

Continued isolation of anaerobic gut fungi from marsupial hosts

Introduction

- Anaerobic gut fungi (AGF) aid plant digestion as part of the herbivore microbiome.
- Prior studies suggest AGF occur in the marsupial gut, based on microscopic observation and sequence-based detection¹⁻⁴.
- In prior work we identified cultured strains of Testudinimyces and Khoyollomyces from koala and kangaroo feces, respectively (Fig. 1-2).
- We are currently attempting to identify a strain from wallaby feces (Fig. 4-5).

Figure 1: Testudinimyces strain from koala feces.

Methods

- We enriched fecal samples from marsupials under anaerobic conditions (Fig. 3)
- Samples were selected based on results from a separate culture-independent study of AGF communities and freshness of samples (Table 1).
- Feces were added to rumen fluid cellobiose media with antibiotics and switchgrass at 39°C (Table 2).
- Some enrichments also utilized cellulose or were incubated at 35°C.

Figure 2: Agarose gel showing successful PCR products of five strains of *Khoyollomyces* from kangaroo feces.

Sample Name

Attem
1
1
1
3
3
1
2
2
1
4
2
1
Table 2: attempts

Isolation attempts from marsupials since October 2021. 22 total s with three successful enrichments. All enrichments were performed with switchgrass and at 39°C. Enrichments performed with cellulose (Cell.) and at 35°C are in the last columns.

Emily E. Chandler¹, Carrie J. Pratt², Noha H. Youssef², Mostafa S. Elshahed² Oklahoma State University, ¹Department of Biochemistry & Molecular Biology, ²Department of Microbiology & Molecular Genetics

+ Cell. + 35°C

Kangaroo-AUS9	eastern grey kangaroo		
Kangaroo-US-OK1	red kangaroo		
Kangaroo-US-OK4	red kangaroo		Х
Kangaroo-US-OK7	red kangaroo	Х	Х
Kangaroo-US-OK8	red kangaroo		Х
Koala-AUS30	koala		
Koala-AUS40 Koala-AUS80	koala koala	Х	
Wallaby-US-OK16	wallaby		Х
Wallaby-US-OK17	wallaby	Х	Х
Wallaby-US-OK3	wallaby		
Wallaby-US-OK5	wallaby		

Species

Figure 4: Visible biomass of wallaby enrichment in switchgrass.

Sample	Illumina Sequences
la_43	4938
garoo_83	5192
la_33	6538
garoo_82	6609
garoo_G30	6741
la_146	7291
la_39	8465
la_74	12046
garoo_55	25552

Figure 3: Visual rendering of the enrichment process. Table 1. Select marsupial samples and number of sequences retrieved. Darker rows indicate those that have undergone enrichment attempts.

Results

- While many marsupial enrichments produce bubbles and floating plant biomass after 24 hours, very few produce visible biomass.
- Of 22 attempts to enrich AGF from marsupial feces, only three have been successful (13.63%).
- Testudinimyces and Khoyollomyces were identified from koala and kangaroo feces, respectively.
- A recent wallaby enrichment produced visible biomass, but we have been unable to successfully isolate DNA or RNA.

Figure 5: Visible biomass of wallaby enrichment.

Conclusions

- Attempts to culture AGF from marsupial feces have shown minor success. Although many enrichments appear to show growth early on, it typically fails to persist.
- The incongruence between culture-independent data indicating AGF presence and lack of successful culturing is likely due in part to the age and storage of the samples.
- The average age of our marsupial samples is 1.3 years. In this time, oxygen may have infiltrated and killed the extremely oxygen sensitive microbes.
- Future research will continue our attempts to isolate AGF from marsupials.

References

1. Liggenstoffer, A.S., et al., Phylogenetic diversity and community structure of anaerobic fungi (Phylum Neacallymastigales) in ruminant and non-ruminant herbivores. The ISME J., 2010 4 p. 1225–1235. 2. Lee, A.K. and A. Cockburn, Evolutionary ecology of marsupials. 1985, Melbourne, Australia: Press Syndicate of the University of Cambridge. 3. Cifelli, R.L. and B.M. Davis, Paleontology. Marsupial origins. Science, 2003. 302(5652):1899-900. 4. Luo, Z.X., et al., An Early Cretaceous tribosphenic mammal and metatherian evolution. Science, 2003.

302(5652):1934-40. 5. Hume, I.D., Microbial fermentation in herbivorous marsupials. BioScience, 1984. 34(7):435-440.

