfo = {key:[arcsLength[key],arcsWeight[key],arcsCost[key], 0, 1e9]
for key in arcsCost.keys()}

 for arc in arcs:
 arc_1 = arc[0].split("_")[0]
 arc_2 = arc[1].split("_")[0]
 if arc_1 == arc_2:
 if arc_1 in self.existingPathBounds.keys():
 arcsInfo[arc][3] = self.existingPathBounds[arc_1][0]
 arcsInfo[arc][4] = self.existingPathBounds[arc_1][1]

 return nodenames, arcs, arcsInfo, arcsPath, nodes_b

math_model.py

import os
import pulp as pl
from pulp import *
from typing import Dict, List, Set
import pandas as pd
import numpy as np

136

import gurobipy as gp
import logging
import os
from gurobipy import GRB
from alternateNetworkGeo import alternateNetworkGeo
import time
import datetime

MPS_FILE_PATH =
os.path.join("Sequestrix/app/solver_files/CO2_network_optimization.mps")
LP_FILE_PATH =
os.path.join("Sequestrix/app/solver_files/CO2_network_optimization.lp")
SOL_FILE_PATH =
os.path.join("Sequestrix/app/solver_files/CO2_network_optimization.sol")
ILP_FILE_PATH =
os.path.join("Sequestrix/app/solver_files/CO2_network_optimization.ilp")

LOGGER = logging.getLogger(__name__)
FORMAT = '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
logging.basicConfig(filename='model_solve.log', filemode='w',
level=logging.DEBUG, format=FORMAT)
START_TIME = time.time()

class Math_model:
 def __init__(self, nodes, nodesValue, arcs, arcsInfo, paths, nodesCost,
duration, target_cap, crf=0.1) -> None:
 self.nodes = nodes #contains nodenames in format [node1, node2]
 self.arcs = arcs #contains arcs in the format [(node1, node2)]
 self.nodesValue = nodesValue #contains node capacity values in format
{node:cap}
 self.arcsInfo = arcsInfo #contains info about arcs in format {(node1,
node2): [length, weight, weighted_cost, lowerbound, upperbound]}
 self.paths = paths #contains the list of nodes connected in path for
reconstruction
 self.nodesCost = nodesCost #contains capture and storage cost for sources
and sinks in data in format {source:cap_cost, sink:storage_cost}
 self.duration = duration #duration of project
 self.target_cap = target_cap #amount of C02 you want to be stored in
tCO2/yr. note input will be given as MTCO2/yr
 self.crf = crf

 self._initialize_sets()
 self._initialize_source_parameters()
 self._initialize_sink_parameters()
 self._initialize_arcs_parameters()
 self._initialize_pipeline_parameters()

 self.vars: Dict[str, gp.tupledict] = {}
 self.cons: Dict[str, gp.tupledict] = {}

137

 self.Big_M = 56.46 #max flow allowed in a pipeline tCO2/yr
 self.LTrend = 6.86 #upperbound flow for lower pipeline trend tCO2/yr

 self.costTrend = {"Slope": [0.1157192, 0.0783067],
 "Intercept": [0.4316551, 0.770037]} #trends of pipeline
cost relating MTCO2/ to $M/yr

 self.c = len(self.costTrend["Slope"])

 def _initialize_sets(self) -> None:
 self.asset: Set = set() #all assets
 self.src: Set = set() #all source nodes
 self.sink: Set = set() #all storage nodes
 self.node: Set = set() #all transhipment nodes
 self.epipe: Set = set() #all existing pipelines
 self.a_a: Set = set() #all node to node connections
 self.two_way_arcs: Dict = set() #two way arcs, for (a, a') and (a', a) in
self.a_a, only take (a, a')

 def _initialize_source_parameters(self) -> None:
 self.source_annual_cap: Dict = {} #amount of CO2 that can be captured at
source annually (MtCO2/yr)
 self.capture_cost: Dict = {} #capture cost of CO2 at source in $/tCO2
 self.capture_fixed_cost: Dict = {} #fixed capture cost of CO2 at source
in $M
 self.capture_var_cost: Dict = {} #variable capture cost of CO2 at source
in $/tCO2

 def _initialize_sink_parameters(self) -> None:
 self.sink_cap: Dict = {} #total amount of CO2 that can be stored at a
sink in MTCO2
 self.storage_cost: Dict = {} #storage cost of CO2 at source in $/tCO2
 self.storage_fixed_cost: Dict = {} #fixed capture cost of CO2 at source
in $M
 self.storage_var_cost: Dict = {} #variable capture cost of CO2 at source
in $/tCO2

 def _initialize_arcs_parameters(self) -> None:
 self.max_arc_cap: Dict = {} #maximum amout of CO2 an arc/or pipeline can
transport annually (MtCO2/yr)
 self.min_arc_cap: Dict = {} #minimum amout of CO2 an arc/or pipeline can
transport annually (MtCO2/yr)
 self.arc_length: Dict = {} #length of arc/or pipeline in KM
 self.arc_weight: Dict = {} #weight of constructing arc. This corresponds
to the terrain
 self.arc_cost: Dict = {} #weighted cost of constructing arc (this is the
build cost)

138

 def _initialize_pipeline_parameters(self) -> None:
 self.pipe_nodes: Dict = {}

 def _generate_sets(self) -> None:
 self.asset = set(self.nodes)
 self.src = set([node for node in self.nodes if 'source' in node])
 self.sink = set([node for node in self.nodes if 'sink' in node])
 self.node = set([node for node in self.nodes if ((node not in self.src)
and (node not in self.sink))])
 self.epipe = set([node.split("_")[0] for node in self.nodes if ("_" in
node) and ('source' not in node) and ('sink' not in node)])
 self.a_a = set(self.arcs)

 #extract 2 way arcs
 seen = {}
 result = []

 for (a, b) in self.a_a:
 if (a, b) not in seen:
 seen[(a,b)] = True
 if (b, a) in seen:
 result.append((b,a))

 self.two_way_arcs = set(result)

 def _generate_parameters(self) -> None:
 #source parameters
 self.source_annual_cap = {key:self.nodesValue[key] for key in self.src}
 self.capture_cost = {key:self.nodesCost[key][0] for key in self.src}
 self.capture_fixed_cost = {key:self.nodesCost[key][1] for key in
self.src}
 self.capture_var_cost = {key:self.nodesCost[key][2] for key in self.src}

 self.capture_v_cost = {key:self.capture_cost[key] if
(self.capture_var_cost[key] == 0)
 and (self.capture_fixed_cost[key] == 0)
 else self.capture_var_cost[key] for key in
self.src}

 #sink parameters
 self.sink_cap = {key:self.nodesValue[key] for key in self.sink}
 self.storage_cost = {key:self.nodesCost[key][0] for key in self.sink}
 self.storage_fixed_cost = {key:self.nodesCost[key][1] for key in
self.sink}
 self.storage_var_cost = {key:self.nodesCost[key][2] for key in self.sink}

 self.storage_v_cost = {key:self.storage_cost[key] if
(self.storage_var_cost[key] == 0)
 and (self.storage_fixed_cost[key] == 0)
 else self.storage_var_cost[key] for key in
self.sink}

139

 #arc parameters
 self.MaxCap = sum(self.source_annual_cap.values()) #maximum possible flow
 self.MidCap = ((self.costTrend["Intercept"][1] -
self.costTrend["Intercept"][0]) / (self.costTrend["Slope"][0] -
self.costTrend["Slope"][1]))

 # self.max_arc_cap = {key:self.arcsInfo[key][4] for key in self.a_a}
 self.max_arc_cap = {(akey[0], akey[1], ckey):self.arcsInfo[akey][4] if
self.arcsInfo[akey][4] < self.MidCap else self.MidCap if ckey == 0 else
self.MaxCap
 for akey in self.a_a for ckey in range(self.c)}

 # self.min_arc_cap = {key:self.arcsInfo[key][3] for key in self.a_a}
 self.min_arc_cap = {(akey[0], akey[1], ckey):self.arcsInfo[akey][3] if
self.arcsInfo[akey][3] > 0 else 0
 for akey in self.a_a for ckey in range(self.c)}
 self.arc_length = {key:self.arcsInfo[key][0] for key in self.a_a}
 self.arc_weight = {key:self.arcsInfo[key][1] for key in self.a_a}
 self.arc_cost = {key:self.arcsInfo[key][2] for key in self.a_a}

 #pipeline parameters
 self.pipe_nodes = {key:[pipenode for pipenode in self.node if key in
pipenode] for key in self.epipe}

 def _validation_checks(self) -> None:
 #if target cap greater than total source cap, then set target cap to
source cap
 total_source_cap = sum(self.source_annual_cap.values()) #MTCO2/yr
 total_sink_cap = -sum(self.sink_cap.values()) / self.duration #MTCO2/yr
 total_max_arc_flow = sum(self.max_arc_cap.values()) #MTCO2/yr

 # print(total_source_cap, total_sink_cap, total_max_arc_flow)
 LOGGER.info(f'Target capacity (MTCO2/yr): {self.target_cap}')
 LOGGER.info(f'Total source capacity (MTCO2/yr): {total_source_cap}')
 LOGGER.info(f'Total sink capacity (MTCO2/yr): {total_sink_cap}')
 LOGGER.info(f'Total pipe capacity (MTCO2/yr): {total_max_arc_flow}')

 limiting_flow = min(total_source_cap, total_sink_cap, total_max_arc_flow)

 LOGGER.info(f'Limiting Flow (MTCO2/yr): {limiting_flow}')

 if self.target_cap > limiting_flow:
 LOGGER.warning('Target cap greater than limiting flow, resetting
target to limiting flow')
 self.target_cap = limiting_flow

 def create_sets_and_parameters(self):
 self._generate_sets()

140

 self._generate_parameters()
 self._validation_checks()

 def create_variables(self) -> None:
 #flow from node 1 to node 2 in network (tCO2/yr)
 index = ((node1, node2, c) for (node1, node2) in self.a_a for c in
range(self.c))
 self.vars['arc_flow'] = self.model.addVars(index, name='arc_flow', lb=0,
vtype=GRB.CONTINUOUS)

 #amount of CO2 captured at source (tCO2/yr)
 index = (src for src in self.src)
 self.vars['CO2_captured'] = self.model.addVars(index,
name='CO2_captured', lb=0, vtype=GRB.CONTINUOUS)

 #amount of CO2 stored at sink (tCO2/yr)
 index = (sink for sink in self.sink)
 self.vars['CO2_injected'] = self.model.addVars(index,
name='CO2_injected', lb=0, vtype=GRB.CONTINUOUS)

 #indicator for if pipeline arc connecting node 1 to 2 is built
 index = ((node1, node2, c) for (node1, node2) in self.a_a for c in
range(self.c))
 self.vars['arc_built'] = self.model.addVars(index, name='arc_built',
vtype=GRB.BINARY)

 #indicator is source is opened
 index = (src for src in self.src)
 self.vars['src_opened'] = self.model.addVars(index, name='src_opened',
vtype=GRB.BINARY)

 #indicator is sink is opened
 index = (sink for sink in self.sink)
 self.vars['sink_opened'] = self.model.addVars(index, name='sink_opened',
vtype=GRB.BINARY)

 def _initialize_gurobi(self) -> None:
 self.env = gp.Env(empty=True)
 self.env.start()
 self.model = gp.Model("CO2_network_optimization", env=self.env)

 def _arc_upper_lower_bound_cons(self) -> None:
 cons_name = 'arc_lower_bound'
 constr = ((self.min_arc_cap[node1, node2, c]) *
self.vars['arc_built'][node1, node2, c] #conversion min cap from MTCO2/yr to
tCO2/yr
 <= self.vars['arc_flow'][node1, node2, c]
 for (node1, node2) in self.a_a

141

 for c in range(self.c))
 self.cons[cons_name] = self.model.addConstrs(constr, name=cons_name)

 cons_name = 'arc_upper_bound'
 constr = ((self.max_arc_cap[node1, node2, c]) *
self.vars['arc_built'][node1, node2, c] #conversion max cap from MTCO2/yr to
tCO2/yr
 >= self.vars['arc_flow'][node1, node2, c]
 for (node1, node2) in self.a_a
 for c in range(self.c))
 self.cons[cons_name] = self.model.addConstrs(constr, name=cons_name)

 def _single_direction_arc_flow_cons(self) -> None:
 cons_name = 'arc_single_dir_flow'
 constr = (sum(self.vars['arc_built'][node1, node2, c] for c in
range(self.c)) <= 1
 for (node1, node2) in self.a_a)
 self.cons[cons_name] = self.model.addConstrs(constr, name=cons_name)

 def _node_balance_cons(self) -> None:
 asset_to_node = {n:[a for a in self.asset
 if (a,n) in self.a_a]
 for n in self.node}
 node_to_asset = {n:[a for a in self.asset
 if (n,a) in self.a_a]
 for n in self.node}

 cons_name = 'node_balance'
 constr = (sum(self.vars['arc_flow'][a,n,c1] for a in asset_to_node[n] for
c1 in range(self.c))
 == sum(self.vars['arc_flow'][n,a,c2] for a in
node_to_asset[n] for c2 in range(self.c))
 for n in self.node)
 self.cons[cons_name] = self.model.addConstrs(constr, name=cons_name)

 def _demand_balance_cons(self) -> None:
 asset_to_demand = {d:[a for a in self.asset
 if (a,d) in self.a_a]
 for d in self.sink}
 demand_to_asset = {d:[a for a in self.asset
 if (d,a) in self.a_a]
 for d in self.sink}

 cons_name = 'demand_balance'
 constr = (sum(self.vars['arc_flow'][a,d,c1] for a in asset_to_demand[d]
for c1 in range(self.c))*self.duration #convert tCO2/yr to MTCO2
 - sum(self.vars['arc_flow'][d,a,c2] for a in
demand_to_asset[d] for c2 in range(self.c))*self.duration
 == self.vars['CO2_injected'][d] #MTCO2

142

 for d in self.sink)
 self.cons[cons_name] = self.model.addConstrs(constr, name=cons_name)

 def _supply_balance_cons(self) -> None:
 asset_to_supply = {s:[a for a in self.asset
 if (a,s) in self.a_a]
 for s in self.src}
 supply_to_asset = {s:[a for a in self.asset
 if (s,a) in self.a_a]
 for s in self.src}

 cons_name = 'supply_balance'
 constr = (sum(self.vars['arc_flow'][a,s,c1] for a in asset_to_supply[s]
for c1 in range(self.c)) #convert tCO2/yr to MTCO2/yr
 - sum(self.vars['arc_flow'][s,a,c2] for a in
supply_to_asset[s] for c2 in range(self.c))
 == -self.vars['CO2_captured'][s] #MTCO2/yr
 for s in self.src)
 self.cons[cons_name] = self.model.addConstrs(constr, name=cons_name)

 def _capture_limit_cons(self) -> None:
 cons_name = 'capture_limit'
 constr = (self.vars['CO2_captured'][s] #MTCO2/yr
 <= self.source_annual_cap[s] * self.vars['src_opened'][s]
 for s in self.src)
 self.cons[cons_name] = self.model.addConstrs(constr, name=cons_name)

 def _storage_limit_cons(self) -> None:
 cons_name = 'storage_limit'
 constr = (self.vars['CO2_injected'][d]
 <= -self.sink_cap[d] * self.vars['sink_opened'][d] #1e6
converts MTCO2 to tCO2
 for d in self.sink)
 self.cons[cons_name] = self.model.addConstrs(constr, name=cons_name)

 def _capture_target_cons(self) -> None:
 cons_name = 'CO2_capture_target'
 constr = (sum(self.vars['CO2_captured'][s] for s in self.src)
 >= self.target_cap)
 self.cons[cons_name] = self.model.addConstr(constr, name=cons_name)

 def create_constraints(self) -> None:
 self._arc_upper_lower_bound_cons()

143

 msg = ("'Arc Bounds' constraint: Time elapsed: %.2f seconds"
 % (time.time() - START_TIME))
 print(msg)
 LOGGER.info(msg)
 self._single_direction_arc_flow_cons()
 msg = ("'Single Direction' constraint: Time elapsed: %.2f seconds"
 % (time.time() - START_TIME))
 print(msg)
 LOGGER.info(msg)
 self._node_balance_cons()
 msg = ("'Supply Balance' constraint: Time elapsed: %.2f seconds"
 % (time.time() - START_TIME))
 print(msg)
 LOGGER.info(msg)
 self._demand_balance_cons()
 msg = ("'Demand Balance' constraint: Time elapsed: %.2f seconds"
 % (time.time() - START_TIME))
 print(msg)
 LOGGER.info(msg)
 self._supply_balance_cons()
 msg = ("'Supply Balance' constraint: Time elapsed: %.2f seconds"
 % (time.time() - START_TIME))
 print(msg)
 LOGGER.info(msg)
 self._capture_limit_cons()
 msg = ("'Capture Limit' constraint: Time elapsed: %.2f seconds"
 % (time.time() - START_TIME))
 print(msg)
 LOGGER.info(msg)
 self._storage_limit_cons()
 msg = ("'Storage Limit' constraint: Time elapsed: %.2f seconds"
 % (time.time() - START_TIME))
 print(msg)
 LOGGER.info(msg)
 self._capture_target_cons()
 msg = ("'Capture Target' constraint: Time elapsed: %.2f seconds"
 % (time.time() - START_TIME))
 print(msg)
 LOGGER.info(msg)

 def build_model(self) -> None:
 self._initialize_gurobi()
 print('\nInitialized Gurobi model instance\n')
 LOGGER.info('\nInitialized Gurobi model instance')
 LOGGER.info('Creating sets and parameters...')
 print('Creating sets and parameters...')
 self.create_sets_and_parameters()
 print('Sets and parameters are generated')
 print("Time elapsed: %.2f seconds" % (time.time() - START_TIME))

144

 LOGGER.info('Sets and parameters are generated')
 LOGGER.info("Time elapsed: %.2f seconds" % (time.time() - START_TIME))
 LOGGER.info('Setting variables...')
 print('\nSetting variables...')
 self.create_variables()
 print('Variables are defined')
 print("Time elapsed: %.2f seconds" % (time.time() - START_TIME))
 LOGGER.info('Variables are defined')
 LOGGER.info("Time elapsed: %.2f seconds" % (time.time() - START_TIME))
 LOGGER.info('Imposing constraints...')
 print('\nImposing constraints...')
 self.create_constraints()
 print('Constraints are enforced\n')
 LOGGER.info('Constraints are enforced')
 print('Solving model...\n')

 def create_objective(self) -> None:
 #capture cost + transport flow cost + arc build cost + storage cost
 capture_cost = sum((self.capture_fixed_cost[s] *
self.vars['src_opened'][s]) + # $M * {0,1} = $M
 (self.capture_v_cost[s] *
self.vars['CO2_captured'][s] * self.duration) for s in self.src) # $/tCO2 *
MTCO2/yr * yr = $M

 storage_cost = sum((self.storage_fixed_cost[d] *
self.vars['sink_opened'][d]) + # $M * {0,1} = $M
 (self.storage_v_cost[d] *
self.vars['CO2_injected'][d]) for d in self.sink) # $/tCO2 * MTCO2 = $M

 transport_flow_cost = sum((self.costTrend["Slope"][c] *
self.vars['arc_flow'][node1, node2, c])
 * self.arc_cost[node1, node2] * self.crf *
self.duration
 for (node1, node2) in self.a_a
 for c in range(self.c)) # $M * {0, 1} =
$M

 pipeline_build_cost = sum((self.costTrend["Intercept"][c] *
self.vars['arc_built'][node1, node2, c])
 * self.arc_cost[node1, node2] * self.crf *
self.duration
 for (node1, node2) in self.a_a
 for c in range(self.c)) # $M * {0, 1} =
$M

 obj = capture_cost + storage_cost + transport_flow_cost +
pipeline_build_cost

145

 self.model.setObjective(obj, GRB.MINIMIZE)
 self.model.update()

 def solve_model(self) -> None:
 LOGGER.info('Evauating "minimum cost" objective function')
 self.create_objective()
 LOGGER.info('Objective function "mimumum cost" evaluated')
 self.use_pulp = False

 #set numrerical focus to 2
 # self.model.setParam('NumericFocus', 2)
 #output lp and mps files
 self.model.write(LP_FILE_PATH)
 self.model.write(MPS_FILE_PATH)

 if (self.model.NumVars <= 2000) and (self.model.NumConstrs <= 2000):
 #solve model
 self.model.optimize()
 LOGGER.info(f'Model Status: {self.model.status}')
 if self.model.status == GRB.INFEASIBLE:
 self.model.computeIIS()
 self.model.write(ILP_FILE_PATH)
 elif self.model.status == GRB.INF_OR_UNBD:
 self.model.setParam('DualReductions', 0)
 self.model.optimize()
 if self.model.status == GRB.INFEASIBLE:
 self.model.computeIIS()
 self.model.write(ILP_FILE_PATH)
 else:
 self.objective = self.model.ObjVal

 #write solution
 self.model.write(SOL_FILE_PATH)
 self.extract_results()
 LOGGER.info("Time elapsed: %.2f seconds" % (time.time() -
START_TIME))
 else:
 LOGGER.info("Model is too large for Gurobipy free licence, switching
to CPLEX")
 self.use_pulp=True
 self.pulp_var, self.pulp_model = LpProblem.fromMPS(MPS_FILE_PATH)
 self.pulp_solver = pl.CPLEX_CMD(options=['mipdisplay=0'])
 self.pulp_model.solve(self.pulp_solver)
 if self.pulp_model.status == 1:
 #write soln
 self.extract_pulp_variables()
 self.extract_results()
 LOGGER.info("Time elapsed: %.2f seconds" % (time.time() -
START_TIME))

146

 def extract_pulp_variables(self) -> None:
 prob1 = self.pulp_model
 arc_flow_keys = {}
 CO2_captured_keys = {}
 CO2_injected_keys = {}
 arc_built_keys = {}
 src_opened_keys = {}
 sink_opened_keys = {}

 for v in prob1.variables():
 if "arc_flow" in v.name:
 key1 = v.name.split(",")[0][9:]
 key2 = v.name.split(",")[1]
 key3 = int(v.name.split(",")[2].split("_")[0])
 arc_flow_keys[(key1, key2, key3)] = v.varValue
 if "CO2_captured" in v.name:
 key = v.name.split("_")[2] + "_" + v.name.split("_")[3]
 CO2_captured_keys[key] = v.varValue
 if "CO2_injected" in v.name:
 key = v.name.split("_")[2] + "_" + v.name.split("_")[3]
 CO2_injected_keys[key] = v.varValue
 if "arc_built" in v.name:
 key1 = v.name.split(",")[0][10:]
 key2 = v.name.split(",")[1]
 key3 = int(v.name.split(",")[2].split("_")[0])
 arc_built_keys[(key1, key2, key3)] = v.varValue
 if "src_opened" in v.name:
 key = v.name.split("_")[2] + "_" + v.name.split("_")[3]
 src_opened_keys[key] = v.varValue
 if "sink_opened" in v.name:
 key = v.name.split("_")[2] + "_" + v.name.split("_")[3]
 sink_opened_keys[key] = v.varValue

 # Write the solution to a .sol file
 with open(SOL_FILE_PATH, "w") as f:
 f.write("# Solution for model CO2_network_optimization \n")
 f.write(f"# Objective value = {value(prob1.objective)} \n")
 for key in arc_flow_keys.keys():
 f.write(f"arc_flow[{key[0]},{key[1]},{key[2]}]
{arc_flow_keys[key]} \n")
 for key in CO2_captured_keys.keys():
 f.write(f"CO2_captured[{key}] {CO2_captured_keys[key]} \n")
 for key in CO2_injected_keys.keys():
 f.write(f"CO2_injected[{key}] {CO2_injected_keys[key]} \n")
 for key in arc_built_keys.keys():
 f.write(f"arc_built[{key[0]},{key[1]},{key[2]}]
{int(arc_built_keys[key])} \n")
 for key in src_opened_keys.keys():
 f.write(f"src_opened[{key}] {int(src_opened_keys[key])} \n")
 for key in sink_opened_keys.keys():
 f.write(f"sink_opened[{key}] {int(sink_opened_keys[key])} \n")

147

 self.arc_flow_keys = arc_flow_keys
 self.CO2_captured_keys = CO2_captured_keys
 self.CO2_injected_keys = CO2_injected_keys
 self.arc_built_keys = arc_built_keys
 self.src_opened_keys = src_opened_keys
 self.sink_opened_keys = sink_opened_keys

 def extract_soln_arcs(self) -> None:
 self.soln_arcs = {}
 for arc in self.vars['arc_flow']:
 if self.vars['arc_flow'][arc].X > 0:
 self.soln_arcs[arc] = self.vars['arc_flow'][arc].X

 self.soln_arcs_a = {(arc[0], arc[1]):self.soln_arcs[arc] for arc in
self.soln_arcs.keys()}

 def extract_activated_source(self) -> None:
 self.soln_sources = {}
 for src in self.vars['CO2_captured']:
 if self.vars['CO2_captured'][src].X > 0:
 self.soln_sources[src] = self.vars['CO2_captured'][src].X

 def extract_activated_sinks(self) -> None:
 self.soln_sinks = {}
 for sink in self.vars['CO2_injected']:
 if self.vars['CO2_injected'][sink].X > 0:
 self.soln_sinks[sink] = self.vars['CO2_injected'][sink].X

 def extract_costs(self) -> None:
 self.soln_cap_costs = {} #$M
 self.soln_storage_costs = {} #$M
 self.soln_transport_costs = {}

 for src in self.soln_sources.keys():
 c_cost = (self.capture_fixed_cost[src] + (self.capture_v_cost[src] *
self.soln_sources[src] * self.duration))
 self.soln_cap_costs[src] = c_cost

 for sink in self.soln_sinks.keys():
 s_cost = self.storage_fixed_cost[sink] + (self.storage_v_cost[sink] *
self.soln_sinks[sink])
 self.soln_storage_costs[sink] = s_cost

 for arc in self.soln_arcs.keys():
 print("arc: ", arc)
 print("slope: ", self.costTrend["Slope"][arc[2]])
 print("intercept: ", self.costTrend["Intercept"][arc[2]])
 print("flow: ", self.vars['arc_flow'][arc].x)

148

 print("built: ", self.vars['arc_built'][arc].x)
 print("weight: ", self.arc_cost[(arc[0], arc[1])])
 print("crf: ", self.crf)
 print("duration: ", self.duration)

 tf_cost = (self.costTrend["Slope"][arc[2]] *
self.vars['arc_flow'][arc].x) * self.arc_cost[(arc[0], arc[1])] * self.crf *
self.duration
 tb_cost = (self.costTrend["Intercept"][arc[2]] *
self.vars['arc_built'][arc].x) * self.arc_cost[(arc[0], arc[1])] * self.crf *
self.duration

 t_cost = tf_cost + tb_cost

 print("transfer: ", tf_cost)
 print("build: ", tb_cost)
 print("total: ", t_cost)
 print("")

 self.soln_transport_costs[arc] = t_cost

 self.soln_transport_costs_a = {(arc[0],
arc[1]):self.soln_transport_costs[arc] for arc in
self.soln_transport_costs.keys()}

 def extract_soln_arcs_p(self) -> None:
 self.soln_arcs = {}
 for arc in self.arc_flow_keys.keys():
 if self.arc_flow_keys[arc] > 0:
 self.soln_arcs[arc] = self.arc_flow_keys[arc]

 self.soln_arcs_a = {(arc[0], arc[1]):self.soln_arcs[arc] for arc in
self.soln_arcs.keys()}

 def extract_activated_source_p(self) -> None:
 self.soln_sources = {}
 for src in self.CO2_captured_keys.keys():
 if self.CO2_captured_keys[src] > 0:
 self.soln_sources[src] = self.CO2_captured_keys[src]

 def extract_activated_sinks_p(self) -> None:
 self.soln_sinks = {}
 for sink in self.CO2_injected_keys.keys():
 if self.CO2_injected_keys[sink] > 0:
 self.soln_sinks[sink] = self.CO2_injected_keys[sink]

 def extract_costs_p(self) -> None:
 self.soln_cap_costs = {} #$M
 self.soln_storage_costs = {} #$M

149

 self.soln_transport_costs = {}

 for src in self.soln_sources.keys():
 c_cost = (self.capture_fixed_cost[src] + (self.capture_v_cost[src] *
self.soln_sources[src] * self.duration))
 self.soln_cap_costs[src] = c_cost

 for sink in self.soln_sinks.keys():
 s_cost = self.storage_fixed_cost[sink] + (self.storage_v_cost[sink] *
self.soln_sinks[sink])
 self.soln_storage_costs[sink] = s_cost

 for arc in self.soln_arcs.keys():
 print("arc: ", arc)
 print("slope: ", self.costTrend["Slope"][arc[2]])
 print("intercept: ", self.costTrend["Intercept"][arc[2]])
 print("flow: ", self.arc_flow_keys[arc])
 print("built: ", self.arc_built_keys[arc])
 print("weight: ", self.arc_cost[(arc[0], arc[1])])
 print("crf: ", self.crf)
 print("duration: ", self.duration)
 tf_cost = (self.costTrend["Slope"][arc[2]] * self.arc_flow_keys[arc])
* self.arc_cost[(arc[0], arc[1])] * self.crf * self.duration
 tb_cost = (self.costTrend["Intercept"][arc[2]] *
self.arc_built_keys[arc]) * self.arc_cost[(arc[0], arc[1])] * self.crf *
self.duration

 t_cost = tf_cost + tb_cost

 print("transfer: ", tf_cost)
 print("build: ", tb_cost)
 print("total: ", t_cost)
 print("")

 self.soln_transport_costs[arc] = t_cost

 self.soln_transport_costs_a = {(arc[0],
arc[1]):self.soln_transport_costs[arc] for arc in
self.soln_transport_costs.keys()}

 def extract_results(self) -> None:
 if self.use_pulp:
 self.extract_soln_arcs_p()
 self.extract_activated_source_p()
 self.extract_activated_sinks_p()
 self.extract_costs_p()
 else:
 self.extract_soln_arcs()
 self.extract_activated_source()

150

 self.extract_activated_sinks()
 self.extract_costs()

 def get_soln_arcs(self):
 return self.soln_arcs_a

 def get_soln_sources(self):
 return self.soln_sources

 def get_soln_sinks(self):
 return self.soln_sinks

 def get_soln_cap_costs(self):
 return self.soln_cap_costs

 def get_soln_storage_costs(self):
 return self.soln_storage_costs

 def get_soln_transport_costs(self):
 return self.soln_transport_costs_a

 def get_all_soln_results(self):
 return self.soln_arcs_a, self.soln_sources, self.soln_sinks,
self.soln_cap_costs, self.soln_storage_costs, self.soln_transport_costs_a

	ACKNOWLEDGEMENTS
	Table of Contents
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	CHAPTER 1: Introduction
	1.1 Scope of Thesis
	1.2 Working Hypothesis
	1.3 Organization of Thesis

	CHAPTER 2: Literature Review
	2.1 CO2 Sequestration History
	2.1.1 Sequestration in Hydrocarbon Reservoirs
	2.1.2 Sequestration in Saline Aquifers

	2.2 Sequestration Infrastructure
	2.2.1 CO2 Capture Technology
	2.2.2 Transport Alternatives

	2.3 Sequestration Economics
	2.3.1 Role of Government Incentives

	2.4 Network Optimization of CO2 Sequestration
	2.4.1 Representing Pipeline Routing and Construction Costs on A Geographic Surface
	2.4.2 Generating Alternate Pipeline Transport Networks
	2.4.3 Determination of Optimal Transport Routes
	2.4.4 Mathematical Model Formulation
	2.4.5 Representing CO2 pipeline Construction Costs with Trendlines

	2.5 Existing Solutions and Limitations

	CHAPTER 3: Methodology
	3.1 Translating Geographical Coordinates to Graph Coordinates
	3.2 Generating Alternate Transport Routes
	3.2.1 Delaunay Triangulation
	3.2.2 Embedding Existing Pipeline Routes
	3.2.3 Tie-in Points – Calculate or Assign
	3.2.4 Shortest Connecting Path Estimation
	3.2.5 Solving with Intersecting Shortest Paths in Practice

	3.3 Sequestration Network Optimization Implementation
	3.3.3 Solver Selection

	3.4 Solution Visualization

	CHAPTER 4: Results and Discussion
	4.1 Demo 1 (Benchmarking) – Proposing Optimization Routes for New Pipelines
	4.1.1 Problem and Dataset Description
	4.1.2 Introduction to Sequestrix User-Interface and Results
	4.1.3 SimCCS Interface and Results
	4.1.4 Sequestrix vs SimCCS Detailed Benchmarking

	4.2 Demo 2 (Scalability) – Solving Large Scale Problems Across Oklahoma
	4.2.1 Problem Description
	4.2.2 Costs – Capture, Transport and Storage
	4.2.3 CO2 Emission sources
	4.2.4 CO2 Storage
	4.2.5 CO2 Network Optimization Modeling Results

	4.3 Demo 3 – New Features, Adding Enid-Purdy Pipeline to CO2 Optimization Network
	4.3.1 Enid Purdy Pipeline
	4.3.2 CO2 Sources and Sinks Dataset
	4.3.3 Base Case – CO2 Network Optimization with No Pipeline
	4.3.4 Case 1 – Optimization with Enid-Purdy Pipeline 0.5MTCO2/yr Cap No Tie-in No Exclusion
	4.3.5 Case 2 – Enid-Purdy Pipeline 2MTCO2/yr Cap 2 Tie-in points No Exclusion
	4.3.6 Case 3 – Enid-Purdy Pipeline 2MTCO2/yr Cap 2 Tie-in pts Exclusion at Ends
	4.3.7 Case 4 – Enid-Purdy Pipeline 2MTCO2/Yr Cap Single Tie-In Point with Exclusion Before
	4.3.8 Summary of Embedding Pipelines in CO2 Sequestration Network Optimization

	CHAPTER 5: Conclusions
	5.1 Concluding Remarks
	5.2 Future Work

	References
	NOMENCLATURE
	APPENDIX
	Sequestrix Source Code
	geotranformation.py
	alternateNetworkGeo.py
	math_model.py

