
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

REINFORCEMENT LEARNING FOR COGNITIVE PHASED ARRAY

RADAR SURVEILLANCE

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE

By

Shane Flandermeyer
Norman, Oklahoma

2023



REINFORCEMENT LEARNING FOR COGNITIVE PHASED ARRAY
RADAR SURVEILLANCE

A THESIS APPROVED FOR THE
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

BY THE COMMITTEE CONSISTING OF

Dr. Justin Metcalf, Chair

Dr. Nathan Goodman

Dr. Dean Hougen



© Copyright by SHANE FLANDERMEYER 2023
All Rights Reserved.



Acknowledgments

I am immensely grateful to Dr. Justin Metcalf for the opportunities and support

he has provided during my time at the ARRC. I have learned so much about radar

systems, signal processing, and machine learning over the last several years, and

his mentorship has made the process fun and rewarding. In addition, I want to

thank Dr. Nathan Goodman and Dr. Dean Hougen for agreeing to serve on my

committee. They have both provided insights that played a key role in shaping

this work. The other students at the ARRC have also been an essential part of

this process due to their ability to turn coffee and a game of pool into a valuable

discussion.

I would also like to thank my fianceé, Cora DeFrancesco. Since meeting her
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Abstract

The proliferation of phased array radar (PAR) has significantly increased the

flexibility of radar systems, making it possible to use a single radar to perform a

variety of operational modes such as surveillance and tracking that each tradition-

ally required a dedicated system. To fully take advantage of these capabilities,

algorithms must be developed to efficiently distribute the radar’s finite time, en-

ergy, and processing budget between competing tasks. Although many resource

management methods exist for tracking applications, it is common to use a fixed

strategy (e.g., a raster scan) for the surveillance task. The resulting allocation of

resources is often sub-optimal since fixed approaches do not leverage prior knowl-

edge and thus spend a disproportionate amount of time searching regions that are

unlikely to contain new targets.

This thesis presents a novel approach to more effectively utilize the radar

timeline in surveillance and track initiation tasks. A variant of particle swarm

optimization (PSO) is derived to estimate the density of untracked targets in the

search volume, which is then used to inform the parameter selection process for

each radar dwell. The resulting method, known as Surveillance PSO (SPSO), is

computationally efficient and suitable for real-time implementation on a general-

purpose CPU or GPU. SPSO is also highly general, making few assumptions about

the properties of the target or the underlying radar system. Finally, the output

of the algorithm is a constant-length tensor that can be incorporated into sys-

xi



tems that utilize deep learning and reinforcement learning. Two cognitive agents

are developed to demonstrate the utility of the SPSO algorithm. The first is a

deterministic agent that directly uses the output of the SPSO algorithm to make

decisions on where to steer the radar beam at each dwell. The second is rein-

forcement learning (RL) agent that uses a slight modification of SPSO to simulta-

neously steer and spoil the transmitted beam based on the current environment.

The performance of each agent is evaluated in several simulated surveillance envi-

ronments, where both are shown to outperform the standard raster scan approach.
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Chapter 1

Introduction

1.1 Overview

Due to their flexibility and increasing commercial viability, phased array radar

(PAR) systems have become widely used across several domains including de-

fense, weather, and communications. Unlike traditional radar systems which use

mechanical rotation to steer the beam, PARs electronically form beams and steer

them in a desired direction [1]. This beam steering can be done almost instan-

taneously, allowing the radar to perform tasks such as surveillance, tracking, and

imaging with a single aperture. More recently, digital beamforming methods have

gained traction in modern systems, allowing the radar to simultaneously form

beams on both transmit and receive [2]. This beam agility makes it possible for

the radar to dynamically adapt its behavior based on current operating condi-

tions, rather than being fixed at design time.

Since radar systems have a limited budget of time, energy, and computational

resources to distributed amongst the various functions, robust resource manage-

ment algorithms must be developed to automatically allocate resources such that

an acceptable level of performance is reached for each task. To fully take advan-

tage of the flexibility offered by multifunction PAR systems, resource management
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architectures have come to play a crucial role in the radar system design process

[3]. These algorithms should be applicable in a wide range of scenarios and should

introduce minimal computational overhead so they can be used in a real-time radar

processing loop.

Typical radar resource management methods optimize parameter selection

(e.g., waveform bandwidth or dwell integration time), task selection, and/or task

scheduling. A majority of these methods focus on minimizing the resource load of

the tracking task [4]. Comparatively few methods exist for optimizing the search

for new untracked targets, and existing methods for adaptive search make restric-

tive assumptions about the kinematics of the targets [5] or the distribution of

targets in the scenario [6]. Many of these algorithms optimize radar parameters,

but do not inform where the radar should steer its beam for surveillance. Methods

that attempt to steer the beam usually do so over a coarse angular grid due to the

computational complexity of the underlying optimization methods, which limits

their utility. This provides motivation for developing new algorithms that relax

the assumptions on the surveillance scenario and are computationally efficient for

practical use in real systems.

The field of reinforcement learning (RL) is concerned with learning optimal

behavior in sequential decision-making problems through trial and error [7]. In

recent years, much of the RL community has focused on deep RL, which uses deep

neural networks to model the behavior of the learning agent. Deep RL has been

successfully applied to a variety of application domains, including playing board

games such as Go at a superhuman level [8] and discovering state-of-the-art algo-

rithms for tensor operations [9]. A major challenge in the practical application of

deep RL is designing a suitable representation of the environment state. Most RL

algorithms assume the environment state representation is Markovian, such that
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the entire history of the environment is encoded in the current state. Moreover,

the state representation must be a constant-length tensor in order to be passed

as an input to a deep neural network.

This thesis analyzes a state representation of the surveillance task that is

suitable for training computational agents with deep RL algorithms. The state

representation uses a novel variant of particle swarm optimization (PSO) to form

an approximate the density of undetected targets in the region under surveillance.

This representation is approximately Markovian and is readily expressed as a

tensor. In addition, it is computationally efficient and highly parallelized for real-

time operation and makes few assumptions about the scenario or targets.

1.2 Contributions

This thesis presents the following novel contributions:

• A PSO-based approach was developed to provide a Markovian state repre-

sentation for the radar surveillance task.

• Two computational agents were developed that use the PSO output to in-

form surveillance behavior. The first agent follows a deterministic rule for

determining where to steer the beam. The second agent uses an RL algo-

rithm to select beam steering angles and spoiled transmit beamwidths.

• An open-source simulator was developed in Python for simulating a phased

array radar system [10]. This simulator was designed to facilitate rapid

prototyping of cognitive agents for resource management tasks.

1.3 Document Outline

This document is organized into the following chapters:

3



Chapter 2 provides an overview of deep reinforcement learning, starting with a

brief discussion of deep learning with fully-connected neural networks. Next, the

fundamentals of reinforcement learning are described, including the formulation of

sequential decision making problems as Markov decision processes (MDPs). This

chapter concludes with a discussion on policy gradient algorithms, particularly

focusing on proximal policy optimization (PPO).

Chapter 3 focuses on the phased array radar system model. This includes

a mathematical description of waveforms and signal processing techniques for

pulse-Doppler radar, along with a discussion on the basics of uniform rectangular

antenna arrays and the measurement models assumed for this work.

Chapter 4 gives a brief overview of particle swarm optimization algorithms.

The global and local best variants of the algorithm are given as simple examples

used to motivate the modifications required for use with the surveillance task. This

chapter also discusses exploration methods that adds diversity to the trajectories

of particles in the swarm.

Chapter 5 describes the novel surveillance PSO (SPSO) algorithm developed

to more efficiently manage resources in the radar surveillance task. First, a deter-

ministic variant of the algorithm is presented to steer the radar beams without re-

inforcement learning, along with an analysis of its performance in a medium-range

surveillance environment. Next, an adaptation of the algorithm is developed to

inform a cognitive agent that is trained with reinforcement learning. The chapter

concludes with an analysis of this agent’s performance in the same medium-range

surveillance environment.

In Chapter 6, the thesis is concluded and future directions for this research

are given.

Appendix A provides a derivation of the policy gradient theorem, which is a

4



fundamental result that is leveraged by on-policy algorithms such as PPO.

In Appendix B, several activation functions that are commonly used in deep

learning are described.
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Chapter 2

Deep Reinforcement Learning

2.1 Neural Networks and Deep Learning

Deep learning is a sub-field of machine learning that uses artificial neural networks

to perform a variety of tasks [11]. The fundamental building block of a neural

network is the artificial neuron, also known as a perceptron, whose structure is

given in Fig. 2.1. Given a length-N tensor x = [x0, x1, . . . , xN−1] as input, the

artificial neuron first computes a weighted sum as

f(x; w) =
N−1∑
i=0

(wixi)− wN (2.1)

where w = [w0, w1, . . . wN ] is a set of weights that are typically updated through

a learning process, and wN is a bias term that does not depend on the input

data. In order to learn a more general class of functions, it is necessary to apply

a nonlinear activation function ϕ to the output of the weighted sum. The final

neuron output is then given by

y(x) = ϕ(f(x; w)) (2.2)

6
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Figure 2.1: Artificial neuron architecture

Input layer Hidden layer(s) Output layer

Figure 2.2: A fully-connected neural network
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In many applications, the choice of activation function can significantly impact

performance. Appendix B discusses some of the most common activation functions

in use today.

A single perceptron is of limited use as a function approximator. In practical

problems, it quickly becomes necessary to integrate many artificial neurons into

a larger structure known as a network. Fig. 2.2 shows an example of a fully-

connected neural network. In this architecture, neurons are organized into a

series of higher-level structures called layers, and each neuron from a given layer

is connected to all neurons from the previous layer to form a directed acyclic

graph.

The input layer contains the constant-length tensor x discussed earlier. Each

hidden layer applies a function to the output of the previous layer such that the

output of the hidden section is a nested composition of functions applied to the

input data. Finally, the output layer performs additional processing to make the

output from the hidden layers match the problem at hand. For example, the

output layer may convert the hidden output to a set of class probabilities in a

classification network. The complexity of functions that can be approximated

with this model depends primarily on two factors: the number of layers in the

model, known as the model’s depth, and the number of neurons in the hidden

layers, known as the model’s width.

2.2 Reinforcement Learning Fundamentals

Reinforcement learning (RL) is a sub-field of machine learning that attempts to

train computational agents to behave optimally in sequential decision making

problems [7]. For these types of problems, the agent can take actions to inter-

act with and influence its environment. In traditional supervised learning, an

8



external entity provides a dataset of examples to train the agent to generalize to

scenarios that it has never seen. Each element in the dataset includes a label,

which describes the correct action the agent should take. This allows the agent to

improve its performance by directly minimizing some error metric which measures

the difference between the agent’s action and the optimal action.

In problems where the agent can interact with its environment, it is rarely

practical to collect and label a representative dataset to use for training. More-

over, for complex problems the optimal action is not known a priori. Rather than

being told the correct action to take at each time step, reinforcement learning

agents receive a numerical signal from the environment known as a reward that

describes how good their actions are, and modify their behavior based on their

experiences to maximize the cumulative reward over the time horizon of the prob-

lem. The trial-and-error nature of this approach presents a fundamental trade-off

between exploration and exploitation: to maximize its reward, an agent should

perform actions that worked well in the past. However, the agent must experi-

ment with actions that may be sub-optimal to identify good actions in the first

place. Without exploration, the quality of an agent’s actions will converge to a

local minima. Without exploitation, the agent will do a poor job of performing

the required task. This is further complicated in stochastic environments, where

state-action pairs may need to be sampled several times to get a good estimate of

their value.

The feedback loop between an agent and its environment, known as an agent-

environment cycle (AEC), is shown in Fig. 2.3. At discrete time step t, the agent

observes ot, a potentially incomplete representation of the environment’s true

state st. If ot excludes relevant information about st, the environment is partially

observable. Otherwise, it is fully observable. In the general RL formulation, there

9



Environment

Agent

State

Figure 2.3: Agent-Environment Cycle

is no limitation to how states and observations can be represented. However,

most deep RL algorithms require that the input be a constant-size tensor that

can be passed as the input to a neural network (e.g., a three-dimensional array

representing pixel values in an RGB image or a feature vector that gives the

current angles of various joints in a robot).

Using information from ot, the agent takes an action at and receives a reward

rt as a result of its action. Repeated interactions with the environment give rise

to a trajectory τ describing the sequence of states, actions, and rewards over time:

τ = (s0, a0, r0), (s1, a1, r1), . . . (2.3)

In an episodic task, τ is a finite sequence that continues until the environment

reaches a terminal state. In a continuing task, there are no clear terminal states

and the sequence lasts for the potentially infinite lifetime of the agent.

10



Most RL algorithms assume that the environment is a Markov decision process

(MDP) and thus satisfies the Markov property, which means that the entire his-

tory of interactions between the agent and environment are encoded in the current

state. In other words, the system is memoryless and the dynamics of the environ-

ment can be modeled with a probability function p : S ×A×R× S → [0, 1],

p(s′, r|s, a) = Pr (st+1 = s′, rt+1 = r|st = s, At = a) (2.4)

In many cases, it is simpler to analyze an MDP in terms of its state transition

density, which is a function p : S × A× S → [0, 1] that defines the probability of

transitioning to state s′ after taking action a in state s (independent of the reward

received),

p(s′|s, a) = Pr (st+1 = s′|st = s, At = a) =
∑
r∈R

p(s′, r|s, a) (2.5)

Violation of the Markov property can significantly alter an agent’s behavior

and often cause training to not converge at all. For example, consider some

possible MDP representations for the game of Pong. A naive approach would be

to represent the game state as the current frame as shown in Fig. 2.4.

11



Figure 2.4: Single frame of pong in an Atari 2600 emulator

Although the position of the ball can be determined from this representation,

the ball’s velocity is ambiguous and so the environment is partially observable.

If the game state is instead represented by a stack of frames that includes the

current and previous frames (e.g., the previous four frames), then the velocity can

be resolved and the environment becomes fully observable. The game of Pong

is simple enough that agent’s performance is not significantly impacted by frame

stacking, but in many cases learning becomes impossible if history is not encoded

[12]. A major limitation of the frame stacking approach is that environment

dynamics that persist for longer than the stack length appear non-Markovian to

the agent. This can be mitigated by employing recurrent layers such as long short-

term memory (LSTM) layers in the policy network as in [13].

12



2.2.1 Actions and Policies

After observing the environment, the agent can influence the next state by taking

some action at. The set of actions that an agent may take is known as the

action space, which depends on the environment and the problem to be solved.

If the action space is discrete, the agent selects one or more actions from the set

A = {A1, A2, . . . , AN}. If the action space is continuous, each component of the

agent’s action is a real number. A number of approaches have also been proposed

to handle hybrid action spaces ([14], [15]) containing both discrete and continuous

components.

The goal of any RL-based agent is to use repeated interaction with the envi-

ronment to gather experience and learn to select actions that maximize reward in

each state. These actions are selected from a function known as a policy. If the

policy is deterministic (e.g., the output of a neural network), it can be described

as a simple function π(s) : S 7→ A for some state s. If the policy is stochastic, it

is described as a probability distribution over actions conditioned on the current

state:

π(a|s; θ) = Pr (at = a|st = s, θt = θ) (2.6)

where θ ∈ Rd are the parameters of the policy representation. The action at

each time step is determined by drawing a sample from the policy distribution.

In many practical cases, policies are chosen to be stochastic during training (to

encourage exploration) and deterministic during evaluation.

If the action space is discrete, each action can be represented as a category

in a categorical distribution. For action indices {1, . . . , N}, the probability mass

function (pmf) is given by

f(x = i) = pi (2.7)
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where i ∈ {1, 2, . . . , N}, pi is the probability of taking action i, and ∑N
i=0 pi = 1.

In deep RL approaches, a neural network is used to compute the category proba-

bilities as shown in Fig. 2.5, where the output logit for each action represents the

preference for that action, and a softmax activation function is used to normalize

these preferences to create a valid probability distribution. The dotted lines are

used to indicate that the structure of the feature abstraction layers are arbitrary.

Unlike the value-based methods that will be discussed in Section 2.2.4, this pa-

rameterization can converge to a deterministic or stochastic policy, depending on

which best models the optimal behavior.

Input layer Feature extraction Output layer

Figure 2.5: Categorical network architecture for discrete action spaces

For continuous action spaces, it is common to parameterize each component of

the policy in terms of the mean µ(s; θ) and variance σ2(s; θ) (or standard deviation

σ(s; θ)) of a normal distribution, where s is the input state. At each time step,

actions are sampled according to

at ∼ N
(
µ(s; θ), σ2(s; θ)

)
(2.8)

In the architecture in Fig. 2.6 (which is used in the beam steering agent de-

scribed in Ch. 5), the mean and variance are estimated with separate network

14



branches that share a latent feature space, which reduces the number of parame-

ters that the network must learn. Alternatively, the variance of each action can be

computed as a network parameter that is independent of the input state. Recent

work has also shown that sampling from bounded probability distributions such

as a beta function instead of a Gaussian can improve performance in bounded

action spaces by reducing the model’s bias at the edges of the valid action range

[16].

Input layer Feature extraction Output layer

Figure 2.6: Gaussian network architecture for continuous action spaces

2.2.2 Rewards

At each time step, the agent receives a scalar reward signal rt ∈ R that provides

feedback on the agent’s most recent action. A positive reward indicates that

the agent’s behavior aligns with its goals, while a negative reward suggests the

opposite. The overall goal of the agent is described by a reward function R, which

depends on the current state, the action taken, and the resulting next state:

rt = R(st, at, st+1) (2.9)

The reward function bridges the gap between the agent’s learned behavior
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and the intentions of the algorithm designer, so it is a critical consideration when

creating an environment for RL experiments. If the agent’s goal is easy to describe,

designing the reward function is straightforward. For example, an agent learning

to play arcade games may receive a reward proportional to its game score, while an

agent playing a competitive game may receive a positive reward for winning and a

negative reward for losing. Reward function design becomes much more difficult

in complex problems where the agent must balance multiple tasks or where the

optimal outcome cannot be described easily if at all. In these cases, a trial-and-

error approach is usually taken to iteratively tweak the reward function until the

agent can consistently learn the desired behavior in a reasonable amount of time.

Another challenge in reward function design is the sparsity of the reward signal.

In sparse reward environments, only a small fraction of state-action pairs produce

state transitions that give non-zero reward. This causes the agent to wander

aimlessly without making progress towards the goal until it reaches a rewarding

state enough times to learn useful patterns. It is possible to mitigate this issue by

augmenting the reward signal with supplemental rewards for solving sub-problems

that (in principle) move the agent closer to the main goal. Extreme care must

be taken to ensure that the agent cannot “cheat” and receive a high reward for

solving the supplemental tasks without learning to reach the main goal. As a

concrete example, a common reward function for a chess-playing agent is:

R =



1 if agent wins

0 if agent draws

−1 if agent loses

(2.10)

This function ensures that the agent is only rewarded for achieving the goal in-

tended by its designer: to win games. However, it is sparse since the agent only
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receives feedback on the last turn of every game. Adding an additional reward

component proportional to the value of each captured piece increases the density

of rewards over the course of the game, but may cause the agent to focus solely

on capturing pieces instead of winning the game. As a general rule, the reward

function should encode what the agent should achieve rather than how it should

achieve it. Numerous alternative approaches for handling sparse reward scenarios

have been shown to work well in practice, such as reward shaping [17] and more

recently curiosity-based intrinsic rewards ([18], [19]).

2.2.3 Gymnasium

Gymnasium (formerly known as OpenAI Gym) is an open-source Python pack-

age that provides a standardized interface for formulating reinforcement learning

problems as Markov decision processes. Each learning environment inherits from

the Env class and defines the following methods:

• step(): Takes the agent’s action as input and propagates the environment

to the next time step. This method returns the observation after taking the

input action, the reward scalar, the termination signal (a boolean value that

is true if the agent has reached a terminal/ending state and false otherwise),

the truncation signal (which is true if the environment terminates for rea-

sons that are not part of the MDP formulation, such as a maximum time

step limit), and a dictionary of additional information such as performance

metrics.

• reset(): Ends the current episode and samples a new observation from the

environment’s initial state distribution, then returns the new initial state

and an information dictionary as in step().
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• render() (optional): Displays the agent’s observations in a human-readable

format (e.g., animations or text) when the appropriate rendering mode is

enabled. This method is primarily used to debug the state space represen-

tation and to view the performance of trained agents.

• close(): Frees resources that were being utilized by the environment. This

is only necessary in environments that use additional software such as game

engines, physics simulators, or file system resources.

With these methods, an agent can interact with its environment without exposing

any implementation details about the environment or agent. The code snippet

in listing 2.1 gives an example of how a single episode of the agent-environment

cycle is simulated for the classic Cart Pole environment. If render mode is instead

set to ’human’, a game screen such as the one in Fig. 2.4 will be displayed.

1 import gymnasium as gym

2 env = gym.make("CartPole -v1", render_mode =’rgb_array ’)

3 obs , info = env.reset ()

4 done = False

5 while not done:

6 # Agent samples actions from a learned policy

7 action = agent.act(obs)

8 obs , reward , terminated , truncated , info = env.step( action )

9 done = terminated or truncated

10 env.close ()

Listing 2.1: Gymnasium representation of the agent-environment cycle

Gymnasium also provides a set of objects for defining the state and action

space for environments as described in Section 2.2.1. For example, discrete ac-

tion/observation spaces are defined by the Discrete class, while continuous spaces

are defined by the Box class. Mixed discrete/continuous spaces are also supported

18



and can be represented as tuples and dictionaries.

2.2.4 Returns and Value Functions

As stated earlier, the goal of an RL algorithm is to maximize the future rewards

received by the agent. This can be generalized so that the agent aims to instead

maximize some function of the cumulative reward, known as the return Gt. In the

simplest case of a task that lasts for T time steps starting at time t, the return

can be defined as the sum of all rewards in the trajectory τ

Gt(τ) = rt + rt+1 + · · ·+ rt+T =
t+T∑
k=t

rk (2.11)

This is a reasonable quantity to maximize for episodic tasks, but may not converge

for continuing tasks whose time horizon extends to T = ∞. It is therefore more

common to maximize the discounted return, which exponentially decays each

reward term by a discount factor γ ∈ [0, 1] based on how far each reward is in the

future

Gt(τ) = rt + γrt+1 + γ2rt+2 + · · · =
∞∑

k=0
γkrt+k (2.12)

Intuitively, a discount factor conveys the idea of the time value of currency, a

fundamental principle in economics that states that money today is worth more

than the same amount of money in the future, all else equal. A discount factor

of 1 indicates that the agent values present and future rewards equally, while a

discount factor of 0 indicates that the agent is myopic and only cares about the

reward from the current time step.

A formal definition of return makes it possible to quantify the utility of a given

state or state-action pair in terms of expected return. The value function Vπ(s)

of a policy π and state s gives the expected return if the agent starts in state s
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and acts according to π thereafter

Vπ(s) = Eτ∼π [Gt|st = s]

= Eτ∼π [rt + γGt+1|st = s]

=
∑

a

π(a|s)
∑
s′

∑
r

p(s′|s, a) [r + γEπ [Gt+1|st+1 = s′]]

=
∑

a

π(a|s)
∑
s′

∑
r

p(s′|s, a) [r + γVπ(s′)]

= Ea∼π,s′∼p [r + γVπ(s′)]

(2.13)

where Gt is assumed to be the infinite-horizon discounted return defined in (2.12)

and p is the environment’s state transition function defined in (2.5). Similarly,

the action-value function Qπ(s, a) provides the expected return if the agent starts

in state s, takes action a, then acts according to π

Qπ(s, a) = Eτ∼π [Gt|st = s, at = a]

= Es′∼p [r + γEa′∼π [Qπ(s′, a′)]]
(2.14)

where the second expression follows from the same process as in (2.13). The final

lines in these equations are known as Bellman equations, which play a key role in

many RL algorithms. Intuitively, the Bellman equation states that the expected

return for a given state is the reward received for taking action a in that state

plus the (discounted) expected return if policy π is taken from state s′ onward.

Given an optimal policy π∗(s) which maximizes the expected return in all

states, the optimal value function is defined as

V ∗(s) = max
π

Eτ∼π [Gt|st = s]

= Es′∼p,a∼π∗ [r + γV ∗(s′)|st = s, at = a]
(2.15)
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and the optimal action-value function is

Q∗(s, a) = max
π

Et∼π [Gt|st = s, at = a]

= Es′∼p

[
r + γ max

a′
Q∗(s′, a′)|st = s, at = a

] (2.16)

Therefore, the optimal value and action-value functions also obey the Bellman

equations. A class of RL algorithms known as value-based methods use the Bell-

man equations to iteratively improve an estimate of (2.15) and/or (2.16). For

example, the one-step Q-learning algorithm iteratively updates an estimate of

Q∗(s, a) as

Qi+1(s, a) = Es′∼p

[
r + γ max

a′
Qi(s′, a′)|st = s, at = a

]
(2.17)

which can be shown to converge to Q∗ as i → ∞, provided the environment is

stationary and each state-action pair is sampled infinitely many times [7]. Finding

Q∗ makes it possible to compute the best action in each state as

a∗(s) = arg max
a

Q∗(s, a) (2.18)

A popular variant of this algorithm developed in [12] used a deep Q-network

(DQN) to learn to play Atari games directly from on-screen pixels1. The neural

network architecture for a DQN is similar to Fig. 2.5, but the DQN outputs Q-

values rather than probabilities for each action. The objective function is designed

so that the network minimizes the difference between its output and the Bellman

update in (2.17)

Li(θi) = Es,a∼π

[
(yi −Q(s, a; θi)2

]
(2.19)

1The paper also introduced a number of important ideas that made deep RL practical for
off-policy algorithms, such as replay buffers and target networks. However, these are beyond
the scope of this work and are not discussed further.
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where θi are the neural network parameters at iteration i and yi is the Bellman

target given by the right-hand side of (2.17).

One major limitation of this approach is that it is not readily extensible to

continuous action spaces. For discrete action spaces, the maximization in (2.18)

can be performed by comparing all possible actions and selecting the action with

the highest action-value. If the actions are continuous, however, a separate opti-

mization step is needed to compute the maximum over actions. In most problems,

Q(s, a) is highly complex and the maximization is not feasible. The authors of

[20] propose the deep deterministic policy gradient (DDPG) class of algorithms,

which extends the DQN approach by combining Q-learning with the actor-critic

architecture described in Section 2.3.1 to support continuous action spaces in a

manner that is computationally tractable.

In many cases, the true value of a state-action pair is less important than the

value of the action relative to other actions in that state. The function describing

this relationship is known as an advantage function in the RL literature and can

be computed as

A(s, a) = Q(s, a)− V (s) (2.20)

In other words, the advantage quantifies the extra reward that an agent can expect

to receive by taking action a in state s compared to the average reward in that

state. A positive advantage indicates that the action is above average. In the next

section, it will be shown that the advantage function plays an important role in

policy gradient methods.

2.3 Policy Gradient Algorithms

The previous section described several RL algorithms which used estimated value

(or action-value functions) to select actions. The policy defining the agent’s be-

22



havior was only optimized indirectly through selecting the action that maximizes

the value function. Policy optimization methods provide an alternative approach,

attempting to learn the parameters of a function representing the optimal pol-

icy directly. In many problems, the policy may be simpler to learn than the

value function. Moreover, a policy-based approach can learn arbitrary action dis-

tributions (including deterministic strategies), while value-based approaches can

generally only learn probabilities proportional to the value of each state-action

pair. Although policy gradient methods do not use value functions to select ac-

tions, many algorithms use them to improve speed and stability in the learning

process. Algorithms that take this approach are known as policy gradient meth-

ods, and algorithms that learn a value function in addition to a policy are called

actor-critic methods.

2.3.1 Policy Gradients

The goal of RL is to learn a policy π that maximizes a performance metric J(π),

usually some form of return, over a potentially infinite time horizon (see Section

2.2.4). If π is represented by the parameters θ of a function approximator like a

neural network, it is desirable to iteratively update θ to improve performance as

the agent gains experience. This can be done by formulating parameter updates

as a gradient ascent, which is highly desirable since gradient ascent algorithms

provide strong converge guarantees under certain conditions and make it possible

to handle optimization of the policy and its function approximator in a unifed

manner (e.g., by using the gradient to train a neural network with backpropagation

[21]). The parameter update logic for iteration i is then given by

θi+1 = θi + α∇̂θi
J(θi) (2.21)
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where α is the learning rate parameter that controls how quickly the policy param-

eters change and ∇̂θJ(θt) is a stochastic estimate of the gradient of performance

J with respect to the current policy parameters θ. Thus, (2.21) moves the pa-

rameter vector of the policy in the direction that increases performance on each

iteration.

To use (2.21) in the learning process, an expression for the policy gradient esti-

mator is needed. Estimating the gradient ∇θJ(πθ) is a challenge since J depends

on both the actions taken by the agent and the distribution of states as the agent

takes these actions. While the actions are directly determined by the policy, the

state distribution is only indirectly impacted by the policy through the selection

of actions. Moreover, the relationship between the policy parameters and the

state distribution depends on environment dynamics that are typically considered

to be unknown. The policy gradient theorem (derived in Appendix A) provides

an analytic expression for the gradient that is independent of the environment

dynamics, depending only on the current policy πθ and on some function Ψt(τ)

that depends on the return Gt(τ)

∇θJ(θ) = E
[

T∑
t=0

Ψt(τ)∇θ log πθ(at|st)
]

(2.22)

where T is the number of time steps in the trajectory. Since (2.22) takes the form

of an expectation, it can be estimated with a sample mean to compute ∇̂θJ(θt).

Equation (2.22) has a very intuitive interpretation: the policy parameters should

be adjusted so that actions giving above-average returns are more likely to be

chosen and actions giving below-average returns are less likely. The amount that

the gradient should be modified depends on the log-probability, or how likely it is

that the action is selected in the first place.

The choice of Ψt(τ) determines the bias and variance of the estimator. The
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REINFORCE algorithm [22], one of the first policy gradient methods, uses the

action-value function as a baselines so that Ψt = Qπθ
(st, at). However, it has been

shown that using the advantage function in (2.20) instead produces an estimator

with the same bias but lower variance, reducing the number of samples required

to estimate the gradient. Since the advantage is not known in advance, it must be

estimated during training. In [23], a technique known as generalized advantage

estimation (GAE) is derived that introduces a parameter λ ∈ [0, 1] to smoothly

trade off bias and variance. The GAE estimator is given by

Â
GAE(γ,λ)
t =

∞∑
l=0

(γλ)lδV
t+l (2.23)

where γ is a standard discount factor and δV
t =

(
rt + γV̂ (st+1))− V̂ (st)

)
is the

Bellman residual for approximate value function V , which gives the difference

between the Bellman prediction and the actual value given by V . If λ = 1,

Ât =
∞∑

l=0
(γ)lδV

t+l =
∞∑

l=0
γlrt+l − V̂ (st)

In this case, the bias due to the approximation of V̂ is negligible, but the variance

is high due to the sum of reward terms (which are random variables with nonzero

variance). When λ = 0,

Ât = δV
t = (rt + γV̂ (st+1))− V̂ (st).

Since this estimate is heavily dependent on the value function estimate V̂ , it in-

duces bias in the advantage estimate unless the value estimate is correct. However,

it has much lower variance since it only relies on one stochastic state transition

to obtain rt.
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Methods for which V̂ are learned alongside the policy are known as actor-critic

methods [24]. In these methods, the policy learner is known as the actor and the

value estimator is known as the critic. Two common neural network topologies

used for actor-critic agents are shown in Fig. 2.7. In Fig. 2.7a, the actor and critic

modules learn from independently-trained hidden layers. The policy is updated

using the policy gradient from (2.22), and the value function is often updated by

minimizing the mean-squared error (MSE) between the value estimate and the

true return over the episode. Letting θπ and θV represent the parameters of the

actor and critic branch, respectively, the value loss is

LV F (θ) = Ê
[
(VθV

(st)−Gt(τ))2
]

(2.24)

and the policy loss is

LP G = Ê
[
Ât log πθπ(at|st)

]
(2.25)

This approach ensures that the value and policy losses are computed and back-

propagated independently so that they do not interfere with each other. However,

features that are useful for both the actor and critic must be learned separately

for both, which may increase the time required to train the agent.

Alternatively, the latent feature space can be shared as shown in Fig. 2.7b.

In this case, the actor and critic both optimize the same parameters, so their

contributions to the loss are not separable. To account for this, a single loss

function is defined to account for both the policy and value objectives. The

simplest way to do this is with a weighted sum that is maximized at every iteration

LP G+V F +H = Ê
[
LP G − c1L

V F + c2H[πθ](st)
]

(2.26)

where H, the entropy of the current policy, has been added to the objective to
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encourage the agent to explore the policy space. The scale factors c1 and c2

determine the relative weight of the value loss and entropy relative to the policy

gradient loss. c1 is problem-dependent, and must be set such that the scale of

the policy and value loss are similar. This approach helps reduce the number

of parameters that the agent must learn and is common in architectures using

convolutional neural networks (CNNs) where there is likely to be a large overlap

between input features that benefit the actor and critic.

Actor
Layers

Feature
Extraction

Input Layer

Feature
Extraction

Critic
Layers

(a) Separate feature spaces

Actor
Layers

Feature
ExtractionInput Layer

Critic
Layers

(b) Shared feature space

Figure 2.7: Actor-Critic neural network representations
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2.3.2 Proximal Policy Optimization

In RL, the most demanding part of training an agent is often its repeated in-

teractions with the environment. For many problems, complex simulations must

run for millions of frames to achieve desired performance levels. In domains like

robotics, this process can become even slower if training must be performed on real

systems. Therefore, it is highly desirable to make efficient use of data collected

from the environment. Since the Bellman equations do not depend on the pol-

icy used to collect trajectories, algorithms that optimize a Bellman loss function

can store past experiences in a replay buffer for use in future optimization steps.

The policy gradient family of algorithms, on the other hand, make the restrictive

assumption that the policy being optimized is the same policy that was used to

collect the training data. When data is reused in the “vanilla” policy gradient ap-

proach, changes in the policy become destructively large and performance suffers.

Proximal policy optimization (PPO) algorithms [25] are an extension of trust

region policy optimization (TRPO) methods [23] that relax this assumption and

allow data reuse in successive optimization steps as long as the policy does not

change too drastically. The most common PPO variant optimizes a clipped ob-

jective function LCLIP :

LCLIP (θ) = Êt

[
min

(
Âtrt(θ), Âtclip(rt(θ), ϵ

)]
(2.27)

where rt(θ) = πθ(at|st)
πθold

(at|st) is the likelihood ratio between a policy parameterized by

θ and the original policy, Ât is the estimated advantage for the state-action pair,
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and the clip function keeps rt in the range [1− ϵ, 1 + ϵ] as

clip(x, ϵ) =



1− ϵ x ≤ 1− ϵ

x 1− ϵ < x < 1 + ϵ

1 + ϵ x ≥ 1 + ϵ

(2.28)

The objective in (2.27) improves stability by removing the incentive for drastic

policy changes, and ϵ determines the degree to which the policy can change while

still improving the objective. If ϵ is large, larger changes can be made to the

policy on each update step. The minimum is used to make the clipped objective

performance a lower bound on the unclipped objective, which helps to mitigate

overestimation bias in the policy updates. With the loss function defined, the

PPO algorithm can be implemented as in Algorithm 1.

Algorithm 1 Actor-Critic PPO
1: Instantiate N agents running in N parallel environments
2: Define a time horizon T for advantage estimation
3: Define a mini-batch size M ≤ NT for each epoch
4: while not done do
5: for each actor i = 1, 2, . . . , N do
6: Run T time steps in the environment using policy πθold

7: Estimate advantage Â1, . . . , ÂT for each time step
8: end for
9: for each epoch i = 1, 2, . . . , K do

10: for each minibatch do
11: Compute surrogate policy loss wrt θπ using (2.27)
12: Compute value loss wrt θV using (2.24)

// Parameter updates may be shared
13: Update actor network parameters: θπ,old ← θπ

14: Update critic network parameters: θV,old ← θV

15: end for
16: end for
17: end while
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The performance of the PPO algorithm is highly sensitive to the selected hy-

perparameters and subtle implementation details such as the weight initialization

scheme in the underlying neural network, so the most relevant PPO hyperpa-

rameters are summarized below. A more detailed overview of important design

decisions in on-policy algorithms such as PPO is given in [26].

• Number of parallel environments: To increase the diversity of scenarios ex-

perienced by the agent, it is common to collect data from Nenv parallel

environments simultaneously. In many learning tasks, the sample efficiency

(i.e., the number of environment steps needed for convergence) decreases

as the number of parallel environments increases. However, this is usually

offset by the increase in speed due to parallelization. Therefore, it is com-

mon to choose a number of environments equal to the number of CPU cores

available.

• Number of environment steps per rollout: In each parallel environment,

Nstep interactions are performed and the resulting state transitions are col-

lected into a batch that is used to train the agent. This parameter is highly

problem-dependent and has a significant impact on the agent’s final perfor-

mance. In general, more environment steps are necessary if the problem is

complex or the agent’s actions have consequences over extended timescales.

• Number of gradient epochs: Once a batch of experiences has been collected

from each environment, K training epochs are performed to update the

actor and critic model weights. Common values for this parameter range

from 3 to 10. The work in [27] suggests that the value network can tolerate

a higher level of sample reuse than the policy network, and introduces the

Phasic Policy Gradient (PPG) method to take advantage of this.
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• Minibatch size: During each gradient epoch, the batch of experiences is

divided into M minibatches. Larger batch sizes are preferred to maximize

the throughput for accelerator hardware such as GPUs.

• Discount factor γ: The discount factor determines how heavily future re-

wards are weighted in the computation of the return and advantage. For

most problems, γ = 0.99 has been found to work well. However, problems

that require a large Nstep may benefit from a larger γ such as 0.999.

• GAE coefficient λ: As discussed in Section 2.3.1, λ is a parameter that

can be tuned to smoothly trade off the bias and variance of an advantage

estimator. For the learning tasks considered in [23], λ ∈ [0.92, 0.98] was

found to perform well, and 0.95 is commonly chosen as an initial guess

before performing more in-depth hyperparameter tuning.

• Clip fraction ϵ: This parameter determines how much the policy can change

due to a single minibatch of environment transitions. In most environments,

ϵ ∈ [0.1, 0.3] offers good performance.
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Chapter 3

Multifunction Radar

3.1 Radar Background

Radar systems transmit electromagnetic energy from one or more radiating an-

tenna elements, then measure the portion of that energy that is reflected back

towards the radar from objects in the environment. The emitted signal is mod-

eled as a real-valued, bandlimited sinusoid of the form

x(t) = a(t) cos [2πf0t + θ(t)] (3.1)

where f0 is the center or carrier frequency of the signal, a(t) is the amplitude

modulation function, and θ(t) is the phase modulation. This signal is generated

by modulating a baseband signal, known as a waveform, from DC to the carrier

frequency. Waveform design rarely depends on f0, so it is common to express

waveforms in terms of their frequency-agnostic complex envelope x̃(t), given by

x̃(t) = a(t) exp [θ(t)] (3.2)

In radar systems that utilize high-power amplifiers, a(t) must be rectangular

to maximize power efficiency by operating in the amplifier’s saturation region.
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Therefore, θ(t) is the primary degree of freedom to consider when designing the

waveform. Once x(t) is transmitted, it propagates spherically from the radiating

antenna element(s) at the speed of light c until it reflects off of objects in the

environment, and the radar measures the portion of the reflected energy that is

incident on the receive aperture. In practice, the received signal may consist of

many components, including clutter, noise, and interference from other emitters

near the carrier frequency. Here, it is assumed that the received signal is a scaled

and shifted copy of the transmitted waveform corrupted by thermal noise. The

received signal is thus modeled as

y(t) = â(t− τd) exp [j(2πf0(t− τd) + θ(t− τd) + ϕ(t))] + n(t) (3.3)

where τd is the two-way propagation delay between transmission and reception,

ϕ(t) is an additional phase modulation term from the scatterer, and n(t) is additive

Gaussian noise from the receiver. Noting that the signal propagates at a constant

speed and assuming the transmitter and receiver are co-located in a monostatic

configuration, the propagation delay can be used to determine the radial distance

of a scatterer from the radar (i.e., the range) as

R = cτd

2 (3.4)

The accuracy with which the range can be determined is known as the range

resolution ∆R, which determines the minimum separation in range required to

disambiguate multiple scatterers. The range resolution is inversely proportional

to the waveform bandwidth B in Hz

∆R = c

2B
(3.5)
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When processing radar data, L discrete samples from each transmitted pulse

are collected and used to extract range information from the environment. For

a pulse that is transmitted at time t = 0, samples l = 0, 1, . . . , L − 1 corre-

spond to delays τd = tmin + lTs, where Ts is the sampling period of the receiver’s

analog-to-digital converter (ADC). The tmin term is necessary in most monostatic

configurations for which sampling does not begin at t = 0 because the receiver

is isolated while each pulse is being transmitted. These delays are converted to

range using (3.4), forming a discrete grid of range values known as a range swath.

Each grid point is referred to a range bin or fast-time sample, and each range bin

is spaced ∆R meters apart.

In (3.3), â(t) is a scaled version of the amplitude modulation function whose

value depends on propagation losses, the properties of the radar system, and

the reflective properties of the scatterer from which the transmitted signal was

reflected. The impact of these physical effects are captured by the radar range

equation, which provides a way to compute the received power from models of the

system, target, and propagation environment. For a simple target at range R, the

power incident on the receiver Pr relates to the transmitted power Pt as

Pr = PtGtGrλ
2σ

(4π)3R4 W (3.6)

where Gt and Gr are the gain of the transmit and receive aperture, respectively,

λ is the operating wavelength of the radar, and σ is the radar cross section (RCS)

of the target, which is proportional to the amount of incident power on the target

that is reflected back to the radar receiver. RCS is expressed in m2, but it is

not equal to the actual cross-sectional area of the target and depends heavily on

the target’s shape, orientation, and electrical properties. Several variations of the

radar range equation exist, but only the point target version described above is

34



used for this work.

After the signal in (3.3) is received by the radar, it is corrupted by thermal

noise due to analog components in the receive chain. A common approximation

for the noise power at the output of the receiver is

Pn = kBβFTs W (3.7)

where kB = 1.38 · 10−23J/K is the Boltzmann constant, β is the receiver band-

width, F is the noise figure, which is a ratio of the input signal-to-noise ratio

(SNR) to the output SNR of the chain of components, and Ts is the temperature

of the system in Kelvin. Therefore, the SNR at the receiver output (before signal

processing) is

SNR = Pr

Pn

= PtGtGrλ
2σ

(4π)3R4kBβFTs

(3.8)

If the transmitted signal reflects off of a scatterer with a nonzero radial velocity

with respect to the radar, the received signal will be shifted in frequency due to

the Doppler effect. Assuming the object moves with a constant radial velocity vr

and the radar operates at carrier frequency F0, the Doppler shift is [28]

FD = 2vr

c− vr

F0 ≈
2vr

λ
(3.9)

where the approximation follows when vr << c. By convention, a positive Doppler

shift indicates that the radial velocity is in the direction of the radar.

At most carrier frequencies reserved for radar systems, the Doppler shift cannot

be resolved from a single pulse. It is therefore common to transmit a coherent

train of M pulses as shown in Fig. 3.1.
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Figure 3.1: Coherent pulse train with TP RI = 100 µs

The time delay between the transmission of each pulse is known as the pulse

repetition interval (PRI) and has value TP RI . Equivalently, new pulses are trans-

mitted at some pulse repetition frequency (PRF) fP RF = 1/TP RI , which is also

known as the slow-time sampling rate. The choice of PRI/PRF presents a trade-

off between the maximum unambiguous range and velocity. The maximum range

that a pulse-Doppler radar system can unambiguously measure is

Rua = cTP RI

2 = c

2fP RF

(3.10)

Range measurements from targets beyond Ru will be aliased. Likewise, the max-

imum unambiguous velocity is

vua = λ

4 fP RF (3.11)

Therefore, increasing the PRF increases vua but decreases Rua and vice-versa.

This thesis assumes that each pulse is identical, and that the PRI is the same
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for all pulses. Therefore, data is processed in coherent processing intervals (CPIs)

of duration TCP I = MTP RI . Under these assumptions, coherent integration of

these pulses improves the SNR given in (3.8) by a factor of M . If the target’s

radial velocity is constant over the CPI, the M samples from a single range bin

are a discrete-time sinusoid with frequency FD. The resolution with which this

frequency can be estimated improves with the integration time, or

∆FD = 1
TCP I

= 1
MTP RI

(3.12)

3.2 Phased Array Radar

Recent advances in multifunction radar have closely followed improvements in

phased array radar (PAR) technology. A phased array is made up of a set of

antenna elements that are fed coherently, which makes it possible to use a variable

phase shift or time delay across elements to form beams that point to particular

regions in space [1]. Unlike traditional systems which must be mechanically steered

to different angles, phased array antennas steer their beams electronically and

nearly instantaneously. In many systems, it is also possible to simultaneously form

multiple beams using a variety of beamforming and subarray techniques. This

beam agility greatly increases the flexibility of the system, making it possible to

perform several functions like surveillance, tracking, and imaging with low latency

using a single array.

The simplest phased array topology is a uniform linear array (ULA), which

arranges multiple antenna elements in a line such that the spacing between adja-

cent elements is equal. For example, a ULA with N elements is shown in Fig. 3.2.
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Figure 3.2: Uniform linear array

Each element is spaced d meters apart (such that the total length of the array

is L = (N − 1)d), and the planar wavefront is incident on the array at an angle θ

with respect to the array normal. Defining t = 0 as the time at which the plane

wave reaches element 0, the time-delay of the signal for each element position k is

τk = k
d

c
sin(θ) (3.13)

Assuming the received signal is narrowband such that c/B >> Nd for a signal

with bandwidth B, the corresponding phase shift is

ϕk = 2πf0τk = k
2πd

λ
sin(θ) (3.14)

This progressive phase shift across each element forms the basis for many com-

mon beamforming strategies [29]. Beamforming can be performed using analog

components such as phase shifters or digitally by directly sampling all or a subset

of the array elements. Specific beamforming strategies are beyond the scope of

this work and are not discussed further.

Assuming the amplitudes of each antenna element are uniformly weighted and

neglecting losses due to antenna efficiency, the gain can be computed from the 3
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dB beamwidths θ3 and ϕ3 (in degrees) as [28]

G ≈ 26, 000
θ3ϕ3

(3.15)

Similarly, the beamwidth for an ideal linear antenna aperture is

θ3 = 2 sin−1
(

1.4λ

πL

)
≈ 0.886 λ

L
radians (3.16)

The total far-field radiation pattern E for a phased array is the product of

the pattern of the individual elements Ee and the array factor AF , which is a

weighted sum of the contributions from all elements in the array

E(θ) = AF (θ, θ0)Ee(θ, θ0) (3.17)

where θ0 is the array steering angle and θ is the angle at which the pattern is

being evaluated. For a ULA, the array factor has a sinc structure given given by

AF (θ, θ0) =
sin

(
Nπd

λ
(sin(θ)− sin(θ0)

)
N sin

(
πd
λ

(sin(θ)− sin(θ0)
) (3.18)

It is also common to evaluate array performance in terms of the power pattern

P (θ), which is related to (3.17) as

P (θ) = |E(θ)|2 (3.19)

Fig. 3.3 shows the power pattern for a ULA at center frequency f0 = 3 GHz. As

the number of elements N increases, the power pattern mainlobe narrows (i.e.,

the beamwidth decreases) and the integrated sidelobes levels decrease.
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Figure 3.3: Normalized power pattern for a ULA with θ0 = 0 and constant element
spacing d = λ/2. The center frequency is f0 = 3 GHz.

The uniform rectangular array (URA) shown in Fig. 3.4 generalizes the theory

discussed above to two dimensions. Unlike linear arrays, URAs can steer beams

in both azimuth and elevation.

x

y

Figure 3.4: Uniform rectangular array topology

Assuming the illumination function of the aperture is separable in the x and
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y dimensions, the two-dimensional power pattern P (θ, ϕ) can be expressed as a

product of two one-dimensional patterns [28]

P (θ, ϕ) = Pθ(θ)Pϕ(ϕ) (3.20)

For an ideal uniformly-weighted aperture, the power pattern is a two-dimensional

squared sinc function similar to those shown in Fig. 3.3.

3.3 Target Models

The kinematics of all targets in this work are modeled in three dimensions with

a discrete constant-velocity, white noise acceleration (CV-WNA) process. There-

fore, each target maintains a six-dimensional state vector x = [x, ẋ, y, ẏ, z, ż]T

describing its position and velocity in Cartesian coordinates. In this model, de-

viations from the ideal constant-velocity behavior are treated as a zero-mean ad-

ditive white Gaussian noise process w(t) [30]. At each discrete time step ∆t

the CV-WNA model updates the target position and velocity separately for each

Cartesian coordinate according to

x(t + ∆t) = F (∆t)x(t) + w(t), w(t) ∼ N (0, Q(∆t)) (3.21)

where F is the constant-velocity transition matrix given as

F (∆t) =

1 ∆t

0 1

 (3.22)
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and Q is the process noise covariance matrix given by

Q(∆t) =

∆t3

3
∆t2

2

∆t2

2 ∆t

 q (3.23)

where q is the process noise intensity. Larger values of q correspond to larger

deviations from the constant-velocity model, and each value in Q grows with ∆t.

The RCS of each target is modeled according to Swerling case 1. This model

is suited for targets with many non-dominant scatterers whose RCS is constant

across pulses in a dwell. For Swerling 1, fluctuations in the RCS are exponentially

distributed with probability density

p(σ, σ̄) = 1
σ̄

exp
(−σ

σ̄

)
(3.24)

where σ̄ is the mean RCS. For a Swerling 1 target, the probability of detection

can be computed from the probability of false alarm PF A as [31]

PD = P
1/(1+SNR)
F A (3.25)

3.4 Operating Modes

3.4.1 Surveillance

In the surveillance mode, the radar scans its field of view to discover previously

undetected targets in the environment. There are a number of sub-tasks within

this mode that each utilize the radar’s resources differently. For example, the

radar may search the volume to detect targets at short, medium, or long range.

In short-range surveillance, targets will appear with higher SNR due to the R4

dependence on range in (3.6). This enables the radar to scan the entire volume
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more rapidly by emitting wider beams and shorter dwells in each region. This

is important in self-protect scenarios where close-in targets are considered a high

priority. The radar can also use a higher PRF to unambiguously measure doppler

if range ambiguities are not a concern. In contrast, long-range search requires

narrow beams and long dwell times in order to detect targets with low SNR.

In either case, volume search is typically carried out using a fixed scan pattern

such as the raster pattern in Fig. 3.5.

Azimuth

Elevation

Figure 3.5: Raster scan patter

Here, the radar discretizes the angular search region into a grid and each grid

point is searched sequentially. To increase the likelihood of detecting targets that

are not centered on the beam, the grid points often overlap by some fraction of the

beamwidth. Increasing the spacing between beam positions reduces the amount

of time required to search the volume, but increases the amount of the search

volume in a low-gain portion of the antenna pattern. The major limitation to this

approach is that the radar must sequentially scan each angular bin, regardless of

where targets are likely to exist. The main goal of the approach developed in this

thesis is to overcome this shortcoming, leveraging prior knowledge of the scenario
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to focus the search process on regions with a higher density of undetected targets.

3.4.2 Tracking

In the tracking mode, the radar allocates resources to initiate tracks from new

detections, improve tracks on existing targets, or recover lost tracks when a target

under track is not in its expected location. To initiate a track on a detected target

that is not associated with an existing track, it is common to rapidly collect a set of

confirmation measurements of the target in order to provide a good state estimate

for the tracking filter.

Many algorithms exist for determining when a track must be updated. In gen-

eral, targets with complicated maneuvering patterns require more frequent track

updates than those with simple motion profiles. The load on radar resources also

rapidly grows as the number of targets under track increases, so most existing work

in the multifunction radar resource management problem is focused on tracking

[3]. Since this work focuses primarily on the surveillance problem, an ideal tracker

is used. For this tracker, the predicted state of a target under track is equal to

its true state and the tracker correctly associates all detections to the target from

which they originated.
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Chapter 4

Particle Swarm Optimization

4.1 Particle Swarm Optimization

Particle Swarm Optimization (PSO) methods are a class of algorithms that were

originally intended to model the complex but structured choreography of flocks

of birds in flight [32]. In PSO, candidate solutions to the optimization problem

“fly” through a multidimensional search space to find new solutions. Individual

candidate solutions are known as particles, and the set of all particles is known as a

swarm. Each particle attempts to find good solutions by incorporating knowledge

of the best solutions found by neighboring particles and themselves. Like other

bio-inspired algorithms such as genetic algorithms, the quality of the solution

found by each particle is characterized by a fitness function, with good solutions

exhibiting high fitness. By biasing the trajectory of each particle towards fit

individuals, particles gradually cluster around regions of the search space that

achieve good results on the optimization problem at hand.

There are a number of advantages to this approach. First, PSO only models

the dynamics of each particle and makes no assumptions about the objective func-

tion under consideration. Unlike gradient-based methods like stochastic gradient

descent (SGD), PSO can be used to optimize any function. Like other evolution-
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ary algorithms, PSO is also useful for optimization problems with large search

spaces since it does not rely on local information such as gradients. Moreover, the

logic dictating the behavior of each particle is computationally inexpensive and

easy to perform in parallel. In most cases, evaluating the fitness of each individual

is the most time-consuming computation at each iteration.

For the standard PSO algorithm, the motion of the particles is governed by a

simple first-order linear model such that at a discrete time-step t, the position of

particle i is

xi(t + 1) = xi(t) + vi(t + 1) (4.1)

where x(t) and v(t) are the position and velocity at time t, respectively. In a search

space with dimensionality Nd, x and v are length-Nd vectors for each particle.

Once the velocity has been updated for each particle, (4.1) can be expressed as a

matrix multiplication and quickly computed on an accelerator such as a GPU.

One major difference between PSO algorithms is the definition of the velocity,

which determines the social behavior and priorities of each particle. In general,

the velocity consists of three components whose relative weights can be altered to

modify the swarm’s behavior:

• Inertial: The inertial component is equal to the velocity at the previous

time step, scaled by some inertial weight w. As the name suggests, this term

determines how quickly the velocity can change at each iteration. If w is too

large (relative to the other velocity components), particles will accelerate in

their original direction at each time step and the swarm will diverge since

the inertia is too large to alter trajectories towards better solutions. If w

is too small, particles may decelerate until become stationary. However, a

small w allows particles to quickly move toward good regions of the search

space. Therefore, it is common to define w ∈ [0, 1] and scale the cognitive
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and social components to ensure convergence.

• Cognitive: The cognitive component biases the velocity towards the position

of the best solution that has been found so far, scaled by some factor c1. This

is commonly referred to as a particle’s memory or nostalgia, and causes the

individual to return to good points in the search space over time. Placing

too much weight on this term adversely impacts exploration, causing the

particles to focus their search near the area where they were initialized. In

dynamic environments where the fitness surface changes over time, this term

may also bias the particles towards solutions that are no longer optimal.

• Social: The social component biases the velocity toward the best solution

found by other particles in the swarm, scaled by some factor c2. The best

solution may be taken to be the best in the entire swarm or the best in a

subset of particles in the swarm, known as a neighborhood. Therefore, the

contributions from this component depend not only on its relative weighting,

but on the structure of the social network used to diffuse information across

the swarm.

The sections that follow describe global best and local best PSO, two classic

variants of the algorithm that inspired the approach taken in this thesis.

4.1.1 Global Best PSO

In global best PSO (GBPSO) [33], the social component of the the velocity is

computed with respect to the best particle in the entire swarm. Therefore, the

velocity update equation is

vi(t + 1) = wvi(t) + c1r1(t) [yi(t)− xi(t)] + c2r2(t) [ŷ(t)− xi(t)] (4.2)
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where r1(t), r2(t) ∼ U(0, 1) are random modifications to each velocity term that

improve exploration. yi(t) is the personal best position found by particle i, and

ŷ(t) is the best solution found by all particles in the swarm. Since ŷ(t) propagates

immediately to all particles in the swarm, the social network for GBPSO has a

star topology shown in Fig. 4.1.

Figure 4.1: Star topology

Here, particles are represented as circles and each line represents direct in-

formation flow between particles so that clusters of connected particles form a

neighborhood. Since all particles are interconnected, the swarm can be thought of

as a single neighborhood in which particles have knowledge of all other particles in

the swarm. Since information quickly propagates to all particles, GBPSO tends to

converge more quickly than other variants. However, the centralized nature of the

star network leads to a lack of diversity in particle trajectories, causing increased

susceptibility to local optima. Therefore, GBPSO is better suited for unimodal

optimization problems with relatively few local optima. In the context of the

cognitive search agent described in Chapter 5, GBPSO is a good representation
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of the environment state if new targets are expected to come primarily from one

location.

4.1.2 Local Best PSO

In GBPSO, the velocity is biased in the direction of a social “target” position

ŷ, which was taken to be the position of best fitness found by all particles in

the swarm. As the name implies, local best PSO (LBPSO) instead relies on

local groupings between particles to compute the social velocity. In LBPSO, the

propagation of information between particles is modeled by the ring social network

architecture shown in Fig. 4.2.

Figure 4.2: Ring topology

Here, particles are grouped into neighborhoods with subsets of other particles

in the swarm. In each neighborhood Ni, a separate social velocity ŷi is computed
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with respect to the best velocity as

ŷi(t + 1) = arg max
x

f (x(t)) ∀x ∈ Ni (4.3)

where f(x) is the fitness function being maximized. The velocity of each particle

is updated as

vi(t + 1) = wvi(t) + c1r1(t) [yi(t)− xi(t)] + c2r2(t) [ŷi(t)− xi(t)] (4.4)

which is equivalent to (4.2) except in the social component, where the global best

position ŷ has been replaced by the neighborhood best position ŷi.

It is important to note that in general, a particle participates in more than one

neighborhood. If neighborhoods were disjoint partitions of the swarm, they would

be completely isolated from one another and knowledge of good solutions would

be unable to flow between them. In an overlapping ring topology, information is

exchanged between neighborhoods and the swarm can still converge to a single

optimal point. Since information flow is slow compared to the star topology used

in GBPSO (Fig. 4.1), LBPSO generally takes longer to converge. However, the

distributed nature of the social network ensures that a larger portion of the search

space is explored. LBPSO is also more robust to local optima since each swarm

operates quasi-independently, and neighborhoods that are stuck in local optima

can be “rescued” by other neighborhoods.

A variety of methods have been developed for grouping particles into neighbor-

hoods. In the most basic case, neighborhoods are statically defined by indexing

each particle at the beginning of the optimization process, then grouping particles

with adjacent indices. For example, consider a swarm of particles defined by the

set P = {p1, p2, . . . , pNp}. Particle pi may be grouped with its k nearest neighbors
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to form a neighborhood as

Ni = {pi−k/2, pi−k/2+1, . . . , pi+k/2−1, pi+k/2} (4.5)

In the index-based grouping, neighboring particles have no meaningful spatial re-

lationship to each other. This increases intra-neighborhood diversity since each

particle is likely to be grouped with a number of distant neighbors. If the initial

position of each particle is uniformly random, this is equivalent to a uniform ran-

dom selection. Since neighborhoods are only computed at the start, this approach

introduces minimal computational overhead to the optimization process.

Alternatively, neighborhoods can be formed by selecting particles based on

their proximity to each other in the search space. At each iteration, a k-nearest

neighbor (KNN) algorithm is run to group the particles. A brute-force compu-

tation of the distance between Np particles requires O(N2
p ) computations, which

may exceed the cost of updating the particle positions at each iteration (depend-

ing on the complexity of the fitness function). However, this can be reduced to

O(log Np) using clustering algorithms such as k-d trees [34]. Spatially grouping

particles may also lead to the formations of “islands”, which occur when neigh-

borhoods become too isolated to effectively exchange social information. While

this slows the rate of convergence, it improves diversity since each neighborhood

will primarily focus its search on a specific region of the space.

The general algorithm for GBPSO and LBPSO is given in Algorithm 2. A

major limitation of this algorithm is that it is difficult to relate the parameters w,

c1, and c2 to radar surveillance performance. This motivates the development of

the PSO variant described in Chapter 5.
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Algorithm 2 Standard PSO
1: Define lower and upper bounds bl and bh for the search space
2: Define lower and upper bounds vl and vh for the velocity of each particle
3: Create swarm of Np particles

// Prior knowledge can be encoded by initializing particles in specific regions
4: Initialize position of each particle: xi(0) ∼ U(bl, bh)
5: Initialize velocity of each particle: vi(0) ∼ U(vl, vh)
6: Initialize personal best position of each particle: yi ← xi(0)

// For LBPSO, the social target is the neighborhood best. For GBPSO, it is
the global best.

7: if f(xi(0)) > f(ŷ) then
8: Update social target position: ŷ← xi(0)
9: end if

10: while termination criteria not met do
11: for each particle xi, i = 1, 2, . . . , Np do
12: Compute fitness f(xi(t))
13: if f(xi(t) > f(yi) then
14: Update personal best position: yi ← xi(t)
15: end if
16: if f(xi(t) > f(ŷ) then
17: Update social target position: ŷ← xi(t)
18: end if
19: Compute updated velocity vi(t + 1) using (4.2) or (4.4)
20: Compute updated position xi(t + 1) using (4.1)
21: end for
22: end while

4.1.3 Exploration Strategies

In its classic form, PSO is largely a greedy optimization strategy. Particles move

in the direction of best performance, and exploration primarily comes from the

random variation of parameters r1(t) and r2(t) and by chance as the particles

travel along their trajectories. For complex fitness surfaces, additional mechanisms

may be required to facilitate exploration. Many popular exploration mechanisms

incorporate strategies from evolutionary computation (EC) since these methods

are simple to implement, computationally efficient, and scalable to large swarms.
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One simple EC-based method is to apply random mutations to various values

at each iteration. For example, in [35] the global best position ŷ is mutated with

zero-mean multivariate Gaussian noise with covariance matrix Σ ∈ RNd×Nd
+

ŷ(t + 1) = ŷ(t + 1) + w(t), w(t) ∼ N (0, Σ) (4.6)

where Nd is the search space dimensionality and Σ may be constant or may follow

an annealing schedule causing its component variances to decrease over time.

Using this method, particles are encouraged to explore a region surrounding the

global best position whose size is proportional to σ2
j in each dimension j. Another

common method is to mutate the position of individual particles at each iteration.

That is, with some probability Pm, the position of particle i is mutated (after its

velocity update) as in (4.6). The standard deviation in each dimension is set such

that the offset of mutated particles is an appreciable fraction of the search space

α, or

σj = α(bh,j − bl,j) (4.7)

where bl,j and bh,j are the lower and upper bounds of dimension j in the space,

respectively. Other EC-based approaches include selection-based PSO [36] and

the approach taken in [37], which introduces a reproduction mechanism into the

particle swarm. However, only the Gaussian mutation (4.7) is used for the ap-

proach in this Chapter 5.
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Chapter 5

Cognitive Search Agent

5.1 Surveillance PSO

In this work, a novel variation of the particle swarm optimization (PSO) algorithm

described in Chapter 4 has been developed to automate the radar surveillance task.

Here, particles in the swarm represent hypotheses for the presence of a target,

with a high density of particles corresponding to a high likelihood that a target is

present in that region. The algorithm presented in the following sections can be

used on its own in the track initiation logic of a radar system, but this formula-

tion of the problem also provides a representation of the surveillance environment

that can be re-used in future reinforcement learning (RL) approaches for radar

resource management. As discussed in Chapter 2, one of the major challenges in

RL is formulating complex tasks as Markov decision processes (MDPs). This is es-

pecially challenging for the surveillance problem, which is heavily non-Markovian

without the modifications presented in this section. For instance, very little of the

environment’s history is encoded in a range-doppler or angle-doppler map. This

is in contrast to tracking tasks, where each track encodes a history that mixes the

object’s predicted and measured position. In fact, traditional tracking algorithms

such as the Kalman filter are almost entirely Markovian and only require the most
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recent state for the prediction and track update step. In much of the cognitive

multi-function radar literature, most of the focus is placed on methods for track

control rather than surveillance, which is typically handled using a simple raster

scan or a rule-based approach such as alert-confirm. These methods have some

advantages; since a raster scan is equivalent to a periodic sampling of the search

space without replacement, every azimuth and elevation bin is guaranteed to be

searched at a fixed revisit interval. However, this method is entirely deterministic

and does not take advantage of prior knowledge where targets are more likely to

appear. Alert-confirm methods partially remedy this by scheduling confirmation

dwells when a detection is made that cannot be associated with an existing track.

However, this method only considers the immediate region where the unconfirmed

detection was made, without accounting for context in other parts of the envi-

ronment. It also becomes easily overloaded in environments with many targets

or high false alarm rates. This chapter presents an alternative approach that

represents the detection history as an MDP using PSO. This approach is compu-

tationally efficient enough to be performed in real time, scales to longer timescales

and larger input dimensions, and can be processed as a constant-length tensor by

a neural network.

5.2 Algorithm Description

At the beginning of the surveillance process, particles are randomly initialized

throughout the search space. The bounds of the search space are defined by the

field of view of the radar in azimuth and elevation. Fig. 5.1 shows an example

of the initial distribution of a 5,000-particle swarm for a radar that can steer

its beam from −45◦ to 45◦ in azimuth and elevation. In this case, the particles

are uniformly initialized with a low velocity throughout the search space. Prior
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knowledge about the location of each target can be incorporated by initializing

the particles in a particular angular region or biasing their velocities so that each

particle is more likely to travel to a given point.
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Figure 5.1: Uniformly initialized swarm

Once the particles have been initialized, the algorithm proceeds in two phases

for the duration of the surveillance process. The dispersion phase described in

Section 5.2.1 drives the exploration of the agent by removing particles from regions

where new targets are unlikely to exist. The detection phase discussed in Section

5.2.2 does the opposite, encouraging exploitation by pulling particles towards

regions with a high density of recent detections.

5.2.1 Dispersion Phase

Intuitively, the uncertainty that a target may be present in a particular location

of the search space is reduced whenever the radar beam illuminates that region.
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Since the density of particles in a given location represents the likelihood that

a target is present there, the particles should disperse after being illuminated.

When the radar beam is steered in a given direction, particles in the beam are

given a velocity radially away from the beam center. If the beam is steered in the

direction θ = [θaz, θel] with beamwidths ∆θ = [∆θaz, ∆θel], the velocity of each

particle i within the beam is updated as

vi(t + 1) = rdisp(t) xi(t)− θ

∥xi(t)− θ∥
(5.1)

where xi(t) = [xaz(t), xel(t)] is the position vector of particle i in azimuth and

elevation at time t, and rdisp(t) ∼ U(0, ∆θ) is sampled independently for each

particle. The rdisp(t) ensures that, on average, particles in the beam are scattered

by half the beamwidth in angle. As in the original PSO formulation, the random

nature of rdisp(t) improves exploration by adding diversity to the trajectories of the

scattered particles. Next, the standard particle swarm update is performed on all

particles as given by Eq. (4.1). Following the position update, all particle velocities

are multiplied by an inertia parameter wdisp ∈ [0, 1]. This parameter controls

how far each particle is able to travel after being illuminated, with greater inertia

causing scattered particles to travel farther from their initial positions. Therefore,

the cognitive search agent becomes more exploratory as wdisp approaches unity.

5.2.2 Detection Phase

Following the dispersion phase, a second optimization step is performed to in-

corporate knowledge gained from new detections into the swarm. To improve

robustness to false alarms, the detection phase is not performed on all detections.

Instead, it is only carried out for detections that are associated with an uncon-

firmed track. Therefore, the impact of false alarms depends heavily on the data
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association algorithm used by the tracker rather than on the SPSO algorithm it-

self.

For a detection d with angle vector θd, the direction vector pointing from each

particle i to the detection is computed as

xi,d(t) = θd − xi(t) (5.2)

Next, the probability that a PSO update is performed on a given particle is

inversely and exponentially proportional to its distance from the detection

pmove,i = exp (−βg∥xi,d(t)∥) (5.3)

where βg ∈ R is the gravity parameter, which determines how strongly particles

are “pulled in” by nearby detections. In other words, a high βg causes the position

update probability to decrease more rapidly with distance, confining particles to

their local region of the search space. It has been experimentally determined

that βg ∈ [0.05, 0.10] provides reasonable performance for both unimodal and

multimodal distributions of targets.

If a particle is selected for a movement update, its cognitive velocity is set

radially towards the detection as

vi,d(t) = θd − xi

∥θd − xi∥
(5.4)

so that its new velocity becomes

vi(t + 1) = wdetvi(t) + cdetrdet(t)vi,d(t) (5.5)

where rdet(t) ∼ U(0, 1) serves the same purpose as rdisp(t) in Eq. (5.1). Note
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that the social component of the velocity is zero, so this method is similar to the

cognition-only model in traditional PSO [38]. This helps ensure that particles

attend largely to their initial location, giving the swarm the ability to simulta-

neously focus on multiple clusters of targets in different regions of the search

space. After all detections have been processed, a Gaussian mutation is applied

to a small fraction of the particles according to Eq. (4.7). For the remainder of

this work, this variant of PSO is referred to as Surveillance PSO (SPSO). The

process described above is summarized in Algorithm 3. Although this algorithm

was developed with RL in mind, it can also be used in isolation. In the simplest

case, the beam could be steered to the location with the most particles. Alterna-

tively, a sampling approach could be taken where the probability of selecting an

azimuth/elevation is proportional to the number of particles in that bin.
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Algorithm 3 Surveillance PSO
Parameters: βg, wdisp, wdet, cdet

// The position bounds are set by the azimuth and elevation scan limits of
the radar

1: Define lower and upper bounds bl and bh for the search space
2: Define lower and upper bounds vl and vh for the velocity of each particle
3: Create a swarm of Np particles

// Each position/velocity is a 2-vector in azimuth and elevation
4: Initialize position of each particle: xi(0) ∼ U(bl, bh)
5: Initialize velocity of each particle: vi(0) ∼ U(vl, vh)
6: while surveillance task is not done do

// Dispersion phase
7: Steer a radar beam with beamwidths ∆θ = [∆θaz, ∆θel] to look angles

θ = [θaz, θel] in azimuth and elevation.
8: for each particle i = 1, 2, . . . , Np do
9: if particle is in the main beam then

10: Recompute velocity using Eq. (5.1)
11: end if
12: xi(t + 1)← xi(t) + vi(t)
13: vi(t + 1)← wdispvi(t)
14: end for

// Detection phase
15: Perform detection processing using methods from Chapter 3
16: Remove detections associated with existing tracks to obtain Nd unassoci-

ated detections
17: for each detection d = 1, 2, . . . , Nd do
18: for each particle i = 1, 2, . . . , Np do
19: Compute relative position xi,d using Eq. (5.2)
20: Compute movement probability using Eq. (5.3)
21: if move particle then
22: Compute velocity vi,d towards the detection using Eq. (5.4)
23: vi(t + 1)← wdetvi(t) + cdetr1(t)vi,d(t)
24: xi(t + 1)← xi(t) + vi(t)
25: end if
26: end for
27: end for
28: (Optional) Perform the Gaussian mutation from Eq. (4.7) on each particle

with probability Pm

29: end while
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5.2.3 Adaptive Dispersion Inertia

Of the parameters discussed in Section 5.2, surveillance performance is most heav-

ily dependent on the dispersion inertia wdisp and the gravity parameter βg. If wdisp

is too small, the agent will spend too much time searching a region even after ini-

tiating tracks on all targets. In contrast, if wdisp is too large, particles may quickly

disperse from regions with a high density of targets if the agent spends too much

time searching in other regions. In a sense, wdisp determines how quickly the agent

“forgets” about targets in an area. It is thus desirable for the agent to have a low

inertia in regions where targets are likely to be present (to encourage the agent to

thoroughly search that area), and high inertia elsewhere to promote exploration.

This trade-off is not possible in the default formulation in Algorithm 3, which as-

sumes wdisp is a constant. Therefore, algorithm 4 presents a method for modifying

wdisp during the surveillance based on this simple heuristic.

Algorithm 4 Adaptive Dispersion Inertia
Parameters: wdisp,min, wdisp,max, cdisp

1: for each dwell do
2: if particle i moved towards a detection then
3: wdisp,i(t + 1)← wdisp,min

4: else
5: wdisp,i(t + 1)← min(cdispwdisp,i(t), wdisp,max)
6: end if
7: Update the swarm according to Algorithm 3
8: end for

Here, wdisp,min and wdisp,max are the minimum and maximum possible inertia

for each particle, respectively, and cdisp is an adaptation factor that determines

how quickly particles transition from exploitative behavior (low inertia) to ex-

ploratory (high inertia). Particles become more exploitative if they have recently

been associated to a detection, and the longer a particle goes without a detection,

the more exploratory it becomes (up to the limit wdisp,max). During experimen-
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tation, it was found that a wdisp,min = 0.25, wdisp,max = 0.95, and cdisp = 1.5

performed well in all simulation environments.

5.2.4 Results and Analysis

In this section, the performance of an SPSO-based beam steering agent is eval-

uated in a number of multi-target surveillance scenarios. This agent uses SPSO

with adaptive dispersion inertia to form images as in Fig. 5.1 then steers its beam

to the azimuth and elevation angles with the most particles on each dwell. In-

terpreting the density of particles as the probability density of untracked targets

in a region, this agent greedily focuses only on regions that are highly likely to

contain targets. This is one of the simplest and most computationally efficient

method for using SPSO to schedule dwells, since the SPSO output is used directly

without additional processing. The beam steering agents under consideration are

compared by the fraction of targets they each initiate over the course of the sce-

nario.

In the first simulation environment, targets are clustered around a single point

in the search volume. At the start of each new scenario, the simulation samples a

center point from a uniform distribution that spans the radar’s field of view. In

this case, the field of view is −45◦ to 45◦ in azimuth and elevation. The simulator

then samples the span of the cluster from U(0◦, 40◦) in each angular dimension in

order to add diversity to the scenarios encountered by the agent. The scenario is

reset when all targets are detected or after 2500 dwells have been processed.

In each new scenario, the simulator generates fifty targets prior to the first

dwell. New targets spawn at the start of each dwell according to a Poisson birth

process with some birth rate λ. When a new target is generated, its initial range is

sampled from U(5 km, 50 km), and the x, y, and z components of its initial velocity
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are independently sampled from U(−100 m/s, 100 m/s). The RCS of each target

fluctuates according to a Swerling 1 model with a mean RCS of 10 m2. All targets

move according to the constant-velocity white noise acceleration model described

in 3 with an acceleration process noise of q = 10. Table 5.1 summarizes the

environment parameters for the first experiment. Table 5.2 gives the parameters

of the radar system, and Table 5.3 shows the parameters parameters for the SPSO

algorithm described in Section 5.2.

Parameter Value
Mean target azimuth ∼ U(−45◦, 45◦)
Mean target elevation ∼ U(−45◦, 45◦)
Target azimuth span ∼ U(0◦, 40◦)
Target elevation span ∼ U(0◦, 40◦)
Initial target range ∼ U(5 km, 50 km)

Initial target velocity (x, y, z) ∼ U(−100 m/s, 100 m/s)
Acceleration Process Noise (q) 10

Initial Num. Targets 50
Mean target RCS (σ2) 10

Target birth rate λ 0.05
Num. confirmation detections 3

Time limit 2500 dwells

Table 5.1: Parameters for the single-cluster scenario
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Parameter Value
Array geometry Rectangular

Num. horizontal elements 32
Num. vertical elements 32

Center frequency 3 GHz
Element spacing λ/2

Tx element power 10 W
Element gain 3 dB
Beam pattern Sinc
Noise figure 4 dB

Position (x, y, z) (0, 0, 0) m
Rotation offset (yaw, pitch, roll) (0◦, 0◦, 0◦)

Table 5.2: Radar system parameters

Parameter Value
Num. particles 10e3

βg 0.10
wdisp,min 0.25
wdisp,max 0.95

cdisp 1.5
wdet 0.25
cdet ∆θ/2

Mutation rate 0

Table 5.3: Particle swarm parameters

Fig. 5.2 shows the fraction of targets initiated over time for three different

agents for a beamwidth of 3◦ in azimuth and elevation, averaged over twenty

trials. The blue curve is the traditional raster scan agent that scans according

to the pattern in Fig. 3.5. Each position in the raster grid is separated by 0.75

beamwidths. This behavior is equivalent to sampling the angle space without

replacement. The orange curve, on the other hand, represents an agent that

uniformly selects a random beam position at each time step, which is equivalent

to sampling with replacement.

In this scenario, none of the agents initiate tracks on all targets in the 2500-
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dwell time limit. However, the SPSO agent significantly outperforms the other

agents, tracking nearly 95% of targets by the end of the simulation. The random

agent slightly outperforms the raster agent, with both initiating tracks on less

than 70% of the targets. Throughout the simulation, the SPSO agent also quickly

initiates tracks on a majority of the targets, reaching a track fraction of 75%

in under 1000 dwells. For narrow beamwidths (which are necessary for long-

range surveillance), methods like raster scanning and random search experience

difficulty due to the number of angular bins that must be searched. Since there is

a large amount of time between successive scans of a given bin, missed detections

must wait for the entire grid to be searched (on average) before being illuminated

again. The SPSO agent, in contrast, maintains a history of where targets have

been detected in the past and prioritizes those regions until it initiates tracks on

many targets.
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Figure 5.2: Track initiation ratio for a deterministic agent with ∆θaz = ∆θel = 3◦.

In Fig. 5.3, the scenario described above is repeated, but each agent now
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steers a 5◦ beam. Like before, the uniform and random agents perform similarly

throughout the scenario and both initiate tracks on most or all of the targets, on

average. The SPSO agent’s performance also improves significantly. Although

it takes the SPSO agent nearly as long as the other agents to detect all of the

targets, it visibly outperforms the other two agents throughout the course of

the simulation, tracking 80% of targets in 500 dwells. When the beamwidth is

increased to 10◦ (Fig. 5.4), the SPSO agent tracks the targets slightly more quickly

than the other agents. However, the difference between each agent’s performance

is much smaller than before.
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Figure 5.3: Track initiation ratio for a deterministic agent with ∆θaz = ∆θel = 5◦.
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Figure 5.4: Track initiation ratio for a deterministic agent with ∆θaz = ∆θel = 10◦.

Fig. 5.5 shows the beam coverage history for four different distributions of

targets. In these images, the value of each pixel corresponds to the number of

times the radar beam was pointed to the corresponding angular region. In Fig.

5.5a, targets are initialized in a cluster around (az, el) = (20◦, 20◦) with a width

of ±5◦, and the radar has a beamwidth of 3◦ in each dimension. In this case, the

agent’s beam coverage corresponds very closely to the true target distribution.

The agent explores the entire search space until it locates the target cluster, then

quickly initiates tracks on all targets and ends the episode.

In Fig. 5.5b, the cluster is centered around the same region, but the width

of the cluster is ±20◦ in azimuth and elevation. The SPSO agent automatically

adapts to this change, broadening its search to a wider angular region that once

again corresponds to the true distribution of the targets. In the extreme case

where targets are uniformly initialized throughout the space, the agent’s behavior

approaches a random search (Fig. 5.5c).
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Since SPSO makes no assumptions about the distribution of targets or their

motion profile, it also generalizes to more complex target distributions without re-

quiring changes to the swarm parameters. For example, Fig. 5.5d shows the beam

coverage history for a scenario with a multimodal target distribution. Targets are

divided roughly evenly into two clusters that are 10◦ wide in each dimension, and

the agent once again prioritizes the regions of the search space where untracked

targets are most likely to be present.

These results indicate that the SPSO algorithm provides a useful method for

informing where a radar system should steer its beams to improve performance

on the surveillance task. Since SPSO does not require information about the

distribution of targets, its performance generalizes to a range of scenarios. It

is also computationally efficient, requiring only one swarm update per detection

associated with an unconfirmed track (in addition to an update at the start of

each dwell). The method examined in this section has two limitations: first, it can

only be applied to compute the steering angle rather than other dwell parameters

such as the beamwidth. Second, it provides no inherent mechanism to balance

resources among other tasks.

The reinforcement learning (RL) extension to the algorithm presented in Sec-

tion 5.3 is intended as a first step to mitigating these problems. Novel multi-agent

RL approaches can be developed in the future to treat each radar task as a separate

computational agent in order to balance competing tasks. Additional parameters

can easily be learned by the agent as simple extensions to the action space of

the environment. For example, the RL agent described Section 5.3 outputs a

beamwidth at each dwell, in addition to the steering angle.
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(a) Targets initialized ±5◦ from the center of the cluster
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(b) Targets initialized ±20◦ from the center of the cluster
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(c) Targets uniformly initialized throughout the space
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(d) Two separate target clusters. The number of targets in each cluster
is approximately equal, and targets are initialized ±5◦ from the center
of each cluster.

Figure 5.5: Beam coverage history for various target distributions.
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5.3 RL Formulation

The SPSO algorithm developed in the previous section is used to express the

surveillance problem as an MDP that can be integrated into an RL system. The

various components needed to fully describe the MDP as defined in Chapter 2 are

given below.

5.3.1 State Representation

The simplest way to represent the state of the environment is to discretize the

search space into a grid where the value of each bin is equal to the number of

particles it contains, forming a sequence of images similar to Fig. 5.1 that can be

processed using a convolutional network architecture. During testing, it was found

that the images produced by this method were often sparse, and its features were

not distinct enough to be effectively learned by a CNN. For instance, consider the

particle distribution after a cluster of targets has been detected at a particular

angle (Fig. 5.6). Although it is clearly visible that particles have clustered near

the location of the targets, a majority of the space contains few (if any) particles.
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Figure 5.6: Particle distribution after detecting a cluster of targets at (az, el) =
(20◦,−30◦)

To mitigate this issue, additional processing must be performed on the swarm

output to create a more succinct state space representation (Fig. 5.7). First,

images are generated as described above. Rather than directly passing raw pixel

values to the network, each bin is ranked according to the number of particles

it contains. A new N × 3 image is formed from the N bins containing the most

particles, where the first and second columns of this image contain the mean

azimuth and elevation of every particle in each of the N bins, respectively.

If the agent is only required to select the steering angles for a beam with

constant beamwidth, the first two columns encode all of the required information.

In this work, the cognitive agent selects the azimuth and elevation beamwidth

in addition to the steering angle. To effectively manage the trade-off between

beamwidth and SNR, the state must also encode information about the range of

potential targets. Therefore, the third column of the image provides the mean
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“range” of the particles in each bin, where the of each particle is the range of the

most recent track update that pulled the particle in during the detection phase

(Section 5.2.2). With these values computed, the resulting image is flattened

into a length-3N tensor. Since neural network training is generally more stable

on smaller inputs, the values in the first two columns are scaled to the interval

[−1, 1], and the values in the range column are divided by 10e3.

Azimuth

Elevation

Rank bins Flatten

Az. El. Range

Figure 5.7: An example of the state space representation

This state representation has a number of advantages. Unlike the raw pixel

state representation, the state space in Fig. 5.7 only encodes information about

the N bins that are most likely to contain untracked targets. Since the feature

vector has already been processed, it can be passed directly into a simple fully-

connected policy network to select the dwell parameters. This network requires

far fewer parameters than if raw pixels were used since the state vector is only

length-3N , which greatly reduces the computation required for action selection

and makes real-time implementation feasible. Finally, this approach is invariant

to the specific details of the particle swarm, so the swarm parameters (such as
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the number of particles or inertia values) can be changed without repeating the

training process.

5.3.2 Action Space

At the start of each dwell, the cognitive surveillance agent outputs the angle to

which the beam should be steered and the transmit beamwidth in both azimuth

and elevation. The beam is only spoiled on transmit such that the full aperture

is used for computing the receive gain and angular resolutions. The process of

selecting actions is formulated as a continuous control task, where the input to

the policy network is the feature vector described in Section 5.3.1 and the output

is a mean and variance for each parameter of the four parameters to be selected.

The agent then samples actions from a multivariate Gaussian distribution by con-

catenating the mean values into a vector and the variances into the diagonal of a

covariance matrix. If a sampled action is invalid for a particular radar configura-

tion (e.g., the steering angle exceeds the radar’s field of view), it is clipped into

the valid range. Although only beamwidths and steering angles are considered in

this work, the Gymnasium environment (see Section 2.2.3) also supports dynamic

selection of the bandwidth, pulse width, PRF, and the number of pulses per dwell

in its action space.

5.3.3 Reward Function

The goal of the surveillance agent is to select beam steering angles such that the

number of tracks initiated is maximized. To reflect this goal, the agent receives a

reward of +1 for each track initiated at the end of each dwell and a reward of 0

otherwise.
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5.3.4 Results and Analysis

The multi-target surveillance scenario described by Tables 5.1-5.3 is repeated to

evaluate the performance of the RL beam-steering agent. In order to more thor-

oughly evaluate the beam spoiling behavior of the RL agent, the initial range of

each target is uniformly distributed from 5 km to 150 km. This requires the RL

agent to consider both short, medium, and long-range scenarios when learning to

sacrificing SNR for beamwidth.

To form the input state, the agent discretizes the distribution of particles into

an 84 × 84 pixel image. The 100 pixels containing the most particles are used

to form the input state vector as described in Section 5.3.1, producing a length-

300 tensor. In order to capture particle velocities in the state representation, the

previous three state vectors are stacked with the current state in the channel di-

mension, producing a 1D image with shape 4× 300. The agent uses separate but

identical hidden layers to compute the policy and value function. The first layer of

each network consists of a Conv1d layer with kernel size 1×1, stride 1, and a single

filter. This is nearly identical to a fully-connected linear layer, but processes all

input channels at once to take advantage of the state history encoded by the frame

stacking operation. The output of the convolutional layer is flattened and passed

through a tanh activation function, followed by an additional fully-connected hid-

den layer with 64 units and another tanh activation. In the final processing stage,

the actor network outputs the mean and standard deviation for each of the four

actions (steering angles and transmit beamwidths in azimuth/elevation), and the

critic network outputs a scalar estimate of the value of the current state. The

network architecture is summarized in Fig. 5.9. The network is then trained using

the PPO algorithm described in Section 2.3.2.
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Parameter Value
Horizon (T) 512

Num. Epochs 10
Batch Size 2048

Discount Factor (γ) 0.99
GAE Parameter (λ) 0.95

Value coefficient N/A
Entropy coefficient 0

Policy Clip Fraction (ϵ) 0.2
Num. Parallel workers 16

Table 5.4: PPO agent parameters

Table 5.4 summarizes the PPO hyperparameters used during training. Since

the actor and critic do not share parameters, value function scaling does not need

to be performed (see Section 2.3.1).

Fig. 5.8 shows the fraction of targets initiated over time for the three deter-

ministic agents described in Section 5.2.4 and the RL-based agent. As before, the

raster and random agents are only able to initiate tracks on 60 − 70% of targets

over the duration of the scenario, and the deterministic SPSO agent tracks ap-

proximately 90% of targets. The RL agent, on the other hand, outperforms the

other methods for the duration of the scenario and detects all targets in the 2500

dwells.
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Figure 5.9: Agent Network Architecture
77



0 500 1000 1500 2000 2500
Time step (dwells)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

ti
on

 o
f t

ar
ge

ts
 u

nd
er

 t
ra

ck

Raster
Random
SPSO
RL

Figure 5.8: Track initiation fraction for the RL-based agent. At the start of each
dwell, the agent selects a beamwidth between 3◦ and 10◦. The other agents use a
constant transmit beamwidth of ∆θaz = ∆θel = 3◦.

Fig. 5.10 shows the track initiation performance for all agents in the same

scenario as before, except the random, raster, and SPSO agents now steer 5◦

beams on transmit. Compared to Fig. 5.10, the performance of the deterministic

agents is considerably improved, with each agent tracking approximately all of

the targets. In this scenario, the RL and SPSO agents perform nearly identically,

and both outperform the raster and random agents.
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Figure 5.10: Track initiation ratio for the RL-based agent. At the start of each
dwell, the agent selects a beamwidth between 3◦ and 10◦. The other agents use a
constant transmit beamwidth of ∆θaz = ∆θel = 5◦.

Similar results are observed when the SPSO, raster, and random agents steer

10◦ beams on transmit (Fig. 5.11). In this scenario, however, the RL agent per-

forms worse than the SPSO agent for the first 500 dwells, then outperforms all

other methods for the duration of the scenario. With a fixed 10◦ beam, the deter-

ministic agents are unable to detect all targets in the scenario due to poor SNR

for long-range targets. This demonstrates the utility of the RL beam-steering

agent, which incorporates knowledge of the range of each target when selecting

its beamwidth.
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Figure 5.11: Track initiation ratio for the RL-based agent. At the start of each
dwell, the agent selects a beamwidth between 3◦ and 10◦. The other agents use a
constant transmit beamwidth of ∆θaz = ∆θel = 10◦.

Next, the convergence behavior of the RL agent is analyzed. The following

results were obtained by training the agent on the same scenario as above for

two million time steps over five random seeds. Fig. 5.12 shows the mean episode

reward across the 16 parallel environments at each time step. Initially, fewer than

half the targets are tracked per episode. However, the agent quickly learns the

task and consistently achieves the maximum reward after 0.25 million environment

steps. After this point, it learns to track targets more quickly in order to obtain

more reward. This behavior is illustrated in Fig. 5.13, where the average length

of each episode steadily decreases from 2000 to 500 over the training interval.
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Figure 5.12: Mean episode reward across all parallel environments
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Figure 5.13: Mean episode length across all parallel environments

Fig. 5.14 shows the entropy of the learned policy as training progresses. Ini-

tially, the agent takes random actions in order to explore the environment. As

the agent gains experience, the policy improves and becomes more exploitative,
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causing the entropy to monotonically decrease before converging to around 0.8.
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Figure 5.14: Policy entropy

Fig. 5.15 shows the policy network loss (computed using Eq. (2.25) for each en-

vironment step. Although the policy loss is highly oscillatory, it decreases slightly

over the course of training before converging to a mean of −0.02. The value net-

work loss from Eq. 2.24 is shown in Fig. 5.16. As the agent obtains more reward,

the value loss increases before converging to a stable value. Unlike in supervised

learning, a low loss value does not necessarily correspond to improved perfor-

mance, and these figures are prototypical loss curves that show that the learning

process is proceeding as expected.
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Figure 5.15: Policy (actor) loss over two million time steps
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Figure 5.16: Value (critic) loss over two million time steps

The results in that have been discussed in this section indicate that the SPSO

algorithm provides a Markovian representation of the surveillance task that can

be used to train cognitive agents with RL. By keeping the state representation
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compact, the agent successfully learned the task using the simple fully-connected

network in Fig. 5.9. This network architecture does not require many parameters

and is computationally efficient enough to implement in a real time system. These

experiments also demonstrated the flexibility of the RL approach: with only a

small modification to the network architecture, the agent learned to effectively

steer and spoil the beam to improve its performance on the surveillance task.

84



Chapter 6

Conclusions and Future Work

In this thesis, a novel variant of the classic PSO algorithm was developed to encode

prior knowledge of the location of undetected targets. This method, known as

SPSO, is intended to inform decision making during the surveillance process. By

focusing the search on regions that are more likely to contain new targets, more of

the radar timeline can be allocated towards resource-intensive tasks such as track

maintenance with no loss in performance. The resulting algorithm is intuitive and

computationally efficient enough for real time operation, does not depend on the

underlying motion model of the targets being detected or the number of targets,

and outputs a constant-length tensor that can be used as the input to a neural

network.

Two use cases for the SPSO algorithm was presented. In the first case, the

raw swarm output for the algorithm was used to directly select the steering angle

for the beam from a phased array radar system. In the second case, the particle

swarm output was used to compose a state representation that was used to train

a cognitive agent to both steer and spoil (on transmit) a beam using reinforce-

ment learning. Both use cases significantly outperformed a traditional raster scan

strategy in all environments considered.

All simulations in this work considered a specific set of scenarios, where tar-
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gets were initialized in at least one cluster, each centered around some point in

the angular search region. Although these scenarios effectively demonstrated the

performance of the algorithm, future work could be performed to consider more

interesting and realistic target formations. This work considered agents whose

only objective was surveillance. A more holistic view of the performance of the

algorithm could be gained by integrating it into a system that must also balance

resources with tracking tasks.

There are numerous extensions to this work that could be pursued in future

work. The most obvious extension is to augment the action space of the RL agent

so that it also selects resources such as the integration time, PRF, and false alarm

rate of each dwell alongside the beam parameters. To more effectively balance

resources between search and tracking functions, an MDP representation of the

tracking task could be developed. This tracking state representation could be

encoded with the SPSO representation described in Chapter 5, or a multi-agent

RL approach could be taken, treating the each task as an independent agent [39].
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Appendix A

The Policy Gradient Theorem

To update the parameters of the policy function πθ using stochastic gradient

ascent as discussed in Ch. 2, it is necessary to derive an analytical expression

for the gradient of agent performance J with respect to the policy parameters θ,

known as the policy gradient. The derivation below follows largely from [40]. The

goal is to maximize the return Gt(τ) for a trajectory τ with T steps, or

J(θ) = Eτ∼πθ
[Gt(τ)] t = 0, . . . , T − 1 (A.1)

The gradient is then given by

∇θJ(θ) = ∇θEτ∼πθ
[Gt(τ)] (A.2)

Expanding the expectation and bringing the gradient into the integral gives

∇θJ(θ) =
∫

τ∼πθ

∇θp(τ |θ)Gt(τ) (A.3)

where p(τ |θ) is the probability of trajectory τ occurring under policy πθ. In a

Markov decision process, state transitions are assumed to be independent and
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p(τ |θ) can be expressed as a chain of multiplications

p(τ |θ) = p(s0, a0, . . . , sT , aT |θ)

= µ(s0)
T∏

t=0
πθ(at|st)p(st+1|st, at)

(A.4)

where µ(s) is the initial state distribution that gives the probability that an episode

begins in state s and p(st+1|st, at) is the environment’s state transition function

from (2.5). If T is large, this expression may become numerically unstable since

all numbers in the multiplication are less than one. It is therefore more convenient

to work with the log-probability of the trajectory

log p(τ |θ) = log µ(s0) +
T∑

t=0
log πθ(at|st) +

T∑
t=0

log p(st+1|st, at) (A.5)

To substitute this into (A.3), the ∇θp(τ |θ) term must be expressed as a log-

probability. From the chain rule of calculus, the gradient of the log-probability is

∇θ log p(τ |θ) = 1
p(τ |θ)∇θp(τ |θ) (A.6)

which can be substituted into (A.3) to get

∇θJ(θ) =
∫

τ∼πθ

p(τ |θ)∇θ log p(τ |θ)Gt(τ) (A.7)

Only the second term in the log-probability (A.5) is a function of θ, so the policy

gradient becomes

∇θJ(θ) =
∫

τ∼πθ

p(τ |θ)
T∑

t=0
∇θ log πθ(at|st)Gt(τ)

= Eτ∼πθ

[
T∑

t=0
∇θ log πθ(at|st)Gt(τ)

] (A.8)
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which is the key result of the policy gradient theorem. Since ∇θJ(θ) takes the

form of an expectation, it can be approximated using a sample mean with samples

collected from multiple trajectories. For example, the REINFORCE algorithm [22]

performs a stochastic gradient ascent after each trajectory to update the policy

weights as

θt+1 = θt + αGt∇θ log πθ(at|st) (A.9)

where α is the learning rate parameter that determines how quickly the policy

parameters change at each time step.
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Appendix B

Activation Functions

The output from the classic perceptron in Fig. 2.1 is an affine transformation of

its inputs, followed by a nonlinear activation function. The choice of activation

function is an important hyperparameter that can have a significant impact on the

final performance of the model. An early choice was the logistic sigmoid function

shown in Fig. B.1, which is defined as

σ(x) = 1
1 + exp(−x) (B.1)

The sigmoid function is bounded in the range [0, 1] and varies smoothly for small

values of x before saturating. The unsaturated region provides gradient infor-

mation that can be used to update the network parameters using a variant of

the backpropagation algorithm. The hyperbolic tangent function (Fig. B.2) has

similar properties, but is bounded in the range [−1, 1]. Although these activation

functions work well for small networks, they are rarely used in large architectures.

This is because for very large and very small inputs, these functions saturate and

have nearly zero gradient. When backpropagation is used to update the network

weights, the gradient gradually diminishes to zero during the backwards pass of

the algorithm (known as the vanishing gradient problem). However, these acti-

vation functions are still commonly used in reinforcement learning to scale the
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output of policy networks into a valid range for bounded continuous action spaces

(see Section 2.2.1).

Figure B.1: Sigmoid activation function

Figure B.2: Tanh activation function

In deep neural network architectures, it is more common to use activation

functions that do not saturate in order to avoid the exploding/vanishing gradient
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problem. One such activation function is the rectified linear unit (ReLU) function,

which is characterized by the following expression

ReLU(x) = max(0, x) (B.2)

In other words, the ReLU function is a linear with a slope of 1 when x ≥ 0 and

zero when x < 0 (Fig. B.3). The ReLU function is used frequently in deep learning

applications because it is easy to compute, nonlinear, and does not saturate for

positive x.

Figure B.3: ReLU activation function

Due to its general popularity, many variation of the ReLU activation have been

developed for specific use cases. For example, the Softplus function (Fig. B.4) is

a continuous approximation to the ReLU function and is defined as

Softplus(x) = 1
β

log(1 + exp(βx)) (B.3)

The β parameter determines the smoothness of the transition, approaching ReLU
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as β →∞. In this work, a Softplus activation is used for the beam steering agent

in Chapter 5 to ensure that the output of the network that computes the action

variance is always positive.

Figure B.4: Softplus activation function

In some situations, it is desirable to transform the output of a neural network

into a probability distribution. For example, a classification network may output

a set of values corresponding to the probability that the input belongs to each

class. This is traditionally done with a softmax activation function. For inputs

x1, x2, . . . , xN , the softmax activation function is computed as

Softmax(xi) = exi∑N
j=1 exj

(B.4)

which ensures that the elements of the output lie in the range [0, 1] and that the

entire output sums to unity.
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Appendix C

List of Acronyms and Abbreviations

ADC Analog-to-digital converter

AEC Agent-environment cycle

CNN Convolutional neural network

CPU Central processing unit

CRLB Cramér-Rao lower bound

CV −WNA Constant-velocity white noise Acceleration

EC Evolutionary computation

GAE Generalized advantage estimation

GBPSO Global best particle swarm optimization

GPU Graphical processing unit

KL Kullback-Leibler

KNN K-nearest neighbor

LBPSO Local best particle swarm optimization

LSTM Long short-term memory

MDP Markov decision process

ML Machine learning

MLE Maximum likelihood estimator

PAR Phased array radar

POMDP Partially observable Markov decision process
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PPG Phasic policygradient

PPO Proximal policy optimization

PSO Particle swarm optimization

RCS Radar cross section

RL Reinforcement learning

RRM Radar resource management

SGD Stochastic gradient descent

SNR Signal-to-noise ratio

SPSO Surveillance particle swarm optimization

TWS Track-while-scan

ULA Uniform linear array

URA Uniform rectangular array
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