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Abstract: 

  

The largest threats to biodiversity are global climate change and habitat loss, both of 

which are global concerns due to decreases in species’ populations. Understanding 

species’ responses to both threats is needed and a common practice used is species 

distribution modeling (SDM). SDM is a predictive modeling technique, which 

incorporates environmental conditions associated with species presence locations to 

derive species-environment relationships that are used to predict geographic locations of 

species across space and time. As the nature of SDM is both spatial and temporal, the 

scale of data used affects model performance and predictions. Specifically, the grain and 

extent of predictor variables influences model performance and hence, model 

interpretation.  I set out to address spatial and temporal scale concerns in SDM using 

Bell’s Vireo (Vireo bellii), a Neotropical migratory songbird, as a case study. Bell’s 

Vireo is a species of concern that has shown declining trends across its range, where it 

inhabits threatened landscapes such as riparian and shrubland-grassland ecotones. Here I 

describe the use of Bell’s Vireo presence locations to address the role of extent, effects of 

resampling and grain size, as well as the temporal aspects of environmental predictors in 

SDM.  

First, I compared model performance and potential distributions across three study area 

extents under eight variable selection techniques and five species’ occurrence data 

compilations. Overall, I was able to show interactions among these model components, 

specifically that data quality influenced model performance more than study extent size 

and variable subset. Second, to investigate the effects of grain size manipulation on SDM, 

I compared twelve grain sizes resampled using three upscaling techniques. My results 

showed that model performance in terms AUC was influenced by resampling method, but 

not grain size, whereas the model performance metric, omission error, was not influenced 

by resampling technique or grain size, whereas prediction of potentially suitable area was 

influenced by both resampling and grain size. Last, when investigating temporal effects 

on SDM performance, I found that more temporally explicit variables, such as seasonal 

variables, did not necessarily improve model performance although it did increase 

proportions of suitable area compared to annual variables. 
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CHAPTER I 
 

 

DISSERTATION OVERVIEW 

 

Decreasing species’ populations are a global concern (Ceballos et al. 2017) and the largest threats 

to biodiversity are global climate change (Rosenzweig et al. 2008, Spooner et al. 2018) and 

habitat loss (Newbold et al. 2015). Cataloging biodiversity to understand species’ responses to 

both threats is needed for future conservation action (Anderson 2018). Developments in statistical 

models have provided researchers with tools to evaluate geographic distributions of species, 

specifically species distribution modeling (SDM). SDM is a predictive modeling technique, 

which incorporates environmental conditions associated with species presence locations to derive 

species-environment relationships that are used to predict geographic locations of species across 

space and time (Elith and Leathwick 2009, Franklin 2010, Peterson et al. 2011). This capability 

has allowed scientists to model species’ predicted responses to land cover/land use change 

(Zhang et al. 2012), future climate scenarios (Araujo et al. 2004), invasive species (Jiménez-

Valverde et al. 2011) and conservation actions (Guisan et al. 2013, Villero et al. 2017).  

The applications of SDM to ecological research have increased with some modifications of this 

modeling technique (Lobo et al. 2010, Brotons 2014, Yackulic and Ginsberg 2016), although the 

modeling approach is the same. Guisan and Zimmerman (2000) suggest four steps in the SDM 

framework: conceptual model formulation, statistical model formulation, model calibration, and 

model evaluation. The conceptual model must consider the ecological basis on which the model 
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will be built (i.e. the affiliation of the species to environmental predictors, geographic extent, and 

other modeling parameters) (Franklin 2010). Ultimately, the foundation for SDM lies in niche 

theory (see Peterson et al. 2011 for full discussion) and decisions in the conceptual model should 

be based on this theory. The statistical model must be an appropriate algorithm for the data 

associated with the conceptual model (Guisan and Zimmermann 2000). Many approaches exist in 

SDM, but statistical methods such as generalized linear models (GLMs), or generalized additives 

models (GAMs), and machine learning (decision trees, random forests, artificial neural networks, 

and maximum entropy) are the most widely used (Franklin 2010). Model calibration requires the 

adjustment of the model for parameter estimation and model evaluation uses measures of 

agreement to assess the model’s performance (Franklin 2010).  Each step in the SDM framework 

should be considered carefully as is suggested by a large body of literature (e.g. Heikkinen et al. 

2006, Anderson and Gonzalez 2011, Acevedo et al. 2012, Bean et al. 2012, Miller 2012, Aguirre-

Gutierrez et al. 2013, Braunisch et al. 2013, Boria et al. 2014, Bucklin et al. 2015, Boria and Blois 

2018, Connor et al. 2018).  

SDM requires presence data, which are becoming more accessible with the digitization of 

museum records (Newbold 2010, Anderson 2012), large online repositories (e.g. GBIF Telenius 

2011), and citizen-science initiatives (e.g. eBird Sullivan et al. 2009). One of the SDM methods, 

the Maxent algorithm (Phillips et al. 2006), is based on the maximum entropy principle which 

estimates a species’ geographic distribution under maximum entropy (i.e. a uniform distribution) 

based on constraints (derived from the presence data), thus creating a model which considers all 

known aspects of the distribution without additional assumptions (Phillips and Dudik 2008). 

Maxent uses “features” to constrain the distribution to what is known about the species’ use of the 

environment since responses to environmental conditions can be non-linear (Elith et al. 2011).  

The distribution upon which constraints are placed is dependent on the random sampling of the 

background (i.e. area studied). The distribution of environmental conditions captured by the 
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background data is contingent on the geographic region used (i.e. the extent of the study) 

(VanDerWal et al. 2009), and the area defined by each sample (i.e. grid size) (Mertes and Jetz 

2018).  Thus, the way the environmental variables are defined (i.e. the scale) across the region of 

interest has direct implications on model formation. 

Scale refers to the spatial and temporal properties of an environmental predictor. Spatially, the 

total area under consideration is called the “extent”, and the area attributed to each measurement 

or value is the “grain”; Wiens (1989) describes these as the upper and lower spatial bounds since 

we cannot generalize further than the extent of the study and cannot know data attributes below 

the grain size. This is particularly important in SDM as these delimiting characteristics of 

environmental predictors will determine the variation expressed in model formation (i.e. 

distribution defined by the background samples), and changes in grain and extent will change the 

variation (between-grain variation and within-grain variation) of environmental conditions 

(Wiens 1989, Levin 1992).  Changes in variation depend on how extent and grain are varied 

(Anderson 2018): under a constant grain size, larger extent sizes increase between-grain variation 

as they are likely to include rare conditions, whereas at one extent size larger grains include more 

spatial heterogeneity (increased within-grain variation) that is no longer detectable, reducing 

between-grain variation (Wiens 1989). Variation changes are not always predictable as they are 

related to the spatial structure of the regions’ heterogeneity (Palmer 1988, Mertes and Jetz 2018). 

Further, the variation of environmental predictors is related to the temporal range and frequency 

of observations (Wiens 1989, Schneider 1994). We know environmental conditions change over 

different temporal periods (e.g. hourly, daily, seasonally, yearly, etc.), therefore, when conditions 

are measured and for how long, will affect the perceived variation (Schneider 1994).  

While it is important to consider the variation of environmental predictors in terms of model 

development, this only addresses half of the concern surrounding scale in SDM. The other half of 

scale’s importance is finding the appropriate scale for predictor variables at which species 
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respond (McGill 2010). It has been proposed several times that there exists a series of scales at 

which species will perceive and respond to environmental conditions (Wiens 1989, Urban 2005, 

McGill 2010, Mertes and Jetz 2018) and SDM should be conducted at these scales to reflect the 

ecological processes occurring (Yackulic and Ginsberg 2016). Modeling must occur across a 

gradient (spatial and temporal) to find scale thresholds where species’ responses change (Wiens 

1989, Wheatley and Johnson 2009, McGarigal et al. 2016).   

I set out to address spatial and temporal scale concerns in SDM using Bell’s Vireo (Vireo bellii), 

a Neotropical migratory songbird, as a case study. Bell’s Vireo is a species of concern that has 

shown declining trends across its range (Sauer et al. 2011), where it inhabits threatened 

landscapes such as riparian and shrubland-grassland ecotones (Noss et al. 1995, Sleeter et al. 

2013). As little data exist about the ecological and habitat requirements of this species, the need 

for further research is clear. Here I describe the use of Bell’s Vireo presence locations to address 

the role of extent, effects of resampling and grain size, as well as the temporal aspects of 

environmental predictors in SDM.  

As mentioned earlier, changes in extent size influence the observed variation in environmental 

conditions from which background samples are selected, and is an important consideration in 

SDM conceptual model development (Guisan and Zimmermann 2000, Barve et al. 2011, 

Acevedo et al. 2012).  The extent itself can produce an ‘overfit’ or overly complex model, when 

background sampling includes large amounts of heterogeneity, as the model begins to match the 

presence locations so closely it underestimates predictions (Phillips and Dudik 2008, Barve et al. 

2011). On the other hand, low variation in background sampling may create ‘underfit’ or overly 

simple models that do not discriminate well and overestimate predictions (Barve et al. 2011). As 

Maxent model creation is associated with the relationship of presence conditions to background 

conditions, the quality of occurrence records and the selection of environmental predictors are 

critical components that influence model output independently (Wisz et al. 2008, Synes and 
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Osborne 2011, Boria et al. 2014, Bradie and Leung 2017). However, extent, presence locations, 

and environmental variables are vital components of model creation and fitting and it is likely 

they may interact in ways that ultimately influence model performance. Since a large portion of 

Bell’s Vireo range encompasses the central United States, it is comprised of ecoregions of 

varying levels organization (Omernik 1987, McMahon et al. 2001). Therefore, it was possible to 

delineate non-arbitrary, ecologically relevant extents within a hierarchical framework that 

demonstrated decreased variation with decreased spatial extent. In addition, Bell’s Vireo is a loud 

and frequent vocalizer, allowing for easy detection and ensuring adequate presence records for 

modeling. Lastly, habitat selection in Bell’s Vireo is poorly understood outside of a preference for 

nest placement in dense, low vegetation (Parody and Parker 2002), allowing for experimentation 

in variable subsets. By manipulating spatial extent, presence locations, and environmental 

variable subsets, I was able to investigate the potential interactions among these components. 

Specifically, I compared model performance and distributional predictions across three study area 

extents under eight variable selection techniques and five occurrence data complications.  

To investigate scaling in ecological research, multiple scales (extent and grain) should be utilized 

(Wheatley and Johnson 2009) and while this can be a fairly straightforward process for changing 

extents, this is not the case for increasing grain size. Multiple techniques have been developed for 

resampling or upscaling gridded data, particularly in the remote sensing field (Atkinson 1988, 

Hay et al. 1997, Jensen 2005) and these methodologies use the surrounding grains or cells in 

different ways to recalculate values for the larger environmental grain. Model performance in 

response to grain size manipulations is inconclusive at best, where some studies show increased 

performance (Guisan et al. 2007a, Guisan et al. 2007b, Revermann et al. 2012, Suarez-Seoane et 

al. 2014), no change in performance (Guisan et al. 2007a), or decreased performance (Guisan et 

al. 2007a, Guisan et al. 2007b, Seo et al. 2009, Gottschalk et al. 2011, Hanberry 2013, Song et al. 

2013). These conflicting results may be due to insufficient grain size comparisons, as several 
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studies compared three or less (Guisan et al. 2007a, Guisan et al. 2007b, Revermann et al. 2012, 

Suarez-Seoane et al. 2014). Finding appropriate response grains (Mertes and Jetz 2018) of species 

will require the use of numerous grain sizes. Thus, it is surprising that the effects of resampling 

have yet to be investigated. While Bell’s Vireo has been reported to choose dense vegetation 

(Parody and Parker 2002) for nest placement, the scale at which environmental conditions shape 

suitable habitat for Bell’s Vireo is unknown, proving an opportunity to test for response scales. 

Additionally, dense vegetation associated with Bell’s Vireo presences is expected to occur 

irregularly across the spatial extent as shrubby vegetation tends to be dynamic (Myster 2012), 

providing an opportunity to test the homogenizing effects of resampling. My expectation was that 

different resampling techniques used to increase grain sizes of environmental variables would 

likely create altogether different model predictors. By accounting for variation change in the 

geographical background, I investigated the effects of three resampling methodologies on four 

environmental variables across 12 grain sizes.  

In addition to differential responses of species to spatial scaling of environmental conditions, 

species are also influenced by the temporal characteristics of environmental predictors (Wiens 

1989). Environmental conditions can be measured frequently or infrequently and over different 

temporal ranges, each providing a distinct snapshot of the environment at a given time period. 

Since many environmental conditions change over time, the variation may be misrepresented. 

Seasonality plays a large role in ecological phenomena (Levin 1992) for many taxa (Jacobi and 

Cary 1996, García 2008, Milakovic et al. 2012, McClure et al. 2013, Fynn et al. 2014, Varner et 

al. 2014, Johnson et al. 2016), and incorporating seasonality into models can improve SDM 

performance (Smeraldo et al. 2018). Migrating organisms such as birds show distinct phenology 

(i.e. seasonally variable ecological requirements) for breeding and wintering seasons (Engler et 

al. 2014). When categorizing habitat use between these two seasons, researchers have used the 

terms “niche-followers” and “niche-switchers” (Nakazawa et al. 2004, Engler et al. 2017). The 
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former refers to species utilizing the same environmental conditions between the two seasons and 

the latter to species displaying distinct differences in between breeding and wintering seasons 

(Engler et al. 2017). Bell’s Vireo exhibits two distinct population clusters, one occurring in the 

southwest portion of the United States and the other in the central portion of the United States. 

Each population cluster in comprised of two subspecies, V.b. arizonae, and V.b. pusillus in the 

west and V.b. bellii and V.b. medius in the east. The western population is closely associated with 

cottonwood-willow riparian areas and the eastern population with shrubby grasslands, although 

both populations utilize denser areas than the surrounding vegetation (Parody and Parker 2002). 

A recent genetic analysis from Klicka et al. (2016) indicates that the west-east population divide, 

occurring near the Arizona/New Mexico border, actually delineates two separate species, each 

encompassing the two sub-species. Thus, Bell’s Vireo provides an ideal opportunity to investigate 

the influence of seasonal versus annual climatic variables in structuring the distribution of a 

species, as both populations utilize the same wintering grounds but select different breeding 

habitats in distinct geographical locations. Capitalizing on the unique breeding habitat 

associations, my objectives were to explore the use of seasonal and annual environmental 

predictors in SDM, investigate if spatial extent influenced variable contribution of seasonal and 

annual variable, and lastly to test the performance of models built with seasonal and annual 

variables to predict distributions in the future under for an ensemble global circulation model and 

two greenhouse gas emission scenarios. 
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CHAPTER II 
 

 

GEOGRAPHIC EXTENT OF ENVIRONMENTAL PREDICTORS, COMBINED WITH 

SPECIES’ PRESENCE RECORDS, INFLUENCES MODEL PERFORMANCE AND 

ESTIMATED POTENTIAL DISTRIBUTIONS 

 

Abstract 

Correlative methods under the ecological niche modeling or species distribution modeling 

category estimate species’ potential distributions from occurrence data and environmental 

variables and have been used frequently to study biogeography, ecology, and conservation of 

species. However, choices of occurrence data and environmental variables interact with study 

area extent to create complexity in species distribution modeling (SDM) evaluations and 

predictions. To assess the effects of these interactions, I compared model performance and 

potential distributions across three study area extents under eight variable selection techniques 

and five species’ occurrence data compilations (including spatially clustered data). I used Bell’s 

Vireo (Vireo bellii), an IUCN near threatened, migratory songbird, as a case study to highlight the 

complex effects of extent size, occurrence data, and variable selection on potential distributions 

obtained with Maxent, a maximum entropy modeling approach. Overall I found that medium 

extent models had higher performance scores (AUC) but highly clustered occurrence data 

resulted in lower performance models. At all three extents, occurrence data quality influenced 

model predictions but was most noticeable at the large extent. I showed that the degree to which 
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spatially biased occurrence data determine model performance and potential distribution 

estimates varies with the extent used to train models. Thus, the choice of study area extent should 

not be made independently from the selection of occurrence locations. Additionally, the selection 

of variables within models directly influences model output and should be considered carefully 

with regard to ecological relevance. SDM is commonly used to address management issues such 

as estimating distributions of rare species, planning species’ reintroductions, and designing 

reserve networks based on maps of species richness and endemism. My study adds to the growing 

awareness of user choices of data in SDM and advocates careful deliberation in both model 

construction and interpretation. 

Introduction  

Species distribution modeling (SDM), also referred to as ecological niche modeling (ENM), is a 

wide-spread technique that seeks to characterize the conditions suitable for a species’ survival 

based on available species’ occurrences and environmental information associated with these 

occurrences (Guisan and Zimmermann 2000; Araujo and Peterson 2012). In simplest terms, the 

SDM process has three elements: an ecological model, which is the theory tested; a data model, 

which encompasses the data used; and a statistical model, or choice of modeling algorithm 

(Austin 2002). Numerous studies have investigated how these components affect SDM output 

and interpretation (Liu et al. 2005; Guisan et al. 2007; Moudry and Simova 2012; Guillera-

Arroita et al. 2015). Users of SDM must weigh the assumptions of the chosen modeling algorithm 

with the data available, particularly for presence-background algorithms such as Maxent (Elith et 

al. 2011; Yackulic et al. 2013), since the effects of violating model assumptions are unclear (Bell 

and Schlaepfer 2016). Generally, model performance is influenced by user’s decisions regarding: 

occurrence data (Graham et al. 2008; Lozier et al. 2009), environmental variable selection 

(Johnson and Gillingham 2005), extent size (Barve et al. 2011), and modeling algorithm (Austin 

2002; Austin 2007; Aguirre-Gutierrez et al. 2013). Species distribution and ecological niche 
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theory should provide the foundation for user choice (Franklin 2010; Peterson et al. 2011). For 

example, the selection of occurrence data ultimately determine the sampling of a species’ range. 

Further, choices in environmental predictors, such as which ones to include and the resolution of 

the variables, can shape the perceived relationships between the species and environment. 

Addressing implications of user choice on modeling methodologies is an evolving topic and here, 

rather than treating them separately, I address the combined influences of occurrence data, 

variable selection, and study area extent on model performance and associated potential 

distribution estimates.  

Occurrence data are often spatially biased as a result of sampling techniques or lack thereof 

(Dennis and Thomas 2000; Reddy and Davalos 2003; Elith et al. 2006; Schulman et al. 2007). 

This often translates into bias in sampling environmental conditions and thus, if the modeling 

protocol does not account for sampling bias, the occurrence records may not provide an accurate 

model of conditions associated with the distribution of the species (Yackulic et al. 2013). Phillips 

et al. (2009) suggested introducing bias into the selection of background data that mimics the bias 

in occurrence data. Often, quality occurrence data means working with small datasets, which can 

decrease the predictive ability of the modeling algorithm (Stockwell and Peterson 2002). 

However, small datasets can be effective at uncovering environmental conditions associated with 

species’ distribution if the small number of occurrence locations captures the environmental 

conditions across the entire range of the species (Hernandez et al. 2006; Pearson et al. 2007). 

SDM uses occurrence locations to extract environmental conditions that may shape species’ 

distributions, so the choice of environmental variables must be considered carefully. A wide 

range of techniques has been used in SDM to select environmental variables (Austin and Van 

Niel 2011; Synes and Osborne 2011), yet no consensus has been reached. Some studies advocate 

the use of ecologically meaningful variables (Peterson et al. 2011; Mod et al. 2016) or suggest 

using variables that may be linked to life history traits (Heikkinen et al. 2006; Tanner et al. 2017), 
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whereas others take a more statistical approach and recommend removing (Dormann et al. 2013; 

Merow et al. 2013) or minimizing collinearity (Palaoro et al. 2013) using AIC (Muscarella et al. 

2014; Warren et al. 2014) or stepwise variable selection approaches (Luoto et al. 2005; Zeng et 

al. 2016). Synes and Osborne (2011) showed strong positive relationships between number of 

variables and model performance and negative relationships between the performance measure 

and number of pixels predicted present. Although selection of variables has been a subject of 

disagreement, there is support for the notion that the environmental variables should not only 

inform the models about the ecological processes shaping species’ distributions but also allow for 

transferability of models between regions of interest (Anderson and Raza 2010; Bradie and Leung 

2017). 

The ecological insight gained from the combination of occurrence data and environmental 

variables depends on the study area extent since it defines the range of environmental conditions 

sampled in both occurrence and background locations (Phillips et al. 2006; Elith et al. 2011).  

Underestimation or model overfit may result from a study area that does not capture well the 

environmental variation shaping species’ distributions (Jimenez-Valverde et al. 2011; Peterson et 

al. 2011; Sanchez-Fernandez et al. 2011). Adversely, a study area containing too much noise in 

the sampled environmental conditions will prevent the model from uncovering  the ecological 

processes at work, producing an underfit model which overestimates (Lobo et al. 2010) and can 

artificially inflate model performance (Jimenez-Valverde et al. 2008).  Barve et al. (2011) state 

that robustness and validity of models are highly dependent upon extent of study region and 

discuss three ways that extent can influence SDM: 1) impact model training (VanDerWal et al. 

2009; Anderson and Raza 2010), 2) impact model testing (Jimenez-Valverde et al. 2008; Lobo et 

al. 2008), and 3) impact comparisons between models. Both Barve et al. (2011) and Acevedo et 

al. (2012) offer suggestions on choosing extents for SDM, such as selecting biotic regions, 

model-based reconstructions, dispersal potential, or trend surface analyses. 
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It is likely that choices of occurrence data and variable subsets interact with the extent of the 

study area to create complexity in SDM evaluations and predictions. To our knowledge, the three 

factors (occurrence dataset, variable selection, and extent of study area) have not been analyzed in 

conjunction. Thus, our objective was to investigate potential impacts of extent size through the 

experimental manipulation of occurrence data and variable selection approaches. Specifically, I 

compared model performance and distributional predictions across three study area extents under 

eight variable selection techniques and five occurrence data compilations. I selected an IUCN 

near threatened, migratory songbird (Vireo bellii, Bell’s Vireo) as a case study to highlight the 

complex effects of extent size, occurrence data, and variable selection on models and 

distributional estimates obtained with Maxent, a commonly used SDM algorithm. I selected 

Bell’s Vireo for this study for several reasons: 1) it is a declining species of concern (IUCN 

2013); 2) very little published research is available about its environmental requirements; and 3) 

the high vocalization rates make the species easily detectable in the field, thus minimizing 

identification and detection errors in the presence dataset.  

Bell’s Vireo (Vireo bellii) is a migratory songbird often found in grassland and shrubland 

ecotones and other low shrubby vegetation throughout the central United States (Lebbin et al. 

2010). Bell’s Vireo taxonomy currently recognizes four subspecies (Ridgway and Friedmann 

1919): V.b. bellii, V.b. medius, V.b. arizonae, and V.b. pusillus. A recent phylogenetic analysis by 

Klicka et al. (2016), found that the Bell’s Vireo species is likely two species, delineated by an 

east/west divergence near the New Mexico and Arizona border. The two populations are found in 

unique habitats, with the western population associated with willow-dominated riparian 

vegetation (Franzreb 1987) and the eastern population showing more generalist habitat choices 

associated with lower vegetation. Further, Parody and Parker (2002) found variation in net site 

selection across the range of Bell’s Vireo. Thus, I excluded the western population from this 

analysis. 
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Although the Great Plains, which encompasses a large portion of the eastern population of Bell’s 

Vireo, has not undergone significant land cover reduction in the past, the overall productivity and 

structure have dramatically changed (Noss et al. 1995; Sleeter et al. 2013). This is a likely factor 

in the decline of Bell’s Vireo, but demographic information specific to the central United States is 

scant (Budnik et al. 2000). Most Bell’s Vireo literature encompasses their mention in avian 

assemblages (Remsen et al. 1996; Thogmartin et al. 2009) or anecdotal reports on nesting and 

behavior (Pitelka and Koestner 1942; Mumford 1952; Dunkin and Guthery 2010), or 

investigations related to Brown-headed Cowbird (Molothrus ater) parasitism (Parker 1999; 

Budnik et al. 2001). There is a clear need to better understand environmental determinants of 

Bell’s Vireo distribution across the eastern portion of the species range.  Thus, I use a single, data 

limited species as a case study to call attention to possible interactions of extent, variable 

selection, and occurrence data in SDM. The implications of these interactions need to be 

considered when SDM and resulting potential distribution estimates are used in conservation and 

management of species. 

Methods 

Study Area 

I used three study area extents (small, medium, large) in the modeling process, which comprised 

the distributional range of Bell’s Vireo across the Great Plains of the United States. I 

implemented a nested design of the study extents, where the smallest extent was completely 

contained by the medium and large extents (Figure 1). To delineate the largest spatial extent I 

selected ecoregions, as defined by US Environmental Protection Agency (Omernik 1987; 

McMahon et al. 2001), that encompassed all Bell’s Vireo locations reported by citizen scientists 

in the eBird database (eBird.org) for all years (eBird 2015), specifically, the Great Plains and 

western portions of the Eastern Temperate Forests (EPA Level I ecoregions). I used a single EPA 
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Level II ecoregion, the South Central Semiarid Prairies, which was contained within the Great 

Plains, to define the medium spatial extent. Lastly, the smallest spatial extent was comprised of 

the Central Great Plains (EPA Level III ecoregion). I use ecoregion boundaries because areas 

within the boundaries share similar biotic and abiotic capabilities, with ecoregions at lower levels 

(i.e. II, III, IV) having more homogeneity (McMahon et al. 2001). This approach has been used in 

other SDM investigations and provides both a straightforward and an effective method for 

choosing extents (Soberón 2010; Barve et al. 2011). 

 

Figure 1. Nested study area extents used in the study. The study area encompasses the range of 

Bell’s Vireo (Vireo bellii). Three extents were defined based on United States Environmental 

Protection Agency (EPA) classification of ecoregions. The smallest extent (Central Great Plains, 

EPA Level III ecoregion) covered ~ 275,000 km2 (colored dark grey), the medium extent (South 

Central Semiarid Prairies, EPA Level II ecoregion) was three times larger with an area of 863,000 

km2 (shown in light grey), and the largest extent (Great Plains and western portions of the 

Eastern Temperate Forests, EPA Level I ecoregions) covered an area of 3,520,000 km2 

(crosshatched). 
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Data Acquisition and Processing 

I acquired three types of environmental data layers, climatic, vegetative, and topographic, for use 

in the modeling process for the Bell’s Vireo breeding season (May – August), during 2004 – 

2014. Four climatic variables were downloaded from PRISM (PRISM 2004) at a spatial 

resolution of 4 km: Mean Temperature, Maximum Temperature, Minimum Temperature, and 

Precipitation. Two vegetation variables, the Normalized Difference Vegetation Index (NDVI) and 

the Leaf Area Index (LAI) from NASA’s MODIS sensor, with a spatial resolution of 1 km, were 

downloaded using the USGS’s Land Processes Distributed Active Archive Center (LP DACC) 

(NASA LP DAAC 2004-2014). Lastly, six topography variables with a spatial resolution of 1 km 

were obtained from the USGS National Hydrography Dataset (USGS 2014): elevation, aspect, 

slope, flow accumulation, flow direction, and wetness index.  

For both climatic and vegetation variables I calculated the mean, minimum, and maximum values 

across May-August for ten years (2004-2014) and created new variables representing the mean, 

minimum, and maximum for temperature, precipitation, NDVI, and LAI. In total, the modeling 

experiments were based on 18 variables: six climate (minimum, mean, and max of temperature 

and precipitation), six vegetation (minimum, mean, and max of NDVI and LAI), and six 

topography (elevation, aspect, slope, flow accumulation, flow direction, and wetness index). All 

environmental variables were re-projected to WGS84 and resampled to 4 km, using nearest 

neighbor, then clipped to the three study area extents. 

Bell’s Vireo locations were obtained from eBird (eBird 2015), a citizen science program 

developed by the Cornell Lab of Ornithology (Sullivan et al. 2014), that allows individuals to 

submit bird observations to an online database for which researchers can request access. 

Individual eBird checklist locations are associated either with a stationary point of observation or 

a distance traveled for which all bird sightings are reported. I restricted Bell’s Vireos locations to 
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those that were stationary observations or traveling observations that did not exceed 1 km for my 

sampling timeframe (2004 – 2014). By limiting the distance on the traveling checklist locations, I 

increased the likelihood that each observation location could be associated with a 4 km pixel, 

representing the spatial resolution of our environmental variables. 

Model Development 

To fully investigate the combined influence of study area extent, variable choice, and occurrence 

data bias on model calibration performance and prediction, I ran several experiments where I 

manipulated both the occurrence data and the variable selection approaches for the three extents. I 

produced four subsets of the original presence dataset to simulate two common occurrence data 

biases, specifically, small sample sizes and spatially biased locations. To simulate smaller sample 

sizes, I reduced the number of occurrence locations using a random selection of both 50% and 

25% of the original data at each of the three extents. To create our spatially biased locations 

(clustered data), I split the data latitudinally such that 50% the occurrences were in the northern 

half of the extent and the remaining 50% in the southern portion (Figure 2), keeping the records 

from the northern half. Using this technique allowed me to simulate a restricted dataset, which 

did not sample the environment across the accessible range of the study species. Thus, our 

original occurrence dataset and the four manipulated datasets were: 1) all presences after 

removing duplicate and erroneous records (100P); 2) a random selection of 50% of the original 

presences (50R); 3) a random selection of 50% from the 50R data, representing 25% of the 

original data (25R); 4) a selection of the northern 50% of the 100P data (50C); and 5) a random 

selection of 50% from the 50C data, representing 25% of the original data (25C). These subsets of 

occurrence data simulate datasets using all data available (100P), smaller datasets (50R and 25R) 

and spatially biased sampling occurrence data (50C and 25C). Occurrence locations for species of 

interest are often obtained from museum collections and citizen science programs such as eBird. 

However, these are often opportunistically collected, containing bias and often violating the 
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assumptions of presence-background modeling (Phillips et al. 2009; Yackulic et al. 2013), such as 

fully saturated suitable habitat and constant detection probability (Wiens et al. 2009). Our goal 

was to highlight the modeling implications of spatial bias at differing extents. Since I specifically 

constructed spatial bias in 50C and 25C subsets, I assumed they contained more spatial bias than 

our 100P occurrence subset. 

 

 

Figure 2. Map of random (A – C) and clustered (D – F) occurrence data for each extent, large (A 

and D), medium (B and E) and small (C and F). Black crosses indicate testing occurrences, blue 

circles represent 50% data subsets for random (50R) and clustered (50C) training occurrences 

where red circles show 25% data subsets for training data that was random (25R) or clustered 

(25C). 
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Each occurrence subset was used with eight variable selection approaches, for each of the three 

extents. I selected variables for inclusion into the models following eight criteria: 1) all 18 

variables (FULL), ignoring collinearity and ecological relevance of the variables; 2) a technique 

to address collinearity (NOCOL), where a subset of variables with Pearson’s |r| < 0.7 was used 

(Dormann et al. 2013; Dormann et al. 2008); 3) a climate only approach using only temperature 

and precipitation variables (CLM); 4) a vegetation only approach using only NDVI and LAI 

variables (VEG); 5) a topographic only approach using elevation, aspect, slope, flow 

accumulation, flow direction, and wetness index (TOPO); 6) maximum climate and vegetation 

values (MAX) across the sampling timeframe (2004-2014) and also elevation and slope; 7) mean 

climate and vegetation values (MEAN) and also elevation and slope; and finally 8) the minimum 

climate and vegetation values (MIN) and the same two topographic. 

To generate the models I used Maximum Entropy (Maxent), a presence-background algorithm 

that defines environmental constraints for species based on available presence data, contrasted to 

randomly selected samples from the background environment of the study area (Phillips et al. 

2006). Higher probabilities of suitability are given to locations within the study region, which 

have environmental conditions more similar to the environmental conditions of known presences 

(Phillips et al. 2006). I randomly divided our presence locations from each of the five occurrence 

subsets into a training and testing dataset, each containing 50% of the available data. I also 

allowed 50% of the background points to be sampled during the modeling process at each of the 

three extents (small, medium, large). To convert Maxent’s continuous suitability predictions to 

spatial binary suitable/unsuitable predictions, I applied a 10% minimum training presence 

threshold. This threshold leaves out 10% of the training points, and is commonly used for datasets 

where the error is unknown (but should still be accounted for) because this threshold is less 

sensitive to outliers or incorrectly located occurrences (Peterson 2006; Peterson et al. 2011). 
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As extent choice directly affects the sampled background, I quantified the variation of each 

variable at each extent. I used two first order variation metrics, range and coefficient of variation 

to describe the sampled variation at each extent. Range is the maximum value minus the 

minimum value and the coefficient of variation is mean divided by the standard deviation. I 

compared the change range and CV to changes in model performance metrics and model 

predictions 

Model Performance Metrics 

I compared and evaluated models using two performance criteria, the area under the curve of 

receiver operating characteristic plot (ROC AUC) and testing omission error. The ROC AUC is a 

common method of model comparison where a plot is constructed with sensitivity (fraction of 

presences predicted present) and 1-specificity (fraction of absences predicted absent), modified 

for SDM to proportion of area predicted present (Phillips et al. 2006; Phillips et al. 2009). The 

area under this curve with a value of 1 indicates perfect discrimination of presence and absence, 

whereas models with AUC > 0.7 are considered reliable (Swets 1988; Fielding and Bell 1997). 

Some authors have shown that AUC values may overstate the performance of models (Austin 

2007; Yackulic et al. 2013); such as over-fit models (Lobo et al. 2008; Jimenez-Valverde 2012) 

and others showed that the AUC estimates are sensitive to many model parameters (Peterson et 

al. 2008; Hanczar et al. 2010). In addition to evaluating individual model AUC values, I also 

calculated the average AUC of models at each extent, occurrence treatment, and variable 

selection. Since AUC incorporates the proportion of the extent predicted present, it is influenced 

by extent size and there is general agreement that comparing AUC values between different 

extents is an erroneous comparison due to the differences in extent background (Lobo et al. 2008; 

Barve et al. 2011; Acevedo et al. 2012). Here, I compare AUC across extents to highlight that 

extent, occurrences, and environmental variables combined influence model performance metrics 

such as AUC. Further, Lobo et al (2008) states that multiple methods of model evaluation should 
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be used to assess and compare models since any given single indicator can have some level of 

bias associated with it. Despite this, most modeling studies continue to use AUC as the single 

measure of model evaluation. Thus, here I also used omission error, which is the percentage of 

known locations not classified as presences by the model. Typically, lower omission error 

indicates higher model performance (Mouton et al. 2010). Since I used the 10% minimum 

training presence threshold, I selected 20% as the testing OE threshold for “acceptable” models as 

this allowed for maximum 10% additional error. 

Model Predictions of Potential Distributions 

Besides evaluating the Maxent models, I also compared geographic predictions of models using 

three criteria, the proportion of study area predicted suitable, the map kappa statistic, and variable 

contribution. Additionally, since the number of variables for the models differed, I investigated 

any correlations between the evaluation criteria and the number of variables. To compare Maxent 

thresholded predictions, I used the proportion of the study area that was predicted suitable for 

each model. I used this output to evaluate models because models that are ‘over-fit’ are generally 

unable to predict suitable areas outside the training dataset and usually have lower proportions of 

predicted suitable area, whereas models that do not discriminate well between presence and 

background tend to have higher proportions of predicted suitable area (Peterson et al. 2011).  For 

additional model prediction comparison I used the map kappa statistic, which assesses the 

accuracy of a prediction compared to observed phenomena (Pontius 2000), with the 

implementation proposed by Hagen (2002) that takes into account both the quantity and location 

of prediction pixels. In this study, I compared predictions from each unique occurrence subset 

(50R, 25R, 50C, 25C) and variable subset (FULL, NOCOL, CLIM, VEG, TOPO, MAX, MEAN, 

MIN) to the prediction obtained using 100P occurrence data for each variable selection approach 

at each extent. This allowed us to quantify prediction similarity between models. 
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Contribution of Variables to Model Accuracy Gain 

Since varying the extent of the study area could affect variable contribution to model accuracy 

gain, I compared variable importance ranking across models. Maxent ranks environmental 

variables by calculating the contribution of each variable to overall model accuracy gain as 

proportion of contributions of all variables (Phillips et al. 2006). Lastly, I checked for correlations 

between the number of variables and all evaluation metrics (AUC, omission error, kappa, 

predicted area, and percent contribution of the highest performing variable). 

Results 

Variation of Environmental Variables by Extent 

Of the 18 variables used in models, 15 showed some decrease in range (three showed no change) 

from the large to medium extents and seven showed decreases at the smallest extent, with the 

remaining 11 showing no change from the medium extent (Table 1). Elevational variables 

showed both the smallest and largest amount of proportional change in variable range values 

between the large and medium extents. Comparing large to medium extent variable ranges, 

vegetation variables showed the least proportional change and temperature showed the most 

change. Using coefficient of variations as a variation metric, 12 variables showed decreased 

variability at the medium extent whereas six showed increases. All 18 variables showed 

decreased variation, lower coefficient of variation values, when compared to the medium extent. I 

found less variability at the smallest extent, and in general, more variation occurred at the largest 

extent, with some exceptions. 
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Table 1. Calculated range and coefficient of variation (CV) for the 18 variables at each of the 

three extents (Broad, Medium, and Small). Bold numbers show variables that have increased 

variation (measured by either range or CV) from the next largest extent; up arrows also indicate 

this trend. Dashes denote variables that have the same variation (range or CV) from the next 

largest extent. Numbers with no annotation correspond to decreasing variation. 

 

 Broad Extent   Medium Extent  Small Extent 

 Range CV   Range  CV   Range  CV  

max temp 20.8 0.09   13.9  0.06   8.6  0.05  
max prcp 742.7 0.31   578  0.32 ↑  377.5  0.22  
max ndvi 1.299 0.20   0.914  0.18   0.914 − 0.12  
max lai 25.4 1.02   25.2  1.40 ↑  25  0.92  
mean temp 21.4 0.17   13.1  0.11   7.8  0.09  
mean prcp 180.5 0.29   110.8  0.28   84.2  0.16  
mean ndvi 1.188 0.31   0.903  0.27   0.903 − 0.18  
mean lai 25.37 1.82   25.22  2.52   25.31 ↑ 1.73  
min temp 26 0.57   17.4  0.41   10.8  0.26  
min prcp 59.3 0.87   40.9  1.15 ↑  40.9 − 0.85  
min ndvi 1.01 0.52   0.705  0.33   0.703  0.25  
min lai 25.39 4.93   25.39 − 5.11 ↑  25.39 − 4.55  
aspect 35990 0.65   35976  0.65 ↑  35968  0.66 ↑ 
slope 2184 1.35   981  1.01   383  0.72  
flow 3196055 27.22   195821  11.76   195821 − 9.72  
flow dir 127 1.42   127 − 1.45 ↑  127 − 1.41  
topo 2205 0.36   1822  0.35   1754  0.34  
elev 3248 0.77   2322  0.49   780  0.29  

 

Model Performance Metrics 

Although overall model performance measured by AUC was relatively low across all extents 

(AUC range 0.554 – 0.853), I found that model performance measured by AUC varied with 

extent size (Figure 3). Medium extent models showed the most range in AUC values (0.554 – 

0.816), followed by the large extent (0.602 – 0.806) then the smallest extent (0.612 – 0.738). 

Further, models at the medium extent showed the highest AUC values, but only slightly. Mean 

AUC for all medium extent models was 0.710, followed by large extent models with a mean of 

0.702, and finally the small extent (mean = 0.674). Generally, models with AUC values greater 

than 0.700 are considered adequate models (Swets 1988; Fielding and Bell 1997). Medium extent 

models with non-clustered occurrence data (100P, 50R and 25R) had AUCs greater than 0.700. 
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Clustering occurrence data (50C and 25C) reduced model performance at the medium extent. 

Models from the smallest extent had the lowest performance scores, with a majority of models 

based on non-clustered and clustered data exhibiting AUCs less than 0.700. Large extent models 

showed performance between medium and small extents, with some models’ AUC values greater 

than the 0.700 threshold and some falling below. At all three extents, clustered datasets produced 

models that performed worse than models with all presences (100P) and randomly selected 

presences (50R and 25R). The most variation in model performance between non-clustered and 

clustered data occurred at the medium extent and the least variation at the small extent. 

Additionally, models based on 100P and 50R showed the most similarity in AUC for the eight 

sets of variables. I found that models using FULL variable set consistently produced higher AUC 

values across large, medium, and small extents. For non-clustered data, models based on TOPO 

variable set exhibited the lowest AUC values at the large and small extent, but MAX models 

appeared to perform worse than the others at the medium extent. The AUC values were highly 

influenced by extent size, data clustering, and variable selection techniques (Figure 3). Mean 

AUC values for models averaged across occurrence data types regardless of extent and variables 

selection showed that 100P and 50R models performed better (mean AUC 0.739 and 0.734, 

respectively), with 25R showing moderate performance (0.716). The clustered datasets produced 

models with poorer performance (mean AUCs of 0.644 for 50C and 0.643 for 25C).  
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Figure 3. Performance metrics for each model and occurrence dataset combination across the 

three extents. For each cell, upper values represent area under the curve (AUC) and lower 

omission error values. Metrics in white represent acceptable performance (AUC ≥ 0.70 and 

omission error ≤ 0.10), whereas grey values indicate poor performance. The matrix of values is 

designed to provide a framework to help users better visualize model performance issues 

associated with variable subsets, occurrence data quality, and extent size. For example, boxes 

completely white indicate higher performing models (higher AUC and lower omission error). 
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Extent size did not affect model performance as evaluated by omission error to the same degree 

as AUC, indicating that perhaps other factors such as occurrence data and model variables are 

more influential than extent size (Figure 3). Since I used the 10% training omission error 

threshold for converting Maxent continuous probability of suitability predictions into binary 

suitable/not suitable maps, testing omission error rates greater than 10% indicate error in the 

model, and I considered acceptable models with less than 20% omission error. I found the highest 

variation in omission error for medium extent models, showing both the highest and lowest 

omission error rates compared to the models at the other two extents. Models at the large extent 

showed consistently lower omission error. Models based on non-clustered presence data 

overwhelmingly showed lower omission error rates than clustered data. In particular, the 

clustered occurrences at the large extent showed nearly identical trends and the testing omission 

error ranged from 10% to 40% higher than identical models of non-clustered data. The testing 

omission error of FULL and NOCOL models was consistently high for all extents and occurrence 

data types, although these models did not necessarily show the single highest omission error. Of 

all models constructed, the medium extent FULL model based on clustered data exhibited the two 

largest omission error values, 67% (25C) and 58.7% (50C). Omission error was most affected by 

data clustering and variable selection technique, rather than extent size (Figure 3). 

Model Predictions of Potential Distributions 

The percentage of predicted suitable area varied across extents, data occurrence, and variable 

selection techniques (Figure 4 A, B, and C). Medium extent models showed less variation in the 

amount of predicted suitable area, but they did not necessarily show the lowest values when 

compared to the large or small extent models. The three extents showed similar ranges of 

predicted suitable area, although the predicted suitable area of medium extent models was slightly 

lower than the values for large and small extent models. Non-clustered data models predicted 

higher percentages of predicted suitable area compared to clustered data models; the difference is 
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striking at the large and medium extents (Figure 5). Across model types, VEG, TOPO, and MAX 

models in most cases appeared to predict higher percentages of predicted suitable area at all three 

extents, whereas FULL and NOCOL models generally predicted less area as suitable for the three 

extents.  

 

 

Figure 4. Evaluation metrics (predicted area and the kappa) for large (A & D) medium (B & E) 

and small (C & F) extents. The five occurrence datasets, 100P (white), 50R (light grey), 25R 

(medium grey), 50C (dark grey) and 25C (black) are shown for the predicted area metric, while 

only non-100P (non-white) datasets are shown for the kappa metric as the kappa measures the 

similarity in predictions between each of the four datasets to the 100P data set. 
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The map kappa statistic showed that occurrence data quality highly influences similarity of model 

predictions to the models obtained with all occurrence data (100P). Clustered occurrences showed 

lower kappa values than randomly selected occurrence data (Fig. 4 D, E, and F). This effect is 

apparent at all three extents, but is most noticeable at the large extent. In fact, at the large extent, 

50R models show high similarity in predictions, 80% or more, and 25R models, although more 

variable in map kappa statistic, show 60% and higher similarity. Differences across variable 

selection models were highly dependent on extent; for example, MEAN models showed higher 

prediction similarity at the large extent, but very little similarity at the smallest extent.  

While both performance and prediction metrics provide insightful information about overall 

model quality, the combination of these together can guide a user’s confidence in the model. High 

AUC values generally indicate models with high discrimination, whereas models unable to 

predict conditions associated with presence data will exhibit high AUC and low predicted suitable 

area and high omission error. Our models did not appear to show these characteristics. However, 

models with high predicted suitable area and very low omission error indicate models that are 

overly broad (much of the study extent is predicted as suitable in order to correctly predict testing 

occurrences), although they may have acceptable AUC performance. At the large and medium 

extent, TOPO models demonstrate this, as they have moderate AUC values ranging from 0.602 – 

0.758, omission error ranging from 10 – 35%, and predicted suitable area 39 – 68%. In some 

cases, these models predict nearly 70% of the extent as suitable. 
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Figure 5. Potential suitability for Bell’s Vireo predicted by CLM models for 50R (A – C) and 50 

C (D – F) occurrence data sets for the three study area extents.   
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Contribution of Variables to Model Accuracy Gain 

Overall, highest variable contribution did not differ greatly across the three extents (see Table 

S.2. in the Supplementary Material). Variation in contribution ranged from 16.9% to 89.5% and 

was more apparent within extents based on variable selection techniques and not based on 

clustering of occurrence data. The TOPO model generally always produced the variable with the 

highest contribution; in fact, elevation was the top variable in every TOPO model for all extents 

and data types. Conversely, the top variable for the VEG models was not consistent and regularly 

produced low contributing variables for both non-clustered and clustered data at all three extents. 

At the largest extent, a temperature variable was the top contributing variable for every model 

(except VEG and TOPO, which did not include any temperature variable). Min, mean, and max 

temperature showed the most decrease in variation with extent size reduction and were not a top 

contributing variable at the medium extent but did regularly show up as a high contributing 

variable at the smallest extent. Precipitation and both NDVI and LAI contributed most to models 

at the medium extent (except TOPO), and showed less decrease in variation across extents.  

When selecting variables for the eight model types, the number of variables ranged from 6 to 18, 

with most models (CLM, VEG, TOPO, MIN, MEAN, and MAX) having six variables, the FULL 

model comprising of 18, and NOCOL having between 11 and 13 variables, depending on extent 

of study area. Correlations between the number of variables and the evaluation metrics (AUC, 

omission error, predicted suitable area, kappa values, and first variable contribution) showed 

several strong relationships (see Appendix 3). In particular, predicted suitable area and first 

variable contribution exhibited strong negative correlations with the number of variables in the 

model. In contrast, omission error and in some instances map kappa statistic showed a positive 

relationship; AUC showed both positive and negative associations. 
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Discussion 

Our results revealed that model performance can indeed depend on the combination of study area 

extent, occurrence data, and environmental variable choices. This is cause for concern as SDM is 

used to address many important topics such as: climate change (Hijmans and Graham 2006; 

Forester et al. 2013), invasive species (Jones et al. 2010; Mainali et al. 2015), biodiversity 

assessments (Rodriguez-Castaneda et al. 2012), and conservation management (Johnson and 

Gillingham 2005; Mizsei et al. 2016). These applications may use a variety of extents, ranging 

from local to continental or global, and the conclusions derived from the evaluation and 

assessment of models should be considered carefully. With the wide use of SDM, there exists a 

need to outline best modeling practice (Jimenez-Valverde et al. 2008; Jarnevich et al. 2015) and 

standardize model calibration and evaluation (Lobo et al. 2008). Several papers discuss obstacles 

in the modeling process associated with occurrence data (Lozier et al. 2009), environmental 

variable selection (Johnson and Gillingham 2005), and extent size (Barve et al. 2011). I integrated 

these three main factors affecting model performance into a single study, of a widely used 

algorithm (Maxent) using a data deficient species of conservation concern.   

Influence of Choice of Data on Model Performance 

Biased occurrence data, specifically data that are clustered, do not adequately sample the 

environment within the whole distribution of the species (Phillips et al. 2009), thus they produced 

inaccurate models. Models calibrated with clustered occurrence data exhibited lower AUC values 

than models using other occurrence datasets. This was especially true when models contained 

variables that were not ecologically relevant to V. bellii. However, extent size adds another 

dimension of complexity in that at the large and small extents clustered models performed worst 

but the same models were high performing at the medium extent. The varying performance of 

models using different occurrence datasets across extents may be attributed to lower variation in 
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environmental conditions extents. This low environmental variation may be mitigating the effects 

of clustered data and allowing all occurrence datasets to sample the simpler environment 

adequately. Alternatively, certain extents may be appropriate for sampling environmental 

conditions that operate at particular spatial scales shaping distributions (Luoto et al. 2007). 

Additionally, I showed that the number of variables influenced AUC as the full models generally 

had higher AUC values, although the correlation between the number of variables and AUC did 

not show a clear relationship. Evidently, not all models are useful, such as our topography model, 

yet if I use the AUC >0.7 rule of thumb, I classify these models as useful, giving a false sense that 

these variables explain the spatial distribution of species. 

Reporting the omission error associated with models is not as common practice in the literature as 

is reporting AUC. Yet, this metric is a meaningful way to assess the discriminatory ability of the 

model. Not surprisingly, clustered occurrence data consistently produced larger omission error 

rates, most likely due to the unequal sampling of environmental conditions to train the model. 

Additionally, omission error showed a positive relationship with the number of variables used in 

the model, with weaker relationships occurring for clustered data. Most of the variation in 

omission error comes from the spatial bias associated with clustered data, which occurs at all 

extents, although, like AUC, at the smaller extent, clustering does not have a strong effect. 

Model Predictions of Potential Distributions 

Thresholded model predictions (presence-absence maps) are often used to find new species 

locations (Alfaro-Saiz et al. 2015; Mizsei et al. 2016), identify areas of conservation importance 

(Johnson and Gillingham 2005; Micchi de Barros Ferraz et al. 2012), investigate biological 

invasions (Jones et al. 2010; Mainali et al. 2015), and assess climate change impacts on 

biodiversity (Hijmans and Graham 2006; Forester et al. 2013). Indeed, maps of potential 

distributions are perhaps the most valuable aspect of SDM. In my study, when comparing the 
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amount of the study area that was predicted as suitable, models at the medium extent produced 

the narrowest predictions and exhibited moderate amounts of omission error. Thus, these models 

do an acceptable job of discriminating areas of appropriate environmental conditions whereas 

models at the large and small extents showed relatively larger predicted areas, with overall higher 

omission error for the small extent models and lower for the large extent models, possibly hinting 

at ‘overfit’ and ‘underfit’ models, respectively. Spatially biased occurrence locations always 

produced smaller predicted areas at all three extents, most likely due to reduced sampling of 

environmental conditions, particularly at the largest extent. Additionally, using more variables 

decreased suitable area predictions, although at the small extent the models may have not 

incorporated enough environmental variability, making the number of variables less important in 

constraining the model. However, VanDerWal et al. (2009) found that the number of variables 

contributing to the model decreased with extent size. Vale et al. (2014) recommend caution in 

choosing study area extent because smaller extents may not predict marginal or suboptimal 

habitat used by the species at the periphery of their geographic range, however determining the 

appropriate extent is often not possible due to a lack of ecological knowledge about the species 

(Anderson and Raza 2010; Barve et al. 2011). 

When comparing model predictions, I found that spatially biased models (with clustered 

occurrence data) almost always showed the least similarity with full occurrence models, most 

noticeably at the largest extent. Both spatial bias in occurrence data and the variables used in the 

model can produce wildly different predictions, an outcome further exacerbated by the extent of 

study area. This may be due to a change in the top contributing variables for models at different 

extents. Variable importance is strongly linked to extent size (VanDerWal et al. 2009; Jarnevich 

et al. 2015), for example climatic variables generally contribute more at large spatial extents and 

biotic variables appear to constrain distributions more at smaller extents (Luoto et al. 2007).  

Bradie and Leung (2017) analyzed 2,040 published Maxent models that used 400 unique 
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environmental variables and found that temperature was one of the most frequently used variable 

and mean temperature contributed more to models than did minimum or maximum temperature; 

however, the study area extent was not taken into consideration. I found that mean temperature 

always outperformed minimum and maximum temperature at the largest extent, but did not 

contribute more to either the medium or small extent models. Rather, minimum or maximum 

temperature or other variables generally outperformed mean temperature at these two extents, 

which agrees with the notion that ecological processes operate at different spatial scales (McGill 

2010).  

Confidence in models and potential distribution estimates may be misplaced when model 

performance drives decisions or parameters are selected in absence of ecological knowledge. The 

effects of occurrence data (Johnson and Gillingham 2005; Graham et al. 2008; Lozier et al. 2009; 

Anderson 2012), environmental variable selection (Johnson and Gillingham 2005), and extent 

size (Barve et al. 2011) on model performance have been well documented, but not 

concomitantly. I used Bell’s Vireo as a case study to investigate the interacting influences of 

these data choices for a presence-background modeling algorithm (Maxent). I showed that the 

degree to which spatially biased occurrence data shape model performance (AUC and omission 

error) and model predictions (area predicted suitable and map kappa statistic) varies across the 

three extents. My study adds to the growing awareness of user choice in SDM and advocates for 

careful deliberation in both model construction and interpretation. 

Considerations for Bell’s Vireo 

My study describes environmental conditions constraining distributions of Bell’s Vireo on 

relatively short time frames (decadal). Across its range, Bell’s Vireo shows noticeable variation 

in habitat utilization (Parody and Parker 2002) and thus the environmental conditions shaping the 

species distribution are expected to change across different extents. At the largest extent, I found 
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temperature to contribute the most to shaping the distribution, usually twice as much as the 

second most important variable. The difference in temperature between presence and background 

locations was likely more distinct at the large extent where all three temperature variables showed 

the most variation.  Precipitation was generally the second most important variable for clustered 

models as well as contributing the most at the medium extent. In the Bell’s Vireo ecological niche 

model constructed by Klicka et al. (2016), four variables representing temperature and 

precipitation (mean annual temperature, mean temperature of the warmest quarter, mean annual 

precipitation, and precipitation of the warmest quarter) were used to describe the current niche.  

Although the authors do not report the contribution of the variables, the model predicted well the 

current Bell’s Vireo range including populations not represented in model training (Klicka et al. 

2016).  

Interestingly, vegetation variables performed well at the medium extent, but only for non-

clustered models. This suggests that, at a regional scale, vegetation density and cover best 

discriminate between presence and background, but only when occurrence data are not spatially 

biased (i.e. a random selection of occurrence across the study extent). This is likely due to 

findings presented by Parody and Parker (2002) describing that nest placement of Bell’s Vireo 

occurred in the densest vegetation within habitat patches, suggesting the strong influence of 

vegetation physiognomy at more local scales (Rotenberry 1985). Despite the clear role of 

vegetation at smaller extents, my results showed that at the smallest extent temperature variables 

still best described Bell’s Vireo occurrences. Likely, the environmental conditions that interact to 

shape the distribution of Bell’s Vireos at this smaller extent operate at a smaller spatial grain size 

than the 4 km used in this study. 
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Recommendations and Future Directions 

First, I recommend a study extent design that considers the spatial and environmental properties 

of the occurrence data in association with the background selection. Secondly, clustered 

occurrences should be removed, as models based on smaller datasets, non-clustered, performed 

better. Lastly, the selection of environmental variables directly influences model output and 

should reflect the expected variability across the study extent, in addition to ecological relevance 

to species studied.  

Spatial extent is only one part of spatial scale; its complement, grain size, also influences the 

environmental variability sampled, and thus the estimates of species distributions obtained with 

SDM (Saura 2002; Barve et al. 2011; Suarez-Seoane et al. 2014). I did not investigate the 

interaction of occurrence data and variable selection with spatial resolution (grain size). Since 

extent size did directly affect model performance and predictions, I expect that the spatial 

resolution of the environmental variables is yet another aspect of data input that must be 

considered.  However, choice of grain size is restricted by availability of environmental datasets, 

thus its variability is more limited than that of study area, which is defined by the investigator. 
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CHAPTER III 
 

 

GRAIN SIZE DOES NOT AFFECT OVERALL HETEROGENEITY OF ENVIRONMENTAL 

PREDICTORS, BUT MODIFIES MODEL PERFORMANCE AND ESTIMATED POTENTIAL 

DISTRIBUTIONS OF SPECIES 

 

Abstract 

Ecological pattern and processes are shaped by spatial and temporal scale components to which 

species respond making multi-scale investigations needed to find the scales at which species 

respond to environmental predictors. In species distribution modeling (SDM) the spatial scale of 

environmental predictors has been shown to influence both model performance and predicted 

potential distributions. Resampling environmental predictors is common in the SDM modeling 

framework, but the influence of different resampling techniques on environmental predictors used 

in SDM and the overall effect on model performance and potential distributions is unknown. 

Similarly, increases in grain size of the environmental predictors has led to an inconclusive 

understanding of its influence on model performance. To assess these interactions, I compared 

model performance and potential distributions across twelve grain sizes, which were resampled 

using three different methodologies, nearest neighbor, bilinear interpolation, and aggregation. I 

used Bell’s Vireo (Vireo bellii) to test the impacts of resampling and grain size on SDM 

performance and predictions. Overall, I found that resampling techniques did not meaningfully 

affect the overall heterogeneity of the environmental predictors, and interestingly did not differ 
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between the techniques. Further, my results showed that model performance in terms AUC was 

influenced by resampling method, but not grain size, whereas the model performance metric, 

omission error, was not influenced by resampling technique or grain size. However, model 

prediction of potentially suitable area was influenced by both resampling and grain size. I suggest 

that the spatial structure of environmental heterogeneity in the study extent exerts a large 

influence on variation changes due to resampling technique as well as grain size. Thus, modelers 

should consider the interactions between the study area extent, resampling method, and grain size 

as well as the expected scale of species response for SDM investigations. 

Introduction 

Species-habitat associations are comprised of complex ecological relationships that vary along 

spatial and temporal scales, as well as across species and landscapes (Wiens 1989). Marceau 

(1999) defines scales as “a continuum through which entities, patterns, and processes can be 

observed.” The importance of scale in ecological research has long been documented (Levin 

1992, Chave 2013) and the discussion now encompasses scaling in species habitat modeling and 

species distribution modeling (SDM) (Guisan et al. 2007a, Barve et al. 2011, Martin and Fahrig 

2012, Song et al. 2013, Suarez-Seoane et al. 2014). Species respond to ecological processes 

operating at multiple spatial scales that shape observed species’ distributions (McGill 2010). 

Scale is as an important consideration in SDM as other model specifications such as choice of 

occurrence data (Wisz et al. 2008, Boria and Blois 2018), environmental variables (Braunisch et 

al. 2013, Bradie and Leung 2017), study region (Yackulic and Ginsberg 2016), algorithm (Elith et 

al. 2006), and model parameters (Anderson and Gonzalez 2011, Elith et al. 2011). Further, scale 

can interact with these model characteristics to influence model performance (Bean et al. 2012, 

Vale et al. 2014, Connor et al. 2018).  
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Scale is comprised of extent and grain, each exerting their own influence on SDM performance 

and predictions. Extent is the total area under consideration whereas grain refers to the spatial size 

of the observation (Wiens 1989).  Across a landscape, between grain and within grain variation is 

constrained by extent and grain size, respectively (Levin 1992, Anderson 2018). Additionally, 

observed variation across an extent is also highly linked to the system and will influence how 

ecological phenomena are measured under different extents and grain sizes as well as time 

(Wiens 1989). This creates a challenge for SDM, as individuals using a landscape are often 

responding to multiple habitat variables at multiple spatial and temporal scales, especially for 

heterogeneous areas (With et al. 1997). SDM measures the suitability of geographic landscapes to 

species and is susceptible to scale effects (Song et al. 2013). To estimate the distribution of a 

species, SDM uses known presence locations and the associated environmental conditions 

(Phillips et al. 2006, Elith et al. 2011), thus the geographic extent, which comprises the possible 

range in environmental conditions used in the model, should be carefully considered (Barbet-

Massin et al. 2010). For presence-background algorithms such as Maxent, background points are 

selected from the training extent to delineate a suitability signal by contrasting presence and 

background conditions (Elith et al. 2011). An extent that is overly broad may disrupt the model’s 

ability to characterize this signal due to increased heterogeneity contained in the background, 

influencing both model performance (Lobo et al. 2008) and predicted suitability (Bean et al. 

2014). Smaller extents may underrepresent environmental conditions in the training background 

creating biased models that do not fully represent species’ potential distributions (Barbet-Massin 

et al. 2010, Sanchez-Fernandez et al. 2011). Decreasing extent size is generally thought to reduce 

variation in the background conditions sampled (Song et al. 2013), however this is dependent on 

the landscape and environmental variables considered (first chapter, this dissertation). The 

variation in environmental covariate conditions shapes the distribution of background samples 

and the fitted distribution of presence locations (Elith et al. 2011), thus affecting comparisons, as 

they depend on model predictions. Variation of background samples is also affected by grain size 
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since increasing grain homogenizes the landscape, inhibiting model discrimination between 

presence and background environmental conditions (Song et al. 2013). The limited research of 

SDM-grain relationships shows mixed model performance, measured by AUC, in relation to  

coarsening grain sizes (Seoane et al. 2004, Guisan et al. 2007a, Seo et al. 2009, Gottschalk et al. 

2011, Bellamy et al. 2013, Suarez-Seoane et al. 2014, Scales et al. 2017, Connor et al. 2018). 

More specifically, when investigating multiple taxa and study regions, Guisan et al. (2007a) 

concluded that model performance, decreased, increased, or did not change with larger grains, 

likely due to interacting influences. However, at coarser resolutions, Seo et al. (2009) found that, 

in combination with decreasing AUC, predicted suitable area for trees increased under future 

climate conditions, likely overestimating potential distributions. Coarsening grain sizes decreased 

rare land cover types and resulted in mixed model performance for 13 bird species, further 

suggesting confounding interactions between species and landscapes (Gottschalk et al. 2011). 

Song et al. (2013) compared the influence of resampling cell values to represent a neighborhood 

statistic (keeping original grain size) to aggregating cells into larger cells representing the same 

sized neighborhood and found that the first technique slightly increased AUC whereas the second 

approach decreased model performance measured by AUC. They concluded that the information 

surrounding a data cell is more important for predicting species’ distributions than the actual data 

cell value (Song et al. 2013). More recently, an analysis using virtual species to test SDM 

behavior regarding grain size changes revealed that using environmental variables at scales to 

which the species responds produces the best performing models (Connor et al. 2018). The scales 

at which species are most influenced by environmental conditions vary with species, geographic 

extent, and environmental predictors (McGill 2010) and disentangling the effects of grain can be 

difficult, as true species-environment relationships are not known.   

The observed reaction of species to particular scales has been named multiple times, most 

notably, “domains of scale” by Wiens (1989), “characteristic scale” (Urban 2005), “intrinsic 
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scale” (Wu et al. 2006) and specifically for grain, “response grain” (Mertes and Jetz 2018). To 

identify these few but important scales (McGarigal et al. 2016), a continuous scale spectrum must 

be employed (Wiens 1989, Wheatley and Johnson 2009). This allows for the detection of breaks 

or thresholds within the domain of scale for the observed ecological process that indicate a 

change in the scale relationship (Wiens 1989, Levin 1992, Marceau 1999). Since no single 

measurement scale is likely to capture the entirety of an ecological process, multi-scale ecological 

data, is needed. 

Remote sensing data provides environmental data on multiple spatial and temporal scales (Kerr 

and Ostrovsky 2003, Anderson 2018) and incorporating remotely sensed data into SDM may lead 

to increased model performance (Leyequien et al. 2007, Buermann et al. 2008). Although for 

plant-based SDM, remotely sensed data have introduced bias, especially for plant distribution 

models as these variables may actually map species (Bradley et al. 2012). Since species interact 

with their environment at multiple spatial and temporal scales, environmental parameters derived 

from remote sensing may better capture variation in the environment, which fashions the 

observed species’ distributions across space. Many environmental predictor data sets, particularly 

climate data, are interpolations of long-term data sets (e.g. Worldclim (Hijmans et al. 2005) and 

PRISM (Daly et al. 2000)); whereas remote sensing directly measures many ecological processes 

occurring on the surface of the Earth (He et al. 2015). Currently in orbit there are countless Earth 

observing systems differing in the temporal, spatial, and spectral specifications that are used to 

measure variation on the Earth’s surface, thus providing opportunities to investigate species-scale 

relationships that were not possible in the past (Turner et al. 2003, Anderson 2018). 

Despite increased data availability with the expansion of remote sensing technology, many scale 

related obstacles still exist, most notably, the modifiable areal unit problem (MAUP) (Openshaw 

1984). The MAUP phenomena is simply the fact that there is a large amount of ways to divide a 

study area extent into different grains (both sizes and shapes). Each unique defined grain will 



64 
 

produce an observed relationship only applicable at that “scale” and changes with aggregation. 

Thus, much work is still needed to identify meaningful scales influencing species-environmental 

relationships (Marceau 1999). 

Environmental predictors that match the scale most influential to species provide the most 

accurate model predictions, is the foremost objective of SDM. Thus, finding the appropriate 

extent and grain size for the most relevant environmental predictors is the optimal ecological 

framework for conservation professionals, decision makers, and managers. For presence-

background SDM, specifically Maxent, the sampled background for environmental predictors is 

the basis for comparison to environmental conditions associated with presences (Elith et al. 

2011).  

To fully establish ideal scales for species, and identify critical thresholds, multiple spatial grains 

must be investigated. While many studies have only compared a few grain sizes (Guisan et al. 

2007a, Guisan et al. 2007b, Revermann et al. 2012, Bean et al. 2014, Georgian et al. 2014, 

Suarez-Seoane et al. 2014), it is now more common to see multiple grain size comparisons (Seo 

et al. 2009, Bellamy et al. 2013, Liang et al. 2013, Pradervand et al. 2013, Song et al. 2013, 

Connor et al. 2018, Mertes and Jetz 2018). However, despite the increasing interest, a consensus 

has not been reached on the full extent of grain size effects on SDM. Additionally, since altering 

grain size is expected to modify the background-presence comparison, as changes in 

measurement scales are expected to change variation (Wiens 1989, Levin 1992), quantifying the 

change in a variable at each grain size is needed. To my knowledge, no studies have quantified 

variation change with grain manipulation, although Connor et al. (2018) reported the standard 

deviation of the original grain size for the two landscapes used and Mertes and Jetz (2018) 

grouped variables by spatial structure (fine, intermediate, and coarse). Further, Song (2013) 

calculated mean elevation change for increasing grain size and Gottschalk et al. (2011) calculated 
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percent land cover change and land use configuration for each grain size. Measuring variation 

change is crucial since upscaling methodologies may produce disparate environmental predictors. 

Traditional methods for increasing grain size or upscaling have been developed in the remote 

sensing field to resample spectral imagery (Atkinson 1988, Hay et al. 1997, Jensen 2005). 

Resampling is the process by which new cell/pixels values are assigned to locations that are not 

the original cell/pixel location (Atkinson 1988). Multiple resampling techniques exist, each of 

which uses a different methodology to calculate the new cell value, which results in different 

outputs (Atkinson 1988). The expectation exists that different resampling techniques used to 

increase grain sizes of environmental variables may create different altogether different model 

predictors. 

The relationship between upscaling technique and grain size manipulation on SDM performance 

has not yet been evaluated. Thus, my objective was to investigate the choice of resampling 

methodology on grain size manipulation studies for SDM, by accounting for variation change in 

the geographical background. Specifically I tested the effects of three resampling techniques on 

four environmental predictors at 12 grain sizes. I expect that classic methods of evaluating model 

performance will be affected by resampling technique as well as grain size. 

 

Methods 

Study Species 

Bell’s Vireo (Vireo bellii) is a migratory songbird found throughout central United States in the 

Great Plains, as well as southern portions of the US including parts of south Texas, New Mexico, 

Arizona, California, and portions of Northern Mexico. The eastern population (delineated 

between New Mexico and Arizona; Figure 1) constitutes two subspecies, V.b bellii and V.b. 

medius, and is associated with low, dense, shrubby vegetation and is often found in grassland 
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shrub mottes and shrubland ecotones (Lebbin et al. 2010). Although closely linked to denser 

shrub environments, Bell’s Vireo shows considerable variation in habitat choice and nest site 

selection in these areas (Parody and Parker 2002). I excluded the western population of Bell’s 

Vireo, which comprises the subspecies V. b. pusillus and V.b. arizonae, as it is riparian dependent 

and closely linked with willow-dominated vegetation stands (Franzreb 1987). I selected Bell’s 

Vireo for this study for several reasons: 1) it is a declining species of concern (IUCN 2013); 2) 

very little published research is available about its environmental requirements; and 3) the high 

vocalization rates make the species easily detectable in the field, thus minimizing identification 

and detection errors in the presence dataset.   

 

Figure 1 Bell’s Vireo (Vireo bellii) occurrence records, black triangles, downloaded from eBird 

for May through August during 2004 – 2014. Not all records from Ebird were identified to the 

subspecies level, however for all four subspecies; at least some records did include this 

information. Red ellipse indicates the area delineating the eastern and western populations 

(modified from Klicka et al 2016). The study extent (South Central Semiarid Prairies) is shown in 

grey. 
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Study Area 

The distribution of Bell’s Vireo encompasses a large portion of the central United States, and I 

selected the south-central portion of the Great Plains for my research. This area is defined as the 

South Central Semiarid Prairies, an EPA Level II ecoregion (Omernik 1987, McMahon et al. 

2001). The South Central Semiarid Prairies provided a unique opportunity because was a 

moderately large area (~ 863,000 km2) in which both subspecies of the Bell’s Vireo eastern 

population occurred. Additionally, its location suggested environmental variation that would 

possibly explain the observed differential use of the area by Bell’s Vireo occurrence data. I 

defined my study extent using ecoregion boundaries because areas within the boundaries share 

similar biotic and abiotic capabilities (McMahon et al. 2001) and this approach is found in other 

SDM investigations because it is a straight-forward and an effective method for choosing extents 

(Soberón 2010, Barve et al. 2011). 

Occurrence Data 

I obtained Bell’s Vireo locations from eBird (Sullivan et al. 2009), a citizen science platform, 

which allows individuals to submit bird observations to an online database from which 

researchers can request access. Locations of birds in eBird have several collections types: 

traveling count, stationary count, historical, incidental, and area observation. I restricted Bell’s 

Vireos locations to those that were stationary observations or incidental observations for my 

sampling timeframe (2004 – 2014). 

Environmental Variables 

I selected four variables that were expected to influence the distribution of Bell’s Vireo across the 

South Central Semiarid Prairies extent. The four variables, aspect, wetness, normalized difference 

vegetation index (NDVI), and land surface temperature (LST), each contribute to shaping the 

variation of environmental conditions across the South Central Semiarid Prairies. In a region with 
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little elevational change such as the Great Plains, topographic characteristics such as aspect 

affects microclimate conditions creating local scale variation across the landscape (Bennie et al. 

2008). As the South Central Semiarid Prairies is located on the western edge of the Great Plains, 

it is more susceptible to rain shadow effects from the Rocky Mountains, making precipitation 

intermittent and relatively low (Borchert 1950).  I included the wetness index as a proxy for fine 

scale precipitation as I expected areas with more consistent levels of precipitation to exhibit 

higher soil wetness. NDVI is a measure of vegetation health/biomass (Rouse et al. 1974) that is 

used in SDM and habitat modeling (Kerr and Ostrovsky 2003, Turner et al. 2003, Rose et al. 

2015). As Bell’s Vireo is highly associated with dense vegetation patches, such as shrub mottes 

that can differ from surrounding vegetation types, such as grassland, I included NDVI as a 

variable that may show a distinct signal at occurrence locations when compared to the 

background. Lastly, I included LST since temperature variables generally perform well in SDM 

and are likely to influence species distributions (Bradie and Leung 2017). I specifically selected 

LST over other temperature variables such as ambient temperature, because I expected local 

conditions to influence LST variation across the landscape, playing a role in creating suitable 

conditions for Bell’s Vireo. 

Remote Sensing Data 

I calculated the four environmental variables from remote sensing data, specifically SRTM 

(Shuttle Radar Topographic Mission) and Landsat 7 ETM+. I used Landsat 7 data due to its high 

spatial resolution (30 m) and mission dates covering the temporal range of my occurrence data 

(Young et al. 2017). I downloaded 66 Landsat scenes (images) for each of the 11 years of interest 

(2004 – 2014), selecting scenes with ≤ 20% cloud cover. I selected scenes from the Bell’s Vireo 

breeding season with a temporal priority of: late June, early July, early June, late July, late May, 

early August, early May, late August. As Landsat has a temporal resolution of 14 days, a scene is 

collected twice for each month, once during the first half (early) and once for the last half (late). 
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If a particular scene for one year was not available with ≤ 20% over the breeding season, I did not 

download a scene, thus for any given year there were coverage gaps. I chose both Level 1 and 

Level 2 products; Level 1 products provide data for each of the  8 bands as digital numbers, 

whereas Level 2 products provides preprocessed surface reflectance (for bands 1 - 5) and top of 

atmosphere brightness data (for band 6). In 2003, the Landsat 7 Scan Line Corrector failed, 

resulting in data voids of ~22% of the images. Thus, all 2,772 images (924 scenes for each data 

product) were corrected using a gap fill algorithm in the program ENVI version 5.3 (Exelis 

Visual Information Solutions, Boulder, Colorado) for bands 1, 2, 3, 4, 5, 6, and 7, before further 

processing. The gap fill algorithm could not resolve some scenes and so these areas also exhibited 

data gaps. Corrected scenes were mosaicked into yearly raster surfaces after which I used the 

cloud mask provided with each scene to remove any clouds before variable calculations. 

Aspect 

I downloaded 30 m SRTM digital elevation model (DEM) (NASA 2002) from the Land 

Processes Distributed Active Archive Center (LPDAAC) data portal AppEEARS 

(https://lpdaacsvc.cr.usgs.gov/appeears). The DEM was converted to topographic aspect using 

ArcMap v 10.4 (ESRI 2016), by fitting a plane to a 3x3 moving window for each elevation cell 

value. The rate of change in both the x and y directions are calculated and converted to compass 

direction (measured 0 – 360, with due north at 0 and 360) of the plane face, which is the value 

entered for each cell (Burrough and McDonell 1998). 

Wetness Index 

The tasseled-cap transformation is an orthogonal transformation that compresses spectral data 

into new axes (Kauth and Thomas 1976) representing four indices: soil brightness, vegetation 

greenness, yellow stuff/wetness, and non-such or noise. Crist (1985) proposed a tasseled cap 

transformation that utilized reflectance values, needed for multi-scene transformation. I calculated 
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at-satellite reflectance using the corrected Landsat 7 level 1 products (Huang et al. 2001). 

Following Huang et al. (2002) I calculated yearly soil wetness index for the South Central 

Semiarid Prairies using the following formula: 

𝑤𝑒𝑡𝑛𝑒𝑠𝑠 = 0.2626𝐵𝑎𝑛𝑑1 +  0.2141𝐵𝑎𝑛𝑑2 +  0.0926𝐵𝑎𝑛𝑑3 +  0.0656𝐵𝑎𝑛𝑑4 −  0.7629𝐵𝑎𝑛𝑑5 −  0.5388𝐵𝑎𝑛𝑑7 

Normalized Difference Vegetation Index 

Due to vegetation’s ability to reflect light from 0.7 to 1.1 μm but absorb light 0.4 – 0.7 μm, a ratio 

between these two areas of the electromagnetic spectrum provides a measure of the density of 

‘greenness’ or vegetation (Rouse et al. 1974). To derive NDVI for the study extent, I used the 

corrected yearly-mosaicked Level 2 surface reflectance images using the following formula:  

𝑁𝐷𝑉𝐼 =
𝐵𝑎𝑛𝑑4 − 𝐵𝑎𝑛𝑑3

𝐵𝑎𝑛𝑑4 + 𝐵𝑎𝑛𝑑3
 

 

Land Surface Temperature 

Yearly LST for South Central Semiarid Prairies was estimated using the methodology outlined in 

Walwender et al. (2014), applied to multiple scenes. Calculating LST requires multiple steps to 

produce the inputs needed. Walawender et al. (2014) defines a single channel LST algorithm 

(from (Jiménez-Muñoz and Sobrino 2003, Sobrino et al. 2004, Jimenez-Munoz et al. 2009) as: 

𝐿𝑆𝑇 =  𝛾 [
1

𝜀
(𝜓1𝐿𝑠 + 𝜓2) + 𝜓3] + 𝛿 

 

Here, γ and δ are Planck’s function dependent parameters, and ψ1, ψ2, ψ3 are atmospheric 

functions, and ε is land surface emissivity. Using the Landsat level 1 product, I computed at-

satellite reflectance (Ls) and used the level 2 product, at sensor brightness temperature, as Ts to 

find values for γ and δ. 
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𝛾 =  {
𝑐2𝐿𝑠

𝑇𝑠
2

[
𝜆4𝐿𝑠

𝑐1
+

1

𝜆
]}

−1

 

𝛿 =  −𝛾 ∗ 𝐿𝑠 + 𝑇𝑠 

Here, Planck’s radiation constants, c1 and c2, are 1.19104 108 W μm4 sr-1 and 1.43877 104 μm 

K, respectively. The effective wavelength of Landsat 7 ETM+ band 6, λ, is 11.27 μm.  

The three atmospheric functions, ψ1, ψ2, ψ3, were calculated by: 

   ψ1 =  
1

𝜏
                                                   ψ2 =  −L ↓  − 

𝐿↑

𝜏
                                             ψ3 = L ↓ 

 

Here, τ, L↑, and L↓, are atmospheric transmissivity, up-welling atmospheric radiance, and down-

welling atmospheric radiance, respectively. These parameters were acquired from the web-based 

interface Atmospheric Correction Parameter Calculator (http://atmcorr.gsfc.nasa.gov) (Barsi et al. 

2003, Barsi et al. 2005). This atmospheric calculator uses the date, time and location of a point to 

model the atmosphere and produce τ, L↑, and L↓ at a 1x1 degree resolution from which 

individual locations are interpolated. I created yearly 1x1 degree grid for the South Central 

Semiarid Prairies and for the centroid of each cell and recorded the date and time of image 

acquisition as well as the spatial location. Using this information, I queried the Atmospheric 

Correction Parameter Calculator to obtain the three atmospheric parameters for each location for 

each year, which were then used to calculate ψ1, ψ2, ψ3. 

Lastly, to determine surface emissivity (ε) for the LST equation, I used the relationship between 

NDVI and emissivity (Van De Griend and Owe 1993, Valor and Caselles 1996), following the 

equation: 

ε =  εv𝜆 ∗ 𝑃𝑣 + ε𝑠𝜆 ∗ (1 − 𝑃𝑣) + 𝐶𝜆 
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where εvλ, the assumed emissivity of full vegetation, is 0.99, εvλ, the assumed emissivity of soil, 

0.96, Pv is the proportion of vegetation, and Cλis surface roughness correction. Pv (Carlson and 

Ripley 1997) was calculated from: 

𝑃𝑣 =  (
𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑠

𝑁𝐷𝑉𝐼𝑣 − 𝑁𝐷𝑉𝐼𝑠

)
2

 

 

Here I used the NDVI variable previously calculated, and used the global values of NDVIs = 0.2 

(NDVI of soil cells) and  NDVIv = 0.5 (NDVI of vegetation cells) proposed by Soberon and 

Raissouni (2000). For the surface roughness correction, I used the equation: 

𝐶𝜆 = (1 −  ε𝑠𝜆) ∗  εv𝜆 ∗ 𝐹′ ∗ (1 − 𝑃𝑣) 

 

I used the value of 0.55 for F´, a geometrical factor (between 0 and 1), which Sobrino et al. 

(1990) calculated as the mean value for a rough and heterogeneous surface.  

I averaged yearly variables across the time-period of the study (2004 – 2014) to produce one 

variable for each environmental parameter. The resolution of Landsat 7 ETM+ Level 2 products 

was slightly larger than 30m (~ 32.6m), so I resampled the environmental parameters to 32.6m 

using the nearest neighbor technique and established this as my base resolution. For each 

resampling technique (see below), I started at the smallest grain size and resampled to the 

calculated grain size.  

Because I used remote sensing imagery to calculate variables, my environmental parameter final 

outputs had gaps of missing data from areas of persistent cloud cover or areas where no images 
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with < 20% clouds were available for the study time period (11 of the 924 scenes), with the 

exception of aspect, which had complete coverage. 

Resampling Technique 

I resampled the environmental parameters from my base resolution of ~33m to 11 additional 

resolutions in multiples of 33. Specifically, these resolutions were: 99m, 165m, 231m, 333m, 

429m, 561m, 660m, 759m, 891m, 990m, and 1089m. I used three resampling techniques: nearest 

neighbor, bilinear interpolation, and aggregation, see Figure 2. Resampling was done in ArcMap 

(ESRI 2016), where each new grain size was resampled from the base resolution of 33m. 

To quantify the variation of each environmental parameter at each grain size resampled under 

each technique, I calculated the coefficient of variation (CV). I used ArcMap (ESRI 2016) to 

calculate basic statistics on each variable (mean, standard deviation, minimum, and maximum) 

and divided the standard deviation by the mean to standardize the variation as a proportion. This 

allowed us to compare variation between variables, grain sizes and resampling techniques. 

Nearest Neighbor 

In nearest neighbor (NN) resampling, inverse logic is used to assign a value from the  nearest 

input cell to the output cell (Jensen 2005). The nearest neighbor resampling will upscale to any 

grain size from the original resolution and has two advantages. First, no pixel values are altered 

and there will be no missing data values in the output (Konecy 2003). Second, it is an efficient 

method as it requires the least amount of computation (Jensen 2005). Data loss occurs with this 

technique, but as the output data comes from the nearest neighbor, the loss is not necessarily due 

to homogenization. 

 

 



74 
 

Bilinear Interpolation 

The Bilinear Interpolation resampling technique (BIL), assigns output cell values based on a 

weighted distance of the four closest input cells, where closer cells are weighted more (Jensen 

2005), and it allows for the output cell to be any size (Figure 2). As the output cell value is 

dependent upon the surrounding input cells, data loss or homogenization is inevitable, although 

the magnitude of data loss is a product of the spatial structure of an environmental parameter 

across the landscape. 

Aggregation 

Aggregation (AGG) is a resampling technique that aggregates or clusters a specified number of 

cells into a new output cell, thus the output cell size must be a multiple of the input cell size. This 

means that the extent under consideration can be modified by either truncating the output for 

areas where the number of cells for an output raster does not exist or expanding it by using the 

available input cells to calculate the output cell. As with the previous technique, data 

homogenization occurs, but is largely driven by landscape characteristics (Hunsaker et al. 2001). 

To aggregate to larger grain sizes, I used the mean method, where the average of the input cells 

was used as the value for the output cell.  
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Figure 2 Illustration of resampling techniques used to upscale environmental parameters, 

modified from Figure 7-8 in Jensen (2005). (a) Nearest Neighbor, (b) Bilinear Interpolation, and 

(c) Aggregation. 

 

Species Distribution Modeling 

I used the Maximum Entropy (Maxent) algorithm to generate models at each grain size for Bell’s 

Vireo using the four environmental parameters: aspect, LST, NVI, and wetness. Maxent is a 

presence-background algorithm that estimates species distributions by comparing the variation of 

environmental parameters of presence locations to that of points randomly selected from the 

background (Elith et al. 2011). Regions which have environmental conditions more similar to 

occurrence locations will be given higher suitability probabilities (Phillips et al. 2006). 

I ran an initial model for each grain size to find spatially unique locations that fell within a data 

cell for all environmental variables. I then selected the occurrence locations that were common 

for all models to use for model training and testing. This ensured that the same number of 

occurrences were used for each model. Additionally, I calculated the number of background 
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points representing ~1% of my study region for each grain size so that the background was 

proportionately sampled across models. I used the crossvalidate feature of Maxent to create five 

models each using a unique 20% of the occurrences used as training and the remaining 80% used 

as testing. I averaged the five models to produce one overall prediction. I selected a logistic, 

continuous prediction, which I thresholded with the 10% minimum training presence. This 

threshold leaves out 10% of the training points having the lowest suitability. The advantage to 

this threshold is that it can be used for datasets where the error is unknown (but should still be 

accounted for) as this threshold is less sensitive to outliers or incorrectly located occurrences 

(Peterson 2006, Peterson et al. 2011). Additionally, this threshold produces more restrictive 

predictions (Radosavljevic and Anderson 2014). I used Maxent’s default settings for 

regularization parameter, maximum iterations, convergence threshold, and prevalence as these 

have performed well (Phillips and Dudik 2008). 

Model Evaluation 

Model Performance 

I used two model performance metrics to evaluate models and compare across grain sizes and 

resampling technique. The first was the area under the cure of receiver operating characteristic 

plot (ROC AUC) and the second, testing omission error. In SDM, the traditional ROC AUC plot 

(sensitivity, or fraction of presences predicted present vs. 1-specificity, or fraction of absences 

predicted absent) is modified to sensitivity vs. proportion of area predicted present (Phillips et al. 

2006, Phillips et al. 2009). Models with perfect discrimination will have an area under this curve 

(AUC) with a value of 1, whereas models with AUC > 0.7 are considered acceptable (Swets 

1988, Fielding and Bell 1997). Since the proportion of the area predicted present is highly 

influenced by the classification threshold as well as the size of the extent, AUC can be an 

unreliable criterion of model evaluation when used alone (Lobo et al. 2008, Jimenez-Valverde 
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2012). I also use omission error to evaluate models as a single indicator can be misleading about 

overall model performance (Lobo et al. 2008). Omission error is the percentage of known 

locations incorrectly classified as absences by the model. In general, lower omission rates 

indicate higher model performance (Mouton et al. 2010). I used another model to evaluate model 

performance, the proportion of study area predicted suitable. Maxent produces thresholded 

models based on the selected threshold, in this case, 10% training minimum training, to convert 

continuous suitability predictions to binary potential distributions. This metric is useful for 

evaluating models as poor performing models can have both low predicted suitable area (model 

unable to predict suitable areas outside the training occurrence locations) and high (models 

unable to discriminate between presence locations and background) (Peterson et al. 2011). I used 

the non-parametric Kruskal-Wallis test to compare average AUC, omission error, and predicted 

suitable area across resampling technique and grain size. I used the R (R Core Team) package 

DescTools (Signorell et al. 2018) to calculate Kruskal-Wallis comparisons. 

Variable Contribution 

I expected some correlation across the four variables as they are ecologically related and 

calculated from the same imagery (Landsat 7 ETM+) data. I also expected changes in correlations 

across variables with changing grain size, so I calculated correlational coefficients for all four 

variables at reach grain size for each resampling technique. I used SDMtoolbox 2.0 (Brown 2014, 

Brown et al. 2017) to calculate correlations for all variables at all grainsizes for all three 

resampling methods. Additionally, I compared variable contribution to model accuracy gain for 

all models. Maxent computes a percent contribution for each variable to the model. 
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Results 

Environmental Variation 

Across the three resampling techniques, I found that within variable variation, measured by CV, 

showed little to no change, with the exception of aspect (Figure 3). Aspect showed the highest 

variation of the four variables: under NN, aspect CV did not change and under BIL several 

fluctuations occurred but seemed to be noisy artifacts. However, when resampled using AGG, 

aspect steadily lost variation (CV decreased from 0.62 to 0.12). The remaining three variables 

showed little change in CV across the three resampling techniques, although the amount of 

variation across the environmental variables was quite large. The most variation occurred in 

NDVI (~0.40), followed by WET (~0.20), and lastly LST having the least amount of variation 

(~0.01) across all resolutions. NN and BIL showed the most similarity in CV across increasing 

grain size.  
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Figure 3 Coefficient of Variation (standard deviation/mean) for the four environmental 

parameters, aspect (light grey), NDVI (medium grey), wetness (dark grey), and land surface 

temperature (black) at each grain size for each resampling technique: (a) Nearest Neighbor, (b) 

Bilinear Interpolation, and (c) Aggregation. 
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Model Performance 

Overall, model performance, measured by AUC, was moderate (0.747 – 0.842). I found that 

model performance did significantly differ for models based on resampling technique: NN 

(average AUC = 0.798), BIL (average AUC = 0.798), and AGG (average AUC = 0.805) (Table 1) 

for the Kruskal-Wallis comparison.  Both NN and BIL produced models with remarkably similar 

performance (Figure 4), as the AUC generally decreased with grain size, but only slightly. AUC 

across the AGG resampled grain sizes showed less deviation in model performance (see Figure 4 

(C)). However, when I compared model performance across grain sizes within each resampling 

method, I found no significant differences for based on resampling technique (Table 1). When 

model performance for each grain size was compared across the resampling techniques, no 

significant differences were found although 759m did come close to having significantly different 

model performance (p = 0.058) from the rest of the grain sizes.    
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Table 1 P-values for Kruskal-Wallis comparisons of average model AUC, OE, and PSA. Tech 

compared all models across resampling technique. Grain-NN, compares models across each grain 

size for the nearest neighbor resampling technique, Grain-BIL and Grain-AGG are for bilinear 

interpolation and aggregation respectively. Tech-30 compares all models at 30 m resolution 

across resampling technique, as such with models up to 990 m resolution. Numbers in bold are 

significant comparisons (< 0.05). 

 p-value 
 AUC OE PSA 

Tech 0.012 0.916 0.000 
    

Grain-NN 0.363 0.999 0.000 
Grain-BIL 0.323 0.999 0.000 

Grain_AGG 0.719 1.000 0.000 

    
Tech-33 1.000 1.000 1.000 
Tech-99 0.993 0.970 0.001 

Tech-165 0.934 0.992 0.009 

Tech-231 0.691 0.865 0.011 
Tech-333 0.645 0.910 0.009 
Tech-429 0.112 0.820 0.112 
Tech-561 0.293 0.990 0.332 

Tech-660 0.746 0.853 0.250 
Tech-759 0.058 0.992 0.321 

Tech-891 0.182 0.970 0.426 
Tech-990 0.275 0.679 0.925 

Tech-1089 0.400 1.000 0.035 
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Figure 4 Boxplot showing AUC values for the five Maxent replicates for each grain size 

resampled with each technique (a) nearest neighbor, (b) bilinear interpolation, and (c) 

aggregation. 
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Overall, omission error was relatively low, ranging from 0.05 to 0.18 and did not significantly 

differ by resampling technique (Table 1). Omission error was so similar across resampling 

technique and grain size (Figure 5) that no Kruskal-Wallis comparison was significant (Table 1).  

 

Figure 5 Boxplot of omission error for the five Maxent replicates at each grain size for (a) nearest 

neighbor, (b) bilinear interpolation, and (c) aggregation. 
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Using the 10% minimum training threshold, Maxent calculated the proportion of the study area 

that is predicted suitable (PSA) for each replicate. I found relatively little variation in PSA across 

models (0.440 – 0.558) with an increase in PSA when NN and BIL techniques were used and 

general having more PSA at each grain size when AGG was used (Figure 6). Variation in PSA 

across grain sizes was most evident with AGG.  Kruskal-Wallis test showed that PSA across 

resampling techniques was strongly significant (p < 0.0000) as was PSA compared across grain 

size within each sampling technique (NN, BIL, and AGG; p < 0.000; Table 1).  However, when 

each grain size was compared across resampling methods, Kruskal-Wallis tests showed 

significant differences (p < 0.01 and p < 0.05) occurred at smaller grain sizes (99m – 333m) than 

larger grain sizes (429m – 990m), with the exception of 1089m. 



85 
 

 

Figure 6 Boxplot of predicted area for the five Maxent replicates at each grain size for (a) nearest 

neighbor, (b) bilinear interpolation, and (c) aggregation. 
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Variable Contributions 

After calculating correlation coefficients for all four variables at all 12 grain size for each of the 

three resampling techniques, I found that only one variable pair (WET and NDVI) showed a 

consistent strong relationship at all grain sizes ( r = -0.659 to -0.747) for both AGG and BIL 

(Table 2). The correlations between LST and NDVI were intermediate (r ~ 0.700). Perhaps the 

most noticeable change in relationship across grain size was between LST and NDVI, which 

showed noticeable increases in correlation at 600m and 990m grain sizes from -0.385 to -0.725, 

when resampled using AGG. However, this relationship was stronger for grain sizes resampled 

with BIL, except for 600m and 990m. No clear trend in correlations between AGG and BIL 

resampling was evident, as some variable pair relationships (e.g. LST) were stronger in BIL and 

others in AGG, (aspect relationships). 
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Table 2 Correlational coefficients calculated between all environmental parameters at each grain size. Numbers in bold in bottom 

left of each matrix are r- values for the AGG resampling technique and numbers in grey in upper right of matrix are for BIL. NN 

and BIL showed similar r-values across the grain sizes so only one is shown here. Underlined numbers show r  ≥ 0.700. 

 

30 m  90 m  150 m 

 ASP LST NDVI WET   ASP LST NDVI WET   ASP LST NDVI WET 

ASP  -0.011 0.018 -0.013  ASP  -0.008 0.014 -0.012  ASP  -0.006 0.011 -0.009 

LST 0.009  -0.692 0.571  LST 0.009  -0.690 0.574  LST 0.013  -0.677 0.566 

NDVI 0.024 -0.384  -0.716  NDVI 0.024 -0.384  -0.712  NDVI 0.028 -0.385  -0.700 

WET -0.015 0.349 -0.717   WET -0.015 0.349 -0.717   WET -0.013 0.346 -0.727  

                 

210 m  300 m  390 m 

 ASP LST NDVI WET   ASP LST NDVI WET   ASP LST NDVI WET 

ASP  -0.005 0.016 -0.007  ASP  -0.009 0.024 -0.016  ASP  -0.010 0.017 -0.014 

LST 0.019  -0.676 0.584  LST 0.022  -0.683 0.590  LST 0.024  -0.682 0.584 

NDVI 0.046 -0.375  -0.698  NDVI 0.048 -0.384  -0.698  NDVI 0.047 -0.336  -0.681 

WET -0.045 0.353 -0.729   WET -0.024 0.345 -0.747   WET -0.023 0.317 -0.705  

                 

510 m  600 m  690 m 

 ASP LST NDVI WET   ASP LST NDVI WET   ASP LST NDVI WET 

ASP  -0.004 0.017 -0.012  ASP  0.001 0.018 -0.008  ASP  -0.008 0.014 0.002 

LST 0.030  -0.669 0.593  LST 0.004  -0.670 0.567  LST 0.039  -0.671 0.564 

NDVI 0.053 -0.344  -0.685  NDVI 0.053 -0.703  -0.669  NDVI 0.053 -0.337  -0.659 

WET -0.018 0.310 -0.729   WET 0.001 0.557 -0.727   WET 0.007 0.305 -0.714  

                 

810 m  900 m  990 m 

 ASP LST NDVI WET   ASP LST NDVI WET   ASP LST NDVI WET 

ASP  0.002 0.010 -0.004  ASP  -0.002 0.020 -0.012  ASP  0.003 0.006 -0.003 

LST 0.042  -0.660 0.581  LST 0.442  -0.672 0.596  LST 0.005  -0.667 0.566 

NDVI 0.439 -0.340  -0.676  NDVI 0.050 -0.343  -0.696  NDVI 0.043 -0.725  -0.657 

WET -0.001 0.310 -0.746   WET -0.011 0.312 -0.742   WET -0.011 0.582 -0.729  
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Variable contribution to model accuracy gain was strikingly similar between NN and BIL 

resampling techniques, with WET contributing the most to models at all grain sizes (range = 

44.7% at 333m and 58.5% at 429m; Figure 7). LST was always the second most contributing 

variable at all grain sizes for NN and BIL resampling techniques (range 28.5% at 990m and 

38.9% at 99m), followed by NDVI (range 7.1% at 99m and 21.2% at 759m) and lastly, ASP 

(range = 0.3% at 759m and 3.2% at 990m). Contribution of the four environmental parameters 

was much more varied for the AGG resampling technique, except for WET which was still 

generally the highest contributing variable (10 of 12 grain sizes), but showed more variation in its 

contribution (range = 69.5% at 99m and 19.2% at 1089m) than for either NN or BIL. For AGG 

grain sizes 660m and 1089m, WET was not the highest contributing variable, but rather LST and 

NDVI. The most change in variable contribution under AGG resampling technique occurred for 

NDVI, which increased its contribution to model accuracy gain with increasing grain size, where 

WET appeared to decrease contribution with increasing grain. Overall, variable importance was 

more volatile when cells were resampled with AGG than either NN or BIL.  
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Figure 7 Average variable contribution for the five replicates for each grain size for (A) nearest 

neighbor, (B) bilinear interpolation, and (C) aggregation. Variables: wetness (solid line), land 

surface temperature (dotted line), NDVI (dashed line), aspect (dot-dashed line). 
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Although predicted suitable area differed slightly but significantly between resampling 

techniques, these differences did not change the spatial predictions (Figure 8). All models showed 

higher suitability for Bell’s Vireo in the northeast and southeast portions of the South Central 

Semiarid Prairies. For NN and BIL, model performance and variable contribution were nearly 

identical, thus leading to similar spatial predictions of suitability. More interestingly is the change 

of variable contribution in the AGG technique that still converges on a very similar suitability 

prediction as NN and BIL. The overall prediction of these models follow expected ecological 

relevancy with wetter conditions and denser vegetation increasing to the east.  
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Figure 8. Thresholded (10% minimum training) Maxent predictions for Bell’s Vireo using three 

resampling methods (a) Nearest Neighbor, (b) Bilinear Interpolation, (c) Aggregation for three 

grain sizes, 99 m (left), 429 m (middle) and 1089 m (right). 

 



92 
 

Discussion 

A key challenge in species-environment investigations is uncovering the scale at which these 

relationships occur. In SDM, studies of changing grain size have varying conclusions about the 

effects on model performance (Seoane et al. 2004, Guisan et al. 2007a, Seo et al. 2009, 

Gottschalk et al. 2011, Bellamy et al. 2013, Song et al. 2013, Suarez-Seoane et al. 2014, Connor 

et al. 2018). Surprisingly, little quantification of environmental parameter variation has occurred 

in previous research considering that variation is expected to change across grain sizes, extents, 

and ecoregions (Wiens 1989). Additionally, no attention has been given to resampling technique, 

although Mertes and Jetz (2018) acknowledged that resampling changes the properties of the 

environmental predictors. Resampling is a common practice in SDM and little is known about 

how this may influence model output. Environmental variables used in SDM come in varying 

resolutions that are generally altered to an ecologically relevant grain or to match other predictors 

used in the model. Although information loss is expected with upscaling, the loss is not 

necessarily the same across sampling techniques (Atkinson 1988, Hay et al. 1997, Hunsaker et al. 

2001). Nearest neighbor does not change values, bilinear interpolation creates new variables 

based on the location of a neighborhood of cells, and aggregation forms new values from 

summary statistics calculated on a moving window of cells. How the observed variation changes 

is also related to the amount of heterogeneity in the study extent and the spatial structure of the 

variable (Hunsaker et al. 2001).  

By calculating the coefficient of variation (CV), I was able to show environmental variation 

changes in respect to resampling technique. Specifically, I found that the landscape or underlying 

ecoregion making up the background affected the variation as well as the environmental 

parameters used. For my study region, I chose variables with high (aspect), medium (NDVI and 

LST) and low (WET) variation across the region and found that variation was preserved with 

resampling, with the exception of aspect. This is likely due to aspect’s lack of spatial structure 
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across the study region, whereas the remaining variables showed distinct structuring. Variation is 

expected to decrease with increasing grain size due to homogenization (Wiens 1989), especially 

with the AGG technique, but my results show that this may not be the case for some ecoregions. 

Both NN and BIL consider the proximity of neighboring input cells in relation to the output cell 

location, which should move with increasing grain. This indicates that the cells selected as the 

nearest neighboring should also change; creating new values for output cells at each grain size 

(Jensen 2005). Because both of these techniques had constant environmental variation (for three 

environmental parameters), this also indicates strong spatial structure structuring of these 

variables (i.e. a gradient or spatial autocorrelation). The adjacency of similar values would 

produce the observed preservation of environmental variation (for NDVI, LST, and WET) and in 

cases such as this, the spatial structure is likely more susceptible to variation changes with extent 

manipulation rather than grain (Anderson 2018). Xu et al. (2018) demonstrated that upscaled 

remote sensing images when compared to images collected at the larger resolution showed 

differing classification accuracies based on resampling techniques with varying data loss.  

Generally, as the relationship of variation in background versus presence locations change, 

differences in model performance should occur. However, I found that even though variation 

within environmental parameters did not change across the resampling techniques, in some cases 

model performance did. Model performance measured by AUC was generally not impacted by 

the resampling method and showed a decreasing trend with increasing grain size. The more 

homogenizing effect of the AGG technique appeared to create models that did not show as much 

variation in AUC as did both NN and BIL. This is surprising as variable importance showed 

relatively large amounts of dissimilarity. Changes in model behavior such as variable importance 

usually suggest changes in model performance, and while AUC did not significantly change, the 

amount of predicted suitable area was significantly larger for the AGG resampling technique. 

Despite the difference in predicted suitable area across NN, BIL, and AGG, omission error did 
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not differ overall. The significant differences in predicted suitable area at the smaller grain sizes 

(33m – 333m) may suggest that AGG created upscaled environmental parameters with less data 

gaps. As the technique simply averages a neighborhood of cells were ignored and the output 

would be one cell with the new averaged value. This decrease in missing data appears to not be 

the case for NN and BIL, which use inverse logic. 

The overall subtle differences in model performance, while surprising are not unprecedented. 

Pradervand et al. (2013) modeled distributions for 239 plant species at six grain sizes in the Swiss 

Alps and found little difference in AUC. Additionally, thematic resolution was more important 

than spatial resolution for the distribution of several tree species in montane temperate forest in 

northeast China (Liang et al. 2013). The importance of scale, represented by grain, may differ 

between sessile and vagile organisms as studies using bats (Bellamy et al. 2013) and birds 

(Gottschalk et al. 2011) showed difference in model performance (both increases and decreases) 

as measured by AUC and were species specific. Guisan et al. (2007a), using only two grain sizes, 

showed the opposite that plant models were more affected by coarsening grain than birds. Both 

Connor et al. (2018) and Mertes and Jetz (2018) accounted for the spatial structure of study 

regions when investigating the influence of grain size on model accuracy. For seven virtual 

species, AUC decreased with increasing grain size in both heterogeneous and homogenous 

landscapes, although species were better modeled on heterogeneous landscapes when grain size 

was not considered. When the scale at which a species responds to the environment is known, 

larger grain sizes degrade model performance more than smaller grain sizes (relative to response 

grain) (Connor et al. 2018). Using 3,000 virtual species simulations, Mertes and Jetz (Mertes and 

Jetz 2018) found that the spatial structure of environmental variables was a large determinant in 

the performance of SDMs at different grain sizes. Environmental predictors exhibiting fine-scale 

heterogeneity performed poorly when upscaled, as many important features of the environment 

were lost in the aggregation process and they warn that overly coarse environmental data (in 
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relation to species response grain) will produce spurious models that misconstrue the species-

environment relationship (Mertes and Jetz 2018). Using virtual species to better understand 

dynamics between response grains and environments does provide insights into scaling 

considerations for SDM, however much work is needed to better match species response grains to 

environmental grains for real world applications. 

My study exemplifies the difficulty in acquiring data that are both directly measured and 

complete, as cells with missing data may influence model performance. Remote sensing data are 

susceptible to clouds (Kechu and Wentao 1984, Scales et al. 2017), shadows (Ranson and 

Daughtry 1987), and other atmospheric effects (Morimoto et al. 1979), but on the other hand can 

better match the temporal resolution of occurrence data. Missing data values likely contributed to 

model performance overall predictions, due to upscaling. This is most evident using AGG, as 

certain grain sizes produced “blocky” data voids at the study area margins. Remote sensing data 

has been shown to improve model performance (Buermann et al. 2008, Deblauwe et al. 2016), 

although in some cases can introduce bias if used incorrectly (Bradley et al. 2012). However, the 

field of remote sensing can offer more than just data to the scale question in SDM. Woodcock and 

Strahler (1987) identified three factors to consider when determining the best classification scale 

for an image: desired output, method used to extract information, and spatial structure of the 

scene. These considerations are a useful guide in the development of models and echo many of 

the suggestions published in the SDM literature. Perhaps the biggest advantage of remote sensing 

data in the SDM framework is the real-time observation of the Earth’s surface allowing for more 

nuanced study extents and temporal investigations, as well as better capture the variation in 

environmental conditions (He et al. 2015).  

For SDM utilizing the Maxent algorithm, an awareness of the variation in the background 

environment is fundamental as background conditions inform the model about prior expectations 

before the environmental conditions of presence data is accounted for (Merow et al. 2013). As 
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resampling is expected to change variation (Wiens 1989) and spatial structure (Hunsaker et al. 

2001) in environmental conditions, resampling methods that minimize distortion of these 

environmental predictor characteristics are ideal. However, the choice of resampling method is 

dependent upon the study extent, the variables under consideration, and the species of interest, as 

these act in conjunction to frame scale dependent responses of species. Since Maxent uses species 

locations to constrain the expected distribution, to produce a predicted species specific 

distribution as it conforms to what is known without the inclusion of unknown parameters 

(Phillips et al. 2006). Thus, accurate depictions of the study region and presence locations in 

terms of the environmental conditions is needed. 

While this study provided a first look at how resampling may effect SDM, there are still many 

aspects that remain unknown; specifically, how the underlying spatial structure of environmental 

variables is altered. Users must recognize that decisions in the modeling process will potentially 

influence on model performance and overall usability in unexpected ways. When it comes to 

resampling, there is still much left to understand. Designing models that are specific to the 

species and study objectives is generally the best approach, based on these two factors, I suggest 

exploring resampling methods by comparing measures of background variation as these different 

methods are used. Additionally, multiple grain and extents should be investigated in conjunction 

with the biology of the species to find response scales for environmental predictors.  

Conclusion 

I investigated the effects of resampling environmental predictors on model performance and was 

able to show that for the study region, the effects were significant in one regard, predicted 

suitable area and not others, AUC and omission error. In addition, I tested the effects of grain size 

on SDM performance using a large study extent, short temporal range, and multiple remote 

sensing derived environmental variables. While I found results similar to previous studies, they 
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suggest that many of these modeling parameters interact making the modeling process highly 

case-specific. 
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CHAPTER IV 
 

 

SEASONALITY OF ENVIRONMENTAL CONDITIONS CONTRIBUTES TO 

DIFFERENCES IN MODEL PERFORMANCE AND ACCURACY OF ESTIMATED 

POTENTIAL DISTRIBUTIONS OF SPECIES 

 

Abstract 

The interactions between species and their environment occur across spatial and temporal scales. 

These are not always independent influences as they often interact to shape species’ responses to 

the environment. Temporally, species exhibit a wide range of interactions with their environment 

occurring across varying time frames. Since many species exhibit phenology, changes in 

ecological relationships across seasons, understanding seasonal influences on species 

distributions is paramount. Using seasonal variables in the species distribution modeling (SDM) 

framework is rare, and usually focuses on species level responses to seasons. However, 

populations within a single species can show variation in phonological responses to the 

environment. I use Bell’s Vireo, a species comprised of two distinct populations (western and 

eastern), which exhibit distinct difference in breeding season habitat use, as a case study to 

investigate the inclusion of seasonally explicit environmental predictors in SDM. Specifically, I 

compared seasonal and annual climatic variables expected to shape available habitat internally 

and externally for the breeding ranges of both populations. Additionally, I projected these models 
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under two emission scenarios (4.5 and 8.5) for three future time periods (2020, 2050, and 2080). I 

found differences between the two populations in climatic conditions at the breeding range 

locations compared to wintering locations, suggesting that within the species, the populations are 

both utilizing similar but also different climatic conditions from wintering areas. Further, the 

inclusion of seasonal variables did not necessarily improve models for both populations. 

However, the use of seasonal variables did significantly show increased proportions of suitable 

area compared to annual variables for all models and future projections. 

Introduction 

The distribution of organisms across landscapes is the expression of natural selection and 

adaptions to environmental conditions (Morrison et al. 2006).  However, fully understanding 

species-habitat relationships requires the consideration of scale (Wiens 1989, Levin 1992). 

Species have distinct responses to environmental conditions at different scales (Wiens 1989, 

Fisher et al. 2011, Thornton and Fletcher 2014). Spatial scale consists of two separate but linked 

components: extent (geographic region under analysis) and grain (spatial size of observation). 

Changes in extent and grain modify perceived ecological phenomena, by constraining or 

encompassing variation. Independently, increases in extent incorporate more spatial variation 

across the study extent, whereas increases in grain decrease variability across the study extent; 

although, the spatial structuring of ecological phenomena may determine the degree to which 

variation is altered. For example, highly structured environmental conditions have values located 

near similar values (e.g. temperature gradient) and changes in grain or extent may not necessarily 

change observed variation if grain values are resampled with similar surrounding values (Mertes 

and Jetz 2018). 

In addition to differential responses of species to the spatial scale of environmental variables, 

species are also influenced by the temporal scale of environmental conditions (Wiens 1989). 
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Temporal scale has similar attributes of spatial scale, such as an extent (length of time under 

observation) and grain (the frequency of observations) to which species will uniquely respond 

(Schneider 1994, Morrison et al. 2006). The temporal variation of environmental variables can 

exhibit structuring, such as temporal autocorrelation, which may shape species’ response 

(Moloney and Levin 1996, Metcalf and Koons 2007, Meyer et al. 2007). Interactions between 

spatial and temporal scales configure the ecological processes to which species react, making 

predictions about species habitat relationship difficult. 

Species distribution modeling (SDM) is a widespread technique utilized in predicting species 

distributions to further our understanding of species-habitat relationships (Guisan and Thuiller 

2005). In short, SDM uses geographical locations of species to extract environmental conditions 

associated with presences to predict new environmentally suitable areas across geographic 

extents. The perceived response of species to environmental conditions in SDM is highly 

dependent on the extent and grain of environmental explanatory variables (Guisan et al. 2007, 

Seo et al. 2009, Barve et al. 2011, Hanberry 2013, Song et al. 2013, Bean et al. 2014, Suarez-

Seoane et al. 2014, Vale et al. 2014, Connor et al. 2018, Mertes and Jetz 2018). Although 

temporal scales are expected to influence SDM, less work has quantified this effect (Reside et al. 

2010, Pickens and King 2014, Fernandez et al. 2017, Hereford et al. 2017, Bonthoux et al. 2018).  

Most variables available for SDM are either interpolated surfaces (e.g. WorldClim 

(http://www.worldclim.org), PRISM (http://prism.oregonstate.edu)), or directly measured remote 

sensing surfaces (e.g. normalized difference vegetation index, land surface temperature), each of 

which exhibits tradeoffs in their use. For example, interpolated surfaces often have long temporal 

ranges but have data for all cells/pixels within the modeled geographic extent, whereas remote 

sensing variables can offer short temporal ranges but may exhibit missing data due to cloud 

obstruction or sensor malfunctions. Generally, the availability of environmental data strongly 

influences decisions on the scale of environmental predictors used in SDM. 
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The incorporation of temporally explicit predictors in SDM is an important consideration as 

environmental conditions can exhibit variation over multiple time-periods (e.g. hourly, daily, 

monthly). Temporal variation in environmental predictors can be more important for some 

organisms than others, such as sessile and vagile or resident and migratory species. Specifically, 

long temporal variables imply that the conditions are suitable long-term in an area where a 

species presence location occurs (Reside et al. 2010), which is not always the case. Pickens and 

King (2014) demonstrated the importance of multi-temporal variables in habitat models for 

systems, such as wetlands, which are temporally dynamic. For oceanic environments, Fernandez 

et al. (2017) acknowledged that low-frequency temporal data did not always reproduce the 

variation found at higher temporal frequency, resulting in misleading predictions. Further, 

temporal effects may have distinct implications for a species, as coarse predictions of suitability 

for the Mediterranean blue mussel were not influenced by temporal scale; whereas the 

reproductive dynamics were highly depend on the temporal scale of data (Montalto et al. 2014). 

Bonthoux et al. (2018) found that single date NDVI models performed better than multi-data 

models when the appropriate time period was used.  Similarly, short-term weather models 

performed better than long-term climate models for many Australian birds, of which some were 

highly mobile and others more sedentary, indicating the influence of weather variation is 

important and likely to influence species under climate change (Reside et al. 2010).  

Temporal variation is not limited to time ranges, but also the time of year, as seasonality plays a 

large role in ecological phenomena (Levin 1992). Seasonal habitat use has been shown for 

numerous taxa including insects (Jacobi and Cary 1996), fish (Johnson et al. 2016), reptiles 

(García 2008), birds (McClure et al. 2013, Varner et al. 2014), and mammals (Milakovic et al. 

2012, Fynn et al. 2014). Further, Smeraldo et al. (2018) was able to show that models which 

consider a species phenology (i.e. seasonally variable ecological requirements) better estimate a 

species’ niche or distribution. This is especially true for migratory species like many bird species, 
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which exhibit differential habitat use for breeding and wintering seasons (Engler et al. 2014). 

Habitat use during the breeding season is thought to fall into one of two categories: “niche-

followers” that utilize similar environmental conditions in wintering and breeding, and “niche-

switchers” that utilize distinct environments between the two seasons (Nakazawa et al. 2004, 

Engler et al. 2017). Additionally, some species show high variation in breeding season 

environmental selection (Parody and Parker 2002), further complicating the temporal aspect of 

the species-habitat relationship. Since migratory bird abundance is proportionally related to the 

amount of suitable breeding habitat available (Sherry and Holmes 1993), the need to decipher 

spatio-temporal influences on migratory bird distributions is crucial. 

I used Bell’s Vireo (Vireo bellii), a Neotropical migratory songbird, as my study system as the 

species exhibits two distinct population clusters (west and east) inhabiting environmentally 

distinct areas. The western population (hereafter BEVI-west) consists of two subspecies V.b. 

arizonae, and V.b. pusillus, which are associated with cottonwood-willow dominated riparian 

vegetation within southern California and Arizona (Franzreb 1987). The eastern population 

(BEVI-east) comprised of V.b. bellii, V.b. medius is affiliated with dene shrubby vegetation in a 

variety of landscapes such as grasslands and shrublands (Budnik et al. 2000) and demonstrates a 

more generalist approach to habit selection (early-successional dense grassland-shrubland areas) 

compared to BEVI-west (riparian areas). Habitat selection is expected to differ between the two 

populations as Parody and Parker (2002) were able to measure variation in the environmental 

features of nest sites across the two populations of Bell’s Vireo. A recent genetic analysis from 

Klicka et al. (2016) indicates that the west-east population divide, occurring near the 

Arizona/New Mexico border, actually delineates two separate species, each encompassing two 

sub-species. Thus, Bell’s Vireo provides an ideal opportunity to investigate the influence of 

seasonal versus annual climatic variables in structuring the distribution of a species (or very 

closely related two species), which selects habitat distinctive from background (e.g. riparian 
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areas) in one geographic region and habitat exhibiting only subtle differences from the 

background (e.g. shrubby grasslands) in a different region.  

I use climatic variables as proxies for habitat variables, since climatic conditions shape habitat at 

broad and fine scales (McGill 2010). My objectives were three-fold. First, I explored the use of 

seasonal and annual variables in SDM, to describe suitable habitat for the two Bell’s Vireo 

population. Secondly, I investigated if study area extent changed the contribution of seasonal and 

annual variables. Lastly, I tested the performance of seasonal and annual variables to predict 

distributions into the future under two greenhouse gas emission scenarios. 

Methods 

Occurrence Data 

I downloaded Bell’s Vireo occurrence locations from several and to some degree overlapping 

sources, specifically I acquired 292,333 locations from eBird (eBird 2017) (Sullivan et al. 2009), 

105,128 records from GBIF (GBIF 2018) (Telenius 2011), and 97,175 records from BISON 

(BISON 2018). I divided the records into two temporal data sets, pre-1990 and 2011-2018. For 

both temporal data sets, I identified BEVI-west occurrences from BEVI-east using two criteria: 1) 

location, by which I kept records that were located within the known breeding range of each 

population and 2) sub-species identification, for the area where overlap in the two populations’ 

breeding ranges occurs; I only retained records that included a sub-species identification. I further 

filtered occurrences by the precision of the coordinates, only keeping records with at least two 

significant digits (~ 1 km) for both longitude and latitude. I removed records that were associated 

with atlas or gridded sampling (e.g. 10 min block sampling) and records associated with high 

locational uncertainty (e.g. Breeding Bird Survey, county centroids) or traveling checklists ≥ 0.25 

km. Lastly, I removed duplicate records and occurrences located within the same data cell. Using 

the same filtering criteria, I complied a data set of historical wintering Bell’s Vireo occurrences 
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(pre-1990), BEVI-winter. After filtering occurrence locations for both Bell’s Vireo populations, 

my four data sets were BEVI-west training which encompassed all pre-1990 occurrence locations 

(85), BEVI-west testing which included locations collected between 2011 and 2018 (1,006), 

BEVI-east training (73), and BEVI-east testing (1,968). I used the final occurrence data sets for 

both BEVI-west and BEVI-east to create convex polygons with 25 km buffers representing the 

breeding range training regions; the BEVI-west range encompassed 79,964 km2 and BEVI-east 

covered 2,032,780 km2 (Figure 1). 

 

Figure 1 Top: Pre-1990 occurrence locations for BEVI-west, BEVI-east, and BEVI-winter. 

Breeding range polygons are shown in grey for both populations. Bottom: Independent testing 

data (2011 – 2018) BEVI-west (squares) and BEVI-east (triangles) used for 2020 model 

projections. 
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Environmental Data 

I used six 1 km variables acquired from the ClimateNA dataset (Wang et al. 2016); three annual 

variables, annual heat moisture (AHM), mean annual temperature (MAT), mean annual 

precipitation (MAP) and three seasonal (breeding) variables, summer heat moisture (SHM), 

summer average temperature (TAV-S) and summer precipitation (PPT-S). I chose AHM and 

SHM since these variables represent the ratio between the warmest temperature and mean 

precipitation, annually and seasonally respectively. Higher values of either variable indicate 

hotter and drier conditions with lower values indicating cooler and wetter conditions. I also 

included temperature and precipitation, as these are highly variable annually and seasonally and 

were expected to differ between the breeding ranges of the two Bell’s Vireo populations. I 

downloaded historical data (1961-1990) based on the CRU-TS 3.22 data set (Mitchell and Jones 

2005) and future climate projections for three 30 year time periods 2011-2030 (hereafter 2020), 

2041-2070 (2050), and 2071-2100 (2080) using an ensemble projection of 15 Atmosphere-Ocean 

General Circulation Models (AOGCM) (Knutti et al. 2013). General Circulation Models (GCMs) 

are designed to model the climate system by incorporating multiple properties of the atmosphere 

(physical, chemical, and biological), atmosphere-ocean interactions, ocean properties, and 

land/ice surface properties (Harris et al. 2014). It is important to acknowledge that these models 

do not predict future climate conditions; rather they describe climatic conditions under a suite of 

possible future climate forcing scenarios (Weaver et al. 2013). GCMs use future emission 

scenarios from four Representative Concentration Pathways (PCPs) (2.6, 4.5, 6.0, and 8.5) 

describing different policies ranging from carbon emission mitigation (2.6) to no mitigation 

policy (8.5) (Harris et al. 2014). 

I clipped both the annual and seasonal variables (1961 – 1990) to two training extents, the 

breeding range for each population (BEVI-west and BEVI-east) and for the United States and 

Mexico combined (US-MEX). I extracted variable values from the 61-90 US-MEX 
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environmental dataset to BEVI-west, BEVI-east, and BEVI-winter to compare the distribution of 

annual and seasonal variables. I created density plots for breeding and wintering ranges for each 

variable. 

Further, I calculated basic statistics, minimum, maximum, mean, and standard deviation for each 

variables for each training region using ArcMap (ESRI 2016). I then calculated the coefficient of 

variation (standard deviation /mean) to describe the heterogeneity in the environmental predictors 

for the different training regions.  

Species Distribution Modeling 

I used the presence-background algorithm Maxent (v 3.4.1) to generate annual and seasonal 

models for the two populations of Bell’s Vireo. Maxent defines constraints from the combination 

of environmental data associated with presence and background locations to fit a distribution that 

maximizes entropy across a geographic extent (Elith et al. 2011). Locations within the geographic 

extent that have conditions similar to those at species’ presence locations are assigned higher 

probabilities of suitability. The choice of background is a crucial since it informs the shape of the 

probability distribution: selecting from too small a background can produce overfit models 

whereas too large a background can create oversimplified models (VanDerWal et al. 2009). As 

such, I used two methods to define the geographic extent from which background sampling 

would occur. In the first approach, I used the polygons depicting the breeding ranges for each 

population to delineate the extent of background sampling. Models created with this approach 

were then projected to US-MEX extent. For the second approach, I created models at the extent 

of US-MEX. I used both methods to create models with annual variables and seasonal variables 

from 1961-1990 for BEVI-west and BEVI-east. Historic occurrence data sets were separated into 

training and testing data using cross validation and three replicates. Since the extent size for 

background sampling differed, I constrained the number of background samples to 1% of the 
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training extents. To convert Maxent’s continuous suitability output to binary predictions, I used 

the 10% training presence threshold, which excludes 10% of the training data with the lowest 

suitability predictions to create a more restricted prediction (Radosavljevic and Anderson 2014). I 

took these “historic” models and projected them to the three future time spans: 2020, 2050, and 

2080. For projected 2020 models, I used the 2011-2018 occurrence data sets as independent 

testing data.  

Model Evaluation 

I evaluated model performance using three criteria: the area under the curve of the receiver 

operating characteristic plot (ROC AUC), testing omission error, and predicted suitable area. 

Generally, ROC AUC is used to compare models by using a plot of sensitivity and 1-specificity. 

For SDM, this plot is modified to sensitivity and proportion of area predicted suitable (Phillips et 

al. 2006, Elith et al. 2011). AUC values > 0.7 are considered acceptable (Swets 1988, Fielding 

and Bell 1997), with higher AUC values indicating higher discriminatory power. Since AUC is 

sensitive to model parameters (Peterson et al. 2008, Hanczar et al. 2010), I considered model 

performance indicated by AUC in conjunction with omission error and predicted suitable area 

(Lobo et al. 2008). Omission error is the percentage of known locations not classified as 

presences by the model, with lower omission error rates indicating higher model performance 

(Mouton et al. 2010). Lastly, I also calculated the proportion of area predicted suitable to evaluate 

model performance, from thresholded binary suitability maps. Relatively lower proportions 

indicate model overfitting, where the model is unable to predict suitable areas outside the 

presence locations, whereas relatively large proportions of suitable area indicates poor model 

discrimination such that larger areas must be predicted to include the presence locations. I 

compared omission error across 61-90 models and for 2020 models. I used the omission error 

rates calculated by Maxent, for 61 – 90 models; however, I calculated the 2020 omission error 

rate. For each 2020 model, I took the three replicate thresholded predictions and created a 
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composite prediction by adding them together and selecting the area where all three showed 

agreement. Using this composite prediction, I calculated the omission error rates using 2011-2018 

test data.    

I also evaluated variable contribution for seasonal and annual variables since Maxent calculates 

the percent contribution of each variable to model based on training gain. As I ran three 

replicates, Maxent calculated the average percent contribution for variables across the three 

replicates. I used this output to compare variables across training regions and temporal range. 

Lastly, I extracted values for all variables based the pre-1990 breeding occurrence locations of 

both populations (BEVI-west and BEVI-east) as well as pre-1990 wintering range as well as 

winter seasonal variables (temperature and precipitation). I created density plots in R using the 

ggplot package (Wickham 2016) to compare the distribution of environmental conditions 

encountered by Bell’s Vireos in their wintering range and breeding ranges. 

Results 

Environmental Data Variation across Ranges 

After calculating the mean and standard deviation at all time periods (61-90, 2020, 2050, and 

2080) and RCPs (4.5 and 8.5) for seasonal variables at the two occurrence dependent training 

ranges, BEVI-west and BEVI-east, as well as for the larger training range (US-MEX), I 

determined the coefficient of variation (CV), see Table 1. Annual variables exhibited more 

disparity in CV values than seasonal variables. For annual variables, AHM showed the most 

variation across all training ranges and time periods with most for US-MEX (61-90) and the least 

for BEVI-east. Generally, MAP showed higher variation than MAT, although the difference was 

dependent on training range as well as time period and RCP.  Similar to annual variables, SHM 

showed the CV values as well as the most variation in CV, with PPT-S having the second highest 

CV values followed by TAV-S.  
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Table 1 Coefficients of variation for both annual variables (AHM, MAT, MAP) and seasonal 

variables (SHM, TAV-S, PPT-S) at each of the three training regions (BEVI-west, BEVI-east, 

and US-MEX 61-90) as well as for each projection (US-MEX 2020, 2050, 2080) and RCP (4.5 

and 8.5). CV values over 1 indicate high variance and values lower than 1 indicate less variation. 

 Breeding Range US-MEX 

 BEVI-
west 

BEVI-
east 

61-90 2020 
(4.5) 

2020 
(8.5) 

2050 
(4.5) 

2050 
(8.5) 

2080 
(4.5) 

2080 
(8.5) 

          

AHM 0.808 0.467 1.036 1.020 1.004 0.995 1.003 1.003 0.993 
MAT 0.310 0.251 0.495 0.427 0.421 0.391 0.366 0.372 0.319 
MAP 0.843 0.313 0.608 0.605 0.605 0.603 0.607 0.605 0.602 

          
SHM 0.957 0.286 1.719 1.669 1.651 1.623 1.603 1.641 1.554 

TAV-S 0.200 0.087 0.197 0.178 0.177 0.169 0.160 0.162 0.144 
PPT-S 0.865 0.213 0.705 0.690 0.697 0.679 0.685 0.678 0.648 

 

 

Unsurprisingly, all US-MEX variables showed higher variation than either BEVI-west or BEVI-

east. US-MEX at time period 61-90 showed the higher CV than any other period of time or RCP 

scenario. Interestingly, BEVI-east always showed the least amount of variation for both annual 

and seasonal variables, despite covering an area significantly larger than BEVI-west. 

Additionally, all three seasonal variables showed lower variation than annual variables for BEVI-

east, whereas two seasonal variables, SHM and PPT-S, showed slightly higher variation than 

annual variables for BEVI-west.  

Density plots (Figure 2) showed that annual and seasonal variables differed across the two 

breeding ranges (BEVI-west, green and BEVI-east, red) and the wintering range (BEVI-winter, 

blue). For the three annual variables, BEVI-winter generally showed a high density of “extreme” 

conditions, this is not surprising as temperature and precipitation are generally higher at lower 

latitudes. The BEVI-west population showed higher frequency use of locations with more 

moderate annual temperatures as well as drier conditions than BEVI-east. Seasonally, BEVI-west 

and BEVI-east populations used locations with similar temperature regimes, but relatively drier 

locations were used by BEVI-west. Summer seasonal temperature and precipitation in the 
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wintering location for Bell’s Vireo were higher than the seasonal variables experienced by each 

population in its respective breeding range.  However, when I compared the temperature and 

precipitation from breeding season and wintering season localities, I found differences between 

the two populations (Figure 3). Specifically, temperature was relatively similar across the three 

geographic locations, but BEVI-east exhibited a preference for locations with higher precipitation 

than found in its wintering locations. 



124 
 

 

Figure 2. Density plots for annual variables (a – c) and seasonal variables (d – f) for BEVI-west 

(green), BEVI-east (red), and BEVI-winter (blue). Annual heat moisture (ahm), mean annual 

temperature (mat), mean annual precipitation (map), summer heat moisture (shm), summer 

average temperature (stav), and summer precipitation (sppt). 
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Figure 3. Density plots for (a) temperature and (b) precipitation for BEVI-west (green) and 

BEVI-east (red) breeding ranges (summer seasonal variables) and BEVI-winter (blue) locations 

(winter seasonal variables). 

 

 

Model Performance and Variable Contribution to Models 

All BEVI-east models showed lower AUC (range = 0.661 – 0.842), and higher omission error 

(0.123 – 0.221) compared to BEVI-west (AUC and omission error range, 0.713 – 0.928 and 0.117 

– 0.165, respectively; see Table 2). Models trained on the breeding range for both BEVI-west and 

BEVI-east performed worse than models trained at US-MEX. The difference in AUC between 

these models was more pronounced for BEVI-east (ΔAUC = 0.154) compared to BEVI-west 

(ΔAUC =0.104). Seasonal models showed slightly lower AUC performance for both populations 

when compared to annual models, with the exception of BEVI-west trained at US-MEX. Models 

for the eastern population of Bell’s Vireo showed higher omission error than the western 

population did, although all omission error was ≤ 0.221.  

  



126 
 

Table 2. Model performance metrics, AUC, omission error (OE), and predicted suitable area (PSA), as well as variable contribution for annual and 

seasonal models for both populations of Bell’s Vireo. All replicates are numbered (i.e. Rep 1) with the means for all three replicates underlined. 

 Annual Models 

 BEVI-west 
breeding 

BEVI-west 
US-MEX 

BEVI-east 
breeding 

BEVI-east 
US-MEX 

 Rep 1 Rep 2 Rep 3 Mean Rep 1 Rep 2 Rep 3 Mean Rep 1 Rep 2 Rep 3 Mean Rep 1 Rep 2 Rep 3 Mean 

AUC 0.799 0.768 0.831 0.799 0.899 0.921 0.890 0.903 0.734 0.695 0.628 0.686 0.844 0.782 0.901 0.842 
OE 0.069 0.250 0.071 0.130 0.310 0.000 0.179 0.163 0.24 0.125 0.125 0.163 0.08 0.5 0.083 0.221 
PSA 0.446 0.368 0.457 0.424 0.143 0.189 0.151 0.161 0.558 0.66 0.668 0.629 0.335 0.233 0.277 0.282 

                 

AHM 0.1 1.6 0.7 0.8 50.1 59.7 61.6 57.2 44.8 54.9 18.9 39.5 16.8 19.5 14.5 17 
MAT 78.6 74.3 74.7 75.9 48.0 37.6 37.2 40.9 13.3 28.9 32.5 24.9 65.7 48.5 62.6 58.9 
MAP 21.3 24.1 24.6 23.3 1.9 2.7 1.2 1.9 41.9 16.2 48.6 35.6 17.5 31.9 22.9 24.1 

                 
 Seasonal Models 

AUC 0.756 0.659 0.723 0.713 0.926 0.958 0.900 0.928 0.721 0.58 0.683 0.661 0.801 0.806 0.857 0.821 
OE 0.103 0.250 0.143 0.165 0.138 0.000 0.214 0.117 0.08 0.333 0.083 0.165 0.16 0.208 0 0.123 
PSA 0.481 0.444 0.523 0.483 0.109 0.315 0.104 0.176 0.694 0.692 0.748 0.711 0.38 0.367 0.402 0.383 

                 

SHM 8.1 8.5 7.9 8.2 64.9 77.2 79.6 73.9 69.6 65.2 78 70.9 20 13.2 16.4 16.6 
TAV-S 47.3 54.1 50.7 50.7 13.0 15.9 17.3 15.4 15.9 20.4 5.3 13.9 59 66.7 59.6 61.7 
PPT-S 44.6 37.4 41.4 41.1 22.1 6.9 3.1 10.7 14.4 14.4 16.7 15.2 21.1 20.1 24 21.7 
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In addition to lower AUC values and higher omission error (Table 2), BEVI-east models 

exhibited noticeably more predicted suitable area compared to BEVI-west models. The amount of 

predicted suitable area for breeding range trained models was larger than US-MEX trained 

models, in some cases over twice as large. This is was also the case for seasonal variables 

compared to annual variables, although the difference in the amount of area predicted suitable 

was only slightly higher for seasonal models.   

Variable contribution was highly dependent on training range, and differed dramatically between 

populations (Table 2). For both east and west Bell’s Vireo populations, the highest contributing 

variables for breeding range models were the lowest contributing variable for US-MEX models. 

For example, AHM contributed most to BEVI-east models and added little to model 

discrimination for BEVI-west, however the opposite is true for US-MEX models. I found that 

seasonal variables showed the same trend.  

Model Projections 

Omission error (calculated with 2011-2018 data) for models projected to 2020 was lower for 

BEVI-west models than BEVI-east models in all cases (Table 3). For BEVI-east, seasonal models 

showed lower omission error (1.73% - 24.14%) than annual models (33.38% - 39.43%). 

However, for BEVI-west, annual models exhibited better model prediction with lower omission 

error rates (3.88% - 5.77%) compared to seasonal models (9.94% - 16.00%).  Additionally, 

models trained at the breeding range did a poorer job of predicting BEVI-east locations leading to 

higher omission error than models trained for US-MEX, whereas for BEVI-west US-MEX 

models showed higher omission error. For both BEVI-east and BEVI-west, 2020 models for RCP 

4.5 showed slightly higher omission error than RCP 8.5 models.  
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Table 3. Omission error rates for 2020 projected (2011 – 2030) models using an independent 

testing dataset of 2011-2018 occurrences. 

 

 Annual 

 BEVI-west BEVI-east 
 Breeding US_MEX Breeding US_MEX 

2020  
(RCP 4.5) 

0.039 0.056 0.394 0.356 

2020  
(RCP 8.5) 

0.038 0.057 0.348 0.333 

     
 Seasonal 

2020  
(RCP 4.5) 

0.099 0.170 0.241 0.017 

2020  
(RCP 8.5) 

0.091 0.160 0.223 0.010 

 

 

For BEVI-west, 2020 models trained at the US-MEX extent produced more conservative 

predictions (Figure 3, top, column B and D), whereas for BEVI-east annual models (Figure 4, 

bottom, column A and B) were more conservative than seasonal models. Seasonal models for 

breeding range predicted the largest amount of climatic suitability for both populations, with 

BEVI-east covering a substantial portion of the US and Mexico. Most models predicted the most 

climate range expansion (in blue) at the northern portions of predictions, with the exception of 

BEVI-east models where increased suitability was predicted in the wintering range in central and 

southern Mexico. Interestingly, the breeding model with the largest predicted suitable area 

(Figure 3, bottom, column C) also exhibited the most range contraction under 2020 scenarios (in 

yellow). 
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Figure 4. Model projections for 1961-1990 (row 1) and 2020 projections under RCP 4.5 (row 2) 

and RCP 8.5 (row 3) for both the western (top) and eastern (bottom) population of Bell’s Vireo. 

Annual models trained at the breeding range are show in column A and US-MEX trained models 

in column B. Column C and D are breeding range trained and US-MEX trained models, 

respectively, for seasonal models. Black indicates mutual predictions between 1961-1990 and 

2020, blue indicates new areas predicted by 2020 (climatic range expansion) and yellow indicates 

areas predicted by 1961-1990 and not 2020 (climatic range contraction due to future changes in 

environmental conditions). 
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Overall, 2050 models showed the same trends as 2020 models with increased range expansion 

(see areas in blue for Figure 4).  For BEVI-east, RCP 4.5 (Figure 5, bottom, row 2) showed more 

range contraction (in yellow) than RCP 8.5 (row 3), which appeared to correspond to higher 

range expansion (in blue) for RCP 8.5. The same is true for 2080 (Figure 6) predictions where all 

models show increasing by more northern range expansion. A troublesome trend for annual US-

MEX models for both populations (Figure 6, column B) is loss of wintering range in favor of 

more northerly expansion. Seasonal breeding range models (Figure 6, column C) predict nearly 

all of the US and Mexico climatically suitable under both RCP 4.5 (row 2) and RCP 8.5 (row 3).  
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Figure 5. Model projections for 1961-1990 (row 1) and 2050 projections under RCP 4.5 (row 2) 

and RCP 8.5 (row 3) for both the western (top) and eastern (bottom) population of Bell’s Vireo. 

Annual models trained at the breeding range are show in column A and US-MEX trained models 

in column B. Column C and D are breeding trained and US-MEX trained models, respectively, 

for seasonal models. Black indicates mutual predictions between 1961-1990 and 2050, blue 

indicates new areas predicted by 2050 (climatic range expansion) and yellow indicates areas 

predicted by 1961-1990 and not 2050 (climatic range contraction due to future changes in 

environmental conditions).
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Figure 6. Model projections for 1961-1990 (row 1) and 2080 projections under RCP 4.5 (row 2) 

and RCP 8.5 (row 3) for both the western (top) and eastern (bottom) population of Bell’s Vireo. 

Annual models trained at the breeding range are show in column A and US-MEX trained models 

in column B. Column C and D are breeding trained and US-MEX trained models, respectively, 

for seasonal models. Black indicates mutual predictions between 1961-1990 and 2080, blue 

indicates new areas predicted by 2080 (climatic range expansion) and yellow indicates areas 

predicted by 1961-1990 and not 2080 (climatic range contraction due to future changes in 

environmental conditions). 
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Discussion 

I showed that model performance was influenced by temporal scale of the variables, the 

population, and the training area extent. For BEVI-west, the population exhibiting more distinct 

habitat areas, seasonal variables performed better when discriminating suitable habitat at the US-

MEX extent. Here, the summer heat index was by far the highest contributing variable, which 

makes sense since the mean SHM value delineating BEVI-west habitat was nearly four times 

higher (482.32) than the mean for US-MEX (118.47). This shows that the BEVI-west population 

is utilizing areas that are hotter and drier than background conditions. However, for within range 

seasonal models, temperature and to a slightly lesser degree, precipitation were better at 

differentiating areas suitable to BEVI-west populations. The cottonwood-willow riparian areas 

used by the BEVI-west population likely do exhibit unique temperature and precipitation regimes 

from the background, whereas the heat moisture index is probably not as variable across the 

breeding range and thus contributes very little to model performance. Interestingly, annual 

variables produce a better model for BEVI-west breeding range, with temperature contributing a 

significant amount to model discrimination, followed distantly by precipitation. The better 

performance of the annual variables may hint at a yearly process shaping the area into varying 

levels of suitability. For example, riparian areas have longer wet periods, directly influencing the 

vegetation and forming microclimate and vertical structure variation.  

For BEVI-east, which exhibits less defined habitat, seasonal variables did not perform better than 

annual variables at either training extent, although variable contribution was different. All three 

annual variables contributed similarly to delineating within range discrimination whereas 

seasonally, summer heat index was most important. Since BEVI-east individuals use a range of 

dense vegetation, which can be located in a wide array of landscapes such as grasslands, 

shrublands, forest edges, fence lines, and riparian areas, no one variable best discriminates 

between all of these areas annually. However, seasonally, variation in temperature and 
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precipitation makes the summer heat moisture index a good discriminator.   At the US-MEX 

extent, temperature then precipitation were the highest contributing variables, both seasonally and 

annually. As BEVI-east individuals occupy areas in the Central US, the selection of temperature 

and precipitation as most important annually and seasonally aligns with the ecology of the Great 

Plains.  

When both seasonal and annual models were projected to 2020 for both RCP scenarios (4.5 and 

8.5), the lowest omission error was exhibited by seasonal models under RCP 8.5 for both 

populations, however omission error was only slightly lower than under RCP 4.5. This should be 

interpreted carefully as seasonal models predicted significantly more suitable area than annual 

models, indicating that variables more specific to each population would yield more realistic 

future predictions, although other studies did not appear to have this issue (Nakazawa et al. 2004, 

Reside et al. 2010, Smeraldo et al. 2018). I did not focus on optimizing variables in this study, 

and so doing is expected to increase model performance and more importantly produce more 

realistic and useful models. This is notable considering that the two populations of this species 

likely respond to different variables at different spatial and temporal scales. Conservation actions 

taken at the species level would be ineffective without the regional context of each population. 

What constitutes high quality habitat differs between BEVI-west and BEVI-east, even though 

both populations exhibit a preference for the densest vegetation within selected areas (Parody and 

Parker 2002). Joos et al. (2014) showed that territory success is tied to habitat quality and the 

selection of territories is adaptive for BEVI-east and that nest-site placement is also adaptive for 

both BEVI-west and BEVI-east (Parody and Parker 2002). My models show that climatically, 

many areas of the US and Mexico are suitable, however the biotic interactions shaping the dense 

vegetation preferred by both species is lacking in my models. Since both populations show 

plasticity of within-site use, although more so in the case of BEVI-east, preserving the landscapes 

and ecological processes that produce the appropriate habitat is essential. 
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When I compared the climatic conditions between the two breeding ranges and the wintering 

range, I found high agreement for annual heat moisture, and high overlap for mean precipitation. I 

found that mean annual temperature exhibited a distinct difference between ranges, perhaps 

suggesting that both populations of Bell’s Vireo are switching their temperature niche between 

wintering and breeding ranges. Looking at the summer average temperature, I noticed that during 

the breeding season, both populations have a wider range of temperatures. For precipitation, both 

annual and seasonal variables show high overlap, indicating that perhaps Bell’s Vireos seek out 

breeding conditions with similar annual and seasonal precipitation values, which likely contribute 

to much of the habitat structure that the birds are associated with. I also found that breeding and 

wintering ranges showed similar annual heat moisture, but seasonally that appears to not be the 

case as both breeding ranges show more variation in summer heat moisture than what is available 

in their wintering range during the breeding period. 

Nakazawa et al. (2004), used SDM to investigate the climatic niche of 21 migratory bird species 

by creating distributional predictions from seasonal models (breeding and wintering) that were 

projected either onto the same season (breeding projected to breeding) or different season 

(breeding projected to wintering). For Bells’ Vireo, they found that wintering predictions based 

on breeding season models performed nearly identical to wintering predictions from wintering 

season models, with the same trend for breeding season (Nakazawa et al. 2004). Based on 

Nakazama et al. (Nakazawa et al. 2004), Bell’s Vireo follows a climatic niche between wintering 

and breeding seasons. Although I did not create wintering range models, I did compare the 

variation in conditions associated with the wintering range and breeding ranges of both 

populations. The lower latitude of wintering locations allowed for higher annual and seasonal 

temperature and precipitation compared to breeding range conditions, suggesting that these 

climatic conditions likely would not support the breeding habitat used by either population. 

However, when compared the frequency of use at locations for both breeding ranges and 
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wintering locations, I found that both populations appear to follow a temperature component of 

the climatic niche, but not a precipitation component for BEVI-east. These findings suggest a 

more complex relationship between seasonal environmental conditions, perhaps attributed to 

habitat features structured by microclimate (e.g. vegetation density).  

I have shown that incorporating temporal variables in SDM influences both model performance 

and predictions. For migratory birds incorporating aspects of shifting ecological requirements 

across time into SDM, especially under future climate scenarios, will benefit conservation efforts, 

specifically to address conservation of important flyways and breeding/wintering habitats (Engler 

et al. 2017). This may be especially critical for migrating birds since recent research by Martin 

and Fahrig (2018) has shown that specialists generally travel farther than generalist bird species 

and climate change is expected to uncouple migration times to seasonal availability of habitat 

(Kellermann and van Riper 2015). However, even resident birds have shown seasonality changes 

as well (Reside et al. 2010). Thus, in addition to spatial scale considerations such as extent (Barve 

et al. 2011, Song et al. 2013, Vale et al. 2014) and grain (Hanberry 2013, Connor et al. 2018, 

Mertes and Jetz 2018), temporal scale should also be part of the decision making process (Engler 

et al. 2014, Williams et al. 2017). I acknowledge that incorporating temporal variables is not 

straightforward as species phenology is as unknown as species’ responses to spatial scales. 

Besides selecting scales based on biological input (Wiens 1989, Levin 1992), Wheatley and 

Johnson (2009) suggest that continuous scales should be utilized to find the “domains of scale” 

(Wiens 1989) where species’ responses change. When one must consider three “scales”, extent, 

grain, and temporal, and contend with limited data (Scales et al. 2017) as is often the case, 

moving toward more spatially and temporally explicit SDM will be a slow and challenging 

process.  
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Conclusions 

My work adds to the growing literature describing the inclusion of phenology-related 

environmental predictors in SDM (Nakazawa et al. 2004, Reside et al. 2010, Smeraldo et al. 

2018). However, I show that the effects of seasonality are not consistent within a species, as 

populations are influenced by differences in geographic locations. I demonstrated that the 

seasonal ecology of populations within a species may be driven by both different temporal scales 

(i.e. season or annual) and different geographic extents (i.e. intra-breeding range and inter-

breeding range). Intraspecific variation in distributional ranges must be accounted for especially 

when projecting to future climates, as the species-environment relationship must be accounted for 

when predicting future distributions. 
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CHAPTER V 
 

 

CONCLUSIONS 

The research presented here adds to the continuing conversation surrounding scale in species 

distribution modeling (SDM). In general as the spatial scale of an ecological processes becomes 

more coarse, the temporal range also increases, thus one must observe a process at the appropriate 

spatial and temporal scale while also considering the perspective of the species (Wiens 1989). 

Current SDM methodology, specifically the application of virtual species (where the species-

environment relationship is known) has addressed this scaling consideration as models performed 

best when using variables scaled to the response of the species (Connor et al. 2018, Mertes and 

Jetz 2018). However, a functional modeling framework for SDM utilizing current knowledge on 

species does not exist as of yet. I have shown that by utilizing a multi-scale approach for a single 

species, insight into species-environment relationships is possible.  

First, by using a spatially nested study design, I was able to show that the size of the study extent 

enhanced the negative effects of spatially biased presence locations. Further, variable contribution 

to model accuracy gain changed with extent size, as did variation in the environmental variables 

across the three extents. Changes in extent size alters the variation of environmental conditions 

across the study area and determine how the environment is quantified with background 

sampling. Further, spatially biased presence locations provide a skewed representation of the 

environment used by the species. Together, this serves as a cautionary tale that user decisions 
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regarding presence data and extent of training do not always act independently within the 

modeling process, and instead may interact in unexpected ways.  

Secondly, I highlighted the importance of data resampling techniques for studies manipulating the 

grain size of environmental predictors. Variation in environmental variables is generally expected 

to decrease with increasing grain size, although I argue that spatial structuring of the environment 

may have played a large role. In practice, the change in variation due to either resampling 

technique or grain size shapes the area from which background sampling occurs, thus providing 

the statistical distribution of environmental conditions to which presences are compared. Altering 

this relationship changes the model, its performance and geographical prediction.  

Lastly, I addressed the temporal scale of environmental predictors in SDM, as ecological 

phenomena occur at intrinsic temporal scales (Wiens 1989, Mayor et al. 2009). Specifically, I 

illustrated that the importance of temporal variation in environmental conditions changed with 

extent as well as with population.  By comparing seasonal versus annual environmental predictors 

for two populations of a migrating bird, I showed that conditions discriminating between suitable 

areas differed within the breeding range when compared to outside the breeding range. Both 

occurrence data and environmental predictors define the environment as a snapshot, capturing the 

variation in background conditions and presence locations at a particular spatial and temporal 

scale. The interaction between temporally mis-matched background and presence locations 

undermines the niche theory assumptions upon which SDM is based.  

Processes occurring at multiple spatial and temporal scales structure the environment and 

organisms respond to the environment at multiple scales making scaling the core of nearly all 
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ecological relationships (Mayor et al. 2009). The need to understand species’ responses the 

environment across spatial and temporal scales is pressing as multiple threats to biodiversity exist 

(Ceballos et al. 2017, Spooner et al. 2018). To answer this call, the SDM framework may need to 

be altered to better recognize the importance of scale.  

First, identifying the species’ response grain (Mertes and Jetz 2018) of species is paramount, but 

this can only be achieved if a more exploratory workflow exists. Traditionally, environmental 

variables are subjected to pre-model evaluation techniques to establish “best performing” 

variables for inclusion. However, Mertes and Jetz (2018) demonstrated that the spatial structure 

of the variable and the response grain of species interact to provide a clearer picture of the 

species-environment relationship, but only at the right resolution. A workflow that addresses this 

phenomena was proposed for three uses of SDM: inferring niche relationships, evaluating scale 

dependence, and predicting occurrences (Mertes and Jetz 2018). However, this workflow does 

not address the importance of extent, or the temporal scale of variables. Spatial extent selection is 

highly tied to study aims. A suggested approach is to train the model with a restricted extent, then 

apply the model to the larger extent under consideration (Anderson and Raza 2010) to avoid 

overfitting. I suggest a modified approach where the training region is delineated based on 

heterogeneity. For example, an ecoregion is expected to have more homogeneity within the 

region compared to without. This creates an extent that is ecologically defined by the processes 

occurring within it, thus the species occurring within it should exhibit a relationship to the 

environmental conditions that can be captured if measured at the appropriate scale. The temporal 

scale of data is perhaps the most poorly considered aspect in SDM (Smeraldo et al. 2018), as 

most species show temporal responses (Miller-Rushing and Weltzin 2009). Increasing the 
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incorporation of temporal scale in SDM requires a new approach to niche-theory addressing the 

temporal component. However, a priori knowledge of species ecology should allow users to 

assimilate appropriate data into SDM. SDM has only been used for a couple of decades, but has 

undergone rapid development. Further improvement of data, statistical models, and evaluation 

techniques will continue to move the field forward. 
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APPENDICES 
 

 

 

Appendix 1. List of variables used in Chapter 2 models 

 

Name Variable 

mean temp Mean Temperature 

min temp Minimum Temperature 

max temp Maximum Temperature 

mean prcp Mean Precipitation 

min prcp Minimum Precipitation 

max prcp Maximum Precipitation 

mean ndvi Mean Normalized Difference Vegetation Index 

min ndvi Minimum Normalized Difference Vegetation Index 

max ndvi Maximum Normalized Difference Vegetation Index 

mean lai Mean Leaf Area Index 

min lai Minimum Leaf Area Index 

max lai Maximum Leaf Area Index 

elev Elevation 

aspect Aspect 

slope Slope 

flow dir Flow Direction 

flow Flow Accumulation 

topo Wetness Index 
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Appendix 2. Percent contribution of the highest performing variable for each model at the three 

extents used in Chapter 2 

 

Model Extent 100P 50R 25R 50C 25C 

FULL 

Small 21.7 18.9 21.0 36.2 30.2 

Medium 25.7 30.4 16.9 30.4 23.8 

Large 30.5 28.8 30.5 27.3 28.9 

NOCOL 

Small 35.0 30.0 31.7 47.0 56.9 

Medium 31.0 30.5 29.3 40.3 26.7 

Large 53.9 53.7 53.4 57.4 50.7 

CLM 

Small 43.4 29.5 30.7 47.8 40.1 

Medium 34.5 30.2 27.7 34.7 43.2 

Large 62.0 66.0 60.0 44.2 46.3 

VEG 

Small 30.2 45.0 31.4 36.6 53.7 

Medium 32.6 52.3 45.5 34.1 46.4 

Large 38.0 40.5 40.8 36.1 32.1 

TOPO 

Small 70.5 69.5 77.9 75.5 77.8 

Medium 78.6 74.5 66.9 79.1 74.4 

Large 68.7 65.9 58.5 89.8 85.2 

MIN 

Small 47.2 50.9 38.5 68.2 40.4 

Medium 43.9 44.6 50.9 40.1 49.3 

Large 65.4 64.3 71.5 63.2 59.4 

MEAN 

Small 45.5 29.0 47.9 77.3 74.3 

Medium 31.8 37.2 35.0 52.8 49.7 

Large 66.2 67.3 58.4 55.0 54.4 

MAX 

Small 47.0 32.0 49.3 69.3 60.8 

Medium 55.7 48.0 53.3 47.0 43.1 

Large 49.0 51.3 41.1 39.5 40.0 
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Appendix 3. Pearson Correlation Coefficient for the number of variables and the five 

model evaluation metrics used in Chapter 2 

 
 Large Extent 

 AUC 
Omission 

Error 
Kappa 

Predicted 

Suitable Area 

Variable 

Contribution 

100P 0.566 0.936 -0.266 -0.694 -0.651 

50R 0.569 0.777 0.618 -0.672 -0.721 

25R 0.476 0.565 0.577 -0.619 -0.667 

50C 0.193 0.535 0.611 -0.587 -0.415 

25C 0.241 0.475 0.472 -0.548 -0.436 

  

 Medium Extent 

 AUC 
Omission 

Eerror 
Kappa 

Predicted 

Suitable Area 

Variable 

Contribution 

100P 0.756 0.840 -0.610 -0.945 -0.458 

50R 0.265 0.828 -0.148 -0.876 -0.458 

25R 0.546 0.909 0.581 -0.862 -0.634 

50C -0.358 0.474 0.522 -0.575 -0.425 

25C -0.324 0.544 0.381 -0.691 -0.699 

  

 Small Extent 

 AUC 
Omission 

Error 
Kappa 

Predicted 

suitable Area 

Variable 

Contribution 

100P 0.672 0.447 -0.288 -0.800 -0.651 

50R 0.745 0.709 0.813 -0.835 -0.552 

25R 0.297 0.691 0.696 -0.843 -0.540 

50C -0.065 0.483 0.651 -0.486 -0.486 

25C -0.065 0.460 0.450 -0.421 -0.676 
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