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CHAPTER I 
 

 

INTRODUCTION 

1.1. Background 

Water is one of the vital natural resources, facing significant challenges in many parts of the 

world (Jacobson et al., 2017). Only 1% of this resource is in form of freshwater, which can be 

utilized to meet growing global demands in various sectors such as agriculture, industry, and 

domestic. This makes freshwater a severely limited and extremely valuable resource. In future, 

the strain on freshwater resources is bound to increase due to population growths, climate change, 

and excessive depletion of available resources (Kisekka et al., 2017). Thus, proper freshwater 

utilization will be of paramount importance. In 2015, about 42% of total freshwater withdrawal 

was for irrigation in the United States (U.S.) (USDA, 2014), making it the biggest consumer of 

freshwater resources (Schaible & Aillery, 2012).  

The withdrawn irrigation water is divided into two uses: beneficial and non-beneficial. Beneficial 

uses involve transpiration by plants (directly related to the crop yield) and leaching of salts 

(Jägermeyr et al., 2015). Non-beneficial use is the water lost during conveyance or application of 

water. To supply food, feed, and fiber for the ever-increasing world population, the beneficial 

water usage needs to increase significantly (Tilman et al., 2002). The only way to increase 

beneficial water use without increasing withdrawals is to minimize the non-beneficial uses,  
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leaving a larger portion of extracted water for beneficial uses. Technological advances in 

irrigation hardware and improved irrigation management can play a crucial role in the U.S. and 

around the world to minimize non-beneficial uses while sustaining, if not increasing, crop yields 

(Howell, 2001; Tilman et al., 2002). 

Over the past few decades, several technologies have been developed to improve irrigation 

management based on key variables such as soil moisture, crop evapotranspiration (ET), canopy 

development, and canopy temperature. These technologies have used in-situ measurements, 

remotely sensed estimates, or modeling approaches to estimate the key variables mentioned 

before (Howell, 2001). Soil moisture monitoring is one of the available management technologies 

that has received a significant attention due to its several advantages. It can reduce irrigation 

amounts, labor costs, and energy requirements substantially (Belayneh et al., 2013), and can 

promote yield amount and quality (Lichtenberg et al., 2013). Despite these advantages, the 

adoption of soil moisture sensors has been limited since its commercialization a few decades ago 

(Lichtenberg et al., 2015). In the U.S., only 11% of the farmers use soil moisture sensors to 

schedule irrigation events (USDA, 2014). The barriers to the low adoption of soil moisture 

sensors must be investigated and removed to allow for improved irrigation management using 

this technology. 

One of the major reasons behind low adoption of soil moisture sensors is the complexity of 

choosing a sensor that would perform best under specific, yet spatially variable conditions of 

irrigated fields (Peters et al., 2013). This is because different sensors perform differently under 

various soil and water conditions. For example, the clay content can have variable impacts on 

sensor accuracy based on the type of sensor. Some researchers have reported over-estimation of 

soil moisture in soils with high clay content (Kisekka et al., 2017; Rüdiger et al., 2010), while 

others have observed under-estimation (Fares et al., 2011; Schwartz et al., 2016). The soil salinity 

can also add to the errors of some sensors. In most of the previous studies, sensors in saline soils 



3 
 

over-estimated soil moisture (Dalton, 1992; Wyseure et al., 1997), but Schwartz et al. (2016) 

observed under-estimation of soil moisture in saline soil. Due to these variable and inconsistent 

performances, there is a critical need to assess the accuracy and reliability of commercially 

available soil moisture sensors under different levels of soil salinity and clay content.  

Another barrier to adoption is the ease of interpreting data reported by sensors. Producers need to 

understand the sensor-reported data in order to implement a precision irrigation management. 

Commercially available sensors usually report soil moisture in either matric potential or 

volumetric water content units (Bittelli, 2010; Bittelli, 2011). There is a steep learning curve for 

most producers and irrigation managers to understand reported numbers and to convert them to 

decisions on irrigation timing and amount. In addition, information about soil moisture thresholds 

is usually necessary, which adds to the complexity of the process. Several previous publications 

have reviewed the measurement principles of different types of soil moisture sensors and their 

performances (Adeyemi et al., 2017; Bittelli, 2010; Bittelli, 2011; Cardenas-Lailhacar & Dukes, 

2010). However, most of these publications did not focus on how sensor-reported soil moisture 

can be used for practical irrigation management in real-world situations. Therefore, a 

comprehensive analysis is needed on relevant published papers to explore current barriers and 

challenges to adoption of soil moisture sensors and explore how to promote practical use of soil 

moisture sensors for efficient and precise irrigation management. 

Although sensors can provide accurate and precise estimates of soil moisture depending on field 

conditions and user experience, implementing sensors may still not be feasible due to a number of 

reasons such as relatively large cost and time commitment to purchase, install, and maintain 

sensors. When using sensors is not an option, computer modeling can be an alternative in 

simulating soil moisture dynamics with reasonable accuracy (Simunek et al., 2005). Computer 

models can also simulate important water fluxes such as evapotranspiration (ET), runoff, and 

deep percolation (DP). Estimating irrigation fluxes has many applications, for example in 
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determining if irrigation is responsible for water quality impairment in downstream groundwater 

and surface water resources (Malakar et al., 2019) and can also indicate the efficiency of 

irrigation applications (Kebede et al., 2014). Many previous studies have evaluated the 

performance of computer models under lab and greenhouse conditions (Kandelous & Šimůnek, 

2010; Zhang et al., 2009). However, limited studies have investigated these models under actual 

field conditions with high levels of heterogeneity across locations and depths. 

1.2. Objectives  

The overarching goal of this research was to assess the performance and effectiveness of existing 

measurement and modeling approaches to monitor soil moisture in irrigated fields to improve 

conservation of freshwater quantity and quality in irrigated agriculture. The specific objectives of 

this research were: 

1. To conduct a Strengths/Weaknesses/Opportunities/Threats (SWOT) analysis on published 

literature related to soil moisture sensor applications in irrigation management to identify 

shortcomings and potentials; 

2. To assess the performance of commercially available soil moisture sensors in irrigated fields of 

Oklahoma; and, 

3. To investigate the performance of computer models in estimating soil moisture dynamics and 

quantifying irrigation fluxes under field conditions.
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CHAPTER II 
 

 

A SWOT ANALYSIS OF SOIL MOISTURE SENSOR APPLICATIONS FOR IRRIGATION 

MANAGEMENT 

2.1. Introduction 

Smart sensing technologies play a vital role in conserving agricultural water resources and 

increasing crop yield by improving irrigation management (Steele et al., 1994). Soil moisture 

sensors (SMS) have been recognized as one of the effective tools among available smart sensing 

technologies for irrigation management. Despite numerous research studies conducted over the 

past few decades that show the usefulness of SMS, the adoption of this technology has remained 

limited and seen only a modest rise over the years in the United States (US) and other parts of the 

world (Stirzaker, 2006). The low SMS adoption requires conducting a literature review along 

with an analysis of strengths, weaknesses, opportunities, and threats (SWOT) to investigate 

potential reasons behind low transfer of SMS technology and to identify solutions to improve its 

utilization. 

A decent number of SMS review articles have been published in the past (Adeyemi et al., 2017; 

Bittelli, 2010; Bittelli, 2011; Pardossi et al., 2009; S.U. et al., 2014; Shock & Wang, 2011; 

Thompson & Gallardo, 2005). However, the primary focus of these articles has been on technical 

aspects such as measuring principles of SMS, ways to improve sensor accuracy, factors affecting 

accuracy, and spatial variability of soil moisture, to name a few. A study by Leib et al. (2002) 

addressed the low adoption of scientific scheduling tools in general, but SMS was not their focus. 



6 
 

To the best of our knowledge, no other studies have been published on the reasons behind low 

SMS adoption and the possible direction forward. Therefore, there is an urgent need to assimilate 

information from previously published literatures to investigate the gap between research and 

practical applications of soil moisture sensors. The specific objectives of this study were: 1) to 

examine the current situation of SMS adoption in the US and possible factors impacting it based 

on the national surveys conducted over the past 20 years; 2) to conduct a critical literature review 

of previously published SMS papers; and, 3) to perform a SWOT analysis to identify internal and 

external helpful and harmful factors that must be considered to improve SMS utilization in 

irrigation management. 

2.2. Materials and Methods 

2.2.1. Adoption of Soil Moisture Sensors in the US 

The data on adoption of soil moisture sensors (SMS) in irrigation scheduling were obtained from 

the Farm and Ranch Irrigation surveys conducted every five years by the National Agricultural 

Statistics Service of the United States (US) Department of Agriculture. The data from the five 

recent surveys conducted in 1998, 2003, 2008, 2013, and 2018 were used in the present study. 

Since a fraction of all irrigated farms are contacted in these surveys (e.g. 18% on average in 

2018), only the states that had a total irrigated area larger than one million acres (about 400,000 

ha) were selected for analysis to ensure the sample size was not too small. This criteria resulted in 

selecting the following 15 states: Arkansas (AR), California (CA), Colorado (CO), Florida (FL), 

Idaho (ID), Kansas (KS), Mississippi (MS), Missouri (MO), Montana (MT), Nebraska (NE), 

Oregon (OR), Texas (TX), Utah (UT), Washington (WA), and Wyoming (WY). These 15 states 

have been consistently among the top 18 irrigated states since 1998 and represent 84% of the total 

irrigated area in the US. The exclusion of the remaining 35 states with smaller irrigated areas and 

sampled farms helps improve the confidence in the results obtained. To investigate the potential 



7 
 

factors contributing to observed patterns in the adoption of SMS, Pearson’s correlation 

coefficients (r) were calculated to determine the level of association between SMS adoption 

(percent of farms using SMS in each of the selected 15 states) and other factors reported in the 

surveys (Benesty et al., 2009). The guideline from Evans (1996) was followed to describe the 

correlations based on ranges of r as very weak (0 ≤ r ≤ 0.19); weak (0.20 ≤ r ≤ 0.39); moderate 

(0.40 ≤ r ≤ 0.59); strong (0.60 ≤ r ≤ 0.79); and very strong (0.80 ≤ r ≤ 1.00). The statistical 

significance of the estimated r was also evaluated at the significance level of α = 0.05. 

2.2.2. Literature Review 

Several scholarly databases were searched to identify previously published peer-reviewed journal 

manuscripts on the use of SMS in irrigation management. These databases included, but were not 

limited to Google Scholar, ProQuest, Scopus, and Web of Science. The search focused on those 

studies that had improving irrigation scheduling as one objective or their main goal. Hence, the 

papers that investigated the SMS utilization for other purposes were excluded. This resulted in 

identifying 84 papers, with publication dates spanning from 1994 to 2020. 

2.2.3. SWOT Analysis 

The SWOT analysis is conducted on a regular basis to perform strategic planning, identify 

barriers to achieving goals, and decide about future directions for a wide range of entities, 

policies, and initiatives. In this study, the entity that was considered for performing the SWOT 

analysis was all scientists and engineers at public and private research organizations (e.g. 

universities, government agencies, non-governmental organizations, etc.) who share the same 

goal of improving agricultural irrigation management using sensing technologies. In this specific 

SWOT analysis, each of the main four elements were assumed to represent: 
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• Strengths: The areas (skills and capacities) that allow researchers to advance the 

SMS technology and its adoption. 

• Weaknesses: The areas that need improvement, including critical aspects of 

transferring SMS technology that have received less attention from researchers. 

• Opportunities: The potential helpful factors available to researchers that can 

assist with increasing the effective and affordable SMS utilization in irrigation 

management. 

• Threats: The potential harmful factors (mostly external) that can act against the 

efforts of researchers and impede the adoption of SMS technology. 

2.3. Results and Discussion 

2.3.1. Adoption of Soil Moisture Sensors in the US 

In general, the adoption of soil moisture sensors (SMS) has been limited, but slowly increasing 

over the past two decades (Figure 2.1a). At the national level (considering all fifty states) the 

percentage of farms that used SMS technology for irrigations scheduling was 9%, 7%, 9%, 10%, 

and 12% in 1998, 2003, 2008, 2013, and 2018, receptively. The range of SMS adoption was large 

among the top 15 irrigated states, varying from 2% in UT and WY to 31% in NE in 2018. From 

1998 to 2018, there was a combined two-fold increase in SMS adoption in the top 15 states, 

ranging from a decrease of 45% in UT to a nine-fold increase in TX. Other leading states in terms 

of increasing SMS adoption were MS and NE with about four- and five-fold increases 

experienced in the past 20 years, respectively. CA and WA witnessed doubling of SMS utilization 

during the same period (Figure 2.1b). 
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Figure 2.1. Percentage of farms using soil moisture sensors (a) and percentage of change in use 

of soil moisture sensors from 1998 to 2018 (b). 
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Among factors that were investigated for potential influence on SMS adoption (percent of farms 

using SMS in each state), the total irrigated area of each state had a significant moderate 

correlation (r = 0.55) with SMS adoption. But a major player was the level of control over 

irrigation management. In 2018, there was a strong, statistically significant negative correlation (r 

= -0.66) between the farms that used SMS and those that relied on scheduled delivery of 

irrigation water by supplier. In addition, scheduled delivery by supplier was the dominant method 

of irrigation scheduling (reported by 35-48% of irrigated farms in 2018) in the three states of CO, 

UT, and WY that experienced a decrease in SMS adoption over the last 20 years. This is most 

probably due to the fact that growers who receive water on a schedule decided by suppliers have 

limited flexibility in modifying irrigation management and are thus less motivated to invest in 

utilizing SMS. There was a strong and statistically significant positive correlation (r = 0.76) 

between the farms using SMS and those using daily crop evapotranspiration reports for irrigation 

decision making. This suggests the states that had a higher rate of SMS adoption relied on 

additional advanced methods of irrigation scheduling. 

Another parameter that was significantly correlated with percent of farms utilizing SMS adoption 

was the total expenditure on computers, control panels, and computer-controlled hardware for 

water conservation in irrigation management, with a moderate r value of 0.56. The largest 

correlation coefficients among all investigated parameters belonged to the sources of information 

that growers relied on for reducing irrigation costs and conserving water. The percent of irrigated 

farms that relied on electronic information services had very strong and statistically significant 

relationships with the percent of farms that utilized SMS in their irrigation scheduling, with a r 

value of 0.82. The next largest r value (0.80) described the relationship with the percent of 

irrigated farms that relied on private irrigation specialists or consultants. This is not surprising as 

the successful implementation of SMS in irrigation decision making requires considerable 

knowledge and experience that can be gained from online resources and experienced specialists. 
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Interestingly, the percent of farms that sought information from their neighbors was negatively 

correlated with percent of farms using SMS (r = -0.80). 

It was hypothesized that a few other factors may be correlated with SMS utilization among the 

top 15 irrigated states, including the methods of irrigation application (i.e. gravity, sprinkler, 

and/or drip systems) and the total and average quantity of water applied. However, the estimated 

correlations coefficients with these parameters were not statistically significant. 

2.3.2. SWOT Analysis 

2.3.2.1. Strengths 

The irrigation research community in general has two core competencies that can strengthen the 

improvements in adoption and utilization of SMS technology. The first competency is the vast 

network of human resources (graduate students, researchers, technicians, etc.) who have the 

required knowledge and skillset to perform complicated SMS research studies. Through 

collaborations between universities and public/private agencies, the research community also has 

the capacity to recruit new talents and to train them through in-class and hands-on approaches to 

join the community and continue the efforts towards tackling challenges and identifying solutions 

to new issues related to SMS-based irrigation scheduling. 

The second competence is the existing collaborations with a comprehensive network of extension 

and outreach personnel that can bridge the gap between research and practical applications. In the 

US, land-grant universities are homes to cooperative extension services that allow access to local 

producers through developing extension materials in traditional and modern formats and hosting 

numerous extension events and field days. The local extension educators can play the same role 

that local dealers and sales representatives play for businesses, taking the research findings to end 

users and selling them the innovative, effective, and affordable ideas to improve irrigation 
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management. Although the vast extension network may not be equally appreciated and utilized 

across irrigated regions, its presence serves as a major strength to the research community. 

2.3.2.2. Weaknesses 

A major weakness that hinders the implementation of SMS technology in practical irrigation 

management is the low accuracy of available sensors. Accuracy is one of the most important 

factors that influences the decision to invest in SMS technology as well as the selection of the 

most appropriate sensor (Kukal et al., 2020). Guidelines are available on evaluating the accuracy 

of sensors and determining their suitability for irrigation scheduling based on the estimated root 

mean square error (RMSE). Fares et al. (2011) suggested the following categories of accuracy: 

good (RMSE <0.010 cm3 cm-3), fair (0.010 ≤ RMSE < 0.050 cm3 cm-3), poor (0.050 ≤ RMSE < 

0.100 cm3 cm-3), and very poor (RMSE ≥ 0.100 cm3 cm-3). Hignett and Evett (2008) argued that 

the RMSE should be in the order of 0.010 to 0.020 cm3 cm-3 for effective irrigation management. 

Previous studies have used a wide range of statistical indicators and about 10% of them did not 

even report RMSE. Among over 500 sensor RMSEs reported, only 3% fell under the good 

accuracy category according to Fares et al. (2011). About 55% of tested SMS had fair accuracy, 

followed by 25% in poor and 17% in very poor accuracy categories (Figure 2.2). In addition, only 

15% of the reported RMSE in past literatures was complying with the criteria set by Hignett and 

Evett (2008). 
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Figure 2.2. The frequency distribution of reported root mean square error (RMSE) of sensors in 

the literature. 

The accuracy categories mentioned above represent RMSEs reported based on factory 

calibrations, which is the type of calibration that producers are exposed to. Obviously, site-

specific calibrations would significantly increase the accuracy of sensors (Komilov et al., 2002; 

Leib et al., 2003). However, producers usually do not have the financial and technical resources 

to conduct site-specific calibrations on their own. As a result, they need to rely on local accuracy 

and calibration studies conducted by researchers under soil, crop, and climatic conditions similar 

to those of their operation. This requires a significantly large number of research studies 

conducted at high density across irrigated areas to capture the high level of variability in 

agricultural fields. After reviewing the available literature, a total of 18 study sites were identified 

in the conterminous US where field experiments were conducted to evaluate sensor accuracies. 

This translates to less than one site per every two states within conterminous US on average. 
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Figure 2.3 shows the geographical distribution of these sites. The studies that were conducted 

outside conterminous US or those that were conducted under laboratory conditions were excluded 

from this map. The study sites are differentiated based on the method that was implemented to 

obtain the reference soil water content estimate, including the three main methods of gravimetric 

sampling, neutron probe readings, and Time Doman Reflectometry (TDR) readings. 

 

Figure 2.3. The location of study sites where field evaluations of SMS accuracies have been 

conducted. 

Despite the need for dense accuracy studies, especially in the western US, there are states and 

large areas within some states with no local sensor performance study as evident in Figure 2.3. 

Among the states that had field assessment of sensor accuracy, NE and CO were the leading 

states, each with 26% of all sites. It is worth reminding the readers that NE was also the leading 

state in terms of SMS adoption, with about one-third of the irrigated farms using this technology 

for irrigation decision making. Another point to consider is that the studies included in Figure 2.3 

have only assessed the performance of a limited number of sensors due to limitations in financial 

and human resources. This map would look different (larger gaps) if specific sensors were 
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considered. The lack of local studies on sensor accuracy and performance is the second major 

weakness that negatively impacts SMS adoption in irrigation scheduling. 

2.3.2.3. Opportunities 

As mentioned under weaknesses, the adoption of SMS technology is hindered by lack of local 

studies on the performance of sensors under variable soil, crop, and climatic conditions. 

Producers could benefit from the results of these studies in selecting the most accurate sensor 

under their specific condition and in identifying the right calibration if needed. The challenge 

posed by lack of local studies is exacerbated by the large number of new sensors that are 

introduced to the market every season, requiring their own performance assessments. Hence, a 

key opportunity for the research community is to increase the number of local studies, especially 

in areas where SMS adoption is low. Considering the following points in designing and 

conducting future studies could significantly improve their quality, reliability, and usefulness: 

a) Two critical factors that have been found to have considerable effects on SMS accuracy 

are soil texture (specifically clay content) and salinity. The RMSE has been reported to 

increase with increasing clay content (Datta et al., 2018; Singh et al., 2018; Singh et al., 

2019). The mean bias error, however, has had mixed responses. While over 80% of 

previous studies have reported overestimation of soil moisture with increasing clay 

content, some studies have observed underestimation error (Abbas et al., 2011; Geesing 

et al., 2004; Singh et al., 2019). In addition, most studies have reported an increase in 

errors with soil salinity. Previous studies have reported salinity thresholds for acceptable 

SMS errors at soil bulk electrical conductivity of 2.0 dS m-1 (Wyseure et al., 1997) and 

2.8 dS m-1 (Schwartz et al., 2016). However, many irrigated soils have salinities well 

above these limits. 
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b) Producers could benefit from recommendations and guidelines on two specific aspects of 

sensor installation: the number and placement of sensors in the root zone at each 

monitoring location and the installation orientation of every sensor. Besides effects on 

sensor performance (Blonquist et al., 2006; Chen et al., 2019; Chow et al., 2009), these 

factors impact the cost of sensors and the time and effort required to install them. 

Previous studies have offered variable recommendations on the number and depths of 

sensors. For example, Pardossi et al. (2009) recommended installing one sensor in the 

top 33% of the rootzone and another in the bottom 66%, while Haise and Hagan (2015) 

recommended putting two sensors at the top and bottom of the active root zone. On the 

other hand, Adeyemi et al. (2017) recommended placing one sensor in every quarter of 

the maximum root depth. Soulis and Elmaloglou (2018) argued a minimum of two 

sensors must be used to accurately describe average soil moisture and Sui et al. (2019) 

recommended placing sensor at multiple depths in the predominant soil type inside the 

field.  

The installation approach has also shown to impact sensor performance. Sensors can be 

simply buried in disturbed soil or inserted in undisturbed soil horizontally, vertically, or 

at an angle (Chen et al., 2019; Jaria & A. Madramootoo, 2013). Sui et al. (2019) 

mentioned that inserting the sensors horizontally minimizes disturbances to the soil and 

helps sensor rods to achieve a good contact. Chen et al. (2019) compared different 

orientations of undisturbed installation and found horizontal orientation to achieve the 

best accuracy, a finding that has been reported by Zhu et al. (2019) as well. In contrary, 

Kukal et al. (2020) found out the vertical insertion to provide the best estimates of soil 

moisture. 

c) It is highly recommended for research studies to follow accepted best practices when 

assessing the performance of SMS. In particular, special attention should be paid to the 
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minimum number of replications required to capture soil heterogeneity, the reference 

method used in estimating the true soil water content, and the differences in the volume 

of influence of each sensor (Schwartz et al., 2018). 

A second major opportunity available to irrigation researchers in conducting experiments and 

disseminating the results is to quantify and report the benefits of utilizing SMS in irrigation 

decision making. These benefits include i) saving in water application; ii) saving in energy 

consumption for extraction, delivery, and application of irrigation; iii) improvements in crop 

yield; and, iv) financial benefits gained. Agricultural production is a business operation and 

hence, producers are more likely to adopt technologies that have a proven return on investment 

(Giannakis et al., 2015). A survey conducted by Lichtenberg et al. (2015) found that US 

greenhouse and nursery producers who were willing to invest in soil moisture network for 

irrigation management expected a significant profit in return for their investment. Quantifying 

and reporting the financial benefits of SMS utilization can help improve the adoption of this 

technology. 

Among the 84 previously published journal manuscripts reviewed in this study, 23% reported 

water savings realized through SMS adoption and 24% documented changes in crop yield. A 

smaller percentage (6%) mentioned financial benefits of SMS utilization and only 2% reported 

energy savings. It is highly recommended for any study on the effects of advanced irrigation 

scheduling methods to quantify and report more than one of the four benefits listed here (water 

saving, energy saving, yield increase, financial gains) and possibly all of them. Out of all 

reviewed SMS studies, 23% reported two benefits, 4% reported three benefits, and only one 

provided information on all four types of benefits. The reported savings in water ranged from 7 to 

69%. The reported yields were either comparable to or higher than traditional irrigation 

management approaches, with an increase from 3 to 54%. Only Migliaccio et al. (2010) observed 

a yield decrease of 13% in irrigated tomato in Florida. However, the water saving in their study 
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was the largest (64-69%) among all reviewed studies. The study conducted by Irmak et al. (2012) 

is one of the most comprehensive studies in documenting the impact of SMS adoption and can 

serve as an example in designing and developing future researcher projects. One interesting 

aspect of this study was that comparisons were made against the traditional irrigation scheduling 

decided by local producers at the scale of commercial fields. In addition, the benefits of 

implementing SMS technology were reported in terms of water saving, energy saving, and net 

income. These type of studies and reporting benefits make it easier for producers to evaluate the 

advantage of adopting SMS technology and estimate the potential return on their investment. 

The two opportunities described above are about research methods of the irrigation research 

community and hence are considered somewhat internal. In a SWOT analysis, however, more 

emphasis is placed on external helpful factors when identifying opportunities. One external 

opportunity is future advances in SMS technologies pioneered by the industry. These advances 

should target four specific areas. The first area is improved performance under a wide range of 

soil conditions. The need for higher sensor accuracies has been discussed in detailed in previous 

sections. The second area is regarding sensor reliability. Previous studies have reported gaps 

(missing data) in SMS readings ranging from 21 to 64% (Datta et al., 2018; Sugita et al., 2016). 

These gaps could be caused by extreme range of soil clay content and salinity that result in signal 

attenuation or due to the wireless signals being blocked by tall crop canopies. The third area for 

technology advancement is related to developing and packaging sensing systems that reduce the 

need for technical knowledge and experience to install and operate sensors (mistake proofing). 

Plug and play systems that provide audio and/or visual alerts when the system is not performing 

satisfactorily is one example. Another example is sensor designs and installation tools that 

minimize the installation time and errors, such as leaving air gaps around sensing devices. The 

fourth area of industry innovations is regarding the cost of sensing systems and 



19 
 

storing/transmitting the collected data through wireless technologies. As these costs reduce, the 

potential users would be further incentivized to invest in SMS utilization. 

Another opportunity (fourth one) that mainly relies on industry is to provide more support for 

converting raw SMS readings into actionable irrigation management decisions, or in other words 

answers to the two main questions of when to irrigate and how much water to apply. Without the 

availability of easy-to-understand decision support systems, it is extremely difficult and time-

consuming for producers to analyze collected data and turn them into decisions. Several SMS 

manufacturers have started offering simple graphical tools (e.g., MeterGroup Environment, 

AgSpy Inc., Irrometer Inc., MonitoredTech) that let the users know where their soil water content 

fall within the range of readily available water for crop consumption. They also allow for setting 

and adjusting full and refill thresholds. Other manufacturers have moved to provide near-term 

irrigation demand forecasts, which are one of the major needs of producers based on our 

observations. Making these user interfaces more widely available and easier to understand would 

have a significant impact on increasing the adoption of SMS technology in irrigation 

management. 

The fifth opportunity that can be facilitated and supported by local and national governments is to 

better understand the perception of agricultural producers when it comes to SMS utilization. Such 

comprehensive sociological studies can help identify the needs and concerns of potential users of 

this technology and would shed light on future direction of research and extension projects to 

improve SMS adoption. As suggested by Giannakis et al. (2015), irrigation scheduling decision 

support systems in general have suffered from the lack of a comprehensive understanding of 

users’ needs, as well as the failure to employ the language and the logic familiar to producers. 
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2.3.2.4. Threats 

Two external harmful factors could potentially threaten the utilization of SMS technology to 

improve irrigation management. The first external factor relates to laws and policies at local and 

national levels that would disincentivize investments in water conservation technologies. 

Examples may include subsidizing water and energy costs, lack of regulation and monitoring on 

water extraction, and water laws that encourage “use it or lose it” attitudes. Previous studies have 

found that low water pricing is a major barrier towards adoption of irrigation water conservation 

in general (Ward et al., 2007) and that increasing water price would have a more significant 

impact on water conservation than offering financial assistantship to cover the cost of 

implementing conservation measures in irrigated agriculture (Huffaker & Whittlesey, 2003). 

Insecurities in right to conserved water and land tenure situation (owned or leased) have been also 

found to effect motivations to conserve irrigation water (Ward et al., 2007). 

The second external factor threatening SMS adoption is related to the economic profitability of 

agricultural production as impacted by fluctuations in commodity prices. When farm net income 

and profit decline, even those producers who are interested in SMS adoption would not be able to 

afford its implementation without the availability of financial assistantship programs that would 

cover a large portion of associated costs. The results of the irrigation surveys conducted by the 

US Department of Agriculture show that the top two barriers to reducing energy use and 

conserving water among the top 15 irrigated states were related to affordability of conservation 

measures. The most common barrier mentioned by 35% of total irrigated area was that 

improvements would not reduce costs enough to cover technology installation costs. The second 

common barrier, cited by 30% of all irrigated area, was that survey responders could not finance 

improvements. Table 2.1 provides a summary of the SWOT analysis conducted in the present 

study. 
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Table 2.1. The SWOT analysis of utilizing soil moisture sensors (SMS) in irrigation 

management. 

Strengths Weaknesses 

 

1. Access to experienced professionals and 

ability to train new ones. 

 

2. Presence of a vast network of local 

professional extension specialists. 

 

 

1. Low sensor accuracy and high sensitivity to 

soil heterogeneity. 

 

2. Lack of local studies on sensor performance. 

 

Opportunities Threats 

 

1. Conduct more local studies to investigate 

sensor performance under variable conditions. 

 

2. Quantify and report reductions in water and 

energy use and increases in yield and financial 

benefits. 

 

3. Increase accuracy, reliability, easy-of-use, 

and affordability of sensors through 

technological advances. 

 

4. Assist with converting SMS readings to 

actionable irrigation decisions using easy-to-

understand user interfaces. 

 

5. Better understand the perception, needs, and 

concerns of agricultural producers. 

 

 

1. Discouraging laws and policies (water 

pricing, land tenure, right to conserved water, 

etc.). 

 

2. Decreased farm net income that would 

negatively impact users’ ability to finance 

technology adoption. 

2.4. Conclusions 

The present study evaluated the results of surveys conducted by the US Department of 

Agriculture over the past 20 years to investigate adoption of soil moisture sensors (SMS) in 

irrigation decision making and potential factors that are correlated with changes in SMS adoption. 

In addition, a literature review and a strengths, weaknesses, opportunities, and threats (SWOT) 

analysis were conducted to identify internal and external factors that can help or harm the 

utilization of SMS in irrigation scheduling. The results of surveys showed that SMS adoption has 



22 
 

been generally low, but highly variable among the top 15 irrigated states. The level of adoption 

was significantly correlated with the level of control over irrigation deliveries, being lowest in 

states where irrigation deliveries are dictated by water suppliers. The strongest relationships were 

found between SMS adoption and the source of irrigation management information relied on. 

SMS adoption increased with increases in reliance on private irrigation specialists and electronic 

media and with decreases in reliance on neighboring farms to obtain information on water 

conservation. 

The literature review and SWOT analysis revealed that the major strengths of irrigation research 

community were availability and the continued inflow of experienced personnel with practical 

experience to design and carry out SMS experiments, as well as access to networks of extension 

educators that can bridge the gap between researchers and agricultural producers. The most 

significant weaknesses harming improvements in adoption of SMS technology were low sensor 

accuracy and a high level of variability in sensor performance caused by soil heterogeneity, as 

well as lack of local field experiments that would provide useful information on the best available 

sensors and possibly site-specific calibrations. Several opportunities were also identified, 

including increasing local studies, quantifying and reporting a wide range of benefits (including 

financial) gained through implementing SMS technology, improving accuracy, reliability, and 

affordability of SMS, developing SMS decision support systems, and studying the perception of 

producers towards SMS adoption to direct future research projects based on their needs and 

concerns. The external factors that can threaten the higher adoption of SMS include discouraging 

laws and policies such as subsidizing energy and water costs and preventing producers from 

benefiting from water conservations, as well as possible reductions in farm revenue that 

negatively impact producers’ ability to invest in SMS technology. 
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CHAPTER III 
 

 

PERFORMANCE ASSESSMENT OF FIVE DIFFERENT SOIL MOISTURE SENSORS 

UNDER IRRIGATED FIELD CONDITIONS IN OKLAHOMA 

3.1. Introduction 

Irrigated agriculture, a major contributor to the United States (U.S.) economy, plays a vital role in 

supplying the demand for food, feed, and fiber. Although only 27% of all croplands in the U.S. 

are irrigated, this sector is responsible for nearly 50% of crop revenues (USDA, 2014). Sustaining 

high levels of food production through irrigated agriculture requires large amounts of water. In 

2010, irrigation was the second largest consumer of freshwater withdrawals in the U.S., 

accounting for approximately 33% (approximately 159 million m3 year−1) of the total water 

withdrawals (Maupin et al., 2014). Irrigation water sources, however, are usually limited in 

amount and are subject to increasing competition. In addition, more variability in precipitation 

patterns is expected due to climate change, which may threaten the availability of irrigation water 

supplies (Fischer et al., 2007; Fishman, 2012). These challenges create the need to optimize 

irrigation management and avoid over- or under-irrigation. Over-irrigation, in addition to wasting 

water and valuable nutrients, can create favorable conditions for pests and diseases, increase 

energy costs, and reduce the lifespan of irrigation infrastructure. It can also result in erosion of 

topsoil and contamination of downstream water resources due to movement of water-soluble 

chemicals (Datta et al., 2017). In contrast, under-irrigation reduces crop yield and negatively 

impacts economic viability of agricultural production.



24 
 

Several advanced technologies are available to assist with achieving and implementing optimized 

irrigation management, including weather stations, air- and spaceborne remote sensing platforms, 

computer models, plant feedback sensors, and soil moisture sensors (Broner, 2005; Martin, 2009). 

Soil moisture sensors, in particular, can be used effectively to improve irrigation management 

(Martin et al., 1995). As a tool for irrigation scheduling, these sensors have been shown to 

increase crop yields while conserving water (Fisher et al., 2009; Kebede et al., 2014; Martin et al., 

1995; Sui, 2017). For example, Zotarelli et al. (2009) showed that users who manage irrigation 

with soil moisture sensors applied 15 to 51% less irrigation water compared to fixed-time 

irrigation plan and observed a crop yield increase of 11 to 26% in Florida, U.S. In addition, 

sensors can provide continuous estimate of soil moisture conditions in a nondestructive way at a 

reasonable cost and usually require little maintenance over their lifetime (Cardenas-Lailhacar & 

Dukes, 2010). Soil moisture sensors include tensiometers, neutron gauges, electromagnetic 

sensors, electrical resistance sensors, and heat dissipation sensors, to name a few (Yoder et al., 

1998). Among these different types, electromagnetic sensors have been widely used by producers 

for irrigation scheduling. 

Despite their numerous advantages, electromagnetic sensors are sensitive to soil salinity and clay 

content. The impact of soil salinity on sensor readings of soil volumetric water content (θv) (m3 

m−3) has been highlighted in several studies (Dalton, 1992; Topp et al., 1980; Wyseure et al., 

1997). For example, Wyseure et al. (1997) reported that θv error was acceptable at soil bulk 

electricity conductivity (EC) (dS m−1) levels below 2.0 dS m−1, and Schwartz et al. (2016) found 

that θv estimates were not affected at bulk EC levels below 2.8 dS m−1. These thresholds are 

exceeded in many irrigated areas in arid/semi-arid regions, where there is a great need for 

improving irrigation management using sensor technologies. The results from prior studies on the 

impact of clay content have been somewhat variable. Rüdiger et al. (2010) observed 

overestimation error in θv that increased with clay content. In contrast, Fares et al. (2011) 
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observed underestimation of θv for electromagnetic sensors due to high clay content, which was 

more prevalent at lower soil moisture content. Mittelbach et al. (2012) reported both under- and 

overestimation errors at different depths of a clay loam soil in Switzerland. In light of these 

variable results, and since high salinity and clay content conditions are encountered in many 

agricultural fields, there is a need to undertake further field studies to investigate the accuracy of 

electromagnetic soil moisture sensors under varying levels of salinity and clay content. 

The goal of this study was to evaluate the performance of soil moisture sensors for irrigation 

scheduling purposes under low and high salinity/clay content conditions. Specific objectives were 

to (1) assess the performance of five different commercially available electromagnetic sensors in 

estimating θv in situ under soils with variable salt and clay content, (2) compare the accuracy of 

several approaches of determining soil moisture thresholds used in irrigation scheduling, and  

(3) investigate the accuracy of estimated soil moisture depletion based on sensor readings and 

different threshold approaches. 

3.2. Materials and Methods 

3.2.1. Sensor Description 

Five commercially available electromagnetic sensors were evaluated in this study: TDR315, 

CS655, GS1, SM100, and CropX. 

3.2.1.1. TDR315 

The TDR315 (Acclima Inc., Meridian, ID, USA) is a recently commercialized sensor for 

agricultural applications (Schwartz et al., 2016). This sensor operates on principles of Time 

Domain Reflectometry (TDR) that estimates the soil apparent permittivity (Ka) (unitless) at 

relatively higher frequencies (3.5 GHz), which are less sensitive to bulk EC compared to lower 

frequency electromagnetic techniques (Robinson et al., 2003). Conventional TDR sensors have a 
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problem sustaining high frequency signals because of signal attenuation in the sensor’s coaxial 

cables. The TDR315 addresses this issue by embedding all the electronics required for pulse 

generation and waveform acquisition in a compact circuit within the probe head. The data are 

transmitted digitally via SDI-12 (Serial Data Interface at 1200 baud) protocol, which is an 

asynchronous, ASCII, serial communications protocol and can support a cable length of up to 60 

m. The sensor shares the same advantages of the conventional TDRs, but, it is more portable, 

affordable, and convenient to use (Schwartz et al., 2016). These sensors have a planar three-

conductor transmission line, each 15 cm long, and transmit the incident pulse in the center rod 

and two exterior grounds. The TDR315 reports volumetric water content (θv) (%) based on a 

proprietary dielectric mixed model which estimates Ka using Topp equation (Equation (1)) (Topp 

et al., 1980). The sensor also reports soil temperature (°C), bulk relative permittivity (unitless), 

bulk EC (µS cm−1), and soil pore water EC (µS cm−1). DataSnap SDI-12 data-loggers from the 

same manufacturer were used with TDR315 sensors to collect data on hourly basis. 

6 3 4 2 2 2

v a a a4.3 10 (K ) 5.5 10 (K ) 2.92 10 (K ) 5.3 10− − − −=  −  +  −      (1) 

3.2.1.2. CS655 

The CS655 sensor (Campbell Scientific, Inc., Logan, UT, USA) is a water content reflectometer. 

An electronic pulse is sent from the probe head and reflected at the end of the rods (12 cm in 

length). Upon detecting the returned pulse, another pulse is sent. Then, the probe records the 

frequency of these pulses and inverses the frequency as period in microseconds (µs). This period 

is impacted by the velocity of electromagnetic pulse, which is influenced by Ka (Chávez et al., 

2011; Topp et al., 1980). The probe estimates θv from Ka using the Topp equation (Equation (1)) 

(Topp et al., 1980). Apart from θv, other measured parameters include period average (µs), soil’s 

relative dielectric permittivity (unitless), bulk EC (dS m−1), and soil temperature (°C). Like the 

TDR315, the CS655 communicates with a data-logger using an SDI-12 interface. To collect 
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hourly data, CR1000 data-loggers (Campbell Scientific, Inc., Logan, UT, USA) were used in this 

study. 

3.2.1.3. GS1 

The GS1 sensor (METER Group, Inc., Pullman, WA, USA) estimates θv by generating an 

electromagnetic field to measure the dielectric constant of the surrounding medium. This sensor 

uses capacitance and frequency domain technology and operates at 70 MHz (Environment, 2015). 

It provides oscillating waves to the sensor rods that charge in response to the dielectric of the 

material. The sensor quantifies the charge and provides a raw value (RV) that is strongly 

correlated with θv (Equation (2)). The GS1 has a rugged design and is capable of remaining in the 

soil for a long time. It has a two-rod design, with each rod measuring 5.5 cm in length. Hourly 

data were collected throughout the cropping season using EM5B analog data-loggers (METER 

Group, Inc., Pullman, WA, USA). 

4

v 3.62 10 (RV) 0.554− =  −  (2) 

3.2.1.4. SM100 

The WaterScout SM100 sensor (Spectrum Technologies, Aurora, IL, USA) has two electrodes 

functioning as a capacitor, with surrounding soil acting as the dielectric. The capacitor is driven 

by an 80 MHz oscillator and converts the soil’s dielectric permittivity to an output signal, which 

correlates with θv. Watchdog 1400 data-loggers from the same manufacturer were used to collect 

hourly data. 

  



28 
 

3.2.1.5. CropX 

The CropX sensor (CropX Ltd., Tel Aviv, Israel) integrates soil moisture sensing and a cellular 

communication package. The sensor electrodes are built into a helical wing attached to a central 

shaft for installation with reduced soil disturbance. The sensor measures soil moisture based on 

the amplitude domain reflectometry. When the amount of water changes in the soil, the sensor 

measures the change in amplitude differential due to changes in dielectric permittivity, which 

directly correlates to changes in water content. CropX is a multiprobe sensor that measures θv at 

20 and 46 cm depths in the soil. 

3.2.2. Study Sites 

The study took place during the 2017 crop growing season. Two sites were selected for sensor 

installation, one with lower salinity and lower clay content (LSLC) located in central Oklahoma 

and the other in southwest Oklahoma with higher salinity and higher clay content (HSHC). Figure 

3.1 shows the location of the study sites overlaid on the map of long-term mean annual 

precipitation across Oklahoma, obtained from Daly et al. (2008). The LSLC site had a Pond 

Creek fine sandy loam soil (fine-silty, mixed, superactive, thermic Pachic Argiustolls) while the 

HSHC site had a Hollister silty clay loam soil (fine, smectitic, thermic Typic Haplusterts). The 

EC of the soil solution (1:1 soil–water ratio) was 1.2 dS m−1 at LSLC compared to 7.0 dS m−1 at 

HSHC. Table 3.1 provides additional information on soil characteristics at each site. In addition 

to variations in soils, the two sites were different in crop types, irrigation systems, and climatic 

conditions. Corn (Zea mays L.) was planted at the LSLC site under a center-pivot irrigation 

system, while the HSHC site was under furrow-irrigated cotton (Gossypium hirsutum L.). Key 

meteorological parameters for each site are given in Table 3.2. 
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Figure 3.1. Experimental study site locations. 

Table 3.1. Soil properties at study sites. 

Site Soil 

texture 

Particle Size 

Distribution 
EC ¥ θv (m3 m−3) Ksat † 

% 

Sand 

% 

Silt 

% 

Clay 
(dS m−1) Sat. ‡ FC § WP * 

(mm 

day−1) 

LSLC Fine sandy 

loam 

72.2 14.4 13.4 1.2 0.34 0.17 0.05 390.0 

HSHC Silty clay 

loam 

23.5 37.8 38.7 7.0 0.39 0.32 0.21 32.4 

¥ Electrical conductivity. ‡ Saturation level; § Field capacity at −33 kPa; * Wilting point at −1500 

kPa; † Saturated hydraulic conductivity. 

Table 3.2. Twenty-year (1997–2016) average annual and study period (July to October 2017) 

meteorological parameters obtained from Oklahoma Mesonet weather network. 

Parameter Annual Study Period 

LSLC HSHC LSLC HSHC 

Total Prec. 1 (mm) 752 616 451 340 

Mean Rs 2 (MJ m−2) 17.1 17.7 19.9 21.8 

Minimum Tair 3 (°C) 9.4 10.0 18.1 18.9 

Maximum Tair (°C) 22.1 24.1 30.6 31.2 

Mean Tair (°C) 15.4 16.8 23.9 24.8 

Minimum RH 4 (%) 41.9 37.6 45.5 44.7 

Mean VPD 5 (kPa) 0.9 1.0 1.0 1.1 

Mean U2 6 (m s−1) 2.5 2.5 3.0 2.5 
1 Precipitation; 2 Daily accumulation of solar radiation; 3 Daily air temperature; 4 Daily relative 

humidity. 5 Daily vapor pressure deficit; 6 Daily wind speed at 2.0 m above the ground. 
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3.2.3. Experimental Setup 

Four replications of TDR315, CS655, GS1, and SM100 and two replications of CropX were 

installed on 7/20/2017 and 7/27/2017 at LSLC and HSHC sites, respectively. The sensors were 

used with manufacturer-provided data-loggers and calibrations because the results obtained in 

this manner would best represent the conditions that irrigators and farm managers would face in 

the field (Leib et al., 2003). Therefore, the raw θv readings reported by the sensors were used in 

analysis without any alteration (Cardenas-Lailhacar & Dukes, 2010). It should be noted that 

developing and utilizing site-specific calibrations can significantly improve accuracies if the 

required technical and financial resources are available to users. All sensors were installed at a 

depth of 20 cm from the soil surface. The top 20 cm is important for plant water uptake as root 

distribution of plants is denser in this layer than deeper in the soil profile (Brutsaert, 2014). 

At each replication, a pit was dug between two rows of crops to install the soil moisture sensors. 

Physical properties of soil in each pit were determined in the Soil Physics Laboratory at 

Oklahoma State University (OSU) by taking undisturbed soil cores (diameter = 2.5 cm, length = 

5.1 cm) using the Sample Ring Kit (Model C, Eijkelkamp Soil & Water, Inc., Giesbeek, The 

Netherlands) on the day of sensor installation. Soil textural information (particle size distribution) 

were determined by hydrometer following the protocol proposed by Ashworth et al. (2001). 

Additionally, four replications of soil samples were taken at each site on the installation day to 

measure soil salinity. The salinity test was done by Soil, Water and Forage Analytical Laboratory 

at OSU using the 1:1 soil water extraction method (Zhang et al., 2002). 

Sensors were inserted horizontally into the side wall of the pit (undisturbed soil) so that the rods 

of the sensors were on top of each other (vertical orientation) and the middle point of the sensor 

rods was directly under the crop row. The θv readings are often impacted by the sensor 

installation procedure (Aguilar et al., 2015), so extra care was taken to maintain minimal 
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disturbance to the surrounding soil while inserting the rods. The spacing between the sensors was 

determined based on the volume of influence of individual sensors plus an additional distance to 

eliminate any possible interference. This spacing between the sensors were varied from 10 to 18 

cm depending on the volume of influence of sensors’ electromagnetic field. Then, wires were run 

below and away from the sensors for some distance to avoid creating any preferential flow 

channels. After that, the wires were run through PVC pipes to the data-logger encasement. The 

CropX sensors were installed using the spiral auger provided by the manufacturer to minimize 

soil disturbance. 

The excavated soil was collected in different buckets for different soil layers and carefully used to 

backfill the pits, attempting to recreate the original bulk density. Precipitation amounts were 

recorded by a tipping bucket rain gage (model TE525-L, Campbell Scientific, Inc., Logan, UT, 

USA) at the LSLC site, whereas, these measurements were collected from an Oklahoma Mesonet 

weather station located 678 m to the southwest of the sensor installation location at the HSHC site 

(McPherson et al., 2007). Gravimetric soil samples (diameter = 3 cm, height = 5.1 cm) were 

collected using a Giddings soil sampling probe (Giddings Machine Company, Windsor, CO, 

USA) to estimate reference θv (θref) (m3 m−3) throughout the crop growing season. On each 

sampling date, four gravimetric samples were taken at each site and the probe was centered at the 

sensor installation depth (20 cm). If there was an irrigation and/or precipitation event around the 

sampling dates, extra care was taken not to compact the areas above the sensors. Soil samples 

were put in plastic bags immediately after sample collection and kept out of sunlight to minimize 

evaporation. All soil samples of known volumes were oven-dried at 105 °C for 24 h and used to 

determine bulk density. 
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3.2.4. Soil Moisture Thresholds 

Efficient irrigation management requires knowledge of two important soil moisture thresholds 

that indicate water availability for plant consumption (Datta et al., 2017). These thresholds are 

field capacity (FC) and wilting point (WP). The FC is often estimated as the water retained at a 

soil matric potential of −33 kPa, although research has shown that this can result in 

underestimation of FC and −10 kPa may provide a more suitable approximation (van Lier, 2017). 

The WP is often estimated as the water retained at −1500 kPa (Tolk, 2003). These values can be 

different depending on soil texture, crop type, and other factors.  

In this study, FC and WP were determined using three different approaches: laboratory,  

sensor-based, and the Rosetta model (Schaap et al., 2001). Undisturbed soil cores extracted from 

each site were used in laboratory tests where FC was determined at −33 kPa using the Tempe cell 

method and WP at −1500 kPa using the pressure plate method (Dane & Hopmans, 2002). The 

sensor-based approach was based on ranking of the collected data following the procedure 

proposed in Hunt et al. (2009). This method uses sensor readings to estimate FC and WP as the 

95th and the 5th percentiles of all θv values collected during the study period. This method 

assumes that the hydrologic conditions during the measurement period result in θv values, which 

span from values lower than WP to values higher than FC. The Rosetta model uses hierarchical 

pedotransfer functions to estimate van Genuchten water retention parameters (Schaap et al., 

2001). In this study, three different FC-WP outputs were generated from the Rosetta model by 

providing different types and combination of input data. The three types of input data included (i) 

only the textural class of soils at study sites, (ii) textural information (percentages of sand, silt, 

and clay), and, (iii) textural information and bulk density. Estimated FC and WP from all methods 

described above were compared with those reported in the U.S. Department of Agriculture’s Web 

Soil Survey at each study site (NRCS, 2009). In addition to FC and WP, the available water 
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content (AWC), which is the difference between FC and WP, was calculated and compared with 

values obtained from different methods described above (Cassel & Nielsen, 1986). 

To optimize irrigation management based on soil moisture sensing, sensor readings must be 

converted to soil moisture depletion (SMD) (m3 m−3). In this study, SMD was calculated as the 

difference between FC and θv:  

(i) FC v(i)SMD =  −  (3) 

where, SMD(i) is the soil moisture depletion at the ith time-step, θFC is the θv at FC (constant) (m3 

m−3), and θv(i) is the θv at the ith time-step. In estimating SMD, θv(i) values were obtained from 

sensor readings and θFC values were based on two different approaches, resulting in two SMD 

estimates for each sensor at each site. The two θFC approaches were the laboratory and the ranking 

methods explained above. The results were compared against SMD estimates based on θref 

(gravimetric measurements) and laboratory θFC. After SMD is estimated, it can be multiplied by 

the root zone depth to obtain an estimate of irrigation requirement in units of water depth. 

3.2.5. Statistical Analysis 

To evaluate the performance of the selected sensors, θv readings of sensors were compared with 

θref values. Four statistical parameters, namely root mean square error (RMSE), RMSE-

observations standard deviation ratio (RSR), mean bias error (MBE), and index of agreement (k) 

were estimated according to the following equations. 

n
2

i i

i 1

1
RMSE (P O )

n =

= −  (4) 
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where, n is the sample size, i is the index of sample pairs, P is the sensor reading (predicted), O is 

the θref (observed), and O̅ is the mean of all θref values. 

The accuracy categories outlined in Fares et al. (2011) were adopted in this study for interpreting 

RMSE values. These categories include good (RMSE ≤ 0.01 m3 m−3), fair (0.01 ≤ RMSE ≤ 0.05 

m3 m−3), poor (0.05 ≤ RMSE ≤ 0.10 m3 m−3), and very poor (RMSE ≥ 0.10 m3 m−3). The RSR 

provides benefits of incorporating error index statistics and it includes a normalization factor 

applicable to various constituents (Moriasi et al., 2007). The RSR varies from a value of zero 

indicating zero RMSE and a perfect model simulation to a large positive value. The performance 

of a model is determined by different categories of RSR: very good model fit (0.00 ≤ RSR ≤ 

0.50), good model fit (0.50 ≤ RSR ≤ 0.60), satisfactory model fit (0.60 ≤ RSR ≤ 0.70), and 

unsatisfactory model fit (RSR > 0.70). However, these categories are based on simulations 

running on a monthly time-step. Moriasi et al. (2007) noted that the acceptable range of RSR 

would increase in magnitude when using smaller time-steps, which was the case in this study. 

The MBE measures the average difference between sensor-estimated θv and θref. A MBE of zero 

indicates the predicted and observed values are unbiased. A positive value of MBE means sensor 

is overestimating θv, and negative MBE indicates underestimation (Addiscott & Whitmore, 
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1987). The index of agreement (k) was used to determine how well the sensor-estimated θv 

agreed with θref (Willmott, 1981). The value of k can range from zero to one, with one 

representing the highest level of agreement and zero representing complete disagreement (Mishra 

et al., 2017). 

In addition to the above statistical parameters, Pearson correlation coefficients (r) were calculated 

for pairwise sensor comparisons to evaluate the similarity in their temporal variations throughout 

the study period. Closely correlated temporal patterns have a r value near one, while this 

parameter is near zero in case of uncorrelated patterns (Cosh et al., 2004). Finally, linear 

regression models were fitted to sensor-estimated θv and θref using the Minitab statistical software 

(version 17.3) (Minitab, Inc., State College, Pennsylvania, USA) (Montgomery et al., 2012). 

These linear models and the reported intercepts and slopes for each sensor can be used as field 

calibration equations in future applications at the study sites. 

3.3. Results and Discussion 

3.3.1. Sensor Performance 

The fluctuations in θv were similar across all sensors at both study sites (Figure 3.2). All sensors 

responded to most irrigation and precipitation events. In some cases, there was little or no change 

in θv following a watering event, mainly because the amount of water received was not large 

enough to reach sensor installation depth. The results of performance evaluation (statistical 

indicators) are summarized in Table 3.3. In general, all sensors performed better at the LSLC. At 

this site, the RMSE was the lowest for CS655 (0.019 m3 m−3), followed by TDR315 (0.028 m3 

m−3) and GS1 (0.048 m3 m−3). These values belong to the fair accuracy category defined in Fares 

et al. (2011), suggesting that CS655, TDR315, and GS1 can be implemented for effective 

irrigation scheduling under conditions similar to those of LSLC. The RMSE values obtained in 

this study were smaller than the RMSE values of 0.105 and 0.049 m3 m−3 reported by Singh et al. 
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(2018) for the CS655 and TDR315 in a loam soil, respectively. Adeyemi et al. (2016) found a 

similar RMSE of 0.020 m3 m−3 for TDR315 and 0.050 m3 m−3 for GS1 in a sandy loam soil under 

laboratory conditions. The RMSE of CropX was 0.051 m3 m−3, which is in the poor category. The 

SM100’s RMSE was very poor (0.110 m3 m−3). 

 

Figure 3.2. Time series of sensor-estimated θv along with point measurements of θref at (a) lower 

salinity and lower clay content (LSLC) and (b) higher salinity and higher clay content (HSHC) 
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sites. Error bars for θref represent standard error of mean. The FC and WP limits were determined 

in the laboratory. 

Table 3.3. Performance indicators of soil moisture sensors. 

Indicators TDR315 CS655 GS1 SM100 CropX 

LSLC HSHC LSLC HSHC LSLC HSHC LSLC HSHC LSLC HSHC 

RMSE  

(m3 m−3) 

0.028 0.064 0.019 0.165 0.048 0.122 0.110 0.233 0.051 0.055 

RSR 0.76 1.55 0.53 3.99 1.31 2.97 3.00 5.66 2.53 1.34 

MBE  

(m3 m−3) 

0.020 0.053 0.008 0.160 0.042 0.121 0.108 0.233 0.045 −0.049 

k 0.85 0.69 0.94 0.30 0.69 0.41 0.44 0.26 0.58 0.75 

The MBE and RSR revealed similar patterns in sensor performance at the LSLC, with the CS655 

performing the best, followed by TDR315, GS1, CropX, and SM100. The MBE indicated that all 

sensors overestimated θv at LSLC. This overestimation can also be observed in Figure 3.3 as most 

of the points were above the 1:1 line. Overestimation of θv by CS655 was observed by Kisekka et 

al. (2014) and Michel et al. (2015) too. Adeyemi et al. (2016) found that TDR315 and GS1 

underestimated θv in sandy loam soil, but, with increasing clay content, the underestimation 

became overestimation. The RSR ranged from 0.53 for CS655 to 3.00 for SM100 at LSLC site. 

According to categories defined by Moriasi et al. (2007), the CS655 had a good model fit whereas 

all other sensors were classified as having unsatisfactory model fit. But as mentioned previously, 

running a model on temporal resolution higher than monthly would warrant less strict 

performance rating. Therefore, higher RSR values are expected in this study because of hourly 

time-step analysis. This trend was also observed in a study by Wyatt et al. (2017), which 

produced high RSR values at daily time-step. 
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Figure 3.3. Sensor-estimated θv vs θref at LSLC and HSHC sites. 

All sensors had larger RMSE at the HSHC site compared to LSLC (Table 3.3). However, the 

magnitude of the increase in RMSE was not uniform and changed from a slight increase for 

CropX to over an eight-fold increase for CS655. The CropX sensor had the smallest RMSE, 

followed by TDR315, GS1, CS655, and SM100. The values of RMSE belonged to the poor 

accuracy category in case of CropX and TDR315 and very poor category for other sensors 

according to classifications in Fares et al. (2011), suggesting that none of the sensors can be 

implemented for effective irrigation scheduling under conditions similar to those of HSHC. In 

addition, the variability of readings among the replications of the same sensors increased at 

HSHC; the average standard deviation (SD) ranged from 0.021 m3 m−3 for TDR315 to 0.050 m3 

m−3 for CS655. At LSLC, the average SD varied from 0.011 m3 m−3 for TDR315 to 0.023 m3 m−3 

for GS1. The average SD of θref was 0.015 m3 m−3 at LSLC and 0.010 m3 m−3 at HSHC. 

High clay content and elevated levels of salinity seem to be the main reasons behind lower sensor 

accuracies at the HSHC site. Adeyemi et al. (2016) concluded that the errors in TDR315 and GS1 

would increase with an increase in soil salinity level. In addition, Wyseure et al. (1997) reported 
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that the error in TDR sensors would remain within reasonable limits if the bulk EC is kept less 

than 2 dS m−1. The bulk EC at HSHC, however, was well over this threshold. The MBE estimates 

were larger at HSHC than LSLC and showed that all sensors except CropX overestimated θv. 

This is also evident in Figure 3.3. Most of previous studies have reported overestimation error for 

TDR sensors under saline conditions. This is mainly due to the fact that in saline soils, the 

dielectric permittivity measured by TDR increases and therefore θv is overestimated as mentioned 

in Dalton (1992). However, Schwartz et al. (2016) found that TDR315 underestimated θv in a 

saline Pullman clay loam soil. The RSR values followed a pattern similar to other error indicators 

at HSHC, having the smallest value of 1.34 for CropX and the largest value of 5.66 for SM100. 

Some noise in θv readings of the TDR315 at HSHC can be seen in Figure 2.2b. Schwartz et al. 

(2016) reported that TDR315 sensors were insensitive to bulk EC up to 2.8 dS m−1 and 

corresponding pore water EC up to 7.3 dS m−1. The bulk EC and pore water EC exceeded these 

thresholds at HSHC on many days at the beginning of the study period. This might have caused 

signal attenuation that induced noise in θv readings. This noise was quantified using standard 

deviation (SD) in θv among the replications. At the beginning of the growing season, the SD had a 

range of zero to 0.099 m3 m−3 and an average of 0.021 m3 m−3 at HSHC for TDR315, which is 

much larger when compared to the range of 0.002 to 0.043 m3 m−3 and average of 0.012 m3 m−3 at 

LSLC during the same period. The observed noise was reduced later in the growing season, 

probably due to decrease in soil EC because of leaching of salts by irrigation water. 

The hourly bulk EC estimates from TDR315 and CS655 were in agreement with soil EC 

determined in the laboratory and showed the significant difference between the two study sites 

(Figure 3.4). Both sensors reported small bulk EC at LSLC with similar ranges of 0.1 to 0.4 dS 

m−1. At HSHC, however, the bulk EC was significantly larger with ranges of 1.1 to 3.4 and 0.9 to 

3.0 dS m−1 based on TDR315 and CS655 sensors, respectively.  
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Figure 3.4. Time series of sensor-estimated Bulk electricity conductivity (EC) at (a) LSLC and 

(b) HSHC sites. 

In utilizing soil moisture sensors for irrigation management, obtaining a complete time series is as 

important as taking accurate readings. In this study, CropX and CS655 had significant data gaps 

for different reasons. On average, 41% of the CropX data were missing at LSLC compared to less 

than one percent at HSHC. Several correspondences with the manufacturer revealed that the 

potential reason behind this issue could be the tall corn canopy at LSLC, which can block the 

transmitted signals. Upon recommendation from the manufacturer, extension antennas were 

installed on CropX sensors at LSLC. The observed crop height was 2.16 m and the extension 

antennas were installed in such a way that the tops of the antennae were 1.91 m from the ground. 

However, this modification did not help with the apparent transmission problem.  

The CS655 had 21% missing data at HSHC. Sugita et al. (2016) conducted a reliability test on 

CS655 and found that the sensor was missing 64% of the measurements when exposed to high 

salinity levels (bulk EC = 1.2–2.1 dS m−1). The bulk EC at HSHC was larger than the values 

reported in Sugita et al. (2016). In addition to high salinity, the HSHC site had relatively high 

clay content (38.7%). The clay particles have highly charged surface areas which increase 

dielectric losses and cause the apparent permittivity (Ka) values to go outside the acceptable range 
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of Topp equation (Topp et al., 1980). The combined effect of higher soil salinity and clay content 

results in the attenuation of the electromagnetic signal from the sensor (Schwartz et al., 2016). 

Therefore, the sensor fails to report θv in case of Ka ≥ 42 and θv ≥ 0.52 m3 m−3 as the internal 

logical test rejects these data.  

Linear regression equations were developed to estimate θref based on sensor-estimated θv (Table 

3.4). These equations can be used to get more accurate θv readings in areas matching this study’s 

local conditions. At LSLC, the regression models were all statistically significant at α = 0.05, 

with r2 values ranging from 0.57 for CropX to 0.85 for CS655. Although SM100 had low 

accuracy, the high r2 value (0.84) indicates that this sensor had high degree of correlation with the 

reference values. At the HSHC site, the linear regression model for CS655 was not statistically 

significant. Models of other sensors were significant and had r2 values varying from 0.73 to 0.85. 

Table 3.4. Parameters and the p-values of the linear regression equation: θref = Slope × (sensor θv) 

+ Intercept. 

Site Sensor Intercept Slope r2 p-value 

LSLC TDR315 −0.017 0.975 0.80 0.001 

CS655 0.036 0.771 0.85 <0.001 

GS1 0.017 0.737 0.70 0.005 

SM100 −0.033 0.747 0.84 0.001 

CropX −0.052 1.030 0.57 0.018 

HSHC TDR315 0.056 0.683 0.85 0.001 

CS655 −0.056 0.774 0.20 0.267 Ŧ 

GS1 −0.108 0.971 0.73 0.007 

SM100 −0.165 0.873 0.79 0.003 

CropX 0.137 0.656 0.85 0.001 
Ŧ The linear regression model was not statistically significant. 

3.3.2. Correlations Between Sensors 

In general, the Pearson’s correlation coefficients (r) of θv readings were larger at LSLC than 

HSHC (Table 3.5). At this site, the strongest correlation (r = 0.99) was between TDR315 and 

CS655 and the weakest was between CropX and SM100 (r = 0.79). The correlation coefficients 
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for CropX were smallest among all sensors at the LSLC site, ranging from 0.79 to 0.81. Despite 

being the least accurate sensor, SM100 had strong correlation with the top two accurate sensors, 

i.e., TDR315 and CS655. This indicates that SM100 closely followed the temporal changes in θv 

of more accurate sensors. At HSHC, the correlation between TDR315 and GS1 was the strongest 

(r = 0.97). The SM100 also had strong correlations with TDR315, GS1, and CropX. On the other 

hand, CS655 had weak correlations with other sensors. 

Table 3.5. Pearson correlation coefficients among installed sensors at study sites. 

LSLC 

 TDR315 CS655 GS1 SM100 CropX 

TDR315 1.00     

CS655 0.99 1.00    

GS1 0.97 0.99 1.00   

SM100 0.95 0.95 0.92 1.00  

CropX 0.79 0.81 0.81 0.79 1.00 

HSHC 

 TDR315 CS655 GS1 SM100 CropX 

TDR315 1.00     

CS655 0.50 1.00    

GS1 0.97 0.57 1.00   

SM100 0.90 0.48 0.90 1.00  

CropX 0.86 0.42 0.85 0.78 1.00 

Note all correlation coefficients were significant at p = 0.05. 

The strong correlation between sensors with different accuracies suggests that the response of less 

accurate sensors to soil moisture fluctuations was similar to those of more accurate sensors. The 

differences in θv readings were relatively constant over the study period (offset error). This 

provides an opportunity for potential utilization of less accurate sensors in some limited 

applications where the user is only interested in determining the movement of the water front in 

the soil profile. One example of this application is leaching salts below the root zone. In this case, 

the user needs to ensure water front has moved below the bottom of the root zone. Another 

example is preventing deep percolation to ensure applied water remains within the root zone and 

that soluble chemicals are not transported to shallow groundwater resources. 
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3.3.3. Soil Moisture Thresholds 

At LSLC, the FC and WP estimated in the laboratory were similar to the output of the Rosetta 

model based on textural class, textural information, and textural information plus bulk density 

(Table 3.6). Thresholds obtained from USDA’s Web Soil Survey (USDA-WSS) were slightly 

larger than the results of the laboratory and Rosetta methods. However, the estimates based on the 

ranking of sensor readings were significantly larger than those of the other methods. The FC and 

WP values were larger at HSHC compared to LSLC irrespective of the method used because of 

larger clay content in the soils. The FC values from the Rosetta model and the USDA-WSS were 

either similar or slightly smaller than those obtained with the laboratory approach. All ranking 

estimates of FC were significantly larger than those with laboratory approach except for CropX, 

which was slightly larger. In the case of WP, estimates from the Rosetta model were significantly 

smaller than those with the laboratory approach, while USDA-WSS reported a similar value. 

Ranking method estimates were significantly larger except for CropX. The differences between 

AWC estimates of the ranking and laboratory methods were smaller than the differences in the 

FC and WP estimates of the same methods at both sites, mainly because overestimations in FC 

and WP estimates of the ranking method were of similar magnitudes and thus cancelled out to a 

large extent. 

Table 3.6. Estimates of field capacity (FC), wilting point (WP), and available water content 

(AWC) (all in m3 m−3) obtained from various methods. 

Method LSLC HSHC 

FC WP AWC FC WP AWC 

Laboratory 1 0.17 0.06 0.11 0.32 0.21 0.09 

Rank-TDR315 2 0.27 0.16 0.11 0.49 0.29 0.20 

Rank-CS655 2 0.27 0.12 0.15 0.51 0.43 0.08 

Rank-GS1 2 0.31 0.16 0.15 0.50 0.37 0.13 

Rank-SM100 2 0.37 0.23 0.14 0.62 0.48 0.14 

Rank-CropX 2 0.28 0.17 0.11 0.34 0.18 0.16 

Rosetta-TC 3 0.17 0.06 0.11 0.31 0.12 0.19 

Rosetta-TI 4 0.17 0.07 0.10 0.29 0.14 0.15 
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Rosetta-TBD 5 0.15 0.07 0.08 0.26 0.14 0.12 

USDA-WSS 6 0.21 0.12 0.09 0.29 0.21 0.08 
1 Laboratory measurement; 2 Ranking method performed for each sensor; 3 Rosetta model using 

soil textural class only; 4 Rosetta model using soil textural information (% sand, silt, and clay); 5 

Rosetta model using textural information and bulk density; 6 USDA’s Web Soil Survey. 

Results of this study reveal that the Rosetta model is capable of accurately estimating soil 

moisture thresholds even with minimal input data (textural classes). The USDA-WSS also 

performed satisfactorily, despite the fact that it is based on coarse soil surveys. However, the 

ranking method resulted in significant overestimation of FC when compared to laboratory 

estimates, ranging from 59 to 117% at the LSLC and from 6 to 94% at HSHC site. The difference 

between WP estimates of the ranking and laboratory methods varied from 100 to 283% at LSLC 

and from −14 to 129% at HSHC. A potential reason behind this poor performance could be that 

the full range of soil moisture conditions was not experienced at both sites during the period of 

study. However, this situation could be the case in many irrigated areas, since producers attempt 

to replenish soil moisture well before it reaches WP to avoid water stress and yield loss. Another 

reason behind the poor performance of the ranking method is the error in sensor readings, 

especially at HSHC, where most sensors overestimated soil moisture due to high clay content and 

elevated salinity levels.  

Variations in hourly SMD are presented in Figure 3.5. In this figure, dots represent observed 

SMD based on θref and laboratory-determined FC, while lines represent sensor SMD based on 

sensor θv and FC from two methods: laboratory and ranking. The Rosetta model was not 

considered here because the FC values obtained from the model were similar to those of the 

laboratory. At LSLC, observed SMD values were zero except on two sampling dates in early 

September. This is because this site was under full to slightly over-irrigation at most times during 

the study period. The only exception for the same period was in September when crop water 

demand outpaced irrigation application. Possible underestimation of θFC in the laboratory method 

may have contributed to zero SMD on most measurement dates too. In this study, a soil matric 
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potential of −33 kPa was used to measure θFC. But as mentioned before, this value can be as high 

as −10 kPa in sandy loam soil, resulting in a larger θFC and consequently a larger SMD estimate. 

Sensor SMDs based on laboratory-FC had similar patterns, indicating no depletion during the 

study period except in the month of September (Figure 3.5a). On the other hand, sensor SMDs 

based on ranking-FC showed significant depletions at most times, reaching values as large as 0.15 

m3 m−3 (Figure 3.5b). This increase in SMD is mainly due to overestimation of FC in the ranking 

method, since the same sensors readings were used in both SMD approaches. 

 

 

Figure 3.5. Time series of hourly soil moisture depletion (SMD) estimated based on sensor 

readings of θv and FC estimates from laboratory (a) and ranking (b) methods at LSLC site and 

laboratory (c) and ranking (d) methods at HSHC site. Dots represent SMD estimated based on θref 

and FC estimates from laboratory method. 
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At the HSHC site, the observed SMD indicated a larger depletion, especially during early 

September to early October. This pattern was expected since this site was under a low-frequency 

(7–10 days) flood irrigation regime that was not able to meet cotton water demand during the hot 

and dry month of September. At this site, sensor SMDs based on laboratory-FC showed no 

depletion except for CropX and TDR315. The SMD estimates of CropX were larger and the SMD 

estimates of TDR315 were smaller than observed SMD. This is because CropX underestimated 

θv, while TDR315 overestimated this parameter. The overestimation errors of the other sensors 

were so large that their θv readings were above laboratory-FC at all times, resulting in no 

depletion. The sensor SMDs based on ranking-FC were significantly larger than those based on 

laboratory-FC, except for CS655. This was because of the overestimation of FC by the ranking 

method. Hence, depletion was calculated at most times. The SMDs of CS655 were similar to the 

observed SMD, since the overestimation errors in θv readings and ranking-FC were similar in 

magnitude. 

3.4. Conclusions 

The performance of five types of commercially available soil moisture sensors was evaluated at 

two fields with significantly different salinity levels and clay contents. The sensors included 

TDR315, CS655, GS1, SM100, and CropX. The accuracy of each sensor was determined by 

comparing its readings with gravimetric measurements of soil water content obtained at several 

times during the study period. In general, all sensors responded to wetting and drying events. The 

TDR315, CS655, and GS1 sensors had acceptable accuracies for managing irrigations at the site 

with low salinity and low clay content (LSLC) based on root mean square error (RMSE). 

However, none of the sensors performed satisfactorily at the site with high salinity and high clay 

content (HSHC), with RMSE estimates that were up to eight times larger compared to the values 

at LSLC. In addition, high levels of noise were observed in TDR315 due to high salinity and out-

of-range responses and consequently missing readings in case of CS655 sensor. A potential 
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solution for using soil moisture sensors in irrigation scheduling under such conditions is the use 

of site-specific calibrations. 

For practical irrigation scheduling, sensor readings must be used in conjunction with soil moisture 

thresholds of field capacity (FC) and wilting point (WP) in order to estimate soil moisture 

depletion (SMD) and consequently irrigation requirement. In this study, FC and WP values 

determined in the laboratory using undisturbed soil cores were compared against those obtained 

from three independent approaches: the Rosetta model, the ranking of sensor readings, and the 

values reported in the U.S. Department of Agriculture’s Web Soil Survey (USDA-WSS). The 

Rosetta model was capable of providing estimates similar to those of the laboratory approach, 

regardless of the type and number of input data used in the model. The USDA-WSS approach 

resulted in acceptable estimates of FC and WP. The ranking method, however, significantly 

overestimated FC and WP at both sites, even for accurate sensors. The ranking method did not 

perform well in estimating SMD either, except for one sensor at the HSHC site where the 

overestimation error in FC was similar to overestimation error in soil water content and canceled 

each other out. The results of this study show that two major conditions are required before the 

ranking method can be used effectively in estimating soil moisture thresholds: sensor readings 

that are the basis of calculations must be accurate; and, the full range of moisture conditions from 

below WP to above FC must be experienced during the data collection period. 

This study contributes to the existing knowledge on sensor-based irrigation scheduling through 

quantifying the accuracies of five widely-used soil moisture sensors as impacted by soil clay 

content and salinity, as well as investigating the effectiveness of different soil moisture threshold 

estimation approaches for agricultural irrigation applications. The results highlight the wide range 

of accuracies that exist among soil moisture sensors and methods for determining soil moisture 

thresholds. Such a wide range creates major challenges in utilizing soil moisture sensors for 

irrigation scheduling applications. As new sensors are being developed frequently, studies like 
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this need to be conducted under variable field conditions to evaluate the performance of the new 

sensors and to provide guidelines on how they can be used for irrigation scheduling purposes. 
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CHAPTER IV 
 

 

QUANTIFYING WATER FLUXES OF IRRIGATED FIELDS IN AN AGRICULTURAL 

WATERSHED IN CENTRAL OKLAHOMA 

4.1. Introduction 

Inefficient use of irrigation water can increase non-beneficial fluxes such as direct evaporation 

before reaching the root zone, runoff, and deep percolation (Hoekstra, 2019). The increase in 

these fluxes would negatively impact water and energy costs of irrigation applications and 

ultimately the financial viability of agricultural production (Chebil et al., 2019)). In addition, 

these non-beneficial fluxes may carry sediments, chemicals (from fertilizer applications) (Burow 

et al., 2010), and other harmful constituents to downstream land and water resources (Malakar et 

al., 2019), causing soil and water pollution (Gillispie et al., 2015). Furthermore, over-irrigation 

may lead to increased greenhouse gas emission as more energy is used to extract, deliver and 

pressurize water. To minimize the adverse impacts of irrigation inefficiencies on the 

sustainability of farming practices and global food security, it is of great importance to accurately 

quantify different water fluxes in irrigated agriculture. 

Water fluxes can be quantified through in-situ measurements, computer simulations, or a 

combination of these two approaches. In-situ measurements provide the most accurate estimation. 

However, this approach is labor-intensive, time-consuming, costly, and susceptible to variability 

in the skills of the operator using the instruments (Allen et al., 2011). Computer models can help 

eliminate the shortcomings of sensors and provide additional capabilities while estimating water  
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fluxes with reasonable accuracy. However, several challenges exist with models. The first 

challenge is that models require detailed inputs to estimate water fluxes and more often, a large 

number of these inputs are assumed. Many critical input parameters related to irrigation practices 

have been assumed in previous studies, including but not limited to irrigation efficiency (Masasi 

et al., 2020; Yalcin, 2019), irrigation application depth and timing (Acero Triana et al., 2020; 

Masasi et al., 2020), and root growth and water uptake (Metselaar et al., 2019). Needless to say, 

any major difference between assumed parameters and their actual values can result in significant 

errors in model outputs.  

Many of the computer models that rely on assumed input data on irrigation management are used 

to evaluate the environmental impacts of irrigated agriculture and the potential effects of 

implementing a wide range of conservation practices within impaired agricultural watersheds. 

One example of such watersheds is the Fort Cobb Reservoir Experimental Watershed (FCREW) 

in central Oklahoma, U.S., which has been suffering from soil erosion and water quality issues in 

its major tributaries over the last few decades. The entire watershed and drainage area for Fort 

Cobb lake and its tributaries were listed as nutrient limited by Oklahoma Water Quality Standards 

(OCC, 2009). Irrigation accounts for approximately 77% of the total water withdrawal in 

FCREW that predominantly has coarse-textured soils (Fairchild et al., 2011). High irrigation 

water use coupled with a coarse-textured soil with high percolation potential may leach chemicals 

from the crop root zone and introduce contaminants to groundwater systems. Becker et al. (2011) 

reported high levels of suspended solids in major streams in the FCREW during the crop growing 

season and suggested that agricultural activities could increase suspended solids, although no 

emphasis was given to the role of irrigation management. Storm et al. (2006) implemented soil 

and water assessment tool (SWAT) in the FCREW and found out that some irrigated crops were 

contributing the largest amount of sediments and nutrients to the reservoir. However, no 
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comprehensive research has been undertaken before to determine the current irrigation 

management practices in this watershed and their potential impact on water quality. 

The goal of this study was to investigate current irrigation management practices and efficiencies 

in the FCREW using a combination of in-situ measurements and computer models to estimate 

water fluxes under irrigated conditions. The specific objectives were to: 1) evaluate current 

irrigation management practices in the area; 2) use two widely accepted modeling approaches to 

estimate water fluxes; 3) identify irrigation efficiencies; and, 4) evaluate the accuracy and 

appropriateness of irrigation management assumptions made in other studies. 

4.2. Materials and Methods 

4.2.1. Study Area 

This study was conducted in the Fort Cobb Reservoir Experimental Watershed (FCREW) in 

Western Oklahoma, U.S. during three crop-growing seasons from 2017 to 2019. A total of 12 

irrigated fields stretched across FCREW were selected for estimating water fluxes (Figure 4.1). 

These sites had Pond Creek fine sandy loam and silt loam soils (Fine-silty, mixed, superactive, 

thermic, Pachic Argiustolls), except for one site that had Grant loam soil (Fine-silty, mixed, 

superactive, thermic Udic Argiustolls) and another under Hollister silt loam soil (Fine, smectitic, 

thermic Typic Haplusterts). The electrical conductivity (EC) of the soil solution (1:1 soil-water 

ratio) samples extracted from the top 0.7 m of the soil profile ranged from 0.4 to 7.2 dS m-1 with 

an average of 1.3 dS m-1. All sites were irrigated by center-pivot sprinkler systems drawing water 

from the Rush Springs aquifer (Neel et al., 2018). Table 4.1 provides additional information on 

crop type and growing season of each experimental sites in each study year. 
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Figure 4.1. Location of the experimental sites within the study area. 

Table 4.1. Details of the experimental sites. 

Site No. Crop Year  Site ID Growing Season 

1 Peanut 2017 PN-17 5/13-9/30 

2 Peanut 2018 PN-18 5/24-10/11 

3 Peanut 2019 PN1-19 5/16-10/3 

4 Peanut 2019 PN2-19 5/14-10/1 

5 Cotton 2017 CT-17 5/15-11/11 

6 Cotton 2018 CT1-18 5/24-11/20 

7 Cotton 2018 CT2-18 5/23-11/19 

8 Soybean 2017 SB-17 6/17-10/30 

9 Soybean 2018 SB1-18 5/12-9/24 

10 Soybean 2018 SB2-18 6/14-10/27 

11 Chile pepper 2019 PP1-19 4/22-10/19 

12 Chile pepper 2019 PP2-19 5/2-10/29 

4.2.2. Experimental Setup and Sample Analysis 

At each site, a representative spot was identified based on the condition of emerged plants, 

dominant soil texture (obtained from USDA web soil survey) of the field and center-pivot’s 

largest wetted radius (excluding the last span). Then, sensors were installed at the spot soon after 
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crop emergence to estimate water application amounts and soil moisture on an hourly basis. 

Precipitation and irrigation amounts were measured by tipping bucket rain gages (model 900RG, 

Irrometer Inc., Riverside, CA, USA) installed at each site. The top of the rain gages was well 

below the nozzles of the center-pivot systems to properly catch irrigation water. The recorded 

applications were separated into irrigation (I) and precipitation (P) based on the time, durations, 

and depth of application events after comparing the readings with precipitation measurements at 

two nearby Oklahoma Mesonet stations. The data provided by collaborating growers on the date 

and amount of irrigation applications were also used in I/P separation. The hourly data were 

summed to obtain daily and event totals and further analyzed to estimate the average irrigation 

depth and the irrigation interval. 

Soil moisture sensors (models TDR310S and TDR315, Acclima Inc., Meridian, ID, USA) were 

installed at four depths of 10, 30, 51, and 71 cm at each site. The accuracy of this type of sensor 

has been assessed at the study site in a previous experiment and found to be acceptable and better 

than four other commercially available sensors, with the root mean square error and mean bias 

error being 0.028 and 0.020 cm3 cm-3, respectively (Datta et al., 2018). The volumetric water 

content readings of sensors were recorded and stored by dataloggers from the same manufacturer. 

The installation procedure followed the approach detailed in (Datta et al., 2018) to ensure sensors 

were installed into the sidewall of excavated pits (undisturbed soil) and that the pits were 

backfilled in layers to reduce disturbance to soil layers and bulk density. Undisturbed soil 

samples were also collected at each site at 10-cm increments across the top 70 cm of the soil 

(maximum sensor installation depth) and analyzed for percentages of sand, silt, and clay 

according to the protocol set by Ashworth et al. (2001). The sites were visited weekly throughout 

the growing season to check the sensors, measure crop height, and collect canopy cover data 

using the Canopeo mobile application (Patrignani & Ochsner, 2015).  
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4.2.3. Soil Water Balance Model 

A simple bucket-type soil water balance (SWB) model was developed for each site following the 

approach explained in (Allen et al., 1998). This type of model has been previously developed 

through spreadsheet and used in similar studies (McCann et al., 2008; Thorp et al., 2017; Üzen et 

al., 2018) and is based on the following water balance equation, assuming a negligible runoff: 

 i i i i i 1 i
P I ET DP D D

−
+ = + + −      (1) 

Where the subscript i represents the day; Pi is the precipitation; Ii is the net irrigation that 

infiltrates the soil; ETi is the crop evapotranspiration; DPi is the deep percolation;  Di-1 is soil 

moisture depletion in the root zone (previous day); and, Di is the soil moisture depletion on the 

day i. Two different versions of the SWB model was developed for each site to evaluate potential 

under- and/or over-irrigations and their impact on water fluxes. The first version simulated the 

“actual scenario,” where the actual irrigation depth and frequency data as recorded by the rain 

gages were used in the model. The second version simulated the “well-watered scenario,” where 

irrigation depths and times were determined by the model in a fashion to prevent crops from 

experiencing any stress. 

Under the actual scenario, the actual crop ET (ETa) was estimated following the dual crop 

coefficient approach outlined in the FAO-56 publication (Allen et al., 1998; Allen et al., 2005):  

 a e s cb o
ET (K K K ) ET= +      (2) 

where, Ke is the soil evaporation coefficient; Ks is the water-stress coefficient; Kcb is the basal 

crop coefficient, and ETo is the short-crop reference evapotranspiration. If the irrigation 

applications fall behind the crop water demand, the root zone depletion eventually exceeds the 

readily available water, causing the Ks to drop below unity and the ETa to fall below the well-
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watered rate. By design, the goal of well-watered scenario was to keep the Ks at unity. Whenever 

the root zone depletion exceeded readily available water and as a result, the Ks fell below 1, 

irrigation was applied under well-watered scenario the next day to bring root zone depletion to 

zero and Ks to 1 (Er-Raki et al., 2010). Thus, crop ET was equal to the well-watered ET (ETww) of 

each crop under the given atmospheric conditions. The irrigation amounts under the well-watered 

scenario could be unrealistically large, especially during the middle of the growing season. A 

limit of 51 mm (2 inches) was applied on the maximum depth of irrigation that could be assigned 

by the model during each automatic event. This value was chosen based on the maximum 

capacity of the local irrigation systems in the study area. 

Several additional input data were required for running the SWB model. The meteorological 

variables were obtained from the two nearest Oklahoma Mesonet weather stations of Hinton and 

Fort Cobb (McPherson et al., 2007; Sutherland et al., 2005). For each study site, the weather 

station that was closest to that site was used for data retrieval. The planting dates of crops were 

obtained from the growers. The length of different growth stages and corresponding Kcb were 

based on tabulated values presented in (Allen et al., 1998) and further adjusted according to the 

methodology in the same reference to reflect the local weather conditions. The soil hydraulic 

properties and the two moisture thresholds of field capacity and wilting point were calculated 

using the Rosetta computer model based on the sampled percentage of sand, silt, and clay 

(Schaap et al., 2001). The initial soil moisture depletion at planting was assumed zero (soil 

moisture at field capacity). The value for MAD for different crops was obtained from Allen et al. 

(1998). For PP, the MAD was taken as 50%, matching the value available for bell pepper. The 

maximum root depth was assumed equal to the maximum depth at which water extraction took 

place based on the soil moisture data recorded by a soil moisture probe (AquaSpy Inc., San 

Diego, CA, USA) at 10-cm increments over the top 1.2 m of the soil. A linear root growth model 

was implemented following Allen et al. (1998). 
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4.2.4. HYDRUS Model 

In addition to the SWB model, the one-dimensional HYDRUS model (ver. 4.17, PC-Progress 

S.R.O., Prague, CR) was also used to simulate water fluxes at the same study sites. Compared to 

the SWB model, HYDRUS provides greater capabilities and functionalities such as estimating 

runoff and simulating soil moisture at multiple depths in the rootzone in addition to determining 

water fluxes when the soil-related parameters are measured directly (Ventrella et al., 2019). 

HYDRUS simulates unsaturated water flow based on the Richard’s equation (Simunek et al., 

2005): 

v
h

K cos S
t x x

  
= +  −

  

  
    

         (3) 

where, θv is volumetric water content (cm3 cm-3), t is time, K is unsaturated hydraulic 

conductivity function (cm day-1), h is soil matric potential (cm), x is spatial coordinate, α is angle 

between flow direction and the vertical axis, and S is the sink term (cm3 cm-3 day-1). The sink 

term is representative of root water uptake.  

In setting up the simulation domain, the depth of the soil profile was selected at 1.2 m. The upper 

boundary condition (BC) was set as atmospheric BC with surface runoff and lower BC was set as 

free drainage as the water table was below the simulation domain. The input parameters were 

defined similar to the SWB model. The information on soil material was obtained from samples 

taken at each site. Soil hydraulic properties were also estimated by the Rosetta model based on 

soil textural information. The Feddes et al. (1978) root water uptake model was selected with 

fully compensated root water uptake. The Feddes parameters (h1, h2, h3high, h3low, and h4) were 

modified to simulate the same root water uptake response to water stress as the SWB model 

(stress function in Allen et al. (1998)). Under anaerobic conditions, the Feddes parameter, h1 was 

set at zero, with h2 having the same value. This matched the Ks value of 1 in stress function. The 
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modification for h3 (h3high = h3low) was based on moisture thresholds obtained from the soil 

samples and MAD that reduces root water uptake from the point of MAD to WP, which is taken 

as h4. The root growth timeseries utilized in the SWB model was provided as input in HYDRUS. 

The initial soil moisture was set at FC (similar to zero depletion below FC in the SWB model). 

Like the SWB model, HYDRUS was run under the actual and well-watered scenarios. The 

applied water in HYDRUS was the sum of actual irrigation and recorded precipitation for the 

actual scenario. For the well-watered scenario, the sum of applied water determined by the SWB 

model under well-watered scenario and recorded precipitation was used as applied water. Finally, 

the unadjusted evaporation (Ke ETo) and transpiration (Kcb ETo) estimates of the SWB model 

under each scenario were used as inputs to each corresponding scenarios of the HYDRUS model.  

Unlike the SWB model, HYDRUS does not assume a zero runoff and an estimate is provided for 

this component of the irrigation water balance. Another difference between the two models was 

that HYDRUS provides soil water content estimates at variable soil layers, while the SWB model 

treats the entire root zone as a single uniform unit. To take advantage of this capability in 

HYDRUS, four observation nodes were defined at 10, 30, 51, and 71 cm below the same surface, 

which are the same as the installation depths of soil moisture sensors. This allowed comparison 

between simulated and measured soil moisture at each depth and site, which would provide 

valuable information on model performance. In presenting the results of both models, the average 

parameters were reported in the “mean ± standard deviation” format as recommended by Barde 

and Barde (2012). 

4.2.5. Comparison of Fluxes 

Two statistical indicators were calculated to compare water fluxes generated by SWB and 

HYDRUS models, as well as soil moisture simulated by HYDRUS and estimated by in-situ 
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sensors. These indicators were root mean square difference (RMSD) and normalized RMSD 

(nRMSD): 

n
2

i i

i 1

1
RMSD (S H )

n =

= −              (4) 

RMSD
nRMSD 100

S
=        (5) 

where, i is the time-step; n is the sample size; Si is the flux estimate of SWB, Hi is the flux 

estimate of HYDRUS; and S  is the mean of Si dataset. An RMSD of zero represents perfect 

agreement between the compared datasets (Fares et al., 2011; Reindl et al., 1990). The nRMSD 

can range from zero to large positive values, with smaller values indicating closer estimates (Leib 

et al., 2003). 

4.2.6. Seasonal Irrigation Efficiency 

The seasonal irrigation efficiency (SIE) was calculated as the ratio of the depth of water 

beneficially used for crop growth to the depth of water delivered to the crops (Howell, 2003; 

Irmak et al., 2011): 

aSIE 100
(I P)

ET
= 

+
            (6)                                                          

where, SIE is the irrigation efficiency (%), ETa (ET under actual scenario) is the depth of water 

beneficially used by the crop, and (I+P) is the depth of total water delivered to the crops. Any 

water required for leaching for salinity management may be added to the ETa term. As salinity is 

not an issue in the study area and growers do not apply any leaching fraction, there was no need 

for adding leaching fraction to ETa. The (I+P) was the total water application, obtained from the 

rain gages. The seasonal irrigation efficiency has been also called irrigation efficiency, depleted 
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fraction, water application efficiency, consumptive use coefficient, and water efficiency in 

previous studies (Jensen, 2007; Taghvaeian et al., 2018). 

4.3. Results and Discussion 

4.3.1. Water Fluxes 

4.3.1.1. Irrigation 

In general, irrigation season started in late May to early June and ended in mid to late September 

in the study area (Figure 4.2). Only pepper fields received irrigations in October. In most cases, 

the irrigation amounts were smaller and applied less frequently during the early season and 

became larger and more frequent during mid-season. The frequency reduced towards the end of 

the irrigation season. The depth of irrigation events ranged from 3 to 35 mm during the three 

study years and averaged 11 ± 5 mm (mean ± standard deviation). The average irrigation interval 

was 5 ± 5 days. Acero Triana et al. (2020) assumed an average irrigation depth of 25 mm in the 

FCREW, which is two times larger than the average measured depth in this study. Obviously, the 

difference between assumed and measured depths could have impacted the results of simulation 

study by Acero Triana et al. (2020). To further investigate the current irrigation practices, the 

frequency distribution of the ratio of irrigation depths (I) to readily available water (RAW) was 

plotted in Figure 4.3. About 90% of the irrigation events had a ratio of 0 to less than 0.30 for 

I/RAW. Only 2% of the events matched or exceeded the RAW and all of them occurred during 

the initial stages of the growing season when RAW was smaller due to smaller rootzone. This 

suggests that producers do not take advantage of the full storage capacity of the root zone and 

apply irrigation events that are too shallow and frequent. 
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Figure 4.2. Depths and dates of applied irrigation events throughout the growing season. 
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Figure 4.3. The distribution of the ratio of irrigation depth (I) to readily available water (RAW) 

estimated for each irrigation event under the actual scenario. 

Under the well-watered scenario, the irrigation events were significantly larger than the actual 

scenario (Figure 4.4), with a range of 14 to 51 mm and an average of 39 ± 15 mm. The average 

irrigation interval was also significantly larger at 10 ± 7 days. This suggest that the sites 

investigated in this study applied too small and too frequent events and were under deficit 

irrigation for most of the growing season. The water holding capacity of the soils in the study area 

supports larger, less-frequent event, which help with minimizing evaporation and wind drift 

losses and thus storing more of the applied water in the root zone. To achieve the well-watered 

condition and avoid water stress, the study sites needed to apply from 42% (SB2-18) to 282% 

(PN-17) more irrigation water during the entire growing season. Detailed site-specific irrigation 

data are provided in Table 4.2. 
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Figure 4.4. Comparison of the actual irrigation water applied at study sites and the well-watered 

amount that should have been applied. 

Table 4.2. Irrigation data of each study site under actual and well-watered scenario. 

Site 

Actual Well-watered 

P 

(mm) 

Irrigation  

depth  

(mm) 

Irrigation  

interval 

(days) 

Irrigation  

depth 

(mm) 

Irrigation  

interval 

(days) 

Total Mean SD Mean SD Total Mean SD Mean SD  

PN-17 149 12 5 11 8 569 32 14 7 7 370 

PN-18 217 14 5 7 5 367 28 17 8 7 439 

PN1-19 235 12 2 3 3 508 39 15 8 6 504 

PN2-19 203 9 3 3 3 510 42 12 10 6 552 

CT-17 140 11 4 6 9 461 46 10 17 10 480 

CT1-18 225 16 7 8 7 396 40 14 10 7 490 

CT2-18 181 8 4 5 3 535 35 15 9 8 438 

SB-17 107 11 1 6 6 351 35 16 11 10 395 

SB1-18 168 7 2 5 3 609 41 15 8 3 345 

SB2-18 273 14 5 4 4 389 39 15 9 6 499 

PP1-19 227 9 3 4 3 703 47 10 11 7 530 

PP2-19 255 8 3 3 3 755 47 10 10 5 482 
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4.3.1.2. Evapotranspiration 

The evapotranspiration (ET) was determined using reference ET and different crop coefficients 

such as – Kcb and Ks. The Kcb was plotted against the measured plant height (h) and canopy cover 

(CC) in Figure 4.5 for all study sites. In general, Kcb increased with increase in h until the 

maximum Kcb was reached. At the end of the growing season, Kcb decreased while plant height 

stayed the same. However, large variations were observed in Kcb with respect to h. Larger 

variations were also observed in case of Kcb with respect to CC. One possible reason is the 

differences in canopy height and cover among different crops. For example, peanut reaches near-

full canopy cover and maximum Kcb at a relatively short height compared to other crops in the 

present study. On the other hand, soybean and cotton have taller canopies but possibly smaller 

CC depending on the planting density. Pepper reaches Kcb of near one at a smaller CC compared 

to other crops.  

 

Figure 4.5. Comparison of Kcb with respect to the observed plant height (a) and canopy cover (b) 

at the study sites. 

Under actual scenario, the stress coefficient (Ks) used in estimating crop water use fell below 

unity for many days at all study sites except SB2-18, indicating the crops experienced reduced 

evapotranspiration due to water scarcity (Figure 4.6). The timing of water stress incidents was not 
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consistent, and stress occurred during different periods of growing season at different sites. When 

averaged across all sites, Ks was below unity on 64 ± 39 days. The average length of crop 

growing season at the study sites was 155 ± 21 days. The normalized Ks calculated as the 

cumulative seasonal Ks divided by the maximum possible cumulative Ks under absence of any 

stress ranged from 71% at the two pepper sites to 100% at SB2-18, with an average of 86 ± 10% 

(Figure 4.7). A normalized Ks below 100% indicates water stress at some point during the 

growing season.  

 

Figure 4.6. Variations of daily stress coefficient (Ks) throughout the growing season. Any day 

with a Ks value less than unity indicates the presence of water stress. 
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Figure 4.7. Normalized stress coefficient (Ks) at study sites. A value less than 100% indicates 

water stress was experienced at some point during the growing season. 

Table 4.3 presents data on site-specific seasonal crop water use under actual (ETa) and well-

watered (ETww) scenarios. The average seasonal ETa was 694 ± 76 mm based on the SWB and 

671 ± 86 mm based on HYDRUS models. Seasonal ETa was larger than seasonal irrigation, with 

irrigation amount accounting for only 30 ± 4% of the seasonal ETa based on both models. 

Seasonal ETa was also larger than the total applied water (irrigation and precipitation combined) 

at majority of sites (9 sites according to SWB and 7 sites according to HYDRUS out of 12 sites). 

The difference between the seasonal water use and applied water was supplied from the root zone 

water storage and most sites had a significant soil moisture depletion at the end of the season. The 

partitioning of ETa to evaporation (Ea) and transpiration (Ta) was similar between the two models. 

Ta dominated the total water use, accounting for 71 ± 5% and 72 ± 5% of seasonal ETa according 

to SWB and HYDRUS models, respectively. These ET flux estimates between SWB and 

HYDRUS models were different probably because of the differences in evaporation and 

transpiration estimation mechanisms. In HYDRUS, if a certain layer of rootzone is facing stress, 

water could still be extracted from other layers through the compensated root water uptake 
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whereas in SWB, the whole rootzone must face stress before the water uptake is reduced. Another 

contributing factor could be the assumption of zero runoff by SWB model which allowed the 

model to distribute more of the incoming fluxes (irrigation, precipitation, and pre-season water 

storage) to outgoing components of SWB. The RMSD of seasonal ETa, Ea, and Ta between the 

two models was 38, 16, and 26 mm, respectively. The nRMSD of the same fluxes was 5, 8, and 

5%, respectively. These indicators suggest similar results between the models, which can also be 

observed in Figure 4.8a.  

Table 4.3. Seasonal ET in the study sites under actual and well-watered scenarios. 

Site 

Actual Well-watered 

ETa (mm) Ia + P 

(mm) 

ETp (mm) Ip + P 

(mm) 
SWB HYDRUS SWB HYDRUS 

PN-17 572 529 518 832 791 939 

PN-18 597 580 656 637 604 806 

PN1-19 736 719 739 822 808 1012 

PN2-19 772 734 755 844 824 1062 

CT-17 803 743 620 826 810 941 

CT1-18 732 692 715 779 761 886 

CT2-18 720 669 619 879 859 970 

SB-17 575 537 502 653 637 746 

SB1-18 636 603 513 826 809 954 

SB2-18 694 681 772 665 648 888 

PP1-19 734 776 757 1100 1102 1233 

PP2-19 756 789 737 1119 1118 1237 
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Figure 4.8. Comparison of seasonal ET, E, and T: (a) between the SWB and HYDRUS models; 

and, (b) between the actual and well-watered scenarios. 

The average seasonal well-watered ET (ETww) was 832 ± 146 mm based on SWB and 814 ± 154 

mm based on HYDRUS models. This was 19% and 21% larger than corresponding ETa estimates 

by SWB and HYDRUS models, respectively (Table 4.3 and Figure 4.8b). Applied irrigation 

(determined automatically by model) accounted for 62% of ETww, which was more than two 

times larger than under the actual scenario. The Eww and Tww partitioning were similar between 

the two models, with Tww accounting for 71 ± 5 % and 72 ± 5% of the seasonal ETww as estimated 

by SWB and HYDRUS models, respectively. The RMSD was 21, 20, and 3 mm for seasonal ETp, 

Ea, and Ta between two models, respectively. These fluxes had nRSMD of 3, 8, and 0%, 

respectively. As expected, the normalized Ks was at 100% for all sites under the well-watered 

scenario. Several previous studies have evaluated the performance of the FAO-56 approach used 

in estimating ETa in the present study and have found it to be satisfactory under full and deficit 

irrigation regimes (Cid et al., 2018). Thorp et al. (2017) observed over-estimation of ETa by this 

approach when compared to ETa estimated based on soil moisture measurements of neutron 



68 
 

probes in Arizona and reported a nRMSE of 3-7%. Implementing a similar methodology by 

Gassmann et al. (2011) resulted in an average over-estimation of 5% in ETa. 

4.3.1.3. Runoff and Deep Percolation 

The SWB model assumed zero runoff, so the runoff was only estimated by the HYDRUS model. 

The HYDRUS model predicted a negligible amount of runoff under actual scenario (ROa), with 

an average of 1 ± 3 mm. Runoff under well-wateredl scenario (ROww) was still small at 2 ± 9 mm, 

despite the fact that the average irrigation amount was more than two times larger than under the 

actual scenario (Table 4.4). The negligible RO prediction is most likely due to two main reasons: 

i) the irrigation evens were mostly shallow and frequent; and, 2) the topsoil layer at the study area 

was coarse textured with an average of 71% ± 11% sand particles in the top 20 cm layer. Two 

lessons can also be learned from the estimation of negligible RO by HYDRUS. The first lesson is 

that assuming a zero RO in running the SWB model is a valid assumption and does not introduce 

a significant error in estimating of other water fluxes. The second lesson is that the elevated loads 

of suspended sediments observed in FCREW lakes and streams do not appear to be generated at 

investigated sites because of over-irrigation.  

Table 4.4. Seasonal DP and RO in the study sites under actual and well-watered scenarios. 

Site 

Actual Well-watered 

DPa (mm) ROa (mm) DPp (mm) ROp (mm) 

SWB HYDRUS HYDRUS SWB HYDRUS HYDRUS 

PN-17 0 10 0 115 72 0 

PN-18 65 18 1 174 87 0 

PN1-19 124 82 0 229 172 23 

PN2-19 113 69 0 252 164 1 

CT-17 1 7 0 162 94 0 

CT1-18 16 24 8 150 116 0 

CT2-18 14 9 0 136 107 0 

SB-17 10 9 1 129 85 0 

SB1-18 11 8 0 138 86 0 

SB2-18 85 24 0 229 163 0 
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PP1-19 184 115 0 217 154 1 

PP2-19 132 73 0 160 95 1 

The average deep percolation under actual scenario (DPa) was 63 ± 61 mm and 37 ± 36 mm based 

on SWB and HYDRUS models, respectively (Table 4.4). These amounts were about 9% ± 8% 

and 5% ± 5% of the total applied water based on the same two models, respectively. The RMSD 

and nRMSD of DPa between two models were 39 mm and 62%. These estimates are comparable 

to Wyatt et al. (2017), who reported a mean annual drainage of 66 mm below a 3-m soil profile 

for the overlying area of the Rush Springs aquifer, which contains FCREW, under non-irrigated 

conditions. The DP values estimated under the actual scenario in this study suggest that the risk 

of groundwater contamination through chemicals carried with DP flux may not be large during 

the studied growing season. However, this risk should be studied over longer periods (decades). 

In addition, outside the growing season intense precipitation events and saturated soil profiles 

along with coarse textured soils may lead to significantly larger DP fluxes that could carry 

nutrients to groundwater resources. The average DP under well-watered scenario (DPww) was 

larger by both SWB and HYDRUS models at 174 ± 44 mm and 116 ± 35 mm, respectively. 

Approximately 18% ± 4% and 12% ± 3% of applied water became DPww. The DPww between two 

models had RMSD and nRMSD of 61 mm and 35%. The fact that the DPww was larger than the 

DPa suggests that the risk of groundwater contamination due to current irrigation management 

practices would have been considerably larger under well-watered compared to the actual 

scenario. 

4.3.2. Simulated and Sensor-based Soil Moisture 

In general, the volumetric soil moisture (θv) based on sensor readings and HYDRUS simulations 

had similar patterns at different depths throughout the growing season. As expected, soil moisture 

at shallower depths (10 and 30 cm) had more pronounced responses to water applications 
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compared to deeper depths (51 and 71 cm). Figure 4.9 demonstrates seasonal θv fluctuations at all 

four sensor depths for the sites that had the smallest (PN-18) and largest (PN1-19) errors. 

 

Figure 4.9. Time series of volumetric soil moisture (θv) based on sensors readings and HYDRUS 

simulations for the sites with (a): the smallest errors (PN-18) and (b): largest errors (PN1-19). 
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The RMSD of θv between sensor readings and HYDRUS simulations at the study sites had ranges 

of 0.02-0.10 cm3 cm-3 at 10 cm, 0.02-0.07 cm3 cm-3 at 30 cm, 0.03-0.08 cm3 cm-3 at 51 cm, and 

0.03-0.10 cm3 cm-3 at 71 cm soil depths (Figure 4.10). When combining data from all depths, 

RMSD varied from 0.03 cm3 cm-3 at the PN-18 to 0.07 cm3 cm-3 at PN1-19, with an overall 

average of 0.06 cm3 cm-3. A previous experiment in the same study area found that the sensors 

used in the present study had a RMSE of 0.03 cm3 cm-3 when compared against gravimetric soil 

moisture measurements (Datta et al., 2018). This explains half of the difference between 

HYDRUS estimates and sensor readings. Hence, it appears that the HYDRUS model had an 

acceptable performance in simulating θv. 

The nRMSD of θv between sensor readings and HYDRUS simulations had ranges of 18-63% at 

10 cm, 10-39% at 30 cm, 13-39% at 51 cm, and 14-50% at 71 cm soil depths at the study sites. 

The nRMSD (combined data from all depths) spanned from 19% at PN-18 to 30% at PN1-19, 

with the average of 27% at all sites. There was a larger range of nRMSD at the surface indicating 

the variations in the soil moisture were also larger at the surface.  

The RMSD estimates of the present study were smaller than those in Ventrella et al. (2019) who 

compared HYDRUS results with sensor readings at four similar soil depths and reported RMSE 

ranging from 0.04 to 0.10 cm3 cm-3. In contrast, the errors in this study were larger than some 

other studies. For example, Zhang et al. (2019) reported an average RMSE of 0.03 cm3 cm-3 

comparing HYDRUS simulated θv with values from soil moisture sensors installed in sandy soils 

in China. Silva Ursulino et al. (2019) reported an RMSE of 0.01 to 0.02 cm3 cm-3. However, the 

sensors in their study were calibrated in the laboratory and were installed at shallow soil depths 

(0-30 cm). Chen et al. (2014) mentioned that HYDRUS is more accurate when simulating soil 

moisture at shallower soil depths. At the shallower depths, the RMSD of the present study was 

comparable with those observed by Silva Ursulino et al. (2019). The literature suggest several 

factors could contribute to the difference between HYDRUS simulations and sensor readings, 
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including the presence of preferential flow channels, spatial heterogeneity of soil, lateral flux of 

soil moisture, root water uptake distributions, and errors in soil moisture sensors (Deb et al., 

2013; Garg et al., 2009; Patil et al., 2011; Simunek et al., 2005; Vazifedoust et al., 2008; Zhang et 

al., 2017; Zhang et al., 2018; Zhang et al., 2019). 

 

Figure 4.10. The root mean square difference (RMSD) of HYDRUS-simulated and sensor-

estimated soil moisture at four soil depths. 

4.3.3. Seasonal Irrigation Efficiency 

The average seasonal irrigation efficiency (SIE) among the study sites was 107% ± 12% and 

103% ± 9% based on the SWB and HYDRUS models, respectively. Out of all 12 sites, eight and 

seven sites had SIE over 100% according to SWB and HYDRUS, respectively (Figure 4.11). This 

is expected as most sites were under deficit irrigation management. Taghvaeian et al. (2018) 

reported a significantly smaller annual SIE of 55% under gravity irrigation in a district in 

southern California. In another irrigation district under pressurized irrigation, Bastiaanssen et al. 

(2001) found an annual SIE of 61%. Conrad et al. (2013) reported a much lower SIE of 46% in 
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the observed part of the irrigation system in irrigated areas in Uzbekistan during the vegetation 

period. 

 

Figure 4.11. Seasonal irrigation efficiency (SIE) of study sites. 

4.4. Conclusions 

The water fluxes under irrigated condition were either measured or estimated using two modeling 

approaches at several sites across the Fort Cobb Reservoir Experimental Watershed (FCREW), an 

agricultural watershed in western Oklahoma. The models included a simple soil water balance 

(SWB) model and the more complex HYDRUS model, each implemented under two scenarios of 

actual irrigation management and well-watered irrigation management determined by the SWB 

model to avoid water stress. Almost all sites during the three years of study were under deficit 

irrigation. The well-watered irrigation amounts estimated by the model to prevent any stress was 

about 170% larger than the actual irrigation depths applied at study sites. The measured actual 

irrigation amounts and intervals suggest that irrigations events were too shallow and frequent. 

Due to deficit irrigation practices, well-watered crop evapotranspiration (ET) rates were 19-21% 

larger than the actual ET on average. The partitioning of ET into evaporation (E) and 
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transpiration (T) was similar among models and scenarios, with T accounting for more than 70% 

of ET. The deep percolation flux was smaller than ET fluxes, accounting for less than 10 and 

20% of the total applied water on average under actual and well-watered scenarios, respectively. 

Negligible runoff was estimated by HYDRUS under both scenarios, which was expected based 

on high infiltration rates of coarse-textured soils at the study area. These findings suggest that 

existing deficit irrigation practices may not contribute significantly to elevated nutrient and 

suspended solids levels in streams and lakes during the studied years within the FCREW. The 

negative environmental effects would have been larger if irrigations were managed to achieve 

well-watered conditions. 

The volumetric soil moisture simulated by HYDRUS at four depths was similar to the readings of 

in-situ sensors installed at the same depths, with root mean square differences that were 

comparable to or smaller than values reported in the literature. The sensor-based and simulated 

soil moisture agreed with the findings on irrigation fluxes and deficit irrigation management as 

the water content in the deeper layers was declining throughout the growing season, not 

responding to water applications. The seasonal irrigation efficiency estimates were similar 

between the two models, showing close to or above 100% at most sites. These efficiencies were 

larger than those reported in other irrigated areas and expected under deficit irrigation 

management, when nonbeneficial fluxes are reduced or eliminated. This study contributes to the 

existing knowledge of estimating water fluxes in areas through employing a mixture of in-situ 

measurement and computer modeling and provides an insight to the accuracy of many irrigation-

related parameters assumed in a large number of models for predicting the effects of variable 

agricultural and environmental practices. 
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CHAPTER V 
 

 

CONCLUSIONS 

Soil moisture sensors (SMS) are among the most effective tools to improve irrigation 

management for sustainable agricultural production around the world. Despite their usefulness in 

irrigation management, their adoption has remained limited. This research investigated the 

barriers behind low adoption of soil moisture sensors in irrigation scheduling and carried out 

applied research using a combination of measurement and modeling techniques to monitor soil 

moisture and water fluxes to conserve freshwater resources in irrigated agriculture. The specific 

objectives were to: (1) conduct a Strengths, Weaknesses, Opportunities, and Threats (SWOT) 

analysis on published literature related to SMS applications in irrigation management to identify 

shortcomings and potentials, (2) assess the performance of commercially available soil moisture 

sensors in irrigated fields of Oklahoma, and (3) investigate the performance of computer models 

in estimating soil moisture dynamics and quantifying irrigation fluxes under field conditions. 

In the first study (chapter 2), the results of irrigation surveys conducted by the United States 

Department of Agriculture over the last 20 years were analyzed to investigate the adoption rate of 

SMS, along with the potential factors impacting the adoption. According to the surveys, the 

adoption rate of SMS has been low and highly variable among the top 15 irrigated states. SMS 

adoption had significant correlations with the level of control over water delivery and sources of 

information the producers relied on for irrigation management. The SWOT analysis revealed the 

strengths were the research and extension personnel dedicated to SMS experiments, reducing the
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gap in technology transfer between researchers and producers. Low sensor accuracy in variable 

soil and climatic conditions and lack of local field experiments were two of the dominant 

weaknesses. Identified opportunities were to increase the number of local studies, driven by 

producer’s needs and concerns, to report a wide range of benefits realized through using SMS; to 

improve performance and affordability of sensors; to develop producer-focused decision support 

systems; and to conduct studies on the perception of producers towards the adoption of SMS. 

Major threats included laws and policies discouraging producers to focus on water conservation 

and reducing farm revenues that may impact the SMS adoption. This study contributes to our 

existing knowledge on the role of SMS in practical irrigation scheduling by investigating the 

barriers behind decades-old scientifically proven irrigation scheduling technology through 

analyzing national irrigation surveys and conducting a comprehensive SWOT analysis. 

In the second study (chapter 3), the performance of five commercially available soil moisture 

sensors was assessed at two fields having different levels of salinity and clay content by 

comparing sensor-estimated soil moisture with gravimetric measurements. Three of the sensors 

performed satisfactorily at the site with low salinity and low clay content. However, at the site 

with high salinity and high content, none of the sensors performed satisfactorily. High level of 

noise and missing values were observed in the case of some sensors. This shows a need for site-

specific calibration. Soil moisture thresholds (SMT) of field capacity and wilting point were 

obtained from laboratory and compared against values from the Rosetta model, ranking method 

based on sensors, and USDA web soil survey. The Rosetta model and USDA web soil survey 

estimated thresholds closer to the laboratory method. The soil moisture deficit (SMD) was 

estimated using the laboratory and ranking method. The results showed that the ranking method 

can perform well in estimating SMD with accurate information of SMT experiencing a wide 

range of soil moisture during the growing season and accurate estimates of soil moisture from 

sensors. This study provides information on the accuracies of five widely used SMS in variable 
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clay content and salinity conditions in the soil, but its originality is in converting SMS estimates 

to actual irrigation scheduling information and then investigating the effects of different 

parameters on estimated irrigation depths. 

In the third study (chapter 4), the water fluxes were either measured or estimated using two 

widely used modeling approaches, the soil water balance (SWB) and the HYDRUS models, at 

several sites located in the Fort Cobb Reservoir Experimental Watershed (FCREW) in Western 

Oklahoma. Each of these models was implemented under two scenarios: actual irrigation 

management and well-watered irrigation determined by the SWB model to avoid water stress. 

The sites were under deficit irrigation management, with the well-watered irrigation amounts 

requiring 170% more irrigation than actual irrigation depths. Crop evapotranspiration (ET) 

estimates were 19-21% larger in case of well-watered scenario compared to the actual scenario on 

average. The partitioning of evaporation (E) and transpiration (T) was similar among the models 

and scenarios. The deep percolation (DP) accounted for less than 10 and 20% of the total applied 

water under actual and well-watered scenarios, respectively. Negligible runoff was estimated by 

HYDRUS. The soil moisture simulated by HYDRUS agreed well with sensor-estimated values at 

four soil depths at each study site. The seasonal irrigation efficiency was close to or above 100% 

at most sites. These values were larger than those reported in other irrigated areas because of the 

sites being under deficit irrigation management. This study contributes to existing knowledge of 

quantifying water fluxes in an agricultural watershed through a blend of measurement and 

modeling techniques and shows the need for use of measured values in models where many 

irrigation-related parameters are assumed. 
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