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CHAPTER I

INTRODUCTION

1.1. Overview

Recent high-throughput technology has allowed a rapid increase in the amount of data

collected in many scientific fields such as medicine, spatial epidemiology, genetics, biology,

neuroscience, economics and finance. The analyses of such high-dimensional data sets

often involve statistically testing for some behavior of interest on each of thousands or

more measurements taken on the same unit. For example, in genome-wide association

studies, thousands of hypotheses are tested simultaneously to identify associations between

single-nucleotide polymorphism (SNPs) and some disease trait. In microarray experiments,

a researcher may statistically test thousands of genes to identify which of the genes are

differentially expressed. See for instance, Dudoit, Yang, Callow, and Speed (2002); Dudoit,

Shaffer, and Boldrick (2003); Ge, Dudoit, and Speed (2003); Reiner, Yekutieli, and Benjamini

(2003). Two types of errors can occur in any such testing situation:

i. a false positive or type I error, is committed when a variable is declared significant

when it is not.
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ii. a false negative or type II error, is committed when the test fails to identify a truly

significant variable.

Each hypothesis test has its own type I and type II errors. When many hypotheses are tested

simultaneously, as in the case of genome-wide association studies or microarray experiments,

the probability that at least some type I errors are committed among a set of hypotheses

may be unduly large. Multiple testing procedures (MTPs) are very useful tools for dealing

with this multiplicity issue. Such procedures provide efficient methods for examining each

hypothesis while also controlling for an overall error rate at a pre-specified level.

Additionally, large-scale simultaneous testing of this sort involves inference for high-

dimensional multivariate distributions with complex and mostly unspecified dependencies

among the genes under consideration. With the defining characteristics of such data, standard

methods of multivariate analysis fail. These methods consist of matrix inversion and/or

the solution of linear equations for a large number of genes. Thus, it becomes difficult, if

implausible, to include all possible genes within a single model. The most common practice

in such situations involves analyzing one gene at a time. In order to analyze such data,

one must consider the ramifications of three choices. The first choice is that of a suitable

statistic. This statistic needs to be chosen such that even though all measurements on one

gene are condensed into one number, relevant information is not lost with regards to the

test of interest. The second choice involves the rejection regions. Not optimizing these two

choices will lead to a loss of statistical power. The third main choice is to find a method to

control the inflation of error rates due to simultaneous hypotheses testing.

1.1.1. Choice of Test Statistic

A test statistic is a data-driven measurement that reduces the information in the data to one

value that can be used for hypothesis testing. The most widely utilized test statistic is the
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standardized difference statistic given by

Tn =
Estimatorn − Null Value

Standard Errorn
, (1.1)

where the subscript n emphasizes the test statistics’ dependence on the sample size. For

gene-specific analysis, the test statistics are computed separately for each gene. In the

presence of small samples, the error variance is difficult to estimate and subject to erratic

fluctuations. For instance, if the estimated variance for one gene is small by chance, the test

statistic can be large even when the difference between the estimate and the null is small. For

example, due to the large number of genes on each array in microarray experiments, there are

usually genes with small standard errors. A common idea adopted by some researchers is to

take the dependence structure between test statistics into account by borrowing information

across variables rather than treating them as independence. However, these estimates are

subject to bias when the error variances across the genes are not homogeneous. In seeking

alternative test statistics, researchers seek a middle ground that is both powerful and less

biased.

To this end, various test statistics have been suggested in the past couple of years; some

of which involve modifying estimators of the error variance components. Tusher, Tibshirani,

and Chu (2001) proposed the SAM t-test by adding a small constant to the gene-specific

variance estimate in order to stabilize the small variances. Baldi and Long (2001) suggested

the regularized t-test which substitutes the traditional variance estimate with a Bayesian

estimator based on a hierarchical prior distribution. Using an empirical Bayes approach that

pools information across genes, Lönnstedt and Speed (2002) proposed the B statistic. Newton,

Noueiry, Sarkar, and Ahlquist (2004) and Kendziorski, Newton, Lan, and Gould (2003) pooled

information across genes by considering a hierarchical gamma-gamma model. Building on

the work of Lönnstedt and Speed (2002), Smyth (2004) proposed the moderated t-statistic in
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which posterior residual standard deviations are used in place of ordinary standard deviations.

Several other information sharing methods have been proposed based on hierarchical or

empirical Bayes techniques (Newton, Kendziorski, Richmond, Blattner, and Tsui (2001); Cui,

Hwang, Qiu, Blades, and Churchill (2005); Fox and Dimmic (2006)). Interested readers are

referred to Cui and Churchill (2003) and Smyth (2004) for an introductory review of most of

these approaches.

Studies have shown that the estimation of gene-specific variances benefits considerably

from pooling information across genes (Wright and Simon (2003); Smyth (2004); Cui, Hwang,

Qiu, Blades, and Churchill (2005); Delmar, Robin, Tronik-Le Roux, and Daudin (2005)).

Bayesian methods, though naturally allowing for information sharing across genes, can become

computationally expensive. In addition, these methods rely on detailed assumptions about

the underlying data and parameter-generating models. Consequently, Opgen-Rhein and

Strimmer (2007) proposed the shrinkage t statistic in the framework of James-Stein-type

analytic shrinkage. Since only information concerning second moments rather than fully

specified distributions are utilized in the James-Stein shrinkage estimation, the method

can also be considered as an empirical Bayes method. The resulting shrinkage statistic is

completely analytic and requires no distributional assumptions.

1.1.1.1. Shrinkage Estimation of Covariance Matrix

Estimation of covariance matrices is normally achieved by utilizing the maximum likelihood

estimate or the related unbiased sample covariance matrix. However, it is well known that

if the sample size, n is small and the number of variables under consideration, m is large,

these estimators are very unstable. Many techniques have been proposed to improve the

estimation of the matrix; all of which rely on the concept of shrinkage. Bayesian and penalized

likelihood methods incorporate shrinkage implicitly while the James-Stein-type approach
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does so explicitly.

A simple version of the construction of a shrinkage estimator is as follows. Suppose

an unregularized estimator U , and a target estimator T , are available. The unregularized

estimator could be either the maximum likelihood estimator or any unbiased estimator. Then,

the James-Stein shrinkage estimation rule combines both estimators in a convex weighted

average given by

U ? = λT + (1− λ)U , (1.2)

where λ ∈ [0, 1] is known as the shrinkage intensity parameter and determines the extent

to which the estimates are pooled together. The search for the optimal λ is derived from

a decision-theoretic perspective by minimizing a risk function, such as the mean squared

error (MSE). Common approaches to estimate the minimizing λ are by utilizing MCMC, the

bootstrap, cross-validation or by determining it analytically. Note that the unregularized

estimator U is recovered when λ = 0, whereas the target, T dominates when λ = 1. A

shrinkage estimator of this type results in a regularized estimator that typically outperforms

the individual estimators, U and T , both in terms of accuracy and statistical efficiency.

Subsequently, utilizing this shrinkage estimator in equation (1.1) will improve the power of

any multiple testing procedure. More details about this estimation procedure will be provided

in chapter II.

1.1.2. Test Statistic Null Distribution

The results of any given multiple testing procedure are reported in terms of rejection regions

for the test statistics, confidence regions for the parameters of interest, or adjusted p-values.

Accordingly, one needs the joint distribution of the test statistics. In practice, however, the

true distribution of the test statistics is often unknown. One common practice is to replace

the true distribution with a theoretical null distribution, such as the standard normal or the
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studentized t distribution. However, the presence of correlation among the test statistics can

have a significant effect on this theoretical null distribution, resulting in a distribution that is

incorrect (Efron (2004, 2007a,b); Pollard and van der Laan (2004)). Even if the theoretical

null is appropriate for the individual null test statistic, the effects of correlation between

the genes can make the effective joint null significantly different from the theoretical null.

Consequently, if these correlations are not accounted for, the multiple testing procedure

can perform significantly worse. In practice, when the hope is to effectively make useful

discoveries, correlation effects can play a vital role in appropriate identification.

Instead of using the theoretical null, some researchers utilize a data-generated null

distribution, such as a permutation null distribution. A sufficient condition to ensure that

control of the type I error rate under the assumed data-generated null distribution guarantees

the desired control under the true distribution, is for the subset pivotality condition specified

in Westfall and Young (1993) to be satisfied. However, in many relevant applications in

biomedical problems, the subset pivotality condition is violated. This results from the fact

that the data-generated null distribution may incorrectly specify the correlation structure of

the true distribution of the test statistics. Efron (2007a) argued that the use of permutation

null distributions does not automatically offset correlation effects since these distributions,

as typically computed, tend to be similar to the theoretical null. For instance, Pollard and

van der Laan (2004) showed in the two-sample problem that the permutation null distribution

produces asymptotically correct null distribution if the sample sizes are equal or the covariance

structure for the populations are the same.

To avoid the restrictive subset pivotality condition, various ways of estimating the empirical

null distribution have been proposed. Pollard and van der Laan (2004); Dudoit, van der

Laan, and Pollard (2004); Dudoit, van der Laan, and Birkner (2004) and Pollard, Birkner,

van der Laan, and Dudoit (2005) proposed a generally valid null distribution by projecting

the true test statistic distribution onto the space of mean zero distributions by bootstrapping
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centered test statistics. This proposed distribution, null shift and scale-transformed null

distribution, utilizes user-supplied upper bounds for the means and variances of the test

statistics corresponding to the true null hypotheses. van der Laan and Hubbard (2006)

however, argued that for univariate testing, the proposed joint null distribution does not

generalize the univariate null distribution one would use in univariate testing. For instance,

they emphasized that the marginal distribution of a test statistic is known when the null

hypothesis is true. However, the null shift and scale-transformed null distribution guarantees

that the obtained marginal distributions and the known marginal distributions have equivalent

mean and variance, but does not guarantee that the marginal distributions are equal. This

suggests that using this null distribution does not necessarily produce optimal marginal

null distributions. Subsequently, the authors proposed utilizing as the null distribution

the asymptotic distribution of a vector of null quantile-transformed test statistics which is

based on user-supplied marginal test statistic null distributions. Thus, adjusted p-values or

rejection regions of a multiple testing procedure based on the joint null quantile-transformed

null distribution capitalizes on the dependence among the test statistics to provide a better

control and improvement in power than the analogue of using the procedure based only on

the marginal null distributions.

The two proposed distributions are based on the notion of null domination, whereby

the number of false rejections under test statistics’ null distribution is stochastically greater

than under the true test statistic distribution. This null domination condition is a weaker

and less restrictive assumption compared to the assumption of subset pivotality. Unlike the

data-generated null distributions, the two proposed null distributions preserve the dependence

structure of the test statistics. Efron (2007a) on the other hand argued that the estimation of

the null distributions discussed above are justified by asymptotic bootstrap arguments. These

asymptotic assumptions raise legitimate concerns in some practical applications. Therefore,

Efron (2004, 2007a) proposed an empirical estimation of the null distribution based on the
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notion of sparsity, (i.e., the proportion of non-null effects is small) and investigated its effect

on inference. He referred to this distribution as the empirical null. Though Efron’s approach

does not rely on asymptotic bootstrap arguments, there are some limitations associated with

this approach that can render it difficult to use in some situations. The conventional method

for the estimation of the model parameters is based on moments. However, when dealing

with non-sparse settings (i.e., the proportion of non-null effects does not tend to zero as the

number of hypotheses tends to infinity), the empirical null estimation of Efron (2004, 2007a)

does not perform well and the estimators of the null distribution are generally inconsistent.

Moreover, as pointed out by Jin and Cai (2007) even when the proportion of non-null effects

becomes negligible asymptotically, it still might be of interest to quantify the influence of

sparsity on the estimators, in that a small error in the null may increase to large errors in

subsequent studies. Additionally, one needs to specify the histogram bin width or the degrees

of freedom of the spline when using the empirical null estimation of Efron (2004, 2007a). For

some data, diligent adjustment may be required which may be challenging. Finally, there is

no guarantee that the order of the scores is maintained in the corresponding FDR values as

the approach does not place monotonicity constraints on the density.

1.1.3. Control of Error Rates

Developing MTPs has been a very active area of research. The first error rate suggested

was the family-wise error rate (FWER). This measure involves controlling the probability of

committing any type I error among all the hypotheses being tested. Many FWER controlling

procedures involve testing of hypotheses whose statistics are multivariate normal (or t). This

distributional assumption is, however, violated in many of the problems encountered in

practice. In addition to this limitation, FWER procedures offer extremely stringent control of

the error, which might not always be appropriate. For example, the number of tests in genome-
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wide studies is large and the nature of analysis is exploratory rather than confirmatory. In this

case, one often wishes to make many discoveries without too many false positives, although

some false positives can be accepted. Thus, the control of FWER is unnecessarily stringent

and less powerful in making discoveries. In a seminal paper, Benjamini and Hochberg (1995)

introduced the false discovery rate (FDR) as an alternative measure for accounting for the

problem of multiplicity. The FDR, defined as the expected proportion of false positives among

all those deemed significant, is a more liberal, but powerful quantity to control. Benjamini

and Hochberg (1995), hereafter referred to as the BH procedure, developed a linear step-up

procedure for controlling the FDR under the assumption of independence among the test

statistics. There is a rich body of literature on FDR controlling procedures under various

assumptions on the joint distribution of the test statistics. Many of the controlling procedures

assume independent test statistics. Although some of these procedures have been shown to

control the FDR under some types of dependency (Benjamini and Yekutieli (2001); Finner,

Dickhaus, and Roters (2007)), these procedures were not originally designed to make use

of the dependence structure of test statistics. They therefore become less powerful than a

procedure which incorporates dependence in some way, especially when the test statistics are

highly correlated.

In addition to the dependency issue, the BH procedure is conservative by a factor of

m0/m = π0, the proportion of true null hypotheses among all hypotheses. Another line of

research has been to utilize the data to estimate the proportion of null hypotheses and then

adjust the BH procedure accordingly to provide tighter bounds (Benjamini and Hochberg

(2000); Storey (2002); Storey, Taylor, and Siegmund (2004); Benjamini, Krieger, and Yekutieli

(2006); Blanchard and Roquain (2009); Gavrilov, Benjamini, and Sarkar (2009); Fan, Han,

and Gu (2012); He and Sarkar (2013); Heesen and Janssen (2016)). Two of such procedures

with rigorously established control of FDR is the linear step-up procedure of Storey, Taylor,

and Siegmund (2004) and the two-stage adaptive procedure of Benjamini, Krieger, and
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Yekutieli (2006).

1.1.3.1. False Discovery Rate Control by Resampling

It has well been established that incorporating information about the dependence structure

of the test statistics can improve the power of multiple testing procedures. Resampling-based

procedures can provide the flexibility of accounting for the complex and unknown dependence

structure among the test statistics. Controlling FDR via permutations or other types of

resampling such as the bootstrap has received a lot of attention over the past two decades.

Yekutieli and Benjamini (1999) initiated this subject and proposed a permutation-based

procedure that offers asymptotic control of the FDR. Ge, Sealfon, and Speed (2008) also

proposed three different FDR-controlling procedures, one of which has proven finite-sample

control. Building on the previous work of Troendle (2000) that had restrictive parametric

assumptions, Romano, Shaikh, and Wolf (2008) proposed a bootstrap procedure that controls

the FDR asymptotically. Their procedure relies upon an exchangeability assumption. However,

their procedure is based on a data-generated null distribution. As discussed earlier, the

data-generated null may incorrectly specify the true dependence structure of the test statistics.

Thus, in the presence of high correlations, their proposed procedure may undercut inferential

validity.

A different option for developing resampling-based techniques is to utilize Benjamini

and Hochberg’s procedure on permutation p-values. Nevertheless, such permutation-based

approaches do not preserve the correlation structure of the p-values.

1.2. Motivating Examples

In microarray experiments, a common goal is to identify genes that show differential expression

across biological and clinical conditions. The following motivating data sets are fairly typical
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of data obtained in such experiments.

1.2.1. Example 1: Hereditary Breast Cancer

Consider the well known microarray experiment of Hedenfalk et al. (2001) concerning

differences between two types of genetic mutations causing increased breast cancer (BRCA1

and BRCA2). The experiment consisted of n = 15 tumor samples from patients with primary

breast cancer (7 with BRCA1 and 8 with BRCA2) to identify cases of hereditary breast

cancer on the basis of m = 3, 226 gene-expression profiles. In their analysis, the authors

computed a modified F statistic and, using a threshold of α = 0.001, identified 51 genes as

differentially expressed. Following this, the authors analyzed the 15 tumor samples with a

threshold of α = 0.0001 to identify 9 to 11 genes as differentially expressed.

1.2.2. Example 2: HIV Type I Infection

The human immunodeficiency virus (HIV) data set described by Van’t Wout et al. (2003) used

the same RNA preparation for four experiments on four different slides. After twenty-four

hours of infection with HIV virus type 1, the expression levels of cellular RNA transcripts

were assessed in CD4-T-cell lines. The final dataset consisted of n = 8 patients (4 negative

and 4 positive subjects) and m = 7680 gene levels. More details about the dataset are

provided in Van’t Wout et al. (2003) and Gottardo, Raftery, Yeung, and Bumgarner (2005).

In the two microarrray experiments described above, it is desirable to compare gene

expression under the two different conditions. The aim is to identify which of the m genes

have had their expression levels changed. The two experiments share the following common

characteristics:

i. The dimension of the data is much larger than the sample size.
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ii. There is complex, mostly uncharacterized, correlation among the genes under consider-

ation.

iii. Error rates are inflated due to simultaneous hypotheses testing.

iv. Some proportions of the null hypotheses are expected to be true.

For the analyses of these experiments, if the standard p-value threshold of 0.05 is utilized

to perform separate hypothesis tests, one would expect 161 and 384 genes to be deemed

differentially expressed by chance for the breast cancer and HIV studies respectively if all

null hypotheses are true. Thus, the problem of multiplicity is a major concern in performing

simultaneous inference in studies of this nature. This warrants the need for multiple testing

procedures in performing simultaneous inference in microarray experiments such as the two

described above.

In microarray experiments, scientists measure the expression levels of hundreds or thou-

sands of genes within a cell by measuring the amount of labeled cDNA bound to each site

on an array containing many DNA samples. Unfortunately, the experimental procedure

used to obtain the data induces substantial correlation among the various microarrays. This

causes a major concern in the analyses of such data. For instance, utilizing the traditional

approach for analyzing the two microarray experiments yields a two-sample t-statistic, ti

(i = 1, . . . ,m), for each of m genes comparing the two conditions under study. Here, each ti

tests the null hypothesis that gene i is not differentially expressed under both experimental

conditions (i.e., HIV positive and negative subjects for the HIV data). The t′is have been

converted to z-values for easy comparison to the theoretical null distribution, N (0, 1). The

results for these test statistics are displayed in Figure 1.1. The smooth curve is a standard

normal distribution. As pointed out by Efron (2007a), more null z-values will be in the tails

of the distribution for the cancer study due to the wide central histogram, so if the theoretical

N (0, 1) distribution is used to judge significance levels, the procedure will be too liberal. On
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the other hand, the theoretical N (0, 1) null is too conservative for the HIV study. This shows

that utilizing an inappropriate null distribution can greatly influence inferential validity, even

when multiplicity has been accounted for.

(a) 

 

D
e
n
s
it
y

−4 −2 0 2 4

0
.0

0
.1

0
.2

0
.3

0
.4

(b) 

 

D
e
n
s
it
y

−4 −2 0 2 4

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

Figure 1.1. Histograms of z-values from the motivating examples. (a) Hereditary breast cancer
study, 3,226 genes (Hedenfalk et al., 2001)). (b) HIV type 1 study, 7,680 genes (Van’t Wout et al.,
2003). Smooth red curves indicate N (0, 1) theoretical null distribution. Dashed blue curves indicate
normal empirical distribution (N (−0.09, 1.552) for (a) and N (−0.11, 0.752) for (b)) as estimated by
Efron (2007a). The theoretical null is too narrow in (a) and too wide in (b).

Controlling for multiplicity by utilizing the false discovery rate at level α = 0.1, Efron

(2007a) utilized the theoretical N (0, 1) and an estimated empirical null distribution to analyze

the two microarray experiments. The breast cancer study resulted in 107 discoveries when
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the theoretical null distribution was utilized whereas no discoveries were made utilizing an

empirical null distribution. Similarly, 22 as opposed to 180 discoveries were made for the HIV

study when the theoretical null was used. Efron (2007a) explains that the discrepancies in the

results do not stem from the use of the BH procedure itself, but from the unconditional use

of the theoretical null distribution. Thus, blindingly utilizing the theoretical null distribution

can greatly influence which cases are deemed significant, irrespective of which multiple testing

procedure is employed. It is therefore essential to account for correlation when developing

multiple testing procedures. Additionally, the choice of an appropriate null distribution is

very crucial, as utilizing an inappropriate null can undercut inferential validity, a problem

that was encountered in the analysis of the HIV study by Efron (2007a).

1.3. Contributions of this Work

In the literature, it is common to find advances in resampling-based multiple testing procedures

that control FDR under dependency – albeit not in combination with estimation of test

statistic null distribution and variance components. Motivated by the above applications and

the limitations of existing multiple testing procedures, this study seeks to develop resampling-

based procedures that brings together many aspects of multiple testing methodologies that

otherwise are only considered separately. The contributions of this work are in two-fold. The

first study incorporates null distribution and shrinkage estimation into the original linear

step-up procedure of Benjamini and Hochberg (1995) and the two-stage adaptive procedure of

Benjamini, Krieger, and Yekutieli (2006). Specifically, a James-Stein type analytic shrinkage

estimation approach is first utilized to estimate the variance components. These estimates are

subsequently utilized in the construction of an appropriate test statistic. After that, instead

of using the theoretical null distribution or the data-generated null distribution that relies on

subset pivotality to ensure type I error control, the study proposes using an empirical null
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distribution for the test statistics. The estimated null distribution is then utilized to obtain

unadjusted p-values for use in the Benjamini and Hochberg (1995) and Benjamini, Krieger,

and Yekutieli (2006) procedures.

The second part of the study proposes a step-down procedure based on the estimated

shrinkage test statistic and the test statistic null distribution. One main distinction of this

approach from existing stepwise FDR procedures is the null distribution used in place of the

unknown joint distribution of the test statistics. This null distribution does not rely on the

restrictive subset pivotality assumption of Westfall and Young (1993).

The present approach to FDR control is best described as a unified approach of multiple

testing techniques with the James-Stein-type analytic shrinkage estimation of variance

components of Schäfer and Strimmer (2005); Opgen-Rhein and Strimmer (2007) and the

null distribution modeling of Pollard and van der Laan (2004); Dudoit, van der Laan, and

Pollard (2004); Dudoit, van der Laan, and Birkner (2004); van der Laan, Dudoit, and Pollard

(2004) and van der Laan and Hubbard (2006). A limitation to the methods proposed is

that it is computationally intensive as compared to some of the other methods due to the

resampling process. However, with modern computing power, this issue is far less important

than in years past and, in general, this method is effective in many settings where traditional

approaches are far too conservative.

1.4. Chapter Organization

The remaining chapters are set out as follows. Chapter 2 presents an overview of the

multiple testing problem and provide some multiple testing procedures for controlling the

false discovery rate. In addition, an appropriate test statistic null distribution, rather than a

data-generated null distribution for large scale inference are discussed. We also discuss the

general principles for the construction of James-Stein-type analytic shrinkage estimators.
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In chapter 3, we present resampling-based techniques for improving the original linear step-

up procedure of Benjamini and Hochberg (1995) and the two-stage adaptive linear step-up

procedure of Benjamini, Krieger, and Yekutieli (2006), by incorporating shrinkage estimation

of the error variance and a generally valid null distribution. Theoretical results and conditions

for when the proposed resampling-based procedures provide asymptotic FDR control are also

provided. Since the proposed procedures are based on asymptotic arguments, extensive Monte

Carlo simulations are carried out to assess their finite sample performance. Additionally, the

FDR control, power, and stability, as characterized by the standard deviations of the number

of false hypotheses rejected and the total number of rejected hypotheses of the proposed

resampling-based methods are compared to some existing FDR-controlling procedures.

Chapter 4 builds on the work of Romano, Shaikh, and Wolf (2008) and proposes a new

step-down procedure for controlling the false discovery rate. Theoretical results and conditions

for when the proposed procedure provides asymptotic control are also given. The ongoing

research and possible extensions of the step-down procedure are provided as well.

Finally, chapter 5 provides discussion and concluding remarks for the methods proposed in

this study. Recommendations and possible future extensions are also provided. Supplemental

simulation results are provided in Appendices B and C.
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CHAPTER II

PRELIMINARIES

2.1. The Problem of Multiple Testing

When performing multiple inferences, researchers normally select the statistically significant

ones for emphasis, discussion, and to support conclusions of some research questions. Suppose

we want to test the null hypothesis H0 against an alternative H1 based on a test statistic

T . Then we will reject H0 in support of H1 if for a given rejection region Γ, T ∈ Γ. A type

I error is committed when T ∈ Γ but H0 is really true. On the other hand, a type II error

is committed when T /∈ Γ but H1 is really true. In order to choose Γ, a pre-specified level

of significance α, the acceptable type I error rate, is chosen, and all rejection regions that

have a type I error rate less than or equal to α are considered. The rejection region with

the smallest type II error is then chosen among the considered regions. In testing m null

hypotheses, each hypotheses test will have its own type I and type II error rates, thereby

making the nature of the overall error rate complicated. Consequently, an unguarded use

of single-inference procedures in multiple hypothesis testing inflates the overall error rates.

In an effort to address these issues, several procedures have been developed. This chapter

review some advances in dealing with large-scale simultaneous hypotheses testing.
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Consider testing simultaneously m null hypotheses H0(i); i = 1, . . . ,m, based on an

m-dimensional vector of test statistics, Tn = (Tn(i) : i = 1, . . . ,m) with joint distribution

Qn = Qn(P ), where P ∈ Ω is a data generating distribution. Suppose H0 = H0(P ) is the set

of true null hypotheses and H1 = H1(P ), the set of false null hypotheses. Then, m0 =| H0 |

is the number of true null hypotheses and m1 = m − m0 =| H1 | is the number of false

null hypotheses. Let Cn(i) = C(i;Tn, Qn, α) denote the rejection threshold corresponding to

each hypothesis test and Rn = R(Tn, Qn, α) the set of rejected null hypotheses based on a

multiple testing procedure. Denote the number of rejections and false rejections based on the

procedure respectively by V and R such that,

R =| R(Tn, Qn, α) |=| Rn |

V =| R(Tn, Qn, α) ∩H0(P ) |=| Rn ∩H0 | . (2.1)

Most of the literature on procedures adjusting for multiple testing describe controlling

one of two overall error rates: the familywise error rate or the false discovery rate.

Definition 2.1.1

The familywise error rate (FWER) is defined as the probability of making at least one type I

error in a family of hypotheses. That is,

FWER = P (V ≥ 1) (2.2)

Definition 2.1.2

The false discovery rate (FDR) is defined as the expected proportion of true null hypotheses

among all those declared significant. The FDR is given by

FDR = E

(
V

max(1, R)

)
(2.3)
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2.1.1. Existing Multiple Testing Procedures

To date many FWER controlling procedures have been proposed. In these settings, instead

of controlling the type I error rates at level α for each individual test, the overall FWER is

controlled at level α. A rejection region is then determined that maintains level α FWER

while still yielding good power. Since the FWER controls the probability of making at

least one type I error, these procedures are often too stringent and might not always be the

appropriate error rate to control. The interested reader is referred to Westfall and Young

(1993), Hochberg and Tamhane (1987), Hsu (1996) and Shaffer (1995) for a review of some of

these multiple testing procedures.

In a pioneering work, Benjamini and Hochberg (1995) proposed the FDR as an alternative

measure to the FWER. In the context of analyzing a large number of variables, controlling

the FDR has become increasingly popular. Choosing which overall error rate to use relies

heavily on the scientific goal and expectation of the study. In high-dimensional settings, the

primary aim of the initial analysis is exploratory rather than confirmatory. In such cases, one

seeks a procedure with very good power in order to make as many discoveries as possible,

but making some mistakes is acceptable here as these mistakes are likely to be identified

in subsequent confirmatory experiments/analyses. Thus, controlling FDR seems a natural

choice for such settings. Unlike the FWER, the FDR is a less stringent controlling procedure,

thereby leading to an increase in statistical power.

2.1.2. Procedures for FDR Control

Benjamini and Hochberg (1995) provided a step-up p-value method for controlling FDR under

the assumption of independent p-values. The authors proved their procedure controls the FDR

at level π0α ≤ α, where π0 is the proportion of true null hypotheses among all hypotheses.

Ensuing research has shown that this procedure is still valid under some special dependencies,
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for example, positive regression dependence on subsets (Benjamini and Yekutieli (2001);

Finner, Dickhaus, and Roters (2007)). Benjamini and Liu (1999) alternatively developed

a step-down FDR procedure. The authors demonstrated that their step-down procedure

controls the FDR under independence, and it neither dominates nor is dominated by the

BH step-up procedure. Sarkar (2002) further showed that both the BH procedure and the

procedure of Benjamini and Liu can be controlled by a generalized stepwise procedure under

positive regression dependence on subsets.

The BH procedure is conservative by a factor of π0 = m0/m for controlling FDR at level

α when some of the hypotheses are in fact false. Knowledge of m0, the number of true

null hypotheses can be useful for improving the power of the procedure substantively. This

suggests that incorporating a good estimate of π0 into the BH procedure would result in

a more powerful procedure especially when many hypotheses are false. Such procedures

are referred to as adaptive procedures. There have been significant recent advances on

the estimation of π0 (Benjamini and Hochberg (2000); Storey (2002); Storey, Taylor, and

Siegmund (2004); Benjamini, Krieger, and Yekutieli (2006); Blanchard and Roquain (2009);

He and Sarkar (2013); Heesen and Janssen (2016)). One problem with the adaptive procedures,

however, is that the estimate of π0 can be extremely variable, especially when the p-values

are highly correlated. Consequently, if this variance is not taken into account, then naive

plug-in procedures will generally not offer FDR control, especially when π0 ≈ 1. In order to

provide substantial improvement over the BH procedure, adaptive methods need to take into

account the estimation error of π0. One such procedure is provided by Benjamini, Krieger,

and Yekutieli (2006) who adjust the α-level slightly from α to α∗ = α/(1 + α) to adjust for

the additional variability due to the estimation of π0. Note also that, adaptive procedures

offer better performance by utilizing the difference between π0 and 1. In the presence of

small differences, these procedures offer little advantage in terms of power. Conversely, such

procedures offer a more evident gain in power when the proportion is small.
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The implementation of the above procedures, however, make use of the marginal distri-

bution of the test statistics without taking into account their dependency structure. More

powerful procedures can be developed if the dependency structure of the test statistics

are considered. Resampling-based techniques can provide the flexibility to accomplish this.

Benjamini and Yekutieli (2001) pioneered this methodological path and provided asymptotic

control of FDR with a permutation-based approach. Their analysis required subset pivotality

and independency between the test statistics corresponding to the true null hypotheses

and those corresponding to the false null hypotheses. Troendle (2000) proposed step-up

and step-down FDR procedures under the assumption of normality of the test statistics.

This procedure was shown to provide asymptotic control of the FDR. Using least favorable

configurations, Somerville (2004) developed both step-up and step-down FDR procedures

under the assumption of a multivariate t distribution and common correlation of the test

statistics. The author, however, did not provide an exhaustive proof of the validity of the

assumed location of the least favorable configurations. Building on the work of Troendle

(2000), Romano, Shaikh, and Wolf (2008) developed a bootstrap procedure that controls

FDR asymptotically and relies upon an exchangeability assumption. Their procedure utilized

a data-generated null distribution in place of the unknown joint distribution of the test

statistics. However, as will be discussed in the next section, utilizing a data-generated null

distribution may incorrectly specify the true dependence structure of the test statistics. Thus,

in the presence of strong correlations among the test statistics, the Romano, Shaikh, and

Wolf (2008) procedure may lead to misleading results.

A couple of studies have also considered the false discovery rate from different points of

view, including Bayesian, empirical Bayes, as the limit of empirical process and in the context

of penalized model selection. For instance, Efron, Tibshirani, Storey, and Tusher (2001)

developed an empirical Bayes approach to multiple testing and made interesting connections

with FDR. Storey (2002, 2003) connected the FDR concept with a certain Bayesian quantity
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and proposed a new FDR method which has more power than the original Benjamini and

Hochberg (1995) procedure. In their paper, Abramovich, Benjamini, Donoho, and Johnstone

(2006) utilized the concept of FDR in developing asymptotically minimax procedures for

model selection.

2.2. Choice of Test Statistic Null Distribution

Recall from equation (2.1), the rejection region of a testing procedure is a function of the joint

distribution of the test statistics, Qn. However, in practice, the true distribution is unknown

and it is normally replaced by a null distribution Q0 or an estimator Q0n thereof. The choice

of an appropriate null distribution is therefore vital in order to ensure control of the type

I error rate under the assumed null distribution. It is not uncommon for researchers to

replace the null distribution with a theoretical null such as the standard normal distribution.

Efron (2004, 2007a,b) however emphasized that even if the theoretical null is appropriate

for individual null test statistics, the effects of correlation among the variables can make the

effective joint null significantly narrower or wider than the theoretical null. A second choice

for the null distribution is to use a data-generated null distribution such as the permutation

null distribution, Qn(P0). The validity of the permutation distribution is based on the

assumption of the complete null hypotheses, i.e., that all m hypotheses are true. Pollard and

van der Laan (2004); Pollard, Birkner, van der Laan, and Dudoit (2005) and Efron (2007a)

argued that testing procedures based on this data-generated null distribution, Qn(P0) do

not necessarily provide good control of the type I error rate under the true distribution. In

fact, the data-generated null distribution may incorrectly specify the dependence structure of

the true distribution of the test statistics. Efron (2007a) further argued that the use of the

permutation null distribution does not automatically offset the dependence effects since the

distribution tends to be similar to the theoretical null, considering the manner in which they
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are estimated.

For microarray experiments, Efron (2004, 2007a,b) discussed four of many reasons why

the null distribution might differ from the theoretical null. These consist of:

i. Failed assumptions: The theoretical null distribution is justified if the individual gene

levels are normal or approximately normally distributed. This is however not the case

for most applications in microarrays.

ii. Unmeasured covariates in an observational study: Unmeasured covariates tend to dilate

the effective null distribution of the test statistics, but the theoretical null distribution

does not include any dilation effects. Empirically estimating the null distribution can

help account for the dilation effects. Some examples of these unmeasured covariates

include age and gender.

iii. Correlations across units: Generally, theoretical null distributions for test statistics

assume independence across the sampling units: for instance, across the 15 tumor

samples in the hereditary breast cancer study or the 8 patients in the HIV study in the

motivation examples in section 1.2 of Chapter 1. This may not always be appropriate.

iv. Correlations between genes: Independence between genes is not a requirement for

the validity of some false discovery rate procedures. However, if the choice of a null

distribution is inappropriate, the results of any large-scale inference can be grossly

misleading. See Efron (2007a) for detailed explanation of the effect of correlation across

genes.

As illustrated by Efron (2007a), a permutation null distribution deal most effectively with

the first of the four reasons listed above. In testing a single hypothesis, one has no option but

to use either the theoretical or a permutation null distribution. Large-scale testing, however,
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allows for the empirical estimation of an appropriate null distribution. An empirical null

distribution uses the study’s own data to estimate an appropriate null distribution.

Pollard and van der Laan (2004); Dudoit, van der Laan, and Pollard (2004); Dudoit,

van der Laan, and Birkner (2004); van der Laan, Dudoit, and Pollard (2004) and van der

Laan and Hubbard (2006) have developed comprehensive correlated testing solutions using

resampling theory. Their proposed techniques and null distribution estimation are summarized

in the following subsections.

2.2.1. Null Domination Conditions for Type I Error Rates

Suppose Vn and Rn are the number of type I errors and the number of rejected hypotheses

respectively under the true distribution Qn, and V0 and R0 are the number of type I errors

and the number of rejected hypotheses respectively under a chosen null distribution, Q0, by

a multiple testing procedure. In order to provide proper control, the type I error rate under

the null distribution, Q0, must dominate the type I error rate under the true distribution,

Qn. That is,

Θ(FVn,Rn) ≤ Θ(FV0,R0) (finite sample control)

lim sup
n→∞

Θ(FVn,Rn) ≤ Θ(FV0,R0) (asymptotic control), (2.4)

where Θ(·) denotes the type I error rate and F· is the cummulative distribution function of

the number of type I errors of a given multiple testing procedure. Here, the error rate may

either be the familywise error rate (FWER) or the false discovery rate (FDR) defined earlier

in section 2.1. The authors, Pollard and van der Laan (2004); Dudoit, van der Laan, and

Pollard (2004); Dudoit, van der Laan, and Birkner (2004); van der Laan, Dudoit, and Pollard

(2004), explained that the concept of null domination differs from subset pivotality in the

following two ways:
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i. Unlike subset pivotality which considers all possible subsets of null hypotheses, null

domination only considers the subset of true null hypotheses.

ii. Null domination requires the weaker domination of Qn,H0 by Q0,H0 and not the equality

of the joint distributions, Qn,H0 and Q0,H0 for H0-specific test statistics.

2.2.2. Estimation of the Test Statistic Null Distribution

2.2.2.1. The Null Shift and Scale-transformed Test Statistic Null

Distribution

Pollard and van der Laan (2004); Dudoit, van der Laan, and Pollard (2004); Dudoit, van der

Laan, and Birkner (2004); van der Laan, Dudoit, and Pollard (2004) proposed the null

distribution to be “the asymptotic distribution of a vector of null shift and scale-transformed

test statistics, based on user-supplied upper bounds for the means and variances of the

H0-specific test statistics”. The general construction for this null distribution is given as

follows. Assume there exists an m-dimensional known real-valued vector λ0 and a positive

real-valued vector τ0 of null values such that

lim sup
n→∞

E (Tn(i)) ≤ λ0(i) and

lim sup
n→∞

Var (Tn(i)) ≤ τ0(i) for i ∈ H0. (2.5)

The authors proposed the null distribution Q0 = Q0(P ) as the asymptotic distribution of the

m-dimensional vector of null shift and scale-transformed test statistics

ZNS
n (i) =

√
min

(
1,

τ0(i)

Var (Tn(i))

)(
Tn(i) + λ0(i)− E(Tn(i))

)
; i = 1, . . . ,m. (2.6)

For this choice of null distribution, Q0 = Q0(P ) null domination holds asymptotically (See
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proof of this assertion on page 34 of Dudoit, van der Laan, and Pollard (2004) or page 14

of van der Laan, Dudoit, and Pollard (2004)). Since the data generating distribution, P is

unknown in practice, so is the proposed null distribution, Q0(P ). Consequently, resampling

techniques, such as the bootstrap can be utilized to obtain consistent estimators of the null

distribution.

Remark 2.2.1

The following remarks can be made about the role of the null shift and scale values in the

formulation of the null distribution.

1. Null shift values, λ0: The formulation of the null distribution, Q0 is based on the

assumption of null domination. The null shift values, λ0(i) are utilized to produce

H0-specific statistics (ZNS
n (i); i = 1, . . . ,m) that are stochastically larger than the

original test statistics (Tn(i); i = 1, . . . ,m), assuming large values are evidence against

H0, thus, ensuring a null distribution that satisfies the null domination assumption.

2. Null scale values, τ0: The null scale values, τ0(i) unlike λ0(i), are not needed

for type I error control but are rather needed to avoid the degeneration of the null

distribution and infinite thresholds for the false null hypotheses. This is a vital attribute

for obtaining powerful multiple testing procedures.

2.2.2.2. The Null Quantile-transformed Test Statistic Null Distri-

bution

Generally, the marginal distribution of the test statistics, Tn(i) for the true null hypothesis

is known. Subject to this, van der Laan and Hubbard (2006) pointed out that the null

shift scale-transformed distribution guarantees that the mean and variance of the marginal

distribution obtained from this distribution and those of the known marginal distribution are
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approximately the same. On the contrary, the null shift scale-transformed distribution does

not guarantee the equality of the two distributions. Hence, for univariate testing, the null

shift scale-transformed distribution is not guaranteed to give the most powerful procedure.

One can therefore expect to improve the power of a multiple testing procedure by utilizing a

null distribution that produces the optimal marginal null distribution. Motivated by this,

van der Laan and Hubbard (2006) proposed the null quantile-transformed null distribution,

based on user-supplied marginal test statistic null distributions, q0,i (i = 1, . . . ,m). For this

quantile-transformed null distribution, the test statistics, Tn(i) corresponding to the set of

true null hypotheses should be stochastically larger under the null distributions q0,i than

under the true distributions Qn,i. This condition is known as marginal null domination and

is summarized as follows. For a real-valued number, z and for each i ∈ H0, the marginal null

domination condition is satisfied if

q0,i(z) ≤ Qn,i(z) or (finite sample control)

q0,i(z) ≤ lim sup
n→∞

Qn,i(z) (asymptotic control). (2.7)

The quantile-transformed null distribution is thus the joint distribution of the m-dimensional

vector of null quantile-transformed test statistics

ZNQ
n (i) = q−1

0,iQ
∆
n,i(Tn(i)) i = 1, . . . ,m, (2.8)

where Q∆
n,i(z) = ∆Qn,i(z)+(1−∆)Qn,i(z

−) and ∆ is a uniform random variable on the interval

[0, 1] and independent of the data. Like the null shift scale-transformed distribution, the

quantile-transformed distribution is dependent on the unknown data generating distribution.

Thus, resampling techniques can also be utilized to obtain consistent estimators.

For clarity and whenever necessary, we will denote the null shift and scale-transformed
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null distribution as QNS
0 and the null quantile-transformed null distribution as QNQ

0 .

2.3. Shrinkage Estimation

Most statistical applications require an estimate of a covariance matrix and/or its inverse.

The standard estimator utilized in such applications is the maximum likelihood estimate or

the sample covariance matrix. However, for situations where a large number of variables

but comparatively few samples are available, these estimates are unreliable and cannot be

considered a good approximation to the true covariance matrix. These estimates are not even

invertible in such cases. Recent advances in obtaining better estimators employ the concept

of shrinkage, which is as a consequence of the work of James and Stein (1961). The general

principles for the construction of James-Stein-type analytic shrinkage estimators are reviewed

in the following.

2.3.1. General Concept of Shrinkage Estimation

Suppose Ψ = (ψ1, . . . , ψm) denote a set of unrestricted large-scale parameters of interest, and

Θ = (θ1, . . . , θm), a lower-dimensional set of parameters (target parameters). Furthermore,

suppose the estimation rules U = Ψ̂ and T = Θ̂ are available. Then, the James-Stein linear

shrinkage suggest the estimation rule that combine both estimators in a weighted average

given as

U ? = λT + (1− λ)U , (2.9)

where λ ∈ [0, 1] is known as the shrinkage intensity parameter and it determines the extent

to which the estimates are pooled together. If λ = 0 the unrestricted estimate is recovered

whereas for λ = 1, the target estimate dominates. A shrinkage estimator of this type may

result in a regularized estimator that outperforms the individual estimators, U and T , both
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in terms of accuracy and statistical efficiency.

After deciding to improve upon an unregularized estimate using the shrinkage approach of

equation (2.9), the key question is how to select an optimal value for the shrinkage parameter.

An appropriate approach is to choose λ from a decision-theoretic perspective by minimizing

a risk function, such as the mean squared error (MSE) given by

R(λ) = E(L(λ)) = E

(
m∑
i=1

(u?i − ψi)2

)
(2.10)

Several techniques have been employed to estimate λ from equation (2.10). For instance,

Friedman (1989) applied cross-validation techniques to estimate the optimal λ in the context

of regularized classification. Morris (1983) and Greenland (2000) viewed the estimation from

an empirical Bayes context. Ledoit and Wolf (2003, 2004a,b) and Schäfer and Strimmer (2005)

determined the optimal λ analytically without specifying any underlying distributions or the

need for computationally expensive techniques such as MCMC, bootstrap or cross-validation.

2.3.2. Analytical Determination of Shrinkage Parameter

Suppose the first two moments of the distributions of U and T exist. Schäfer and Strimmer

(2005) showed that analytically minimizing the risk function of equation (2.10) with respect

to λ gives the following optimal value

λ? =

∑m
i=1 Var(ui)− Cov(ti, ui)− Bias(ui)E(ti − ui)∑m

i=1 E ((ti − ui)2)
, (2.11)

for which the MSE of R(λ?) is minimized. Here, if U is an unbiased estimator of Ψ, equation

(2.11) simplifies to

λ? =

∑m
i=1 Var(ui)− Cov(ti, ui)∑m

i=1 E ((ti − ui)2)
. (2.12)
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Equation (2.11) provides a number of insights into the choice of the optimal shrinkage

intensity:

1. The shrinkage parameter is directly proportional to the variance of the unregularized

estimate U . With increasing sample size, the variance will be expected to decrease,

thereby resulting in a decrease in the shrinkage intensity. Consequently, the influence

of the target estimate T on the shrinkage estimate U ? diminishes.

2. λ? is dependent on the correlation between the estimation error of U and T . In the

presence of positive correlation, the weight assigned to the shrinkage target decreases.

Thus, the inclusion of the second term in the numerator of equation (2.11) adjusts for

the fact that both estimators are inferred from the same data set.

3. λ? is inversely proportional to the mean squared difference between the unregularized

and target estimates, U and T . Hence λ? decreases with increasing mean squared

difference. This penalizes against the misspecification of a target estimate.

4. The shrinkage intensity reduces if the unregularized estimator is biased towards the

target.

5. In cases where the variables by design are kept identical in both the unregularized and

target estimators, these variables tend not to play any vital role in the determination

of the shrinkage intensity. Their contributions to the various terms in equation (2.11)

cancel out.

6. λ? is invariant to translations. This is, however, not true with rotation or scaling. Thus

the underlying data may be centered without affecting the estimation of the optimal

shrinkage intensity.

The estimation of the optimal shrinkage λ? has been viewed from two different ways: (1)

unbiased estimation, and (2) consistent estimation. Ledoit and Wolf (2003), based on
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the concept of consistency, replaced the unknown terms in equation (2.11) with consistent

estimators. In their paper, Schäfer and Strimmer (2005) argued that since consistency is an

asymptotic property and a basic requirement for any sensible estimator, this is only a weak

requirement. Instead, the authors proposed replacing the unknown terms in equation (2.11)

with their respective unbiased estimators with small adjustments made to avoid over-shrinkage

or negative shrinkage in finite samples.

31



CHAPTER III

ON IMPROVING THE BH AND

SOME ADAPTIVE BH

PROCEDURES UNDER

INDEPENDENCE AND

DEPENDENCE

3.1. Introduction

Generally, due to dimensionality issues and the breakdown of standard methods of multivariate

analysis, the classical approach to multiple testing in high-dimensional data is to first test

each hypothesis individually. This usually consists of computing a one-dimensional test

statistic for each hypothesis under the constraint of the null hypothesis. The observed test

statistics and their corresponding null distributions are then utilized to obtain p-values for

each test statistic. A multiple testing procedure is then applied to the set of p-values to
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determine significance thresholds that probabilistically control a measure of overall error rate

at a pre-specified level α.

In the following, we will denote an m-dimensional vector of statistics, say θn, by θn =(
θn(1), θn(2), . . . , θn(m)

)
. As in section 2.1, consider the random sample Xn = (X1, . . . , Xn)

of n independent and identically distributed (i.i.d) random variables from a data-generating

distribution P ∈ Ω. Here, Ω, may be a parametric, semiparametric or nonparametric statistical

model. Consider testing m null hypotheses H0(i), i = 1, . . . ,m, simultaneously based on a

vector of test statistics, Tn = (Tn(i) : i = 1, . . . ,m), under the data-generating distribution P .

Given a test statistic null distribution Q0, the unadjusted p-values P0,n = (Pi : i = 1, . . . ,m),

are defined as

Pi = inf{α ∈ [0, 1] : Reject H0(i) at single test level α}

= inf{α ∈ [0, 1] : Tn(i) ∈ Cn(i;α)}, i = 1, . . . ,m, (3.1)

where Cn(i;α) = Cn(Tn, Q0,i, α) are the rejection regions and are chosen such that

PQ0,i

(
Tn(i) ∈ Cn(i;α)

)
≤ α. (3.2)

Herein, we assume the rejection regions are nested in the sense that Cn(i;α) ⊆ Cn(i;α′) if

α ≤ α′. The use of the long notation in Cn(Tn, Q0,i, α) indicates that the unadjusted p-values

are a function of the test statistics, Tn(i), the null distribution of the test statistics, Q0, and

the pre-specified significance level, α. Now, let the ordered unadjusted p-values be denoted

by

P(1) ≤ · · · ≤ P(m) (3.3)

with corresponding null hypotheses H
(1)
0 , H

(2)
0 , · · · , H(m)

0 . Then the linear step-up BH proce-
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dure rejects all null hypotheses H
(1)
0 , H

(2)
0 , · · · , H(k)

0 , where

k = max

{
1 ≤ i ≤ m : P(i) ≤

i

m
α

}
.

This procedure does not reject any hypotheses if no such k exists. The corresponding adjusted

p-values are given by

∼
P
BH

(i) = min
k=i,...,m

{
min

{
i

k
P(k), 1

}}
, i = 1, . . .m. (3.4)

Thus, the linear step-up BH procedure at level q is equivalent to rejecting all hypotheses

whose adjusted p-values is at most q. The BH procedure is summarized in algorithm 3.1.

Benjamini and Hochberg (1995) proved that this procedure controls FDR at level α under

the assumption of independent p-values. As already discussed, this procedure is conservative

by a factor of m0/m = π0, the proportion of true null hypotheses, if there is at least one

false null hypothesis. The elegant mathematical idea behind the BH procedure has drawn

considerable attention from statisticians in the field of multiple testing. One line of research

has been to study the robustness of the procedure to independence while another direction

has been to incorporate an estimate of π0 to improve the upper bound.

Algorithm 3.1 The BH linear step-up procedure

1. Let p(1) ≤ p(2) ≤ · · · ≤ p(m) be the ordered observed p-values and let

H
(1)
0 , H

(2)
0 , · · · , H(m)

0 be the corresponding null hypotheses.

2. Calculate k = max
{

1 ≤ i ≤ m : p(i) ≤ i
m
α
}

3. If k exists, reject all null hypotheses corresponding to p(1) ≤ p(2) ≤ · · · ≤ p(k). Otherwise

reject nothing.

34



3.1.1. Adaptive BH Procedures

Adaptive procedures are those in which the number of true null hypotheses is estimated,

and the threshold in the BH procedure is adjusted accordingly. Schweder and Spjøtvoll

(1982) pioneered the estimation of m0 from the quantile plot of the p-values against their

ranks. Following the work of Schweder and Spjøtvoll (1982), Storey, Taylor, and Siegmund

(2004) suggested similar estimates of m0, and proposed one of the most widely utilized

adaptive procedures. Adaptive procedures have a tremendous gain in power when many

hypotheses are false. It is therefore not surprising that many statisticians in the past two

decades have devoted effort to developing and analyzing estimators of m0 and related terms.

See for instance, Benjamini and Hochberg (2000); Storey (2002, 2003); Storey, Taylor, and

Siegmund (2004); Langaas, Lindqvist, and Ferkingstad (2005); Meinshausen and Rice (2006);

Benjamini, Krieger, and Yekutieli (2006); Gavrilov, Benjamini, and Sarkar (2009); Blanchard

and Roquain (2009); Celisse and Robin (2010); Zeisel, Zuk, Domany, et al. (2011); Chen and

Doerge (2012); Liang and Nettleton (2012); Heesen and Janssen (2016). However, to the

best of our knowledge, control of the FDR has been rigorously established for only a few

such procedures under the assumption of independent p-values, including the linear step-up

procedure of Storey, Taylor, and Siegmund (2004) and the two-stage adaptive procedure of

Benjamini, Krieger, and Yekutieli (2006), herein referred to as STS and BKY respectively.

3.1.1.1. STS Adaptive Linear Step-up Procedure

Suppose λ ∈ (0, 1) is a tuning parameter, then Storey, Taylor, and Siegmund (2004) suggest

the following estimator for m0:

m̂0(λ) =
#{pi > λ}+ 1

(1− λ)
(3.5)
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The rationale behind this estimator is as follows. Provided a test has reasonable power, most

of the large p-values are likely to correspond to true null hypotheses. Consequently, if the true

null p-values have approximately a uniform [0, 1] distribution, then, one would expect about

m0(1− λ) of the p-values to lie in the interval (λ, 1]. The addition of one in the numerator of

equation (3.5) is a small sample adjustment to avoid an estimator of zero. Having estimated

m0, one adjusts the BH procedure with the estimate accordingly. The STS adaptive linear

step-up procedure is summarized in algorithm 3.2.

Algorithm 3.2 The STS adaptive linear step-up procedure

1. Estimate m0 using equation (3.5)

2. Use the linear step-up procedure of algorithm 3.1 with α replaced by α′ =
i

m̂0

α

Storey, Taylor, and Siegmund (2004) showed that their adaptive procedure asymptotically

controls the FDR under weak dependence assumptions. In the context of microarray data

analysis, Qiu, Klebanov, and Yakovlev (2005) demonstrated that the variance of the number

of hypotheses rejected by the STS procedure can be intolerably high, rendering the procedure

unstable, especially in the presence of strong correlations between gene expression levels.

3.1.1.2. BKY Adaptive Linear Step-up Procedure

Usually, the risk involved in adaptive procedures is high due to the estimation of m0,

consequently, such procedures can become unstable if the estimation error is not taken into

account. Benjamini, Krieger, and Yekutieli (2006) suggested a more stable estimator by

adjusting the α-level slightly from α to α∗ = α/(1 +α) to adjust for the additional variability

in estimating m0. Algorithm 3.3 summarizes the BKY procedure. Benjamini, Krieger, and

Yekutieli (2006) proved that the BKY procedure controls the FDR at level α whenever the
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p-values are independent. They also illustrated in a simulation study that their procedure

generally still controls the FDR under positive dependence.

Algorithm 3.3 The BKY two-stage adaptive linear step-up procedure

1. Use Algorithm 3.1 at level α∗ = α/(1 + α). Suppose r1 is the number of rejected
hypotheses.

(a) If r1 = 0, do not reject any hypothesis and stop.

(b) If r1 = m, reject all m hypotheses and stop; otherwise move to step 2.

2. Calculate m̂0 = (m− r1).

3. Use Algorithm 3.1 with α′ = α∗m/m̂0 on all hypotheses.

However, regardless of the procedure, the validity and accuracy of these procedures are

essentially determined by whether the chosen test statistic is optimal, the null distributions

are correctly or conservatively specified and whether the data are independent across tests.

As discussed in earlier chapters, very often, the theoretical null or the data-generated null

distribution used to derive the p-values is misspecified due to dependencies among test

statistics and other possible factors (Pollard and van der Laan (2004); Efron (2004, 2007a)).

Correct inference depends crucially on the accurate assessment of the null distribution. Thus,

misspecifying the null distribution may lead to overly pessimistic or optimistic p-values, and

thus to a violation of the implicit assumption that the truly null p-values are drawn from

a uniform distribution. Various attempts have been made to account for the dependencies

among p-values, but it seems more natural and perhaps even easier to deal with this on the

level of the original test statistic.

Multiple testing procedures with high power, good stability and good FDR control are

desirable, especially in microarray data analysis. In the following, a unified approach to FDR

control is described that takes into account several aspects of multiple testing methodologies

that have previously only been considered separately. A notable distinction of our approach
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is that a generally valid null distribution is used in place of the unknown joint distribution of

the test statistics.

The remainder of this chapter is set out as follows. In section 3.2, a detailed description

of a shrinkage estimator of the variance components that utilizes information across all

the genes in the data is provided. The shrinkage variance components are then utilized to

construct the shrinkage t statistic. In addition, a choice of an appropriate null distribution

and subsequently, the proposed unified approach will be discussed. Some analytical and

asymptotic results for the proposed methodologies are presented in section 3.3. Conditions

under which the proposed techniques provide asymptotic FDR control are also provided.

Because the proposed methodologies are based on asymptotic arguments, we conduct extensive

Monte Carlo simulation studies in section 3.4 to shed light on the finite sample properties of

the methods. Additionally, the FDR control, power and stability of the proposed techniques

are compared to some existing FDR-controlling procedures. Finally, in section 3.5, the results

of the study are discussed with conclusions and recommendations provided.

3.2. A Unified Procedure to FDR Control

In order to motivate the proposed procedure, the choice of test statistic, test statistic null

distribution, and the FDR-controlling procedure will be discussed.

3.2.1. The Shrinkage t Statistic

3.2.1.1. Shrinkage Estimation of Variance Components

In this section, the shrinkage t statistic of Opgen-Rhein and Strimmer (2007) developed in

the framework of James-Stein-type analytic shrinkage estimation is considered. An improved

estimator of the variance components will be constructed from pooling information across
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individual variance estimators and subsequently utilized to construct the test statistic. The

goal is to find a linear combination, S? = λT + (1−λ)S of a target estimator T and a matrix

of unbiased sample covariances, S. The entries of S are determined by

s2
ij =

1

n− 1

n∑
k=1

(xki − x̄i)(xkj − x̄j). (3.6)

As discussed in Chapter 2, the search for the optimal shrinkage intensity parameter, λ, in

James-Stein estimation is based on minimizing a loss function such as the mean squared error.

Thus, the optimal shrinkage intensity parameter is the solution that minimizes the function

R(L(λ)) = E

(
m∑
i=1

m∑
j=1

(
λtij + (1− λ)s2

ij − σ2
ij

)2
)

(3.7)

where σ2
ij are the true covariance components. Simplifying (3.7) and using the facts that

E(s2
ij) = σ2

ij and Var(σ2
ij) = 0 gives

R(L(λ)) =
m∑
i=1

m∑
j=1

(
E

(
λtij + (1− λ)s2

ij − σ2
ij

)2
)

=
m∑
i=1

m∑
j=1

{
Var

(
λtij + (1− λ)s2

ij − σ2
ij

)
+

[
E

(
λtij + (1− λ)s2

ij − σ2
ij

)]2
}

=
m∑
i=1

m∑
j=1

{
Var

(
λtij + (1− λ)s2

ij

)
+

[
E

(
λtij + (1− λ)s2

ij − σ2
i

)]2
}

=
m∑
i=1

m∑
j=1

{
λ2Var(tij) + (1− λ)2Var(s2

ij) + 2λ(1− λ)Cov(tij, s
2
ij) + λ2

[
E(tij − s2

ij)
]2}

(3.8)

Now, in order to minimize (3.8) with respect to λ we have

d(R(L(λ)))

dλ
=

m∑
i=1

m∑
j=1

{
2λVar(tij)− 2(1− λ)Var(s2

ij) + 2Cov(tij, s
2
ij)
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− 4λCov(tij, s
2
ij) + 2λ

[
E(tij − s2

ij)
]2}

(3.9)

Setting (3.9) to zero and solving for λ results in

λ? =

∑m
i=1

∑m
j=1

{
Var(s2

ij)− 2Cov(tij, s
2
ij)

}
∑m

i=1

∑m
j=1

{
Var(tij) + Var(s2

ij)− 2Cov(tij, s2
ij) +

[
E(tij − s2

ij)
]2}

=

∑m
i=1

∑m
j=1

{
Var(s2

ij)− 2Cov(tij, s
2
ij)

}
∑m

i=1

∑m
j=1

{
Var(tij − s2

ij) +
[
E(tij − s2

ij)
]2}

=

∑m
i=1

∑m
j=1

{
Var(s2

ij)− 2Cov(tij, s
2
ij)

}
∑m

i=1

∑m
j=1

{
E
[(
tij − s2

ij

)2
]} (3.10)

To show that this is indeed the minimizing λ, it suffices to show that the second derivative of

(3.7) is greater than zero. Thus,

d2(R(L(λ)))

dλ2
=

m∑
i=1

m∑
j=1

{
2Var(tij) + 2Var(s2

ij)− 4Cov(tij, s
2
ij) + 2

[
E(tij − s2

ij)
]2}

= 2
m∑
i=1

m∑
j=1

{
Var(tij − s2

ij) +
[
E(tij − s2

ij)
]2}

(3.11)

which is positive everywhere due to the sum of two positive terms. Hence, R(L(λ?)) is a

verified minimum.

3.2.1.2. Estimation of the Optimal Shrinkage Intensity Parameter

Note that λ? is not a bona fide estimator because of its dependence on unobservable quantities.

Ledoit and Wolf (2003) suggested n-consistent estimators for the unknown parameters.

Utilizing the Rao-Blackwell theorem and normality assumption, Chen, Wiesel, and Hero
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(2009) improved upon Ledoit and Wolf’s estimators. However, rather than utilizing n-

consistent estimators for the unknown parameters, Schäfer and Strimmer (2005) proposed

estimating these parameters with their unbiased counterparts. The authors (Schäfer and

Strimmer (2005)) argued that consistency is a weak requirement, as consistency is an

asymptotic property and a basic requirement of any sensible estimator. Therefore, since

interest is in small sample inference, replacing the unknown parameters with their unbiased

counterparts will suffice. Each of these three estimators for the optimal intensity performs

quite well as the sample size increases. Based on the arguments of Schäfer and Strimmer

(2005), the unbiased estimation technique will be employed in this study. Incorporating this,

the estimated shrinkage intensity is given by

λ̂? = min

1,

∑m
i=1

∑m
j=1

{ ̂Var(s2
ij)− 2 ̂Cov(tij, s2

ij)

}
∑m

i=1

∑m
j=1

(
tij − s2

ij

)2

 , (3.12)

where adjustments have been made to avoid overshrinkage or negative shrinkage in finite

samples. The corpcor package in R (R Core Team (2018)) provides a fast and efficient

algorithm for obtaining the shrinkage intensity estimate.

3.2.1.3. Choice of Target Matrix

The choice of an appropriate target matrix requires some diligence and has been extensively

studied in the literature. See, for instance, Ledoit and Wolf (2003); Schäfer and Strimmer

(2005); Warton (2008, 2010); Fisher and Sun (2011) and the references therein. The target

matrix is often chosen to be positive definite and well-conditioned, and consequently, the final

regularized estimate, S? is guaranteed to be positive definite and well-conditioned for any

dimensionality. Some of the target matrices studied in the literature are: (i) diagonal, unit

variance, (ii) diagonal, common variance, (iii) common covariance, (iv) diagonal, unequal
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variance, (v) perfect positive correlation and (vi) constant correlation.

3.2.1.4. Construction of the Shrinkage t Statistic

The focus for this section will be on constructing test statistics for a parameter vector

θ(P ) = (θ1(P ), . . . , θm(P )) (3.13)

The test may be a one-sided testing problem, in which case (without loss of generality)

H0(i) : θ(i) ≤ θ0(i) vs. H1(i) : θ(i) > θ0(i) (3.14)

or a two-sided testing problem, in which case

H0(i) : θ(i) = θ0(i) vs. H1(i) : θ(i) 6= θ0(i) (3.15)

The test statistics utilized for such analyses will be based on an estimate θ̂n =
(
θ̂n(i), . . . , θ̂n(m)

)
computed using the data, Xn. Then, the “studentized” test statistic for testing the one-sided

and two-sided tests are given respectively by

Tn(i) =

√
n
(
θ̂n(i)− θ0(i)

)
σ̂n(i)

, and

Tn(i) =

√
n | θ̂n(i)− θ0(i) |

σ̂n(i)
(3.16)

where σ̂n(i) is an estimate of the standard deviation of
√
n
(
θ̂n(i)− θ0(i)

)
. Then using

the estimated shrinkage variance components, the proposed modified t statistic is obtained

by replacing σ̂n(i) with the estimated shrinkage standard deviation s?ii in the ‘studentized’
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test statistic. For instance, for the two-sample t test for testing the null hypotheses of no

differences in group means, the modified test statistic for testing each hypothesis becomes

T ?
n (i) =

x̄i1 − x̄i2 − (µi1 − µi2)√
s?2i1
n1

+
s?2i2
n2

(3.17)

where n1 and n2 are the sample sizes in groups 1 and 2 respectively, and s?2i1 is the shrinkage

estimate of the variance for group 1 for the ith variable, and s?2i2 is the shrinkage estimate

of the variance for group 2 for the ith variable. It should be noted that only the diagonal

elements of the shrinkage covariance matrix are being utilized, thus, in an analysis of this

nature, it makes no sense to consider the estimation of the full covariance matrix.

Although different techniques to modifying the usual “studentized” test statistic have

been studied in the context of differential expression, Opgen-Rhein and Strimmer (2007) were

the first to propose a modified statistic that employs a variance shrinkage estimator that is

fully analytic and requires no distributional assumptions. Their proposed statistic, shrinks

the variance components to a common median. In the exploration for other possible shrinkage

targets, the authors considered shrinking the variances against zero or towards the mean, but

these other two shrinkage targets were suboptimal. Additionally, the authors approximated

the covariance between the individual unregularized variances and that of the shrinkage target

to be zero without any justification. This study will construct test statistic analoguous to

the shrinkage statistic of Opgen-Rhein and Strimmer (2007), however, no assumptions will

be made about the covariance between the individual unregularized variances and that of the

shrinkage target.
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3.2.2. Test Statistic Null Distribution

Recall that the p-values are functions of the distribution of the test statistics. In practice,

however, this distribution is often unknown and replaced by a test statistic null distribution.

The appropriate choice of null distribution is thus crucial to ensure control of the type I error

rate under the assumed null distribution. Current practices utilize either a theoretical null or

a data-generated null such as the permutation null. As illustrated by Efron (2004, 2007a)

and Pollard and van der Laan (2004), these commonly utilized null distributions could result

in misleading results, especially in the presence of strong correlations between the variables.

Instead, Pollard and van der Laan (2004); Dudoit, van der Laan, and Pollard (2004); Dudoit,

van der Laan, and Birkner (2004); van der Laan, Dudoit, and Pollard (2004) and van der

Laan and Hubbard (2006) have provided a general characterization for a proper test statistics

null distribution based on resampling theory. These distributions are briefly discussed in

the following but detailed explanations are provided in section 2.2. The interested reader

is referred to Dudoit and van der Laan (2008, Chapter 2) for the explicit construction and

theoretical justifications of these null distributions.

3.2.2.1. Null Shift and Scale-transformed Test Statistic Null Dis-

tribution

Suppose there exists an m-dimensional known real-valued vector λ0 =
(
λ0(i); i = 1, . . . ,m

)
and a positive real-valued vector τ0 =

(
τ0(i); i = 1, . . . ,m

)
of null values such that

lim sup
n→∞

E
(
Tn(i)

)
≤ λ0(i) and

lim sup
n→∞

Var
(
Tn(i)

)
≤ τ0(i) for i ∈ H0. (3.18)
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The null shift and scale-transformed null distribution, QNS
0 (P ), is defined as the asymptotic

distribution of the m-dimensional vector of null shift and scale-transformed test statistics

ZNS
n (i) =

√
min

(
1,

τ0(i)

Var (Tn(i))

)(
Tn(i) + λ0(i)− E(Tn(i))

)
; i = 1, . . . ,m. (3.19)

3.2.2.2. Null Quantile-transformed Test Statistic Null Distribu-

tion

Suppose for a real-valued number z and for each i ∈ H0, there exits a marginal null distribution

Q0,i such that

lim inf
n→∞

Q−1
0,iQn,i(z) ≥ z (3.20)

where Qn,i is the ith marginal distribution of the true distribution of the test statistic,

Qn. Then, the null quantile-transformed null distribution, QNQ
0 (P ), is defined as the joint

distribution of the m-dimensional vector of null quantile-transformed test statistics

ZNQ
n (i) = Q−1

0,iQ
∆
n,i

(
Tn(i)

)
(3.21)

where Q∆
n,i(z) = ∆Qn,i(z) + (1 − ∆)Qn,i(z

−) and ∆ is a uniform random variable on the

interval [0, 1] and independent of the data.

The two distributions described above are dependent on the data-generating distribution

P , which is often unknown in practice. Thus, one needs to estimate the joint distributions,

QNS
0 and QNQ

0 . As proposed by Dudoit, van der Laan, and Birkner (2004) and van der Laan

and Hubbard (2006), bootstrap techniques may be utilized to obtain consistent estimators,

QNS
0n and QNQ

0n of the test statistic null distributions. The bootstrap estimation may be

summarized as follows. Let Pn denote the empirical distribution of Xi1, . . . , Xin; i = 1, . . . ,m
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which assigns probability (1/n) to each realization Xij and let X?
i1, . . . , X

?
in be i.i.d. sample

observations from Pn. Generate an m × B matrix of test statistics Z?
n (either the null

shift and scale-transformed test statistics, ZNS
n (i), or the null quantile-transformed test

statistics, ZNQ
n (i)) based on the bootstrap data X?

ij . Then the bootstrap estimator of the null

distribution is the empirical distribution of the B columns of Z?
n. The bootstrap estimation

of the two null distributions based on the shrinkage t statistic are detailed in algorithms

3.4 and 3.5. In general, there is no recommendation for the number of bootstrap samples,

B, to utilize. But, in order to deal with the discreteness of the bootstrap distribution, one

obviously needs a very large B. In practice, however, one needs to find a balance between

computational cost and estimation accuracy.

3.2.3. Proposed Unified Approach

To this end, the proposed unified approach is as follows. Without loss of generality, consider

the one-sided or two-sided testing problem

H0(i) : θ(i) ≤ θ0(i) vs. H1(i) : θ(i) > θ0(i) or (3.27)

H0(i) : θ(i) = θ0(i) vs. H1(i) : θ(i) 6= θ0(i); i = 1, . . . ,m. (3.28)

Here, the hypothesized null values, θ0(i), are normally zero. For instance, in microarray

experiments, if one is interested in looking at gene expression in cancer tumor versus normal

tissue, the null hypotheses would be H0(i) : the gene does not differentially express. The

proposed techniques for such hypothesis testing is detailed in the following. First, calculate

the test statistics of each hypothesis using the shrinkage t statistic discussed in section 3.2.1.

Next, using either Algorithm 3.4 or 3.5 estimate the null shift and scale-transformed null
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Algorithm 3.4 Bootstrap Estimation of the Null Distribution, QNS
0 (P )

1. Generate X?
i1, . . . , X

?
in as a random sample taken with replacement from the given data,

Xi = {Xi1, . . . , Xin} i = 1, . . .m.

2. Compute the estimate θ̂?n(i) of the same functional form as the original estimator θ̂n(i).

3. Compute the estimate of the shrinkage variance components using the formula

σ??2ii = λ̂??t?ii + (1− λ̂??)s?2ii , (3.22)

with the optimal estimated shrinkage intensity parameter estimated using equation

(3.12) based on the bootstrap data.

4. Using the estimated quantities, compute the bootstrap shrinkage t statistic for the

one-sided or two sided test respectively as given in equation (3.16)

5. Repeat steps 1 - 4 B times to obtain B bootstrap shrinkage t statistics, T ?
n , which can

be arranged in an m×B matrix with each row corresponding to the m null hypotheses

and each column to the B bootstrap samples.

6. Obtain E(T ?
n (i)) and Var(T ?

n (i)), by computing the row means and row variances of

the matrix, T ?
n .

7. Obtain an m×B matrix, Z̃?
n of null value shifted and scaled bootstrap test statistics

Z̃?
n(i) =

√
min

(
1,

τ0(i)

VarPn (T ?
n (i))

)(
T ?
n (i) +λ0(i)−E(T ?

n (i))

)
; i = 1, . . . ,m (3.23)

where τ0(i) and λ0(i) are user-supplied null values.

8. The bootstrap estimate QNS
0n of QNS

0 (P ) is the empirical distribution of the columns of

Z̃?
n.
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Algorithm 3.5 Bootstrap Estimation of the Null Distribution, QNQ
0 (P )

1. Generate X?
i1, . . . , X

?
in as a random sample taken with replacement from the given data,

Xi = {Xi1, . . . , Xin} i = 1, . . .m.

2. Compute the estimate θ̂?n(i) of the same functional form as the original estimator θ̂n(i).

3. Compute the estimate of the shrinkage variance components using the formula

σ??2ii = λ̂??t?ii + (1− λ̂??)s?2ii , (3.24)

with the optimal estimated shrinkage intensity parameter estimated using equation

(3.12) based on the bootstrap data.

4. Using the estimated quantities, compute the bootstrap shrinkage t statistic for the

one-sided or two sided test respectively as given in equation (3.16)

5. Repeat steps 1 - 4 B times to obtain B bootstrap shrinkage t statistics, T ?
n , which can

be arranged in an m×B matrix with each row corresponding to the m null hypotheses

and each column to the B bootstrap samples.

6. Obtain an m×B matrix, Z̆?
n of null quantile-transformed bootstrap test statistics

Z̆?
n(i) = q−1

0,iQ
?,∆
n,i (T ?

n (i)), (3.25)

based on user-supplied null distributions, q0,i and where Q?,∆
n,i (z) = ∆Q?

n,i(z) + (1 −
∆)Q?

n,i(z
−), ∆ is a uniform random variable on the interval [0, 1], independent of the

data. Q?
n,i(z) is the marginal CDF defined as

Q?
n,i(z) =

1

B

B∑
b=1

I (T ?
n (i) ≤ z) (3.26)

7. The bootstrap estimate of estimate QNQ
0n of QNQ

0 (P ) is the empirical distribution of the

columns of Z̆?
n.
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distribution or the null quantile-transformed null distribution. Having estimated the null

distributions, the unadjusted p-values are obtained by

p?i = PrQd
0n

(
Z(i) ≥ tn(i)

)
=

1

B

B∑
b=1

I

(
Z?
n(i) ≥ tn(i)

)
; i = 1, . . . ,m (3.29)

for the one-sided testing problem and

p?i = PrQd
0n

(
Z(i) ≥ tn(i)

)
=

1

B

B∑
b=1

I

(∣∣Z?
n(i)
∣∣ ≥ ∣∣tn(i)

∣∣); i = 1, . . . ,m (3.30)

for the two-sided testing problem and where d = NS or NQ, tn(i) is the observed statistic

from the original data and Z?
n(i) is either the bootstrap estimate of the null shift and

scale-transformed test statistics, Z̃?
n(i), or the null quantile-transformed test statistics, Z̆?

n(i).

Finally, apply the BH procedure of algorithm 3.1 or the BKY procedure of algorithm 3.3

utilizing the estimated unadjusted p-values.

3.3. Asymptotic Results

A formal theoretical framework to ascertain asymptotic control of FDR by the proposed

methodologies are detailed in this section. In their paper, Dudoit, van der Laan, and Pollard

(2004) provide four fundamental theorems that determine asymptotic control of general type

I error rates defined as functions of the number of false positives for single step procedures

under the null shift and scale-transformed null distribution or an estimate thereof. These

theorems depend entirely on the concept of asymptotic null domination of their proposed null

distribution QNS
0 (P ) with respect to the true distribution of the test statistics Qn(P ), and on

convergence of an estimated null distribution QNS
0n (P ) to QNS

0 (P ). Applying these theorems,

van der Laan and Hubbard (2006) provided another theorem that determined asymptotic
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control of general type I error rates under the null quantile-transformed null distribution. In

the following, we establish that a simple application of these theorems provides asymptotic

control of FDR by the proposed unified approach.

Theorem 3.3.1 (Asymptotic Control of FDR)

Consider the problem of testing the null hypotheses H0(i), i = 1, . . . ,m defined by (3.14) or

(3.15) based on a random m-vector of test statistics, Tn =
(
Tn(i) : i = 1, . . . ,m

)
given by

(3.16) with unknown true distribution Qn = Qn(P ). Let H0 = H0(P ) be the set of true null

hypotheses and H1 = H1(P ), the set of false null hypotheses where P is the data-generating

distribution. Given an m-variate test statistic null distribution Q0, with marginal cumulative

distribution functions Q0,i, define unadjusted p-values

P0n(i) = 1−Q0,i

(
Tn(i)

)
, and (3.31)

P0(i) = 1−Q0,i

(
Z(i)

)
(3.32)

for the random m-vector of test statistics Tn ∼ Qn and a random m-vector Z ∼ Q0. Suppose

further that

i. the H0-specific unadjusted p-values satisfy the following null domination assumption

asymptotically. For each x ∈ [0, 1]

lim sup
n→∞

PQn

(
P0n(i) < x

)
≤ PQ0

(
P0(i) < x

)
. (3.33)

ii. the joint distribution of the test statistics is positive regression dependent on the subset

of test statistics corresponding to the true null hypotheses.

Then, the BH linear step-up procedure (Algorithm 3.1) based on the unadjusted p-values in
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(3.32) provides asymptotic control of the FDR. That is

lim sup
n→∞

FDRBH ≤ π0α ≤ α. (3.34)

Similarly, the BKY two-stage adaptive linear step-up procedure (Algorithm 3.3) based on the

unadjusted p-values in (3.32) provides asymptotic control of the FDR. That is

lim sup
n→∞

FDRBKY ≤ α. (3.35)

Here, Q0 can be any of the two null distributions, QNS
0 or QNQ

0 described in setion 3.2.2. The

proof of theorem 3.3.1 will be based on the ensuing remark.

Remark 3.3.1

Theorem 2 of Dudoit, van der Laan, and Pollard (2004) and Theorem 2.2 of Dudoit and

van der Laan (2008) established that the null shift and scale-transformed null distribution

QNS
0 satisfies the asymptotic joint null domination assumption for the H0-specific subvector

of test statistics. That is, for each z ∈ IRm0,

lim sup
n→∞

Qn,H0(z) ≤ Q0,H0(z). (3.36)

Similarly, van der Laan and Hubbard (2006) established the asymptotic joint null domination

assumption for the null quantile-transformed null distribution QNS
0 . The asymptotic null

domination assumption of the unadjusted p-values is an immediate consequence of the joint

null domination assumption since the p-values are a function of the data.

Before proceeding to the proof of the theoretical results, we define the concept of positive

regression dependence (PRD) and positive regression dependence on a subset (PRDS) estab-

lished by Benjamini and Yekutieli (2001). Recall that a set D is said to be increasing if for
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x ≤ y and x ∈ D implies y ∈ D.

Definition 3.3.1 (Positive Regression Dependency)

Let X = (X1, . . . , Xn) be an n-dimensional random vector. The multivariate distribution of

X is said to be positive regression dependent if for any increasing set D, P (X ∈ D|X1 =

x1, . . . , Xi = xi) is nondecreasing in x.

Definition 3.3.2 (Positive Regression Dependency on Subsets)

Let X = (X1, . . . , Xn) be an n-dimensional random vector. The multivariate distribution of

X is said to be positive regression dependent on a subset I0 if for any increasing set D, and

for every index i ∈ I0, P (X ∈ D|Xi = x) is nondecreasing in x.

Benjamini and Yekutieli (2001) indicate that the PRDS property is a relaxed form of the

PRD property, in that for the PRDS property, the conditioning is always on one variable,

and is required to hold only for a subset I0 of variables. The authors also point out that for

dependent test statistics, the PRDS propety is a suitable technical property to prove FDR

control of various stepwise procedures.

Proof of Thereom 3.3.1. Following remark 3.3.1, the asymptotic null domination assumption

in (3.33) is satisfied. By theorem 1.2 of Benjamini and Yekutieli (2001), we know that the BH

procedure controls the FDR at a level less than or equal to π0α under the PRDS property.

Thus, under the null distribution and the assumption of positive regression dependent on the

subset of test statistics corresponding the true null hypotheses, we will have

E

(
V0

max(1, R0)

)
≤ π0α, (3.37)

where R0 and V0 are respectively, the number of null hypotheses rejected and the number of

type I errors under the null distribution. Now, if we let Rn and Vn be the number of null

52



hypotheses rejected and the number of type I errors respectively under the true distribution

of the test statistics then it follows from (3.33) that

lim sup
n→∞

E

(
Vn

max(1, Rn)

)
≤ E

(
V0

max(1, R0)

)
≤ π0α ≤ α. (3.38)

Hence the result in (3.34). The result of (3.35) also follows from similar arguments.

Now, since the null distribution Q0(P ) is dependent on the unknown data-generating

distribution, P , it is infeasible to obtain the unadjusted p-values. Consistent estimators

Q0n(P ) of Q0(P ) and corresponding unadjusted p-values may be obtained by bootstrap

techniques as detailed in algorithms 3.4 and 3.5. Thus, if the null distribution is consistently

estimated, then the estimated null distribution will also asymptotically dominate the true

distribution of the test statistics and subsequently provide asymptotic control of the FDR.

The results are summarized in the following corollary.

Corollary 3.3.1 (Asymptotic Control of FDR based on Consistent Estimation of Q0)

Let Q0n(P ) be an estimate of Q0(P ) and define the estimated unadjusted p-values p?i by (3.29)

or (3.30). Suppose that Q0n(P ) converges weakly to Q0(P ). Then for each x ∈ [0, 1], the

estimated unadjusted p-values satisfy the asymptotic null domination assumption

lim sup
n→∞

PQn

(
P0n(i) < x

)
≤ PQ0n

(
P ?
i < x

)
(3.39)

and the BH and BKY procedures based on p?i provide asymptotic control of the FDR.

Proof of Corollary 3.3.1. To prove the corollary, it suffices to show the asymptotic consistency

of the bootstrap estimate. To this end, let Pn denote the empirical distribution of X1, . . . Xn,

putting mass 1/n on each Xi. Then, as n approaches infinity, Pn approximates the true

data-generating distribution P so that Z?
n → Z ∼ Q0 in distribution, conditional on Pn.

Hence, Q0n converges weakly to Q0 conditional on the data (see for example Bickel and
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Freedman (1981); van der Vaart and Wellner (1996)). It then follows that the bootstrap

null distribution Q0n asymptotically dominates the true distribution Qn. By the continuous

mapping theorem, the distribution of the H0-specific bootstrap unadjusted p-values, p?i ,

converges weakly to the distribution of the H0-specific unadjusted p-values, p0(i), under the

null distribution.

We note that the estimation of the p-values in the proposed procedure is based on a

generally valid joint null distribution via resampling, allowing the possibility of some how

accounting for dependency in the test statistics. Therefore, one may expect a gain in power

by using this procedure relative to the näıve use of the BH or BKY procedure. We therefore

state the following proposition without proof.

Proposition 3.3.1

Under the assumption of positive regression dependence of the joint distribution of the test

statistics and as n goes to infinity, the proposed unified approach provides a gain in power

relative to the BH linear step-up or the BKY two-stage adaptive linear step-up procedures.

3.4. Simulation Study

Since the proposed procedure relies on asymptotic arguments, it is essential to analyze its

finite sample performance via simulations. The current section presents a Monte Carlo

simulation study to compare the FDR control, power, and stability of the proposed techniques

to some existing techniques in the context of testing a mean difference for two populations.

It is infeasible to carry out a comprehensive simulation study capturing all possible behaviors

of the hypotheses, but various different realistic scenarios which might be encountered in

practice were examined. This included changing the proportion of non-null hypotheses and

their dependency structure.
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3.4.1. Simulation Study Design

Consider a case-control microarray experiment with m genes and n arrays of which n1 are

from the cases and n0 = n − n1 are from the controls. In the study, m = 1, 000 was

utilized and the total sample size n, the number of differentially expressed genes, and the

patterns of correlations among the genes were varied. The total sample size was set as

n = 20, 30, 40, 50, 60, 100, 200, 300, 500 with the number of cases and controls always

set equal. Two different distributions were considered for the m-dimensional arrays: normal

and gamma distributions.

In all, nine procedures were investigated. These procedures were:

1. The original linear step-up procedure of Benjamini and Hochberg (1995), denoted by

BH. See algorithm 3.1 for details. This procedure has been shown to control the FDR

at level απ0 ≤ α under independence and some types of positive dependence among

the test statistics.

2. The adaptive linear step-up procedure of Storey, Taylor, and Siegmund (2004), denoted

by STS. The details of this procedure are provided in algorithm 3.2. This procedure

has been shown to control the FDR at level α under independence and some types of

weak dependence among the test statistics.

3. The linear step-up procedure of Benjamini and Yekutieli (2001), denoted by BY. The

critical values for this procedure are obtained by dividing the significance level α by∑m
i=1(1/i). This procedure has been shown to provide control of the FDR at level α

under general dependence. It can, however, be extremely conservative.

4. The adaptive two-stage linear step-up procedure of Benjamini, Krieger, and Yekutieli

(2006) detailed in algorithm 3.3, denoted by BKY. This procedure has been shown to
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control the FDR at level α under independence and some types of positive dependence

among the test statistics.

5. The BH procedure based on the shrinkage t test statistic, denoted by S-BH.

6. The BH procedure incorporating the shrinkage t test statistic and the null shift and

scale-transformed test statistic null distribution, denoted by SNS-BH.

7. The BH procedure incorporating the shrinkage t test statistic and the null quantile-

transformed test statistic null distribution, denoted by SNQ-BH.

8. The BKY procedure incorporating the shrinkage t test statistic and the null shift and

scale-transformed test statistic null distribution, denoted by SNS-BKY.

9. The BKY procedure incorporating the shrinkage t test statistic and the null quantile-

transformed test statistic null distribution, denoted by SNQ-BKY.

3.4.1.1. Simulating from the Normal Distribution

The normal random variables were generated as follows. First, to obtain a more realistic

covariance matrix structure, Σ0 and Σ1 were generated as block diagonal matrices such that

Σj =



σ2
1Σρ 0 · · · 0

0 σ2
2Σρ · · · 0

...
...

. . .
...

0 0 · · · σ2
rΣρ


m×m

(3.40)

where j ∈ {0, 1}, Σ0 and Σ1 are the covariance matrices for the controls and cases respectively,

r = m/b, b is the number of blocks with Σρ =
(
ρ|i−j|

)
b×b following an auto-regessive structure

with a variety of block correlation structures considered. Here, correlated variables within
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a block can be viewed as representing genes that are in the same pathway or that are

co-regulated. Pairwise correlation between variables was ρ within a block and 0 between

blocks. Both positive and negative correlations were considered, with values set to ρ =

0, ± 0.1, ± 0.25, ± 0.5, ± 0.75, ± 0.9. The case where ρ = 0 corresponds to the case

where the genes are independent. In order to account for heterogeneity of variance in the

genes, σ2
1, . . . , σ

2
r were simulated as independent and identically distributed random variables

from a χ2
10/10 distribution.

Next, in order to obtain the genes that are differentially expressed between the case and

control groups, a set of m0 = mπ0 values, corresponding to the set of true null hypotheses,

was randomly sampled from the set {1, . . . ,m}, which will be denoted by I0. The mean

vector µ1 = (µi : i = 1, . . . ,m), for the m-dimensional cases were then obtained by assigning

µi = 0 for each i ∈ I0 and simulating µi as independent and identically distributed random

variables from a uniform distribution on the interval [0.2, 1] for each i /∈ I0. The proportion

of true null hypotheses studied were π0 = 0.75, 0.8, 0.85, 0.9.

Finally, for each combination of (n, ρ, π0), the m-dimensional cases were generated inde-

pendently from a normal distribution with mean vector µ1 and covariance matrix Σ1 using

the algorithm described above. The m-dimensional controls on the other hand were generated

indepedently from a multivariate normal distribution with a zero mean vector and covariance

matrix Σ0 as detailed in (3.40). A pre-specified significance level, α = 0.05 was utilized.

3.4.1.2. Simulating from the Gamma Distribution

The gamma random variables, which are characterized by the shape and scale parameters,

were generated in line with Cheriyan and Ramabhadran’s mutivariate gamma distributions

(Kotz, Balakrishnan, and Johnson (2004, see pages 454 through 456)) and are detailed

as follows. Let Ui, i = 1, . . . ,m be independent gamma random variables with shape
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parameters κi and a common scale parameter θ = 1, that is, Ui ∼ GAM(κi, 1). Suppose

that U0 ∼ GAM(κ0, 1) and let Xi = U0 + Ui, i = 1, . . . ,m, then the m-variate random

variables X = (X1, X2, . . . , Xm) will be multivariate gamma random variables with pairwise

correlation, corr(Xi, Xj) = κ√
(κ+κi)(κ0+κj)

. The case where Xi = Ui corresponds to the case

where the genes are independent. In order to account for reasonable correlation within the

genes, κ0 was set as 4. The differentially expressed genes between the cases and controls

were generated in an analogous manner in which they were generated for the normal random

variables. First for the cases, a set of m0 = mπ0 values, corresponding to the set of true null

hypotheses, was randomly sampled from the set I0 = {1, . . . ,m}. The values of κi were then

set as κi = 1 for i ∈ I0 and for each i /∈ I0 the values were obtained by simulating κi as

independent and identically distributed uniform random variables on the interval [1.5, 3]. The

value of κi was also set as κi = 1 for all the controls.The proportion of true null hypotheses

studied were again π0 = 0.75, 0.8, 0.85, 0.9.

3.4.1.3. Computation of Test Statistics

For each simulated data, one sided hypotheses tests were examined. For the BH, STS, BY and

BKY procedures, the two-sample Welch t-test was employed while the shrinkage t statistic

detailed in section 3.2.1 was utilized for the remaining procedures. The p-values for use

in the BH, STS, BY, BKY and S-BH were computed as p̂i = 1 − Ψν(Tn(i)), where Ψν(·)

denotes the cumulative distribution function of the studentized t-distribution with ν degrees

of freedom. All simulations were carried out in R statistical language (R Core Team (2018)).

The null shift and scale-transformed and the null quantile-transformed test statistics null

distribution are available in the multtest package. The qvalue function with default settings

in the qvalue package was utilized to obtain the estimate of π0 as described in Storey, Taylor,

and Siegmund (2004).
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3.4.2. Simulation Results for Normal Variates

The simulation results are based on 1,000 replications per scenario and the number of

bootstrap resamples is 10,000. The comparison of the methods are based on four performance

criteria which include:

(i) the empirical FDR compared to the nominal level α = 0.05

(ii) the empirical false non-discovery rate, defined as

FNR =
number of false non-discoveries

total number of non-discoveries
(3.41)

(iii) the empirical power defined as the average number of false hypotheses rejected.

(iv) the stability of the procedures, characterized by the standard deviations of the number

of false hypotheses rejected and the total number of rejected hypotheses.

Items number (ii) and (iii) are utilized to assess the empirical power of the procedures. In the

following subsections, the results of the simulations are presented and analyzed. The results

for the independent cases will be discussed first, followed by the general dependent cases.

3.4.2.1. Comparison of Procedures for Independent Tests

FDR Control Comparisons

Recall that under the assumption of independence of the test statistics or p-values, the

BH procedure has an FDR equal to απ0 and that of the other procedures is less than or

equal to α. Figure 3.1 provides graphical displays of the empirical FDR of the procedures

considered. Numerical summaries are provided in Tables B.1 and B.2 in Appendix B. Here,

the BH, BY, BKY, S-BH and STS procedures consistently provide satisfactory FDR control
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Figure 3.1. Empirical false discovery rates comparing the investigated methods under independence
(ρ = 0) with m = 1, 000 hypotheses for the normal variates. The pre-specified significance level is
α = 0.05. The number of replications for each scenario is 1, 000 with 10, 000 bootstrap resamples.
The black horizontal dashed lines depict boundaries for values within two standard deviations from
the significance level. Equal sample sizes were utilized for both the cases and controls.

across all scenarios, with the STS procedure being, as expected, less conservative and the

BY procedure, extremely conservative. Again, as expected, the BH, BY, S-BH, SNS-BH and

SNQ-BH procedures become more conservative as the proportion of true null hypotheses

π0 decreases.The excessive conservativeness of the BY procedure is due to dividing the

significance level α by
∑m

i=1(1/i) which is approximately ln(m). Conversely, according to

expectation, the proposed resampling-based procedures are anti-conservative when the sample

size is small but offer satisfactroy FDR control as the sample size increases. Additionally,
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FDR control for these resampling-based procedures varies with the proportion of true null

hypotheses. For instance, when π0 = 0.9, a minimum total sample of size, n = 60 was needed

to achieve FDR control. However, a minimum total sample of size, n = 30 was needed to

ensure control of the FDR when π0 = 0.75. We also experimented with lower proportions of

true null hypotheses (results not shown) and observed that as the proportion decreased to

65%, a total sample size of 20 was enough to ensure asymptotic FDR control by the proposed

resampling-based methods.

Empirical Power Comparisons

Table 3.1 reports the numerical summaries of the empirical FNRs and the average number

of false null hypotheses rejected, denoted by “Rejected” in the table, of the investigated

FDR-controlling procedures for n = 60, 100, and 300. The numerical summaries for the

remaining sample sizes are reported in Tables B.3 through B.5 in Appendix B. In cases where

the resampling-based procedures were conservative, the power of the SNS-BH, SNQ-BH,

SNS-BKY and SNQ-BKY procedures are higher in almost all instances than the power of

their corresponding original procedures, with a notable gain in power when n ≤ 100 (see

Tables B.4 and B.5). Additionally, in these cases where the resampling-based procedures

were conservative, these procedures had higher power (see also Tables B.3 through B.5)

than the STS procedure for n ≤ 200 when the proportion of true null hypotheses was

80% or greater and equivalent power for all other situations. Unsurprisingly, the adaptive

procedures (STS, BKY, SNS-BKY and SNQ-BKY) become evidently more powerful than

the other investigated procedures with an increasing proportion of true null hypotheses, π0.

As expected, in these cases, the improvement in power is due to these procedures selecting

less conservative threshold values.
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Table 3.1. Empirical false-non discovery rates and average number of false hypotheses rejected
(in the columns “Rejected”) for the investigated methods considered for the independent
tests for the normal variates. Results correspond to the following simulation parameters:
n = 60, 100, 300; m = 1, 000; π0 = 0.75, 0.8, 0.85, 0.9; α = 0.05. The number of replications is
1,000 per scenario and the number of bootstrap resamples is 10,000. Equal sample sizes were
utilized for both the cases and controls.

n = 60

π0 = 0.75 π0 = 0.8 π0 = 0.85 π0 = 0.9

FNR Rejected FNR Rejected FNR Rejected FNR Rejected

BH 0.163 104.658 0.128 82.596 0.105 51.011 0.065 37.287

STS 0.154 114.310 0.123 88.211 0.102 53.887 0.064 38.786

BY 0.208 53.356 0.163 43.796 0.129 24.477 0.084 17.294

BKY 0.160 108.366 0.126 84.787 0.104 51.874 0.065 37.815

S-BH 0.165 102.018 0.129 82.063 0.105 50.483 0.064 38.700

SNS-BH 0.157 111.754 0.123 88.116 0.100 55.606 0.061 41.910

SNQ-BH 0.158 109.751 0.123 88.389 0.100 56.074 0.060 43.045

SNS-BKY 0.153 115.533 0.121 90.255 0.099 56.440 0.060 42.317

SNQ-BKY 0.155 113.301 0.121 90.525 0.099 56.909 0.059 43.383

n = 100

BH 0.115 153.187 0.090 121.731 0.075 81.548 0.042 60.868

STS 0.107 161.032 0.085 126.343 0.072 84.244 0.041 62.056

BY 0.160 107.358 0.124 86.655 0.100 56.074 0.060 42.680

BKY 0.110 157.756 0.087 124.387 0.073 82.899 0.041 61.554

S-BH 0.116 152.385 0.089 121.862 0.074 82.028 0.041 61.805

SNS-BH 0.111 156.835 0.087 124.571 0.072 84.234 0.040 63.045

SNQ-BH 0.113 155.323 0.087 124.537 0.072 84.496 0.039 63.520

SNS-BKY 0.107 161.288 0.084 127.228 0.071 85.544 0.039 63.618

SNQ-BKY 0.108 159.734 0.084 127.113 0.071 85.743 0.039 64.086

n = 300

BH 0.037 221.128 0.028 176.836 0.024 129.007 0.011 90.216

STS 0.034 224.398 0.026 178.966 0.023 130.350 0.010 90.674

BY 0.064 198.401 0.050 158.023 0.042 112.993 0.019 82.587

BKY 0.034 224.025 0.026 178.737 0.023 130.142 0.010 90.605

S-BH 0.037 221.243 0.028 177.116 0.024 129.243 0.011 90.310

SNS-BH 0.037 221.750 0.028 177.477 0.024 129.569 0.010 90.511

SNQ-BH 0.037 221.564 0.028 177.450 0.024 129.620 0.010 90.564

SNS-BKY 0.033 224.604 0.026 179.271 0.022 130.656 0.010 90.883

SNQ-BKY 0.033 224.463 0.026 179.243 0.022 130.704 0.010 90.881
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Stability of FDR-Controlling Procedures

In this subsection, we analyze the stability, characterized by the standard deviation of the

number of false hypotheses rejected and the total number of rejected hypotheses, of the

investigated procedures. These quantities are illustrated in Figure 3.2 and are given in

parentheses in Tables B.4 and B.5. As expected, the results indicate that the non-adaptive

procedures (BH, BY, S-BH, SNS-BH and SNQ-BH) have the greatest stability, followed

by the BKY, SNS-BKY and SNQ-BKY procedures. The STS procedure is the least stable

among all investigated procedures. The instability of the STS procedure is greater as the

proportions of true null hypotheses decreases.

Generally, all investigated procedures become less conservative, more powerful, and more

stable as the sample size increases. In terms of power and stability, however, the SNS-BKY

and SNQ-BKY procedures are better alternatives to the original BH procedure than the STS

procedure when the total sample size is 60 or greater since in such cases, the SNS-BKY and

SNQ-BKY procedures are always conservative and have improved or equivalent power but

better stability than the STS procedure.

3.4.2.2. Comparison of Procedures for Dependent Tests

The simulation study allows us to examine the effect of correlation between the test statistics

on false discovery rate achieved by the procedures. In this subsection, we will concentrate on

the cases where ρ = 0.25, 0.5, and 0.9. These values can be viewed as settings where there is

either weak, moderate, or strong correlation among the genes. The results for the negative

correlations are similar and are provided in appendix C.

FDR Control Comparisons

The empirical FDRs for the investigated procedures for ρ = 0.25, 0.5, and 0.9 are illustrated in
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Figure 3.2. Estimated standard deviation of the total number of hypotheses rejected for the
investigated methods under independence (ρ = 0) with m = 1, 000 hypotheses for the normal
variates. The pre-specified significance level is α = 0.05. The number of replications for each
scenario is 1, 000 with 10, 000 bootstrap resamples. Equal sample sizes were utilized for both the
cases and controls. The black horizontal dashed lines depict boundaries for values within two
standard deviations from the significance level.

Figure 3.3. The numerical summaries of the empirical FDRs for all other combinations of the

simulation parameters are provided in Tables C.1 through C.20. The pattern of FDR control

for these correlated cases are similar to the independent cases, although the resampling-based

methods are somewhat less conservative when compared to the BH and BKY step-up proce-

dures. As expected, the resampling-based methods are anti-conservative for smaller sample

sizes with asymptotic control being dependent on the proprotion of true null hypotheses.
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Figure 3.3. Empirical false discovery rates for the investigated methods in the presence of moderate
to high correlation among the variables for the normal variates. Fifty blocks are utilized with pairwise
correlation between the variables within a block of ρ. The number of hypotheses is m = 1, 000 with
a pre-specified significance level of α = 0.05. The number of replications for each scenario is 1, 000
with 10, 000 bootstrap resamples. Equal sample sizes were utilized for both the controls and cases.
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The BH, BY, S-BH, SNS-BH and SNQ-BH procedures tend to be more conservative with

increasing correlation. The STS and BKY procedures consistently offer satisfactory FDR

control across all investigated sample sizes while the SNS-BKY and SNQ-BKY procedures

offer satisfactory FDR control for moderate to large sample sizes (i.e., n ≥ 60), with an even

smaller size needed for FDR control with a decreasing proportion of true null hypotheses.

For ρ = 0.9, the SNS-BKY and SNQ-BKY procedures remain closer to the nominal level

α = 0.05 than the other investigated procedures.

Empirical Power Comparisons

The numerical summaries of the empirical FNRs and the average number of false hypotheses

rejected for all investigated π0, ρ = 0.25, 0.5, 0.9, and n = 60 are reported in Table 3.2. The

empirical FNRs for all other configuration of simulation parameters are reported in Tables

C.21 through C.30, and those for the average number of false hypotheses rejected in Tables

C.31 through C.50. Here, we observe that the power of the resampling-based procedures

is higher than the original BH and BKY procedures in all cases where these procedures

were conservative but is equivalent to the STS procedure in such cases. Specifically, the

adaptive resampling-based procedures (SNS-BKY and SNQ-BKY) are more powerful than the

STS procedure for n ≤ 100 with the SNQ-BKY being the most powerful in almost all settings.

Stability of FDR-Controlling Procedures

Finally, Figure 3.4 illustrates the estimated standard deviation of the total number of hy-

potheses rejected for the investigated procedures for ρ = 0.25, 0.5, and 0.9, with the estimated

standard deviation of the number of false hypotheses rejected for all other combination of

simulation parameters reported in parentheses in Tables C.31 through C.50. The stability

trend observed here is similar to the observed trend for the independent case. The level
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Table 3.2. Empirical false non-discovery rates and average number of false hypotheses rejected
(in the columns “Rejected”) for the investigated methods considered for the correlated cases
with normal variates. Results correspond to the following simulation parameters: n = 30;
m = 1, 000; π0 = 0.75, 0.8, 0.85, 0.9; α = 0.05 and ρ = 0.25, 0.5, 0.9. Fifty blocks are utilized
with pairwise correlation between the variables within a block of ρ. The number of replications
is 1, 000 per scenario and the number of bootstrap resamples is 10,000. Equal sample sizes
were utilized for both the cases and controls.

n = 60; ρ = 0.25

π0 = 0.75 π0 = 0.8 π0 = 0.85 π0 = 0.9

FNR Rejected FNR Rejected FNR Rejected FNR Rejected

BH 0.163 104.309 0.129 82.229 0.104 51.121 0.066 36.970

STS 0.155 113.831 0.123 88.151 0.102 54.023 0.064 38.552

BY 0.208 53.234 0.163 43.717 0.128 24.745 0.085 16.876

BKY 0.160 107.933 0.127 84.497 0.104 52.054 0.065 37.450

S-BH 0.166 101.872 0.129 81.742 0.105 50.892 0.064 38.451

SNS-BH 0.157 111.388 0.124 87.712 0.100 55.750 0.061 41.634

SNQ-BH 0.159 109.322 0.123 88.001 0.099 56.496 0.060 42.831

SNS-BKY 0.153 115.186 0.122 89.933 0.099 56.663 0.061 42.084

SNQ-BKY 0.155 112.886 0.121 90.042 0.099 57.406 0.059 43.249

n = 60; ρ = 0.5

BH 0.163 104.516 0.129 82.267 0.105 50.947 0.065 37.063

STS 0.154 114.598 0.123 88.132 0.102 54.098 0.064 38.801

BY 0.208 53.466 0.163 43.702 0.128 24.773 0.084 17.008

BKY 0.160 108.181 0.127 84.456 0.104 51.866 0.065 37.538

S-BH 0.165 101.933 0.129 81.734 0.105 50.598 0.064 38.445

SNS-BH 0.157 111.609 0.124 87.611 0.100 55.573 0.061 41.695

SNQ-BH 0.159 109.418 0.123 87.942 0.100 56.208 0.060 42.740

SNS-BKY 0.153 115.271 0.122 89.709 0.099 56.467 0.061 42.105

SNQ-BKY 0.155 113.025 0.121 90.029 0.099 57.028 0.060 43.111

n = 60; ρ = 0.9

BH 0.163 104.623 0.128 82.826 0.104 51.131 0.066 36.906

STS 0.151 117.335 0.121 90.946 0.100 56.136 0.063 39.704

BY 0.208 53.533 0.163 44.202 0.128 24.645 0.084 17.239

BKY 0.159 108.411 0.126 84.948 0.104 52.034 0.065 37.358

S-BH 0.165 102.066 0.129 82.174 0.105 50.765 0.064 38.235

SNS-BH 0.156 111.717 0.123 88.208 0.100 55.752 0.061 41.612

SNQ-BH 0.158 109.642 0.123 88.490 0.100 56.187 0.060 42.674

SNS-BKY 0.153 115.545 0.121 90.605 0.099 56.601 0.061 42.023

SNQ-BKY 0.155 113.268 0.121 90.670 0.099 57.041 0.060 43.062
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Figure 3.4. Estimated standard deviation of the total number of hypotheses rejected for the
investigated methods under dependence with ρ = 0.25, 0.5, and 0.9 and m = 1, 000 hypotheses for
the normal variates. Fifty blocks are utilized with pairwise correlation between the variables within
a block of ρ. The pre-specified significance level is α = 0.05. The number of replications for each
scenario is 1, 000 with 10, 000 bootstrap resamples. Equal sample sizes were utilized for both the
controls and cases.
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of stability varies with the proportion of true null hypotheses and the extent of correlation

among the variables. For instance, the procedures have equivalent stability for ρ = 0.25

and π0 = 0.9. However, irrespective of the proportion of false null hypotheses, substantial

difference in stability is observed for the STS procedure and the other procedures for ρ = 0.9.

In general, all investigated procedures become less stable with a decreasing proportion of true

null hypotheses and with increasing pairwise correlations, with the non-adaptive procedures,

especially the BY procedure, having greater stability, and the STS procedure being the least

stable.

In practice, especially in microarray experiments, tests are usually correlated. In such

cases, a multiple testing procedure with good FDR control, higher power and good stability

is desirable. The simulation results indicate that for a total sample size of n ≥ 60, the SNS-

BKY and SNQ-BKY procedures exhibit power and stability properties intermediate between

the two most commonly employed procedures, BH and STS. Particularly, the SNS-BKY

and SNQ-BKY procedures have better stability and higher or equivalent power to the STS

procedure and improved FDR control and higher power than the BH procedure.

3.4.3. Simulation Results for Gamma Variates

The simulation results for both the dependent and independent gamma random variables

are provided in the following section. The empirical FDRs for the investigated methods are

summarized in Figure 3.5. The pattern of FDR control for the resampling-based procedures,

SNS-BH and SNS-BKY, for the independent cases were similar to what was observed for

the normal random variables. For π0 = 0.9 a minimum total sample size of 100 was

needed to achieve FDR control while a total sample of 30 was needed when π0 = 0.75.

Interestingly, these two procedures were very conservative, with the empirical FDR equal

to zero in almost all parameter configurations for the dependent cases. The SNQ-BH and
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Figure 3.5. Empirical false discovery rates for the investigated methods for the gamma variates with
m = 1, 000 hypotheses. The pre-specified significance level is α = 0.05. The number of replications
for each scenario is 1, 000 with 10, 000 bootstrap resamples. Equal sample sizes were utilized for
both the controls and cases. The black horizontal dashed lines depict boundaries for values within
two standard deviations from the significance level.
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SNQ-BKY resampling-based procedures on the other hand, provide FDR control for all

investigated parameter configurations in both the dependent and independent cases, and

were less conservative compared to the SNS-BH and SNS-BKY procedures in such cases. In

general, all the investigated methods were very conservative for the dependent cases with the

SNQ-BKY procedure, as expected, being the least conservative in all such cases.

Numerical summaries of the empirical FNRs and the average number of false hypotheses

rejected for both the dependent and independent gamma random variables for the cases

where n = 20, 60, and 100 are reported in Tables 3.3 and 3.4 with all other results reported

in Tables C.53 through C.56 in appendix C. We will exclude the power comparisons of the

SNS-BH and SNS-BKY procedures with the other procedures for the cases where n ≤ 60

(indicated by a star (?) in the tables) for the independent tests since these procedures were

anti-conservative in such cases. Here, we observe that the SNQ-BKY resampling-based

procedure was consistently more powerful than all the investigated methods with a significant

gain in power in small to moderate sample sizes (i.e., n ≤ 100). We re-emphasize that the

SNQ-BKY resampling-based procedure was conservative for all parameter configurations for

the gamma variates.

Finally, Figure 3.6 illustrates the stability of the investigated procedures, as measured

by the standard deviation of the total number of hypotheses rejected across the 1, 000

simulation replications. All the procedures were quite stable when the random variables

were independent, with stability trends similar to the normal random variable cases. In such

cases, all the investigated procedures become more stable with an increasing proportion of

true null hypotheses, with the STS procedure being the least stable. Conversely, interesting

stability results were obtained for the dependent variables. All the investigated procedures

were somewhat unstable with the estimated standard deviation of the number of rejected

hypotheses as high as 165 for the SNQ-BKY when π0 = 0.75 and n = 20. In this setting, the

SNQ-BKY procedure loses its superior stability, while other proposed procedures maintain
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Table 3.3. Empirical false non-discovery rates and average number of false hypotheses rejected
(in the columns “Rejected”) for the investigated methods considered for the independent
gamma variates. Results correspond to the following simulation parameters: n = 20, 60, 100;
m = 1, 000; π0 = 0.75, 0.8, 0.85, 0.9; α = 0.05. The number of replications is 1, 000 per
scenario and the number of bootstrap resamples is 10,000. Equal sample sizes were utilized
for both the cases and controls. Cases where FDR control were anti-conservative are indicated
with a star(?).

n = 20

π0 = 0.75 π0 = 0.8 π0 = 0.85 π0 = 0.9

FNR Rejected FNR Rejected FNR Rejected FNR Rejected

BH 0.214 45.377 0.180 24.457 0.140 11.203 0.095 6.025

STS 0.197 65.865 0.171 34.724 0.137 15.327 0.093 7.536

BY 0.249 1.658 0.199 0.961 0.149 0.592 0.100 0.418

BKY 0.212 47.919 0.179 25.227 0.140 11.465 0.094 6.088

S-BH 0.163 104.645 0.136 74.056 0.105 50.032 0.068 34.021

SNS-BH 0.134 134.759 0.111? 100.973? 0.085? 71.990? 0.053? 49.516?

SNQ-BH 0.137 131.385 0.113 98.435 0.086 70.761 0.053 49.682

SNS-BKY 0.129? 139.992? 0.108? 104.079? 0.083? 73.583? 0.053? 50.206?

SNQ-BKY 0.133 135.756 0.111 100.995 0.084 71.978 0.053 50.172

n = 60

BH 0.062 200.960 0.052 156.368 0.041 114.187 0.024 77.794

STS 0.055 207.119 0.047 160.824 0.038 116.496 0.023 78.758

BY 0.114 153.486 0.096 115.508 0.073 83.061 0.044 58.578

BKY 0.056 205.935 0.048 159.770 0.039 116.071 0.023 78.503

S-BH 0.050 210.779 0.040 166.729 0.030 123.420 0.017 84.414

SNS-BH 0.044 215.776 0.035 171.305 0.026 127.176 0.015 86.688

SNQ-BH 0.047 213.488 0.037 169.341 0.028 125.655 0.016 85.862

SNS-BKY 0.040 219.403 0.032 173.649 0.025 128.360 0.014? 87.155?

SNQ-BKY 0.042 217.265 0.034 171.835 0.027 126.936 0.015 86.309

n = 100

BH 0.026 230.499 0.020 183.775 0.016 135.916 0.010 91.319

STS 0.022 233.578 0.018 185.656 0.015 137.070 0.009 91.784

BY 0.057 204.963 0.046 161.712 0.035 119.077 0.020 82.047

BKY 0.022 233.385 0.018 185.586 0.015 137.003 0.009 91.733

S-BH 0.020 234.530 0.015 187.781 0.012 139.598 0.007 93.672

SNS-BH 0.018 236.264 0.013 189.363 0.011 140.899 0.006 94.513

SNQ-BH 0.019 235.289 0.014 188.504 0.011 140.259 0.007 94.067

SNS-BKY 0.016 238.197 0.012 190.583 0.010 141.557 0.006 94.770

SNQ-BKY 0.017 237.452 0.013 189.887 0.011 140.939 0.006 94.341
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Table 3.4. Empirical false non-discovery rates and average number of false hypotheses rejected
(in the columns “Rejected”) for the investigated methods considered for the dependent
gamma variates. Results correspond to the following simulation parameters: n = 20, 60, 100;
m = 1, 000; π0 = 0.75, 0.8, 0.85, 0.9; α = 0.05. The number of replications is 1, 000 per
scenario and the number of bootstrap resamples is 10,000. Equal sample sizes were utilized
for both the cases and controls.

n = 20

π0 = 0.75 π0 = 0.8 π0 = 0.85 π0 = 0.9

FNR Rejected FNR Rejected FNR Rejected FNR Rejected

BH 0.242 9.662 0.197 3.715 0.147 2.850 0.099 1.329

STS 0.240 11.209 0.196 4.829 0.147 3.648 0.099 1.457

BY 0.250 0.380 0.200 0.171 0.150 0.063 0.100 0.035

BKY 0.240 10.922 0.196 4.090 0.147 3.127 0.099 1.435

S-BH 0.236 15.994 0.194 7.138 0.144 6.013 0.097 3.415

SNS-BH 0.247 3.650 0.199 1.546 0.149 1.326 0.099 0.789

SNQ-BH 0.224 29.728 0.185 16.992 0.138 13.547 0.091 8.989

SNS-BKY 0.247 3.824 0.199 1.598 0.149 1.350 0.099 0.793

SNQ-BKY 0.222 31.565 0.184 17.798 0.137 14.147 0.091 9.211

n = 60

BH 0.198 58.787 0.158 46.360 0.122 29.864 0.082 19.004

STS 0.192 65.475 0.154 50.020 0.119 32.794 0.081 20.285

BY 0.234 19.314 0.186 15.383 0.142 9.191 0.094 6.196

BKY 0.195 61.951 0.156 48.148 0.121 30.766 0.081 19.359

S-BH 0.186 72.402 0.147 58.092 0.114 38.880 0.076 25.402

SNS-BH 0.231 22.696 0.184 18.831 0.139 11.652 0.092 8.177

SNQ-BH 0.178 80.524 0.140 65.283 0.109 44.299 0.071 29.773

SNS-BKY 0.230 23.482 0.183 19.266 0.139 11.816 0.092 8.237

SNQ-BKY 0.175 83.563 0.138 67.065 0.108 45.158 0.071 30.072

n = 100

BH 0.141 120.445 0.121 85.924 0.095 58.363 0.060 41.503

STS 0.133 128.552 0.114 92.775 0.091 62.610 0.057 44.990

BY 0.193 65.834 0.159 45.627 0.123 29.672 0.080 21.095

BKY 0.136 124.643 0.118 88.322 0.094 59.542 0.060 42.030

S-BH 0.130 132.361 0.111 95.995 0.087 66.880 0.054 48.049

SNS-BH 0.195 63.795 0.160 44.791 0.123 29.442 0.080 21.553

SNQ-BH 0.125 136.743 0.108 99.611 0.084 70.121 0.051 50.538

SNS-BKY 0.194 65.582 0.159 45.735 0.123 29.857 0.079 21.676

SNQ-BKY 0.121 140.594 0.105 101.838 0.083 71.186 0.051 50.946
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Figure 3.6. Estimated standard deviation of the total number of hypotheses rejected for the
investigated methods for the gamma variates under both dependence and independence with
m = 1, 000 hypotheses. The pre-specified significance level is α = 0.05. The number of replications
for each scenario is 1, 000 with 10, 000 bootstrap resamples. Equal sample sizes were utilized for
both the cases and controls.
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their superior stability over the STS procedure. Recall that the investigated procedures were

all conservative in this setting though. Similarly to the normally distributed variables, all the

investigated procedures generally become less conservative, more powerful, and more stable

with increasing sample sizes, with the SNQ-BKY being the least conservative and the most

powerful for sample sizes less than or equal to 100.

To alleviate the unusual instability results obtained for the dependent cases, in practice,

we recommend transforming the variables in applications where the variables are suspected

to be dependent, but not approximately normally distributed before applying any of the

investigated procedures to improve the consistency of the obtained results.

3.5. Discussion and Conclusions

3.5.1. Discussion

In this chapter, we proposed resampling-based procedures for multiple hypotheses testing by

incorporating a generally valid null distribution and a James-Stein-type analytic shrinkage

estimation of the variance components into the original Benjamini and Hochberg (1995)

and Benjamini, Krieger, and Yekutieli (2006) procedures. Under the assumption of null

domination and positive regression dependence, the resampling-based procedures have been

shown to asymptotically control the FDR. We compared the proposed procedures with

the linear step-up procedures of Benjamini and Hochberg (1995), Benjamini and Yekutieli

(2001), Benjamini, Krieger, and Yekutieli (2006) and the q-value procedure of Storey (2003);

Storey, Taylor, and Siegmund (2004) using extensive Monte Carlo simulations. Four different

performance criteria were utilized: (i) the empirical false discovery rate, (ii) the empirical false

non-discovery rate, (iii) the empirical power defined as the average number of false hypotheses

rejected, and (iv) the stability of the procedures, characterized by the standard deviations of
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the number of false hypotheses rejected and the total number of rejected hypotheses.

We note that it is impossible to carry out a comprehensive simulation study capturing

all possible behaviors of the hypotheses, but in our simulations, various different realistic

scenarios that might be encountered in practice were investigated. This included varying the

sample size, the proportion of non-null hypotheses, the distribution of the random variables

and their dependency structure. The simulation study focused on a case-control experiment,

but the proposed methodology can be extended to any hypothesis testing problem. For a

variety of testing scenarios, the proposed resampling-based procedures were shown to provide

satisfactory FDR control when there are at least 30 observations in each of the case and

control groups (with a total sample size of 60). An even smaller sample size is needed to

provide satisfactory FDR control when the proportion of true null hypotheses decreases

to 65%. Specifically, when the variables are normally distributed, the resampling-based

procedures consistently offer satisfactory FDR control for a total sample of size n ≥ 60 when

85% or more of the hypotheses are truly null hypotheses. For the gamma random variables,

the proposed procedures based on the null quantile-transformed null distribution (SNQ-BH

and SNQ-BKY) consistently controlled the FDR at the pre-specified significance level for

all parameter configurations considered. On the contrary, as in the normal case, asymptotic

FDR control for the proposed procedures based on the null shift and scale-transformed null

distribution (SNS-BH and SNS-BKY) for the gamma random variables is dependent on the

proportion of true null hypotheses and the dependence structure of the test statistics. In

particular, the procedures usually provided FDR control for total sample sizes n ≥ 60 for the

independent cases, and for all sample sizes for the dependent cases although they become

extremely conservative in the dependent cases.

It is more difficult to characterize the patterns of the procedures based on the null

shift and scale-transformed null distribution for the gamma random variables. Perhaps the

arguments provided by van der Laan and Hubbard (2006) can provide a little insight into
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these results. Primarily, the marginal distribution of a test statistic is known when the null

hypothesis is true. Given that, the null shift and scale-transformed null distribution ensures

that the obtained marginal distribution and the known marginal distribution have equivalent

mean and variance, but does not guarantee that the marginal distributions are equal. This

suggests that using this null distribution does not necessarily produce optimal marginal null

distributions. Additionally, van der Laan and Hubbard (2006) argued that since the marginal

null distributions cannot be controlled, the null shift and scale-transformed null distributions

can sometimes be problematic in finite samples although they are always asymptotically

valid. In such cases, one might require a larger sample size and a larger number of bootstrap

replicates to alleviate the limitations of the null shift and scale-transformed null distributions.

This may explain the poor performance of the respective procedures for the dependent gamma

random variables.

As earlier discussed, in practice, especially in microarray experiments, tests are often

correlated. A multiple testing procedure with good FDR control, higher power and good

stability is also desirable in such cases. Overall, the simulation study indicates improved

FDR control and a gain in power over the original linear step-up procedures of Benjamini and

Hochberg (1995) and Benjamini, Krieger, and Yekutieli (2006), even for independent tests,

by incorporating a generally valid null distribution and a James-Stein-type analytic shrinkage

estimation of the variance components. Specifically, the procedures based on the null shift

and scale-transformed null distribution and the null quantile-transformed null distribution

have better stability and higher or equivalent power to the STS, procedure and improved FDR

control and higher power than the BH and the two-stage adaptive BKY procedures when

the random variables are independent and n ≥ 60. Additionally, as expected, a substantial

gain in power was observed for the resampling-based procedures for the cases where the

random variables were not normally distributed, with the SNQ-BKY procedure consistently

outperforming all the investigated procedures in such settings. Mainly, all investigated
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procedures become less conservative, more powerful, and more stable as the sample size

increases. Furthermore, the procedures become less stable with decreasing proportions of

true null hypotheses and increasing pairwise correlations, with the non-adaptive procedures,

especially the BY procedure, having greater stability, and the STS procedure being the least

stable.

3.5.2. Conclusions

High-throughput gene expression experiments such as microarray experiments involve statis-

tically testing thousands of hypotheses simultaneously to identify genes that are differentially

expressed. An unguarded use of single-inference procedures for such analyses inflates the

overall type I error rates. Correlation between genes and across arrays further complicates this

problem. Multiple testing procedures provide efficient methods for examining each hypothesis

while also controlling an overall error rate at a pre-specified level. The validity and accuracy

of any such testing procedure is essentially determined by whether the chosen test statistic

is optimal, the null distributions are correctly or conservatively specified, and whether the

data are independent across tests. As emphasized earlier, misspecifying the null distribution

may undercut inferential validity. This study proposes a new multiple testing procedure by

incorporating a generally valid null distribution and a James-Stein-type analytic shrinkage

estimation of the variance components into the linear step-up procedure of Benjamini and

Hochberg (1995) and the two-stage adaptive step-up procedure of Benjamini, Krieger, and

Yekutieli (2006). Extensive Monte Carlo simulations show that the resampling-based proce-

dure based on the null quantile-transformed null distribution is essentially more stable and

as powerful or substantially more powerful than some procedures proposed in finite sample

inferential problems, provided there are at least 30 observations in both the case and control

groups.
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In recent years, reproducibility of statistical findings has drawn considerable attention

not only from statisticians, but from all researchers engaged in empirical discovery. As noted

by Stodden (2015), the reasons for irreproducibility are at least, to some extent, due to

the number of false discoveries in such studies. Thus, a multiple testing procedure with

improved FDR control, good power and higher stability, can help alleviate the inconsistencies

in statistical findings, especially in biomedical research. Our proposed procedure based on the

null quantile-transformed null distribution, SNQ-BKY, is attractive in such analyses when

there are at least 30 observations in each of the case and control groups in that it has higher

power than the linear step-up procedure of Benjamini and Hochberg (1995) and better FDR

control, higher stability and better or equivalent power than the q-value procedure of Storey

(2003); Storey, Taylor, and Siegmund (2004). The trade-off for gains in power and stability is

the extra computational cost. However, with modern computing power, this issue is far less

important than in years past.

3.5.3. Available Software

The null shift and scale-transformed null distribution and the null quantile-transformed null

distribution are implemented in the multest package in R statistical software as part of the

Bioconductor project (Pollard, Dudoit, and van der Laan (2005)). The James-Stein-type

analytic shrinkage estimation of the variance components is in the corpcor package in R

statistical software (Schäfer, Opgen-Rhein, Zuber, Ahdesmaki, Silva, and Strimmer. (2017)).

All simulations were carried out in R (R Core Team (2018)), using the following packages:

MASS (Version 7.3-48), corpcor (Version 1.6.9), multtest (Version 2.36.0) and qvalue (Version

2.12.0)
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CHAPTER IV

MODIFIED STEP-DOWN

PROCEDURE THAT CONTROLS

THE FALSE DISCOVERY RATE

UNDER DEPENDENCE

4.1. Introduction

The linear step-up procedure of Benjamini and Hochberg (1995) (BH) and the q-value

procedure of Storey, Taylor, and Siegmund (2004) (STS) are among the most commonly

employed FDR controlling multiple testing procedures in practice. The STS procedure has

been shown to have higher power but lower stability compared to the BH procedure (Qiu,

Klebanov, and Yakovlev (2005); Li, Xie, Zand, Fogg, and Dye (2017)). In the previous

chapter, we proposed resampling-based FDR controlling procedures, and showed through

extensive Monte Carlo simulations that these resampling-based procedures have superior

stability, measured as the standard deviations of both the number of true discoveries and the
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total number of discoveries, to the STS procedure, while still maintaining equivalent power

to the STS procedure and higher power than the BH procedure. Although the proposed

resampling-based procedures have a gain in power, these methods still rely on the marginal

distribution of the test statistics and do not fully utilize the joint dependence structure of the

test statistics. Additionally, the proposed methods rely on some special forms of dependency,

the positive regression dependent on the subset of the test statistics corresponding to the

true null hypotheses, and do not accomodate general dependence among the test statistics.

Thus, one can expect methods that fully incorporate the dependence structure of the test

statistics without making any assumptions about the nature of the dependence to provide an

improvement in power. To this end, in this chapter we seek to develop step-down procedures

for control of FDR that incorporate information about the dependence structure of the test

statistics, and by so doing, improve the chances of identifying false null hypotheses.

The remainder of the chapter is set up as follows. We provide our setup and notation in

section 4.2. The step-down multiple testing procedure is detailed in section 4.3. This method

is dependent on the distribution of the test statistics through the data-generating distribution.

However, in practice since the data-generating distribution is unknown, so is the test statistic

distribution. We therefore also provide a bootstrap-based step-down procedure in section

4.3. Section 4.4 provides some theoretical results for the proposed method. The asymptotic

validity of the proposed method relies on the concept of null domination. Ongoing efforts

and future extensions of the work are provided in section 4.5. Finally, a summary and some

conclusions are provided in section 4.6.

4.2. Setup and Notation

As in previous chapters, we will again denote an m-dimensional vector of statistics, say θn,

by θn =
(
θn(1), θn(2), . . . , θn(m)

)
. Consider the random sample Xn = (X1, . . . , Xn) of
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n independent and identically distributed (i.i.d) random variables from a data-generating

distribution P ∈ Ω. Here, Ω, may be a parametric, semiparametric or nonparametric statistical

model. Define a general hypothesis as a submodel ω ⊆ Ω. Consider the problem of testing

simultaneously m hypotheses on the basis of the sample. The null hypotheses are defined

as H0(i) = I(P ∈ ωi) and the corresponding alternative hypotheses as H1(i) = I(P /∈ ωi),

i = 1, . . . ,m. Note, I(·) is the indicator function, having the value of 1 when the condition in

the parentheses is satisfied and 0 otherwise. Let H0 = H0(P ) = {i : P ∈ ωi} be the set of

true null hypotheses, and H1 = H1(P ) = {i : P /∈ ωi}, the set of false null hypotheses. Then,

m0 =| H0 | is the number of true null hypotheses, and m1 = m−m0 =| H1 | is the number

of false null hypotheses.

The aim of any multiple testing procedure is to estimate the sets H0 and H1 while

controlling a measure of overall error, such as FWER or FDR, at an acceptable rate, namely

α. Consequently, the decision to reject or fail to reject any null hypothesis depends on an

m-dimensional vector of test statistics, Tn = (Tn(i) : i = 1, . . . ,m); which are functions

of the data, Xn. Without loss of generality, large values of Tn(i) are assumed to indicate

evidence against the null hypothesis. Let Qn = Qn(P ) denote the, typically unknown, joint

distribution of the test statistics Tn. As discussed in previous chapters, in practice Qn is

replaced by a null distribution, Q0. For a given multiple testing procedure, let

Rn = R(Tn, Q0, α) = {i : H0(i) is rejected} = {i : Tn(i) > Ci} , (4.1)

where Rn is a set of rejected hypotheses and Ci = C(i;Tn, Q0, α) are threshold values for

deciding whether or not to reject the ith null hypothesis. Denote the number of rejections

and the number of false rejections based on the procedure by R and V respectively such that,

R =| R(Tn, Q0, α) |=| Rn | and
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V =| R(Tn, Q0, α) ∩H0(P ) |=| Rn ∩H0 | . (4.2)

The following remarks can be made about (4.2).

Remark 4.2.1

The use of the long notation in R(Tn, Q0, α), the set of rejected hypotheses, indicates that Rn

is a function of

i. the data Xn, through an m-vector of test statistics, Tn, where each Tn(i) corresponds to

a null hypothesis H0(i).

ii. the null distribution of the test statistics, Q0, for computing the threshold values, Ci,

for each Tn(i).

iii. the pre-specified significance level, α.

Recall, the false discovery rate (FDR) is defined as the expected number of false rejections

among those declared significant. Using the above notation, the FDR is simply

FDR = E

(
V

max(R, 1)

)
(4.3)

Following Remark 4.2.1, the FDR is a function of the test statistics, Tn(i), the test statistics’

null distribution, Q0, and the pre-specified significance level, α. An optimal FDR-controlling

procedure requires reliable estimation of the variance components and subsequently the

test statistics and the corresponding joint null distribution. However, for a large number of

hypotheses with a comparatively small sample size, the traditional t-statistic is suboptimal. As

previously reviewed, this is as a consequence of fluctuations in the estimation of the variance

components. Additionally, the presence of correlation among the test statistics can have a

significant effect on the usually employed theoretical null, resulting in a distribution that is
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substantially wider or narrower than optimal. Thus, an optimal FDR-controlling procedure

requires a good estimate of the variance components and an accurate representation of the

null distribution. Despite this insight, many FDR-controlling procedures are developed under

the assumption that good estimators for the variance components and a valid approximation

to the joint distribution of the test statistics are available. Practitioners are therefore faced

with the challenge of selecting these two components when dealing with large-scale testing.

An FDR-controlling procedure that incorporates a good estimator for the error variance and

an appropriate test statistics’ null distribution, while accounting for dependencies would thus

be optimal. For this purpose, we will construct a step-down multiple comparison procedure

for the control of FDR via resampling in the following. This procedure incorporates both

estimation of an appropriate test statistics’ null distribution and a James-Stein-type analytic

shrinkage estimator for the variance components.

Before proceeding, it should be noted that a multiple testing procedure provides a desired

finite sample control at level α over the FDR if

FDRP ≤ α ∀ P ∈ Ω. (4.4)

However, if the procedure controls the FDR asymptotically at level α, then

lim
n→∞

supFDRP ≤ α ∀ P ∈ Ω, (4.5)

where P is the data-generating distribution.

4.3. Step-down Multiple Testing Procedure

Denote the ordered test statistics by Tn,(1) ≤ · · · ≤ Tn,(m) with the corresponding null

hypotheses H
(1)
0 , . . . , H

(m)
0 . A step-down procedure begins with the most significant test
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statistic. First, the joint null hypothesis that all hypotheses, H0(i), i = 1, . . . ,m are true is

tested. This hypothesis is rejected if Tn,(m) is large. If it is not large, then the procedure fails

to reject all of the hypotheses; otherwise, the procedure rejects the hypothesis corresponding

to the largest test statistic. Once a hypothesis is rejected, it is removed and the remaining

hypotheses are tested by rejecting for large values of the maximum of the remaining test

statistics, and this procedure continues until there are no more rejections. A description of

this generic step-down procedure is provided in Algorithm 4.1.

Algorithm 4.1 Generic Step-down Procedure

1. If Tn,(m) < cm, reject no hypotheses and stop. Otherwise, reject H
(m)
0 and continue.

2. If Tn,(m−1) < cm−1, reject no further hypotheses and stop. Otherwise, reject H
(m−1)
0 and

continue.
...

j. If Tn,(m−j+1) < cm−j+1, reject no further hypotheses and stop. Otherwise, reject

H
(m−j+1)
0 and continue.

...

m. If Tn,(1) < c1, fail to reject H
(1)
0 ; otherwise reject H

(1)
0 .

More concisely, suppose j? is the largest integer j such that

Tn,(m) ≥ cm, . . . , Tn,(m−j) ≥ cm−j,

then a step-down multiple testing procedure will reject the hypotheses,

H
(m)
0 , . . . , H

(m−j?)
0 .

However, the procedure will not reject any null hypotheses if no such j exists.
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4.3.1. Calculation of the Critical Values

Suppose Ai is the probability that exactly i hypotheses are rejected for any step-down

procedure. Then

A0 = P (Tn,(m) < cm)

A1 = P (Tn,(m) ≥ cm, Tn,m−1 < cm−1)

...

Ar = P (Tn,(m) ≥ cm, . . . , Tn,(m−r+1) ≥ cm−r+1, Tn,(m−r) < cm−r) (4.6)

Following equation (4.6), the FDR of a step-down procedure can be expressed as

FDRP = EP

(
V

max(R, 1)

)
=

m∑
r=1

1

r
EP (V |R = r)P (R = r)

=
m∑
r=1

1

r
EP (V |R = r)× P (Tn,(m) ≥ cm, . . . , Tn,(m−r+1) ≥ cm−r+1, Tn,(m−r) < cm−r),

(4.7)

where the event Tn,(m−r) < cm−r is enforced only when r < m. Equation (4.7) can be shown

to be asymptotically equivalent to

FDRP =
m∑

r=m−m0+1

r −m+m0

r

× P (Tn,m0:m0 ≥ cm0 , . . . , Tn,m−r+1:m0 ≥ cm−r+1, Tn,m−r:m0 < cm−r), (4.8)

where Tn,r:m0 denotes the rth largest of the test statistics corresponding to the true null

hypotheses and again the event Tn,(m−r) < cm−r is enforced only when r < m.

The aim in developing an optimal procedure is to choose c1, c2, . . . , cm such that (4.8) is
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at least asymptotically bounded above by α for any data-generating distribution, P . The

threshold values, c = (ci : i = 1, . . . ,m) will be determined as follows. To obtain the first

threshold value, consider any data-generating procedure such that there is only one true null

hypothesis, i.e., m0 = 1. Then, (4.8) reduces to

FDRP =
1

m
P (Tn,1:1 ≥ c1) (4.9)

Subject to this, c1 is chosen as the minimum value for which (4.9) is bounded above by α.

That is,

c1 := inf

{
x ∈ IR :

1

m
P (Tn,1:1 ≥ x) ≤ α

}
(4.10)

It should be noted that c1 so defined is −∞ when mα ≥ 1. Next, consider any data-generating

procedure such that there are only two true null hypotheses, i.e., m0 = 2. Then, (4.8) reduces

to

FDRP =
1

m− 1
P (Tn,2:2 ≥ c2, Tn,1:2 < c1) +

2

m
P (Tn,2:2 ≥ c2, Tn,1:2 ≥ c1) (4.11)

Again, an appropriate choice of c2 is the minimum value for which (4.11) is bounded above

by α. That is,

c2 := inf

{
x ∈ [c1,∞) :

1

m− 1
P (Tn,2:2 ≥ x, Tn,1:2 < c1) +

2

m
P (Tn,2:2 ≥ x, Tn,1:2 ≥ c1) ≤ α

}
(4.12)

In general, to obtain the jth critical value, consider any data-generating distribution, P such

that m0 = j. Then, having determined c1, c2, . . . , cj−1, an appropriate choice of cj is the
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minimum value of c for which

FDRP =
m∑

r=m−j+1

r −m+ j

r

× P (Tn,j:j ≥ x, . . . , Tn,m−r+1:j ≥ cm−r+1, Tn,m−r:j < cm−r), (4.13)

is bounded above by α. If a solution to (4.13) exists in [cj−1,∞) then that is cj. Otherwise,

cj is set equal to cj−1. The selection of the above critical values is, however, impossible due to

its dependence on the unknown data-generating distribution, P , through the distribution of

the test statistics. Romano, Shaikh, and Wolf (2008) (referred to as RSW hereafter) proposed

a bootstrap approach that relies on an exchangeability assumption - albeit not in combination

with estimation of the test statistics’ null distribution and variance components. In their

work, they replaced the unknown data-generating distribution with a suitable estimate P̂n

and then utilized bootstrap techniques to estimate the distribution of the test statistics, and

subsequently the critical values. However, as emphasized by Pollard and van der Laan (2004)

and Efron (2004, 2007a) utilizing a data-generating distribution to estimate the distribution

of test statistics may incorrectly specify the dependence structure of the test statistics. In the

presence of strong correlations among the test statistics, utilizing the RSW FDR-controlling

procedure may undercut inferential validity. To this end, this study proposes constructing

the critical values by first utilizing an appropriate estimate of the variance components to

construct the test statistics, and then replacing the unknown joint distribution of the test

statistics with an appropriate null distribution. One main distinction of this approach to

that of Romano, Shaikh, and Wolf (2008) is that an appropriate null distribution is utilized

in place of the unknown joint distribution. The proposed methodologies are detailed herein.
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4.3.2. A Proposed Bootstrap Approach to FDR Control

As in the previous chapter, we will focus on a parameter vector,

θ(P ) = (θ1(P ), . . . , θm(P )) (4.14)

Consider the one-sided testing problem, in which case (without loss of generality)

H0(i) : θ(i) ≤ θ0(i) vs. H1(i) : θ(i) > θ0(i) (4.15)

or the two-sided testing problem, in which case

H0(i) : θ(i) = θ0(i) vs. H1(i) : θ(i) 6= θ0(i) (4.16)

The test statistics will be based on the shrinkage t statistic constructed in section 3.2.1.

Now, as stated earlier, the selection of the critical values in (4.13) is impossible due to their

dependence on the unknown distribution of the test statistics. Here, instead of utilizing a

data-generated null distribution as proposed by Romano, Shaikh, and Wolf (2008), we will

replace the unknown test statistic distribution by an appropriate null distribution, Q0(P ).

We re-emphasize that the use of an inappropriate null distribution may lead to misleading

results, especially in the presence of strong correlations among the variables. Thus, one could

expect to obtain an improved FDR-controlling procedure by incorporating an appropriate

null distribution into the RSW procedure, especially in cases where the data-generated test

statistic null distribution fails. Two different null distributions are considered; the null

shift and scale-transformed null distribution, QNS
0 (P ), proposed by Pollard and van der

Laan (2004) and generalized by Dudoit, van der Laan, and Pollard (2004) and the null

quantile-transformed null distribution, QNQ
0 (P ), proposed by van der Laan and Hubbard
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(2006). However, in practice, since the data-generating distribution, P , is unknown, so is

the null distribution, Q0(P ). Bootstrap procedures will be utilized to obtain consistent

estimators, Q0n (QNS
0n or QNQ

0n ) of the null distributions. For this purpose, let Pn denote the

empirical distribution corresponding to P , which assigns probability (1/n) to each realization

of X. Let X ?
n = {X?

i : i = 1, . . . , n} be distributed according to Pn and denote by T ?
n , the

m-dimensional vector of test statistics computed from X ?
n . Then, QNS

0 (P ) can be estimated

by the distribution of the null shift and scale-transformed bootstrap test statistics

Z̃?
n(i) =

√
min

(
1,

τ0(i)

VarPn (T ?
n (i))

)(
T ?
n (i) + λ0(i)− E

(
T ?
n (i)

))
; i = 1, . . . ,m (4.17)

Similarly, QNQ
0 (P ) can be estimated by the distribution of the null quantile-transformed

bootstrap test statistics

Z̆?
n(i) = q−1

0,iQ
?,∆
n,i (T ?

n (i)), (4.18)

where Q?,∆
n,i (z) = ∆Q?

n,i(z) + (1−∆)Q?
n,i(z

−), ∆ is a uniform random variable on the interval

[0, 1], independent of the data, and Q?
n,i(z) is the marginal cumulative distribution function

based on X ?
n . The bootstrap estimation of the null shift and scale-transformed null distribution

QNS
0n (P ) and the null quantile-transformed null distribution, QNQ

0n (P ) based on the shrinkage

t statistic are summarized in algorithms 3.4 and 3.5 in Chapter 3.

With the estimated null distribution, Q0n, and matrix of test statistics, Z?
n, (either the

null shift and scale-transformed bootstrap test statistics, Z̃?
n, or the null quantile-transformed

bootstrap test statistics, Z̆?
n) from either Algorithm 3.4 or 3.5, the critical values can be

defined recursively as follows. Compute the jth critical value, having already determined

ĉ1, ĉ2, . . . , ĉj−1 using the rule

ĉj = inf

{
x ∈ IR :

m∑
r=m−j+1

r −m+ j

r
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× Pn(Z?
n,j:j ≥ x, . . . , Z?

n,m−r+1:j ≥ ĉm−r+1, Z
?
n,m−r:j < ĉm−r) ≤ α

}
. (4.19)

where the event Z?
n,(m−r):j < ĉm−r is enforced only when r < m.

Remark 4.3.1

The following remarks can be made about the bootstrap approach to selecting the critical

values.

1. Some clarifications need to be provided with regards to the notation, Z?
n,r:t with r ≤

t. Note that for t true null hypotheses, Tn,r:t corresponds to the rth largest of the

observations corresponding to these true hypotheses. However, the ordering of the

null hypotheses in the bootstrap world is determined by the ordering of the hypotheses

corresponding to the ordered test statistics, H(1), . . . , H(m) from the “real” world, not

according to 1, . . . ,m. Thus, to obtain Z?
n,r:t, the bootstrap test statistics need to be

permuted so that if {k1, . . . , km} of {1, . . . ,m} is such that Hk1 = H(1), . . . , Hkm = H(m),

then Z?
n,r:t corresponds to the rth largest of the observations Z?

n,k1
, . . . Z?

n,kt
.

2. Closed-form expressions for the probabilities in (4.19) may be typically impossible to

compute. A researcher may thus use simulations to any desired degree of accuracy to

compute the critical values. In practice, however, one needs to find a balance between

computational cost and estimation accuracy.

The proposed bootstrap algorithm for the estimation of the critical values in (4.13) is

summarized in Algorithm 4.2. In the next section, formal theoretical justification and

conditions for when the proposed step-down procedure with critical values defined by (4.13)

provides asymptotic control over the FDR will be provided.
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Algorithm 4.2 Proposed Bootstrap FDR-Controlling Procedure

1. Apply Algorithm 3.4 or 3.5 to generate an m×B matrix of null-transformed bootstrap

test statistics, Z?
n. The bootstrap estimator of the null distribution, Q0 is the empirical

distribution of the columns of Z?
n.

2. Compute the jth critical value, having already determined ĉ1, ĉ2, . . . , ĉj−1 using the rule

ĉj = inf

{
c ∈ IR :

1

B

B∑
b=1

m∑
r=m−j+1

r −m+ j

r

× I(Z?
n,j:j ≥ c, . . . , Z?

n,m−r+1:j ≥ ĉm−r+1, Z
?
n,m−r:j < ĉm−r) ≤ α

}
. (4.20)

3. Let Tn,(1) ≤ · · · ≤ Tn,(m) be the ordered test statistics with the corresponding null

hypotheses H
(1)
0 , . . . , H

(m)
0 .

4. Suppose j? is the largest j such that Tn,(m) ≥ ĉm, . . . , Tn,(m−j) ≥ ĉm−j, then, reject the

hypotheses H
(m)
0 , . . . , H

(m−j?)
0 . Reject nothing if no such j exists.

4.4. Some Analytical Results

In what follows, we provide conditions for when the proposed resampling-based step-down

procedure provides asymptotic FDR control.

Lemma 4.4.1 (Assumption I: Asymptotic Separation of Null Hypotheses)

Consider testing the set of m null hypotheses, H0(i), against the alternative hypotheses, H1(i),

i = 1, . . . ,m based on the test statistics, Tn(i). Without loss of generality, we assume that

m0, 0 ≤ m0 ≤ m, hypotheses are true. Assume further that the hypotheses have been relabeled

such that Tn(1), Tn(2), . . . , Tn(m0) correspond to the true null hypotheses. Intuitively, if
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Tn(i), i = 1, . . . ,m is a consistent test statistic for testing H0(i) and Tn,(1) ≤ · · · ≤ Tn,(m) are

the corresponding ordered test statistics, then asymptotically, we will expect the ordering

Tn,(1) ≤ Tn,(2) ≤ · · · ≤ Tn,(m0) ≤ Tn,(m0+1) ≤ · · ·Tn,(m)

to correspond to

H
(1)
0 , H

(2)
0 , . . . , H

(m0)
0 , H

(m0+1)
0 , . . . , H

(m)
0 ,

where H
(1)
0 , H

(2)
0 , . . . , H

(m0)
0 are true null hypotheses and H

(m0+1)
0 , . . . , H

(m)
0 are false null

hypotheses.

In the proposed methodology, we do not know of a general formula expressing the

conditions for which the FDR will be equal to α. However, by construction, we will expect

to achieve asymptotic FDR control by utilizing test statistics that satisfy Lemma 4.4.1.

But, asymptotic control is based on the true data-generating distribution P through the

distribution of the test statistics which is usually unknown and needs to be estimated. In the

previous section, we proposed a bootstrap approach to estimate the unknown data-generating

distribution and subsequently the test statistic and utilized the estimated distribution to

determine the critical values. We herein provide conditions for when the proposed bootstrap

approach provides asymptotic FDR control.

Lemma 4.4.2

Suppose the statistics, Tn(i), . . . ,Tn(m) are available for testing m hypotheses and Tn ∼ Qn =

Qn(P ). Let H0 = H0(P ) be the set of true null hypotheses and H1 = H1(P ), the set of false

null hypotheses where P is the data-generating distribution. Assume also that there exists

an m-dimensional known real-valued vector λ0, and a positive real-valued vector τ0 of null

93



values such that

lim sup
n→∞

E (Tn(i)) ≤ λ0(i) and

lim sup
n→∞

Var (Tn(i)) ≤ τ0(i) for i ∈ H0. (4.21)

Define an m-dimensional vector of null shift and scale-transformed test statistics whose entries

are determined by

Z̃n(i) =

√
min

(
1,

τ0(i)

Var (Tn(i))

)(
Tn(i) + λ0(i)− E(Tn(i))

)
; i = 1, . . . ,m. (4.22)

Suppose that the m-dimensional vector of test statistics, Z̃n, weakly converges to a random

m-dimensional vector Z̃ such that Z̃ has a continuous joint distribuiton Q0 = Q0(P ), i.e.,

Z̃n
L−→ Z̃ ∼ Q0. (4.23)

Then, for all c = (ci : i = 1, . . . ,m) ∈ IR and c1 ≤ c2 ≤ · · · ≤ cm and this choice of null

distribution, Q0(P ) and for all x ∈ IR

lim sup
n→∞

PQn

((
Tn,j:j ≥ cj, . . . , Tn,m−r+1:j ≥ cm−r+1, Tn,m−r:j < cm−r

)
≤ x

)
≤ PQ0

((
Z̃j:j ≥ cj, . . . , Z̃m−r+1:j ≥ cm−r+1, Z̃m−r:j < cm−r

)
≤ x

)
(4.24)

where j ∈ m0 and where Tn,r:j and Zr:j denotes the rth largest of the test statistics corre-

sponding to the true null hypotheses for their respective test statistics. That is, the joint

distribution of the H0-specific test statistics under the null distribution, Q0, is asymptotically

stochastically larger than under the true distribution, Qn.

We will prove Lemma 4.4.2 in an analoguous manner to the proof of the joint null
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domination assumption provided in Dudoit and van der Laan (2008, Chapter 2).

Proof of Lemma 4.4.2. First, define an intermediate random vector Sn = (Sn(i) : i =

1, . . . ,m) as

Sn(i) = Tn(i) + max
{

0,λ0(i)− E
(
Tn(i)

)}
, i = 1, . . . ,m. (4.25)

Here, we note that since the second term in Sn(i) is always zero or greater, we have

Sn(i) ≥ Tn(i) for each i = 1, . . . ,m. Now, by (4.21) we have

lim
n→∞

√
min

{
1,

τ0(i)

Var (Tn(i))

}
= 1 and lim

n→∞

(
λ0(i)− E

(
Tn(i)

))
= 0.

(4.26)

It then follows that

lim
n→∞

Z̃n(i) = Tn(i) and lim
n→∞

Sn(i) = Tn(i) (4.27)

Thus, the null specific subvectors (Sn(i) : i ∈ H0) and (Z̃n(i) : i ∈ H0) have the same

asymptotic joint null distribution. So by assumption, Sn also converges weakly to Z̃, that is,

(Sn(i) : i ∈ H0)
L−→ (Z̃(i) : i ∈ H0) ∼ Q0,H0 . (4.28)

Now, by the continuous mapping theorem and for each x ∈ IR we have

lim sup
n→∞

PQn

((
Tn,j:j ≥ cj, . . . , Tn,m−r+1:j ≥ cm−r+1, Tn,m−r:j < cm−r

)
≤ x

)
≤ lim sup

n→∞
PQ0

((
Sn,j:j ≥ cj, . . . , Sn,m−r+1:j ≥ cm−r+1, Sn,m−r:j < cm−r

)
≤ x

)
=PQ0

((
Zj:j ≥ cj, . . . , Zm−r+1:j ≥ cm−r+1, Zm−r:j < cm−r

)
≤ x

)
(4.29)
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where j ∈ m0 and Tn,r:j, Sn,r:j, and Zr:j denotes the rth largest of the test statistics corre-

sponding to the true null hypotheses for their respective test statistics.

The fundamental results underlining the proposed resampling-based procedure are sum-

marized in the following theorem.

Theorem 4.4.1

Consider testing the set of m null hypotheses, H0(i), against the alternative hypotheses, H1(i),

i = 1, . . . ,m based on the shrinkage t statistics, Tn(i) given in section 3.2.1.4. Suppose

that the conditions in Lemma 4.4.2 are satisfied. Suppose further that the H0-specific joint

distribution of the test statistic

i. has continuous marginal distributions.

ii. has connected support.

iii. satisfies the asymptotic null domination assumption, that is, the joint distribution

of the H0-specific test statistics is asymptotically stochastically larger under the null

distribution Q0 than under the true distribution Qn.

Then the step-down procedure with critical values described in Algorithm 4.2 provides asymp-

totic control over the FDR. That is,

lim sup
n→∞

FDR ≤ α. (4.30)

4.5. Ongoing Efforts

Preliminary simulation results have shown that the proposed step-down procedure provides

asymptotic FDR control. In the next stage of this work, Monte Carlo simulation studies will be

carried out to assess finite sample performance of the proposed procedure. Additionally, FDR
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control, power, and stability as characterized by the standard deviations of the number of false

hypotheses rejected and the total number of rejected hypotheses of the proposed step-down

procedure will be compared with some existing and commonly employed FDR-controlling

procedures.

Our ongoing efforts also include providing complete theoretical proofs of asymptotic

FDR control for the proposed step-down procedure based on the James-Stein-type analytic

shrinkage estimation and the null distribution.

4.6. Summary and Conclusions

Modern statistical inference problems in areas such as medicine, spatial epidemiology, ge-

nomics, and marketing, routinely involve statistically testing for some behavior of interest

on each of thousands or more measurements taken on the same unit. This usually involves

inference for high-dimensional multivariate distributions with complex and mostly unspecified

dependencies among the variables under consideration. The nature of analysis of such data

in the initial stages is normally exploratory so the false discovery rate is the commonly

employed measure to control the inflation of type I errors. To date, various FDR-controlling

procedures have been proposed for the analysis of such high-dimensional data. However,

many of the existing procedures are based on the marginal distributions, failing to account for

the dependence structure of the test statistics. Moreover, some of these marginal procedures

are developed under specific assumptions about the joint distribution of the test statistics,

such as independence or some form of weak dependence. Consequently, these methods tend

to lose power when the test statistics are highly correlated. FDR-controlling procedures that

incorporate information about the dependence structure of the test statistics remain limited.

In addition to the above, developing cut-off values for FDR-controlling procedures require

knowledge of the distribution of the test statistics. In practice, however, the true distribution
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of the test statistic is unknown and is usually replaced by a theoretical or data-generated null

distribution. Resampling techniques provide the flexibility of estimating the distribution of the

test statistics, and by so doing, account for the complex and unknown dependence structure

among the test statistics. Romano, Shaikh, and Wolf (2008) provided a bootstrap step-down

procedure that was shown to provide asymptotic FDR control under fairly weak assumptions,

but required an exchangeability assumption for the joint limiting distribution of the null-

specific test statistics. In their procedure, the authors replaced the unknown data-generating

distribution with a suitable estimate and subsequently utilized the estimated data-generating

distribution to estimate the joint distribution of the test statistics. However, as pointed out

by Pollard and van der Laan (2004) and Efron (2004, 2007a), utilizing a data-generating

distribution to estimate the distribution of the test statistics may incorrectly specify the

dependence structure of the test statistics. Thus in the presence of high correlations, the

step-down procedure of Romano, Shaikh, and Wolf (2008) may undercut inferential validity.

We also note that for a large number of hypotheses with comparatively small sample

sizes, the traditional t-statistic is suboptimal. This is normally due to fluctuations in the

estimation of the variance components. To this end, an optimal FDR-controlling procedure

requires a good estimate of the variance components and an accurate representation of the test

statistic null distribution. Here, we extended the step-down procedure of Romano, Shaikh,

and Wolf (2008) by incorporating a James-Stein-type analytic shrinkage estimation of the

error variance and a generally valid null distribution. Asymptotic validity of the proposed

method holds under the asymptotic null domination assumption for the null-specific test

statistic distribution.

Since the proposed procedure is based on asymptotic arguments, it is necessary to shed

light on its finite sample performance. Future work will address this, in addition to providing

complete theoretical proofs for asymptotic FDR control.
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CHAPTER V

CONCLUDING REMARKS

5.1. Summary

Rapid advancement in technology, especially in genomics and imaging has redefined how

statisticians approach simultaneous inference problems. For example, microarray experiments

generate large multiplicity problems in which a researcher may statistically test thousands of

hypotheses simultaneously to identify which of the genes are differentially expressed. This

usually involves inference for high-dimensional multivariate distributions with complex and

mostly unspecified dependencies among the variables under consideration. In these situations,

an unguarded use of single-inference procedures inflates the overall type I error rates. This

has lead to an explosion in multiple testing literature on statistical methods for large-scale

inference. Multiple testing procedures provide efficient methods for examining each hypothesis

while also controlling for an overall error rate at a pre-specified level. An optimal multiple

testing procedure needs to take into account the ramifications of three choices: (i) choice of a

suitable test statistic, (ii) choice of a test statistic null distribution, and (iii) control of an

overall error rate.

One line of research in the field of multiple testing deals with the control of an overall
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error measure. Classical approach to simultaneous inference controls the family-wise error

rate (FWER), defined as the probability of making at least one type I error. However,

FWER procedures offer extremely stringent control of the error which might not always be

appropriate. For instance, the number of tests in most large-scale inference is large and the

nature of analysis is exploratory rather than confirmatory. In such cases, one often wishes

to make as many discoveries as possible without resulting in too many false discoveries,

although some false discoveries can be tolerated. Benjamini and Hochberg (1995) introduced

the false discovery rate (FDR) as an alternative to the FWER. FDR-controlling procedures

are less stringent but powerful multiple testing procedures for large-scale inference than the

FWER-controlling procedures, and are therefore the preferred error rate to control in such

studies. Thus far, there is a rich body of literature on FDR-controlling procedures. Many of

the existing procedures are based on the marginal distributions of the test statistics without

taking into account their dependence structure. Moreover, some of these marginal procedures

are developed under specific assumptions about the joint distribution of the test statistics,

such as independence or some form of weak dependence. Even so, these procedures still do

not account for the assumed dependence structure. They therefore become less powerful than

a procedure which incorporates dependence in some way, especially when the test statistics

are highly correlated.

Another line of research has been to develop optimal test statistics for large-scale inference.

For a large number of hypotheses with comparatively small sample sizes, the traditional

t-statistic is suboptimal. As discussed earlier, this is normally due to fluctuations in the

estimation of the variance components. Accordingly, various test statistics have been suggested

in the past couple of years; some of which involve modifying estimators of the error variance

components.

A third line of research has been to develop alternative null distributions for use in

large-scale inference. FDR procedures are based on cut-off values which are derived from
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the joint distribution of the test statistics. In practice, this distribution is unknown and

is often replaced by a theoretical null distribution or a data-generated null distribution.

However, as pointed out in Pollard and van der Laan (2004) and Efron (2004, 2007a), the

usually employed theoretical null or the data-generated null distribution can misspecify the

dependence structure of the test statistic. Thus, multiple testing procedures can perform

significantly worse if an inappropriate null distribution is utilized.

In this study, we have developed a unified approach to FDR control that takes into

account all the three aspects of developing an optimal multiple testing procedures, that have

otherwise been considered separately. Our contribution is in two-fold. In the first part of

the study, we proposed improved resampling-based procedures by incorporating a generally

valid null distribution and a James-Stein-type analytic shrinkage estimation of the variance

components into the original linear step-up procedure of Benjamini and Hochberg (1995) and

the two-stage linear adaptive procedure of Benjamini, Krieger, and Yekutieli (2006). Two

null distributions were considered: the null shift and scale-transformed null distribution, and

the null quantile-transformed null distribution. Under the assumptions of null domination

and positive regression dependent on the subset of test statistics corresponding to the true

null hypotheses, the resampling-based procedures were shown to provide asymptotic FDR

control. We also compared the proposed procedures with the linear step-up procedures of

Benjamini and Hochberg (1995), Benjamini and Yekutieli (2001), Benjamini, Krieger, and

Yekutieli (2006) and the q-value procedure of Storey (2003); Storey, Taylor, and Siegmund

(2004) using extensive Monte Carlo simulations for case-control experiments. The simulation

results indicated that the resampling-based procedure based on the null quantile-transformed

null distribution is essentially more stable and as powerful or substantially more powerful

than the q-value procedure of Storey (2003); Storey, Taylor, and Siegmund (2004), provided

there are at least 30 observations in both the case and control groups.

In the second part of the study, we extended the step-down procedure of Romano, Shaikh,
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and Wolf (2008) by incorporating a James-Stein-type analytic shrinkage estimation of the

error variance and a generally valid null distribution. Asymptotic validity of the proposed

method holds under the asymptotic null domination assumption for the null-specific test

statistic distribution.

5.2. Future Directions

The proposed step-down procedure is justified by asymptotic arguments, it is therefore impor-

tant to investigate its finite sample performance using Monte Carlo simulation studies. Future

work will address this, in addition to providing complete theoretical proofs of asymptotic

FDR control.

The null shift and scale-transformed null distribution and the null quantile-transformed

null distribution employed in this study are justified by bootstrap arguments. In general,

there is no recommendations for the number of bootstrap resamples to utilize. However, in

order to deal with the discreteness of the bootstrap distribution, especially for estimating

very small p-values, one obviously needs a very large bootstrap resample. An alternative is

to replace the marginal null distributions obtained from the null distributions with Gaussian

approximations or smoothed estimation methods. Another future direction will be to explore

specific algorithms for accurate estimation of the tail probabilities.

5.3. Conclusions

In recent years, reproducibility of statistical findings has drawn considerable attention not

only from statisticians, but from all researchers engaged in empirical discovery. As noted

by Stodden (2015), the reasons for irreproducibility are at least, to some extent, due to

the number of false discoveries in such studies. Thus, a multiple testing procedure with
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improved FDR control, good power and higher stability, can help alleviate the inconsistencies

in statistical findings, especially in biomedical research. The improved FDR control, power

and stability of the proposed resampling-based procedures under various testing scenarios

allow the procedures to be very competitive with or outperform many procedures proposed

in finite sample inferential problems, even under independence. This makes the proposed

procedures very attractive in large-scale inference and a better alternative to the classical

Benjamini and Hochberg (1995) approach.

5.4. Software Availability

The null shift and scale-transformed null distribution and the null quantile-transformed null

distribution are implemented in the multest package in R statistical software as part of the

Bioconductor project (Pollard, Dudoit, and van der Laan (2005)). The James-Stein-type

analytic shrinkage estimation of the variance components is in the corpcor package in R

statistical software (Schäfer, Opgen-Rhein, Zuber, Ahdesmaki, Silva, and Strimmer. (2017)).

The R code for obtaining the step-down critical values discussed in chapter 4 are provided in

Appendix D.
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APPENDIX A

LIST OF ABBREVIATIONS AND

NOTATIONS

BH – linear step-up procedure of Benjamini and Hochberg (1995)

BKY – two-stage adaptive step-up procedure of Benjamini, Krieger, and Yekutieli (2006)

BY – linear step-up procedure of Benjamini and Yekutieli (2001)

FDR – false discovery rate

FWER – family-wise error rate

PRD – positive regression dependency

PRDS – Positive regression dependency on subsets

STS – q-value procedure of Storey (2003); Storey, Taylor, and Siegmund (2004)

S-BH – BH procedure based on the shrinkage t statistic

SNS-BH – BH procedure based on the shrinkage t statistic and the null shift and scale-

transformed test statistic null distribution

SNQ-BH – BH procedure based on the shrinkage t statistic and the null quantile-transformed

test statistic null distribution

SNS-BKY – BKY procedure based on the shrinkage t statistic and the null shift and scale-

115



transformed test statistic null distribution

SNQ-BKY – BKY procedure based on the shrinkage t statistic and the null quantile-

transformed test statistic null distribution

Q0(P ) – null distribution

QNS
0 (P ) – null shift and scale-transformed null distribution

QNQ
0 (P ) – null quantile-transformed null distribution

Qn(P ) – true distribution of the test statistics

Q0n(P ) – bootstrap estimate of the null distribution

QNS
0n (P ) – bootstrap estimate of the null shift and scale-transformed null distribution

QNQ
0n (P ) – bootstrap estimate of the null quantile-transformed null distribution

R0 – number of hypotheses rejected under the null distribution

Rn – number of hypotheses rejected under the true distribution of the test statistics

Xn = (X1, . . . , Xn) – random sample of n independent and identically distributed random

variables

V0 – number of false discoveries under the null hypotheses

Vn – number of false discoveries under the true distribution of the test statistics

θn =
(
θn(1), θn(2), . . . , θn(m)

)
– m-dimensional vector of statistics

Ω – a statistical model

H0 = H0(P ) – the set of true null hypotheses

H1 = H1(P ) – the set of false null hypotheses

Cn(i;α) = Cn(Tn, Q0,i, α) – set of rejection regions

m – number of hypotheses

m0 =| H0 | – the number of true null hypotheses

m1 = m−m0 =| H1 | – the number of false null hypotheses

n – total sample size

α – pre-specified significance level
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APPENDIX B

SUPPLEMENTAL SIMULATION

RESULTS FOR INDEPENDENT

TESTS

B.1. Normally Distributed Random Variables

The numerical summaries for Monte Carlo simulation studies for the normal independent

random variables are provided in this section.
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Table B.1. Empirical FDRs for the investigated methods for the independent tests for
π0 = 0.85 and 0.9. The number of replications is 1,000 per scenario and the number of
bootstrap resamples is 10,000. The standard errors are provided in parenthesis.

π0 n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.9 20 0.044 0.049 0.006 0.044 0.009 0.119 0.137 0.119 0.137

(0.157) (0.161) (0.072) (0.157) (0.076) (0.154) (0.135) (0.154) (0.135)

30 0.042 0.048 0.009 0.043 0.030 0.080 0.087 0.080 0.087

(0.086) (0.084) (0.078) (0.086) (0.077) (0.076) (0.073) (0.076) (0.073)

40 0.047 0.051 0.007 0.047 0.037 0.068 0.071 0.068 0.071

(0.051) (0.053) (0.042) (0.051) (0.045) (0.051) (0.049) (0.051) (0.050)

50 0.045 0.051 0.006 0.046 0.040 0.061 0.064 0.062 0.065

(0.040) (0.041) (0.024) (0.040) (0.038) (0.042) (0.042) (0.043) (0.042)

60 0.046 0.051 0.005 0.048 0.042 0.058 0.060 0.060 0.062

(0.033) (0.035) (0.017) (0.034) (0.031) (0.035) (0.036) (0.035) (0.036)

100 0.045 0.051 0.006 0.048 0.044 0.053 0.053 0.056 0.056

(0.026) (0.027) (0.012) (0.027) (0.026) (0.027) (0.027) (0.028) (0.028)

200 0.046 0.051 0.006 0.049 0.045 0.049 0.048 0.053 0.053

(0.023) (0.024) (0.009) (0.024) (0.022) (0.023) (0.023) (0.024) (0.024)

300 0.046 0.051 0.006 0.051 0.045 0.049 0.048 0.053 0.053

(0.022) (0.023) (0.008) (0.022) (0.022) (0.022) (0.022) (0.023) (0.023)

500 0.044 0.050 0.006 0.049 0.044 0.046 0.046 0.051 0.051

(0.021) (0.022) (0.008) (0.022) (0.021) (0.021) (0.021) (0.023) (0.022)

0.85 20 0.037 0.044 0.009 0.037 0.015 0.109 0.125 0.109 0.125

(0.129) (0.127) (0.088) (0.128) (0.100) (0.123) (0.114) (0.123) (0.114)

30 0.042 0.048 0.007 0.043 0.032 0.074 0.083 0.074 0.083

(0.064) (0.062) (0.056) (0.064) (0.065) (0.060) (0.059) (0.060) (0.059)

40 0.041 0.050 0.007 0.043 0.037 0.062 0.067 0.064 0.068

(0.039) (0.041) (0.029) (0.040) (0.039) (0.042) (0.042) (0.043) (0.043)

50 0.042 0.050 0.005 0.044 0.040 0.057 0.059 0.059 0.061

(0.031) (0.033) (0.018) (0.032) (0.031) (0.034) (0.034) (0.034) (0.034)

60 0.043 0.050 0.006 0.045 0.042 0.056 0.058 0.059 0.060

(0.028) (0.030) (0.015) (0.029) (0.028) (0.031) (0.031) (0.032) (0.031)

100 0.042 0.050 0.005 0.046 0.042 0.050 0.049 0.054 0.053

(0.022) (0.024) (0.010) (0.023) (0.021) (0.023) (0.023) (0.024) (0.024)

200 0.043 0.051 0.006 0.049 0.043 0.047 0.046 0.053 0.052

(0.019) (0.021) (0.008) (0.020) (0.019) (0.020) (0.020) (0.021) (0.020)

300 0.042 0.051 0.006 0.049 0.042 0.045 0.044 0.052 0.051

(0.018) (0.021) (0.007) (0.019) (0.017) (0.018) (0.018) (0.019) (0.019)

500 0.043 0.051 0.006 0.050 0.042 0.044 0.044 0.051 0.051

(0.017) (0.019) (0.007) (0.018) (0.017) (0.017) (0.017) (0.018) (0.018)
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Table B.2. Empirical FDRs for the investigated methods for the independent tests for
π0 = 0.75 and 0.8. The number of replications is 1,000 per scenario and the number of
bootstrap resamples is 10,000. The standard errors are provided in parenthesis. Cases where
FDR control was anti-conservative are indicated with a star (?).

π0 n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.8 20 0.036 0.047 0.005 0.036 0.014 0.083 0.102 0.083 0.102

(0.086) (0.092) (0.066) (0.086) (0.078) (0.077) (0.067) (0.077) (0.067)

30 0.039 0.049 0.007 0.040 0.033 0.063 0.069 0.065 0.070

(0.040) (0.040) (0.055) (0.040) (0.041) (0.041) (0.041) (0.041) (0.041)

40 0.038 0.048 0.004 0.040 0.035 0.052 0.055 0.055 0.057

(0.027) (0.030) (0.017) (0.028) (0.027) (0.030) (0.030) (0.030) (0.030)

50 0.040 0.051 0.005 0.043 0.038 0.053 0.053 0.056 0.056

(0.024) (0.026) (0.013) (0.024) (0.024) (0.026) (0.026) (0.026) (0.026)

60 0.041 0.051 0.005 0.044 0.038 0.050 0.049 0.054 0.053

(0.021) (0.024) (0.011) (0.022) (0.021) (0.022) (0.023) (0.023) (0.023)

100 0.041 0.052 0.005 0.047 0.040 0.046 0.045 0.053 0.051

(0.018) (0.020) (0.008) (0.019) (0.017) (0.018) (0.018) (0.020) (0.019)

200 0.040 0.050 0.006 0.048 0.040 0.043 0.042 0.051 0.050

(0.015) (0.018) (0.006) (0.016) (0.015) (0.015) (0.015) (0.017) (0.017)

300 0.040 0.050 0.005 0.049 0.039 0.041 0.041 0.051 0.050

(0.014) (0.017) (0.006) (0.016) (0.014) (0.015) (0.015) (0.016) (0.016)

500 0.041 0.052 0.006 0.051 0.041 0.042 0.042 0.053 0.052

(0.015) (0.017) (0.006) (0.016) (0.014) (0.015) (0.014) (0.016) (0.016)

0.75 20 0.034 0.045 0.004 0.034 0.011 0.071 0.081 0.071 0.081

(0.078) (0.069) (0.045) (0.078) (0.079) (0.060) (0.060) (0.061) (0.060)

30 0.035 0.047 0.004 0.036 0.026 0.054 0.056 0.055 0.058

(0.032) (0.034) (0.024) (0.033) (0.033) (0.033) (0.033) (0.033) (0.033)

40 0.037 0.049 0.005 0.039 0.032 0.050 0.049 0.052 0.052

(0.024) (0.026) (0.016) (0.024) (0.024) (0.025) (0.025) (0.025) (0.026)

50 0.036 0.050 0.005 0.040 0.033 0.046 0.045 0.050 0.049

(0.020) (0.023) (0.012) (0.021) (0.020) (0.021) (0.022) (0.022) (0.022)

60 0.038 0.051 0.005 0.042 0.034 0.046 0.044 0.051 0.048

(0.019) (0.022) (0.009) (0.019) (0.017) (0.019) (0.019) (0.020) (0.020)

100 0.037 0.050 0.004 0.044 0.034 0.041 0.039 0.049 0.046

(0.016) (0.018) (0.006) (0.017) (0.015) (0.016) (0.016) (0.017) (0.017)

200 0.038 0.050 0.005 0.047 0.036 0.040 0.038 0.050 0.047

(0.013) (0.016) (0.005) (0.015) (0.013) (0.013) (0.013) (0.015) (0.014)

300 0.038 0.051 0.005 0.049 0.037 0.040 0.038 0.051 0.049

(0.013) (0.015) (0.005) (0.014) (0.012) (0.013) (0.013) (0.014) (0.014)

500 0.037 0.051 0.005 0.050 0.036 0.039 0.037 0.051 0.050

(0.012) (0.015) (0.005) (0.014) (0.012) (0.012) (0.012) (0.014) (0.014)
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Table B.3. Empirical false non-discovery rates for the investigated methods for the normal
independent tests. The number of replications is 1,000 per scenario and the number of
bootstrap resmaples is 10,000. The standard errors of the estimated false non-discovery rate
is of the order of 0.006 or less for all the methods.

π0 n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.9 20 0.099 0.099 0.100 0.099 0.100 0.095 0.093 0.095 0.093

30 0.094 0.093 0.099 0.094 0.095 0.088 0.086 0.088 0.086

40 0.085 0.083 0.096 0.084 0.084 0.078 0.076 0.078 0.076

50 0.074 0.073 0.091 0.074 0.073 0.069 0.068 0.069 0.067

60 0.065 0.064 0.084 0.065 0.064 0.061 0.060 0.060 0.059

100 0.042 0.041 0.060 0.041 0.041 0.040 0.039 0.039 0.039

200 0.019 0.019 0.031 0.019 0.019 0.019 0.019 0.018 0.018

300 0.011 0.010 0.019 0.010 0.011 0.010 0.010 0.010 0.010

500 0.004 0.003 0.008 0.004 0.004 0.004 0.004 0.003 0.003

0.85 20 0.148 0.148 0.150 0.148 0.150 0.144 0.142 0.144 0.142

30 0.140 0.138 0.148 0.140 0.143 0.134 0.132 0.134 0.132

40 0.127 0.125 0.144 0.127 0.129 0.122 0.120 0.121 0.120

50 0.115 0.112 0.137 0.114 0.116 0.110 0.109 0.110 0.109

60 0.105 0.102 0.129 0.104 0.105 0.100 0.100 0.099 0.099

100 0.075 0.072 0.100 0.073 0.074 0.072 0.072 0.071 0.071

200 0.040 0.038 0.062 0.039 0.040 0.039 0.039 0.038 0.038

300 0.024 0.023 0.042 0.023 0.024 0.024 0.024 0.022 0.022

500 0.010 0.009 0.020 0.009 0.010 0.010 0.010 0.009 0.009

0.8 20 0.196 0.194 0.200 0.196 0.199 0.188 0.185 0.188 0.185

30 0.179 0.175 0.196 0.179 0.183 0.171 0.169 0.170 0.168

40 0.160 0.155 0.187 0.159 0.162 0.153 0.152 0.152 0.151

50 0.143 0.138 0.175 0.141 0.144 0.137 0.136 0.135 0.135

60 0.128 0.123 0.163 0.126 0.129 0.123 0.123 0.121 0.121

100 0.090 0.085 0.124 0.087 0.089 0.087 0.087 0.084 0.084

200 0.047 0.044 0.075 0.045 0.047 0.046 0.046 0.043 0.043

300 0.028 0.026 0.050 0.026 0.028 0.028 0.028 0.026 0.026

500 0.012 0.011 0.025 0.011 0.012 0.012 0.012 0.010 0.010

0.75 20 0.245 0.242 0.250 0.245 0.249 0.236 0.234 0.236 0.234

30 0.224 0.218 0.245 0.224 0.232 0.215 0.215 0.214 0.214

40 0.201 0.193 0.235 0.200 0.206 0.193 0.194 0.191 0.192

50 0.181 0.172 0.222 0.178 0.184 0.173 0.175 0.171 0.173

60 0.163 0.154 0.208 0.160 0.165 0.157 0.158 0.153 0.155

100 0.115 0.107 0.160 0.110 0.116 0.111 0.113 0.107 0.108

200 0.060 0.055 0.096 0.056 0.060 0.059 0.060 0.055 0.055

300 0.037 0.034 0.064 0.034 0.037 0.037 0.037 0.033 0.033

500 0.018 0.015 0.035 0.016 0.018 0.017 0.017 0.015 0.015
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Table B.4. Average number of false hypotheses rejected for the investigated methods for the
independent tests for π0 = 0.85 and 0.9. The number of replications is 1,000 per scenario and
the number of bootstrap resamples is 10,000. The standard errors are provided in parenthesis.
Cases where FDR control was anti-conservative are indicated with a star (?).

π0 n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.9 20 1.240 1.485 0.150 1.244 0.555 5.253? 7.727? 5.253? 7.727?

(1.660) (1.897) (0.456) (1.665) (1.106) (3.318) (3.843) (3.318) (3.843)

30 6.703 7.552 0.923 6.746 6.019 13.054? 15.782? 13.054? 15.787?

(4.118) (4.356) (1.273) (4.156) (4.219) (4.890) (4.929) (4.890) (4.943)

40 16.808 18.135 3.949 17.013 17.540 23.503? 25.641? 23.555? 25.724?

(5.487) (5.683) (2.872) (5.557) (5.744) (5.567) (5.378) (5.641) (5.487)

50 27.806 29.194 9.855 28.148 29.079 33.320 34.935? 33.543 35.216?

(5.357) (5.466) (4.100) (5.448) (5.449) (5.329) (5.102) (5.450) (5.210)

60 37.287 38.786 17.294 37.815 38.700 41.910 43.045 42.317 43.383

(5.337) (5.524) (4.614) (5.433) (5.440) (5.341) (5.309) (5.411) (5.345)

100 60.868 62.056 42.680 61.554 61.805 63.045 63.520 63.618 64.086

(4.281) (4.334) (4.494) (4.307) (4.182) (4.133) (4.096) (4.195) (4.146)

200 82.350 83.041 71.616 82.816 82.593 82.939 82.994 83.440 83.427

(3.054) (3.106) (3.129) (3.070) (3.034) (2.988) (2.995) (2.994) (3.012)

300 90.216 90.674 82.587 90.605 90.310 90.511 90.564 90.883 90.881

(2.476) (2.522) (2.880) (2.487) (2.486) (2.456) (2.468) (2.456) (2.469)

500 96.658 96.867 92.442 96.845 96.699 96.727 96.743 96.919 96.927

(1.631) (1.580) (2.203) (1.588) (1.620) (1.598) (1.594) (1.571) (1.571)

0.85 20 2.182 2.701 0.276 2.191 0.575 7.007? 9.238? 7.007? 9.238?

(2.397) (2.804) (0.647) (2.412) (1.152) (3.848) (4.273) (3.848) (4.273)

30 11.770 13.658 1.786 11.876 8.135 18.502? 20.513? 18.518? 20.559?

(5.340) (5.757) (1.939) (5.419) (5.274) (5.817) (5.890) (5.850) (5.976)

40 26.090 28.807 7.014 26.511 23.838 32.711 34.012? 33.078 34.348?

(6.044) (6.482) (3.775) (6.155) (6.416) (6.202) (6.190) (6.430) (6.357)

50 39.728 42.691 15.226 40.449 38.755 45.147 46.007 45.782 46.627

(5.932) (6.396) (4.561) (6.108) (6.289) (6.173) (6.118) (6.357) (6.238)

60 51.011 53.887 24.477 51.874 50.483 55.606 56.074 56.440 56.909

(6.096) (6.502) (5.209) (6.162) (6.113) (6.056) (5.954) (6.173) (6.047)

100 81.548 84.244 56.074 82.899 82.028 84.234 84.496 85.544 85.743

(5.402) (5.585) (5.038) (5.461) (5.359) (5.313) (5.301) (5.421) (5.384)

200 114.555 116.342 94.315 115.937 114.935 115.592 115.715 116.985 117.008

(4.445) (4.528) (4.339) (4.489) (4.459) (4.450) (4.437) (4.484) (4.459)

300 129.007 130.350 112.993 130.142 129.243 129.569 129.620 130.656 130.704

(3.603) (3.569) (4.140) (3.544) (3.608) (3.543) (3.551) (3.513) (3.507)

500 141.408 142.102 132.288 142.040 141.552 141.622 141.610 142.211 142.205

(2.477) (2.463) (3.201) (2.467) (2.468) (2.471) (2.480) (2.439) (2.441)
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Table B.5. Average number of false hypotheses rejected for the investigated methods for the
independent tests for π0 = 0.75 and 0.8. The number of replications is 1,000 per scenario and
the number of bootstrap resamples is 10,000. The standard errors are provided in parenthesis.
Cases where FDR control was anti-conservative are indicated with a star (?).

π0 n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.8 20 5.388 7.281 0.463 5.417 1.725 14.553? 18.688? 14.561? 18.728?

(4.202) (5.135) (0.853) (4.232) (2.633) (6.133) (6.203) (6.155) (6.279)

30 25.230 30.192 4.531 25.757 21.143 35.525 38.072? 36.061? 38.628?

(7.416) (8.021) (3.378) (7.581) (7.893) (7.666) (7.329) (7.942) (7.531)

40 47.957 53.540 15.417 49.134 45.453 56.182 57.597 57.379 58.736

(7.489) (8.019) (5.142) (7.714) (7.726) (7.398) (7.145) (7.618) (7.277)

50 66.969 72.742 29.768 68.810 65.895 73.741 74.437 75.444 76.225

(6.966) (7.397) (6.027) (7.189) (7.039) (7.080) (7.031) (7.312) (7.288)

60 82.596 88.211 43.796 84.787 82.063 88.116 88.389 90.255 90.525

(6.909) (7.692) (6.041) (7.098) (7.109) (7.102) (7.082) (7.366) (7.356)

100 121.731 126.343 86.655 124.387 121.862 124.571 124.537 127.228 127.113

(6.091) (6.403) (5.697) (6.176) (6.141) (6.062) (6.049) (6.175) (6.223)

200 160.684 163.676 135.430 163.036 161.052 161.813 161.785 164.245 164.135

(4.677) (4.905) (4.878) (4.710) (4.730) (4.659) (4.677) (4.644) (4.650)

300 176.836 178.966 158.023 178.737 177.116 177.477 177.450 179.271 179.243

(3.685) (3.663) (4.366) (3.577) (3.687) (3.642) (3.637) (3.560) (3.572)

500 190.454 191.589 179.359 191.530 190.594 190.754 190.696 191.743 191.740

(2.724) (2.673) (3.347) (2.620) (2.704) (2.709) (2.691) (2.594) (2.599)

0.75 20 6.965 10.698 0.642 7.008 1.453 18.680? 21.000? 18.732? 21.096?

(5.119) (6.728) (1.059) (5.158) (2.475) (7.164) (7.062) (7.263) (7.218)

30 33.524 41.601 6.162 34.341 23.885 45.819 45.332 46.901 46.333

(8.214) (9.014) (3.889) (8.445) (9.015) (8.554) (8.311) (8.967) (8.642)

40 61.344 71.099 19.549 63.427 55.572 71.986 70.158 74.093 72.290

(8.422) (9.414) (5.864) (8.757) (9.069) (8.440) (8.401) (8.824) (8.760)

50 84.840 95.004 36.245 87.869 81.260 93.500 91.526 96.670 94.390

(8.517) (9.554) (6.650) (8.900) (8.647) (8.253) (8.234) (8.768) (8.615)

60 104.658 114.310 53.356 108.366 102.018 111.754 109.751 115.533 113.301

(8.008) (8.821) (6.998) (8.339) (8.061) (7.958) (7.813) (8.262) (8.080)

100 153.187 161.032 107.358 157.756 152.385 156.835 155.323 161.288 159.734

(6.992) (7.624) (6.501) (7.200) (7.011) (7.003) (7.036) (7.121) (7.160)

200 202.261 206.948 170.472 206.096 202.203 203.504 203.009 207.241 206.739

(5.130) (5.299) (5.668) (5.104) (5.163) (5.138) (5.142) (5.043) (5.106)

300 221.128 224.398 198.401 224.025 221.243 221.750 221.564 224.604 224.463

(4.067) (4.173) (4.657) (4.005) (4.016) (4.057) (4.005) (4.005) (3.957)

500 236.653 238.428 223.213 238.364 236.778 236.917 236.910 238.612 238.561

(2.945) (2.888) (3.477) (2.882) (2.906) (2.926) (2.934) (2.835) (2.858)
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B.2. Gamma Distributed Random Variables
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Table B.6. Empirical FDRs for the investigated methods for the independent tests for
π0 = 0.85 and 0.9 for the gamma variates. The number of replications is 1,000 per scenario
and the number of bootstrap resamples is 10,000. The standard errors are provided in
parenthesis.

π0 n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.90 20 0.009 0.012 0.002 0.009 0.015 0.097 0.059 0.101 0.062

(0.047) (0.051) (0.039) (0.047) (0.021) (0.042) (0.034) (0.042) (0.035)

30 0.018 0.022 0.001 0.019 0.022 0.085 0.048 0.090 0.051

(0.022) (0.024) (0.011) (0.022) (0.019) (0.034) (0.026) (0.035) (0.027)

40 0.025 0.030 0.001 0.027 0.025 0.074 0.042 0.079 0.045

(0.021) (0.022) (0.007) (0.021) (0.019) (0.031) (0.024) (0.032) (0.025)

50 0.030 0.035 0.002 0.033 0.027 0.067 0.040 0.072 0.043

(0.020) (0.022) (0.007) (0.021) (0.018) (0.028) (0.022) (0.029) (0.023)

60 0.033 0.038 0.003 0.036 0.028 0.063 0.038 0.068 0.042

(0.020) (0.022) (0.007) (0.021) (0.018) (0.026) (0.020) (0.027) (0.021)

100 0.038 0.044 0.004 0.043 0.027 0.053 0.033 0.059 0.037

(0.021) (0.023) (0.007) (0.022) (0.018) (0.024) (0.019) (0.025) (0.021)

200 0.042 0.047 0.005 0.047 0.029 0.048 0.032 0.053 0.036

(0.020) (0.022) (0.007) (0.021) (0.016) (0.021) (0.018) (0.022) (0.018)

300 0.043 0.049 0.005 0.048 0.030 0.046 0.032 0.051 0.036

(0.021) (0.022) (0.007) (0.022) (0.017) (0.021) (0.018) (0.022) (0.019)

500 0.044 0.050 0.006 0.050 0.032 0.047 0.033 0.052 0.038

(0.020) (0.022) (0.008) (0.021) (0.018) (0.021) (0.018) (0.022) (0.019)

0.85 20 0.010 0.014 0.001 0.010 0.014 0.083 0.050 0.089 0.053

(0.029) (0.031) (0.016) (0.029) (0.017) (0.034) (0.027) (0.035) (0.028)

30 0.021 0.027 0.001 0.023 0.023 0.074 0.043 0.080 0.047

(0.019) (0.021) (0.008) (0.019) (0.016) (0.027) (0.022) (0.028) (0.023)

40 0.028 0.035 0.001 0.031 0.025 0.064 0.038 0.071 0.043

(0.017) (0.020) (0.006) (0.018) (0.015) (0.023) (0.018) (0.024) (0.019)

50 0.031 0.039 0.002 0.036 0.025 0.057 0.035 0.064 0.040

(0.017) (0.020) (0.006) (0.018) (0.015) (0.021) (0.017) (0.023) (0.018)

60 0.033 0.040 0.003 0.038 0.025 0.054 0.033 0.062 0.039

(0.017) (0.019) (0.006) (0.018) (0.014) (0.020) (0.016) (0.021) (0.018)

100 0.037 0.045 0.004 0.044 0.026 0.047 0.031 0.055 0.037

(0.016) (0.018) (0.005) (0.017) (0.014) (0.018) (0.015) (0.019) (0.016)

200 0.040 0.048 0.005 0.048 0.028 0.044 0.031 0.052 0.037

(0.016) (0.019) (0.006) (0.018) (0.014) (0.017) (0.014) (0.018) (0.016)

300 0.040 0.049 0.005 0.049 0.029 0.043 0.031 0.051 0.036

(0.016) (0.019) (0.006) (0.018) (0.014) (0.016) (0.014) (0.018) (0.016)

500 0.041 0.049 0.005 0.049 0.031 0.043 0.032 0.051 0.039

(0.016) (0.018) (0.006) (0.018) (0.014) (0.016) (0.014) (0.018) (0.016)
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Table B.7. Empirical FDRs for the investigated methods for the independent tests for π0 = 0.8
and 0.75 for the gamma variates. The number of replications is 1,000 per scenario and the
number of bootstrap resamples is 10,000. The standard errors are provided in parenthesis.

π0 n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.80 20 0.012 0.018 0.001 0.012 0.014 0.070 0.043 0.078 0.048

(0.027) (0.028) (0.032) (0.027) (0.014) (0.026) (0.020) (0.028) (0.021)

30 0.022 0.031 0.001 0.025 0.021 0.060 0.036 0.068 0.041

(0.016) (0.018) (0.006) (0.017) (0.013) (0.020) (0.016) (0.022) (0.017)

40 0.027 0.036 0.002 0.032 0.023 0.054 0.033 0.063 0.040

(0.015) (0.018) (0.005) (0.016) (0.012) (0.018) (0.015) (0.019) (0.016)

50 0.031 0.041 0.003 0.038 0.023 0.050 0.031 0.060 0.039

(0.015) (0.017) (0.005) (0.016) (0.012) (0.017) (0.014) (0.019) (0.015)

60 0.033 0.044 0.003 0.041 0.024 0.048 0.031 0.058 0.038

(0.014) (0.017) (0.005) (0.015) (0.012) (0.017) (0.013) (0.018) (0.015)

100 0.037 0.047 0.004 0.046 0.025 0.043 0.029 0.053 0.037

(0.014) (0.016) (0.005) (0.015) (0.011) (0.014) (0.012) (0.016) (0.014)

200 0.038 0.049 0.005 0.049 0.027 0.041 0.029 0.051 0.038

(0.014) (0.016) (0.005) (0.016) (0.012) (0.014) (0.012) (0.016) (0.014)

300 0.039 0.049 0.005 0.049 0.028 0.040 0.030 0.050 0.038

(0.014) (0.017) (0.005) (0.016) (0.012) (0.014) (0.012) (0.016) (0.014)

500 0.039 0.050 0.005 0.050 0.030 0.040 0.031 0.051 0.040

(0.014) (0.016) (0.005) (0.015) (0.012) (0.014) (0.012) (0.015) (0.014)

0.75 20 0.014 0.023 0.000 0.015 0.015 0.061 0.037 0.070 0.043

(0.018) (0.019) (0.011) (0.018) (0.012) (0.020) (0.017) (0.022) (0.018)

30 0.022 0.034 0.001 0.027 0.019 0.052 0.032 0.062 0.039

(0.013) (0.016) (0.005) (0.014) (0.011) (0.017) (0.013) (0.019) (0.015)

40 0.028 0.040 0.002 0.035 0.021 0.048 0.030 0.059 0.038

(0.012) (0.015) (0.004) (0.014) (0.010) (0.015) (0.012) (0.017) (0.014)

50 0.031 0.043 0.002 0.039 0.022 0.045 0.029 0.056 0.037

(0.013) (0.016) (0.004) (0.014) (0.010) (0.014) (0.012) (0.016) (0.013)

60 0.033 0.045 0.003 0.042 0.022 0.043 0.028 0.055 0.037

(0.013) (0.015) (0.004) (0.014) (0.011) (0.014) (0.012) (0.016) (0.013)

100 0.035 0.047 0.004 0.046 0.024 0.039 0.027 0.051 0.036

(0.012) (0.015) (0.004) (0.013) (0.010) (0.012) (0.010) (0.014) (0.012)

200 0.036 0.050 0.004 0.050 0.026 0.038 0.027 0.051 0.038

(0.012) (0.015) (0.004) (0.014) (0.010) (0.012) (0.011) (0.014) (0.013)

300 0.037 0.050 0.005 0.050 0.027 0.038 0.028 0.050 0.040

(0.011) (0.014) (0.004) (0.013) (0.010) (0.012) (0.010) (0.014) (0.012)

500 0.037 0.050 0.005 0.050 0.029 0.037 0.029 0.050 0.041

(0.012) (0.015) (0.004) (0.014) (0.011) (0.012) (0.011) (0.014) (0.013)
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Table B.8. Empirical false non-discovery rates for the investigated methods for the gamma
independent variates. The number of replications is 1,000 per scenario and the number of
bootstrap resmaples is 10,000. The standard errors of the estimated false non-discovery rate
is of the order of 0.008 or less for all the methods.

π0 n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.90 20 0.095 0.093 0.100 0.094 0.068 0.053 0.053 0.053 0.053

30 0.066 0.064 0.094 0.065 0.044 0.036 0.037 0.035 0.036

40 0.045 0.043 0.074 0.044 0.031 0.026 0.027 0.025 0.026

50 0.032 0.031 0.056 0.031 0.022 0.019 0.020 0.018 0.019

60 0.024 0.023 0.044 0.023 0.017 0.015 0.016 0.014 0.015

100 0.010 0.009 0.020 0.009 0.007 0.006 0.007 0.006 0.006

200 0.001 0.001 0.004 0.001 0.001 0.001 0.001 0.001 0.001

300 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000

500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.85 20 0.140 0.137 0.149 0.140 0.105 0.085 0.086 0.083 0.084

30 0.099 0.094 0.140 0.097 0.072 0.060 0.062 0.058 0.061

40 0.071 0.067 0.113 0.068 0.052 0.044 0.047 0.042 0.045

50 0.053 0.050 0.090 0.051 0.039 0.034 0.036 0.032 0.034

60 0.041 0.038 0.073 0.039 0.030 0.026 0.028 0.025 0.027

100 0.016 0.015 0.035 0.015 0.012 0.011 0.011 0.010 0.011

200 0.002 0.002 0.007 0.002 0.001 0.001 0.001 0.001 0.001

300 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000

500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.80 20 0.180 0.171 0.199 0.179 0.136 0.111 0.113 0.108 0.111

30 0.124 0.115 0.182 0.121 0.094 0.079 0.083 0.076 0.079

40 0.090 0.083 0.145 0.085 0.069 0.059 0.062 0.056 0.059

50 0.067 0.062 0.117 0.063 0.052 0.045 0.048 0.042 0.045

60 0.052 0.047 0.096 0.048 0.040 0.035 0.037 0.032 0.034

100 0.020 0.018 0.046 0.018 0.015 0.013 0.014 0.012 0.013

200 0.002 0.002 0.008 0.002 0.002 0.001 0.002 0.001 0.001

300 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000

500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.75 20 0.214 0.197 0.249 0.212 0.163 0.134 0.137 0.129 0.133

30 0.145 0.131 0.221 0.139 0.113 0.097 0.101 0.092 0.096

40 0.105 0.094 0.174 0.098 0.083 0.072 0.076 0.067 0.071

50 0.080 0.071 0.139 0.073 0.064 0.056 0.059 0.052 0.055

60 0.062 0.055 0.114 0.056 0.050 0.044 0.047 0.040 0.042

100 0.026 0.022 0.057 0.022 0.020 0.018 0.019 0.016 0.017

200 0.004 0.003 0.013 0.003 0.003 0.002 0.003 0.002 0.002

300 0.001 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000

500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Table B.9. Average number of false hypotheses rejected for the investigated methods for the
gamma independent variates for π0 = 0.9 and 0.85. The number of replications is 1,000 per
scenario and the number of bootstrap resamples is 10,000. The standard errors are provided
in parenthesis. Cases where FDR control was anti-conservative are indicated with a star (?).

π0 n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.90 20 6.025 7.536 0.418 6.088 34.021 49.516? 49.682 50.206? 50.172

(4.821) (5.533) (0.849) (4.885) (6.243) (5.692) (5.346) (5.741) (5.463)

30 36.660 38.988 6.972 37.371 58.868 66.885? 65.629 67.555? 66.163

(6.489) (6.648) (4.499) (6.640) (4.867) (4.449) (4.539) (4.529) (4.549)

40 57.539 59.238 27.641 58.435 71.479 76.413? 75.158 77.012? 75.688

(5.227) (5.286) (5.900) (5.307) (4.013) (3.797) (3.785) (3.792) (3.800)

50 70.187 71.395 46.142 71.030 79.464 82.748? 81.764 83.238? 82.261

(4.534) (4.569) (5.159) (4.530) (3.566) (3.491) (3.514) (3.491) (3.525)

60 77.794 78.758 58.578 78.503 84.414 86.688 85.862 87.155? 86.309

(3.710) (3.779) (4.644) (3.754) (3.194) (2.987) (3.110) (2.999) (3.079)

100 91.319 91.784 82.047 91.733 93.672 94.513 94.067 94.770 94.341

(2.493) (2.464) (2.960) (2.479) (2.202) (2.101) (2.156) (2.082) (2.103)

200 98.663 98.761 96.358 98.759 99.066 99.185 99.107 99.235 99.169

(1.085) (1.054) (1.688) (1.048) (0.900) (0.851) (0.891) (0.841) (0.875)

300 99.756 99.778 99.103 99.783 99.834 99.853 99.843 99.864 99.850

(0.505) (0.485) (0.917) (0.484) (0.430) (0.402) (0.420) (0.389) (0.412)

500 99.993 99.993 99.949 99.993 99.993 99.994 99.995 99.995 99.996

(0.083) (0.083) (0.220) (0.083) (0.083) (0.077) (0.071) (0.071) (0.063)

0.85 20 11.203 15.327 0.592 11.465 50.032 71.990? 70.761 73.583? 71.978

(7.241) (8.894) (1.080) (7.510) (7.765) (6.951) (6.654) (7.161) (6.727)

30 56.989 62.022 11.727 58.643 84.435 96.449? 93.905 98.080? 95.454

(8.058) (8.514) (6.199) (8.278) (6.227) (5.887) (5.854) (5.924) (5.999)

40 85.661 89.406 41.942 87.698 103.439 111.092? 108.712 112.649? 110.214

(6.311) (6.577) (7.072) (6.327) (5.350) (4.947) (5.007) (4.989) (4.948)

50 102.707 105.802 65.558 104.741 115.273 120.568 118.687 121.925? 120.052

(5.784) (5.844) (5.999) (5.841) (4.914) (4.741) (4.778) (4.735) (4.753)

60 114.187 116.496 83.061 116.071 123.420 127.176 125.655 128.360 126.936

(4.861) (4.985) (5.473) (4.826) (4.250) (4.074) (4.076) (3.987) (4.094)

100 135.916 137.070 119.077 137.003 139.598 140.899 140.259 141.557 140.939

(3.285) (3.226) (4.340) (3.224) (2.859) (2.738) (2.782) (2.671) (2.769)

200 148.239 148.427 144.251 148.457 148.796 148.950 148.830 149.068 148.985

(1.347) (1.271) (2.197) (1.269) (1.103) (1.032) (1.085) (0.969) (1.015)

300 149.748 149.791 148.836 149.792 149.852 149.871 149.867 149.891 149.886

(0.474) (0.438) (1.041) (0.437) (0.382) (0.353) (0.360) (0.327) (0.333)

500 149.997 149.998 149.960 149.997 149.999 149.999 149.998 149.999 149.999

(0.055) (0.045) (0.196) (0.055) (0.032) (0.032) (0.045) (0.032) (0.032)
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Table B.10. Average number of false hypotheses rejected for the investigated methods for the
gamma independent variates for π0 = 0.75 and 0.8. The number of replications is 1,000 per
scenario and the number of bootstrap resamples is 10,000. The standard errors are provided
in parenthesis. Cases where FDR control was anti-conservative are indicated with a star (?).

π0 n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.80 20 24.457 34.724 0.961 25.227 74.056 100.973? 98.435 104.079? 100.995

(10.327) (12.313) (1.513) (10.750) (8.844) (8.008) (7.570) (8.237) (7.741)

30 87.011 96.116 21.549 90.518 117.384 131.894 128.330 134.990? 131.377

(8.623) (9.358) (8.117) (8.747) (7.163) (6.574) (6.581) (6.760) (6.827)

40 121.628 128.207 63.733 125.587 141.347 150.635 147.472 153.506 150.481

(7.164) (7.612) (7.962) (7.371) (6.179) (5.685) (5.834) (5.764) (5.894)

50 142.576 147.875 93.969 146.399 156.376 162.876 160.284 165.426 163.003

(6.026) (6.290) (6.981) (6.020) (5.381) (5.086) (5.158) (5.134) (5.107)

60 156.368 160.824 115.508 159.770 166.729 171.305 169.341 173.649 171.835

(5.666) (5.827) (6.650) (5.651) (4.993) (4.848) (4.968) (4.813) (4.883)

100 183.775 185.656 161.712 185.586 187.781 189.363 188.504 190.583 189.887

(3.525) (3.497) (4.838) (3.374) (3.175) (3.010) (3.092) (2.912) (2.988)

200 198.062 198.412 193.187 198.415 198.685 198.825 198.731 199.033 198.946

(1.378) (1.306) (2.432) (1.278) (1.155) (1.112) (1.142) (1.021) (1.055)

300 199.767 199.812 198.763 199.814 199.853 199.872 199.855 199.898 199.891

(0.501) (0.457) (1.117) (0.447) (0.397) (0.377) (0.398) (0.325) (0.334)

500 199.997 199.997 199.964 199.998 200.000 200.000 200.000 200.000 200.000

(0.055) (0.055) (0.192) (0.045) (0.000) (0.000) (0.000) (0.000) (0.000)

0.75 20 45.377 65.865 1.658 47.919 104.645 134.759 131.385 139.992? 135.756

(12.836) (14.319) (2.151) (13.583) (9.879) (8.699) (8.311) (8.964) (8.596)

30 123.236 137.271 37.424 129.521 154.609 170.488 166.137 175.553 171.248

(9.146) (10.397) (9.752) (9.500) (7.790) (7.238) (7.221) (7.386) (7.428)

40 162.836 172.912 92.287 169.201 182.494 192.461 188.919 196.989 193.532

(7.195) (7.909) (8.500) (7.363) (6.548) (6.192) (6.296) (6.281) (6.411)

50 185.575 193.126 128.670 191.186 198.829 205.673 202.901 209.723 207.110

(6.513) (7.079) (7.666) (6.626) (6.050) (5.803) (5.893) (5.743) (5.949)

60 200.960 207.119 153.486 205.935 210.779 215.776 213.488 219.403 217.265

(6.008) (6.028) (7.260) (5.941) (5.284) (4.929) (5.103) (4.843) (4.983)

100 230.499 233.578 204.963 233.385 234.530 236.264 235.289 238.197 237.452

(3.951) (3.766) (5.196) (3.783) (3.561) (3.411) (3.509) (3.218) (3.309)

200 247.316 247.847 240.490 247.856 247.987 248.198 248.061 248.561 248.454

(1.623) (1.444) (2.711) (1.421) (1.383) (1.313) (1.345) (1.184) (1.227)

300 249.567 249.692 247.893 249.688 249.719 249.740 249.719 249.805 249.788

(0.639) (0.560) (1.404) (0.559) (0.528) (0.505) (0.533) (0.433) (0.449)

500 249.988 249.991 249.891 249.992 249.994 249.995 249.995 249.997 249.997

(0.109) (0.094) (0.327) (0.089) (0.077) (0.071) (0.071) (0.055) (0.055)
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APPENDIX C

SUPPLEMENTAL SIMULATION

RESULTS FOR DEPENDENT

TESTS

C.1. Normally Distributed Random Variables

C.1.1. Numerical Summaries of Empirical False Discovery Rates

The numerical summaries of the empirical false discovery rates corresponding to all the

simulation parameters for the various FDR controlling procedures considered are reported in

the following.
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Table C.1. Empirical FDRs for the investigated methods for the correlated cases for the
normal variates with π0 = 0.9 and ρ = ±0.1. Fifty blocks are utilized with pairwise correlation
between the variables within a block of ρ. The pre-specified significance level is α = 0.05.
The number of replications for each scenario is 1, 000 with 10, 000 bootstrap resamples. Equal
sample sizes were utilized for both the controls and cases. The standard errors are provided
in parenthesis.

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.9 0.1 20 0.040 0.047 0.007 0.040 0.009 0.121 0.135 0.121 0.135

(0.151) (0.158) (0.076) (0.151) (0.075) (0.164) (0.137) (0.164) (0.137)

30 0.039 0.045 0.005 0.039 0.026 0.077 0.086 0.077 0.086

(0.073) (0.077) (0.056) (0.072) (0.064) (0.076) (0.070) (0.076) (0.070)

40 0.045 0.050 0.007 0.046 0.037 0.067 0.072 0.067 0.073

(0.050) (0.050) (0.039) (0.050) (0.046) (0.052) (0.051) (0.052) (0.052)

50 0.046 0.052 0.006 0.047 0.041 0.065 0.066 0.066 0.067

(0.040) (0.041) (0.028) (0.040) (0.036) (0.042) (0.042) (0.042) (0.042)

60 0.045 0.051 0.006 0.047 0.042 0.059 0.060 0.061 0.062

(0.034) (0.036) (0.018) (0.035) (0.032) (0.035) (0.036) (0.036) (0.036)

100 0.045 0.051 0.006 0.049 0.044 0.053 0.053 0.056 0.056

(0.027) (0.028) (0.012) (0.028) (0.026) (0.028) (0.028) (0.029) (0.028)

200 0.045 0.051 0.006 0.049 0.045 0.049 0.049 0.053 0.053

(0.023) (0.026) (0.009) (0.024) (0.023) (0.024) (0.024) (0.025) (0.025)

300 0.044 0.050 0.006 0.049 0.044 0.047 0.047 0.052 0.052

(0.022) (0.024) (0.008) (0.023) (0.022) (0.023) (0.022) (0.023) (0.023)

500 0.045 0.051 0.006 0.050 0.045 0.047 0.047 0.052 0.052

(0.021) (0.023) (0.008) (0.022) (0.021) (0.022) (0.021) (0.022) (0.023)

-0.1 20 0.045 0.055 0.009 0.045 0.013 0.081 0.106 0.081 0.106

(0.161) (0.172) (0.092) (0.161) (0.089) (0.183) (0.153) (0.183) (0.153)

30 0.043 0.046 0.007 0.043 0.031 0.041 0.055 0.041 0.055

(0.080) (0.076) (0.063) (0.080) (0.082) (0.077) (0.070) (0.077) (0.070)

40 0.043 0.049 0.007 0.044 0.035 0.035 0.042 0.035 0.042

(0.049) (0.051) (0.040) (0.049) (0.043) (0.045) (0.045) (0.045) (0.045)

50 0.044 0.051 0.006 0.046 0.039 0.032 0.036 0.033 0.036

(0.038) (0.039) (0.025) (0.038) (0.036) (0.035) (0.035) (0.035) (0.035)

60 0.045 0.050 0.005 0.047 0.040 0.030 0.033 0.031 0.033

(0.034) (0.035) (0.017) (0.035) (0.033) (0.029) (0.030) (0.030) (0.030)

100 0.046 0.052 0.007 0.049 0.045 0.027 0.028 0.028 0.030

(0.026) (0.028) (0.012) (0.027) (0.025) (0.021) (0.022) (0.022) (0.022)

200 0.045 0.050 0.007 0.049 0.044 0.025 0.025 0.027 0.027

(0.023) (0.025) (0.010) (0.024) (0.023) (0.018) (0.018) (0.018) (0.019)

300 0.044 0.049 0.006 0.048 0.043 0.024 0.024 0.026 0.026

(0.021) (0.023) (0.008) (0.023) (0.021) (0.016) (0.016) (0.017) (0.017)

500 0.044 0.050 0.006 0.049 0.044 0.023 0.023 0.026 0.026

(0.021) (0.022) (0.008) (0.022) (0.021) (0.015) (0.015) (0.016) (0.016)
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Table C.2. Empirical FDRs for the investigated methods for the correlated cases for the
normal variates with π0 = 0.9 and ρ = ±0.25. Fifty blocks are utilized with pairwise
correlation between the variables within a block of ρ. The pre-specified significance level
is α = 0.05. The number of replications for each scenario is 1, 000 with 10, 000 bootstrap
resamples. Equal sample sizes were utilized for both the controls and cases. The standard
errors are provided in parenthesis.

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.9 0.25 20 0.042 0.050 0.005 0.042 0.007 0.117 0.125 0.117 0.125

(0.155) (0.160) (0.071) (0.155) (0.065) (0.156) (0.130) (0.156) (0.130)

30 0.045 0.050 0.004 0.045 0.028 0.083 0.091 0.083 0.092

(0.086) (0.085) (0.038) (0.086) (0.063) (0.077) (0.071) (0.077) (0.071)

40 0.042 0.047 0.006 0.043 0.034 0.066 0.069 0.066 0.070

(0.049) (0.051) (0.038) (0.049) (0.045) (0.051) (0.050) (0.052) (0.050)

50 0.045 0.051 0.006 0.046 0.041 0.062 0.065 0.063 0.066

(0.040) (0.043) (0.025) (0.040) (0.037) (0.041) (0.042) (0.042) (0.042)

60 0.044 0.050 0.005 0.046 0.041 0.057 0.059 0.059 0.060

(0.034) (0.036) (0.017) (0.034) (0.032) (0.036) (0.036) (0.037) (0.036)

100 0.045 0.052 0.006 0.049 0.045 0.053 0.054 0.056 0.056

(0.027) (0.030) (0.012) (0.028) (0.028) (0.029) (0.029) (0.030) (0.030)

200 0.044 0.050 0.006 0.048 0.044 0.048 0.048 0.052 0.052

(0.023) (0.026) (0.009) (0.024) (0.022) (0.024) (0.023) (0.025) (0.025)

300 0.046 0.052 0.006 0.051 0.046 0.049 0.048 0.054 0.053

(0.022) (0.024) (0.009) (0.023) (0.022) (0.023) (0.023) (0.024) (0.023)

500 0.044 0.050 0.006 0.049 0.044 0.046 0.045 0.051 0.051

(0.021) (0.024) (0.008) (0.023) (0.021) (0.022) (0.022) (0.023) (0.023)

-0.25 20 0.038 0.042 0.002 0.038 0.009 0.110 0.122 0.110 0.122

(0.148) (0.149) (0.035) (0.148) (0.071) (0.153) (0.119) (0.153) (0.119)

30 0.043 0.049 0.007 0.044 0.030 0.080 0.088 0.080 0.088

(0.080) (0.081) (0.066) (0.080) (0.070) (0.078) (0.070) (0.078) (0.070)

40 0.043 0.051 0.004 0.044 0.037 0.069 0.073 0.070 0.073

(0.050) (0.052) (0.026) (0.050) (0.045) (0.053) (0.051) (0.053) (0.052)

50 0.045 0.051 0.007 0.046 0.040 0.062 0.064 0.063 0.065

(0.039) (0.040) (0.026) (0.039) (0.036) (0.041) (0.042) (0.042) (0.042)

60 0.046 0.051 0.006 0.048 0.043 0.060 0.061 0.062 0.062

(0.034) (0.035) (0.018) (0.034) (0.032) (0.037) (0.036) (0.037) (0.037)

100 0.044 0.050 0.007 0.047 0.044 0.052 0.052 0.055 0.055

(0.027) (0.028) (0.012) (0.027) (0.026) (0.028) (0.027) (0.029) (0.028)

200 0.045 0.050 0.006 0.049 0.045 0.049 0.049 0.053 0.053

(0.022) (0.024) (0.009) (0.024) (0.022) (0.023) (0.023) (0.025) (0.024)

300 0.044 0.050 0.006 0.049 0.044 0.047 0.047 0.052 0.051

(0.021) (0.023) (0.009) (0.023) (0.021) (0.022) (0.022) (0.023) (0.023)

500 0.046 0.051 0.006 0.051 0.046 0.048 0.047 0.053 0.053

(0.021) (0.023) (0.008) (0.022) (0.021) (0.022) (0.022) (0.023) (0.023)
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Table C.3. Empirical FDRs for the investigated methods for the correlated cases for the
normal variates with π0 = 0.9 and ρ = ±0.5. Fifty blocks are utilized with pairwise correlation
between the variables within a block of ρ. The pre-specified significance level is α = 0.05.
The number of replications for each scenario is 1, 000 with 10, 000 bootstrap resamples. Equal
sample sizes were utilized for both the controls and cases. The standard errors are provided
in parenthesis.

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.9 0.5 20 0.046 0.049 0.001 0.046 0.010 0.118 0.131 0.118 0.131

(0.160) (0.160) (0.033) (0.160) (0.078) (0.167) (0.134) (0.167) (0.134)

30 0.043 0.049 0.006 0.044 0.025 0.082 0.091 0.082 0.091

(0.077) (0.078) (0.061) (0.077) (0.062) (0.077) (0.076) (0.077) (0.076)

40 0.044 0.049 0.005 0.045 0.036 0.066 0.068 0.066 0.069

(0.051) (0.052) (0.036) (0.051) (0.047) (0.051) (0.051) (0.051) (0.051)

50 0.045 0.052 0.006 0.046 0.042 0.063 0.065 0.065 0.067

(0.041) (0.043) (0.024) (0.042) (0.038) (0.044) (0.043) (0.044) (0.044)

60 0.044 0.051 0.006 0.045 0.042 0.058 0.059 0.060 0.061

(0.036) (0.039) (0.019) (0.036) (0.034) (0.039) (0.039) (0.040) (0.039)

100 0.045 0.052 0.005 0.048 0.044 0.053 0.052 0.056 0.055

(0.028) (0.031) (0.011) (0.029) (0.027) (0.030) (0.029) (0.031) (0.030)

200 0.045 0.052 0.006 0.049 0.044 0.049 0.049 0.053 0.053

(0.024) (0.028) (0.009) (0.026) (0.024) (0.025) (0.025) (0.026) (0.027)

300 0.044 0.050 0.006 0.049 0.044 0.047 0.047 0.052 0.051

(0.024) (0.027) (0.009) (0.025) (0.024) (0.025) (0.024) (0.026) (0.026)

500 0.045 0.052 0.006 0.050 0.045 0.047 0.047 0.053 0.053

(0.023) (0.026) (0.008) (0.024) (0.023) (0.024) (0.023) (0.025) (0.025)

-0.5 20 0.041 0.044 0.007 0.041 0.014 0.118 0.129 0.118 0.129

(0.146) (0.148) (0.081) (0.146) (0.095) (0.156) (0.128) (0.156) (0.128)

30 0.047 0.053 0.003 0.047 0.030 0.081 0.088 0.081 0.088

(0.085) (0.087) (0.030) (0.085) (0.068) (0.073) (0.070) (0.073) (0.070)

40 0.045 0.050 0.005 0.046 0.038 0.068 0.074 0.068 0.075

(0.051) (0.051) (0.034) (0.051) (0.045) (0.053) (0.052) (0.054) (0.052)

50 0.043 0.048 0.005 0.044 0.040 0.062 0.063 0.064 0.064

(0.039) (0.040) (0.023) (0.039) (0.036) (0.042) (0.041) (0.042) (0.041)

60 0.046 0.051 0.006 0.047 0.043 0.060 0.061 0.062 0.063

(0.035) (0.036) (0.019) (0.035) (0.032) (0.036) (0.036) (0.037) (0.037)

100 0.046 0.051 0.006 0.049 0.045 0.053 0.053 0.056 0.057

(0.028) (0.028) (0.012) (0.028) (0.027) (0.029) (0.029) (0.030) (0.030)

200 0.045 0.050 0.006 0.048 0.044 0.048 0.048 0.052 0.052

(0.024) (0.024) (0.009) (0.024) (0.023) (0.024) (0.024) (0.025) (0.026)

300 0.044 0.049 0.006 0.048 0.044 0.047 0.047 0.051 0.051

(0.022) (0.023) (0.009) (0.023) (0.022) (0.023) (0.022) (0.024) (0.023)

500 0.046 0.052 0.006 0.052 0.046 0.048 0.048 0.054 0.053

(0.020) (0.021) (0.008) (0.022) (0.020) (0.021) (0.021) (0.022) (0.022)
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Table C.4. Empirical FDRs for the investigated methods for the correlated cases for the
normal variates with π0 = 0.9 and ρ = ±0.75. Fifty blocks are utilized with pairwise
correlation between the variables within a block of ρ. The pre-specified significance level
is α = 0.05. The number of replications for each scenario is 1, 000 with 10, 000 bootstrap
resamples. Equal sample sizes were utilized for both the controls and cases. The standard
errors are provided in parenthesis.

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.9 0.75 20 0.034 0.039 0.006 0.034 0.013 0.105 0.116 0.105 0.116

(0.128) (0.133) (0.070) (0.128) (0.077) (0.160) (0.136) (0.160) (0.136)

30 0.045 0.052 0.003 0.045 0.031 0.076 0.081 0.076 0.081

(0.090) (0.093) (0.031) (0.091) (0.083) (0.091) (0.084) (0.091) (0.084)

40 0.046 0.055 0.005 0.047 0.038 0.069 0.073 0.070 0.074

(0.059) (0.063) (0.035) (0.059) (0.054) (0.064) (0.064) (0.065) (0.065)

50 0.045 0.055 0.006 0.047 0.042 0.063 0.064 0.064 0.065

(0.049) (0.054) (0.026) (0.049) (0.046) (0.054) (0.054) (0.054) (0.055)

60 0.045 0.055 0.006 0.047 0.042 0.059 0.060 0.061 0.061

(0.041) (0.047) (0.019) (0.042) (0.041) (0.046) (0.046) (0.046) (0.047)

100 0.045 0.055 0.006 0.049 0.045 0.054 0.054 0.057 0.057

(0.035) (0.041) (0.014) (0.036) (0.035) (0.037) (0.037) (0.039) (0.039)

200 0.045 0.053 0.006 0.049 0.044 0.049 0.049 0.053 0.053

(0.029) (0.034) (0.010) (0.031) (0.029) (0.031) (0.031) (0.032) (0.032)

300 0.044 0.053 0.006 0.049 0.044 0.047 0.047 0.052 0.051

(0.029) (0.035) (0.010) (0.031) (0.029) (0.030) (0.030) (0.032) (0.032)

500 0.043 0.052 0.006 0.048 0.043 0.046 0.045 0.050 0.050

(0.029) (0.035) (0.010) (0.031) (0.029) (0.029) (0.030) (0.031) (0.032)

-0.75 20 0.036 0.038 0.007 0.036 0.011 0.111 0.128 0.111 0.128

(0.133) (0.135) (0.075) (0.133) (0.081) (0.152) (0.136) (0.152) (0.136)

30 0.042 0.047 0.005 0.042 0.027 0.079 0.085 0.079 0.085

(0.083) (0.081) (0.056) (0.083) (0.068) (0.081) (0.076) (0.081) (0.076)

40 0.045 0.050 0.006 0.046 0.038 0.069 0.074 0.069 0.074

(0.053) (0.054) (0.035) (0.053) (0.049) (0.057) (0.057) (0.058) (0.058)

50 0.043 0.049 0.005 0.044 0.039 0.060 0.063 0.061 0.064

(0.041) (0.042) (0.023) (0.042) (0.038) (0.045) (0.045) (0.045) (0.045)

60 0.045 0.050 0.006 0.047 0.042 0.059 0.061 0.060 0.063

(0.037) (0.037) (0.018) (0.037) (0.035) (0.040) (0.040) (0.041) (0.041)

100 0.045 0.050 0.006 0.048 0.044 0.053 0.054 0.057 0.057

(0.030) (0.030) (0.013) (0.031) (0.029) (0.032) (0.032) (0.033) (0.033)

200 0.045 0.051 0.006 0.050 0.045 0.050 0.049 0.054 0.054

(0.025) (0.025) (0.010) (0.027) (0.025) (0.026) (0.026) (0.027) (0.027)

300 0.044 0.050 0.006 0.049 0.044 0.047 0.047 0.052 0.052

(0.024) (0.024) (0.009) (0.025) (0.024) (0.024) (0.024) (0.025) (0.025)

500 0.045 0.050 0.006 0.050 0.045 0.047 0.047 0.052 0.052

(0.024) (0.024) (0.009) (0.026) (0.024) (0.025) (0.025) (0.026) (0.026)
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Table C.5. Empirical FDRs for the investigated methods for the correlated cases for the
normal variates with π0 = 0.9 and ρ = ±0.9. Fifty blocks are utilized with pairwise correlation
between the variables within a block of ρ. The pre-specified significance level is α = 0.05.
The number of replications for each scenario is 1, 000 with 10, 000 bootstrap resamples. Equal
sample sizes were utilized for both the controls and cases. The standard errors are provided
in parenthesis.

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.9 0.9 20 0.039 0.049 0.006 0.039 0.016 0.100 0.106 0.100 0.106

(0.135) (0.142) (0.071) (0.135) (0.099) (0.164) (0.158) (0.164) (0.159)

30 0.036 0.049 0.005 0.037 0.026 0.071 0.078 0.071 0.078

(0.087) (0.097) (0.050) (0.088) (0.072) (0.103) (0.104) (0.103) (0.104)

40 0.040 0.053 0.006 0.041 0.036 0.065 0.070 0.066 0.071

(0.070) (0.079) (0.042) (0.071) (0.068) (0.083) (0.083) (0.083) (0.083)

50 0.043 0.056 0.007 0.044 0.037 0.057 0.059 0.058 0.061

(0.064) (0.075) (0.033) (0.065) (0.060) (0.070) (0.070) (0.071) (0.071)

60 0.040 0.054 0.004 0.041 0.038 0.054 0.055 0.056 0.057

(0.054) (0.066) (0.021) (0.055) (0.052) (0.061) (0.061) (0.062) (0.063)

100 0.043 0.057 0.005 0.046 0.042 0.051 0.051 0.054 0.054

(0.049) (0.061) (0.019) (0.051) (0.048) (0.052) (0.052) (0.054) (0.054)

200 0.044 0.059 0.006 0.048 0.044 0.048 0.048 0.052 0.052

(0.045) (0.060) (0.015) (0.047) (0.045) (0.046) (0.046) (0.049) (0.049)

300 0.044 0.058 0.006 0.049 0.044 0.047 0.047 0.052 0.052

(0.044) (0.058) (0.013) (0.047) (0.044) (0.046) (0.045) (0.048) (0.047)

500 0.045 0.057 0.007 0.050 0.044 0.046 0.046 0.052 0.052

(0.042) (0.053) (0.014) (0.045) (0.042) (0.043) (0.043) (0.046) (0.046)

-0.9 20 0.029 0.035 0.007 0.029 0.014 0.101 0.115 0.101 0.115

(0.110) (0.120) (0.076) (0.110) (0.085) (0.152) (0.140) (0.152) (0.140)

30 0.038 0.041 0.004 0.038 0.029 0.074 0.085 0.074 0.085

(0.086) (0.082) (0.045) (0.086) (0.081) (0.088) (0.088) (0.088) (0.088)

40 0.040 0.044 0.004 0.041 0.033 0.062 0.066 0.062 0.067

(0.060) (0.059) (0.027) (0.060) (0.056) (0.064) (0.064) (0.064) (0.065)

50 0.040 0.047 0.006 0.041 0.037 0.058 0.062 0.059 0.063

(0.048) (0.048) (0.030) (0.048) (0.045) (0.053) (0.054) (0.053) (0.054)

60 0.044 0.049 0.006 0.045 0.041 0.057 0.058 0.058 0.060

(0.047) (0.047) (0.021) (0.048) (0.046) (0.052) (0.052) (0.053) (0.052)

100 0.045 0.050 0.006 0.048 0.045 0.053 0.054 0.057 0.057

(0.038) (0.038) (0.015) (0.039) (0.037) (0.040) (0.040) (0.041) (0.041)

200 0.046 0.051 0.006 0.050 0.046 0.050 0.049 0.054 0.054

(0.034) (0.034) (0.011) (0.036) (0.034) (0.036) (0.036) (0.038) (0.038)

300 0.046 0.051 0.006 0.050 0.045 0.048 0.048 0.053 0.052

(0.031) (0.031) (0.011) (0.032) (0.031) (0.032) (0.032) (0.034) (0.033)

500 0.044 0.049 0.006 0.049 0.044 0.046 0.046 0.051 0.051

(0.031) (0.030) (0.011) (0.033) (0.032) (0.032) (0.032) (0.034) (0.034)
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Table C.6. Empirical FDRs for the investigated methods for the correlated cases for the
normal variates with π0 = 0.85 and ρ = ±0.1. Fifty blocks are utilized with pairwise
correlation between the variables within a block of ρ. The pre-specified significance level
is α = 0.05. The number of replications for each scenario is 1, 000 with 10, 000 bootstrap
resamples. Equal sample sizes were utilized for both the controls and cases. The standard
errors are provided in parenthesis.

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.85 0.1 20 0.034 0.041 0.003 0.034 0.011 0.112 0.137 0.112 0.137

(0.112) (0.122) (0.050) (0.112) (0.082) (0.130) (0.115) (0.130) (0.115)

30 0.039 0.047 0.007 0.039 0.027 0.069 0.079 0.069 0.079

(0.056) (0.057) (0.057) (0.056) (0.056) (0.060) (0.059) (0.061) (0.059)

40 0.042 0.051 0.005 0.044 0.038 0.065 0.068 0.065 0.068

(0.039) (0.042) (0.026) (0.039) (0.039) (0.042) (0.042) (0.042) (0.043)

50 0.041 0.050 0.006 0.043 0.039 0.057 0.060 0.059 0.062

(0.031) (0.034) (0.019) (0.031) (0.032) (0.034) (0.035) (0.035) (0.035)

60 0.042 0.050 0.005 0.044 0.040 0.054 0.055 0.057 0.057

(0.029) (0.030) (0.015) (0.029) (0.028) (0.031) (0.031) (0.032) (0.031)

100 0.043 0.050 0.005 0.046 0.041 0.049 0.048 0.053 0.052

(0.023) (0.026) (0.010) (0.024) (0.023) (0.024) (0.024) (0.025) (0.025)

200 0.042 0.050 0.006 0.048 0.042 0.046 0.046 0.052 0.051

(0.019) (0.021) (0.008) (0.020) (0.019) (0.019) (0.019) (0.021) (0.020)

300 0.042 0.050 0.005 0.049 0.042 0.044 0.044 0.051 0.051

(0.017) (0.020) (0.007) (0.018) (0.017) (0.018) (0.017) (0.019) (0.019)

500 0.043 0.051 0.006 0.050 0.043 0.045 0.044 0.052 0.051

(0.018) (0.020) (0.006) (0.019) (0.018) (0.018) (0.018) (0.019) (0.019)

-0.1 20 0.031 0.040 0.004 0.031 0.009 0.096 0.124 0.096 0.124

(0.107) (0.117) (0.053) (0.107) (0.077) (0.119) (0.119) (0.119) (0.119)

30 0.038 0.046 0.003 0.039 0.027 0.072 0.081 0.072 0.081

(0.060) (0.058) (0.034) (0.060) (0.064) (0.058) (0.057) (0.058) (0.057)

40 0.042 0.050 0.005 0.043 0.038 0.063 0.068 0.064 0.069

(0.038) (0.041) (0.030) (0.039) (0.039) (0.042) (0.042) (0.042) (0.043)

50 0.043 0.049 0.006 0.044 0.039 0.058 0.059 0.060 0.061

(0.031) (0.032) (0.019) (0.031) (0.031) (0.033) (0.034) (0.033) (0.034)

60 0.042 0.050 0.005 0.044 0.040 0.055 0.056 0.057 0.058

(0.028) (0.030) (0.015) (0.029) (0.028) (0.030) (0.030) (0.030) (0.030)

100 0.043 0.051 0.006 0.047 0.043 0.051 0.050 0.055 0.054

(0.022) (0.024) (0.010) (0.023) (0.021) (0.024) (0.023) (0.024) (0.025)

200 0.043 0.051 0.006 0.049 0.043 0.047 0.047 0.053 0.052

(0.019) (0.021) (0.008) (0.020) (0.019) (0.019) (0.019) (0.020) (0.020)

300 0.042 0.050 0.005 0.049 0.042 0.045 0.045 0.052 0.051

(0.017) (0.020) (0.007) (0.019) (0.018) (0.018) (0.018) (0.020) (0.020)

500 0.043 0.050 0.006 0.049 0.043 0.044 0.044 0.051 0.051

(0.017) (0.019) (0.007) (0.018) (0.017) (0.017) (0.017) (0.019) (0.018)
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Table C.7. Empirical FDRs for the investigated methods for the correlated cases for the
normal variates with π0 = 0.85 and ρ = ±0.25. Fifty blocks are utilized with pairwise
correlation between the variables within a block of ρ. The pre-specified significance level
is α = 0.05. The number of replications for each scenario is 1, 000 with 10, 000 bootstrap
resamples. Equal sample sizes were utilized for both the controls and cases. The standard
errors are provided in parenthesis.

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.85 0.25 20 0.045 0.052 0.005 0.045 0.019 0.111 0.129 0.111 0.129

(0.141) (0.144) (0.071) (0.141) (0.123) (0.139) (0.125) (0.139) (0.125)

30 0.039 0.047 0.006 0.039 0.030 0.072 0.080 0.072 0.080

(0.057) (0.057) (0.044) (0.057) (0.059) (0.060) (0.061) (0.060) (0.061)

40 0.041 0.050 0.004 0.042 0.038 0.064 0.068 0.065 0.069

(0.040) (0.043) (0.022) (0.041) (0.040) (0.044) (0.046) (0.044) (0.046)

50 0.042 0.050 0.004 0.044 0.039 0.057 0.059 0.059 0.061

(0.031) (0.033) (0.017) (0.032) (0.031) (0.033) (0.034) (0.034) (0.035)

60 0.042 0.050 0.005 0.044 0.040 0.055 0.055 0.057 0.058

(0.028) (0.031) (0.014) (0.029) (0.027) (0.031) (0.031) (0.032) (0.032)

100 0.042 0.050 0.006 0.046 0.042 0.049 0.049 0.054 0.053

(0.022) (0.025) (0.009) (0.023) (0.022) (0.024) (0.023) (0.024) (0.025)

200 0.043 0.052 0.005 0.049 0.043 0.047 0.046 0.053 0.052

(0.019) (0.022) (0.007) (0.020) (0.019) (0.019) (0.019) (0.021) (0.020)

300 0.043 0.052 0.006 0.050 0.043 0.046 0.045 0.052 0.052

(0.018) (0.020) (0.007) (0.019) (0.018) (0.018) (0.018) (0.020) (0.020)

500 0.042 0.050 0.006 0.049 0.042 0.044 0.043 0.051 0.051

(0.017) (0.020) (0.006) (0.019) (0.017) (0.017) (0.017) (0.019) (0.019)

-0.25 20 0.038 0.044 0.005 0.038 0.011 0.107 0.123 0.107 0.123

(0.125) (0.127) (0.055) (0.125) (0.086) (0.136) (0.111) (0.136) (0.111)

30 0.042 0.050 0.005 0.043 0.029 0.071 0.080 0.071 0.080

(0.063) (0.061) (0.047) (0.063) (0.068) (0.061) (0.060) (0.061) (0.061)

40 0.042 0.048 0.004 0.043 0.037 0.062 0.068 0.063 0.069

(0.039) (0.040) (0.023) (0.039) (0.038) (0.041) (0.043) (0.041) (0.044)

50 0.042 0.050 0.005 0.044 0.039 0.057 0.059 0.059 0.061

(0.031) (0.033) (0.017) (0.032) (0.031) (0.034) (0.034) (0.034) (0.035)

60 0.041 0.049 0.006 0.043 0.039 0.053 0.055 0.056 0.058

(0.027) (0.029) (0.016) (0.028) (0.027) (0.028) (0.029) (0.029) (0.030)

100 0.042 0.050 0.006 0.046 0.041 0.049 0.048 0.053 0.052

(0.022) (0.024) (0.010) (0.023) (0.022) (0.023) (0.024) (0.024) (0.024)

200 0.043 0.051 0.006 0.048 0.042 0.047 0.046 0.052 0.051

(0.020) (0.021) (0.008) (0.021) (0.019) (0.020) (0.020) (0.021) (0.021)

300 0.043 0.051 0.006 0.050 0.043 0.046 0.045 0.052 0.052

(0.018) (0.019) (0.007) (0.019) (0.018) (0.018) (0.018) (0.020) (0.020)

500 0.042 0.050 0.006 0.050 0.042 0.044 0.044 0.052 0.051

(0.017) (0.019) (0.007) (0.018) (0.016) (0.017) (0.017) (0.018) (0.018)
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Table C.8. Empirical FDRs for the investigated methods for the correlated cases for the
normal variates with π0 = 0.85 and ρ = ±0.5. Fifty blocks are utilized with pairwise
correlation between the variables within a block of ρ. The pre-specified significance level
is α = 0.05. The number of replications for each scenario is 1, 000 with 10, 000 bootstrap
resamples. Equal sample sizes were utilized for both the controls and cases. The standard
errors are provided in parenthesis.

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.85 0.5 20 0.037 0.047 0.007 0.038 0.014 0.103 0.122 0.103 0.122

(0.122) (0.130) (0.075) (0.122) (0.089) (0.128) (0.118) (0.128) (0.118)

30 0.039 0.047 0.004 0.039 0.030 0.069 0.077 0.069 0.077

(0.058) (0.060) (0.038) (0.058) (0.063) (0.061) (0.062) (0.061) (0.062)

40 0.043 0.051 0.006 0.043 0.036 0.062 0.066 0.063 0.067

(0.040) (0.043) (0.033) (0.040) (0.040) (0.044) (0.044) (0.044) (0.044)

50 0.043 0.051 0.005 0.045 0.041 0.058 0.061 0.060 0.062

(0.034) (0.036) (0.018) (0.034) (0.034) (0.037) (0.038) (0.038) (0.038)

60 0.043 0.053 0.006 0.045 0.041 0.056 0.057 0.059 0.060

(0.031) (0.035) (0.015) (0.032) (0.031) (0.034) (0.035) (0.035) (0.035)

100 0.042 0.052 0.005 0.046 0.042 0.049 0.050 0.054 0.053

(0.024) (0.027) (0.010) (0.025) (0.023) (0.025) (0.025) (0.026) (0.026)

200 0.042 0.051 0.006 0.048 0.042 0.046 0.045 0.052 0.051

(0.021) (0.025) (0.008) (0.022) (0.021) (0.022) (0.021) (0.024) (0.023)

300 0.042 0.051 0.006 0.048 0.042 0.045 0.044 0.051 0.050

(0.020) (0.024) (0.007) (0.021) (0.020) (0.020) (0.020) (0.022) (0.022)

500 0.043 0.052 0.006 0.050 0.043 0.045 0.044 0.052 0.052

(0.018) (0.022) (0.007) (0.020) (0.018) (0.019) (0.018) (0.020) (0.020)

-0.5 20 0.041 0.048 0.005 0.041 0.015 0.102 0.126 0.102 0.126

(0.132) (0.130) (0.067) (0.132) (0.100) (0.123) (0.115) (0.123) (0.115)

30 0.040 0.048 0.005 0.041 0.029 0.072 0.081 0.072 0.081

(0.058) (0.057) (0.045) (0.058) (0.058) (0.060) (0.060) (0.060) (0.060)

40 0.043 0.050 0.007 0.044 0.037 0.064 0.068 0.065 0.069

(0.040) (0.042) (0.032) (0.041) (0.039) (0.043) (0.043) (0.043) (0.043)

50 0.044 0.051 0.006 0.046 0.041 0.059 0.060 0.061 0.062

(0.032) (0.034) (0.020) (0.033) (0.032) (0.034) (0.034) (0.035) (0.035)

60 0.044 0.051 0.006 0.046 0.042 0.056 0.057 0.059 0.060

(0.029) (0.029) (0.016) (0.029) (0.029) (0.031) (0.030) (0.032) (0.031)

100 0.042 0.050 0.006 0.045 0.041 0.049 0.048 0.053 0.053

(0.023) (0.024) (0.010) (0.024) (0.023) (0.024) (0.024) (0.025) (0.025)

200 0.042 0.050 0.005 0.048 0.042 0.046 0.045 0.052 0.051

(0.019) (0.020) (0.007) (0.020) (0.019) (0.020) (0.020) (0.021) (0.021)

300 0.042 0.050 0.006 0.048 0.042 0.044 0.044 0.051 0.050

(0.017) (0.018) (0.007) (0.018) (0.017) (0.018) (0.018) (0.019) (0.019)

500 0.043 0.051 0.006 0.050 0.042 0.045 0.044 0.052 0.051

(0.017) (0.018) (0.007) (0.019) (0.017) (0.018) (0.017) (0.019) (0.019)
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Table C.9. Empirical FDRs for the investigated methods for the correlated cases for the
normal variates with π0 = 0.85 and ρ = ±0.75. Fifty blocks are utilized with pairwise
correlation between the variables within a block of ρ. The pre-specified significance level
is α = 0.05. The number of replications for each scenario is 1, 000 with 10, 000 bootstrap
resamples. Equal sample sizes were utilized for both the controls and cases. The standard
errors are provided in parenthesis.

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.85 0.75 20 0.039 0.047 0.010 0.039 0.013 0.105 0.123 0.105 0.123

(0.121) (0.125) (0.088) (0.120) (0.084) (0.140) (0.132) (0.140) (0.132)

30 0.039 0.049 0.003 0.040 0.025 0.068 0.080 0.069 0.080

(0.068) (0.071) (0.028) (0.068) (0.060) (0.071) (0.071) (0.071) (0.072)

40 0.040 0.049 0.005 0.041 0.036 0.061 0.064 0.062 0.066

(0.046) (0.050) (0.026) (0.047) (0.046) (0.053) (0.053) (0.053) (0.053)

50 0.040 0.050 0.005 0.041 0.039 0.056 0.057 0.058 0.059

(0.039) (0.045) (0.018) (0.040) (0.039) (0.045) (0.045) (0.046) (0.046)

60 0.043 0.054 0.006 0.045 0.041 0.056 0.056 0.058 0.059

(0.036) (0.041) (0.018) (0.037) (0.036) (0.040) (0.040) (0.041) (0.041)

100 0.041 0.052 0.005 0.045 0.040 0.048 0.048 0.053 0.052

(0.028) (0.035) (0.011) (0.030) (0.028) (0.031) (0.030) (0.032) (0.032)

200 0.043 0.054 0.005 0.049 0.043 0.046 0.046 0.053 0.052

(0.025) (0.031) (0.009) (0.028) (0.026) (0.027) (0.026) (0.029) (0.029)

300 0.043 0.055 0.006 0.050 0.043 0.046 0.046 0.053 0.052

(0.024) (0.030) (0.009) (0.026) (0.024) (0.025) (0.025) (0.026) (0.027)

500 0.043 0.053 0.006 0.050 0.043 0.045 0.044 0.052 0.051

(0.023) (0.030) (0.008) (0.026) (0.023) (0.024) (0.024) (0.026) (0.026)

-0.75 20 0.035 0.044 0.007 0.035 0.012 0.103 0.127 0.103 0.127

(0.119) (0.135) (0.074) (0.119) (0.084) (0.129) (0.116) (0.129) (0.116)

30 0.042 0.050 0.004 0.043 0.031 0.074 0.082 0.074 0.083

(0.062) (0.063) (0.034) (0.063) (0.067) (0.064) (0.063) (0.064) (0.063)

40 0.042 0.049 0.007 0.043 0.037 0.064 0.068 0.065 0.069

(0.042) (0.043) (0.041) (0.042) (0.042) (0.047) (0.048) (0.047) (0.048)

50 0.042 0.049 0.006 0.044 0.040 0.057 0.061 0.059 0.062

(0.035) (0.035) (0.020) (0.036) (0.035) (0.038) (0.039) (0.038) (0.039)

60 0.043 0.049 0.005 0.045 0.041 0.054 0.056 0.056 0.058

(0.031) (0.032) (0.015) (0.032) (0.031) (0.034) (0.035) (0.035) (0.035)

100 0.042 0.049 0.005 0.046 0.042 0.049 0.049 0.053 0.053

(0.024) (0.024) (0.009) (0.025) (0.024) (0.026) (0.026) (0.027) (0.027)

200 0.044 0.051 0.006 0.049 0.043 0.047 0.047 0.053 0.053

(0.021) (0.021) (0.008) (0.023) (0.021) (0.022) (0.022) (0.024) (0.023)

300 0.044 0.051 0.006 0.050 0.043 0.046 0.046 0.053 0.052

(0.019) (0.019) (0.008) (0.021) (0.019) (0.020) (0.020) (0.022) (0.021)

500 0.043 0.050 0.006 0.050 0.043 0.045 0.044 0.052 0.052

(0.019) (0.018) (0.007) (0.020) (0.019) (0.019) (0.019) (0.021) (0.020)
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Table C.10. Empirical FDRs for the investigated methods for the correlated cases for the
normal variates with π0 = 0.85 and ρ = ±0.9. Fifty blocks are utilized with pairwise
correlation between the variables within a block of ρ. The pre-specified significance level
is α = 0.05. The number of replications for each scenario is 1, 000 with 10, 000 bootstrap
resamples. Equal sample sizes were utilized for both the controls and cases. The standard
errors are provided in parenthesis.

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.85 0.9 20 0.034 0.044 0.002 0.034 0.013 0.087 0.104 0.087 0.105

(0.116) (0.122) (0.028) (0.116) (0.086) (0.145) (0.145) (0.145) (0.145)

30 0.044 0.056 0.005 0.044 0.029 0.072 0.078 0.072 0.078

(0.080) (0.087) (0.041) (0.079) (0.076) (0.090) (0.095) (0.090) (0.095)

40 0.039 0.054 0.004 0.040 0.035 0.059 0.064 0.060 0.064

(0.059) (0.071) (0.026) (0.060) (0.060) (0.069) (0.072) (0.070) (0.073)

50 0.039 0.055 0.006 0.041 0.037 0.053 0.055 0.055 0.057

(0.051) (0.064) (0.026) (0.052) (0.051) (0.056) (0.058) (0.057) (0.059)

60 0.039 0.054 0.005 0.042 0.037 0.051 0.052 0.054 0.054

(0.046) (0.057) (0.020) (0.047) (0.046) (0.052) (0.053) (0.054) (0.055)

100 0.042 0.058 0.006 0.046 0.042 0.049 0.049 0.053 0.053

(0.043) (0.056) (0.017) (0.046) (0.043) (0.046) (0.046) (0.049) (0.049)

200 0.043 0.058 0.005 0.049 0.042 0.046 0.045 0.053 0.052

(0.036) (0.047) (0.012) (0.039) (0.035) (0.037) (0.037) (0.040) (0.040)

300 0.041 0.056 0.006 0.048 0.041 0.044 0.044 0.050 0.050

(0.036) (0.050) (0.013) (0.039) (0.036) (0.037) (0.037) (0.040) (0.040)

500 0.044 0.059 0.006 0.051 0.044 0.046 0.045 0.053 0.053

(0.035) (0.048) (0.011) (0.039) (0.035) (0.036) (0.036) (0.040) (0.039)

-0.9 20 0.037 0.043 0.007 0.037 0.014 0.099 0.115 0.099 0.115

(0.126) (0.131) (0.068) (0.126) (0.086) (0.139) (0.131) (0.139) (0.131)

30 0.041 0.047 0.005 0.042 0.028 0.072 0.079 0.072 0.079

(0.071) (0.071) (0.040) (0.071) (0.069) (0.076) (0.077) (0.076) (0.078)

40 0.039 0.046 0.006 0.040 0.035 0.061 0.063 0.062 0.064

(0.049) (0.051) (0.031) (0.050) (0.049) (0.055) (0.056) (0.055) (0.056)

50 0.041 0.048 0.006 0.043 0.039 0.056 0.058 0.058 0.060

(0.040) (0.041) (0.021) (0.041) (0.040) (0.046) (0.046) (0.046) (0.046)

60 0.041 0.048 0.005 0.043 0.039 0.053 0.054 0.056 0.057

(0.036) (0.037) (0.016) (0.037) (0.037) (0.041) (0.042) (0.042) (0.042)

100 0.041 0.048 0.006 0.045 0.041 0.048 0.047 0.052 0.052

(0.032) (0.032) (0.013) (0.034) (0.032) (0.034) (0.034) (0.035) (0.035)

200 0.042 0.049 0.005 0.048 0.042 0.046 0.046 0.052 0.052

(0.028) (0.027) (0.010) (0.029) (0.028) (0.029) (0.028) (0.030) (0.030)

300 0.042 0.050 0.006 0.049 0.042 0.045 0.044 0.051 0.051

(0.027) (0.026) (0.010) (0.029) (0.027) (0.028) (0.027) (0.030) (0.030)

500 0.043 0.050 0.005 0.051 0.043 0.045 0.044 0.052 0.052

(0.026) (0.024) (0.009) (0.028) (0.025) (0.026) (0.026) (0.028) (0.028)
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Table C.11. Empirical FDRs for the investigated methods for the correlated cases for the
normal variates with π0 = 0.8 and ρ = ±0.1. Fifty blocks are utilized with pairwise correlation
between the variables within a block of ρ. The pre-specified significance level is α = 0.05.
The number of replications for each scenario is 1, 000 with 10, 000 bootstrap resamples. Equal
sample sizes were utilized for both the controls and cases. The standard errors are provided
in parenthesis.

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.8 0.1 20 0.044 0.050 0.004 0.044 0.018 0.089 0.100 0.089 0.100

(0.119) (0.111) (0.053) (0.119) (0.087) (0.085) (0.072) (0.085) (0.072)

30 0.039 0.049 0.006 0.040 0.031 0.062 0.068 0.064 0.070

(0.039) (0.041) (0.048) (0.039) (0.039) (0.041) (0.040) (0.041) (0.040)

40 0.038 0.048 0.005 0.040 0.033 0.054 0.055 0.056 0.057

(0.027) (0.030) (0.017) (0.028) (0.027) (0.029) (0.028) (0.029) (0.029)

50 0.040 0.051 0.005 0.043 0.037 0.052 0.052 0.055 0.056

(0.024) (0.026) (0.013) (0.024) (0.023) (0.026) (0.026) (0.026) (0.026)

60 0.039 0.050 0.006 0.043 0.037 0.049 0.049 0.053 0.052

(0.022) (0.024) (0.011) (0.023) (0.021) (0.023) (0.023) (0.024) (0.024)

100 0.040 0.050 0.005 0.046 0.039 0.045 0.044 0.051 0.050

(0.018) (0.020) (0.008) (0.018) (0.017) (0.018) (0.018) (0.020) (0.019)

200 0.040 0.052 0.005 0.049 0.040 0.043 0.043 0.052 0.051

(0.015) (0.018) (0.006) (0.017) (0.015) (0.016) (0.016) (0.017) (0.017)

300 0.041 0.052 0.005 0.050 0.041 0.043 0.042 0.052 0.051

(0.015) (0.017) (0.006) (0.016) (0.015) (0.015) (0.015) (0.017) (0.016)

500 0.040 0.051 0.005 0.050 0.040 0.042 0.041 0.052 0.051

(0.014) (0.017) (0.006) (0.016) (0.014) (0.014) (0.014) (0.016) (0.016)

-0.1 20 0.041 0.049 0.003 0.041 0.014 0.087 0.101 0.087 0.101

(0.094) (0.098) (0.050) (0.094) (0.072) (0.076) (0.067) (0.076) (0.067)

30 0.042 0.051 0.008 0.043 0.033 0.065 0.070 0.066 0.071

(0.040) (0.040) (0.038) (0.040) (0.041) (0.041) (0.039) (0.042) (0.040)

40 0.040 0.050 0.005 0.042 0.036 0.056 0.058 0.058 0.061

(0.029) (0.031) (0.016) (0.029) (0.028) (0.032) (0.032) (0.032) (0.032)

50 0.041 0.051 0.005 0.044 0.038 0.052 0.054 0.056 0.056

(0.024) (0.026) (0.013) (0.025) (0.023) (0.025) (0.025) (0.026) (0.026)

60 0.041 0.052 0.005 0.044 0.039 0.050 0.050 0.054 0.054

(0.022) (0.024) (0.011) (0.023) (0.021) (0.023) (0.023) (0.024) (0.023)

100 0.040 0.050 0.005 0.045 0.039 0.045 0.044 0.051 0.050

(0.018) (0.020) (0.008) (0.018) (0.017) (0.018) (0.018) (0.019) (0.019)

200 0.040 0.050 0.006 0.047 0.039 0.042 0.042 0.050 0.049

(0.015) (0.017) (0.006) (0.017) (0.015) (0.016) (0.015) (0.017) (0.017)

300 0.040 0.051 0.005 0.049 0.040 0.042 0.042 0.052 0.051

(0.015) (0.017) (0.006) (0.016) (0.015) (0.015) (0.015) (0.016) (0.016)

500 0.040 0.050 0.005 0.050 0.040 0.041 0.041 0.051 0.050

(0.014) (0.016) (0.005) (0.016) (0.014) (0.014) (0.014) (0.016) (0.016)
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Table C.12. Empirical FDRs for the investigated methods for the correlated cases for the
normal variates with π0 = 0.8 and ρ = ±0.25. Fifty blocks are utilized with pairwise
correlation between the variables within a block of ρ. The pre-specified significance level
is α = 0.05. The number of replications for each scenario is 1, 000 with 10, 000 bootstrap
resamples. Equal sample sizes were utilized for both the controls and cases. The standard
errors are provided in parenthesis.

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.8 0.25 20 0.035 0.045 0.005 0.035 0.010 0.085 0.097 0.085 0.097

(0.084) (0.083) (0.060) (0.083) (0.069) (0.074) (0.069) (0.074) (0.069)

30 0.038 0.048 0.004 0.039 0.031 0.061 0.066 0.062 0.068

(0.039) (0.041) (0.024) (0.040) (0.040) (0.041) (0.042) (0.042) (0.042)

40 0.040 0.050 0.005 0.042 0.035 0.055 0.056 0.057 0.059

(0.029) (0.030) (0.021) (0.029) (0.028) (0.030) (0.030) (0.030) (0.031)

50 0.040 0.051 0.005 0.043 0.038 0.052 0.053 0.055 0.056

(0.023) (0.026) (0.013) (0.024) (0.023) (0.025) (0.025) (0.025) (0.025)

60 0.040 0.051 0.006 0.044 0.038 0.049 0.050 0.053 0.054

(0.022) (0.025) (0.011) (0.023) (0.022) (0.024) (0.024) (0.024) (0.024)

100 0.040 0.051 0.005 0.046 0.039 0.045 0.045 0.051 0.051

(0.019) (0.022) (0.008) (0.020) (0.019) (0.019) (0.019) (0.021) (0.020)

200 0.040 0.051 0.005 0.048 0.039 0.043 0.042 0.051 0.050

(0.016) (0.019) (0.006) (0.017) (0.015) (0.016) (0.016) (0.018) (0.017)

300 0.039 0.050 0.005 0.048 0.039 0.041 0.041 0.050 0.049

(0.015) (0.018) (0.006) (0.016) (0.015) (0.015) (0.015) (0.017) (0.017)

500 0.041 0.052 0.005 0.051 0.040 0.042 0.042 0.053 0.052

(0.014) (0.018) (0.005) (0.016) (0.014) (0.015) (0.015) (0.017) (0.017)

-0.25 20 0.034 0.044 0.003 0.034 0.017 0.084 0.098 0.084 0.098

(0.080) (0.081) (0.044) (0.080) (0.086) (0.075) (0.068) (0.075) (0.068)

30 0.040 0.051 0.004 0.041 0.033 0.064 0.070 0.065 0.072

(0.040) (0.040) (0.030) (0.039) (0.039) (0.039) (0.040) (0.040) (0.041)

40 0.039 0.049 0.005 0.041 0.036 0.054 0.057 0.057 0.059

(0.028) (0.030) (0.017) (0.028) (0.028) (0.029) (0.030) (0.030) (0.030)

50 0.039 0.050 0.005 0.042 0.037 0.051 0.052 0.054 0.055

(0.023) (0.025) (0.013) (0.024) (0.023) (0.025) (0.024) (0.025) (0.025)

60 0.040 0.050 0.005 0.044 0.038 0.049 0.049 0.053 0.053

(0.023) (0.025) (0.011) (0.024) (0.022) (0.024) (0.024) (0.025) (0.025)

100 0.040 0.051 0.005 0.046 0.039 0.045 0.044 0.052 0.050

(0.017) (0.020) (0.008) (0.018) (0.017) (0.018) (0.018) (0.019) (0.019)

200 0.039 0.050 0.005 0.047 0.038 0.042 0.041 0.050 0.049

(0.015) (0.017) (0.006) (0.016) (0.015) (0.015) (0.015) (0.017) (0.017)

300 0.040 0.050 0.005 0.049 0.039 0.042 0.041 0.051 0.050

(0.015) (0.017) (0.006) (0.016) (0.015) (0.015) (0.015) (0.017) (0.017)

500 0.040 0.050 0.005 0.049 0.039 0.041 0.040 0.051 0.050

(0.013) (0.015) (0.005) (0.015) (0.013) (0.013) (0.013) (0.015) (0.015)
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Table C.13. Empirical FDRs for the investigated methods for the correlated cases for the
normal variates with π0 = 0.8 and ρ = ±0.5. Fifty blocks are utilized with pairwise correlation
between the variables within a block of ρ. The pre-specified significance level is α = 0.05.
The number of replications for each scenario is 1, 000 with 10, 000 bootstrap resamples. Equal
sample sizes were utilized for both the controls and cases. The standard errors are provided
in parenthesis.

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.8 0.5 20 0.033 0.044 0.004 0.033 0.012 0.087 0.098 0.087 0.098

(0.077) (0.079) (0.051) (0.077) (0.055) (0.085) (0.073) (0.085) (0.074)

30 0.038 0.048 0.005 0.039 0.031 0.061 0.066 0.062 0.067

(0.039) (0.041) (0.031) (0.040) (0.040) (0.042) (0.041) (0.042) (0.041)

40 0.042 0.053 0.005 0.044 0.038 0.058 0.059 0.060 0.061

(0.029) (0.032) (0.017) (0.030) (0.030) (0.032) (0.033) (0.033) (0.034)

50 0.039 0.050 0.005 0.042 0.036 0.050 0.051 0.054 0.054

(0.026) (0.030) (0.013) (0.027) (0.025) (0.029) (0.028) (0.029) (0.029)

60 0.040 0.051 0.006 0.044 0.038 0.049 0.049 0.053 0.053

(0.024) (0.027) (0.012) (0.025) (0.023) (0.025) (0.025) (0.026) (0.026)

100 0.039 0.050 0.005 0.045 0.038 0.044 0.043 0.050 0.049

(0.019) (0.024) (0.008) (0.021) (0.019) (0.020) (0.020) (0.022) (0.021)

200 0.040 0.052 0.006 0.048 0.040 0.043 0.042 0.051 0.051

(0.017) (0.022) (0.007) (0.019) (0.017) (0.018) (0.018) (0.020) (0.019)

300 0.040 0.051 0.005 0.049 0.039 0.041 0.041 0.051 0.050

(0.016) (0.022) (0.006) (0.019) (0.017) (0.017) (0.017) (0.019) (0.019)

500 0.041 0.053 0.005 0.051 0.041 0.042 0.042 0.053 0.052

(0.016) (0.020) (0.006) (0.019) (0.016) (0.017) (0.017) (0.019) (0.019)

-0.5 20 0.041 0.049 0.007 0.041 0.013 0.085 0.099 0.085 0.099

(0.110) (0.098) (0.072) (0.110) (0.069) (0.075) (0.069) (0.075) (0.069)

30 0.038 0.048 0.005 0.039 0.031 0.060 0.066 0.062 0.067

(0.038) (0.038) (0.033) (0.038) (0.039) (0.040) (0.040) (0.040) (0.040)

40 0.040 0.050 0.007 0.042 0.036 0.056 0.058 0.059 0.060

(0.029) (0.030) (0.021) (0.030) (0.028) (0.031) (0.031) (0.031) (0.031)

50 0.038 0.048 0.005 0.041 0.036 0.050 0.051 0.053 0.054

(0.025) (0.025) (0.013) (0.025) (0.024) (0.026) (0.026) (0.026) (0.026)

60 0.040 0.050 0.005 0.043 0.038 0.049 0.049 0.053 0.053

(0.021) (0.022) (0.010) (0.022) (0.021) (0.023) (0.023) (0.024) (0.023)

100 0.041 0.050 0.005 0.046 0.039 0.046 0.045 0.052 0.050

(0.019) (0.020) (0.008) (0.020) (0.019) (0.020) (0.020) (0.021) (0.021)

200 0.040 0.050 0.005 0.048 0.039 0.043 0.042 0.051 0.050

(0.015) (0.017) (0.006) (0.017) (0.015) (0.016) (0.016) (0.017) (0.017)

300 0.040 0.050 0.005 0.049 0.040 0.042 0.042 0.051 0.050

(0.015) (0.017) (0.006) (0.017) (0.015) (0.015) (0.015) (0.017) (0.017)

500 0.040 0.051 0.005 0.050 0.040 0.041 0.041 0.052 0.051

(0.015) (0.015) (0.006) (0.016) (0.014) (0.015) (0.015) (0.016) (0.016)
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Table C.14. Empirical FDRs for the investigated methods for the correlated cases for the
normal variates with π0 = 0.8 and ρ = ±0.75. Fifty blocks are utilized with pairwise
correlation between the variables within a block of ρ. The pre-specified significance level
is α = 0.05. The number of replications for each scenario is 1, 000 with 10, 000 bootstrap
resamples. Equal sample sizes were utilized for both the controls and cases. The standard
errors are provided in parenthesis.

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.8 0.75 20 0.035 0.046 0.004 0.035 0.015 0.076 0.091 0.076 0.091

(0.094) (0.092) (0.046) (0.094) (0.075) (0.085) (0.081) (0.085) (0.081)

30 0.037 0.050 0.004 0.039 0.031 0.060 0.066 0.062 0.067

(0.045) (0.047) (0.035) (0.045) (0.045) (0.050) (0.049) (0.050) (0.050)

40 0.039 0.051 0.004 0.041 0.034 0.055 0.056 0.057 0.058

(0.035) (0.040) (0.018) (0.036) (0.035) (0.039) (0.040) (0.040) (0.040)

50 0.039 0.052 0.005 0.041 0.036 0.050 0.051 0.054 0.055

(0.030) (0.037) (0.014) (0.031) (0.030) (0.033) (0.033) (0.034) (0.034)

60 0.040 0.054 0.005 0.044 0.039 0.049 0.049 0.054 0.054

(0.029) (0.036) (0.012) (0.030) (0.028) (0.031) (0.031) (0.032) (0.032)

100 0.038 0.051 0.005 0.044 0.037 0.044 0.043 0.050 0.049

(0.023) (0.030) (0.009) (0.025) (0.022) (0.024) (0.024) (0.027) (0.026)

200 0.041 0.055 0.006 0.049 0.040 0.044 0.043 0.052 0.051

(0.022) (0.030) (0.008) (0.025) (0.022) (0.023) (0.023) (0.025) (0.025)

300 0.040 0.054 0.005 0.049 0.040 0.042 0.042 0.051 0.051

(0.022) (0.029) (0.007) (0.024) (0.022) (0.022) (0.022) (0.025) (0.024)

500 0.040 0.052 0.006 0.049 0.039 0.041 0.040 0.051 0.050

(0.020) (0.027) (0.007) (0.023) (0.020) (0.021) (0.020) (0.023) (0.023)

-0.75 20 0.036 0.047 0.007 0.036 0.015 0.081 0.095 0.081 0.095

(0.092) (0.098) (0.075) (0.092) (0.081) (0.080) (0.072) (0.080) (0.073)

30 0.038 0.048 0.005 0.039 0.031 0.064 0.070 0.065 0.071

(0.040) (0.041) (0.028) (0.040) (0.042) (0.046) (0.044) (0.046) (0.044)

40 0.039 0.048 0.005 0.040 0.035 0.053 0.055 0.056 0.057

(0.030) (0.030) (0.018) (0.030) (0.030) (0.032) (0.032) (0.033) (0.032)

50 0.039 0.049 0.005 0.042 0.038 0.051 0.052 0.054 0.055

(0.024) (0.025) (0.014) (0.025) (0.024) (0.026) (0.026) (0.027) (0.027)

60 0.040 0.051 0.005 0.044 0.038 0.050 0.049 0.054 0.054

(0.023) (0.024) (0.011) (0.024) (0.023) (0.025) (0.025) (0.026) (0.026)

100 0.041 0.050 0.005 0.046 0.039 0.045 0.045 0.052 0.051

(0.020) (0.020) (0.008) (0.021) (0.020) (0.021) (0.020) (0.022) (0.022)

200 0.040 0.050 0.005 0.048 0.039 0.043 0.042 0.051 0.050

(0.017) (0.017) (0.006) (0.019) (0.017) (0.018) (0.017) (0.019) (0.019)

300 0.040 0.050 0.005 0.049 0.040 0.042 0.041 0.051 0.050

( 0.017) (0.017) (0.006) (0.019) (0.016) (0.017) (0.017) (0.019) (0.019)

500 0.040 0.050 0.005 0.050 0.040 0.042 0.041 0.052 0.051

(0.016) (0.016) (0.006) (0.019) (0.016) (0.016) (0.016) (0.019) (0.019)
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Table C.15. Empirical FDRs for the investigated methods for the correlated cases for the
normal variates with π0 = 0.8 and ρ = ±0.9. Fifty blocks are utilized with pairwise correlation
between the variables within a block of ρ. The pre-specified significance level is α = 0.05.
The number of replications for each scenario is 1, 000 with 10, 000 bootstrap resamples. Equal
sample sizes were utilized for both the controls and cases. The standard errors are provided
in parenthesis.

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.8 0.9 20 0.034 0.048 0.007 0.034 0.014 0.070 0.083 0.070 0.083

(0.090) (0.095) (0.069) (0.091) (0.065) (0.096) (0.100) (0.096) (0.100)

30 0.037 0.053 0.005 0.038 0.031 0.058 0.064 0.059 0.065

(0.058) (0.066) (0.033) (0.058) (0.060) (0.066) (0.069) (0.067) (0.069)

40 0.038 0.056 0.005 0.041 0.035 0.052 0.054 0.055 0.057

(0.046) (0.058) (0.022) (0.048) (0.046) (0.053) (0.053) (0.054) (0.055)

50 0.039 0.057 0.005 0.042 0.037 0.050 0.051 0.054 0.055

(0.043) (0.057) (0.018) (0.044) (0.043) (0.048) (0.049) (0.050) (0.051)

60 0.041 0.060 0.005 0.045 0.040 0.051 0.050 0.056 0.054

(0.040) (0.054) (0.017) (0.041) (0.039) (0.044) (0.044) (0.046) (0.046)

100 0.040 0.057 0.006 0.045 0.038 0.045 0.043 0.051 0.049

(0.034) (0.048) (0.014) (0.037) (0.033) (0.036) (0.035) (0.039) (0.038)

200 0.040 0.057 0.006 0.048 0.040 0.043 0.042 0.051 0.050

(0.031) (0.044) (0.011) (0.034) (0.031) (0.032) (0.031) (0.035) (0.035)

300 0.038 0.054 0.005 0.047 0.038 0.040 0.039 0.049 0.048

(0.029) (0.042) (0.010) (0.033) (0.029) (0.030) (0.029) (0.034) (0.033)

500 0.039 0.055 0.005 0.048 0.039 0.040 0.040 0.050 0.049

(0.029) (0.041) (0.010) (0.033) (0.029) (0.029) (0.029) (0.033) (0.033)

-0.9 20 0.034 0.042 0.005 0.034 0.017 0.078 0.092 0.078 0.092

(0.084) (0.088) (0.060) (0.085) (0.076) (0.086) (0.085) (0.086) (0.086)

30 0.038 0.046 0.006 0.039 0.031 0.060 0.065 0.061 0.066

(0.047) (0.047) (0.032) (0.048) (0.049) (0.052) (0.053) (0.052) (0.053)

40 0.040 0.049 0.006 0.042 0.037 0.056 0.058 0.059 0.060

(0.038) (0.038) (0.023) (0.038) (0.037) (0.042) (0.042) (0.043) (0.043)

50 0.037 0.047 0.005 0.040 0.037 0.050 0.050 0.053 0.054

(0.033) (0.033) (0.016) (0.034) (0.033) (0.036) (0.037) (0.037) (0.038)

60 0.040 0.049 0.005 0.043 0.038 0.049 0.049 0.053 0.053

(0.030) (0.030) (0.012) (0.031) (0.030) (0.032) (0.032) (0.034) (0.034)

100 0.039 0.049 0.005 0.045 0.038 0.044 0.044 0.050 0.049

(0.025) (0.024) (0.010) (0.027) (0.025) (0.027) (0.027) (0.028) (0.028)

200 0.040 0.050 0.006 0.048 0.039 0.043 0.042 0.051 0.050

(0.023) (0.021) (0.009) (0.025) (0.023) (0.024) (0.024) (0.026) (0.026)

300 0.040 0.050 0.005 0.049 0.040 0.042 0.041 0.051 0.050

(0.021) (0.020) (0.007) (0.024) (0.021) (0.022) (0.022) (0.024) (0.024)

500 0.040 0.050 0.005 0.049 0.040 0.041 0.041 0.051 0.050

(0.022) (0.020) (0.007) (0.024) (0.022) (0.022) (0.022) (0.025) (0.024)
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Table C.16. Empirical FDRs for the investigated methods for the correlated cases for the
normal variates with π0 = 0.75 and ρ = ±0.1. Fifty blocks are utilized with pairwise
correlation between the variables within a block of ρ. The pre-specified significance level
is α = 0.05. The number of replications for each scenario is 1, 000 with 10, 000 bootstrap
resamples. Equal sample sizes were utilized for both the controls and cases. The standard
errors are provided in parenthesis.

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.75 0.1 20 0.034 0.043 0.005 0.034 0.009 0.071 0.082 0.071 0.083

(0.077) (0.066) (0.061) (0.077) (0.049) (0.060) (0.061) (0.060) (0.061)

30 0.036 0.049 0.005 0.037 0.028 0.055 0.059 0.057 0.061

(0.034) (0.034) (0.028) (0.033) (0.034) (0.034) (0.035) (0.034) (0.035)

40 0.037 0.050 0.005 0.040 0.033 0.051 0.050 0.054 0.053

(0.024) (0.027) (0.018) (0.025) (0.024) (0.026) (0.027) (0.027) (0.028)

50 0.038 0.050 0.005 0.041 0.034 0.047 0.045 0.051 0.049

(0.020) (0.022) (0.011) (0.020) (0.020) (0.021) (0.022) (0.022) (0.022)

60 0.037 0.050 0.005 0.042 0.034 0.045 0.043 0.050 0.048

(0.018) (0.021) (0.009) (0.019) (0.018) (0.019) (0.019) (0.020) (0.020)

100 0.038 0.051 0.005 0.045 0.035 0.042 0.039 0.050 0.046

(0.015) (0.019) (0.007) (0.016) (0.015) (0.016) (0.016) (0.017) (0.017)

200 0.038 0.051 0.005 0.048 0.037 0.040 0.038 0.051 0.048

(0.013) (0.016) (0.006) (0.014) (0.013) (0.014) (0.013) (0.015) (0.015)

300 0.038 0.051 0.005 0.049 0.037 0.039 0.038 0.051 0.049

(0.013) (0.016) (0.005) (0.015) (0.013) (0.013) (0.013) (0.015) (0.015)

500 0.037 0.050 0.005 0.049 0.036 0.038 0.037 0.051 0.049

(0.012) (0.016) (0.005) (0.014) (0.012) (0.013) (0.012) (0.014) (0.014)

-0.1 20 0.030 0.042 0.005 0.031 0.007 0.070 0.084 0.070 0.084

(0.066) (0.067) (0.064) (0.065) (0.041) (0.064) (0.062) (0.064) (0.062)

30 0.036 0.049 0.004 0.037 0.028 0.055 0.059 0.057 0.060

(0.033) (0.034) (0.023) (0.033) (0.035) (0.034) (0.033) (0.034) (0.033)

40 0.037 0.049 0.004 0.039 0.032 0.049 0.049 0.052 0.052

(0.024) (0.027) (0.014) (0.024) (0.024) (0.026) (0.025) (0.026) (0.026)

50 0.037 0.050 0.006 0.041 0.033 0.046 0.045 0.051 0.049

(0.021) (0.023) (0.012) (0.021) (0.020) (0.022) (0.022) (0.023) (0.022)

60 0.037 0.050 0.005 0.042 0.034 0.045 0.042 0.050 0.047

(0.018) (0.021) (0.010) (0.019) (0.018) (0.019) (0.019) (0.020) (0.020)

100 0.037 0.050 0.005 0.044 0.035 0.042 0.040 0.049 0.046

(0.014) (0.017) (0.007) (0.015) (0.014) (0.015) (0.015) (0.016) (0.016)

200 0.037 0.050 0.005 0.047 0.036 0.040 0.038 0.050 0.047

(0.013) (0.016) (0.006) (0.015) (0.013) (0.014) (0.013) (0.015) (0.015)

300 0.038 0.051 0.005 0.049 0.037 0.040 0.038 0.051 0.049

(0.013) (0.016) (0.005) (0.014) (0.013) (0.013) (0.013) (0.014) (0.014)

500 0.038 0.051 0.005 0.050 0.037 0.039 0.038 0.051 0.050

(0.012) (0.015) (0.005) (0.014) (0.012) (0.013) (0.013) (0.014) (0.014)
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Table C.17. Empirical FDRs for the investigated methods for the correlated cases for the
normal variates with π0 = 0.75 and ρ = ±0.25. Fifty blocks are utilized with pairwise
correlation between the variables within a block of ρ. The pre-specified significance level
is α = 0.05. The number of replications for each scenario is 1, 000 with 10, 000 bootstrap
resamples. Equal sample sizes were utilized for both the controls and cases. The standard
errors are provided in parenthesis.

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.75 0.25 20 0.036 0.048 0.005 0.036 0.010 0.072 0.086 0.072 0.086

(0.077) (0.067) (0.051) (0.077) (0.064) (0.060) (0.059) (0.060) (0.059)

30 0.036 0.048 0.004 0.037 0.027 0.055 0.058 0.057 0.059

(0.033) (0.034) (0.027) (0.033) (0.036) (0.034) (0.036) (0.035) (0.036)

40 0.038 0.051 0.004 0.041 0.033 0.050 0.051 0.054 0.054

(0.025) (0.027) (0.014) (0.025) (0.024) (0.027) (0.027) (0.026) (0.027)

50 0.036 0.049 0.005 0.040 0.032 0.045 0.044 0.049 0.047

(0.021) (0.024) (0.011) (0.022) (0.020) (0.022) (0.021) (0.023) (0.022)

60 0.037 0.050 0.005 0.041 0.033 0.044 0.042 0.050 0.047

(0.019) (0.022) (0.010) (0.020) (0.018) (0.020) (0.020) (0.020) (0.020)

100 0.037 0.050 0.005 0.044 0.034 0.041 0.039 0.049 0.045

(0.016) (0.020) (0.007) (0.017) (0.016) (0.017) (0.016) (0.018) (0.017)

200 0.037 0.050 0.005 0.047 0.035 0.039 0.037 0.049 0.047

(0.013) (0.017) (0.006) (0.015) (0.013) (0.014) (0.013) (0.016) (0.015)

300 0.038 0.051 0.005 0.049 0.036 0.039 0.038 0.051 0.049

(0.013) (0.017) (0.005) (0.015) (0.013) (0.014) (0.013) (0.016) (0.015)

500 0.038 0.051 0.005 0.050 0.037 0.039 0.038 0.051 0.050

(0.013) (0.017) (0.005) (0.015) (0.013) (0.013) (0.013) (0.015) (0.015)

-0.25 20 0.035 0.048 0.005 0.035 0.011 0.071 0.085 0.071 0.086

(0.069) (0.068) (0.062) (0.070) (0.062) (0.060) (0.065) (0.060) (0.065)

30 0.037 0.050 0.004 0.038 0.028 0.056 0.058 0.058 0.060

(0.033) (0.033) (0.023) (0.033) (0.034) (0.034) (0.035) (0.034) (0.036)

40 0.036 0.049 0.004 0.039 0.032 0.049 0.050 0.052 0.052

(0.024) (0.026) (0.013) (0.024) (0.024) (0.025) (0.026) (0.025) (0.026)

50 0.037 0.049 0.005 0.040 0.032 0.046 0.044 0.050 0.048

(0.020) (0.022) (0.012) (0.021) (0.021) (0.022) (0.022) (0.023) (0.023)

60 0.036 0.049 0.005 0.041 0.033 0.044 0.042 0.049 0.046

(0.018) (0.021) (0.009) (0.019) (0.018) (0.019) (0.019) (0.020) (0.020)

100 0.037 0.050 0.005 0.044 0.035 0.042 0.039 0.049 0.046

(0.014) (0.017) (0.007) (0.015) (0.014) (0.015) (0.015) (0.016) (0.016)

200 0.038 0.051 0.005 0.048 0.037 0.040 0.039 0.051 0.048

(0.013) (0.016) (0.005) (0.015) (0.013) (0.014) (0.013) (0.015) (0.015)

300 0.038 0.051 0.005 0.050 0.037 0.040 0.038 0.051 0.050

(0.013) (0.016) (0.005) (0.015) (0.013) (0.013) (0.013) (0.015) (0.015)

500 0.038 0.050 0.005 0.050 0.037 0.039 0.038 0.051 0.049

(0.013) (0.015) (0.005) (0.014) (0.012) (0.013) (0.012) (0.014) (0.014)
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Table C.18. Empirical FDRs for the investigated methods for the correlated cases for the
normal variates with π0 = 0.75 and ρ = ±0.5. Fifty blocks are utilized with pairwise
correlation between the variables within a block of ρ. The pre-specified significance level
is α = 0.05. The number of replications for each scenario is 1, 000 with 10, 000 bootstrap
resamples. Equal sample sizes were utilized for both the controls and cases. The standard
errors are provided in parenthesis.

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.75 0.5 20 0.032 0.044 0.004 0.032 0.010 0.069 0.083 0.069 0.083

(0.071) (0.063) (0.053) (0.072) (0.065) (0.065) (0.066) (0.065) (0.066)

30 0.038 0.052 0.005 0.039 0.029 0.057 0.062 0.059 0.064

(0.034) (0.038) (0.029) (0.034) (0.035) (0.035) (0.037) (0.035) (0.037)

40 0.037 0.051 0.005 0.039 0.031 0.050 0.049 0.053 0.052

(0.025) (0.029) (0.017) (0.026) (0.025) (0.027) (0.027) (0.028) (0.028)

50 0.037 0.049 0.005 0.041 0.033 0.046 0.044 0.050 0.048

(0.022) (0.026) (0.012) (0.023) (0.022) (0.023) (0.023) (0.024) (0.024)

60 0.037 0.051 0.005 0.042 0.034 0.045 0.043 0.050 0.047

(0.020) (0.024) (0.010) (0.021) (0.019) (0.021) (0.020) (0.022) (0.022)

100 0.038 0.052 0.005 0.045 0.036 0.043 0.041 0.051 0.048

(0.017) (0.022) (0.007) (0.019) (0.017) (0.018) (0.018) (0.020) (0.019)

200 0.038 0.052 0.005 0.048 0.036 0.040 0.038 0.050 0.048

(0.014) (0.019) (0.006) (0.016) (0.014) (0.015) (0.014) (0.017) (0.016)

300 0.036 0.049 0.005 0.047 0.035 0.038 0.036 0.049 0.047

(0.014) (0.018) (0.005) (0.016) (0.014) (0.014) (0.014) (0.016) (0.016)

500 0.037 0.051 0.005 0.049 0.036 0.038 0.037 0.050 0.049

-0.5 20 0.029 0.042 0.008 0.029 0.013 0.066 0.076 0.066 0.077

(0.065) (0.067) (0.083) (0.065) (0.080) (0.062) (0.062) (0.062) (0.062)

30 0.037 0.049 0.005 0.038 0.028 0.055 0.057 0.056 0.058

(0.033) (0.034) (0.033) (0.033) (0.035) (0.034) (0.035) (0.035) (0.035)

40 0.038 0.050 0.005 0.040 0.032 0.050 0.050 0.053 0.052

(0.024) (0.025) (0.016) (0.024) (0.024) (0.025) (0.026) (0.025) (0.027)

50 0.038 0.051 0.006 0.042 0.034 0.048 0.046 0.053 0.050

(0.022) (0.023) (0.012) (0.022) (0.021) (0.023) (0.023) (0.023) (0.023)

60 0.036 0.049 0.005 0.041 0.034 0.045 0.042 0.050 0.047

(0.018) (0.020) (0.010) (0.019) (0.018) (0.020) (0.019) (0.020) (0.019)

100 0.037 0.049 0.005 0.044 0.034 0.042 0.039 0.049 0.046

(0.014) (0.017) (0.007) (0.016) (0.015) (0.016) (0.015) (0.017) (0.016)

200 0.038 0.051 0.005 0.048 0.036 0.040 0.038 0.051 0.048

(0.013) (0.015) (0.005) (0.015) (0.013) (0.013) (0.013) (0.015) (0.015)

300 0.038 0.051 0.005 0.049 0.037 0.040 0.038 0.051 0.049

(0.013) (0.014) (0.005) (0.015) (0.013) (0.013) (0.013) (0.015) (0.015)

500 0.037 0.050 0.005 0.049 0.036 0.038 0.037 0.051 0.049

(0.013) (0.015) (0.005) (0.015) (0.012) (0.013) (0.013) (0.015) (0.014)
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Table C.19. Empirical FDRs for the investigated methods for the correlated cases for the
normal variates with π0 = 0.75 and ρ = ±0.75. Fifty blocks are utilized with pairwise
correlation between the variables within a block of ρ. The pre-specified significance level
is α = 0.05. The number of replications for each scenario is 1, 000 with 10, 000 bootstrap
resamples. Equal sample sizes were utilized for both the controls and cases. The standard
errors are provided in parenthesis.

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.75 0.75 20 0.036 0.046 0.005 0.036 0.013 0.072 0.083 0.072 0.083

(0.086) (0.070) (0.057) (0.085) (0.069) (0.073) (0.075) (0.073) (0.075)

30 0.035 0.050 0.005 0.036 0.026 0.052 0.056 0.054 0.058

(0.037) (0.043) (0.028) (0.038) (0.041) (0.040) (0.042) (0.041) (0.043)

40 0.036 0.051 0.004 0.038 0.030 0.049 0.048 0.052 0.051

(0.031) (0.038) (0.015) (0.032) (0.029) (0.034) (0.034) (0.034) (0.034)

50 0.039 0.054 0.005 0.042 0.035 0.049 0.047 0.053 0.051

(0.028) (0.034) (0.014) (0.029) (0.028) (0.031) (0.031) (0.032) (0.032)

60 0.038 0.053 0.005 0.042 0.034 0.045 0.043 0.050 0.048

(0.025) (0.032) (0.011) (0.026) (0.024) (0.027) (0.026) (0.029) (0.028)

100 0.037 0.052 0.005 0.044 0.034 0.041 0.039 0.049 0.046

(0.021) (0.028) (0.008) (0.023) (0.020) (0.022) (0.021) (0.024) (0.024)

200 0.037 0.053 0.005 0.047 0.036 0.040 0.038 0.050 0.047

(0.018) (0.026) (0.006) (0.021) (0.018) (0.018) (0.018) (0.021) (0.021)

300 0.038 0.053 0.005 0.049 0.036 0.039 0.038 0.051 0.049

(0.018) (0.026) (0.006) (0.021) (0.018) (0.018) (0.018) (0.021) (0.021)

500 0.037 0.051 0.005 0.049 0.036 0.038 0.037 0.050 0.049

(0.018) (0.025) (0.006) (0.021) (0.017) (0.018) (0.018) (0.021) (0.021)

-0.75 20 0.036 0.044 0.004 0.036 0.009 0.069 0.080 0.069 0.080

(0.080) (0.070) (0.053) (0.080) (0.050) (0.064) (0.063) (0.063) (0.063)

30 0.035 0.047 0.004 0.036 0.028 0.052 0.056 0.054 0.058

(0.034) (0.034) (0.024) (0.035) (0.038) (0.036) (0.038) (0.037) (0.038)

40 0.037 0.049 0.005 0.040 0.032 0.050 0.050 0.053 0.053

(0.025) (0.026) (0.017) (0.026) (0.024) (0.027) (0.027) (0.028) (0.028)

50 0.037 0.049 0.005 0.040 0.033 0.047 0.045 0.051 0.049

(0.022) (0.022) (0.012) (0.023) (0.021) (0.024) (0.023) (0.024) (0.024)

60 0.037 0.049 0.005 0.041 0.033 0.044 0.042 0.050 0.047

(0.020) (0.021) (0.009) (0.021) (0.020) (0.021) (0.021) (0.022) (0.022)

100 0.038 0.050 0.005 0.045 0.035 0.042 0.040 0.050 0.047

(0.017) (0.018) (0.007) (0.019) (0.016) (0.018) (0.018) (0.020) (0.019)

200 0.038 0.051 0.005 0.048 0.036 0.040 0.038 0.051 0.048

(0.015) (0.015) (0.006) (0.017) (0.015) (0.015) (0.015) (0.017) (0.017)

300 0.038 0.051 0.005 0.049 0.037 0.040 0.038 0.051 0.049

(0.014) (0.014) (0.005) (0.016) (0.014) (0.014) (0.014) (0.017) (0.016)

500 0.038 0.050 0.005 0.050 0.037 0.039 0.038 0.051 0.050

(0.014) (0.014) (0.005) (0.016) (0.014) (0.014) (0.014) (0.016) (0.016)
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Table C.20. Empirical FDRs for the investigated methods for the correlated cases for the
normal variates with π0 = 0.75 and ρ = ±0.9. Fifty blocks are utilized with pairwise
correlation between the variables within a block of ρ. The pre-specified significance level
is α = 0.05. The number of replications for each scenario is 1, 000 with 10, 000 bootstrap
resamples. Equal sample sizes were utilized for both the controls and cases. The standard
errors are provided in parenthesis.

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.75 0.9 20 0.030 0.048 0.004 0.031 0.014 0.064 0.072 0.064 0.073

(0.070) (0.079) (0.040) (0.071) (0.067) (0.081) (0.085) (0.081) (0.085)

30 0.034 0.053 0.004 0.036 0.026 0.051 0.055 0.053 0.056

(0.048) (0.061) (0.026) (0.050) (0.047) (0.055) (0.057) (0.056) (0.058)

40 0.035 0.055 0.004 0.038 0.030 0.048 0.047 0.051 0.050

(0.039) (0.052) (0.017) (0.041) (0.040) (0.044) (0.044) (0.045) (0.046)

50 0.038 0.057 0.005 0.042 0.034 0.048 0.046 0.052 0.050

(0.037) (0.051) (0.017) (0.039) (0.036) (0.040) (0.040) (0.042) (0.042)

60 0.037 0.058 0.004 0.042 0.034 0.045 0.043 0.050 0.048

(0.034) (0.049) (0.014) (0.036) (0.033) (0.037) (0.036) (0.040) (0.039)

100 0.037 0.057 0.005 0.045 0.035 0.042 0.039 0.049 0.046

(0.031) (0.046) (0.011) (0.035) (0.030) (0.032) (0.031) (0.036) (0.035)

200 0.037 0.057 0.005 0.046 0.035 0.039 0.037 0.049 0.046

(0.027) (0.043) (0.009) (0.031) (0.026) (0.027) (0.026) (0.031) (0.030)

300 0.038 0.058 0.005 0.049 0.037 0.040 0.038 0.051 0.049

(0.026) (0.043) (0.008) (0.031) (0.026) (0.027) (0.026) (0.032) (0.031)

500 0.037 0.056 0.005 0.049 0.036 0.038 0.036 0.050 0.048

(0.025) (0.040) (0.008) (0.030) (0.025) (0.025) (0.025) (0.030) (0.030)

-0.9 20 0.033 0.040 0.004 0.033 0.013 0.069 0.080 0.069 0.081

(0.071) (0.067) (0.041) (0.071) (0.064) (0.072) (0.074) (0.072) (0.074)

30 0.036 0.046 0.005 0.037 0.026 0.054 0.056 0.056 0.058

(0.041) (0.041) (0.027) (0.041) (0.041) (0.045) (0.046) (0.046) (0.047)

40 0.039 0.051 0.005 0.042 0.035 0.051 0.051 0.054 0.054

(0.033) (0.033) (0.019) (0.034) (0.033) (0.037) (0.037) (0.037) (0.038)

50 0.036 0.048 0.005 0.040 0.033 0.047 0.045 0.051 0.049

(0.026) (0.026) (0.013) (0.028) (0.026) (0.029) (0.029) (0.030) (0.031)

60 0.037 0.048 0.005 0.041 0.034 0.045 0.043 0.050 0.047

(0.024) (0.024) (0.012) (0.026) (0.024) (0.027) (0.026) (0.028) (0.027)

100 0.037 0.049 0.005 0.044 0.035 0.042 0.039 0.049 0.046

(0.022) (0.021) (0.009) (0.024) (0.021) (0.022) (0.022) (0.025) (0.024)

200 0.037 0.049 0.005 0.046 0.035 0.039 0.037 0.049 0.047

(0.020) (0.018) (0.007) (0.023) (0.019) (0.020) (0.020) (0.023) (0.022)

300 0.037 0.049 0.005 0.047 0.036 0.038 0.037 0.049 0.048

(0.019) (0.017) (0.007) (0.021) (0.019) (0.019) (0.019) (0.022) (0.021)

500 0.038 0.050 0.005 0.050 0.037 0.039 0.038 0.051 0.050

(0.018) (0.017) (0.006) (0.021) (0.018) (0.019) (0.018) (0.022) (0.021)
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C.1.2. Numerical Summaries of Empirical False Non-discovery Rates
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Table C.21. Empirical FNRs for the investigated methods for the correlated cases for the
normal variates with π0 = 0.9 and ρ = ±0.1 and ±0.25. Fifty blocks are utilized with pairwise
correlation between the variables within a block of ρ. The pre-specified significance level
is α = 0.05. The number of replications for each scenario is 1, 000 with 10, 000 bootstrap
resamples. Equal sample sizes were utilized for both the controls and cases. The standard
errors of the estimated quantities were of the order of 0.008 or less for all the methods. Cases
where FDR control were anti-conservative are indicated with a star(?).

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.9 0.1 20 0.099 0.099 0.100 0.099 0.099 0.096? 0.093? 0.096? 0.093?

30 0.094 0.093 0.099 0.094 0.094 0.088? 0.085 ? 0.088? 0.085?

40 0.084 0.083 0.096 0.084 0.084 0.078? 0.076? 0.078? 0.076?

50 0.074 0.073 0.091 0.074 0.073 0.069? 0.067? 0.069? 0.067?

60 0.065 0.064 0.084 0.065 0.064 0.061 0.060 0.060 0.059

100 0.042 0.041 0.060 0.041 0.041 0.040 0.039 0.039 0.039

200 0.019 0.019 0.031 0.019 0.019 0.019 0.018 0.018 0.018

300 0.011 0.010 0.019 0.010 0.011 0.010 0.010 0.010 0.010

500 0.004 0.003 0.008 0.003 0.004 0.004 0.004 0.003 0.003

-0.1 20 0.099 0.099 0.100 0.099 0.099 0.098? 0.096? 0.098? 0.096?

30 0.094 0.093 0.099 0.094 0.094 0.093 0.090 0.093 0.090

40 0.084 0.083 0.096 0.084 0.083 0.085 0.082 0.085 0.082

50 0.075 0.073 0.091 0.074 0.073 0.077 0.075 0.077 0.075

60 0.066 0.064 0.084 0.065 0.064 0.069 0.067 0.069 0.067

100 0.042 0.041 0.060 0.041 0.041 0.046 0.045 0.045 0.045

200 0.019 0.018 0.031 0.019 0.019 0.022 0.022 0.022 0.022

300 0.011 0.010 0.019 0.010 0.011 0.013 0.013 0.013 0.013

500 0.004 0.004 0.008 0.004 0.004 0.005 0.005 0.005 0.005

0.25 20 0.099 0.099 0.100 0.099 0.099 0.095? 0.093? 0.095? 0.093?

30 0.094 0.093 0.099 0.094 0.094 0.088? 0.085? 0.088? 0.085?

40 0.084 0.083 0.096 0.084 0.084 0.078? 0.076? 0.078? 0.076?

50 0.075 0.073 0.091 0.074 0.073 0.069? 0.068? 0.069? 0.067?

60 0.066 0.064 0.085 0.065 0.064 0.061 0.060 0.061 0.059

100 0.042 0.041 0.060 0.041 0.041 0.040 0.039 0.039 0.039

200 0.019 0.018 0.030 0.019 0.019 0.018 0.018 0.018 0.018

300 0.011 0.010 0.019 0.010 0.010 0.010 0.010 0.010 0.010

500 0.004 0.004 0.008 0.004 0.004 0.004 0.004 0.003 0.004

-0.25 20 0.099 0.099 0.100 0.099 0.099 0.095? 0.093? 0.095? 0.093?

30 0.094 0.093 0.099 0.094 0.094 0.088? 0.086? 0.088? 0.086?

40 0.085 0.083 0.096 0.084 0.084 0.078? 0.076? 0.078? 0.076?

50 0.075 0.073 0.091 0.074 0.073 0.069? 0.068? 0.069? 0.067?

60 0.065 0.064 0.084 0.065 0.064 0.061 0.060 0.061 0.059

100 0.041 0.040 0.060 0.041 0.040 0.039 0.039 0.039 0.038

200 0.019 0.018 0.031 0.019 0.019 0.018 0.018 0.018 0.018

300 0.011 0.010 0.019 0.010 0.011 0.010 0.010 0.010 0.010

500 0.004 0.004 0.008 0.004 0.004 0.004 0.004 0.003 0.004
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Table C.22. Empirical FNRs for the investigated methods for the correlated cases for the
normal variates with π0 = 0.9 and ρ = ±0.5 and ±0.75. Fifty blocks are utilized with pairwise
correlation between the variables within a block of ρ. The pre-specified significance level
is α = 0.05. The number of replications for each scenario is 1, 000 with 10, 000 number of
bootstrap samples. Equal sample sizes were utilized for both the controls and cases. The
standard errors of the estimated quantities were of the order of 0.008 or less for all the
methods. Cases where FDR control were anti-conservative are indicated with a star(?).

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.9 0.5 20 0.099 0.099 0.100 0.099 0.100 0.096? 0.094? 0.096? 0.094?

30 0.094 0.093 0.099 0.094 0.094 0.088? 0.086? 0.088? 0.086?

40 0.084 0.083 0.096 0.084 0.084 0.078? 0.076? 0.078? 0.076?

50 0.074 0.073 0.091 0.074 0.073 0.069 0.068? 0.069? 0.067?

60 0.065 0.064 0.084 0.065 0.064 0.061 0.060 0.061 0.060

100 0.042 0.040 0.060 0.041 0.041 0.039 0.039 0.039 0.038

200 0.019 0.018 0.031 0.019 0.019 0.018 0.018 0.018 0.018

300 0.011 0.010 0.019 0.010 0.011 0.010 0.010 0.010 0.010

500 0.004 0.003 0.008 0.003 0.004 0.004 0.004 0.003 0.003

-0.5 20 0.099 0.099 0.100 0.099 0.099 0.095? 0.093? 0.095? 0.093?

30 0.094 0.093 0.099 0.094 0.094 0.088? 0.085? 0.088? 0.085?

40 0.084 0.083 0.096 0.084 0.084 0.078? 0.076? 0.078? 0.076?

50 0.074 0.073 0.091 0.074 0.073 0.069 0.068? 0.069? 0.067?

60 0.066 0.064 0.085 0.065 0.064 0.061 0.060 0.061 0.060

100 0.042 0.041 0.060 0.041 0.041 0.039 0.039 0.039 0.038

200 0.019 0.019 0.031 0.019 0.019 0.019 0.018 0.018 0.018

300 0.010 0.010 0.019 0.010 0.010 0.010 0.010 0.010 0.010

500 0.004 0.004 0.008 0.004 0.004 0.004 0.004 0.003 0.003

0.75 20 0.099 0.099 0.100 0.099 0.099 0.096? 0.093? 0.096? 0.093?

30 0.094 0.093 0.099 0.094 0.094 0.088? 0.086? 0.088? 0.086?

40 0.084 0.083 0.096 0.084 0.084 0.078? 0.076? 0.078? 0.076?

50 0.074 0.072 0.091 0.074 0.073 0.069 0.068? 0.069? 0.067?

60 0.065 0.063 0.084 0.065 0.064 0.061 0.060 0.060 0.059

100 0.041 0.040 0.060 0.041 0.041 0.039 0.039 0.039 0.038

200 0.019 0.018 0.031 0.019 0.019 0.018 0.018 0.018 0.018

300 0.011 0.010 0.019 0.010 0.011 0.010 0.010 0.010 0.010

500 0.004 0.004 0.008 0.004 0.004 0.004 0.004 0.003 0.003

-0.75 20 0.099 0.099 0.100 0.099 0.099 0.095? 0.093? 0.095? 0.093?

30 0.094 0.093 0.099 0.094 0.094 0.088? 0.086? 0.088? 0.086?

40 0.085 0.083 0.096 0.084 0.084 0.079? 0.077? 0.079? 0.077?

50 0.075 0.073 0.091 0.074 0.073 0.069 0.068 0.069 0.068?

60 0.066 0.064 0.085 0.065 0.064 0.061 0.060 0.061 0.060

100 0.042 0.040 0.060 0.041 0.041 0.039 0.039 0.039 0.038

200 0.019 0.018 0.031 0.019 0.019 0.019 0.018 0.018 0.018

300 0.010 0.010 0.019 0.010 0.010 0.010 0.010 0.010 0.010

500 0.004 0.003 0.008 0.004 0.004 0.004 0.004 0.003 0.003
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Table C.23. Empirical FNRs for the investigated methods for the correlated cases for the
normal variates with π0 = 0.9; ρ = ±0.9 and π = 0.85; ρ = ±0.1. Fifty blocks are utilized with
pairwise correlation between the variables within a block of ρ. The pre-specified significance
level is α = 0.05. The number of replications for each scenario is 1, 000 with 10, 000 bootstrap
resamples. Equal sample sizes were utilized for both the controls and cases. The standard
errors of the estimated quantities were of the order of 0.008 or less for all the methods. Cases
where FDR control were anti-conservative are indicated with a star(?).

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.9 0.9 20 0.099 0.098 0.100 0.099 0.099 0.095? 0.093? 0.095? 0.093?

30 0.094 0.092 0.099 0.094 0.094 0.088? 0.085? 0.088? 0.085?

40 0.085 0.082 0.096 0.084 0.084 0.078? 0.076? 0.078? 0.076?

50 0.075 0.072 0.091 0.074 0.073 0.069 0.068 0.069 0.068

60 0.066 0.063 0.084 0.065 0.064 0.061 0.060 0.061 0.060

100 0.042 0.040 0.060 0.041 0.041 0.039 0.039 0.039 0.039

200 0.019 0.018 0.030 0.019 0.019 0.018 0.018 0.018 0.018

300 0.011 0.010 0.019 0.010 0.011 0.010 0.010 0.010 0.010

500 0.004 0.003 0.008 0.004 0.004 0.004 0.004 0.003 0.003

-0.9 20 0.099 0.099 0.100 0.099 0.099 0.095? 0.093? 0.095? 0.093?

30 0.094 0.093 0.099 0.094 0.094 0.088? 0.086? 0.088? 0.086?

40 0.085 0.083 0.096 0.084 0.084 0.078 0.076? 0.078 0.076?

50 0.075 0.073 0.091 0.074 0.074 0.069 0.068 0.069 0.068

60 0.065 0.064 0.085 0.065 0.064 0.061 0.060 0.061 0.059

100 0.042 0.040 0.060 0.041 0.041 0.039 0.039 0.039 0.038

200 0.019 0.018 0.031 0.019 0.019 0.019 0.018 0.018 0.018

300 0.011 0.010 0.019 0.010 0.010 0.010 0.010 0.010 0.010

500 0.004 0.004 0.008 0.004 0.004 0.004 0.004 0.003 0.003

0.85 0.1 20 0.148 0.148 0.150 0.148 0.150 0.144? 0.142? 0.144? 0.142?

30 0.140 0.138 0.149 0.140 0.143 0.134? 0.133? 0.134? 0.132?

40 0.128 0.125 0.144 0.127 0.130 0.122? 0.121? 0.122? 0.121?

50 0.115 0.112 0.137 0.114 0.116 0.110 0.109 0.109 0.109

60 0.104 0.102 0.129 0.104 0.105 0.100 0.100 0.099 0.099

100 0.075 0.072 0.100 0.074 0.074 0.072 0.072 0.071 0.071

200 0.041 0.039 0.062 0.039 0.040 0.040 0.039 0.038 0.038

300 0.024 0.023 0.042 0.023 0.024 0.024 0.024 0.023 0.022

500 0.010 0.009 0.021 0.009 0.010 0.010 0.010 0.009 0.009

-0.1 20 0.148 0.148 0.150 0.148 0.150 0.144? 0.142? 0.144? 0.142?

30 0.140 0.138 0.149 0.140 0.143 0.134? 0.132? 0.134? 0.132?

40 0.128 0.125 0.144 0.127 0.130 0.122 0.121? 0.122? 0.121?

50 0.115 0.112 0.136 0.114 0.116 0.110 0.109 0.109 0.108

60 0.104 0.102 0.128 0.104 0.105 0.100 0.100 0.099 0.099

100 0.075 0.072 0.100 0.073 0.074 0.072 0.072 0.071 0.071

200 0.040 0.038 0.062 0.039 0.040 0.039 0.039 0.038 0.038

300 0.024 0.023 0.042 0.023 0.024 0.024 0.024 0.022 0.022

500 0.010 0.009 0.020 0.009 0.010 0.010 0.010 0.009 0.009
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Table C.24. Empirical FNRs for the investigated methods for the correlated cases for the
normal variates with π0 = 0.85 and ρ = ±0.25 and ±0.5. Fifty blocks are utilized with
pairwise correlation between the variables within a block of ρ. The pre-specified significance
level is α = 0.05. The number of replications for each scenario is 1, 000 with 10, 000 bootstrap
resamples. Equal sample sizes were utilized for both the controls and cases. The standard
errors of the estimated quantities were of the order of 0.008 or less for all the methods. Cases
where FDR control were anti-conservative are indicated with a star(?).

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.85 0.25 20 0.148 0.148 0.150 0.148 0.150 0.144? 0.142? 0.144? 0.142?

30 0.140 0.138 0.148 0.140 0.143 0.134? 0.132? 0.134? 0.132?

40 0.128 0.125 0.144 0.127 0.129 0.122? 0.121? 0.122? 0.121?

50 0.115 0.112 0.137 0.114 0.116 0.110 0.109 0.110 0.109

60 0.104 0.102 0.128 0.104 0.105 0.100 0.099 0.099 0.099

100 0.075 0.072 0.100 0.073 0.074 0.072 0.072 0.071 0.071

200 0.040 0.038 0.062 0.039 0.040 0.039 0.039 0.038 0.038

300 0.024 0.023 0.042 0.023 0.024 0.024 0.024 0.022 0.022

500 0.010 0.009 0.021 0.009 0.010 0.010 0.010 0.009 0.009

-0.25 20 0.148 0.148 0.150 0.148 0.150 0.144? 0.142? 0.144? 0.142?

30 0.140 0.138 0.148 0.140 0.143 0.134? 0.132? 0.134? 0.132?

40 0.127 0.125 0.144 0.127 0.129 0.122 0.121? 0.121 0.120?

50 0.115 0.112 0.137 0.114 0.116 0.110 0.109 0.109 0.109

60 0.105 0.102 0.129 0.104 0.105 0.100 0.100 0.099 0.099

100 0.075 0.072 0.100 0.074 0.074 0.072 0.072 0.071 0.071

200 0.041 0.038 0.062 0.039 0.040 0.039 0.039 0.038 0.038

300 0.024 0.023 0.042 0.023 0.024 0.023 0.023 0.022 0.022

500 0.010 0.009 0.021 0.009 0.010 0.010 0.010 0.009 0.009

0.5 20 0.148 0.148 0.150 0.148 0.150 0.144? 0.142? 0.144? 0.142?

30 0.140 0.138 0.149 0.140 0.143 0.134? 0.133? 0.134? 0.133?

40 0.127 0.125 0.144 0.127 0.130 0.122 0.121? 0.122 0.120?

50 0.115 0.112 0.137 0.114 0.116 0.110 0.109 0.109 0.109

60 0.105 0.102 0.128 0.104 0.105 0.100 0.100 0.099 0.099

100 0.075 0.072 0.100 0.074 0.075 0.072 0.072 0.071 0.071

200 0.040 0.038 0.062 0.039 0.040 0.039 0.039 0.038 0.038

300 0.024 0.023 0.042 0.023 0.024 0.024 0.024 0.022 0.022

500 0.010 0.009 0.021 0.009 0.010 0.010 0.010 0.009 0.009

-0.5 20 0.148 0.148 0.150 0.148 0.150 0.144? 0.142? 0.144? 0.142?

30 0.140 0.138 0.148 0.140 0.143 0.134? 0.132? 0.134? 0.132?

40 0.127 0.125 0.144 0.127 0.129 0.121? 0.120? 0.121? 0.120?

50 0.115 0.112 0.137 0.114 0.116 0.110 0.109 0.109 0.109

60 0.105 0.102 0.129 0.104 0.105 0.100 0.100 0.100 0.099

100 0.075 0.072 0.100 0.073 0.074 0.072 0.072 0.071 0.071

200 0.040 0.038 0.062 0.039 0.040 0.039 0.039 0.038 0.038

300 0.024 0.023 0.042 0.023 0.024 0.024 0.024 0.022 0.022

500 0.010 0.009 0.021 0.009 0.010 0.010 0.010 0.009 0.009
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Table C.25. Empirical FNRs for the investigated methods for the correlated cases for the
normal variates with π0 = 0.85 and ρ = ±0.75 and ±0.9. Fifty blocks are utilized with
pairwise correlation between the variables within a block of ρ. The pre-specified significance
level is α = 0.05. The number of replications for each scenario is 1, 000 with 10, 000 bootstrap
resamples. Equal sample sizes were utilized for both the controls and cases. The standard
errors of the estimated quantities were of the order of 0.008 or less for all the methods. Cases
where FDR control were anti-conservative are indicated with a star(?).

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.85 0.75 20 0.148 0.147 0.150 0.148 0.150 0.144? 0.142? 0.144? 0.142?

30 0.140 0.138 0.149 0.140 0.143 0.134? 0.132? 0.134? 0.132?

40 0.127 0.124 0.144 0.127 0.129 0.122 0.120? 0.121 0.120?

50 0.115 0.112 0.137 0.114 0.116 0.110 0.109 0.109 0.109

60 0.104 0.101 0.128 0.103 0.104 0.100 0.099 0.099 0.099

100 0.075 0.072 0.100 0.073 0.074 0.072 0.072 0.071 0.071

200 0.040 0.038 0.062 0.039 0.040 0.039 0.039 0.038 0.038

300 0.024 0.022 0.042 0.023 0.024 0.023 0.023 0.022 0.022

500 0.010 0.009 0.021 0.009 0.010 0.010 0.010 0.009 0.009

-0.75 20 0.148 0.148 0.150 0.148 0.150 0.144? 0.142? 0.144? 0.142?

30 0.140 0.138 0.148 0.140 0.143 0.134? 0.133? 0.134? 0.133?

40 0.127 0.125 0.144 0.127 0.129 0.122? 0.121? 0.122? 0.120?

50 0.115 0.112 0.137 0.114 0.116 0.110 0.109 0.110 0.109

60 0.104 0.101 0.128 0.103 0.104 0.100 0.099 0.099 0.098

100 0.075 0.072 0.100 0.074 0.074 0.072 0.072 0.071 0.071

200 0.040 0.038 0.062 0.039 0.040 0.039 0.039 0.038 0.038

300 0.024 0.023 0.041 0.023 0.024 0.023 0.023 0.022 0.022

500 0.010 0.009 0.021 0.009 0.010 0.010 0.010 0.009 0.009

0.9 20 0.148 0.147 0.150 0.148 0.150 0.144? 0.142? 0.144? 0.142?

30 0.140 0.137 0.148 0.140 0.143 0.134? 0.132? 0.134? 0.132?

40 0.127 0.123 0.144 0.127 0.129 0.122 0.121? 0.122 0.121?

50 0.115 0.111 0.137 0.115 0.116 0.110 0.110 0.110 0.109

60 0.104 0.100 0.128 0.104 0.105 0.100 0.100 0.099 0.099

100 0.075 0.071 0.100 0.073 0.074 0.072 0.072 0.071 0.071

200 0.040 0.038 0.062 0.039 0.040 0.039 0.039 0.038 0.038

300 0.024 0.022 0.042 0.023 0.024 0.024 0.024 0.023 0.022

500 0.010 0.009 0.021 0.010 0.010 0.010 0.010 0.009 0.009

-0.9 20 0.148 0.148 0.150 0.148 0.149 0.144? 0.142? 0.144? 0.142?

30 0.140 0.138 0.148 0.140 0.143 0.134? 0.132? 0.134? 0.132?

40 0.127 0.125 0.144 0.127 0.129 0.122 0.121? 0.121 0.120?

50 0.115 0.112 0.137 0.114 0.116 0.110 0.109 0.109 0.109

60 0.104 0.101 0.128 0.103 0.105 0.100 0.099 0.099 0.099

100 0.074 0.072 0.100 0.073 0.074 0.072 0.072 0.071 0.071

200 0.040 0.038 0.062 0.039 0.040 0.039 0.039 0.038 0.038

300 0.024 0.023 0.042 0.023 0.024 0.024 0.024 0.022 0.022

500 0.010 0.009 0.021 0.009 0.010 0.010 0.010 0.009 0.009
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Table C.26. Empirical FNRs for the investigated methods for the correlated cases for the
normal variates with π0 = 0.8 and ρ = ±0.1 and ±0.25. Fifty blocks are utilized with pairwise
correlation between the variables within a block of ρ. The pre-specified significance level
is α = 0.05. The number of replications for each scenario is 1, 000 with 10, 000 bootstrap
samples. Equal sample sizes were utilized for both the controls and cases. The standard
errors of the estimated quantities were of the order of 0.008 or less for all the methods. Cases
where FDR control were anti-conservative are indicated with a star(?).

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.8 0.1 20 0.196 0.194 0.200 0.196 0.199 0.189? 0.185? 0.189? 0.185?

30 0.180 0.175 0.197 0.179 0.183 0.171 0.169? 0.171? 0.168?

40 0.160 0.155 0.188 0.159 0.162 0.153 0.151 0.151 0.150

50 0.143 0.137 0.175 0.141 0.144 0.137 0.136 0.135 0.135

60 0.129 0.123 0.163 0.127 0.129 0.124 0.123 0.122 0.121

100 0.090 0.085 0.125 0.087 0.090 0.087 0.087 0.084 0.085

200 0.047 0.044 0.074 0.045 0.047 0.046 0.046 0.043 0.043

300 0.028 0.026 0.050 0.026 0.028 0.028 0.028 0.026 0.026

500 0.012 0.011 0.025 0.011 0.012 0.012 0.012 0.010 0.010

-0.1 20 0.196 0.194 0.200 0.196 0.199 0.188? 0.185? 0.188? 0.185?

30 0.179 0.175 0.197 0.179 0.183 0.171? 0.169? 0.170? 0.168?

40 0.160 0.155 0.188 0.159 0.162 0.153 0.151 0.152 0.150

50 0.143 0.137 0.175 0.141 0.144 0.137 0.136 0.135 0.135

60 0.129 0.123 0.163 0.127 0.129 0.124 0.123 0.122 0.121

100 0.090 0.085 0.124 0.087 0.090 0.087 0.087 0.084 0.084

200 0.047 0.044 0.075 0.045 0.047 0.046 0.046 0.043 0.043

300 0.028 0.026 0.050 0.026 0.028 0.028 0.028 0.026 0.026

500 0.012 0.011 0.025 0.011 0.012 0.012 0.012 0.010 0.010

0.25 20 0.196 0.195 0.200 0.196 0.199 0.188? 0.185? 0.188? 0.185?

30 0.179 0.175 0.196 0.179 0.183 0.171 0.169? 0.171 0.168?

40 0.160 0.155 0.188 0.159 0.162 0.153 0.151 0.152 0.150

50 0.143 0.138 0.175 0.141 0.144 0.137 0.136 0.135 0.135

60 0.129 0.123 0.163 0.127 0.129 0.124 0.123 0.122 0.121

100 0.090 0.085 0.124 0.087 0.090 0.087 0.087 0.084 0.085

200 0.047 0.044 0.075 0.045 0.047 0.046 0.046 0.043 0.043

300 0.028 0.026 0.050 0.026 0.028 0.028 0.028 0.026 0.026

500 0.012 0.011 0.025 0.011 0.012 0.012 0.012 0.010 0.010

-0.25 20 0.196 0.194 0.200 0.196 0.199 0.188? 0.185? 0.188? 0.185?

30 0.179 0.175 0.196 0.179 0.183 0.171? 0.169? 0.171? 0.168?

40 0.160 0.155 0.187 0.159 0.162 0.153 0.152 0.152 0.150

50 0.143 0.138 0.175 0.141 0.144 0.137 0.137 0.136 0.135

60 0.129 0.123 0.163 0.127 0.129 0.124 0.123 0.121 0.121

100 0.090 0.085 0.124 0.087 0.089 0.087 0.087 0.084 0.084

200 0.047 0.044 0.074 0.044 0.047 0.046 0.046 0.043 0.043

300 0.028 0.026 0.050 0.026 0.028 0.028 0.028 0.025 0.025

500 0.012 0.010 0.025 0.011 0.012 0.011 0.011 0.010 0.010
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Table C.27. Empirical FNRs for the investigated methods for the correlated cases for the
normal variates with π0 = 0.8 and ρ = ±0.5 and ±0.75. Fifty blocks are utilized with pairwise
correlation between the variables within a block of ρ. The pre-specified significance level
is α = 0.05. The number of replications for each scenario is 1, 000 with 10, 000 bootstrap
resamples. Equal sample sizes were utilized for both the controls and cases. The standard
errors of the estimated quantities were of the order of 0.008 or less for all the methods. Cases
where FDR control were anti-conservative are indicated with a star(?).

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.8 0.5 20 0.196 0.194 0.200 0.196 0.199 0.188? 0.185? 0.188? 0.185?

30 0.180 0.175 0.197 0.179 0.183 0.171 0.169? 0.171 0.168?

40 0.160 0.155 0.187 0.159 0.162 0.153 0.152 0.152 0.150

50 0.143 0.138 0.176 0.142 0.144 0.137 0.137 0.136 0.135

60 0.129 0.123 0.163 0.127 0.129 0.124 0.123 0.122 0.121

100 0.090 0.086 0.125 0.088 0.090 0.087 0.087 0.085 0.085

200 0.047 0.044 0.075 0.045 0.047 0.046 0.046 0.044 0.044

300 0.028 0.026 0.050 0.026 0.028 0.028 0.028 0.026 0.026

500 0.012 0.011 0.025 0.011 0.012 0.012 0.012 0.010 0.010

-0.5 20 0.196 0.195 0.200 0.196 0.199 0.189? 0.185? 0.189? 0.185?

30 0.179 0.175 0.197 0.179 0.183 0.171 0.169? 0.170 0.168?

40 0.160 0.155 0.187 0.159 0.162 0.153 0.151 0.152 0.150

50 0.143 0.138 0.176 0.141 0.144 0.137 0.136 0.135 0.135

60 0.129 0.123 0.163 0.127 0.129 0.124 0.123 0.122 0.121

100 0.090 0.086 0.124 0.088 0.090 0.088 0.088 0.085 0.085

200 0.048 0.044 0.075 0.045 0.047 0.046 0.046 0.044 0.044

300 0.028 0.026 0.050 0.026 0.028 0.028 0.028 0.026 0.026

500 0.012 0.011 0.025 0.011 0.012 0.012 0.012 0.010 0.010

0.75 20 0.196 0.194 0.200 0.196 0.199 0.189? 0.185? 0.189? 0.185?

30 0.179 0.175 0.196 0.179 0.183 0.171 0.169? 0.171 0.168?

40 0.160 0.155 0.187 0.159 0.162 0.153 0.152 0.152 0.151

50 0.143 0.137 0.176 0.142 0.144 0.137 0.137 0.136 0.135

60 0.128 0.122 0.163 0.127 0.129 0.123 0.123 0.121 0.121

100 0.090 0.085 0.124 0.087 0.090 0.087 0.087 0.084 0.085

200 0.047 0.043 0.075 0.044 0.047 0.046 0.046 0.043 0.043

300 0.028 0.026 0.050 0.026 0.028 0.028 0.028 0.025 0.025

500 0.012 0.011 0.025 0.011 0.012 0.012 0.011 0.010 0.010

-0.75 20 0.196 0.194 0.200 0.196 0.199 0.189? 0.185? 0.189? 0.185?

30 0.179 0.176 0.196 0.179 0.183 0.171? 0.169? 0.171? 0.168?

40 0.160 0.155 0.187 0.159 0.162 0.153 0.152 0.152 0.151

50 0.143 0.138 0.175 0.141 0.144 0.137 0.136 0.135 0.135

60 0.129 0.123 0.163 0.127 0.129 0.124 0.123 0.122 0.121

100 0.090 0.085 0.124 0.087 0.090 0.087 0.087 0.084 0.085

200 0.047 0.044 0.075 0.044 0.047 0.046 0.046 0.043 0.043

300 0.028 0.026 0.050 0.026 0.028 0.028 0.028 0.026 0.026

500 0.012 0.011 0.025 0.011 0.012 0.012 0.012 0.010 0.010
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Table C.28. Empirical FNRs for the investigated methods for the correlated cases for the
normal variates with π0 = 0.8; ρ = ±0.9 and π0 = 0.75; ρ = ±0.1. Fifty blocks are utilized
with pairwise correlation between the variables within a block of ρ. The pre-specified
significance level is α = 0.05. The number of replications for each scenario is 1, 000 with
10, 000 bootstrap resamples. Equal sample sizes were utilized for both the controls and cases.
The standard errors of the estimated quantities were of the order of 0.008 or less for all the
methods. Cases where FDR control were anti-conservative are indicated with a star(?).

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.8 0.9 20 0.196 0.192 0.200 0.196 0.198 0.188? 0.185? 0.188? 0.185?

30 0.180 0.174 0.197 0.179 0.183 0.171 0.169? 0.171 0.168?

40 0.159 0.152 0.187 0.158 0.161 0.152 0.151 0.151 0.150

50 0.143 0.135 0.175 0.141 0.144 0.137 0.136 0.135 0.135

60 0.128 0.121 0.163 0.126 0.129 0.123 0.123 0.121 0.121

100 0.090 0.084 0.124 0.087 0.090 0.087 0.087 0.084 0.085

200 0.047 0.043 0.075 0.044 0.047 0.046 0.046 0.043 0.043

300 0.029 0.026 0.050 0.027 0.028 0.028 0.028 0.026 0.026

500 0.012 0.010 0.025 0.011 0.012 0.012 0.012 0.011 0.011

-0.9 20 0.196 0.194 0.200 0.196 0.199 0.189? 0.186? 0.189? 0.185?

30 0.179 0.175 0.196 0.179 0.183 0.171 0.169? 0.170 0.168?

40 0.160 0.155 0.188 0.159 0.162 0.153 0.152 0.152 0.151

50 0.143 0.137 0.176 0.141 0.144 0.137 0.136 0.135 0.135

60 0.129 0.123 0.163 0.127 0.129 0.124 0.123 0.122 0.121

100 0.090 0.085 0.124 0.087 0.090 0.087 0.087 0.084 0.084

200 0.047 0.043 0.074 0.044 0.047 0.046 0.046 0.043 0.043

300 0.028 0.026 0.050 0.026 0.028 0.028 0.028 0.026 0.025

500 0.012 0.011 0.025 0.011 0.012 0.012 0.012 0.011 0.011

0.75 0.1 20 0.244 0.242 0.249 0.244 0.249 0.236? 0.234? 0.236? 0.234?

30 0.225 0.218 0.245 0.224 0.232 0.214 0.215 0.214 0.214

40 0.202 0.194 0.235 0.200 0.206 0.193 0.194 0.191 0.193

50 0.181 0.172 0.222 0.178 0.184 0.173 0.175 0.171 0.173

60 0.163 0.154 0.208 0.159 0.165 0.156 0.158 0.153 0.155

100 0.115 0.107 0.160 0.110 0.116 0.111 0.113 0.107 0.108

200 0.060 0.055 0.096 0.056 0.060 0.059 0.059 0.055 0.055

300 0.037 0.034 0.064 0.034 0.037 0.037 0.037 0.033 0.033

500 0.018 0.015 0.034 0.016 0.017 0.017 0.017 0.015 0.015

-0.1 20 0.245 0.242 0.249 0.244 0.249 0.236? 0.234? 0.236? 0.234?

30 0.225 0.218 0.245 0.224 0.232 0.215 0.215 0.214 0.214

40 0.202 0.194 0.235 0.200 0.206 0.193 0.194 0.191 0.192

50 0.181 0.172 0.222 0.178 0.184 0.173 0.175 0.170 0.172

60 0.163 0.154 0.208 0.160 0.166 0.157 0.159 0.154 0.156

100 0.115 0.107 0.160 0.110 0.116 0.111 0.113 0.107 0.108

200 0.060 0.055 0.096 0.056 0.060 0.059 0.059 0.054 0.055

300 0.038 0.034 0.064 0.034 0.037 0.037 0.037 0.033 0.034

500 0.018 0.016 0.035 0.016 0.018 0.018 0.018 0.016 0.016
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Table C.29. Empirical FNRs for the investigated methods for the correlated cases for the
normal variates with π0 = 0.75 and ρ = ±0.25 and ±0.5. Fifty blocks are utilized with
pairwise correlation between the variables within a block of ρ. The pre-specified significance
level is α = 0.05. The number of replications for each scenario is 1, 000 with 10, 000 bootstrap
resamples. Equal sample sizes were utilized for both the controls and cases. The standard
errors of the estimated quantities were of the order of 0.008 or less for all the methods. Cases
where FDR control were anti-conservative are indicated with a star(?).

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.75 0.25 20 0.244 0.242 0.249 0.244 0.249 0.236? 0.235? 0.236? 0.234?

30 0.224 0.218 0.245 0.224 0.232 0.215 0.215 0.214 0.214

40 0.201 0.193 0.235 0.200 0.206 0.193 0.194 0.191 0.193

50 0.181 0.172 0.222 0.178 0.184 0.173 0.175 0.170 0.172

60 0.163 0.155 0.208 0.160 0.166 0.157 0.159 0.153 0.155

100 0.115 0.107 0.160 0.110 0.116 0.111 0.113 0.107 0.108

200 0.060 0.055 0.096 0.056 0.061 0.059 0.060 0.055 0.055

300 0.037 0.034 0.065 0.034 0.037 0.037 0.037 0.033 0.033

500 0.018 0.016 0.035 0.016 0.018 0.018 0.018 0.016 0.016

-0.25 20 0.245 0.242 0.249 0.245 0.249 0.236? 0.234? 0.236? 0.234?

30 0.225 0.218 0.246 0.224 0.232 0.215 0.215 0.214 0.215

40 0.201 0.193 0.235 0.199 0.206 0.192 0.194 0.191 0.192

50 0.181 0.173 0.222 0.179 0.184 0.174 0.175 0.171 0.173

60 0.163 0.154 0.207 0.160 0.165 0.156 0.158 0.153 0.155

100 0.115 0.107 0.160 0.110 0.116 0.111 0.113 0.106 0.108

200 0.060 0.055 0.096 0.056 0.060 0.059 0.059 0.054 0.055

300 0.038 0.034 0.064 0.034 0.037 0.037 0.037 0.033 0.034

500 0.018 0.016 0.035 0.016 0.018 0.018 0.018 0.016 0.016

0.5 20 0.244 0.241 0.250 0.244 0.249 0.236? 0.234? 0.236? 0.234?

30 0.224 0.218 0.245 0.224 0.232 0.215 0.215 0.214 0.215?

40 0.202 0.193 0.235 0.200 0.207 0.193 0.195 0.191 0.193

50 0.181 0.172 0.222 0.178 0.184 0.174 0.175 0.171 0.173

60 0.163 0.154 0.208 0.160 0.165 0.157 0.159 0.153 0.155

100 0.114 0.106 0.159 0.110 0.115 0.111 0.112 0.106 0.108

200 0.061 0.055 0.096 0.056 0.061 0.059 0.060 0.055 0.055

300 0.037 0.034 0.065 0.034 0.037 0.037 0.037 0.033 0.033

500 0.018 0.016 0.035 0.016 0.018 0.018 0.018 0.015 0.015

-0.5 20 0.244 0.242 0.250 0.244 0.249 0.236? 0.234? 0.236? 0.234?

30 0.224 0.218 0.245 0.223 0.231 0.214 0.215 0.214 0.214

40 0.202 0.194 0.235 0.200 0.207 0.193 0.194 0.191 0.193

50 0.181 0.173 0.222 0.179 0.184 0.174 0.175 0.171 0.173

60 0.163 0.154 0.208 0.160 0.166 0.157 0.159 0.154 0.156

100 0.115 0.107 0.160 0.110 0.116 0.111 0.112 0.106 0.108

200 0.061 0.055 0.096 0.056 0.061 0.059 0.060 0.055 0.055

300 0.037 0.033 0.064 0.034 0.037 0.036 0.037 0.033 0.033

500 0.018 0.016 0.035 0.016 0.018 0.018 0.018 0.016 0.016
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Table C.30. Empirical FNRs for the investigated methods for the correlated cases for the
normal variates with π0 = 0.75 and ρ = ±0.75 and ±0.9. Fifty blocks are utilized with
pairwise correlation between the variables within a block of ρ. The pre-specified significance
level is α = 0.05. The number of replications for each scenario is 1, 000 with 10, 000 bootstrap
resamples. Equal sample sizes were utilized for both the controls and cases. The standard
errors of the estimated quantities were of the order of 0.008 or less for all the methods. Cases
where FDR control were anti-conservative are indicated with a star(?).

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.75 0.75 20 0.244 0.241 0.249 0.244 0.249 0.236? 0.234? 0.236? 0.234?

30 0.225 0.217 0.245 0.224 0.232 0.215 0.215 0.214 0.215

40 0.201 0.192 0.235 0.200 0.206 0.193 0.194 0.191 0.192

50 0.181 0.171 0.222 0.178 0.184 0.174 0.175 0.171 0.173

60 0.163 0.153 0.208 0.160 0.165 0.157 0.159 0.153 0.155

100 0.115 0.107 0.160 0.110 0.116 0.111 0.113 0.107 0.108

200 0.060 0.054 0.096 0.056 0.060 0.059 0.059 0.055 0.055

300 0.038 0.034 0.065 0.034 0.037 0.037 0.037 0.034 0.034

500 0.018 0.016 0.035 0.016 0.018 0.018 0.018 0.016 0.016

-0.75 20 0.245 0.242 0.249 0.245 0.249 0.236? 0.234? 0.236? 0.234?

30 0.224 0.218 0.245 0.224 0.232 0.215 0.215 0.214 0.214

40 0.202 0.193 0.235 0.200 0.207 0.193 0.194 0.191 0.193

50 0.181 0.172 0.222 0.178 0.184 0.174 0.175 0.171 0.173

60 0.163 0.154 0.208 0.159 0.165 0.157 0.158 0.153 0.155

100 0.115 0.107 0.160 0.110 0.116 0.111 0.113 0.107 0.108

200 0.061 0.055 0.096 0.056 0.061 0.059 0.060 0.055 0.055

300 0.037 0.033 0.064 0.034 0.037 0.037 0.037 0.033 0.033

500 0.018 0.016 0.035 0.016 0.018 0.018 0.018 0.015 0.015

0.9 20 0.244 0.239 0.249 0.244 0.248 0.236? 0.234? 0.236? 0.234?

30 0.224 0.214 0.245 0.223 0.232 0.215 0.215 0.214 0.214

40 0.201 0.190 0.235 0.200 0.206 0.192 0.194 0.190 0.192

50 0.181 0.169 0.222 0.178 0.184 0.173 0.175 0.171 0.173

60 0.163 0.151 0.208 0.159 0.165 0.156 0.158 0.153 0.155

100 0.115 0.105 0.160 0.110 0.116 0.111 0.113 0.107 0.108

200 0.060 0.053 0.096 0.056 0.060 0.059 0.059 0.054 0.055

300 0.037 0.033 0.064 0.034 0.037 0.037 0.037 0.033 0.033

500 0.018 0.015 0.035 0.016 0.018 0.017 0.017 0.015 0.015

-0.9 20 0.244 0.242 0.249 0.244 0.249 0.236? 0.234? 0.236? 0.234?

30 0.225 0.218 0.245 0.224 0.232 0.215 0.215 0.214 0.215

40 0.201 0.193 0.235 0.200 0.206 0.193 0.194 0.191 0.192

50 0.181 0.172 0.222 0.179 0.184 0.174 0.175 0.171 0.173

60 0.163 0.154 0.208 0.160 0.166 0.157 0.159 0.154 0.155

100 0.115 0.106 0.160 0.110 0.116 0.111 0.113 0.107 0.108

200 0.061 0.054 0.096 0.056 0.061 0.059 0.060 0.055 0.055

300 0.038 0.033 0.064 0.034 0.037 0.037 0.037 0.033 0.034

500 0.018 0.016 0.035 0.016 0.018 0.017 0.018 0.015 0.015
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C.1.3. Numerical Summaries of Average Number of False Hy-

potheses Rejected
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Table C.31. Average number of false hypotheses rejected for the investigated methods for
the correlated cases for the normal variates with π0 = 0.9 and ρ = ±0.1. Fifty blocks are
utilized with pairwise correlation between the variables within a block of ρ. The pre-specified
significance level is α = 0.05. The number of replications for each scenario is 1, 000 with
10, 000 bootstrap resamples. Equal sample sizes were utilized for both the controls and
cases. The standard errors are provided in parenthesis. Cases where FDR control were
anti-conservative are indicated with a star(?).

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.9 0.1 20 1.146 1.349 0.171 1.150 0.572 5.020? 7.479? 5.020? 7.479?

(1.595) (1.765) (0.475) (1.601) (1.121) (3.294) (3.783) (3.294) (3.783)

30 6.919 7.725 1.057 6.969 6.460 13.380? 16.049? 13.380? 16.050?

(4.373) (4.737) (1.399) (4.424) (4.499) (5.125) (4.829) (5.125) (4.831)

40 17.028 18.409 4.078 17.223 17.652 23.561? 25.612? 23.617? 25.680?

(5.512) (5.739) (2.959) (5.590) (5.689) (5.347) (5.202) (5.426) (5.285)

50 27.868 29.285 9.959 28.206 29.033 33.467? 35.077? 33.764? 35.356?

(5.241) (5.498) (4.021) (5.373) (5.413) (5.316) (5.274) (5.439) (5.379)

60 37.274 38.709 17.143 37.766 38.667 41.913 42.993 42.293 43.429

(5.338) (5.474) (4.602) (5.371) (5.385) (5.184) (5.192) (5.287) (5.259)

100 60.948 62.083 42.727 61.566 61.848 63.106 63.485 63.619 64.032

(4.370) (4.486) (4.393) (4.411) (4.329) (4.319) (4.304) (4.355) (4.309)

200 82.416 83.102 71.670 82.912 82.661 83.024 83.135 83.472 83.554

(3.049) (3.088) (3.294) (3.070) (3.041) (3.021) (3.008) (2.998) (2.989)

300 90.254 90.713 82.677 90.631 90.385 90.569 90.566 90.906 90.899

(2.502) (2.515) (2.878) (2.497) (2.511) (2.501) (2.463) (2.499) (2.487)

500 96.679 96.872 92.544 96.867 96.707 96.769 96.763 96.963 96.937

(1.600) (1.594) (2.288) (1.581) (1.602) (1.586) (1.604) (1.555) (1.559)

-0.1 20 1.243 1.438 0.156 1.245 0.606 2.451? 4.643? 2.451? 4.643?

(1.698) (1.827) (0.443) (1.702) (1.222) (2.184) (2.972) (2.184) (2.972)

30 6.873 7.745 1.024 6.918 6.338 7.701 10.845 7.701 10.845

(4.160) (4.451) (1.355) (4.190) (4.389) (3.918) (4.261) (3.918) (4.261)

40 17.440 18.755 4.030 17.610 18.123 16.287 19.446 16.287 19.459

(5.406) (5.500) (2.910) (5.451) (5.522) (4.944) (4.806) (4.944) (4.837)

50 27.398 28.949 9.539 27.720 28.740 24.736 27.249 24.784 27.346

(5.519) (5.527) (3.913) (5.564) (5.601) (5.166) (5.099) (5.240) (5.209)

60 36.845 38.220 17.100 37.306 38.209 33.327 35.290 33.539 35.521

(5.100) (5.217) (4.605) (5.200) (5.100) (4.957) (4.776) (5.044) (4.844)

100 60.892 62.040 42.688 61.534 61.716 56.801 57.571 57.282 58.001

(4.074) (4.096) (4.466) (4.085) (4.043) (4.057) (3.985) (4.126) (4.050)

200 82.574 83.166 71.660 83.075 82.810 79.503 79.668 79.912 80.064

(3.015) (3.047) (3.361) (2.989) (2.980) (3.015) (3.036) (3.021) (3.070)

300 90.370 90.784 82.678 90.709 90.462 88.097 88.143 88.438 88.441

(2.547) (2.533) (2.869) (2.526) (2.520) (2.663) (2.667) (2.651) (2.689)

500 96.612 96.790 92.533 96.790 96.640 95.378 95.392 95.559 95.572

(1.633) (1.587) (2.185) (1.597) (1.630) (1.819) (1.816) (1.769) (1.758)
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Table C.32. Average number of false hypotheses rejected for the investigated methods for
the correlated cases for the normal variates with π0 = 0.9 and ρ = ±0.25. Fifty blocks are
utilized with pairwise correlation between the variables within a block of ρ. The pre-specified
significance level is α = 0.05. The number of replications for each scenario is 1, 000 with
10, 000 bootstrap resamples. Equal sample sizes were utilized for both the controls and
cases. The standard errors are provided in parenthesis. Cases where FDR control were
anti-conservative are indicated with a star(?).

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.9 0.25 20 1.230 1.465 0.140 1.232 0.573 5.170? 7.763? 5.170? 7.763?

(1.708) (1.897) (0.406) (1.714) (1.176) (3.475) (3.878) (3.475) (3.878)

30 6.755 7.667 0.973 6.819 6.357 13.411? 16.073? 13.412? 16.075?

(4.223) (4.578) (1.284) (4.275) (4.386) (5.056) (4.973) (5.058) (4.977)

40 17.234 18.553 4.160 17.432 17.829 23.581? 25.631? 23.622? 25.727?

(5.647) (5.990) (3.069) (5.753) (5.721) (5.645) (5.537) (5.704) (5.638)

50 27.526 29.080 9.545 27.883 28.932 33.330 34.875? 33.581 35.170?

(5.505) (5.732) (4.076) (5.586) (5.785) (5.558) (5.408) (5.670) (5.509)

60 36.970 38.552 16.876 37.450 38.451 41.634 42.831 42.084 43.249

(5.372) (5.631) (4.679) (5.432) (5.365) (5.238) (5.054) (5.309) (5.167)

100 60.801 61.885 42.656 61.412 61.622 62.912 63.409 63.518 63.975

(4.233) (4.406) (4.312) (4.282) (4.235) (4.191) (4.205) (4.231) (4.257)

200 82.488 83.194 71.771 82.971 82.752 83.111 83.189 83.570 83.645

(3.142) (3.128) (3.380) (3.124) (3.122) (3.111) (3.065) (3.098) (3.062)

300 90.431 90.909 82.763 90.812 90.538 90.737 90.734 91.101 91.096

(2.470) (2.464) (2.711) (2.422) (2.462) (2.442) (2.452) (2.419) (2.439)

500 96.622 96.817 92.627 96.793 96.648 96.717 96.681 96.867 96.849

(1.655) (1.616) (2.188) (1.605) (1.650) (1.620) (1.623) (1.594) (1.598)

-0.25 20 1.187 1.386 0.155 1.194 0.599 5.061? 7.713? 5.061? 7.713?

(1.621) (1.789) (0.449) (1.636) (1.145) (3.198) (3.588) (3.198) (3.588)

30 6.671 7.468 1.055 6.723 6.321 13.371 ? 15.875? 13.371? 15.875?

(4.024) (4.233) (1.403) (4.064) (4.167) (4.632) (4.750) (4.632) (4.750)

40 16.801 18.171 3.977 16.988 17.672 23.641? 25.605? 23.702? 25.687?

(5.176) (5.426) (2.857) (5.271) (5.601) (5.460) (5.307) (5.543) (5.415)

50 27.577 29.149 9.691 27.975 29.014 33.392 34.910? 33.651 35.167?

(5.466) (5.551) (3.944) (5.540) (5.453) (5.273) (5.159) (5.374) (5.273)

60 37.164 38.518 17.099 37.640 38.541 41.723 42.898 42.102 43.249

(4.974) (5.104) (4.691) (5.067) (5.200) (5.138) (4.993) (5.221) (5.044)

100 61.270 62.352 42.768 61.870 62.122 63.411 63.799 63.989 64.341

(4.043) (4.039) (4.306) (4.069) (4.014) (3.988) (3.969) (4.024) (3.973)

200 82.531 83.142 71.629 83.054 82.788 83.180 83.215 83.601 83.625

(3.012) (2.967) (3.304) (2.975) (2.962) (2.925) (2.914) (2.929) (2.955)

300 90.404 90.811 82.488 90.758 90.483 90.651 90.702 90.989 91.022

(2.535) (2.535) (2.737) (2.527) (2.525) (2.533) (2.528) (2.530) (2.515)

500 96.631 96.794 92.390 96.793 96.640 96.691 96.681 96.870 96.853

(1.685) (1.665) (2.129) (1.653) (1.683) (1.657) (1.666) (1.612) (1.635)
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Table C.33. Average number of false hypotheses rejected for the investigated methods for
the correlated cases for the normal variates with π0 = 0.9 and ρ = ±0.5. Fifty blocks are
utilized with pairwise correlation between variables within a block to be ρ. The pre-specified
significance level is α = 0.05. The number of replications for each scenario is 1, 000 with
10, 000 bootstrap resamples. Equal sample sizes were utilized for both the controls and
cases. The standard errors are provided in parenthesis. Cases where FDR control were
anti-conservative are indicated with a star(?).

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.9 0.5 20 1.119 1.341 0.120 1.122 0.510 4.787? 7.246? 4.787? 7.246?

(1.576) (1.785) (0.384) (1.580) (1.091) (3.224) (3.767) (3.224) (3.767)

30 6.898 7.907 0.998 6.954 6.231 13.176? 15.723? 13.176? 15.725?

(4.087) (4.681) (1.319) (4.132) (4.339) (4.986) (5.101) (4.986) (5.107)

40 17.122 18.606 4.020 17.325 17.845 23.775? 25.967? 23.830? 26.046?

(5.604) (6.049) (2.905) (5.686) (5.889) (5.646) (5.562) (5.720) (5.644)

50 27.703 29.497 9.680 28.042 28.909 33.242 34.846? 33.488? 35.108?

(5.541) (5.874) (4.112) (5.642) (5.781) (5.499) (5.473) (5.640) (5.580)

60 37.063 38.801 17.008 37.538 38.445 41.695 42.740 42.105 43.111

(5.577) (6.030) (4.575) (5.650) (5.636) (5.598) (5.341) (5.714) (5.469)

100 61.006 62.229 42.757 61.681 61.920 63.233 63.601 63.779 64.155

(4.398) (4.757) (4.668) (4.474) (4.392) (4.336) (4.232) (4.365) (4.260)

200 82.534 83.250 71.669 83.078 82.765 83.147 83.246 83.560 83.665

(3.242) (3.368) (3.470) (3.244) (3.232) (3.202) (3.149) (3.178) (3.189)

300 90.379 90.837 82.649 90.722 90.452 90.644 90.640 90.994 91.003

(2.513) (2.539) (2.865) (2.469) (2.499) (2.465) (2.478) (2.468) (2.468)

500 96.719 96.919 92.643 96.887 96.743 96.801 96.790 96.967 96.971

(1.672) (1.662) (2.214) (1.644) (1.670) (1.636) (1.658) (1.623) (1.611)

-0.5 20 1.234 1.392 0.136 1.239 0.575 5.230? 7.889? 5.230? 7.889?

(1.661) (1.819) (0.405) (1.679) (1.126) (3.296) (3.769) (3.296) (3.769)

30 6.736 7.504 1.038 6.773 6.394 13.502? 16.062? 13.502? 16.066?

(4.089) (4.258) (1.366) (4.127) (4.216) (4.941) (4.883) (4.941) (4.895)

40 17.045 18.325 3.964 17.232 17.968 23.570? 25.652? 23.645? 25.739?

(5.345) (5.301) (2.917) (5.416) (5.668) (5.406) (5.282) (5.516) (5.390)

50 27.695 29.159 9.792 28.011 29.079 33.429 34.950 33.667? 35.221?

(5.378) (5.415) (3.878) (5.448) (5.432) (5.223) (5.092) (5.318) (5.166)

60 36.839 38.282 16.914 37.314 38.188 41.438 42.570 41.808 42.980

(5.146) (5.114) (4.591) (5.227) (5.036) (5.048) (4.906) (5.131) (5.004)

100 60.991 62.134 42.727 61.638 61.916 63.183 63.557 63.764 64.118

(4.308) (4.221) (4.422) (4.307) (4.302) (4.193) (4.238) (4.233) (4.286)

200 82.454 83.101 71.588 82.939 82.721 83.075 83.195 83.515 83.657

(3.063) (3.045) (3.243) (3.044) (3.048) (3.032) (3.037) (3.039) (3.042)

300 90.581 91.049 82.772 90.968 90.688 90.875 90.903 91.233 91.270

(2.466) (2.415) (2.748) (2.420) (2.426) (2.440) (2.421) (2.396) (2.390)

500 96.619 96.828 92.409 96.802 96.658 96.729 96.698 96.900 96.871

(1.577) (1.538) (2.099) (1.550) (1.570) (1.561) (1.562) (1.529) (1.549)
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Table C.34. Average number of false hypotheses rejected for the investigated methods for
the correlated cases for the normal variates with π0 = 0.9 and ρ = ±0.75. Fifty blocks are
utilized with pairwise correlation between the variables within a block of ρ. The pre-specified
significance level is α = 0.05. The number of replications for each scenario is 1, 000 with
10, 000 bootstrap resamples. Equal sample sizes were utilized for both the controls and
cases. The standard errors are provided in parenthesis. Cases where FDR control were
anti-conservative are indicated with a star(?).

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.9 0.75 20 1.133 1.363 0.157 1.134 0.582 5.045? 7.528? 5.045? 7.530?

(1.653) (1.953) (0.452) (1.656) (1.180) (3.485) (4.362) (3.485) (4.369)

30 6.662 7.916 1.053 6.707 6.179 13.211? 15.587? 13.216? 15.597?

(4.393) (5.311) (1.396) (4.444) (4.590) (5.352) (5.366) (5.364) (5.389)

40 17.068 19.023 4.148 17.230 17.890 23.745? 25.768? 23.820? 25.842?

(5.730) (6.621) (3.078) (5.804) (5.933) (5.851) (5.856) (5.950) (5.940)

50 27.917 30.100 9.674 28.325 29.169 33.442 34.962? 33.710? 35.254?

(6.177) (7.129) (4.185) (6.314) (6.418) (6.393) (6.183) (6.535) (6.335)

60 37.135 39.220 16.977 37.657 38.679 41.883 43.040 42.263 43.417

(5.931) (7.023) (4.936) (6.093) (6.056) (5.833) (5.811) (5.935) (5.902)

100 61.209 62.676 43.026 61.854 62.068 63.324 63.772 63.885 64.320

(4.533) (5.138) (4.883) (4.604) (4.498) (4.490) (4.471) (4.535) (4.511)

200 82.589 83.379 71.568 83.057 82.800 83.181 83.258 83.625 83.705

(3.411) (3.592) (3.667) (3.400) (3.345) (3.342) (3.308) (3.325) (3.284)

300 90.407 90.948 82.666 90.748 90.471 90.673 90.698 90.999 91.026

(2.596) (2.720) (3.094) (2.603) (2.593) (2.584) (2.564) (2.574) (2.542)

500 96.603 96.843 92.520 96.795 96.637 96.691 96.685 96.879 96.855

(1.740) (1.753) (2.248) (1.686) (1.732) (1.717) (1.710) (1.668) (1.677)

-0.75 20 1.232 1.367 0.147 1.236 0.611 5.226? 7.711? 5.226? 7.711?

(1.737) (1.848) (0.424) (1.748) (1.226) (3.501) (4.005) (3.501) (4.005)

30 6.814 7.704 1.061 6.850 6.225 13.298? 15.770? 13.298? 15.772?

(4.052) (4.192) (1.395) (4.083) (4.152) (4.705) (4.821) (4.705) (4.825)

40 16.822 18.145 3.957 17.019 17.599 23.205? 25.332? 23.248? 25.416?

(5.144) (5.129) (2.780) (5.217) (5.427) (5.298) (5.064) (5.361) (5.165)

50 27.625 29.202 9.634 27.969 28.868 33.042 34.657 33.258 34.913?

(5.402) (5.335) (3.955) (5.462) (5.491) (5.325) (5.241) (5.426) (5.318)

60 36.824 38.409 16.748 37.291 38.127 41.289 42.560 41.675 42.924

(5.141) (5.116) (4.528) (5.201) (5.029) (4.975) (4.880) (5.019) (4.957)

100 61.117 62.264 42.763 61.757 61.999 63.270 63.721 63.839 64.248

(4.149) (4.138) (4.173) (4.146) (4.101) (4.109) (4.020) (4.083) (4.068)

200 82.510 83.211 71.656 83.006 82.738 83.103 83.171 83.570 83.651

(2.921) (2.937) (3.258) (2.906) (2.891) (2.916) (2.903) (2.886) (2.838)

300 90.508 90.965 82.751 90.878 90.575 90.784 90.780 91.110 91.090

(2.337) (2.327) (2.645) (2.330) (2.347) (2.347) (2.363) (2.342) (2.352)

500 96.647 96.860 92.584 96.819 96.665 96.718 96.718 96.894 96.877

(1.546) (1.523) (2.130) (1.507) (1.539) (1.526) (1.508) (1.489) (1.493)
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Table C.35. Average number of false hypotheses rejected for the investigated methods for
the correlated cases for the normal variates with π0 = 0.9 and ρ = ±0.9. Fifty blocks are
utilized with pairwise correlation between the variables within a block of ρ. The pre-specified
significance level is α = 0.05. The number of replications for each scenario is 1, 000 with
10, 000 bootstrap resamples. Equal sample sizes were utilized for both the controls and
cases. The standard errors are provided in parenthesis. Cases where FDR control were
anti-conservative are indicated with a star(?).

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.9 0.9 20 1.373 2.006 0.178 1.377 0.670 5.387? 7.794? 5.388? 7.801?

(2.083) (3.087) (0.522) (2.092) (1.476) (4.412) (5.130) (4.415) (5.151)

30 6.903 9.140 1.075 6.962 6.632 13.436? 16.041? 13.451? 16.055?

(5.265) (7.061) (1.582) (5.335) (5.526) (6.390) (6.557) (6.428) (6.584)

40 16.968 19.857 4.094 17.137 17.647 23.708? 25.817? 23.796? 25.926?

(6.695) (8.824) (3.288) (6.814) (7.333) (7.335) (7.281) (7.447) (7.403)

50 27.607 30.611 9.925 27.970 28.854 33.345 34.704 33.601 34.980

(7.439) (9.532) (4.896) (7.559) (7.714) (7.591) (7.422) (7.750) (7.588)

60 36.906 39.704 17.239 37.358 38.235 41.612 42.674 42.023 43.062

(7.256) (9.084) (5.835) (7.335) (7.407) (7.159) (7.053) (7.325) (7.196)

100 60.927 62.946 42.483 61.520 61.803 63.113 63.498 63.692 63.992

(5.646) (7.015) (5.616) (5.688) (5.641) (5.499) (5.491) (5.538) (5.525)

200 82.623 83.840 71.698 83.091 82.893 83.232 83.257 83.700 83.719

(3.749) (4.384) (4.156) (3.754) (3.688) (3.692) (3.672) (3.704) (3.667)

300 90.392 91.068 82.685 90.728 90.476 90.630 90.696 90.980 91.001

(2.879) (3.183) (3.386) (2.864) (2.860) (2.868) (2.853) (2.859) (2.850)

500 96.623 96.936 92.553 96.809 96.651 96.710 96.714 96.889 96.894

(1.792) (1.834) (2.361) (1.749) (1.784) (1.775) (1.760) (1.747) (1.749)

-0.9 20 1.218 1.412 0.142 1.221 0.649 5.130? 7.516? 5.130? 7.516?

(1.747) (1.931) (0.422) (1.751) (1.387) (3.606) (3.924) (3.606) (3.924)

30 6.892 7.751 0.920 6.929 6.332 13.337? 15.732? 13.339? 15.743?

(4.413) (4.550) (1.310) (4.443) (4.624) (5.069) (5.146) (5.074) (5.168)

40 16.864 18.693 3.990 17.059 17.473 23.557 25.642? 23.627 25.728?

(5.562) (5.388) (3.012) (5.670) (5.740) (5.646) (5.503) (5.745) (5.597)

50 27.367 29.425 9.539 27.748 28.625 33.103 34.663 33.345 34.913

(5.462) (5.406) (4.083) (5.592) (5.539) (5.416) (5.189) (5.544) (5.305)

60 37.021 38.910 16.727 37.551 38.479 41.663 42.837 42.055 43.244

(5.292) (5.318) (4.646) (5.390) (5.204) (5.056) (4.991) (5.101) (5.098)

100 61.132 62.611 42.725 61.793 62.002 63.342 63.728 63.911 64.263

(4.085) (4.181) (4.401) (4.007) (3.968) (3.874) (3.852) (3.880) (3.830)

200 82.525 83.262 71.594 83.008 82.734 83.111 83.196 83.583 83.634

(2.782) (2.835) (3.034) (2.801) (2.791) (2.788) (2.776) (2.792) (2.797)

300 90.395 90.957 82.746 90.798 90.499 90.676 90.696 91.038 91.042

(2.284) (2.333) (2.753) (2.240) (2.251) (2.245) (2.229) (2.201) (2.197)

500 96.637 96.849 92.444 96.816 96.663 96.700 96.678 96.862 96.858

(1.577) (1.592) (2.021) (1.562) (1.574) (1.560) (1.569) (1.548) (1.545)

166



Table C.36. Average number of false hypotheses rejected for the investigated methods for
the correlated cases for the normal variates with π0 = 0.85 and ρ = ±0.1. Fifty blocks are
utilized with pairwise correlation between the variables within a block of ρ. The pre-specified
significance level is α = 0.05. The number of replications for each scenario is 1, 000 with
10, 000 bootstrap resamples. Equal sample sizes were utilized for both the controls and
cases. The standard errors are provided in parenthesis. Cases where FDR control were
anti-conservative are indicated with a star(?).

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.85 0.1 20 2.021 2.530 0.198 2.029 0.492 6.747? 9.010? 6.747? 9.010?

(2.343) (2.771) (0.499) (2.364) (1.083) (3.971) (4.438) (3.971) (4.438)

30 11.585 13.566 1.726 11.694 7.975 18.519? 20.418? 18.535? 20.442?

(5.374) (5.883) (1.905) (5.421) (5.180) (5.883) (5.868) (5.918) (5.908)

40 25.840 28.588 6.898 26.252 23.555 32.086? 33.448? 32.415? 33.822?

(6.264) (6.681) (3.589) (6.369) (6.336) (6.504) (6.222) (6.745) (6.471)

50 39.762 42.824 15.535 40.519 38.841 45.302 46.029 45.958 46.670

(6.062) (6.464) (5.048) (6.216) (6.484) (6.236) (6.252) (6.376) (6.394)

60 51.119 54.083 24.574 52.068 50.713 55.623 56.300 56.469 57.142

(5.827) (6.296) (5.056) (5.972) (5.926) (5.824) (5.921) (6.068) (6.057)

100 81.520 84.113 55.982 82.825 81.944 84.156 84.318 85.409 85.553

(5.391) (5.548) (5.057) (5.464) (5.356) (5.244) (5.307) (5.275) (5.349)

200 114.122 115.983 94.252 115.498 114.493 115.209 115.291 116.546 116.549

(4.509) (4.541) (4.451) (4.550) (4.527) (4.477) (4.458) (4.454) (4.426)

300 128.944 130.258 112.914 130.027 129.153 129.470 129.473 130.573 130.595

(3.592) (3.662) (4.060) (3.591) (3.608) (3.578) (3.572) (3.576) (3.544)

500 141.357 142.038 132.092 141.947 141.435 141.554 141.544 142.155 142.132

(2.466) (2.402) (3.228) (2.373) (2.453) (2.454) (2.407) (2.386) (2.383)

-0.1 20 2.141 2.697 0.249 2.146 0.543 6.981? 9.127? 6.981? 9.127?

(2.397) (2.839) (0.588) (2.407) (1.160) (4.052) (4.537) (4.052) (4.537)

30 11.761 13.758 1.713 11.884 7.995 18.719? 20.716? 18.728? 20.758?

(5.303) (5.635) (1.832) (5.392) (5.117) (5.721) (5.668) (5.739) (5.748)

40 25.900 28.448 6.830 26.251 23.553 32.037 33.393? 32.383? 33.683?

(6.093) (6.469) (3.821) (6.201) (6.558) (6.385) (6.279) (6.570) (6.452)

50 39.926 42.839 15.637 40.635 39.030 45.462 46.297 46.065 46.929

(6.103) (6.487) (4.720) (6.234) (6.243) (6.145) (6.049) (6.329) (6.193)

60 51.068 54.015 24.678 52.036 50.666 55.773 56.383 56.700 57.204

(6.195) (6.472) (5.188) (6.315) (6.283) (5.962) (6.018) (6.173) (6.174)

100 81.534 84.132 55.904 82.909 81.991 84.238 84.398 85.495 85.663

(5.312) (5.286) (4.648) (5.365) (5.302) (5.315) (5.200) (5.369) (5.314)

200 114.344 116.249 94.012 115.791 114.742 115.498 115.517 116.905 116.918

(4.481) (4.483) (4.588) (4.451) (4.453) (4.433) (4.388) (4.423) (4.406)

300 129.068 130.407 113.112 130.241 129.313 129.674 129.670 130.785 130.790

(3.519) (3.514) (4.116) (3.490) (3.505) (3.501) (3.460) (3.465) (3.463)

500 141.350 142.056 132.310 142.033 141.487 141.607 141.615 142.208 142.193

(2.527) (2.429) (3.227) (2.416) (2.526) (2.471) (2.472) (2.404) (2.387)
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Table C.37. Average number of false hypotheses rejected for the investigated methods for
the correlated cases for the normal variates with π0 = 0.85 and ρ = ±0.25. Fifty blocks are
utilized with pairwise correlation between the variables within a block of ρ. The pre-specified
significance level is α = 0.05. The number of replications for each scenario is 1, 000 with
10, 000 bootstrap resamples. Equal sample sizes were utilized for both the controls and
cases. The standard errors are provided in parenthesis. Cases where FDR control were
anti-conservative are indicated with a star(?).

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.85 0.25 20 2.073 2.608 0.208 2.077 0.508 6.890? 9.173? 6.890? 9.173?

(2.343) (2.693) (0.570) (2.353) (1.129) (4.098) (4.503) (4.098) (4.503)

30 11.613 13.557 1.840 11.736 8.120 18.465? 20.453? 18.494? 20.500?

(5.464) (5.987) (1.921) (5.548) (5.160) (5.982) (5.897) (6.046) (5.977)

40 25.785 28.484 6.760 26.161 23.659 32.161? 33.508? 32.463? 33.818?

(6.159) (6.601) (3.722) (6.307) (6.556) (6.319) (6.275) (6.480) (6.438)

50 39.850 42.738 15.438 40.573 38.705 45.118 46.081 45.762 46.675

(6.399) (6.806) (4.660) (6.526) (6.518) (6.374) (6.231) (6.507) (6.417)

60 51.121 54.023 24.745 52.054 50.892 55.750 56.496 56.663 57.406

(6.214) (6.699) (5.242) (6.339) (6.346) (6.156) (6.078) (6.323) (6.206)

100 81.631 84.411 55.723 82.975 82.001 84.184 84.359 85.517 85.695

(5.283) (5.700) (4.968) (5.368) (5.305) (5.387) (5.290) (5.537) (5.446)

200 114.347 116.260 93.877 115.750 114.736 115.507 115.486 116.795 116.837

(4.469) (4.744) (4.347) (4.501) (4.505) (4.441) (4.431) (4.494) (4.429)

300 129.030 130.478 113.101 130.188 129.290 129.621 129.620 130.712 130.775

(3.673) (3.830) (4.206) (3.676) (3.652) (3.661) (3.648) (3.635) (3.639)

500 141.387 142.060 132.119 142.022 141.486 141.610 141.582 142.173 142.207

(2.583) (2.577) (3.171) (2.541) (2.584) (2.569) (2.569) (2.523) (2.501)

-0.25 20 2.137 2.646 0.235 2.142 0.558 7.062? 9.185? 7.062? 9.185?

(2.409) (2.795) (0.564) (2.418) (1.115) (4.009) (4.335) (4.009) (4.335)

30 11.795 13.759 1.845 11.965 8.162 18.644? 20.732? 18.660? 20.758?

(5.318) (5.716) (1.896) (5.391) (5.198) (5.769) (5.793) (5.800) (5.841)

40 26.164 28.851 6.778 26.575 23.823 32.514 33.838? 32.828 34.170?

(6.250) (6.399) (3.612) (6.390) (6.651) (6.253) (6.235) (6.443) (6.389)

50 39.956 42.809 15.489 40.659 38.777 45.217 46.148 45.865 46.730

(6.157) (6.337) (4.770) (6.323) (6.393) (6.082) (5.993) (6.252) (6.174)

60 50.973 54.143 24.648 51.899 50.659 55.830 56.384 56.657 57.251

(5.855) (6.134) (4.863) (6.015) (5.931) (5.885) (5.808) (5.978) (5.918)

100 81.432 84.090 56.010 82.790 81.950 84.214 84.366 85.493 85.647

(5.201) (5.237) (5.035) (5.197) (5.245) (5.143) (5.080) (5.250) (5.225)

200 114.317 116.214 93.889 115.735 114.702 115.472 115.444 116.790 116.767

(4.403) (4.368) (4.357) (4.355) (4.401) (4.314) (4.320) (4.318) (4.335)

300 129.085 130.416 112.883 130.214 129.371 129.685 129.695 130.705 130.745

(3.543) (3.469) (4.036) (3.460) (3.543) (3.511) (3.453) (3.427) (3.420)

500 141.491 142.132 132.213 142.097 141.579 141.700 141.705 142.277 142.304

(2.522) (2.429) (3.167) (2.452) (2.508) (2.490) (2.493) (2.442) (2.435)
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Table C.38. Average number of false hypotheses rejected for the investigated methods for
the correlated cases for the normal variates with π0 = 0.85 and ρ = ±0.5. Fifty blocks are
utilized with pairwise correlation between variables within a block to be ρ. The pre-specified
significance level is α = 0.05. The number of replications for each scenario is 1, 000 with
10, 000 bootstrap resamples. Equal sample sizes were utilized for both the controls and
cases. The standard errors are provided in parenthesis. Cases where FDR control were
anti-conservative are indicated with a star(?).

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.85 0.5 20 2.046 2.585 0.240 2.054 0.522 6.933? 9.083? 6.933? 9.083?

(2.390) (2.884) (0.565) (2.400) (1.177) (4.165) (4.679) (4.165) (4.679)

30 11.726 13.787 1.735 11.833 7.911 18.522? 20.314? 18.549? 20.371?

(5.543) (6.375) (1.885) (5.596) (5.178) (6.277) (6.213) (6.331) (6.311)

40 25.966 28.795 6.954 26.347 23.558 32.382 33.714? 32.699 34.058?

(6.593) (7.310) (3.970) (6.721) (6.955) (6.787) (6.854) (7.008) (7.040)

50 39.758 42.916 15.481 40.421 38.635 45.231 46.107 45.842 46.795

(6.450) (7.259) (5.044) (6.571) (6.719) (6.471) (6.581) (6.698) (6.738)

60 50.947 54.098 24.773 51.866 50.598 55.573 56.208 56.467 57.028

(6.536) (7.213) (5.429) (6.632) (6.758) (6.527) (6.527) (6.643) (6.666)

100 81.412 84.258 55.595 82.770 81.832 84.064 84.266 85.325 85.473

(5.520) (6.320) (5.081) (5.596) (5.540) (5.512) (5.583) (5.710) (5.712)

200 114.534 116.511 94.163 115.979 114.913 115.637 115.692 117.000 117.000

(4.659) (5.002) (4.539) (4.690) (4.655) (4.661) (4.650) (4.685) (4.661)

300 129.078 130.474 113.138 130.125 129.297 129.638 129.593 130.624 130.582

(3.751) (3.938) (4.118) (3.727) (3.744) (3.710) (3.710) (3.677) (3.700)

500 141.452 142.101 132.066 142.042 141.559 141.673 141.634 142.264 142.221

(2.519) (2.521) (3.226) (2.441) (2.507) (2.492) (2.482) (2.412) (2.427)

-0.5 20 2.123 2.618 0.224 2.132 0.526 7.022? 9.295? 7.022? 9.295?

(2.310) (2.637) (0.546) (2.329) (1.146) (3.998) (4.426) (3.998) (4.426)

30 11.796 13.651 1.764 11.924 7.964 18.576? 20.704? 18.599? 20.759?

(5.417) (5.591) (1.848) (5.479) (5.175) (5.834) (5.619) (5.880) (5.717)

40 26.207 28.842 6.962 26.624 23.941 32.816? 33.886? 33.081? 34.213?

(6.171) (6.385) (3.635) (6.287) (6.571) (6.555) (6.401) (6.724) (6.591)

50 39.759 42.583 15.417 40.445 38.818 45.288 46.131 45.916 46.795

(6.197) (6.144) (4.758) (6.313) (6.410) (6.035) (6.227) (6.220) (6.378)

60 50.858 53.896 24.484 51.803 50.566 55.524 56.245 56.396 57.099

(6.016) (6.183) (5.053) (6.218) (6.176) (6.072) (6.031) (6.201) (6.156)

100 81.784 84.465 56.018 83.140 82.199 84.378 84.572 85.666 85.836

(5.364) (5.434) (4.908) (5.462) (5.475) (5.451) (5.428) (5.562) (5.516)

200 114.484 116.341 94.166 115.870 114.868 115.570 115.640 116.955 116.943

(4.204) (4.218) (4.294) (4.213) (4.236) (4.147) (4.175) (4.188) (4.188)

300 128.914 130.274 113.046 130.056 129.149 129.549 129.521 130.629 130.594

(3.488) (3.500) (3.981) (3.485) (3.542) (3.499) (3.512) (3.435) (3.463)

500 141.378 142.039 132.017 141.985 141.458 141.576 141.577 142.170 142.176

(2.507) (2.468) (3.130) (2.437) (2.489) (2.498) (2.463) (2.419) (2.403)
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Table C.39. Average number of false hypotheses rejected for the investigated methods for
the correlated cases for the normal variates with π0 = 0.85 and ρ = ±0.75. Fifty blocks are
utilized with pairwise correlation between the variables within a block of ρ. The pre-specified
significance level is α = 0.05. The number of replications for each scenario is 1, 000 with
10, 000 bootstrap resamples. Equal sample sizes were utilized for both the controls and
cases. The standard errors are provided in parenthesis. Cases where FDR control were
anti-conservative are indicated with a star(?).

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.85 0.75 20 2.186 3.016 0.242 2.195 0.580 7.055? 9.261? 7.056? 9.264?

(2.679) (3.557) (0.586) (2.696) (1.281) (4.802) (5.267) (4.805) (5.277)

30 11.662 14.325 1.750 11.770 8.002 18.599? 20.670? 18.627? 20.730?

(6.336) (7.778) (2.012) (6.402) (5.934) (7.090) (6.974) (7.144) (7.066)

40 26.459 30.031 7.191 26.883 24.188 32.675 34.064? 33.009 34.402?

(7.109) (8.717) (4.217) (7.325) (7.601) (7.567) (7.507) (7.808) (7.687)

50 39.825 43.531 15.132 40.501 38.740 45.189 46.106 45.866 46.708

(7.338) (9.131) (5.227) (7.514) (7.625) (7.537) (7.608) (7.787) (7.791)

60 51.434 55.120 24.851 52.321 51.084 55.986 56.529 56.809 57.358

(7.053) (8.753) (5.716) (7.238) (7.217) (7.138) (7.033) (7.358) (7.269)

100 81.602 84.691 55.957 82.896 82.024 84.187 84.347 85.461 85.524

(6.054) (7.630) (5.746) (6.199) (6.249) (6.144) (6.134) (6.299) (6.298)

200 114.483 116.713 94.207 115.836 114.835 115.495 115.602 116.863 116.900

(4.942) (5.797) (5.200) (4.966) (4.952) (4.883) (4.886) (4.931) (4.921)

300 129.264 130.845 113.190 130.413 129.474 129.857 129.822 130.927 130.927

(3.951) (4.395) (4.520) (3.866) (3.903) (3.866) (3.889) (3.842) (3.852)

500 141.443 142.113 132.145 142.052 141.538 141.635 141.662 142.250 142.239

(2.616) (2.770) (3.428) (2.540) (2.610) (2.610) (2.595) (2.517) (2.563)

-0.75 20 2.074 2.446 0.255 2.077 0.561 6.978? 9.305? 6.978? 9.305?

(2.269) (2.470) (0.604) (2.275) (1.165) (4.110) (4.563) (4.110) (4.563)

30 11.879 13.801 1.782 12.003 8.150 18.635? 20.385? 18.659? 20.418?

(5.479) (5.690) (1.989) (5.535) (5.463) (6.011) (6.097) (6.060) (6.154)

40 25.981 28.667 6.827 26.391 23.851 32.376? 33.734? 32.694? 34.086?

(6.131) (6.222) (3.752) (6.250) (6.526) (6.355) (6.275) (6.519) (6.450)

50 39.746 42.543 15.441 40.420 38.639 45.113 46.081 45.731 46.686

(6.418) (6.367) (5.019) (6.541) (6.577) (6.496) (6.279) (6.620) (6.421)

60 51.397 54.521 24.806 52.291 51.188 56.049 56.700 56.950 57.555

(6.142) (6.061) (5.018) (6.236) (6.212) (6.172) (6.120) (6.335) (6.216)

100 81.462 84.143 55.734 82.761 81.872 83.985 84.294 85.314 85.477

(5.201) (5.329) (5.127) (5.315) (5.252) (5.229) (5.188) (5.328) (5.306)

200 114.656 116.522 94.155 116.011 115.017 115.784 115.750 117.117 117.093

(4.272) (4.338) (4.223) (4.350) (4.335) (4.292) (4.265) (4.366) (4.309)

300 129.243 130.551 113.215 130.340 129.461 129.807 129.804 130.891 130.915

(3.578) (3.549) (3.968) (3.512) (3.559) (3.502) (3.486) (3.464) (3.469)

500 141.487 142.216 132.139 142.155 141.620 141.719 141.711 142.328 142.327

(2.342) (2.338) (3.204) (2.318) (2.332) (2.329) (2.330) (2.304) (2.300)
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Table C.40. Average number of false hypotheses rejected for the investigated methods for
the correlated cases for the normal variates with π0 = 0.85 and ρ = ±0.9. Fifty blocks are
utilized with pairwise correlation between the variables within a block of ρ. The pre-specified
significance level is α = 0.05. The number of replications for each scenario is 1, 000 with
10, 000 bootstrap resamples. Equal sample sizes were utilized for both the controls and
cases. The standard errors are provided in parenthesis. Cases where FDR control were
anti-conservative are indicated with a star(?).

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.85 0.9 20 2.199 3.510 0.234 2.212 0.602 7.084? 9.126? 7.085? 9.139?

(3.033) (4.981) (0.619) (3.073) (1.493) (5.138) (5.903) (5.140) (5.948)

30 11.739 15.471 1.850 11.927 8.260 18.852? 20.677? 18.915? 20.744?

(7.244) (10.368) (2.351) (7.380) (6.982) (8.516) (8.549) (8.627) (8.651)

40 26.056 30.674 6.951 26.449 23.664 32.405 33.473? 32.699 33.822?

(8.412) (11.331) (4.796) (8.577) (8.835) (8.757) (8.725) (8.992) (8.970)

50 39.325 44.450 15.423 39.990 38.276 44.926 45.712 45.591 46.349

(8.542) (12.494) (6.141) (8.808) (9.030) (9.049) (9.065) (9.318) (9.290)

60 51.131 56.136 24.645 52.034 50.765 55.752 56.187 56.601 57.041

(8.638) (12.303) (6.993) (8.826) (9.009) (8.912) (8.956) (9.145) (9.185)

100 81.552 85.587 56.003 82.877 81.910 84.171 84.317 85.476 85.635

(7.465) (10.304) (6.518) (7.653) (7.514) (7.463) (7.420) (7.649) (7.607)

200 114.318 117.048 93.993 115.641 114.613 115.389 115.463 116.663 116.753

(5.564) (7.293) (5.687) (5.661) (5.610) (5.616) (5.565) (5.649) (5.657)

300 128.823 130.675 112.985 129.985 129.097 129.440 129.469 130.518 130.574

(4.421) (5.503) (4.998) (4.398) (4.420) (4.434) (4.387) (4.386) (4.317)

500 141.190 142.109 131.983 141.858 141.316 141.437 141.405 142.049 142.055

(2.886) (3.215) (3.775) (2.783) (2.876) (2.856) (2.831) (2.756) (2.756)

-0.9 20 2.067 2.528 0.226 2.072 0.599 6.938? 9.090? 6.938? 9.094?

(2.554) (2.797) (0.594) (2.561) (1.402) (4.482) (4.982) (4.482) (4.993)

30 11.854 14.016 1.771 11.969 8.103 18.721? 20.573? 18.756? 20.623?

(5.440) (5.434) (2.043) (5.552) (5.484) (6.156) (6.104) (6.219) (6.178)

40 26.259 29.231 7.003 26.661 24.000 32.565 33.796 32.847 34.145?

(6.554) (6.258) (3.853) (6.643) (6.842) (6.631) (6.417) (6.807) (6.631)

50 39.727 43.140 15.379 40.458 38.716 45.205 46.062 45.894 46.778

(6.298) (6.344) (5.064) (6.470) (6.510) (6.348) (6.226) (6.591) (6.449)

60 51.277 54.907 24.745 52.225 50.814 55.908 56.421 56.815 57.253

(6.209) (6.123) (5.512) (6.288) (6.356) (6.050) (5.953) (6.217) (6.097)

100 81.883 84.787 55.986 83.200 82.230 84.365 84.574 85.647 85.734

(5.272) (5.465) (5.060) (5.338) (5.344) (5.301) (5.401) (5.428) (5.439)

200 114.523 116.556 94.233 115.918 114.915 115.569 115.641 116.893 116.944

(4.227) (4.443) (4.234) (4.252) (4.218) (4.182) (4.232) (4.191) (4.284)

300 129.008 130.429 113.081 130.090 129.212 129.589 129.587 130.628 130.647

(3.575) (3.758) (3.968) (3.564) (3.571) (3.564) (3.536) (3.535) (3.536)

500 141.395 142.167 132.112 142.078 141.499 141.623 141.638 142.251 142.241

(2.469) (2.521) (3.142) (2.395) (2.459) (2.451) (2.451) (2.369) (2.367)
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Table C.41. Average number of false hypotheses rejected for the investigated methods for
the correlated cases for the normal variates with π0 = 0.8 and ρ = ±0.1. Fifty blocks are
utilized with pairwise correlation between the variables within a block of ρ. The pre-specified
significance level is α = 0.05. The number of replications for each scenario is 1, 000 with
10, 000 bootstrap resamples. Equal sample sizes were utilized for both the controls and
cases. The standard errors are provided in parenthesis. Cases where FDR control were
anti-conservative are indicated with a star(?).

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.8 0.1 20 5.199 7.098 0.465 5.233 1.781 14.045? 18.310? 14.053? 18.347?

(4.243) (5.213) (0.881) (4.293) (2.569) (6.147) (6.293) (6.165) (6.367)

30 25.094 30.083 4.324 25.562 20.860 35.381 38.144? 35.867? 38.703?

(7.162) (8.155) (3.267) (7.345) (7.602) (7.601) (7.404) (7.862) (7.660)

40 48.256 54.087 15.231 49.440 45.821 56.402 57.803 57.735 59.099

(7.689) (8.571) (5.193) (7.945) (8.145) (7.760) (7.752) (8.073) (7.838)

50 67.233 73.179 30.024 69.073 66.025 73.829 74.540 75.675 76.321

(7.377) (8.098) (5.933) (7.608) (7.657) (7.411) (7.314) (7.625) (7.636)

60 82.336 88.053 43.716 84.393 81.815 87.687 88.110 89.906 90.106

(7.139) (7.762) (6.066) (7.401) (7.133) (7.188) (7.015) (7.431) (7.288)

100 121.237 125.916 86.128 123.958 121.529 124.156 124.120 126.772 126.662

(5.818) (6.261) (5.923) (5.928) (5.969) (5.841) (5.851) (5.955) (5.909)

200 160.614 163.674 135.848 162.965 161.006 161.767 161.803 164.177 164.049

(4.620) (4.744) (4.848) (4.629) (4.629) (4.581) (4.542) (4.595) (4.625)

300 176.837 178.869 158.025 178.665 177.107 177.489 177.443 179.284 179.227

(3.788) (3.869) (4.450) (3.746) (3.812) (3.767) (3.816) (3.680) (3.691)

500 190.382 191.513 179.322 191.480 190.505 190.646 190.639 191.703 191.662

(2.705) (2.628) (3.496) (2.569) (2.677) (2.650) (2.649) (2.571) (2.575)

-0.1 20 5.312 7.127 0.475 5.359 1.701 14.491? 18.785? 14.498? 18.825?

(4.220) (5.214) (0.868) (4.290) (2.641) (6.038) (6.352) (6.055) (6.425)

30 25.545 30.452 4.320 26.088 21.059 35.512? 38.277? 36.060? 38.825?

(7.132) (7.840) (3.298) (7.330) (7.573) (7.129) (7.090) (7.403) (7.373)

40 48.010 53.803 15.271 49.224 45.918 56.380 57.761 57.718 58.971

(7.119) (8.091) (5.239) (7.337) (7.730) (7.497) (7.509) (7.836) (7.701)

50 67.346 73.108 30.043 69.160 66.054 73.798 74.561 75.630 76.299

(7.146) (7.696) (5.963) (7.338) (7.383) (7.249) (7.204) (7.481) (7.446)

60 82.275 88.088 44.021 84.446 81.690 87.848 88.060 90.009 90.140

(7.126) (7.472) (6.138) (7.324) (7.415) (7.169) (7.089) (7.320) (7.352)

100 121.415 126.032 86.681 124.077 121.574 124.228 124.161 126.920 126.740

(5.820) (6.123) (5.869) (5.996) (5.918) (5.851) (5.792) (5.928) (5.943)

200 160.581 163.570 135.571 162.934 160.955 161.713 161.695 164.077 163.984

(4.363) (4.493) (4.554) (4.378) (4.377) (4.387) (4.392) (4.434) (4.408)

300 176.823 179.014 158.077 178.664 177.068 177.435 177.435 179.217 179.213

(3.823) (3.802) (4.321) (3.818) (3.819) (3.798) (3.826) (3.838) (3.796)

500 190.415 191.504 179.370 191.467 190.547 190.652 190.665 191.686 191.661

(2.695) (2.608) (3.323) (2.583) (2.703) (2.660) (2.682) (2.563) (2.560)
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Table C.42. Average number of false hypotheses rejected for the investigated methods for
the correlated cases for the normal variates with π0 = 0.8 and ρ = ±0.25. Fifty blocks are
utilized with pairwise correlation between the variables within a block of ρ. The pre-specified
significance level is α = 0.05. The number of replications for each scenario is 1, 000 with
10, 000 bootstrap resamples. Equal sample sizes were utilized for both the controls and
cases. The standard errors are provided in parenthesis. Cases where FDR control were
anti-conservative are indicated with a star(?).

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.8 0.25 20 4.986 6.896 0.414 5.027 1.814 14.541? 18.752? 14.545? 18.803?

(4.170) (5.176) (0.788) (4.217) (2.767) (6.218) (6.445) (6.226) (6.550)

30 25.337 30.108 4.550 25.836 20.978 35.370 38.007? 35.934 38.596?

(7.662) (8.678) (3.461) (7.839) (7.846) (7.815) (7.624) (8.100) (7.850)

40 48.074 53.700 15.211 49.206 45.706 56.369 57.879 57.647 59.119

(7.571) (8.665) (5.498) (7.868) (7.940) (7.408) (7.357) (7.730) (7.650)

50 66.826 72.996 29.730 68.600 65.855 73.503 74.253 75.385 75.952

(7.596) (8.501) (6.095) (7.812) (7.875) (7.553) (7.503) (7.863) (7.752)

60 82.229 88.151 43.717 84.497 81.742 87.712 88.001 89.933 90.042

(7.154) (7.773) (6.076) (7.289) (7.290) (7.067) (6.918) (7.231) (7.198)

100 121.301 126.023 86.388 123.998 121.504 124.155 124.093 126.857 126.697

(6.134) (6.881) (5.903) (6.299) (6.245) (6.154) (6.121) (6.326) (6.328)

200 160.601 163.640 135.346 162.938 160.958 161.759 161.676 164.057 164.001

(4.763) (4.994) (5.063) (4.798) (4.711) (4.641) (4.631) (4.774) (4.728)

300 176.771 178.749 157.940 178.546 177.021 177.380 177.364 179.116 179.075

(3.820) (3.876) (4.337) (3.809) (3.791) (3.800) (3.799) (3.743) (3.739)

500 190.380 191.454 179.368 191.447 190.521 190.624 190.608 191.675 191.625

(2.797) (2.696) (3.444) (2.631) (2.761) (2.759) (2.764) (2.604) (2.615)

-0.25 20 5.365 7.245 0.486 5.407 1.799 14.695? 18.816? 14.710? 18.855?

(4.151) (5.040) (0.895) (4.200) (2.592) (5.896) (6.125) (5.936) (6.204)

30 25.215 30.128 4.360 25.765 20.463 35.455? 38.318? 35.957? 38.903?

(7.297) (7.813) (3.198) (7.482) (7.527) (7.314) (7.148) (7.584) (7.419)

40 48.191 53.974 15.459 49.327 45.829 56.396 57.711 57.700 58.982

(7.290) (7.718) (5.389) (7.540) (7.507) (7.270) (7.190) (7.547) (7.476)

50 66.876 72.718 30.023 68.686 65.766 73.332 74.085 75.084 75.762

(6.903) (7.446) (5.687) (7.226) (7.100) (7.143) (6.891) (7.279) (7.133)

60 82.395 87.906 43.869 84.489 81.873 87.871 88.189 90.031 90.242

(6.673) (7.073) (6.057) (6.914) (6.860) (6.802) (6.636) (7.015) (6.922)

100 121.696 126.201 86.358 124.340 121.885 124.448 124.410 127.082 126.930

(5.713) (5.894) (5.500) (5.788) (5.857) (5.786) (5.811) (5.820) (5.865)

200 160.754 163.858 135.861 163.149 161.180 161.916 161.844 164.282 164.244

(4.455) (4.426) (4.721) (4.414) (4.486) (4.419) (4.476) (4.454) (4.486)

300 176.917 179.035 157.889 178.791 177.192 177.552 177.533 179.313 179.317

(3.806) (3.794) (4.302) (3.781) (3.805) (3.790) (3.800) (3.737) (3.750)

500 190.572 191.636 179.409 191.593 190.709 190.799 190.826 191.823 191.805

(2.646) (2.616) (3.314) (2.566) (2.657) (2.634) (2.629) (2.576) (2.586)
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Table C.43. Average number of false hypotheses rejected for the investigated methods for
the correlated cases for the normal variates with π0 = 0.8 and ρ = ±0.5. Fifty blocks are
utilized with pairwise correlation between the variables within a block of ρ. The pre-specified
significance level is α = 0.05. The number of replications for each scenario is 1, 000 with
10, 000 bootstrap resamples. Equal sample sizes were utilized for both the controls and
cases. The standard errors are provided in parenthesis. Cases where FDR control were
anti-conservative are indicated with a star(?).

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.8 0.5 20 5.388 7.427 0.486 5.439 1.846 14.730? 19.054? 14.743? 19.138?

(4.477) (5.767) (0.965) (4.527) (2.687) (6.571) (6.940) (6.600) (7.088)

30 25.144 30.517 4.350 25.653 20.982 35.416 38.173? 35.912 38.799?

(7.369) (9.382) (3.351) (7.566) (8.030) (7.919) (7.837) (8.217) (8.168)

40 47.952 54.203 15.515 49.120 45.829 56.318 57.721 57.602 58.958

(8.237) (9.910) (5.769) (8.454) (8.645) (8.397) (8.351) (8.720) (8.576)

50 66.768 72.731 29.639 68.511 65.650 73.282 74.054 75.166 75.732

(7.905) (9.489) (6.238) (8.218) (7.920) (7.917) (7.841) (8.284) (8.143)

60 82.267 88.132 43.702 84.456 81.734 87.611 87.942 89.709 90.029

(7.250) (8.914) (6.652) (7.464) (7.602) (7.596) (7.420) (7.829) (7.627)

100 120.993 125.749 85.996 123.686 121.272 123.998 123.888 126.609 126.426

(6.363) (7.486) (5.989) (6.633) (6.430) (6.500) (6.399) (6.616) (6.582)

200 160.515 163.640 135.413 162.872 160.875 161.682 161.590 163.964 163.886

(4.948) (5.590) (4.958) (4.980) (5.000) (4.972) (4.974) (4.959) (4.942)

300 176.797 178.900 157.896 178.580 177.065 177.391 177.398 179.125 179.148

(3.932) (4.117) (4.538) (3.841) (3.927) (3.854) (3.901) (3.782) (3.811)

500 190.366 191.506 179.605 191.449 190.536 190.628 190.627 191.665 191.661

(2.701) (2.678) (3.573) (2.543) (2.668) (2.647) (2.638) (2.529) (2.510)

-0.5 20 4.909 6.660 0.472 4.960 1.582 14.155? 18.482? 14.164? 18.508?

(4.053) (4.838) (0.888) (4.108) (2.383) (5.994) (6.088) (6.018) (6.143)

30 25.458 30.235 4.326 25.997 21.211 35.660 38.349? 36.141 38.867?

(6.984) (7.451) (3.370) (7.171) (7.634) (7.436) (7.241) (7.702) (7.433)

40 48.090 53.863 15.494 49.355 45.984 56.400 57.827 57.658 58.972

(7.176) (7.406) (5.225) (7.466) (7.512) (7.181) (7.117) (7.346) (7.353)

50 67.034 72.824 29.546 68.722 65.829 73.726 74.300 75.427 76.062

(7.080) (7.252) (6.150) (7.329) (7.394) (7.013) (7.041) (7.227) (7.236)

60 82.333 88.049 43.835 84.463 81.703 87.796 87.994 89.875 90.101

(6.439) (6.548) (5.884) (6.624) (6.736) (6.607) (6.610) (6.816) (6.817)

100 121.065 125.509 86.654 123.651 121.113 123.812 123.793 126.486 126.319

(5.813) (5.985) (5.563) (5.944) (5.897) (5.776) (5.850) (5.922) (5.916)

200 160.270 163.342 135.399 162.761 160.626 161.402 161.398 163.852 163.757

(4.655) (4.677) (5.035) (4.687) (4.687) (4.656) (4.695) (4.690) (4.742)

300 176.798 178.998 157.782 178.706 177.097 177.462 177.465 179.269 179.242

(3.587) (3.589) (4.284) (3.584) (3.577) (3.635) (3.595) (3.635) (3.641)

500 190.393 191.542 179.392 191.484 190.517 190.622 190.627 191.699 191.675

(2.738) (2.637) (3.527) (2.630) (2.731) (2.706) (2.716) (2.638) (2.605)
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Table C.44. Average number of false hypotheses rejected for the investigated methods for
the correlated cases for the normal variates with π0 = 0.8 and ρ = ±0.75. Fifty blocks are
utilized with pairwise correlation between the variables within a block of ρ. The pre-specified
significance level is α = 0.05. The number of replications for each scenario is 1, 000 with
10, 000 bootstrap resamples. Equal sample sizes were utilized for both the controls and
cases. The standard errors are provided in parenthesis. Cases where FDR control were
anti-conservative are indicated with a star(?).

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.8 0.75 20 5.048 7.674 0.443 5.084 1.686 14.428? 18.651? 14.447? 18.715?

(4.262) (6.301) (0.904) (4.316) (2.651) (6.649) (7.297) (6.688) (7.402)

30 25.226 30.990 4.487 25.778 20.940 35.309 38.112? 35.857 38.715?

(8.245) (11.079) (3.510) (8.580) (8.710) (9.114) (8.915) (9.517) (9.252)

40 47.777 54.222 15.391 49.034 45.412 56.012 57.216 57.159 58.461

(8.845) (11.711) (5.982) (9.191) (9.387) (9.220) (9.034) (9.517) (9.373)

50 66.716 73.399 29.527 68.468 65.556 73.404 73.996 75.176 75.652

(9.205) (12.319) (7.173) (9.590) (9.341) (9.308) (9.095) (9.651) (9.513)

60 82.497 89.236 44.011 84.617 82.121 87.925 88.233 90.141 90.354

(8.505) (11.622) (7.137) (8.753) (8.577) (8.481) (8.405) (8.868) (8.724)

100 121.157 126.546 86.258 123.869 121.317 124.149 124.063 126.853 126.701

(6.839) (9.096) (6.628) (7.075) (6.973) (6.876) (6.814) (7.002) (7.098)

200 160.716 164.072 135.462 163.178 161.088 161.877 161.899 164.294 164.290

(5.488) (6.604) (5.407) (5.471) (5.509) (5.420) (5.399) (5.453) (5.433)

300 176.906 179.237 158.139 178.788 177.197 177.572 177.572 179.412 179.386

(4.278) (4.995) (4.711) (4.267) (4.254) (4.251) (4.252) (4.179) (4.291)

500 190.561 191.602 179.203 191.562 190.692 190.776 190.782 191.782 191.792

(2.973) (3.155) (3.761) (2.884) (2.984) (2.974) (2.967) (2.877) (2.890)

-0.75 20 5.197 6.942 0.462 5.227 1.817 14.204? 18.473? 14.210? 18.508?

(4.299) (4.897) (0.867) (4.336) (2.798) (6.390) (6.736) (6.406) (6.800)

30 25.268 29.912 4.355 25.759 20.777 35.316? 37.907? 35.894? 38.526?

(7.687) (7.612) (3.353) (7.834) (8.181) (7.801) (7.688) (8.145) (8.016)

40 47.903 53.707 15.627 49.056 45.587 56.033 57.263 57.297 58.406

(7.559) (7.411) (5.312) (7.708) (7.652) (7.419) (7.125) (7.786) (7.349)

50 66.954 72.961 29.729 68.694 65.768 73.671 74.190 75.430 75.914

(7.277) (7.406) (6.022) (7.462) (7.322) (7.390) (7.181) (7.593) (7.401)

60 82.418 87.938 43.900 84.538 81.922 87.824 88.135 89.970 90.331

(6.666) (6.773) (6.279) (6.935) (6.821) (6.729) (6.665) (6.991) (6.867)

100 121.260 126.047 86.329 123.933 121.521 124.188 124.138 126.847 126.713

(6.022) (6.109) (5.699) (6.173) (6.035) (5.894) (5.981) (6.040) (6.089)

200 160.794 163.977 135.425 163.206 161.125 161.902 161.911 164.294 164.281

(4.628) (4.826) (5.026) (4.685) (4.673) (4.644) (4.652) (4.718) (4.720)

300 176.774 178.930 157.984 178.635 177.074 177.372 177.365 179.235 179.162

(3.767) (3.696) (4.201) (3.639) (3.736) (3.654) (3.730) (3.575) (3.596)

500 190.356 191.463 179.280 191.442 190.508 190.612 190.623 191.657 191.617

(2.763) (2.754) (3.343) (2.688) (2.744) (2.739) (2.755) (2.649) (2.677)
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Table C.45. Average number of false hypotheses rejected for the investigated methods for
the correlated cases for the normal variates with π0 = 0.8 and ρ = ±0.9. Fifty blocks are
utilized with pairwise correlation between the variables within a block of ρ. The pre-specified
significance level is α = 0.05. The number of replications for each scenario is 1, 000 with
10, 000 bootstrap resamples. Equal sample sizes were utilized for both the controls and
cases. The standard errors are provided in parenthesis. Cases where FDR control were
anti-conservative are indicated with a star(?).

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.8 0.9 20 5.543 9.439 0.521 5.581 2.084 14.637? 18.661? 14.701? 18.748?

(5.760) (10.722) (1.188) (5.834) (4.098) (9.047) (9.816) (9.200) (9.966)

30 24.968 32.269 4.307 25.476 20.395 35.200 37.943? 35.801 38.569?

(9.869) (14.796) (4.066) (10.133) (10.733) (10.988) (11.023) (11.535) (11.507)

40 48.682 57.537 15.989 50.002 46.419 56.807 58.069 58.112 59.340

(11.841) (17.275) (7.247) (12.211) (12.473) (12.194) (12.019) (12.667) (12.474)

50 67.027 75.245 29.995 68.729 66.109 73.648 74.358 75.451 76.070

(11.083) (16.660) (8.273) (11.366) (11.434) (11.201) (11.258) (11.658) (11.622)

60 82.826 90.946 44.202 84.948 82.174 88.208 88.490 90.605 90.670

(10.524) (15.785) (8.709) (10.867) (10.906) (10.736) (10.678) (11.212) (11.175)

100 121.115 127.456 86.572 123.776 121.361 124.148 123.976 126.804 126.624

(8.929) (13.148) (8.310) (9.086) (9.028) (8.967) (8.958) (9.147) (9.143)

200 160.838 164.715 135.598 163.277 161.219 161.987 161.971 164.351 164.278

(6.625) (8.725) (6.524) (6.640) (6.633) (6.593) (6.593) (6.588) (6.590)

300 176.525 178.975 157.913 178.386 176.822 177.186 177.159 178.913 178.932

(5.004) (6.256) (5.608) (4.953) (5.008) (4.975) (4.978) (4.926) (4.952)

500 190.330 191.625 179.277 191.328 190.454 190.570 190.577 191.569 191.556

(3.507) (3.946) (4.469) (3.410) (3.504) (3.481) (3.475) (3.351) (3.366)

-0.9 20 5.451 6.977 0.445 5.497 1.888 14.361? 18.234? 14.387? 18.286?

(4.787) (5.235) (0.898) (4.856) (3.051) (6.742) (7.333) (6.801) (7.427)

30 25.493 30.712 4.425 25.944 20.861 35.715 38.191? 36.261 38.747?

(8.107) (7.901) (3.535) (8.331) (8.725) (8.327) (8.159) (8.627) (8.440)

40 47.582 53.768 15.250 48.747 45.139 55.684 57.183 57.009 58.425

(8.033) (7.941) (5.958) (8.282) (8.309) (8.069) (7.716) (8.341) (8.019)

50 66.999 73.536 29.655 68.777 65.825 73.801 74.321 75.529 76.009

(7.344) (7.465) (6.357) (7.483) (7.354) (7.398) (7.245) (7.675) (7.450)

60 82.225 88.553 43.833 84.433 81.751 87.757 88.054 89.888 90.113

(7.122) (7.470) (6.336) (7.390) (7.354) (7.213) (7.143) (7.452) (7.336)

100 121.349 126.389 86.495 124.032 121.594 124.237 124.259 126.999 126.857

(5.976) (6.520) (5.632) (6.098) (6.087) (6.023) (6.019) (6.176) (6.191)

200 160.766 164.049 135.777 163.134 161.095 161.872 161.837 164.275 164.241

(4.544) (5.001) (4.934) (4.632) (4.553) (4.561) (4.561) (4.624) (4.588)

300 176.880 179.164 158.342 178.698 177.137 177.531 177.489 179.266 179.312

(3.616) (3.936) (4.241) (3.662) (3.661) (3.648) (3.680) (3.597) (3.638)

500 190.321 191.529 179.457 191.375 190.459 190.577 190.557 191.612 191.577

(2.895) (2.966) (3.367) (2.804) (2.898) (2.897) (2.882) (2.772) (2.741)
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Table C.46. Average number of false hypotheses rejected for the investigated methods for
the correlated cases for the normal variates with π0 = 0.75 and ρ = ±0.1. Fifty blocks are
utilized with pairwise correlation between the variables within a block of ρ. The pre-specified
significance level is α = 0.05. The number of replications for each scenario is 1, 000 with
10, 000 bootstrap resamples. Equal sample sizes were utilized for both the controls and
cases. The standard errors are provided in parenthesis. Cases where FDR control were
anti-conservative are indicated with a star(?).

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.75 0.1 20 7.503 11.101 0.722 7.587 1.508 19.170? 21.313? 19.229? 21.378?

(5.339) (6.739) (1.162) (5.426) (2.542) (7.172) (7.173) (7.285) (7.274)

30 32.866 41.591 6.252 33.743 23.266 45.926 45.350 47.085 46.307

(8.334) (9.672) (3.882) (8.654) (8.965) (8.658) (8.457) (9.121) (8.833)

40 61.073 70.811 19.015 63.162 55.337 71.545 70.021 73.834 72.027

(8.605) (10.020) (5.694) (8.891) (9.111) (8.529) (8.533) (9.038) (8.931)

50 85.023 95.232 36.256 88.034 81.405 93.505 91.766 96.671 94.575

(8.241) (9.290) (6.871) (8.697) (8.527) (8.393) (8.272) (8.760) (8.666)

60 104.760 114.618 53.227 108.537 102.340 111.765 109.804 115.515 113.258

(8.082) (9.315) (7.382) (8.517) (8.293) (8.097) (8.015) (8.360) (8.276)

100 153.358 161.223 107.547 157.927 152.382 156.889 155.426 161.348 159.831

(6.630) (7.210) (6.596) (6.730) (6.611) (6.435) (6.523) (6.741) (6.638)

200 202.333 207.137 170.340 206.106 202.222 203.572 203.054 207.310 206.816

(5.068) (5.263) (5.392) (5.216) (5.107) (5.080) (5.078) (5.123) (5.173)

300 221.237 224.391 198.752 224.013 221.316 221.842 221.653 224.553 224.393

(4.051) (4.275) (4.829) (4.073) (4.089) (4.070) (4.092) (4.071) (4.090)

500 236.674 238.379 223.258 238.319 236.804 236.947 236.905 238.550 238.529

(3.136) (3.099) (3.674) (3.032) (3.147) (3.130) (3.130) (3.006) (3.030)

-0.1 20 7.290 10.515 0.695 7.357 1.493 18.502? 20.939? 18.552? 21.038?

(5.025) (6.541) (1.120) (5.108) (2.432) (7.279) (7.268) (7.366) (7.422)

30 33.112 41.388 6.151 33.877 23.950 45.787 45.482 46.763 46.490

(8.272) (9.154) (3.681) (8.570) (8.812) (8.424) (8.426) (8.788) (8.635)

40 60.985 70.689 19.499 62.960 55.469 71.517 69.971 73.807 72.131

(8.568) (9.308) (5.682) (8.961) (9.051) (8.662) (8.612) (8.951) (8.974)

50 85.143 94.897 36.331 88.105 81.626 93.780 91.947 97.084 94.846

(8.114) (8.994) (6.891) (8.500) (8.495) (7.977) (8.056) (8.511) (8.373)

60 104.222 114.218 53.172 107.842 101.525 111.087 109.134 114.873 112.654

(7.985) (8.531) (6.833) (8.314) (8.227) (7.811) (7.916) (8.107) (8.116)

100 153.257 161.132 107.423 157.857 152.427 156.938 155.492 161.380 159.814

(6.615) (7.132) (6.614) (6.793) (6.601) (6.508) (6.573) (6.738) (6.805)

200 202.429 207.294 170.399 206.263 202.334 203.738 203.185 207.470 206.902

(5.179) (5.151) (5.547) (5.115) (5.212) (5.106) (5.121) (5.023) (5.144)

300 221.068 224.259 198.450 223.943 221.177 221.807 221.520 224.527 224.307

(4.175) (4.157) (4.482) (4.113) (4.228) (4.154) (4.200) (4.120) (4.096)

500 236.352 238.085 222.765 238.072 236.474 236.603 236.598 238.306 238.260

(2.873) (2.766) (3.707) (2.736) (2.875) (2.853) (2.894) (2.752) (2.717)
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Table C.47. Average number of false hypotheses rejected for the investigated methods for
the correlated cases for the normal variates with π0 = 0.75 and ρ = ±0.25. Fifty blocks are
utilized with pairwise correlation between the variables within a block of ρ. The pre-specified
significance level is α = 0.05. The number of replications for each scenario is 1, 000 with
10, 000 bootstrap resamples. Equal sample sizes were utilized for both the controls and
cases. The standard errors are provided in parenthesis. Cases where FDR control were
anti-conservative are indicated with a star(?).

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.75 0.25 20 7.393 10.960 0.702 7.507 1.558 18.568? 20.788? 18.628? 20.858?

(5.310) (6.907) (1.065) (5.457) (2.563) (7.459) (7.438) (7.576) (7.560)

30 33.336 41.567 6.153 34.349 23.558 45.462 45.092 46.582 46.045

(8.256) (10.159) (3.871) (8.591) (9.354) (8.955) (8.743) (9.424) (9.088)

40 61.478 71.202 19.846 63.539 55.873 71.606 69.875 73.964 71.901

(9.006) (10.765) (6.058) (9.483) (9.293) (9.138) (9.020) (9.657) (9.392)

50 85.096 95.175 36.370 88.138 81.499 93.615 91.760 96.943 94.678

(8.653) (10.167) (7.036) (9.061) (8.950) (8.672) (8.748) (9.090) (9.068)

60 104.309 113.831 53.234 107.933 101.872 111.388 109.322 115.186 112.886

(8.219) (9.852) (7.112) (8.617) (8.403) (8.094) (8.301) (8.462) (8.533)

100 153.305 161.318 107.587 157.846 152.244 156.886 155.466 161.348 159.745

(6.846) (8.115) (6.794) (7.196) (6.937) (6.915) (6.855) (7.112) (7.108)

200 202.240 207.006 170.048 206.128 202.128 203.538 203.000 207.297 206.795

(5.168) (5.571) (5.658) (5.170) (5.268) (5.170) (5.212) (5.149) (5.113)

300 221.098 224.363 198.326 223.977 221.223 221.793 221.610 224.560 224.385

(4.124) (4.245) (4.832) (4.032) (4.141) (4.102) (4.134) (4.006) (4.022)

500 236.321 238.219 222.961 238.104 236.434 236.570 236.548 238.348 238.312

(3.117) (3.115) (3.765) (3.023) (3.146) (3.131) (3.134) (2.960) (3.012)

-0.25 20 7.296 11.020 0.673 7.362 1.505 19.120? 21.287? 19.155? 21.365?

(5.105) (6.641) (1.053) (5.173) (2.628) (7.103) (7.047) (7.169) (7.182)

30 32.975 41.294 5.916 33.836 23.337 45.442 44.816 46.489 45.850

(8.084) (9.044) (3.681) (8.340) (9.084) (8.304) (8.155) (8.663) (8.498)

40 61.640 71.048 19.399 63.715 55.908 72.171 70.539 74.363 72.642

(8.407) (9.000) (5.894) (8.732) (9.308) (8.416) (8.449) (8.763) (8.815)

50 84.529 94.363 36.354 87.499 81.015 93.142 91.256 96.404 94.130

(8.323) (8.899) (6.771) (8.697) (8.692) (8.205) (8.404) (8.677) (8.717)

60 104.711 114.205 53.647 108.241 102.151 111.759 109.718 115.411 113.073

(7.982) (8.022) (7.104) (8.282) (8.074) (7.884) (7.826) (8.155) (8.043)

100 153.535 161.283 107.328 158.121 152.613 157.103 155.528 161.617 159.963

(6.558) (7.100) (6.310) (6.892) (6.769) (6.620) (6.738) (6.893) (6.905)

200 202.454 207.364 170.421 206.376 202.347 203.714 203.210 207.569 207.049

(5.064) (5.152) (5.267) (5.032) (5.070) (5.014) (4.990) (4.949) (4.946)

300 221.038 224.277 198.377 223.922 221.162 221.677 221.489 224.493 224.318

(4.237) (4.244) (4.714) (4.154) (4.193) (4.182) (4.188) (4.096) (4.119)

500 236.385 238.190 222.940 238.123 236.527 236.708 236.652 238.364 238.326

(2.956) (2.875) (3.609) (2.878) (2.932) (2.906) (2.910) (2.870) (2.867)

178



Table C.48. Average number of false hypotheses rejected for the investigated methods for
the correlated cases for the normal variates with π0 = 0.75 and ρ = ±0.5. Fifty blocks are
utilized with pairwise correlation between the variables within a block of ρ. The pre-specified
significance level is α = 0.05. The number of replications for each scenario is 1, 000 with
10, 000 bootstrap resamples. Equal sample sizes were utilized for both the controls and
cases. The standard errors are provided in parenthesis. Cases where FDR control were
anti-conservative are indicated with a star(?).

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.75 0.5 20 7.551 11.424 0.629 7.639 1.564 18.711? 20.901? 18.747? 20.961?

(5.270) (7.330) (1.039) (5.367) (2.683) (7.329) (7.288) (7.400) (7.380)

30 33.440 41.875 6.013 34.376 23.694 45.772 44.963 46.830 45.967?

(8.817) (11.599) (3.958) (9.158) (9.428) (9.638) (9.717) (10.143) (10.221)

40 60.623 70.864 19.369 62.669 54.797 71.269 69.608 73.557 71.545

(9.472) (12.221) (6.095) (9.923) (10.211) (9.904) (9.819) (10.472) (10.272)

50 84.920 94.829 36.460 87.899 81.252 93.268 91.390 96.381 94.185

(9.231) (11.491) (7.294) (9.619) (9.468) (9.084) (8.953) (9.591) (9.450)

60 104.516 114.598 53.466 108.181 101.933 111.609 109.418 115.271 113.025

(8.872) (11.399) (7.613) (9.245) (9.106) (8.866) (8.802) (9.146) (9.155)

100 153.785 161.707 107.785 158.327 152.875 157.372 155.903 161.744 160.324

(7.555) (9.071) (7.001) (7.727) (7.705) (7.433) (7.511) (7.598) (7.635)

200 202.072 206.773 170.186 205.876 201.977 203.299 202.819 207.046 206.506

(5.395) (6.214) (5.853) (5.419) (5.424) (5.275) (5.359) (5.441) (5.452)

300 221.100 224.335 198.247 224.031 221.218 221.788 221.605 224.651 224.431

(4.342) (4.623) (4.932) (4.275) (4.327) (4.301) (4.325) (4.311) (4.298)

500 236.369 238.288 222.881 238.197 236.510 236.670 236.618 238.426 238.377

(3.218) (3.296) (3.942) (3.054) (3.217) (3.204) (3.207) (3.035) (3.044)

-0.5 20 7.402 10.592 0.663 7.462 1.554 18.896? 20.933? 18.906? 20.990?

(5.075) (6.262) (1.084) (5.146) (2.464) (6.714) (6.927) (6.732) (7.024)

30 33.609 41.787 6.146 34.530 24.242 46.054 45.439 47.082 46.325

(7.821) (8.384) (3.694) (8.100) (8.724) (8.102) (8.126) (8.547) (8.423)

40 61.252 70.784 19.610 63.362 55.175 71.895 70.088 74.179 72.067

(8.460) (9.109) (5.988) (8.767) (9.102) (8.660) (8.512) (9.040) (8.780)

50 84.537 94.586 36.075 87.598 81.118 93.327 91.447 96.470 94.349

(8.547) (8.689) (6.444) (8.920) (8.657) (8.510) (8.320) (8.889) (8.620)

60 104.136 114.022 53.239 107.836 101.540 111.112 108.976 114.707 112.400

(7.597) (7.867) (7.069) (7.965) (7.591) (7.407) (7.343) (7.698) (7.658)

100 153.485 161.434 107.620 158.133 152.572 157.168 155.718 161.676 160.232

(6.540) (6.895) (6.670) (6.738) (6.587) (6.514) (6.581) (6.751) (6.739)

200 202.127 207.171 170.189 206.000 202.056 203.407 202.904 207.225 206.689

(5.173) (5.188) (5.399) (5.179) (5.251) (5.159) (5.222) (5.131) (5.212)

300 221.322 224.530 198.566 224.186 221.418 221.953 221.773 224.754 224.577

(4.047) (3.952) (4.579) (4.023) (4.077) (3.993) (4.051) (4.006) (3.949)

500 236.250 238.096 222.878 237.964 236.384 236.495 236.469 238.204 238.206

(3.004) (2.965) (3.714) (2.949) (3.020) (2.985) (3.038) (2.913) (2.922)
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Table C.49. Average number of false hypotheses rejected for the investigated methods for
the correlated cases for the normal variates with π0 = 0.75 and ρ = ±0.75. Fifty blocks are
utilized with pairwise correlation between the variables within a block of ρ. The pre-specified
significance level is α = 0.05. The number of replications for each scenario is 1, 000 with
10, 000 bootstrap resamples. Equal sample sizes were utilized for both the controls and
cases. The standard errors are provided in parenthesis. Cases where FDR control were
anti-conservative are indicated with a star(?).

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.75 0.75 20 7.792 12.352 0.752 7.870 1.697 19.204? 21.241? 19.310? 21.387?

(6.118) (9.364) (1.248) (6.253) (2.976) (9.201) (9.389) (9.372) (9.615)

30 32.950 42.238 6.025 33.880 23.480 45.285 44.709 46.369 45.690

(10.219) (14.440) (4.304) (10.635) (10.874) (11.081) (10.958) (11.649) (11.436)

40 61.408 72.035 19.398 63.424 55.409 71.941 70.214 74.281 72.147

(10.657) (15.343) (6.719) (11.042) (11.224) (10.819) (10.822) (11.470) (11.280)

50 84.787 96.035 36.157 87.837 81.207 93.464 91.520 96.656 94.476

(10.486) (14.802) (7.780) (11.014) (10.863) (10.669) (10.695) (11.159) (11.129)

60 104.601 115.021 53.536 108.233 102.001 111.344 109.458 115.190 112.899

(10.310) (14.515) (8.708) (10.925) (10.445) (10.436) (10.314) (11.003) (10.811)

100 153.298 161.485 106.959 157.889 152.388 156.928 155.455 161.391 159.819

(8.666) (11.634) (8.359) (8.908) (8.755) (8.625) (8.639) (8.877) (8.778)

200 202.342 207.520 170.379 206.201 202.269 203.593 203.145 207.279 206.898

(6.029) (7.712) (6.410) (5.872) (6.097) (6.011) (6.018) (5.872) (5.984)

300 221.021 224.241 198.290 223.852 221.127 221.642 221.477 224.377 224.235

(4.734) (5.659) (5.544) (4.637) (4.743) (4.742) (4.758) (4.604) (4.622)

500 236.394 238.161 222.960 238.098 236.491 236.677 236.621 238.345 238.293

(3.375) (3.733) (4.120) (3.256) (3.390) (3.355) (3.374) (3.241) (3.252)

-0.75 20 7.303 10.875 0.670 7.357 1.501 18.913? 21.058? 18.988? 21.152?

(5.007) (6.261) (1.116) (5.072) (2.612) (7.300) (7.326) (7.451) (7.474)

30 33.415 41.536 6.155 34.306 23.628 45.640 45.352 46.761 46.254

(8.249) (8.585) (3.765) (8.578) (8.957) (8.880) (8.594) (9.358) (8.919)

40 61.016 70.915 19.668 63.067 55.178 71.488 69.834 73.702 71.860

(8.657) (8.569) (6.170) (9.019) (9.058) (8.782) (8.614) (9.103) (9.042)

50 84.775 94.889 36.112 87.863 81.182 93.417 91.601 96.690 94.548

(8.215) (8.340) (6.873) (8.441) (8.373) (7.917) (7.790) (8.274) (8.107)

60 104.787 114.591 53.540 108.509 101.923 111.722 109.673 115.562 113.314

(7.960) (8.224) (7.110) (8.224) (8.229) (8.047) (8.170) (8.498) (8.394)

100 153.346 161.016 107.630 157.817 152.405 156.869 155.428 161.384 159.785

(6.569) (6.977) (6.294) (6.813) (6.521) (6.472) (6.503) (6.736) (6.832)

200 202.179 207.285 170.324 206.110 202.126 203.473 202.944 207.281 206.790

(4.882) (5.166) (5.404) (4.960) (5.002) (4.896) (4.964) (4.920) (4.998)

300 221.260 224.540 198.502 224.116 221.323 221.842 221.666 224.668 224.526

(4.077) (4.070) (4.795) (4.017) (4.108) (4.084) (4.025) (3.988) (3.985)

500 236.495 238.288 223.058 238.189 236.614 236.776 236.773 238.451 238.386

(3.080) (3.008) (3.579) (2.906) (3.084) (3.034) (3.049) (2.931) (2.917)
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Table C.50. Average number of false hypotheses rejected for the investigated methods for
the correlated cases for the normal variates with π0 = 0.75 and ρ = ±0.9. Fifty blocks are
utilized with pairwise correlation between the variables within a block of ρ. The pre-specified
significance level is α = 0.05. The number of replications for each scenario is 1, 000 with
10, 000 bootstrap resamples. Equal sample sizes were utilized for both the controls and
cases. The standard errors are provided in parenthesis. Cases where FDR control were
anti-conservative are indicated with a star(?).

π0 ρ n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.75 0.9 20 7.913 14.298 0.789 8.039 2.253 19.218? 21.210? 19.365? 21.406?

(7.436) (14.116) (1.449) (7.630) (4.390) (11.069) (11.288) (11.312) (11.584)

30 33.420 45.796 6.342 34.421 23.824 45.726 44.948 46.881 46.008

(13.504) (22.659) (4.902) (14.033) (14.017) (14.586) (14.397) (15.356) (15.054)

40 61.404 74.626 19.659 63.552 55.752 72.021 70.395 74.370 72.467

(13.922) (22.550) (8.185) (14.563) (14.963) (14.289) (14.322) (15.006) (15.051)

50 84.765 97.728 36.028 87.800 81.013 93.411 91.369 96.751 94.375

(13.690) (21.842) (9.720) (14.378) (14.317) (13.947) (13.836) (14.760) (14.639)

60 104.623 117.335 53.533 108.411 102.066 111.717 109.642 115.545 113.268

(13.358) (21.311) (10.460) (14.012) (13.691) (13.460) (13.402) (14.083) (14.006)

100 153.179 162.837 107.115 157.779 152.207 156.827 155.293 161.360 159.730

(10.529) (16.574) (10.282) (10.885) (10.734) (10.530) (10.624) (10.912) (10.980)

200 202.514 208.156 170.518 206.289 202.438 203.754 203.241 207.512 206.987

(7.299) (10.270) (7.989) (7.326) (7.325) (7.265) (7.219) (7.288) (7.301)

300 221.110 224.771 198.629 223.996 221.186 221.749 221.570 224.576 224.365

(5.704) (7.571) (6.448) (5.664) (5.709) (5.606) (5.676) (5.591) (5.671)

500 236.631 238.631 223.093 238.293 236.735 236.896 236.855 238.575 238.501

(3.848) (4.493) (4.625) (3.727) (3.827) (3.824) (3.803) (3.711) (3.685)

-0.9 20 7.528 10.722 0.701 7.610 1.796 18.842? 20.874? 18.925? 20.962?

(5.794) (6.501) (1.247) (5.911) (3.121) (8.093) (8.124) (8.235) (8.255)

30 33.186 41.597 6.117 34.164 23.350 45.427 44.855 46.539 45.815

(9.012) (8.634) (4.085) (9.338) (10.558) (9.687) (9.855) (10.172) (10.168)

40 61.350 71.660 19.607 63.504 55.620 71.945 70.316 74.172 72.445

(9.155) (9.059) (6.309) (9.475) (9.918) (9.361) (9.047) (9.822) (9.538)

50 84.610 95.115 36.155 87.474 81.003 93.275 91.303 96.428 94.204

(8.678) (8.793) (7.083) (8.948) (8.878) (8.400) (8.531) (8.791) (8.815)

60 104.163 114.447 53.221 107.887 101.511 111.223 109.235 114.972 112.898

(8.001) (8.634) (7.412) (8.239) (8.223) (7.946) (7.829) (8.279) (8.240)

100 153.335 161.716 107.657 158.067 152.533 157.025 155.587 161.489 159.856

(6.833) (7.907) (6.775) (7.025) (6.765) (6.709) (6.765) (6.915) (6.919)

200 202.017 207.401 170.289 205.913 201.914 203.270 202.753 207.098 206.619

(5.038) (6.100) (5.369) (5.090) (5.055) (5.066) (5.058) (5.067) (5.090)

300 220.988 224.489 198.347 223.910 221.091 221.672 221.486 224.514 224.332

(4.193) (4.602) (4.710) (4.108) (4.236) (4.174) (4.238) (4.081) (4.100)

500 236.506 238.340 222.843 238.251 236.625 236.817 236.763 238.491 238.433

(3.047) (3.200) (3.723) (2.956) (3.058) (3.033) (3.040) (2.969) (2.985)
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C.2. Gamma Distributed Random Variables

C.2.1. Numerical Summaries of Empirical False Discovery Rates
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Table C.51. Empirical FDRs for the investigated methods for the correlated cases for the
gamma variates with π0 = 0.85 and 0.9. The number of hypotheses is m = 1, 000 with a
pre-specified significance level of α = 0.05. The number of replications for each scenario is
1, 000 with 10, 000 bootstrap resamples. Equal sample sizes were utilized for both the controls
and cases. The standard errors are provided in parenthesis.

π0 n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.90 20 0.008 0.009 0.000 0.009 0.010 0.000 0.030 0.000 0.033

(0.070) (0.075) (0.004) (0.079) (0.077) (0.003) (0.129) (0.003) (0.142)

30 0.012 0.017 0.000 0.014 0.014 0.000 0.023 0.000 0.026

(0.085) (0.106) (0.003) (0.099) (0.092) (0.003) (0.114) (0.003) (0.130)

40 0.014 0.016 0.000 0.016 0.015 0.000 0.022 0.000 0.026

(0.090) (0.099) (0.005) (0.101) (0.092) (0.003) (0.111) (0.003) (0.126)

50 0.013 0.014 0.000 0.017 0.014 0.000 0.020 0.000 0.024

(0.087) (0.091) (0.002) (0.106) (0.090) (0.001) (0.106) (0.001) (0.126)

60 0.018 0.020 0.001 0.021 0.019 0.000 0.024 0.000 0.028

(0.103) (0.111) (0.008) (0.116) (0.104) (0.003) (0.114) (0.003) (0.132)

100 0.016 0.020 0.001 0.022 0.016 0.000 0.020 0.000 0.026

(0.086) (0.102) (0.009) (0.110) (0.087) (0.002) (0.100) (0.003) (0.125)

200 0.020 0.022 0.000 0.024 0.019 0.000 0.021 0.000 0.026

(0.107) (0.114) (0.004) (0.127) (0.107) (0.001) (0.112) (0.001) (0.132)

300 0.015 0.016 0.000 0.020 0.015 0.000 0.016 0.000 0.021

(0.090) (0.094) (0.003) (0.113) (0.088) (0.000) (0.093) (0.001) (0.115)

500 0.017 0.017 0.000 0.020 0.016 0.000 0.017 0.000 0.020

(0.099) (0.099) (0.005) (0.113) (0.098) (0.001) (0.099) (0.001) (0.114)

0.85 20 0.011 0.015 0.000 0.013 0.013 0.001 0.029 0.001 0.035

(0.079) (0.099) (0.007) (0.094) (0.084) (0.006) (0.121) (0.007) (0.142)

30 0.018 0.018 0.001 0.021 0.019 0.000 0.027 0.001 0.032

(0.102) (0.102) (0.010) (0.118) (0.104) (0.008) (0.122) (0.012) (0.141)

40 0.016 0.018 0.000 0.022 0.017 0.000 0.026 0.000 0.033

(0.087) (0.095) (0.002) (0.112) (0.090) (0.001) (0.112) (0.002) (0.136)

50 0.018 0.021 0.000 0.024 0.018 0.000 0.023 0.000 0.030

(0.094) (0.105) (0.004) (0.119) (0.095) (0.003) (0.109) (0.003) (0.133)

60 0.018 0.021 0.001 0.024 0.018 0.000 0.023 0.000 0.030

(0.092) (0.103) (0.006) (0.116) (0.092) (0.002) (0.104) (0.003) (0.130)

100 0.019 0.020 0.000 0.026 0.019 0.000 0.021 0.000 0.028

(0.097) (0.100) (0.003) (0.123) (0.095) (0.001) (0.103) (0.001) (0.129)

200 0.015 0.017 0.001 0.020 0.015 0.000 0.016 0.000 0.021

(0.087) (0.094) (0.006) (0.107) (0.085) (0.002) (0.088) (0.002) (0.108)

300 0.024 0.025 0.001 0.031 0.023 0.000 0.024 0.000 0.031

(0.113) (0.119) (0.005) (0.138) (0.113) (0.001) (0.115) (0.001) (0.139)

500 0.020 0.021 0.000 0.026 0.019 0.000 0.020 0.000 0.026

(0.097) (0.104) (0.005) (0.123) (0.096) (0.001) (0.098) (0.001) (0.123)
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Table C.52. Empirical FDRs for the investigated methods for the correlated cases for the
gamma variates with π0 = 0.75 and 0.8. The number of hypotheses is m = 1, 000 with a
pre-specified significance level of α = 0.05. The number of replications for each scenario is
1, 000 with 10, 000 bootstrap resamples. Equal sample sizes were utilized for both the controls
and cases. The standard errors are provided in parenthesis.

π0 n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.80 20 0.009 0.012 0.000 0.011 0.010 0.001 0.021 0.001 0.026

(0.071) (0.087) (0.009) (0.084) (0.075) (0.013) (0.099) (0.016) (0.119)

30 0.014 0.014 0.000 0.019 0.015 0.000 0.022 0.001 0.027

(0.084) (0.084) (0.004) (0.107) (0.085) (0.005) (0.103) (0.006) (0.124)

40 0.016 0.019 0.000 0.022 0.016 0.000 0.021 0.000 0.028

(0.085) (0.098) (0.004) (0.110) (0.085) (0.003) (0.099) (0.004) (0.124)

50 0.020 0.023 0.000 0.029 0.021 0.000 0.026 0.000 0.036

(0.095) (0.107) (0.005) (0.126) (0.096) (0.003) (0.108) (0.004) (0.138)

60 0.024 0.024 0.001 0.035 0.024 0.000 0.028 0.000 0.039

(0.104) (0.104) (0.006) (0.140) (0.103) (0.002) (0.115) (0.004) (0.149)

100 0.021 0.025 0.001 0.031 0.021 0.000 0.023 0.000 0.033

(0.094) (0.106) (0.005) (0.127) (0.092) (0.002) (0.098) (0.003) (0.131)

200 0.021 0.022 0.001 0.032 0.021 0.000 0.022 0.000 0.032

(0.093) (0.093) (0.004) (0.125) (0.091) (0.001) (0.095) (0.002) (0.125)

300 0.020 0.022 0.000 0.031 0.020 0.000 0.020 0.000 0.031

(0.088) (0.094) (0.003) (0.123) (0.086) (0.001) (0.088) (0.001) (0.122)

500 0.022 0.023 0.001 0.031 0.021 0.000 0.022 0.000 0.031

(0.099) (0.102) (0.006) (0.129) (0.097) (0.001) (0.099) (0.001) (0.129)

0.75 20 0.015 0.018 0.000 0.020 0.016 0.001 0.030 0.001 0.040

(0.075) (0.087) (0.005) (0.101) (0.080) (0.006) (0.112) (0.008) (0.142)

30 0.016 0.018 0.000 0.023 0.017 0.000 0.024 0.000 0.034

(0.078) (0.087) (0.005) (0.107) (0.079) (0.003) (0.097) (0.005) (0.128)

40 0.018 0.020 0.001 0.026 0.018 0.000 0.023 0.000 0.032

(0.088) (0.096) (0.005) (0.117) (0.088) (0.003) (0.099) (0.005) (0.128)

50 0.014 0.015 0.000 0.022 0.014 0.000 0.018 0.000 0.026

(0.074) (0.078) (0.004) (0.104) (0.072) (0.002) (0.082) (0.003) (0.113)

60 0.013 0.014 0.000 0.021 0.012 0.000 0.016 0.000 0.025

(0.060) (0.069) (0.001) (0.095) (0.059) (0.001) (0.069) (0.001) (0.103)

100 0.019 0.020 0.000 0.031 0.018 0.000 0.020 0.000 0.033

(0.080) (0.083) (0.003) (0.121) (0.077) (0.001) (0.083) (0.002) (0.124)

200 0.023 0.024 0.001 0.035 0.022 0.000 0.023 0.000 0.035

(0.095) (0.097) (0.005) (0.130) (0.092) (0.001) (0.095) (0.002) (0.130)

300 0.024 0.024 0.001 0.036 0.023 0.000 0.024 0.000 0.036

(0.100) (0.100) (0.007) (0.132) (0.098) (0.002) (0.100) (0.003) (0.131)

500 0.023 0.024 0.001 0.035 0.022 0.000 0.023 0.000 0.035

(0.097) (0.099) (0.006) (0.128) (0.095) (0.001) (0.096) (0.002) (0.127)
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C.2.2. Numerical Summaries of Empirical False Non-discovery Rates
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Table C.53. Empirical FNRs for the investigated methods for the correlated cases for the
gamma variates with π0 = 0.85 and 0.9. The number of hypotheses is m = 1, 000 with a
pre-specified significance level of α = 0.05. The number of replications for each scenario is
1, 000 with 10, 000 bootstrap resamples. Equal sample sizes were utilized for both the controls
and cases.The standard errors are provided in parenthesis.

π0 n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.90 20 0.099 0.099 0.100 0.099 0.097 0.099 0.091 0.099 0.091

(0.008) (0.009) (0.000) (0.009) (0.013) (0.004) (0.020) (0.004) (0.021)

30 0.096 0.096 0.100 0.096 0.093 0.099 0.089 0.099 0.089

(0.014) (0.016) (0.002) (0.015) (0.018) (0.006) (0.022) (0.006) (0.022)

40 0.092 0.092 0.099 0.092 0.088 0.097 0.083 0.097 0.083

(0.019) (0.020) (0.006) (0.020) (0.023) (0.010) (0.026) (0.010) (0.026)

50 0.087 0.087 0.097 0.087 0.081 0.095 0.077 0.095 0.077

(0.023) (0.023) (0.009) (0.023) (0.026) (0.011) (0.028) (0.011) (0.029)

60 0.082 0.081 0.094 0.081 0.076 0.092 0.071 0.092 0.071

(0.027) (0.028) (0.014) (0.028) (0.030) (0.016) (0.030) (0.016) (0.031)

100 0.060 0.057 0.080 0.060 0.054 0.080 0.051 0.079 0.051

(0.031) (0.030) (0.024) (0.031) (0.030) (0.023) (0.029) (0.023) (0.030)

200 0.028 0.026 0.044 0.027 0.025 0.047 0.024 0.047 0.024

(0.021) (0.021) (0.024) (0.021) (0.019) (0.023) (0.019) (0.023) (0.019)

300 0.015 0.014 0.027 0.015 0.014 0.030 0.014 0.030 0.013

(0.014) (0.014) (0.017) (0.014) (0.013) (0.017) (0.013) (0.017) (0.013)

500 0.006 0.005 0.012 0.006 0.005 0.014 0.005 0.014 0.005

(0.008) (0.008) (0.011) (0.008) (0.007) (0.011) (0.007) (0.011) (0.007)

0.85 20 0.147 0.147 0.150 0.147 0.144 0.149 0.138 0.149 0.137

(0.015) (0.018) (0.001) (0.017) (0.021) (0.006) (0.030) (0.006) (0.032)

30 0.143 0.143 0.149 0.143 0.139 0.147 0.133 0.147 0.132

(0.024) (0.025) (0.005) (0.026) (0.030) (0.011) (0.034) (0.011) (0.036)

40 0.137 0.135 0.148 0.136 0.130 0.146 0.124 0.146 0.123

(0.031) (0.032) (0.008) (0.033) (0.036) (0.013) (0.039) (0.013) (0.041)

50 0.131 0.129 0.146 0.130 0.124 0.143 0.118 0.143 0.117

(0.035) (0.036) (0.015) (0.037) (0.039) (0.017) (0.041) (0.018) (0.042)

60 0.122 0.119 0.142 0.121 0.114 0.139 0.109 0.139 0.108

(0.040) (0.040) (0.020) (0.041) (0.042) (0.021) (0.043) (0.022) (0.044)

100 0.095 0.091 0.123 0.094 0.087 0.123 0.084 0.123 0.083

(0.045) (0.045) (0.033) (0.046) (0.044) (0.031) (0.044) (0.032) (0.045)

200 0.048 0.044 0.075 0.046 0.043 0.080 0.042 0.079 0.041

(0.035) (0.035) (0.036) (0.035) (0.033) (0.034) (0.033) (0.035) (0.033)

300 0.026 0.024 0.046 0.025 0.023 0.052 0.023 0.051 0.022

(0.025) (0.025) (0.030) (0.024) (0.023) (0.030) (0.023) (0.030) (0.023)

500 0.010 0.009 0.022 0.009 0.009 0.027 0.009 0.026 0.008

(0.014) (0.014) (0.020) (0.013) (0.013) (0.022) (0.013) (0.022) (0.013)
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Table C.54. Empirical FNRs for the investigated methods for the correlated cases for the
gamma variates with π0 = 0.75 and 0.8. The number of hypotheses is m = 1, 000 with a
pre-specified significance level of α = 0.05. The number of replications for each scenario is
1, 000 with 10, 000 number of bootstrap resamples. Equal sample sizes were utilized for both
the controls and cases.The standard errors are provided in parenthesis.

π0 n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.80 20 0.197 0.196 0.200 0.196 0.194 0.199 0.185 0.199 0.184

(0.020) (0.023) (0.003) (0.023) (0.026) (0.009) (0.037) (0.009) (0.039)

30 0.190 0.190 0.199 0.189 0.184 0.197 0.175 0.197 0.174

(0.032) (0.032) (0.007) (0.035) (0.039) (0.014) (0.045) (0.015) (0.047)

40 0.182 0.180 0.197 0.181 0.173 0.194 0.165 0.194 0.164

(0.041) (0.044) (0.014) (0.044) (0.047) (0.019) (0.051) (0.020) (0.053)

50 0.167 0.164 0.192 0.165 0.157 0.188 0.149 0.188 0.148

(0.053) (0.054) (0.023) (0.056) (0.057) (0.026) (0.059) (0.027) (0.061)

60 0.158 0.154 0.186 0.156 0.147 0.184 0.140 0.183 0.138

(0.057) (0.056) (0.030) (0.059) (0.059) (0.031) (0.059) (0.032) (0.061)

100 0.121 0.114 0.159 0.118 0.111 0.160 0.108 0.159 0.105

(0.061) (0.061) (0.046) (0.063) (0.060) (0.043) (0.059) (0.045) (0.061)

200 0.060 0.055 0.097 0.058 0.056 0.104 0.054 0.102 0.052

(0.047) (0.046) (0.048) (0.047) (0.044) (0.046) (0.044) (0.047) (0.044)

300 0.033 0.030 0.061 0.031 0.030 0.070 0.030 0.067 0.028

(0.034) (0.034) (0.041) (0.034) (0.033) (0.041) (0.032) (0.042) (0.032)

500 0.011 0.010 0.027 0.010 0.010 0.033 0.010 0.031 0.009

(0.018) (0.018) (0.027) (0.017) (0.017) (0.030) (0.017) (0.029) (0.016)

0.75 20 0.242 0.240 0.250 0.240 0.236 0.247 0.224 0.247 0.222

(0.033) (0.037) (0.004) (0.039) (0.044) (0.014) (0.056) (0.015) (0.061)

30 0.233 0.230 0.248 0.231 0.223 0.244 0.212 0.244 0.210

(0.047) (0.049) (0.010) (0.052) (0.056) (0.020) (0.062) (0.021) (0.066)

40 0.221 0.217 0.244 0.218 0.209 0.240 0.199 0.240 0.196

(0.057) (0.059) (0.021) (0.062) (0.064) (0.027) (0.067) (0.028) (0.071)

50 0.211 0.206 0.241 0.208 0.199 0.238 0.190 0.237 0.187

(0.062) (0.063) (0.027) (0.066) (0.067) (0.030) (0.069) (0.032) (0.072)

60 0.198 0.192 0.234 0.195 0.186 0.231 0.178 0.230 0.175

(0.069) (0.070) (0.035) (0.073) (0.072) (0.036) (0.073) (0.038) (0.076)

100 0.141 0.133 0.193 0.136 0.130 0.195 0.125 0.194 0.121

(0.075) (0.075) (0.058) (0.078) (0.072) (0.055) (0.072) (0.057) (0.074)

200 0.073 0.067 0.116 0.068 0.068 0.125 0.067 0.122 0.063

(0.055) (0.055) (0.058) (0.055) (0.053) (0.056) (0.053) (0.058) (0.053)

300 0.041 0.037 0.074 0.037 0.038 0.084 0.037 0.080 0.034

(0.041) (0.041) (0.049) (0.041) (0.040) (0.049) (0.040) (0.050) (0.039)

500 0.016 0.014 0.035 0.014 0.015 0.043 0.015 0.040 0.013

(0.024) (0.024) (0.034) (0.022) (0.023) (0.036) (0.023) (0.036) (0.022)
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C.2.3. Numerical Summaries of Average Number of False Hy-

potheses Rejected
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Table C.55. Average number of false hypotheses rejected for the investigated methods for the
correlated cases for the gamma variates with π0 = 0.85 and 0.9. The number of hypotheses is
m = 1, 000 with a pre-specified significance level of α = 0.05. The number of replications for
each scenario is 1, 000 with 10, 000 bootstrap resamples. Equal sample sizes were utilized for
both the controls and cases. The standard errors are provided in parenthesis.

π0 n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.90 20 1.329 1.457 0.035 1.435 3.415 0.789 8.989 0.793 9.211

(8.888) (9.459) (0.480) (9.687) (13.445) (3.977) (21.058) (4.016) (21.736)

30 3.702 4.520 0.298 3.880 6.859 1.533 11.761 1.543 11.921

(14.284) (16.064) (2.329) (15.075) (18.681) (6.386) (22.692) (6.452) (23.117)

40 8.134 8.721 1.395 8.394 12.696 3.412 17.289 3.430 17.509

(19.965) (20.590) (6.532) (20.560) (24.218) (10.232) (26.616) (10.307) (27.054)

50 13.172 14.062 2.854 13.478 19.443 4.931 24.001 4.970 24.310

(23.522) (23.840) (9.531) (24.103) (27.268) (11.911) (28.888) (12.060) (29.350)

60 19.004 20.285 6.196 19.359 25.402 8.177 29.773 8.237 30.072

(28.044) (28.319) (15.175) (28.526) (30.482) (16.545) (30.996) (16.736) (31.393)

100 41.503 44.990 21.095 42.030 48.049 21.553 50.538 21.676 50.946

(31.072) (30.743) (25.015) (31.402) (30.010) (23.848) (29.385) (24.040) (29.629)

200 73.863 75.493 57.865 74.403 76.678 54.814 77.353 55.213 77.795

(20.319) (20.329) (23.371) (20.300) (18.630) (22.970) (18.260) (23.120) (18.273)

300 85.652 86.697 75.041 86.072 87.151 71.884 87.455 72.259 87.771

(12.955) (13.031) (16.296) (12.858) (12.010) (16.481) (11.818) (16.533) (11.771)

500 94.590 94.969 88.985 94.827 95.140 86.656 95.216 86.938 95.382

(7.094) (7.156) (9.796) (6.919) (6.559) (10.444) (6.463) (10.390) (6.376)

0.85 20 2.850 3.648 0.063 3.127 6.013 1.326 13.547 1.350 14.147

(16.618) (19.664) (0.749) (18.307) (22.595) (7.000) (31.832) (7.202) (33.608)

30 7.407 7.763 0.796 7.777 11.968 2.928 18.717 3.004 19.210

(25.760) (25.986) (5.640) (27.074) (31.089) (11.566) (35.836) (11.965) (36.954)

40 14.511 15.852 2.090 15.247 21.267 4.905 28.474 4.982 29.191

(32.529) (33.471) (8.644) (34.296) (37.550) (13.960) (40.990) (14.244) (42.201)

50 20.488 22.760 4.931 21.237 28.379 7.562 34.575 7.666 35.392

(36.790) (38.036) (15.875) (38.177) (40.804) (18.868) (42.809) (19.255) (43.929)

60 29.864 32.794 9.191 30.766 38.880 11.652 44.299 11.816 45.158

(41.331) (42.125) (21.486) (42.539) (43.946) (22.887) (44.754) (23.323) (45.708)

100 58.363 62.610 29.672 59.542 66.880 29.442 70.121 29.857 71.186

(46.062) (45.828) (35.163) (46.881) (44.814) (33.070) (44.138) (33.695) (44.829)

200 106.144 109.760 80.179 107.530 110.316 75.128 111.293 76.055 112.426

(33.625) (33.671) (35.392) (33.786) (31.646) (33.993) (31.242) (34.547) (31.302)

300 126.838 128.965 107.769 128.031 129.107 102.086 129.511 103.108 130.484

(22.615) (22.612) (27.925) (22.352) (21.219) (28.101) (20.960) (28.334) (20.710)

500 141.516 142.259 130.798 142.136 142.317 126.184 142.443 127.067 142.950

(12.348) (12.487) (18.344) (11.973) (11.630) (19.787) (11.514) (19.651) (11.143)
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Table C.56. Average number of false hypotheses rejected for the investigated methods for the
correlated cases for the gamma variates with π0 = 0.75 and 0.8. The number of hypotheses is
m = 1, 000 with a pre-specified significance level of α = 0.05. The number of replications for
each scenario is 1, 000 with 10, 000 bootstrap resamples. Equal sample sizes were utilized for
both the controls and cases. The standard errors are provided in parenthesis.

π0 n BH STS BY BKY S-BH SNS-BH SNQ-BH SNS-BKY SNQ-BKY

0.80 20 3.715 4.829 0.171 4.090 7.138 1.546 16.992 1.598 17.798

(21.912) (25.484) (3.520) (24.049) (28.326) (9.960) (39.858) (10.486) (42.124)

30 10.780 11.353 1.231 11.559 17.883 3.928 27.689 4.041 28.687

(34.340) (34.539) (8.458) (36.841) (41.603) (15.779) (48.282) (16.433) (50.224)

40 20.198 22.607 3.651 21.330 29.611 7.103 38.496 7.310 39.783

(43.969) (46.359) (15.734) (46.378) (50.034) (21.412) (53.675) (22.325) (55.665)

50 36.533 39.394 9.800 38.217 47.209 13.941 55.217 14.318 56.919

(56.022) (56.963) (25.514) (58.490) (59.922) (29.034) (61.670) (30.042) (63.649)

60 46.360 50.020 15.383 48.148 58.092 18.831 65.283 19.266 67.065

(59.267) (59.103) (33.153) (61.353) (61.061) (34.215) (61.434) (35.217) (63.151)

100 85.924 92.775 45.627 88.322 95.995 44.791 99.611 45.735 101.838

(62.179) (62.352) (49.384) (63.619) (60.540) (46.566) (59.738) (47.850) (60.895)

200 146.362 151.370 111.718 148.967 151.058 104.578 152.140 106.457 154.415

(43.473) (43.455) (46.950) (43.569) (41.100) (45.622) (40.645) (46.486) (40.496)

300 171.597 174.545 145.992 173.607 173.906 138.396 174.399 140.470 176.122

(30.601) (30.632) (37.920) (30.080) (29.060) (38.591) (28.708) (38.954) (28.166)

500 190.540 191.253 177.458 191.524 191.283 171.701 191.424 173.476 192.310

(15.436) (15.577) (23.785) (14.628) (14.615) (26.029) (14.442) (25.734) (13.707)

0.75 20 9.662 11.209 0.380 10.922 15.994 3.650 29.728 3.824 31.565

(37.884) (41.589) (4.420) (42.930) (48.813) (16.871) (61.354) (17.894) (65.498)

30 19.979 22.365 2.197 21.781 30.303 7.279 42.909 7.604 44.978

(51.584) (53.861) (12.476) (56.246) (60.610) (23.720) (67.274) (25.008) (70.796)

40 33.455 37.587 6.721 35.728 46.726 11.702 57.729 12.127 60.139

(62.293) (64.307) (24.411) (66.189) (68.817) (31.091) (72.369) (32.492) (75.343)

50 44.214 49.872 10.520 46.880 58.078 15.022 67.559 15.516 70.308

(66.963) (68.440) (30.695) (70.612) (71.688) (34.761) (73.464) (36.135) (76.540)

60 58.787 65.475 19.314 61.951 72.402 22.696 80.524 23.482 83.563

(74.087) (75.355) (40.482) (77.864) (76.503) (41.624) (77.033) (43.384) (79.971)

100 120.445 128.552 65.834 124.643 132.361 63.795 136.743 65.582 140.594

(76.507) (75.673) (63.916) (78.623) (72.259) (60.388) (70.830) (62.418) (72.430)

200 188.184 193.316 147.498 192.089 192.678 138.942 193.717 142.070 197.212

(50.193) (50.349) (55.982) (50.163) (47.920) (54.991) (47.536) (56.283) (47.354)

300 216.819 219.858 187.589 219.778 218.972 178.951 219.431 182.262 222.159

(35.444) (35.498) (44.096) (34.651) (34.015) (44.782) (33.722) (45.318) (32.801)

500 237.683 238.707 222.094 239.213 238.367 215.284 238.487 217.985 239.858

(19.190) (19.314) (28.264) (18.106) (18.519) (30.709) (18.374) (30.333) (17.367)
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APPENDIX D

R CODE FOR ESTIMATION OF

STEP-DOWN CRITICAL VALUES

################################################################################

# crit.val function #

# ----------------- #

# The function crit.val is used to obtain the critical values described in the #

# manuscript. The inputs are Data (B x s matrix of bootstrap test statistics #

# where B is the number of bootstrap samples and s is the number of hypotheses #

# being tested), alpha (desired level of significance) and start (at which #

# the search algorithm should start searching for the critical value) #

# #

# Required Packages: MASS 7.3-48 #

# matrixStats 0.53.0 #

################################################################################
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crit.val <- function(Data, alpha = 0.10, start = 1){

cVal <- c() ## initialize the vector of critical values

alphaVal <- c()

B <- nrow(Data) ## number of bootsrap replicates

s <- ncol(Data) ## number of hypotheses being tested

for(j in 1:s){

## The ordering of the true null hypotheses in the bootstrap world is not

## 1,2,...,s, but it is instead determined by the ordering H_(1),...,H_(s)

## from the real world.So obtain the permutation {k_1,...,k_s} of {1,..,s}

## defined such that H_k_1 = H_(1),..., H_k_s = H_(s)

if (j==1) {

DataB <- as.matrix(Data[, j])

} else {

DataB <- t(apply(Data[, 1:j], 1, sort))

start <- which(t.dat >= cVal[1])[1]

}

t.dat <- sort(DataB[, j]) ## sort the B jth ordered test statistics

t.alpha <- lapply(start:B, function(i){

tval <- t.dat[i]
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##Extract B by j sub block matrix from DataB and replicate the sub block j

## times and stack them up. Here j represents the jth critical value being

## sought given the 1, 2, ... j-1th critical values

DataBlock <- do.call("rbind", rep(list(DataB[ ,j:1]), j))

## If j =1, DataBlock will be a 1 x B matrix, convert it to a B x 1 matrix

if(j==1) DataBlock <- t(DataBlock)

## Create a matrix equivalent to DataBlock where the first column

## corresponds to the proposed jth critical value and the remaining

## columns correspond to the already computed critical values

CMatBlock <- matrix(rep(c(tval, cVal), j*B), byrow = TRUE, ncol = j)

## For the jth column and ith row, select cases where the test statistics

## exceed the previous computed critical values

IndBlock <- DataBlock >= CMatBlock

## We need the last inequality in each summand of the probabilities to be

## ’<’ instead of ’>=’, so we negate the result for ’>=’ to obtain the

## result.

COLS <- matrix(rep(1:j, each=j*B), byrow=F, ncol = j)

ROWS <- matrix(rep(1:j, each=j*B), byrow=T, ncol = j)

IndBlock[ROWS == (COLS-1)] <- !IndBlock[ROWS == (COLS-1)]
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## To eliminate the blocks of the matrices not needed in the summand of

## the probabilities, we set indicators of those blocks to be true so that

## they don’t affect the results (Recall TRUE*x = x and FALSE*x = 0, where

## x can be any value). The rows are repeated B times so we adjust for

## that.

IndBlock[ROWS <= (COLS-2)] <- TRUE

## Take the row product of the Indicator variable to eliminate blocks of

## the matrices not needed in computing the probabilities.

Indicators <- rowProds(IndBlock)

## Obtain the probabilities in finding the critical value

pVec <- colMeans(matrix(Indicators, byrow = FALSE, nrow = B))

#print(pVec)

## Find all the c_j’s

alpha.hat <- sum((1:j)/((s-j+1):s) * pVec)

return(alpha.hat)

})

t.alpha <- unlist(t.alpha)

## Obtain the critical value by finding the min of c_j’s

c_min <- min(t.dat[start:B][t.alpha <= alpha])

## Obtain the corresponding alpha values of the critical values
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c_alpha <- t.alpha[t.dat[start:B] == c_min]

## Find the critical values

cVal <- c(c_min, cVal)

## Obtain the corresponding alpha values of the critical values

alphaVal <-c(c_alpha, alphaVal)

#cVal; alphaVal

}

return(data.frame(j=s:1, c_j=cVal, alpha_j=alphaVal))

}
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