COMPARING CONCRETE PERFORMANCE USING CONVENTIONAL AND

ALTERNATIVE COAL ASH

By

BRADEN BOYD

Bachelor of Science in Civil Engineering Oklahoma State University

Stillwater, OK

2019

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July, 2022

COMPARING CONCRETE PERFORMANCE USING CONVENTIONAL AND ALTERNATIVE COAL ASH

Thesis Approved:

Dr. M. Tyler Ley

Thesis Adviser

Dr. Daniel Cook

Dr. Norb Delatte

Name: BRADEN BOYD

Date of Degree: JULY, 2022

Title of Study: COMPARING CONCRETE PERFORMANCE USING CONVENTIONAL AND

ALTERNATIVE COAL ASH

Major Field: CIVIL ENGINEERING

Abstract: Fly ash is widely used as a supplementary cementitious material in concrete as it can contribute to strength gain and increased durability of the concrete. In 2019, the coal ash production volume decreased by 23% from the previous year, according to the American Coal Ash Association [3]. This is due to most coal combustion energy use being converted to natural gas. One solution to this is to use alternative coal ash such as reclaimed coal ash and bottom coal ash. This research aims to investigate the performance of different fly ash materials at both 20% and 40% replacement so that it can be used to develop performance-based testing. This work investigated concrete's slump, compressive strength, and electrical resistivity to compare the performance of traditional, reclaimed, blended, and bottom coal ash sources.

TABLE OF CONTENTS

C	Chapter Page			
I.	. IMPORTANCE OF PERFORMANCE-BASED TESTING FOR RECLAIMED			
	COAL A	SH	1	
	1.1 INTI	RODUCTION	1	
	1.1.1	Types of Ashes from Coal Combustion	2	
	1.1.2	Conventional Ash Classification	4	
	1.1.3	Performance of Coal Combustion Ash in Concrete	4	
	1.2 PER	FORMANCE BASED TESTING OF CONCRETE	4	
	1.3 OBJ	ECTIVE	5	
П.	PERFOR	MANCE COMPARISON OF CONCRETE USING CONVENTIONAL AND)	
	UNCON	VENTIONAL TYPES OF COAL ASH	6	
	2.1 AIM (OF THIS RESEARCH	6	
	2.2 EXPE	ERIMENTAL METHODS	6	
	2.2.1	Laboratory Materials	6	
	2.2.2	2 Isothermal Calorimetry Testing	11	
	2.2.3	3 Calculations for Isothermal Calorimetry Testing	12	
	2.2.4	Concrete Mixture Design	13	
	2.2.5	5 Concrete Mixing Procedure	13	
	2.2.6	5 Testing Procedure	14	
	2.2.7	7 Statistical Analysis	15	

Chapter Pag			
2.3 RESULTS AND DISCUSSION			
2.3.1 Overview			
2.3.2 Isothermal Calorimetry Test			
2.3.3 Slump Test			
2.3.4 Compressive Strength			
2.3.5 Electrical Resistivity			
2.3.6 Statistical Analysis			
2.3.6.1 Statistical Comparison of Coal Production in Concrete Using T-Test 26			
2.3.6.2 Performance Classification of Coal Ash in Concrete			
III. CONCLUSION			
3.1 Summary			
REFERENCES			
APPENDICES			
APPENDIX A: TABLES AND FIGURES 44			
APPENDIX B: ANALYSIS OF THE VARIABILITY IN SLUMP PERFORMANCE BETWEEN DIFFERENT COAL ASH SOURCES			

LIST OF TABLES

Table	Page
1-1. Types of Ash	2
1-2. Performance Based Testing	5
2-1. Coal Ash Types and Number of Sources	7
2-2. Bulk Oxide Analysis Using ASEM	8
2-3. Particle Size Distribution Using ASEM	9
2-4. Type I Cement Oxide Analysis and Bogue Calculations	11
2-5. Isothermal Calorimetry Paste Design	11
2-6. Concrete Mixture Design per Cubic Yard	13
2-7. Statistical Analysis of Coal Ash Concrete Performance Using	
T-Test – Green = statistical significance, yellow = somewhat significant but	
inconclusive, red = not significant	27
2-8. Performance Classification of Coal Ash	29
2-9A. Average Performance of Coal Ash by Type	31
2-9B. Average Performance of Coal Ash by Type	32
3-1. Impact of Class F Fly Ash on Properties of Concrete	37
3-2. Impact of Coal Ash on Properties of Concrete	
A1-1. Statistical Summary of the 48-hr heat of hydration of each coal ash source	44
A1-2. Statistical Summary of the Slump Performance of Coal ash at 20% and 40	1%
Replacement	45

Table

Table

A1-14. Compressive Strength Data Classification of Coal Ash at 40%	
Replacement at 180-day Age	67
A1-15. Electrical Resistivity Data and T-Test Analysis of Coal Ash at 20%	
Replacement at 3-, 7-, and 14-day Ages	69
A1-16. Electrical Resistivity Data and T-Test Analysis of Coal Ash at 20%	
Replacement at 28-, 56-, and 90-day Ages	71
A1-17. Electrical Resistivity Data Classificaiton of Coal Ash at 20% Replacement	
for 3-, 7-, and 14-day Ages	73
A1-18. Electrical Resistivity Data Classification of Coal Ash at 20% Replacement	
for 28-, 56-, and 90-day Ages	74
A1-19. Electrical Resistivity Data Classification of Coal Ash at 20% Replacement	
for 180-day Age	76
A1-20. Electrical Resistivity Data and T-Test Analysis of Coal Ash at 40%	
Replacement for 3-, 7-, an d14-day Ages	78
A1-21. Electrical Resistivity Data Classificaiton of Coal Ash at 40% Replacement	
for 28-, 56-, and 90-day Ages	80
A1-22. Electrical Resistivity Data Classification of Coal Ash at 40% Replacement	
for 180-day Age	81
A1-23. Electrical Resistivity Data Classification of Coal Ash at 40% Replacement	
for 3-, 7-, and 14-day Ages	83
A1-24. Electrical Resistivity Data Classification of Coal Ash at 40% Replacement	
for 28-, 56-, and 90-day Ages	85

Table

Page

A1-25. Electrical Resistivity Data Classification of Coal Ash at 40% Replacement	
for 180-day Age	86
A1-26. T-Test Analysis of Conventional and Non-Traditional Coal Ash Average	
Performance	88
A1-27. Performance Classificaiton of Class F Coal Ash	88
A1-28. Performance Classification of Class C Coal Ash	89
A2-1. Coal Ash Types and Number of Sources	95
A2-2. Bulk Oxide Analysis Using ASEM	95
A2-3. Particle Size Distribution Using ASEM	97
A2-4. OPC Type I Cement Oxide Analysis and Bogue Calculations	99
A2-5. Concrete Mixture Design per cubic yard	99

LIST OF FIGURES

Figure Page
2-1. Average 48-hr Heat of Hydration16
2-2. Average Performance of Concrete in Slump Test
2-3. Compressive Strength of Concrete over 180-days with
20% Coal Ash Substitution
2-4. Compressive Strength of Concrete over 180-days with
40% Coal Ash Substitution20
2-5. Compressive Strength of Concrete with 20% Coal
Ash Substitution
2-6. Compressive Strength of Concrete with 40% Coal
Ash Substitution
2-7. Electrical Resistivity of Concrete over 180-days with
20% Coal Ash Substitution
2-8. Electrical Resistivity of Concrete over 180-days with
40% Coal Ash Substitution
2-9. Electrical Resistivity of Concrete with 20% Coal Ash
Substitution
2-10. Electrical Resistivity of Concrete with 40% Coal Ash
Substitution
A2-1. Correlation of Coal Ash Fineness to Slump Performance at 20% Replacement91

Figure

A2-2. Correlation of Coal Ash Fineness to Slump Performance at 20% Replacement92
A2-3. Correlation of Coal Ash Fineness to Slump Performance at 40% Replacement93
A2-4. Correlation of Coal Ash Fineness to Slump Performance at 40% Replacement94
A2-5. Average Slump Performance of Each Coal Ash at 20% Replacement102
A2-6. Average Slump Performance of Each Coal Ash at 40% Replacement102
A2-7. Slump Performance in Relation to Coal Ash Fineness103
A2-8. Slump Performance Comparison of Low Fineness Coal Ash105
A2-9. Compressive Strength Comparison of Low Fineness Coal Ash at 20%105
A2-10. Compressive Strength Comparison of Low Fineness coal Ash at 40%106
A2-11. Resistivity Comparison of Low Fineness Coal Ash at 20%106
A2-12. Resistivity Comparison of Low Fineness Coal Ash at 40%107

CHAPTER I

IMPORTANCE OF PERFORMANCE-BASED TESTING FOR RECLAIMED COAL ASH

1.1 INTRODUCTION

The use of concrete as a construction material is highly sought after due to the economic advantages and ability of this composite material to withstand environmental conditions. However, the harmful effects that cement production has on the environment are driving researchers to search for alternatives to lower CO_2 emissions. For each ton of cement produced, roughly 2000 lbs. of CO_2 are released into the atmosphere [18]. One method for reducing cement content in a concrete mixture is by partially replacing the cement with coal ash. The reuse of coal ash improves the sustainability of a concrete mixture by reducing the percentage of cement in concrete [27].

Coal ash is a useful supplementary cementitious material (SCM) and has been shown to improve concrete's durability, workability, and lower cost. Coal ash is a waste material from the coal combustion process that is typically sent to a landfill if another purpose is not identified. In 2019, the coal ash production volume decreased by 23% from the previous year, according to the American Coal Ash Association [3]. As coal combustion energy plants are being converted to natural gas, the tons of coal ash produced in the United States has dramatically decreased. On the other hand, other types of ash are available in abundance to be used in concrete. However, guidelines for the use of these materials need to be developed.

1.1.1 TYPES OF ASHES FROM COAL COMBUSTION

Coal combustion ash (CCA) is the byproduct produced by the combustion of pulverized coal. This ash is carried by the exhaust gasses and then collected by electrostatic precipitators or bag filters as a finely divided powder. This ash is classified into multiple types in Table 1-1 below. The most common types used are Class C and Class F coal ash, which are byproduct materials produced by coal-fired power plants. ASTM C618 [16] covers coal fly ash and raw or calcinated natural pozzolans for use in concrete. This specification has multiple requirements for coal ash to be used in a concrete mixture, such as chemical composition and physical requirements. Materials that don't meet this specification are not currently accepted. This research compares the performance of concrete using coal ash that does not meet ASTM C618 and examines the performance in various test methods that are important to using these materials in concrete.

Type of Ash	Standard	Description of Ash
	ASTM C 618	Solids removed from the exhaust of the
Conventional Ash		combustion chamber of a coal-fired power
		plant.
	ASTM E 3183	Waste product from a coal-fired power plant
Declaimed Ach		that has been stored in a landfill or storage
Reclaimed Ash		pond. It is typically made of a blend of
		conventional ash and bottom ash.
Unrefined		Waste product from a coal-fired power plant
Reclaimed Ash		that has been stored in a landfill or storage

Type of Ash	Standard	Description of Ash
		pond. It is typically made of a blend of
		conventional ash and bottom ash.
Blended Ash		A combination of at least two coal ashes
Bottom Ash		Solids collected in the combustion chamber of a coal-fired power plant.

Reclaimed coal ashes are collected from the disposal sites of coal power plants. These materials may have been land-filled because they did not meet current requirements, or there may not be a demand for the material when it was available, so it was placed in a landfill. While these materials have been exposed to moisture and contamination, they can still be collected and used in concrete [5, 19, 20, 29]. One guideline for collecting these materials is ASTM E 3183 [17]. This specification provides guidance for harvesting coal combustion products placed in active and inactive storage areas. The specification does not include information on how to determine what storage areas to harvest from or provide information on processing harvested coal combustion products. Reclaimed coal ash is not typically used in current construction practices, but its use has the potential to address shortages caused by the loss of traditional coal ash supplies. Developing a better understanding of these reclaimed coal ashes in terms of their chemical composition, fineness, specific gravity, LOI, moisture content, and performance in concrete can help promote their use.

In this work, unrefined coal ash or unprocessed coal ash is material collected from a disposal site that is used without meeting the guidelines outlined in ASTM E 3183. This means the material was not processed in any way, so it often contains material that is lightly cemented and contains pieces greater than 0.2 in or a #4 sieve. For this study, the

3

unprocessed coal ash was heated to remove moisture and sieved through a number 4 sieve to remove large conglomerates.

Blended coal ash is a combination of two types of coal ash to achieve a certain property. The blended coal ash used in this study was a combination of one coal ash that does not meet current specifications with one that does meet ASTM C 618. The bottom ash for this study has been ground to meet the fineness requirements of ASTM C 618.

1.1.2 PERFORMANCE OF COAL COMBUSTION ASH IN CONCRETE

The improvements of coal combustion ash in concrete are dependent on the chemical composition and the particle size distribution of the coal ash. One method that ASTM C618 uses to separate coal ash into classification categories is based on the elemental oxide content. A Class C coal ash has a calcium oxide at or above 18%, and a Class F coal ash has a calcium oxide content of less than 18% [16]. This work uses this same requirement to classify ash that does not meet ASTM C 618. The coal ash particle size can make hydration reactions occur more rapidly [24]. Chapters II and III of this paper will include the oxide content analysis and particle size distribution. Both parameters will be important to characterize both traditional and non-traditional coal combustion ash.

1.2 PERFORMANCE-BASED TESTING OF CONCRETE

Performance-based testing has become very popular because the results provide insight into how the material performs in concrete. This work uses the following tests: slump, the heat of hydration, compressive strength, and resistivity. Each of these tests provides valuable insights into how the concrete will perform in the field. For example, the slump test gives insight into how easy it is to move and finish the concrete. This is important for many applications, and the slump is the most widely recognized way to measure this

4

in practice. A summary of all the tests used and what they measure is given in Table 1-2. These materials are also characterized by measuring the bulk oxide content, fineness, and particle size distribution.

Test	Method	Provides
Heat of Hydration	ASTM C311	Amount of heat given off over 48 h of hydration. When initially mixed, Portland cement and water react exothermically and give off heat. This test measures the release of heat over time.
Slump	ASTM C143	Measure consistency of workability between fresh concrete samples.
Air Content Testing	ASTM C231	Measures the air content of freshly mixed concrete.
Unit Weight	ASTM C138	Measures the density of the concrete.
Compressive Strength	ASTM C39/39M	Measures concrete's ability to withstand an axial load. The compressive strength of concrete is a fundamental physical property used in the design calculations for structures using the material.
Electrical Resistivity	AASHTO T 358	Concrete's ability to resist the movement of electrons under a constant current. It can be used to predict the permeability of the concrete.

Table 1-2: Performance-Based Testing of Coal Ash

1.3 OBJECTIVE

This work aims to present performance-based testing of traditional, reclaimed coal ash, and unrefined reclaimed coal ash and compare their performance. This will allow the performance of traditional and untraditional coal ash materials at either 0%, 20%, or 40% replacement to be compared. The statistical difference in the performance will be compared.

CHAPTER II

PERFORMANCE COMPARISON OF CONCRETE USING CONVENTIONAL AND UNCONVENTIONAL TYPES OF COAL ASH

2.1 AIM OF THIS RESEARCH

This chapter aims to gather the performance data for a variety of different coal ashes, both reclaimed and conventional coal ashes. A general evaluation will be made to compare the performance of the various ashes used at different replacement levels in concrete mixtures. The chapter will compare the performance of traditional and nontraditional coal ash sources.

2.2 EXPERIMENTAL METHODS

2.2.1 Laboratory Materials

Multiple types and sources of coal ash were used in this study and are listed in Table 2-1. Each coal ash was given an identification label. The letters are used as identifiers for the type of coal ash and are as follows: Class F coal ash is denoted with an "F", Class C coal ash is denoted with a "C", reclaimed coal ash is denoted with an "R", unprocessed coal ash is denoted with a "U", blended Class F coal ash is denoted by a "BF", blended Class C coal ash is denoted with a "BC", and bottom Class F coal ash is denoted by "BTF". Each label is then followed by a number to serve as a unique label for the coal ash. If two shipments from the samples from the same source were obtained at separate times, then the sources were labeled "-1" and "-2", respectively. Limited numbers of reclaimed, unprocessed, blended, and bottom ashes are reported because they were all that could be obtained in enough quantity to complete the testing.

Coal Ash Type	ID	Number of Sources
Class F	F #	16
Class C	C #	17
Reclaimed Class F	R #	8
Unprocessed Class F	U #	4
Blended Class F	BF #	1
Blended Class C	BC #	1
Bottom Class F	BTF #	1

Table 2-1: Coal Ash Types and Number of Sources

Each coal ash source's physical and chemical characteristics were measured using an automated scanning electron microscopy (ASEM). The technique used allowed for the rapid measurement of thousands of individual particles within each sample of the coal ash. [1, 23, 30-33] These measurements are provided in Table2-2 and Table 2-3. Table 2-2 shows the proportion of 11 chemical oxides (SiO₂, Al₂O₃, Fe₂O₃, CaO, MgO, SO₃, Na₂O, K₂O, TiO₂, P₂O₅, SrO) found in each coal ash sample as a percentage of the total. The performance of coal ash in concrete is strongly influenced by its chemical composition. One example is as the calcium content in coal ash increases, the coal ash becomes more hydraulic.

Coal											
Ash	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	SO ₃	Na ₂ O	K ₂ O	TiO ₂	P ₂ O ₅	SrO
Source											
F1	48.76	23.79	7.39	12.53	2.97	0.48	0.86	2.05	0.78	0.09	0.29
F2	50.40	20.91	3.89	17.09	3.69	0.54	1.04	1.37	0.70	0.05	0.32
F3	48.81	26.62	6.65	9.30	1.95	0.28	1.75	1.93	1.46	0.14	1.10
F4	45.34	27.39	4.00	14.61	3.59	0.70	1.48	0.65	1.09	0.37	0.76
F5	53.18	25.36	11.21	2.06	0.19	0.89	0.97	4.43	0.71	0.03	0.96
F6	51.87	25.71	12.32	2.50	0.32	0.67	1.61	4.13	0.66	0.05	0.16
F9	48.27	25.01	5.86	12.59	3.32	0.49	1.33	1.77	1.12	0.18	0.06
F10	53.59	27.76	2.79	10.53	2.50	0.47	0.33	1.27	0.45	0.28	0.02
F11	58.33	21.87	6.87	3.67	1.42	0.59	2.17	4.25	0.22	0.36	0.24
F12	59.18	25.01	9.54	1.59	0.24	0.12	0.05	3.62	0.51	0.02	0.11
F15-1	57.14	23.42	10.16	1.94	0.41	0.58	1.24	3.74	0.84	0.10	0.43
F15-2	57.02	18.62	13.77	3.86	0.44	0.78	0.60	3.57	0.80	0.16	0.12
F16	59.95	21.16	6.46	7.37	1.91	0.21	0.31	1.72	0.67	0.08	0.13
F17	60.46	18.65	3.97	5.64	0.41	0.28	5.62	2.62	0.55	0.00	1.80
F27	52.88	23.86	12.25	5.26	0.39	0.61	0.40	3.36	0.47	0.12	0.39
C1	36.20	21.72	5.35	23.15	5.38	0.67	3.58	1.01	0.80	1.90	0.23
C2	35.82	19.18	5.60	26.88	5.49	0.98	3.00	0.88	0.73	1.25	0.18
C3	25.32	19.26	5.22	32.50	7.76	2.60	3.42	0.63	1.08	1.89	0.32
C4	36.70	22.82	4.53	22.45	4.33	1.19	3.44	0.95	1.28	1.09	1.22
C5	31.25	22.46	5.38	26.06	5.95	0.56	4.30	0.84	0.84	2.11	0.23
C6	27.66	22.88	4.23	21.54	4.52	2.55	12.61	0.76	1.27	0.67	1.32
C7	35.28	20.61	4.74	24.72	4.93	0.74	4.26	1.23	1.64	0.82	1.00
C8	40.11	22.61	4.54	19.45	5.72	0.76	3.74	0.91	0.64	1.42	0.10
C9	31.49	24.02	5.96	25.71	5.35	0.99	3.72	0.61	0.94	1.12	0.10
C10	36.04	19.30	5.06	22.70	7.77	1.97	4.78	0.57	1.03	0.32	0.47
C11	30.96	20.77	6.38	27.15	7.14	1.59	3.45	0.73	0.78	0.83	0.23
C12	31.82	22.87	5.68	28.24	5.52	1.08	2.28	1.02	0.78	0.46	0.25
C13	25.15	21.20	6.22	30.47	7.78	1.04	4.02	0.56	1.22	2.18	0.15
C14	29.66	21.03	5.92	30.29	5.35	1.87	2.22	0.55	1.04	1.61	0.46
C15	29.85	17.66	4.73	31.75	9.32	1.19	2.57	0.76	0.83	1.08	0.24
C16	37.07	22.64	5.20	25.60	4.38	1.02	1.95	0.87	0.55	0.54	0.16
C17	36.93	22.94	6.17	24.02	3.78	0.72	2.71	0.63	1.50	0.44	0.13
C18	28.80	18.37	5.69	32.08	7.29	2.72	2.59	0.38	0.78	0.88	0.32
C19	35.30	24.08	4.52	23.82	5.27	1.01	3.67	0.60	0.93	0.59	0.16
RF2	57.55	30.47	5.15	1.45	0.26	0.07	0.03	3.43	1.05	0.06	0.49
RF3	54.53	30.54	7.33	2.94	0.15	0.13	0.02	3.61	0.63	0.02	0.10
RF4	53.50	26.22	9.91	4.62	0.70	0.35	0.08	3.53	0.51	0.14	0.42

 Table 2-2: Bulk Oxide Analysis of Coal Ash Using ASEM

Coal Ash	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	SO ₃	Na ₂ O	K ₂ O	TiO ₂	P ₂ O ₅	SrO
Source											
RF5	57.88	27.51	6.62	2.37	0.24	0.17	0.13	4.08	0.59	0.03	0.38
RF6-1	56.30	26.90	9.32	1.45	0.64	0.11	0.01	4.20	0.75	0.21	0.08
RF6-2	53.01	27.42	10.24	4.07	0.41	0.49	0.37	3.12	0.74	0.10	0.03
RF7-1	59.12	20.68	5.95	9.07	1.90	0.56	0.25	1.67	0.42	0.00	0.38
RF11	57.56	17.93	5.20	12.79	2.35	0.36	0.17	2.29	1.00	0.19	0.13
UF1	53.04	25.31	11.45	3.36	0.52	0.93	0.35	4.39	0.41	0.18	0.03
UF2	57.57	23.51	10.12	2.82	0.49	0.48	0.21	3.85	0.67	0.19	0.05
UF3	52.39	22.24	11.18	4.98	0.45	3.94	0.18	3.80	0.78	0.01	0.06
UF4	61.59	19.64	11.25	1.98	0.38	0.64	0.22	3.32	0.77	0.03	0.19
BF9	44.85	15.74	11.02	17.48	3.50	1.94	2.14	1.48	0.87	0.80	0.12
BC3	31.40	19.63	5.25	29.27	6.56	1.39	3.69	0.79	0.91	0.93	0.12
BTF1	60.37	14.88	5.99	13.20	1.70	0.82	0.06	1.26	1.43	0.01	0.26

Table 2-3: Particle Size Distribution Using ASEM

Coal		#325 Sieve			
Ash					%
Source	D50	D90	Average	STDEV	Retained
F1	1.68	4.14	2.19	1.74	20.45%
F2	2.15	5.10	2.73	2.11	13.00%
F3	2.24	4.45	2.67	1.65	23.10%
F4	1.68	4.57	2.33	2.06	21.80%
F5	2.07	5.21	2.71	2.20	18.71%
F6	2.03	4.96	2.62	2.00	30.24%
F9	2.09	4.48	2.18	1.70	32.00%
F10	2.05	4.29	2.39	1.61	15.00%
F11	1.71	3.96	3.26	2.77	25.00%
F12	2.06	3.93	3.32	2.93	25.18%
F15-1	2.45	6.48	3.56	2.89	19.07%
F15-2	2.37	6.80	3.10	2.27	
F16	2.48	6.38	2.64	2.31	44.80%
F17	2.45	6.71	3.59	2.92	22.14%
C1	1.49	3.68	1.97	1.64	15.22%
C2	1.6	3.91	2.09	1.67	20.42%
C3	1.3	3.09	1.69	1.32	51.91%
C4	1.71	4.31	2.30	1.85	17.82%
C5	1.63	4.08	2.17	1.80	14.90%
C6	1.48	4.55	2.17	2.09	12.03%

Coal		#325 Sieve			
Ash					%
Source	D50	D90	Average	STDEV	Retained
C7	1.67	3.53	2.05	1.42	18.58%
C8	1.73	3.61	2.10	1.46	24.21%
C9	1.44	3.54	1.91	1.59	
C10	3.08	9.72	4.34	4.00	
C11	1.62	4.09	2.14	1.72	14.29%
C12	1.35	4.75	2.14	2.15	15.49%
C13	1.76	4.26	2.23	1.78	12.57%
C14	1.64	3.73	2.40	2.29	27.82%
C15	1.59	4.15	2.11	1.75	24.52%
C16	1.37	3.68	1.90	1.68	30.75%
C17	1.36	3.82	1.96	1.95	16.96%
C18	1.39	3.79	1.93	1.71	16.56%
C19	1.43	3.72	1.93	1.68	23.72%
RF2	2.37	6.15	3.11	2.45	29.50%
RF3	1.83	5.09	2.56	2.29	36.75%
RF4	2.23	6.95	3.19	2.83	30.50%
RF5	2.32	6.11	3.09	2.65	54.37%
RF6-1	1.90	4.89	2.58	2.34	50.60%
RF6-2	2.36	6.76	3.29	2.82	26.79%
RF7-1	2.78	7.00	3.57	2.95	
RF11	2.09	4.46	2.54	1.68	
UF1	2.20	5.52	2.90	2.41	
UF2	2.61	6.89	3.51	2.97	21.47%
UF3	2.02	5.88	2.90	2.81	27.69%
UF4	1.87	4.60	2.54	2.32	28.61%
BF9	1.68	4.05	2.18	1.74	19.77%
BC3	1.76	4.50	2.32	1.78	17.99%
BTF1	3.07	7.37	3.99	3.05	11.89%

All the laboratory concrete mixtures in this research used an Ordinary Portland Cement (OPC) Type I that met the requirements of ASTM C150. The oxide analysis and Bogue calculations for this OPC are shown in Table 2-4. The aggregates used were locally available #57 crushed limestone as coarse aggregate and natural sand as fine aggregate used in commercial concrete. The crushed limestone had a maximum nominal aggregate

size of 3/4 in. Both the crushed limestone and the sand met ASTM C33 specifications. No chemical admixtures were used in this study. The concrete mixture design yielded enough workability that there was no need for water-reducing admixtures. An airentraining admixture was not used to minimize the number of variables used in the testing.

Table 2-4: OPC Type I Cement Oxide Analysis and Bogue Calculations

Oxide %						B	ogue C	alcula	tion		
CaO	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	Na ₂ O	MgO	SO ₃	K ₂ O	C3S	C2S	C3A	C4AF
62.1	21.1	4.7	2.6	0.2	2.4	3.2	0.3	56.7	17.8	8.2	7.8

2.2.2 Isothermal Calorimetry Testing

Isothermal calorimetry experiments were performed to determine the heat of hydration for a paste mixture. All tests were performed per ASTM C1702 [9] and used a TAM Air 8-channel isothermal calorimeter with glass ampoules. Each coal ash was tested at 20% and 40% replacement with a w/cm ratio of 0.45. A mixture was also used with no coal ash. These paste designs are provided in Table 2-5 below. The heat evolution was measured at 48 hours, and the average and standard deviation between each type of coal ash were found.

Mixture w/cm		OPC (lbs(x10 ³))	Coal Ash (lbs(x10 ³))	Water (lbs(x10 ³))	Paste (%)
0% Coal Ash	0.45	4.409	0	1.984	100
20% Coal Ash	0.45	3.527	0.882	1.984	100
40% Coal Ash	0.45	2.645	1.764	1.984	100

Table 2-5: Isothermal Calorimetry Paste Design

A glass ampoule was prepared for each test using the paste designs provided in Table 2-5. Each glass ampoule was then lowered into its respective chamber within the instrument. This process disturbs the temperature of the chamber, causing the initial rate of heat evolution data to start at different magnitudes. To account for this, the ASTM C1702 [9] requires a thirty-minute baseline to be established at the start of the test. The minimum starting point for OPC was found to be at 1.66 h and 0.318 milliwatts per gram of paste. Each ash was adjusted so that the minimum was at this same point. This allowed all the materials to be compared while removing the initial warming period of the sample.

2.2.3 Calculations for Isothermal Calorimetry Testing

The measurements taken from the Isothermal Calorimetry Testing can be summarized with the total heat of hydration measured in Joules per gram of cement and coal ash. The rate of heat evolution in milliwatts per gram of cement and coal ash (Joules per gram per second) is obtained by taking the first derivative of the total heat of hydration. The second derivative of the total heat of hydration provides the maximum value on the rate of heat evolution in milliwatts per second per gram (Joules per second per gram).

To evaluate how each coal ash effected the heat of hydration in concrete, each sample of coal ash was measured for the point at which the maximum heat of hydration was achieved and for the total heat of hydration. The total heat of hydration represents the amount of heat given off by the sample over a 48-hr time interval. The higher total heat of hydration represents an increase in potential temperature rise in a concrete element. For most concrete elements, less concern is created by this rise in heat, but for elements considered mass concrete or have high cement content, the amount of heat created is

12

critical. For these elements, after hardening, elevated temperatures may create tensile stresses and result in thermal cracking or may increase the potential for delayed ettringite formation (DEF) [24].

2.2.4 Concrete Mixture Design

Coal ash samples were tested at 20% and 40% substitution rates and compared to a conventional concrete mixture using 100% OPC. The mixture design maintained a 29% paste content and a water-cement ratio of 0.45. These mixture designs are provided in Table 2-6. The paste volume and water-cement ratio of the concrete mixture design allowed for adequate workability of the concrete.

			Coal				
		OPC	Ash	Water	Paste	Coarse	Fine
Mixture	w/cm	(lbs)	(lbs)	(lbs)	(%)	(lbs)	(lbs)
0% Coal ash	0.45	625	0	281	28.8	1903	1243
20% Coal Ash	0.45	500	125	281	28.9	1900	1240
40% Coal Ash	0.45	375	250	281	29.0	1892	1228

 Table 2-6:
 Concrete Mixture Design per Cubic Yard

2.2.5 Concrete Mixing Procedure

Aggregates were collected from outside storage piles and brought into a temperaturecontrolled room at 73.4°F for at least 24 hours before mixing. Aggregates were placed in the mixer and spun, and a representative sample was taken for moisture correction. At the time of mixing, all aggregate was loaded into the mixer along with approximately one-half of the mixing water. This combination was mixed for three minutes to allow the aggregates to approach the saturated surface dry (SSD) condition and ensure that the aggregates were evenly distributed.

Next, the cement, coal ash, and the remaining water were added and mixed for three minutes. The resulting mixture rested for two minutes while the sides of the mixing drum were scraped. After the rest period, the mixer was started, and the concrete was mixed for three minutes.

2.2.6 Testing Procedure

Slump measurements were taken from each wheelbarrow following ASTM C143[7] and averaged. The air content was measured using an ASTM C231[11] Type B air pressure meter. Unit weight was collected according to ASTM C138 [6], and a Phoenix Test was conducted following the test methods to measure the actual water-to-cementitious material ratio (w/cm) in the fresh concrete [27].

The concrete was then used to mold and cure 66 samples of 4"x8" cylinders according to ASTM C192 [10]. These cylinders were then placed in a controlled environment chamber at 70 °F and 100% RH until the day of testing. The samples were left in the cylinder molds until they were tested. While cylinders being left in the molds during curing does not conform to ASTM C192, this was carried out to prevent leaching from the surface of the cylinder. However, to meet the moist condition for test standards of compressive strength ASTM C39 and electrical resistivity AASHTO T358 [1], the surface of the samples was lightly sprayed with water. The compressive strength (ASTM C39) and electrical resistivity (AASHTO T 358) testing were completed at 3, 7, 14, 28, 56, 90, and 180 days.

14

2.2.7 Statistical Analysis

A statistical analysis was conducted to determine if there was a significant correlation between the properties of concrete comparing traditional and non-traditional ash. For this study, a Student's t-test was performed. Previous studies have used Student's t-test analysis to compare the performance of concrete [21,26].

A Student's t-test is a statistical hypothesis test that measures the difference between groups. As the performance of unconventional coal ash could be greater or less than conventional fly ash, a two-tailed t-test was performed. A type 3 t-test was performed due to the data sets having unequal variance. The test is used to obtain a T-score, which is the ratio between the difference between two groups and the difference within a group. The test's null hypothesis states that there is no statistical difference between the two data sets. The T-score is compared to a T-critical value that is found using a T-table and is based on the α value or probability factor. The null hypothesis is accepted if the t-score is less than the t-critical value. A p-value is then found and is used to support the rejection of the null hypothesis. The p-value is the probability that the results from the sample data occurred by chance or at random. The p-value is compared to the α -value, which is the confidence level you require for the analysis. For example, if the confidence level required for the ttest is 95% or an α -value of 0.05, a p-value of less than 0.05 would indicate a high probability of results. This showing high evidence that the null hypothesis is rejected or the comparison is statistically different.

15

2.3.0 RESULTS & DISCUSSION

2.3.1 Overview

The following results were obtained from coal ash samples collected for this study. Coal Ash samples of each type of coal ash outlined in this report were subjected to fresh and hardened property testing. The average performance of each type of coal ash is evaluated in this chapter and analyzed using a T-Test.

2.3.2 Isothermal Calorimetry Test

Figure 2-1 shows the average 48-hr heat of hydration for each coal ash type at 20% and 40% replacement and the standard deviation. The 100% OPC paste mixture was tested 16 times, and the average was found to be 162.7 mW/g with a standard deviation of 2.50.

Figure 2-1: Average 48-hr Heat of Hydration

Each conventional and reclaimed coal ash was shown to have decreased heat of hydration when their content was increased from 20% to 40% replacement. When compared to 100% OPC, Class C conventional coal ash and bottom Class F coal ash were shown to have increased 48-hr heat of hydration when used at 20% replacement. Each other coal ash type shown to have an average heat below that of 100% OPC when used at 20% replacement. At 40% replacement, each coal ash shown to have decreased 48-hr heat of hydration when compared to 100% OPC. Each non-traditional Class F coal ash shown to fall within the standard deviation of the 48-hr heat of hydration of conventional Class F coal ash. Blended Class C coal ash at 20% shown to not fall within the standard deviation of the average heat of conventional Class C coal ash sources.

2.3.3 Slump Test

Three slump tests were performed for each mixture as per ASTM C143[7]. The average of these was taken as the slump value for a mixture. These measurements are provided in Appendix 1. This test provides a quantitative understanding of the change in workability of flowable concrete. Figure 2-1 provides a comparison between the average slump of concrete using only OPC and the slump achieved when substituting 20% and 40% OPC for each type of coal ash.

Figure 2-2: Average Performance of Concrete in Slump Test Graph depicts the average slump performance of each type of coal ash when used in concrete. Concrete using 100% OPC is depicted as a linear line on the graph.

Typically, the mixtures that used coal ash achieved a higher slump than that of concrete using 100% OPC. Unprocessed Class F coal ash used at 40% substitution shown to decrease slump performance from 100% OPC concrete. Aside from Unprocessed Class F coal ash, each coal ash source also shown to increase slump performance when the substitution rate was increased from 20% to 40%. Conventional fly ash had a similar performance to reclaimed Class F and Bottom Class F. The Blended Class F and C showed better performance than traditional Class F and C ash.

A large standard deviation in slump performance was observed between the coal ash used in this study. The fineness of each coal ash could be one reason for this. Appendix II provides an analysis of each coal ashes slump performance in relation to their fineness.

2.3.4 Compressive Strength

Each coal ash was subjected to compressive strength testing following ASTM C39 [14] at 20% and 40% substitution rates. Measurements were taken at 3, 7, 14, 28, 56, 90, and 180 days. The average strength development of each type of coal ash at 20% and 40% substitution is depicted in Figure 2-4 and Figure 2-5 below. The average performance for each coal ash is provided in Appendix I.

Figure 2-3: Compressive Strength of Concrete over 180-days with 20% Coal Ash Substitution

Figure 2-4: Compressive Strength of Concrete over 180-days with 40% Coal Ash Substitution

Concrete having 100% OPC content had a higher 3- and 7-day strength than all CCA investigated at both 20% and 40% replacement except conventional Class C coal ash at 20% replacement level. This can be seen in Figure 3-4 through Figure 3-7. However, at 180 days, all of the mixtures that contained CCA at 20% and 40% replacement have higher strengths than a mixture with 100% OPC except for the reclaimed Class F coal ash at 40% replacement and the Blended Class F coal ash at 40% replacement. Increasing the CCA replacement from 20% to 40% reduces the initial and long-term compressive strength for all types of coal ash except Conventional Class C coal ash at 180-day age. At 20% replacement, Reclaimed Class F coal ash increased the initial compressive strength and reduced the long-term strength performance when compared to Conventional Class F coal ash. The strength achieved using Reclaimed Class F coal ash at both 20%, and 40% replacement falls within the standard deviation of the strength achieved by Conventional Class F coal ash. This means that their performance may be similar. Unprocessed coal

ash reduced the compressive strength when compared to Conventional Class F coal ash at both 20% and 40% replacement. When compared to Reclaimed Class F coal ash, Unprocessed coal ash shown to have reduced early age strength and higher long-term strength. Blended Class F coal ash has a similar performance at 20% replacement when compared to 100% OPC but reduced performance when increased to 40% replacement. Blended Class C coal ash reduced performance at 20% and 40% replacement compared to Conventional Coal Ash. Bottom Class F coal ash shown to have a similar performance to Conventional Class F coal ash.

Figure 2-5: Compressive Strength of Concrete with 20% Coal Ash Substitution

Figure 2-6: Compressive Strength of Concrete with 40% Coal Ash Substitution

2.3.5 Electrical Resistivity

The electrical resistivity of concrete measures the resistance to passing an electrical charge through the concrete. It has been reported that this can also provide insight into the resistance of the concrete to penetration by chloride ions [22]. Coal ash samples were tested at both 20% and 40% at 3, 7, 14, 28, 56, 90, and 180-day age. The electrical resistivity of 100% OPC concrete was also tested. The results of these tests are depicted in Figure 2-8 and Figure 2-9.

Figure 2-7: Electrical Resistivity of Concrete over 180-days with 20% Coal Ash

Figure 2-8: Electrical Resistivity of Concrete over 180-days with 40% Coal Ash Substitution

Substitution

Concrete using coal ash substitution shown to have reduced initial electrical resistivity development compared to concrete using 100% OPC, except for Conventional Class C coal ash used at 20% replacement and Unprocessed Class F coal ash used at 40% replacement. Concrete using coal ash replacement at both 20% and 40% exceeds the long-term electrical resistivity performance of 100% OPC concrete. The average performance of each coal ash type shown to be more than double the average electrical resistivity performance of 100% OPC at 180-day testing. Increasing the coal ash content increases the long-term electrical resistivity development when compared to concrete using 100% OPC. Reclaimed coal ash shown to have similar but reduced electrical resistivity performance when compared to Conventional coal ash at both 20% and 40% replacement. Unprocessed coal ash has a reduced electrical resistivity performance at 20% replacement but increased early age electrical resistivity at 40% replacement when compared to conventional coal ash. This can be seen in Figure 2-10 and Figure 2-11. Each type of blended coal ash shown to have reduced performance from conventional ash at 20% replacement but mostly increased performance when used at 40% replacement. Bottom coal ash shown to have similar electrical resistivity performance when compared to conventional coal ash at 20% replacement, as seen in Figure 2-10.

Figure 2-9: Electrical Resistivity of Concrete with 20% Coal Ash Substitution

Figure 2-10: Electrical Resistivity of Concrete with 40% Coal Ash Substitution
2.3.6 Statistical Analysis

2.3.6.1 Statistical Comparison of Coal Products in Concrete using T-Test

The goal of this work is to make a statistical comparison of conventional and unconventional coal ash. Table 2-7 shows a statistical comparison of how different properties of unconventional coal ash compare to conventional coal ash. These were determined by comparing the p-value for each group of coal ash to the performance of traditional coal ash. When the results were similar with a 95% confidence interval (pvalue ≤ 0.05), then the box is green. This means the results are statistically similar. When the results were somewhat significant but inconclusive (0.05 < p-value ≤ 0.10), then the box is shown in yellow. When the results were not statistically similar (p-value > 0.10), then the box is shown in red. The p-value for each comparison is shown in the appendix. Table 2-7: Statistical Analysis of Coal Ash Concrete Performance Using T-test –Green = statical significance, yellow = somewhat significant but inconclusive, red =not significant.

		Reclaimed F to Conventional Class F		Unprocessed F to Conventional Class F		Blend Conve Cla	led F to entional ass F	Bottom F to Blende Conventional Conver Class F Clas		ed C to entional ass C
		20%	40%	20%	40%	20%	40%	20%	20%	40%
48-H	R HEAT OF RATION									
S	ump									
<u>3d</u>	3d									
ssive Strength	7d									
	14d									
	28d									
apre	56d									
Con	90d									
	180d									
	3d									
<i>'</i> ity	7d									
sistiv	14d									
l Re	28d									
trica	56d									
Elec	90d									
	180d									

Table 2-7 provides the statistical analysis of the data acquired in this study. Each non-traditional coal ash was compared to the data set of the conventional coal ash of its same class (class F or class C). A p-score was found and is provided in Appendix 1 of this document. The average performance of each coal ash was evaluated and classified based on the following:

Statistical significance – P-value at or greater than 0.05.

Somewhat significant, but inconclusive – P-value between 0.05 and 0.01.

No statistical significance – P-value below 0.01.

Heat of Hydration

Each non-traditional coal ash shown to have similar 48-hr heat of hydration compared to conventional coal ash, aside from 20% unprocessed class F, bottom class F, and blended Class C.

Slump

The analysis shows Reclaimed Class F and Blended Class C as the only non-traditional coal ash to have statistically similar results to conventional coal ash at both 20% and 40% replacement. Each other non-traditional coal ash shown not to have statistical similarity between their average slump performance and the average performance of conventional coal ash.

Compressive Strength

The average compressive strength of reclaimed Class F coal ash at 20%, bottom Class F at 20%, and blended Class F coal ash at both 20% and 40% replacement, shown to be statistically similar to their conventional coal ash counterpart, respectively.

Electrical Resistivity

Overall, no non-traditional coal ash shown to have similar average electrical resistivity performance.

2.3.6.2 Performance Classification System for Coal Ash in Concrete

Another approach for comparing the performance of concrete using each type of coal ash is through classifying each ash's performance based on the results with the CCA in comparison to a mixture with only OPC. To achieve this, a ranking classification was developed that groups the material into three performance categories: high, moderate, and low. These limits were found by using all the data gathered in this work and establishing limits based on the 33% and 66% performance levels. These limits were found by making a histogram of all of the materials' performance and choosing these limits. This means that these limits are based on the dataset investigated; however, since the research encompasses 48 CCA sources, then this should be a meaningful set of limits. It should be noted that these limits are based on the testing methods and the materials investigated; however, these results are still helpful as they are normalized by the performance of a mixture with only OPC.

Parameter	Calculation	lation Performance Classification						
		Low Total	Moderate Total	High Total				
Total Heat at 48-hr		Heat	Heat	Heat				
from isothermal	CCP Substitution							
calorimetry	100% OPC	< 0.80	0.80 - 1.00	> 1.00				
		Low Slump	Moderate Slump	High Slump				
	20% Substituion							
20% CCP Slump	100% OPC	< 1.55	1.55 - 2.30	> 2.30				
40% CCP Slump	40% Substituion	< 2.75	2.75 - 3.70	> 3.70				
	100% OPC							
		Decreased	Moderate	Increased				
20% CCP		Strength	Strength	Strength				
Compressive	20% Substituion							
Strength	100% OPC	< 0.95	0.95 - 1.10	> 1.10				
(3d, 7d, 14d, 28d,	(Done at each age)							
56d, 90d, and 180d)								
40% CCP								
Compressive	40% Substituion							
Strength	100% OPC	< 0.80	0.80 - 1.00	> 1.00				
	(Done at each age)							

Table 2-8: Performance Classification of Coal Ash

Parameter	Calculation	Per	formance Classific	ation
(3d, 7d, 14d, 28d,				
56d, 90d, and 180d)				
		Decreased	Moderate	Increased
		Resistivity	Resistivity	Resistivity
20% CCP Electrical	20% Substituion			
Resistivity	100% OPC	< 1.00	1.00 - 1.70	> 1.70
(3d, 7d, 14d, 28d,	(Done at each age)			
56d, 90d, and 180d)				
40% CCP Electrical	40% Substituion			
Resistivity	100% OPC	< 1.00	1.00 - 3.00	> 3.00
(3d, 7d, 14d, 28d,	(Done at each age)			
56d, 90d, and 180d)				

To give the reader an example of how these results could be used, the average CCA performance for each material is shown in Table 2-9. The performance is shown with a color chart where the highest performance is yellow, the medium performance is orange, and the lowest performance is red.

		Conver Clas	ntional ss F	Conve Clas	ntional ss C	Recla Cla	aimed ss F	Unpro Cla	cessed ss F	Blei Cla	nded ss F	Blen Clas	nded ss C	Bottom Class F
		20%	40%	20%	40%	20%	40%	20%	40%	20 %	40 %	20 %	40 %	20%
He	at of													
Hyd	ration													
Slu	ump													
	3													
	Day													
	7													
gth	Day													
en	14													
Sti	Day													
ompressive	28													
	Day													
	56 D													
	Day													
	90 D													
	Day 180													
	180 Dev													
	Dav													
	<i>Day</i>													
	Dav													
vity	14													
sti	Dav													
esi	28													
ıl R	Dav													
rice	56													
ect	Dav													
EI	90													
	Dav													
	180													
	Day													

Table 2-9A: Average Performance of Coal Ash by Type

This table provides the classification of the average performance of each coal ash type based on the data collected in this study. The classification used is outlined in TABLE 2-8 The color system is depicted below:

High Performance Moderate Performance Low Performance

		Conve Cla	ntional ss F	Conve Clas	ntional ss C	Recla Cla	umed ss F	Unpro Cla	cessed ss F	Bler Cla	nded ss F	Bler Clas	nded ss C	Bottom Class F
		20%	40%	20%	40%	20%	40%	20%	40%	20 %	40 %	20 %	40 %	20%
He Hyd	at of ration	\leftrightarrow	\downarrow	1	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\downarrow	\leftrightarrow	1	\leftrightarrow	1	1
Sh	ump	\leftrightarrow	1	\leftrightarrow	1	\leftrightarrow	1	\downarrow	\downarrow	1	1	1	1	\leftrightarrow
	3 Day	\downarrow	\downarrow	\leftrightarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	↓	↓	↓	↓	\downarrow
ŗth	7 Day	↓	↓	\leftrightarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	↓	↓	↓	\downarrow
Streng	14 Day	\downarrow	\downarrow	\leftrightarrow	\leftrightarrow	\downarrow	\downarrow	\downarrow	\downarrow	↓	↓	↓	\leftrightarrow	\downarrow
ssive ;	28 Day	\leftrightarrow	\leftrightarrow	\leftrightarrow	1	\downarrow	\downarrow	\downarrow	\downarrow	↓	↓	\leftrightarrow	\leftrightarrow	\downarrow
Compres	56 Day	\leftrightarrow	\leftrightarrow	1	1	\leftrightarrow								
	90 Day	\leftrightarrow	\leftrightarrow	1	1	\leftrightarrow	\leftrightarrow	\leftrightarrow		\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
	180 Day	\leftrightarrow	\leftrightarrow	1	1	\leftrightarrow	\leftrightarrow	\leftrightarrow	↑	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
	3 Day	\downarrow	↓	↓	↓	↓	\downarrow							
y	7 Day	↓	\downarrow	↓	↓		\leftrightarrow	\downarrow						
sistivit	14 Day	\downarrow	\downarrow	\leftrightarrow	\leftrightarrow	\downarrow	\downarrow	\downarrow	\downarrow	↓	\leftrightarrow	\leftrightarrow	\leftrightarrow	\downarrow
Electrical Resist	28 Day	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\downarrow	\downarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\downarrow
	56 Day	1	↑	1	\leftrightarrow	1	1	\leftrightarrow	\downarrow	1	1	\leftrightarrow	1	Ť
	90 Day	1	↑	1	1	1	↑	1		1	1	1	1	1
	180 Day	\uparrow	\uparrow	\uparrow	1	\uparrow	\uparrow	1	\uparrow	1	1	1	1	

Table 2-9B: Average Performance of Coal Ash by Type

This table provides the classification of the average performance of each coal ash type based on the data collected in this study. The classification used is outlined in TABLE 2-8 The color system is depicted below:

- ↑ High Performance
- \leftrightarrow Moderate Performance
- Low Performance

Heat of hydration

Based on this classification system, the average 48-hour heat of hydration for most coal ash types was found to be moderate. The only low performance was 40% conventional class F, and 40% unprocessed class F. Concrete made with coal ash typically has a lower heat of hydration than portland cement concrete. Typically, the contribution to the heat of hydration by Class F coal ash is 50% of that of Portland cement, while Class C coal ash provides a heat of hydration that is higher than that of Class F [24].

Slump

The average performance of most coal ash types shown to be moderate at 20% replacement and high at 40% replacement. Blended coal ash shows high slump performance at both 20% and 40% replacement, while unprocessed coal ash shows low performance at both 20% and 40% replacement. Generally, the use of fly ash will increase the workability of concrete. Coal ash with high percentages of coarse particles (retained on No. 325 sieve) or high carbon content can increase the water demand and lower the workability of the concrete [24].

Compressive Strength

Each coal ash shown to be low for the first 14d except for conventional Class C. Most of the samples had moderate strength between 28d and 180d except for 40% conventional C ash. This result was expected as fly ash typically aids in long-term strength development. Coal ash commonly requires 28 to 90 days to exceed control strength, depending on the fineness and proportions used. Higher reactive coal ashes, such as high-calcium Class C ashes, can equal or exceed the strength of 100% OPC concrete in 1 to 28 days [24].

33

Electrical Resistivity

The average performance of most coal ash types was found to be low for the first 14 d, moderate at 28 d, and high at 56d and larger. Coal ash generally reduces the permeability of concrete [24].

CHAPTER III

CONCLUSION

3.1 SUMMARY

This thesis compares the concrete performance achieved by using traditional and nontraditional coal ash samples. A total of 33 traditional coal ash sources and 15 nontraditional coal ash sources were used in this study.

The overall study has shown promising results for the use of non-traditional coal ash in concrete. Some non-traditional coal ash sources used in this study shown to outperform coal ash currently used in the industry. Due to the limited availability of Unprocessed Coal Ash, Blended Coal Ash, and Bottom Coal ash, further testing is needed to better understand their performance ability in concrete. Using performance-based specifications, these non-traditional coal ash sources can provide an adequate supply of reliable coal ash to the industry.

The following conclusions can be drawn:

- There is no statistical difference in the heat of hydration between traditional and non-traditional Class F coal ash.
- Concrete with traditional and non-traditional coal ash increases the slump of the concrete over mixtures with 100% OPC concrete at 20% and 40% replacement.

- Concrete with traditional and non-traditional coal ash at 20% and 40% replacement have a lower average 7-day compressive strength than mixtures with 100% OPC.
- All coal ash had a 180-day compressive strength that is higher than mixtures with 100% OPC, except for reclaimed and blended coal ash at 40% replacement.
- Each coal ash source has a lower average 3-day electrical resistivity measurement when compared to mixtures with 100% OPC.
- Each coal ash has an electrical resistivity that is more than double mixtures with 100% OPC.
- The following are the findings from the T-Test:
 - At 20% replacement, Reclaimed and Blended coal ash have statistically similar heat of hydration to conventional coal ash.
 - At 40% replacement, Reclaimed and Unprocessed coal ash shown to statistically similar heat of hydration to Conventional coal ash.
 - Slump performance of Reclaimed Class F and Blended Class C coal ash shown to be statistically similar to conventional coal ash.
 - Processed coal ash sources are shown to have statistically similar performance to conventional coal ash when used at 20% replacement for 10 of the 16 average performance comparisons.
 - Unprocessed coal ash does not have a statistically similar performance for strength measurements compared to conventional coal ash at 20% replacement.

 The statistical similarity of unconventional and conventional coal ash in terms of electrical resistivity is inconsistent between the age and type of unconventional coal ash used.

• The Design and Control of Concrete Mixtures [24] provides tables that outline the typical impact of SCMs on concrete fresh and hardened properties. Based on those tables, Table 3-1 provides the typical performance for Class F fly ash for slump, heat of hydration, compressive strength, and corrosion resistance. In an effort to compare the reclaimed and unprocessed coal ash used in this study, Table 3-1 and Table 3-2 provide the classification for the average performance of conventional, reclaimed, and unprocessed coal ash. As there was only 1 sample of each blended and bottom ash used in this study, additional testing is needed to determine how each type relates to conventional coal ash. Appendix I provides a table that outlines the classification of each coal ash with regard to the properties listed in Table 3-2.

Coal Ash	Workability	Heat of Hydration	Early Strength	Long Term Strength	Corrosion Resistance
Class F Fly Ash		₽	₽		

Table 3-1: Impact of Class F Fly Ash on Properties of Concrete

This table is based on Table 3-6 and Table 3-10 of Design and Control of Concrete Mixtures. These tables were adapted from Thomas and Wilson 2002, and Omran and others 2018.

Coal Ash	Content	Workability	Heat of Hydration	Early Strength	Long Term Strength	Electrical Resistivity
Conventional	20%					
	40%					
Reclaimed	20%					1
	40%	1				1
Unprocessed	20%	ł				1
•	40%	ł				1

Table 3-2: Impact of Coal Ash on Properties of Concrete Based

Both reclaimed and unprocessed coal ash shown to have the same performance classifications as conventional coal ash for each property, aside for two. At 40% replacement, reclaimed coal ash shown to have a moderate heat of hydration, while the average heat of hydration of conventional coal ash was classified as low. At 20% replacement, unprocessed coal ash shown to have low workability, while conventional coal ash had moderate workability on average.

This work makes an important contribution by comparing large data sets of conventional and unconventional coal ashes in relevant testing protocols. This information will help build confidence in practitioners in the use of these non-traditional coal ashes in practical concrete mixtures.

REFERENCES

- "AASHTO T 358 Standard Method of Test for Surface Resistivity Indication of Concrete's Ability to Resist Chloride Ion Penetration." Techstreet.com, 01 January 2021.
- Aboustait, Mohammed, et al. "Physical and Chemical Characteristics of Fly Ash Using Automated Scanning Electron Microscopy." *Construction & Building Materials*, vol. 106, 2016, pp. 1–10.,

https://doi.org/10.1016/j.conbuildmat.2015.12.098.

- ACAA. (2016). "2015 Production and Use Survey Results News Release.." Acaa-Usa.org, https://www.acaa-usa.org/Publications/Production-Use-Reports.
- ACI Technical Committees. "Part 2." ACI Collection of Concrete Codes, Specifications, and Practices, 2019, American Concrete Institute, Farmington Hills, MI, 2019.
- Al-Shmaisani, Saif, et al. "Evaluation of Beneficiated and Reclaimed Fly Ashes in Concrete." *ACI Materials Journal*, vol. 116, no. 4, 2019, https://doi.org/10.14359/51716713.
- "ASTM C138, Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete." *Compass.astm.org*, 24 May 2017.
- "ASTM C143 Standard Test Method for Slump of Hydraulic-Cement Concrete." Compass.astm.org, 4 Jan. 2020.

- "ASTM C143, Standard Test Method for Slump of Hydraulic-Cement Concrete." Compass.astm.org, 14 July 2020.
- "ASTM C1702, Standard Test Method for Measurement of Heat of Hydration of Hydraulic Cementitious Materials Using Isothermal Conduction Calorimetry." *Compass.astm.org*, 01 March 2017.
- "ASTM C192, Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory." *Compass.astm.org*, 12 June 2015.
- 11. "ASTM C231, Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method." *Compass.astm.org*, 27 June 2017.
- 12. "ASTM C31, Standard Practice for Making and Curing Concrete Test Specimens in the Field." *Compass.astm.org*, 20 May 2021.
- "ASTM C311, Standard Test Method for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete." *ASTM*, 2018, <u>https://compass.astm.org/document/?contentCode=ASTM%7CC0311_C0311M-18%7Cen-US</u>.
- "ASTM C39, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens" *Compass.astm.org*, 16 Jun. 2014.
- 15. "ASTM C430-17, Standard Test Method for Fineness of Hydraulic Cement by the 45-Mm (No. 325) Sieve." *Compass.astm.org*, 20 Dec. 2017.
- 16. "ASTM C618-19, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete." *Compass.astm.org*, 11 Feb. 2019.

- 17. "ASTM E3183-19, Standard Guide for Harvesting Coal Combustion Products Stored in Active and Inactive Storage Areas for Beneficial Use." *Compass.astm.org*, 18 Dec. 2019.
- Benhelal, Emad, et al. "Global strategies and potentials to curb CO2 emissions in cement industry." *Journal of cleaner production* 51 (2013): 142-161.
- Cheerarot, Raungrut, and Chai Jaturapitakkul. "A Study of Disposed Fly Ash from Landfill to Replace Portland Cement." *Waste Manag*, vol. 24, no. 7, 2004, pp. 701–709., https://doi.org/10.1016/j.wasman.2004.02.003.
- 20. Diaz-Loya, Ivan, et al. "Extending Supplementary Cementitious Material Resources: Reclaimed and Remediated Fly Ash and Natural Pozzolans." Cement and Concrete Composites, vol. 101, 2019, pp. 44–51., https://doi.org/10.1016/j.cemconcomp.2017.06.011.
- 21. Emerson, Loren. "PERFORMANCE BASED TESTING FOR AIR ENTRAINMENT AND TOTAL HEAT OF RECLAIMED FLY ASH." Oklahoma State University, 2019.
- 22. Hornbostel, Karla, Claus K Larsen, and Mette R Geiker. "Relationship Between Concrete Resistivity and Corrosion Rate – A Literature Review." Cement & concrete composites 39 (2013): 60–72. Web.
- 23. Kang, Shinhyu. "Predicting Fly Ash Performance in Concrete from Particle Characteristics." 2020.
- 24. Kosmatka, Steven H., and Michelle L. Wilson. *Design and Control of Concrete Mixtures*. Portland Cement Association, 2016.

- Lloyd, Zane. Investigation of the Quality Control of Waste Products for Concrete.
 N.p., 2019. Print.
- 26. Okeniyi, Joshua. (2016). C10H18N2Na2O10 inhibition and adsorption mechanism on concrete steel-reinforcement corrosion in corrosive environments. Journal of the Association of Arab Universities for Basic and Applied Sciences.
 20. 39–48. 10.1016/j.jaubas.2014.08.004.
- Robertson, B. and Ley, M. T.; "Determining the Water to Cement Ratio of Fresh Concrete by Evaporation", Construction and Building Materials, Vol 242, May, 2020. <u>https://doi.org/10.1016/j.conbuildmat.2019.117972</u>.
- 28. Samad, S., and A. Shah. "Role of binary cement including Supplementary Cementitious Material (SCM), in production of environmentally sustainable concrete: A critical review." *International journal of Sustainable built environment* 6.2 (2017).
- 29. Subedi, Sujata, et al. "Evaluation of Alternative Sources of SCMS for Concrete Materials." Tran-SET 2021, 2021, https://doi.org/10.1061/9780784483787.019.
- 30. T. Kim, et al. Dissolution and Leaching of Fly Ash in Nitric Acid Using Automated Scanning Electron Microscopy. Vol. 7, Advances in Civil Engineering Materials, 2018.
- T. Kim, et al. *Fly Ash Particle Characterization for Predicting Concrete Compressive Strength.* Vol. 165, Construction and Building Materials, 2018.
- T. Kim, et al. "Using Particle Composition of Fly Ash to Predict Concrete Strength and Electrical Resistivity." *Cement and Concrete Composites*, vol. 107, 2020.

33. Y. Chen, et al. "Investigation of Primary Fine Particulate Matter from Coal Combustion by Computer-Controlled Scanning Electron Microscopy." *Fuel Processing Technology*, vol. 85, 2004, pp. 743–761.

APPENDICES

APPENDIX A

TABLES AND FIGURES

TABLE A1-1: STATISTICAL SUMMARY OF THE 48-HR HEAT OF HYDRATION

OF EACH COAL ASH SOURCE

FA ID		20	% Coal Ash	1		40	% Coal Ash	1
FA ID	20% (J/g)	TTEST	SCORE	RATING	40% (J/g)	TTEST	SCORE	RATING
C1	178		1.09	HIGH	119		0.73	LOW
C2	170		1.05	HIGH	107		0.66	LOW
C3					124		0.76	LOW
C4	182		1.12	HIGH				
C5								
C6								
C7	166		1.02	HIGH				
C8	179		1.10	HIGH				
C11	188		1.15	HIGH				
C12					101		0.62	LOW
C13								
C14	176		1.08	HIGH	147		0.90	MODERATE
C15	189		1.16	HIGH				
C16	180		1.11	HIGH	153		0.94	MODERATE
C17								
C18	190		1.17	HIGH				
C19	180		1.10	HIGH				
F1	145		0.89	MODERATE	109		0.67	LOW
F2	154		0.95	MODERATE	141		0.87	MODERATE
F3	145		0.89	MODERATE	109		0.67	LOW
F4	184		1.13	HIGH	141		0.87	MODERATE
F5	143		0.88	MODERATE	112		0.69	LOW
F6	143		0.88	MODERATE	119		0.73	LOW
F9	175		1.08	HIGH	142		0.87	MODERATE
F10	177		1.09	HIGH				

		20	% Coal Ash	1		40	% Coal Ash	1
FA ID	20% (J/g)	TTEST	SCORE	RATING	40% (J/g)	TTEST	SCORE	RATING
F11								
F12	175		1.07	HIGH	142		0.87	MODERATE
F15-1								
F15-2	135		0.83	MODERATE	138		0.85	MODERATE
F16	182		1.12	HIGH	128		0.79	LOW
F17	177		1.09	HIGH	135		0.83	MODERATE
F27	155		0.95	MODERATE	104		0.64	LOW
RF2	155	0.168	0.95	MODERATE	134	0.026	0.83	MODERATE
RF3	142	0.011	0.87	MODERATE				
RF4-2	150	0.947	0.92	MODERATE	114	0.000	0.70	
RF5	150	0.839	0.92	MODERATE				
RF6-1								
RF6-2					122	0.329	0.75	LOW
RF7-1	151	0.822	0.93	MODERATE	151	0.000	0.93	MODERATE
RF11	136	0.000	0.84	MODERATE				
UF1	141	0.005	0.86	MODERATE	151	0.000	0.93	MODERATE
UF2	146	0.188	0.90	MODERATE	127	0.207	0.78	LOW
UF3	138	0.000	0.85	MODERATE	121	0.215	0.74	LOW
UF4	136	0.000	0.84	MODERATE	121	0.215	0.74	LOW
BF9	161	0.049	0.99	MODERATE	123	0.470	0.76	LOW
BC3	130	0.268	0.80	MODERATE	107	0.001	0.66	LOW
BTF1	169	0.000	1.04	HIGH	119	0.000	0.73	LOW

TABLE A1-2: Statistical Summary of the Slump Performance of Coal ash at 20% and

40% Replacement

		AVG				
ID	% Coal Ash	(in.)	STD	TTEST	SCORE	RATING
100% OPC	0%	1.00	0.00			
100% OPC	0%	1.50	0.00			
100% OPC	0%	2.67	0.12			
C1	20%	4.25	0.20		2.47	HIGH
C1	20%	2.25	0.00		1.31	LOW
C2	20%	1.75	0.00		1.02	LOW
C3	20%	4.08	0.24		2.37	HIGH
C3	20%	1.25	0.00		0.73	LOW
C3	20%	4.00	0.00		2.32	HIGH
C3	20%	7.00	0.00		4.06	HIGH

		AVG				
ID	% Coal Ash	(in.)	STD	TTEST	SCORE	RATING
C4	20%	1.92	0.12		1.11	LOW
C4	20%	2.50	0.00		1.45	LOW
C5	20%	1.75	0.20		1.02	LOW
C5	20%	4.25	0.00		2.47	HIGH
C6	20%	4.42	0.12		2.56	HIGH
C6	20%	2.75	0.00		1.60	MODERATE
C7	20%	2.58	0.42		1.50	LOW
C7	20%	3.75	0.00		2.18	MODERATE
C7	20%	6.00	0.00		3.48	HIGH
C7	20%	3.25	0.00		1.89	MODERATE
C7	20%	2.00	0.00		1.16	LOW
C8	20%	5.04	0.16		2.93	HIGH
C8	20%	4.00	0.20		2.32	HIGH
C11	20%	4.25	0.00		2.47	HIGH
C12	20%	3.58	0.31		2.08	MODERATE
C12	20%	3.50	0.00		2.03	MODERATE
C13	20%	3.92	0.12		2.27	MODERATE
C13	20%	6.50	0.00		3.77	HIGH
C14	20%	4.42	0.42		2.56	HIGH
C14	20%	4.25	0.00		2.47	HIGH
C15	20%	5.58	0.31		3.24	HIGH
C15	20%	5.00	0.00		2.90	HIGH
C16	20%	3.97	0.24		2.31	HIGH
C17	20%	2.63	0.32		1.53	LOW
C18	20%	2.25	0.20		1.31	LOW
C19	20%	3.92	0.42		2.27	MODERATE
F1	20%	2.42	0.24		1.40	LOW
F1	20%	2.50	0.00		1.45	LOW
F2	20%	2.00	0.00		1.16	LOW
F3	20%	2.33	0.24		1.35	LOW
F3	20%	1.50	0.00		0.87	LOW
F4	20%	1.67	0.31		0.97	LOW
F4	20%	3.75	0.00		2.18	MODERATE
F4	20%	1.75	0.00		1.02	LOW
F5	20%	3.75	0.35		2.18	MODERATE
F5	20%	3.42	0.12		1.98	MODERATE
F5	20%	1.50	0.00		0.87	LOW
F6	20%	3.50	0.00		2.03	MODERATE
F6	20%	4.00	0.00		2.32	HIGH
F9	20%	2.92	0.24		1.69	MODERATE
F10	20%	2.08	0.12		1.21	LOW

		AVG				
ID	% Coal Ash	(in.)	STD	TTEST	SCORE	RATING
F11	20%	4.92	0.12		2.85	HIGH
F11	20%	3.75	0.00		2.18	MODERATE
F12	20%	6.67	0.42		3.87	HIGH
F15-1	20%	2.25	0.20		1.31	LOW
F 15-2	20%	5.08	0.12		2.95	HIGH
F16	20%	3.00	0.20		1.74	MODERATE
F17	20%	7.28	0.21		4.23	HIGH
F27	20%	3.08	0.12		1.79	MODERATE
RF2	20%	3.50	0.00	0.89	2.03	MODERATE
RF3	20%	2.33	0.31	0.01	1.35	LOW
RF4	20%	3.17	0.12	0.22	1.84	MODERATE
RF5	20%	2.75	0.20	0.02	1.60	MODERATE
RF6-1	20%	3.08	0.12	0.12	1.79	MODERATE
RF6-2	20%	4.17	0.31	0.06	2.42	HIGH
RF7-1	20%	3.47	0.33	0.99	2.01	MODERATE
RF11	20%	3.33	0.12	0.59	1.94	MODERATE
UF1	20%	1.17	0.31	0.00	0.68	LOW
UF2	20%	2.00	0.20	0.00	1.16	LOW
UF3	20%	3.25	0.20	0.43	1.89	MODERATE
UF4	20%	2.67	0.12	0.00	1.55	LOW
BC3	20%	4.08	0.47	0.35	2.37	HIGH
BF9	20%	5.00	0.35	0.00	2.90	HIGH
BTF1	20%	3.00	0.00	0.05	1.74	MODERATE
C1	40%	4.75	0.00		2.76	MODERATE
C2	40%	4.75	0.00		2.76	MODERATE
C3	40%	6.50	0.00		3.77	HIGH
C4	40%	5.00	0.00		2.90	MODERATE
C4	40%	6.50	0.00		3.77	HIGH
C5	40%	4.25	0.00		2.47	LOW
C6	40%	6.00	0.00		3.48	MODERATE
C6	40%	6.17	0.47		3.58	MODERATE
C7	40%	6.50	2.16		3.77	HIGH
C7	40%	6.00	0.00		3.48	MODERATE
C7	40%	4.25	0.00		2.47	LOW
C8	40%	7.17	0.12		4.16	HIGH
C11	40%	5.25	0.00		3.05	MODERATE
C12	40%	6.75	0.00		3.92	HIGH
C12	40%	5.42	1.53		3.15	MODERATE
C13	40%	6.92	0.42		4.02	HIGH
C13	40%	4.25	0.00		2.47	LOW
C14	40%	5.25	0.00		3.05	MODERATE

		AVG				
ID	% Coal Ash	(in.)	STD	TTEST	SCORE	RATING
C14	40%	2.75	0.00		1.60	LOW
C15	40%	4.85	0.46		2.81	MODERATE
C15	40%	2.50	0.00		1.45	LOW
C15	40%	8.25	0.00		4.79	HIGH
C16	40%	7.92	0.59		4.60	HIGH
F1	40%	6.50	0.00		3.77	HIGH
F2	40%	6.50	0.00		3.77	HIGH
F3	40%	3.25	0.00		1.89	LOW
F4	40%	4.25	0.41		2.47	LOW
F4	40%	4.50	0.00		2.61	LOW
F5	40%	4.50	0.00		2.61	LOW
F5	40%	2.25	0.00		1.31	LOW
F6	40%	3.50	0.00		2.03	LOW
F11	40%	7.00	0.00		4.06	HIGH
F11	40%	5.33	0.24		3.10	MODERATE
F12	40%	6.58	1.18		3.82	HIGH
F15-2	40%	5.25	0.20		3.05	MODERATE
F27	40%	3.50	0.20		2.03	LOW
RF2	40%	6.33	0.24	0.00	3.68	MODERATE
RF3	40%	4.83	0.62	0.90	2.81	MODERATE
RF4	40%	3.67	0.12	0.00	2.13	LOW
RF5	40%	4.25	0.20	0.06	2.47	LOW
RF6-1	40%	3.67	0.31	0.01	2.13	LOW
RF6-2	40%	7.08	0.31	0.00	4.11	HIGH
RF11	40%	5.42	0.72	0.44	3.15	MODERATE
UF1	40%	0.83	0.12	0.00	0.48	LOW
BC3	40%	6.83	0.62	0.15	3.97	HIGH
BF9	40%	7.00	0.74	0.03	4.06	HIGH

TABLE A1-3: Compressive Strength Data and T-Test Analysis of Coal Ash at 20%

Replacement at 3-, 7-, and 14-day Ages

Days of hydration		3 DAY			7 DAY			14 DAY	
Sample#	AVG (psi)	STD	T Test	AVG (psi)	STD	T Test	AVG (psi)	STD	T Test
100% OPC	3960	168		5040	61		5770	71	
100% OPC	4060	44		4740	105		5040	284	
100% OPC	4090	153		5240	293		5650	488	
C1	3770	137		4630	125		5300	122	
C1	4280	166		5300	197		6260	77	
C2	4330	143		5440	38		6050	137	
C3	4120	86		4760	82		5380	162	
C3	4310	42		5290	111		6160	85	
C4	4480	381		5270	463		6010	272	
C4	3630	127		4850	22		5840	125	
C5	3960	161		4480	204		5090	290	
C5	4470	17		5630	126		6590	74	
C6	4340	281		4840	119		5280	203	
C6	4190	33		5240	80		5860	173	
С7	4270	241		5460	396		5850	421	
С7	4240	62		5330	49		6100	35	
C8	3440	137		4430	280		4600	145	
C11	4400	33		5720	12		6550	130	
C12	4040	143		4750	207		5300	203	
C12	3630	173		4540	38		5370	23	
C13	4130	150		4960	202		6240	628	
C13	3860	78		4580	120		5620	271	
C14	4020	147		4500	38		5570	123	
C14	4160	261		5170	437		6100	450	
C15	3970	297		5080	219		5390	360	
C15	4040	41		4870	125		5260	11	
C16	5000	263		5590	544		6160	631	
C17	4180	273		5050	398		5540	408	
C18	4030	182		4820	230		5400	152	
C19	3780	195		4470	145		5460	129	
F1	3600	114		4530	191		4950	284	
F1	3530	69		4360	177		5180	98	
F2	3790	59		4590	13		5320	90	
F3	4280	271		5050	254		5560	309	
F3	3590	92		4640	67		5350	119	

Days of hydration	3 DAY			7 DAY			14 DAY		
F4	4630	335		5460	381		5790	456	
F4	3600	67		4460	77		5380	61	
F4	3600	57		4550	85		5190	91	
F5	3430	134		4440	187		4930	156	
F5	3600	133		4510	98		5060	46	
F6	3650	69		4700	107		5250	35	
F6	3430	136		4250	97		4810	245	
F9	3920	179		4360	188		4870	136	
F10	3390	109		4200	123		4690	133	
F11	3310	58		4170	136		4700	106	
F11	3220	85		3840	65		4420	88	
F12	3350	167					3860	277	
F15-1	4020	302		4530	176		5470	296	
F15-2	4050	149		4440	228		4760	417	
F16	3400	194		3980	363		5200	328	
F17	3350	174		3780	123		4530	219	
F27	3560	146		4490	226		5220	373	
RF2	3930	165	0.002	4670	214	0.009	5330	235	0.002
RF3	3810	177	0.072	4540	233	0.182	4890	274	0.548
RF4	3420	246	0.023	5040	76	0.000	5150	218	0.041
RF5	3990	139	0.000	4510	241	0.339	5020	276	0.545
RF6-1	3730	175	0.428	4560	228	0.118	4660	282	0.020
RF6-2	3770	245	0.309	4220	185	0.026	4730	240	0.037
RF7-1	3640	171	0.676	4040	263	0.004			
RF11	3750	116	0.175	4020	169	0.000	4630	169	0.000
UF1	2150	226	0.000	2740	189	0.000	4020	364	0.000
UF2	2680	213	0.000	3020	97	0.000	4240	241	0.000
UF3	1950	168	0.000	2500	271	0.000	3800	165	0.000
UF4	2010	269	0.000	2840	255	0.000	4130	210	0.000
BC3	4030	88	0.040	4710	242	0.014	5150	345	0.003
BF9	3570	70	0.016	4450	149	0.541	4820	163	0.074
BTF1	3350	124	0.000	4230	220	0.056	4820	270	0.238

TABLE A1-4: Compressive Strength Data and T-Test Analysis of Coal Ash at 20%

Replacement at 28-, 56-, and 90-day Ages

Days of hydration	2	28 DAY			56 DAY		90 DAY		
Sample#	AVG (psi)	STD	T Test	AVG (psi)	STD	T Test	AVG (psi)	STD	T Test
100% OPC	6320	165		6560	160		7240	24	
100% OPC	5600	118		6020	158		6260	181	
100% OPC	6100	253		6290	777		6600	706	
C1	5930	211		6570	190		6520	263	
C1	7280	12		8070	177		8070	201	
C2	6970	103		8000	307		8410	175	
С3	6090	308		6600	158		7620	119	
С3	6740	148		7240	76		7790	109	
C4	6780	696		6860	395		7640	228	
C4	6520	30		7350	109		8100	320	
C5	5670	386		6370	185		6910	115	
C5	7420	62		8360	183		9100	38	
C6	5690	443		6350	638		6030	444	
C6	6500	6		6960	90		7220	276	
С7	6930	515		6700	457		8010	743	
C7	7130	62		7970	164		8370	199	
C8	4770	703		6000	673		6580	424	
C11	7510	231		8550	163		8910	109	
C12	5920	198		6550	314		7100	336	
C12	5750	61		6750	196		7130	395	
C13	6520	971		6810	306		7110	470	
C13	6210	167		6470	76		6810	323	
C14	6070	215		7010	140		7220	242	
C14	6200	815		7380	228		7370	578	
C15	5760	218		6720	474		6920	351	
C15	5910	69		6470	210		6660	240	
C16	6540	357		7590	861		8370	710	
C17	6580	491		6680	273		7290	302	
C18	5840	225		6240	358		7050	175	
C19	5960	224		6300	199		6810	145	
F1	5640	303		5990	227		6800	315	
F1	5920	160		7090	59		8020	183	
F2	6310	102		7250	166		8010	228	
F3	6300	549		7280	573		8130	680	
F3	6240	36		7610	229		8140	276	

Days of hydration	28 DAY			56 DAY			90 DAY		
F4	6710	640		7380	665		8420	513	
F4	6180	115		7210	74		7920	99	
F4	5740	272		6240	105		6500	229	
F5	5560	184		6500	536		7550	407	
F5	5810	115		7290	125		7770	133	
F6	6270	65		7370	123		8220	178	
F6	5220	87		6170	60		6680	193	
F9	6110	276		6760	196		7280	457	
F10	5550	141		5900	486		7130	177	
F11	5350	66		6080	75		6520	167	
F11	5130	166		5820	214		6340	725	
F12	4730	282		5180	144		5870	211	
F15-1	5800	336		6460	228		6800	218	
F15-2				6700	412		7410	471	
F16	5520	294		6600	141		7090	439	
F17	4580	157		6000	419		6620	496	
F27	6010	346		6830	506		7110	292	
RF2	5800	219	0.145	6600	733	0.672	7250	658	0.917
RF3	5920	716	0.297	6430	507	0.794	6720	447	0.014
RF4	6170	299	0.001	6990	517	0.026	7810	653	0.036
RF5	5470	393	0.236	6260	380	0.178	6780	784	0.159
RF6-1	5420	147	0.004				6350	196	0.000
RF6-2	5280	172	0.000	6160	418	0.066	6720	432	0.012
RF7-1	5620	246	0.754	6260	253	0.050	6600	356	0.001
RF11	5200	186	0.000	5760	272	0.000	6620	252	0.000
UF1	5090	233	0.000	5980	512	0.025	6720	517	0.028
UF2	5100	457	0.008	5780	426	0.001	6480	417	0.002
UF3	4660	279	0.000	5490	757	0.006	6330	406	0.000
UF4	4810	256	0.000	5540	771	0.009	6340	763	0.012
BC3	6080	263	0.312	6550	181	0.006	7270	291	0.757
BF9	5670	296	0.901	6170	394	0.084	6820	396	0.023
BTF1	5600	213	0.558	6730	369	0.168	7160	360	0.695

TABLE A1-5: Compressive Strength Data and T-Test Analysis of Coal Ash at 20%

Replacement at 180-day Age

Days of hydration	1	80 DAY	
Sample#	AVG (psi)	STD	T Test
100% OPC	7830	75	
100% OPC	6200	630	
100% OPC	6730	629	
C1	7690	328	
C1	9200	200	
C2	9050	49	
С3	7480	326	
C3	8630	123	
C4	7850	558	
C4	8450	269	
C5	7550	294	
C5	9750	226	
C6	7100	733	
C6	8190	78	
C7	7820	813	
C7	8790	109	
C8	7100	584	
C11	9360	43	
C12	7840	309	
C12	7540	118	
C13	8070	584	
C13	7220	150	
C14	7410	158	
C14	8300	395	
C15	7430	135	
C15	7030	117	
C16	8040	789	
C17	7030	345	
C18	7210	308	
C19	6760	255	
F1	7250	484	
F1	8660	141	
F2	8660	234	
F3	8550	518	
F3	8610	231	

Days of hydration	1	80 DAY	
F4	8580	966	
F4	8630	179	
F4	7270	202	
F5	8460	513	
F5	8480	129	
F6	8940	130	
F6	7380	162	
F9	7220	721	
F10	7530	650	
F11	7070	78	
F11	6830	416	
F12	6360	444	
F15-1	7080	322	
F15-2	7990	696	
F16	7010	357	
F17	7490	670	
F27	7990	400	
RF2	8350	654	0.024
RF3	7260	608	0.080
RF4	8010	715	0.282
RF5	7220	665	0.081
RF6-1	6560	532	0.000
RF6-2	7010	799	0.041
RF7-1	6760	557	0.001
RF11	7030	252	0.000
UF1	7730	308	0.868
UF2	7610	240	0.508
UF3	7050	469	0.004
UF4	7530	714	0.523
BC3	7730	380	0.861
BF9	7900	447	0.292
BTF1	7740	374	0.865

TABLE A1-6: Compressive Strength Data Classification of Coal Ash at 20%

Replacement for 3-, 7-, and 14-day Ages

Days of hydration	3 DAY			7 DAY			14 DAY		
Sample#	AVG	SCORE	RATING	AVG	SCORE	RATING	AVG	SCORE	RATING
C1	3770	0.94	LOW	4630	0.92	LOW	5300	0.97	MODERATE
C1	4280	1.06	MODERATE	5300	1.06	MODERATE	6260	1.14	HIGH
C2	4330	1.07	MODERATE	5440	1.09	MODERATE	6050	1.10	HIGH
С3	4120	1.02	MODERATE	4760	0.95	MODERATE	5380	0.98	MODERATE
C3	4310	1.07	MODERATE	5290	1.06	MODERATE	6160	1.12	HIGH
C4	4480	1.11	HIGH	5270	1.05	MODERATE	6010	1.10	MODERATE
C4	3630	0.90	LOW	4850	0.97	MODERATE	5840	1.06	MODERATE
C5	3960	0.98	MODERATE	4480	0.90	LOW	5090	0.93	LOW
C5	4470	1.11	HIGH	5630	1.12	HIGH	6590	1.20	HIGH
C6	4340	1.08	MODERATE	4840	0.97	MODERATE	5280	0.96	MODERATE
C6	4190	1.04	MODERATE	5240	1.05	MODERATE	5860	1.07	MODERATE
C7	4270	1.06	MODERATE	5460	1.09	MODERATE	5850	1.07	MODERATE
C7	4240	1.05	MODERATE	5330	1.06	MODERATE	6100	1.11	HIGH
C8	3440	0.85	LOW	4430	0.88	LOW	4600	0.84	LOW
C11	4400	1.09	MODERATE	5720	1.14	HIGH	6550	1.19	HIGH
C12	4040	1.00	MODERATE	4750	0.95	LOW	5300	0.96	MODERATE
C12	3630	0.90	LOW	4540	0.91	LOW	5370	0.98	MODERATE
C13	4130	1.02	MODERATE	4960	0.99	MODERATE	6240	1.14	HIGH
C13	3860	0.96	MODERATE	4580	0.91	LOW	5620	1.02	MODERATE
C14	4020	1.00	MODERATE	4500	0.90	LOW	5570	1.01	MODERATE
C14	4160	1.03	MODERATE	5170	1.03	MODERATE	6100	1.11	HIGH
C15	3970	0.98	MODERATE	5080	1.01	MODERATE	5390	0.98	MODERATE
C15	4040	1.00	MODERATE	4870	0.97	MODERATE	5260	0.96	MODERATE
C16	5000	1.24	HIGH	5590	1.12	HIGH	6160	1.12	HIGH
C17	4180	1.03	MODERATE	5050	1.01	MODERATE	5540	1.01	MODERATE
C18	4030	1.00	MODERATE	4820	0.96	MODERATE	5400	0.98	MODERATE
C19	3780	0.94	LOW	4470	0.89	LOW	5460	1.00	MODERATE
F1	3600	0.89	LOW	4530	0.91	LOW	4950	0.90	LOW
F1	3530	0.88	LOW	4360	0.87	LOW	5180	0.94	LOW
F2	3790	0.94	LOW	4590	0.92	LOW	5320	0.97	MODERATE
F3	4280	1.06	MODERATE	5050	1.01	MODERATE	5560	1.01	MODERATE
F3	3590	0.89	LOW	4640	0.93	LOW	5350	0.97	MODERATE
F4	4630	1.15	HIGH	5460	1.09	MODERATE	5790	1.06	MODERATE
F4	3600	0.89	LOW	4460	0.89	LOW	5380	0.98	MODERATE

Days of hydration		3 DAY			7 DAY		14 DAY		
F4	3600	0.89	LOW	4550	0.91	LOW	5190	0.95	LOW
F5	3430	0.85	LOW	4440	0.89	LOW	4930	0.90	LOW
F5	3600	0.89	LOW	4510	0.90	LOW	5060	0.92	LOW
F6	3650	0.90	LOW	4700	0.94	LOW	5250	0.96	MODERATE
F6	3430	0.85	LOW	4250	0.85	LOW	4810	0.88	LOW
F9	3920	0.97	MODERATE	4360	0.87	LOW	4870	0.89	LOW
F10	3390	0.84	LOW	4200	0.84	LOW	4690	0.85	LOW
F11	3310	0.82	LOW	4170	0.83	LOW	4700	0.86	LOW
F11	3220	0.80	LOW	3840	0.77	LOW	4420	0.81	LOW
F12	3350	0.83	LOW		0.00	LOW	3860	0.70	LOW
F15-1	4020	1.00	MODERATE	4530	0.90	LOW	5470	1.00	MODERATE
F15-2	4050	1.00	MODERATE	4440	0.89	LOW	4760	0.87	LOW
F16	3400	0.84	LOW	3980	0.79	LOW	5200	0.95	LOW
F17	3350	0.83	LOW	3780	0.75	LOW	4530	0.82	LOW
F27	3560	0.88	LOW	4490	0.90	LOW	5220	0.95	MODERATE
F28	3370	0.83	LOW	3890	0.78	LOW	4370	0.80	LOW
RF2	3930	0.97	MODERATE	4670	0.93	LOW	5330	0.97	MODERATE
RF3	3810	0.94	LOW	4540	0.91	LOW	4890	0.89	LOW
RF4	3420	0.85	LOW	5040	1.01	MODERATE	5150	0.94	LOW
RF5	3990	0.99	MODERATE	4510	0.90	LOW	5020	0.92	LOW
RF6-1	3730	0.92	LOW	4560	0.91	LOW	4660	0.85	LOW
RF6-2	3770	0.93	LOW	4220	0.84	LOW	4730	0.86	LOW
RF7-1	3640	0.90	LOW	4040	0.81	LOW		0.00	LOW
RF11	3750	0.93	LOW	4020	0.80	LOW	4630	0.84	LOW
UF1	2150	0.53	LOW	2740	0.55	LOW	4020	0.73	LOW
UF2	2680	0.66	LOW	3020	0.60	LOW	4240	0.77	LOW
UF3	1950	0.48	LOW	2500	0.50	LOW	3800	0.69	LOW
UF4	2010	0.50	LOW	2840	0.57	LOW	4130	0.75	LOW
BC3	4030	1.00	MODERATE	4710	0.94	LOW	5150	0.94	LOW
BF9	3570	0.88	LOW	4450	0.89	LOW	4820	0.88	LOW
BTF1	3350	0.83	LOW	4230	0.84	LOW	4820	0.88	LOW

TABLE A1-7: Compressive Strength Data Classification of Coal Ash at 20%

Replacement for 28-, 56-, and 90-day Ages

Days of hydration		28 DAY		56 DAY			90 DAY		
Sample#	AVG	SCORE	RATING	AVG	SCORE	RATING	AVG	SCORE	RATING
C1	5930	0.99	MODERATE	6570	1.04	MODERATE	6520	0.97	MODERATE
C1	7280	1.21	HIGH	8070	1.28	HIGH	8070	1.20	HIGH
C2	6970	1.16	HIGH	8000	1.27	HIGH	8410	1.26	HIGH
С3	6090	1.01	MODERATE	6600	1.05	MODERATE	7620	1.14	HIGH
С3	6740	1.12	HIGH	7240	1.15	HIGH	7790	1.16	HIGH
C4	6780	1.13	HIGH	6860	1.09	MODERATE	7640	1.14	HIGH
C4	6520	1.08	MODERATE	7350	1.17	HIGH	8100	1.21	HIGH
C5	5670	0.94	LOW	6370	1.01	MODERATE	6910	1.03	MODERATE
C5	7420	1.24	HIGH	8360	1.33	HIGH	9100	1.36	HIGH
C6	5690	0.95	LOW	6350	1.01	MODERATE	6030	0.90	LOW
C6	6500	1.08	MODERATE	6960	1.11	HIGH	7220	1.08	MODERATE
C7	6930	1.15	HIGH	6700	1.06	MODERATE	8010	1.20	HIGH
C7	7130	1.19	HIGH	7970	1.27	HIGH	8370	1.25	HIGH
C8	4770	0.79	LOW	6000	0.95	MODERATE	6580	0.98	MODERATE
C11	7510	1.25	HIGH	8550	1.36	HIGH	8910	1.33	HIGH
C12	5920	0.99	MODERATE	6550	1.04	MODERATE	7100	1.06	MODERATE
C12	5750	0.96	MODERATE	6750	1.07	MODERATE	7130	1.06	MODERATE
C13	6520	1.09	MODERATE	6810	1.08	MODERATE	7110	1.06	MODERATE
C13	6210	1.03	MODERATE	6470	1.03	MODERATE	6810	1.02	MODERATE
C14	6070	1.01	MODERATE	7010	1.11	HIGH	7220	1.08	MODERATE
C14	6200	1.03	MODERATE	7380	1.17	HIGH	7370	1.10	MODERATE
C15	5760	0.96	MODERATE	6720	1.07	MODERATE	6920	1.03	MODERATE
C15	5910	0.98	MODERATE	6470	1.03	MODERATE	6660	0.99	MODERATE
C16	6540	1.09	MODERATE	7590	1.21	HIGH	8370	1.25	HIGH
C17	6580	1.10	MODERATE	6680	1.06	MODERATE	7290	1.09	MODERATE
C18	5840	0.97	MODERATE	6240	0.99	MODERATE	7050	1.05	MODERATE
C19	5960	0.99	MODERATE	6300	1.00	MODERATE	6810	1.02	MODERATE
F1	5640	0.94	LOW	5990	0.95	MODERATE	6800	1.01	MODERATE
F1	5920	0.98	MODERATE	7090	1.13	HIGH	8020	1.20	HIGH
F2	6310	1.05	MODERATE	7250	1.15	HIGH	8010	1.20	HIGH
F3	6300	1.05	MODERATE	7280	1.16	HIGH	8130	1.21	HIGH
F3	6240	1.04	MODERATE	7610	1.21	HIGH	8140	1.21	HIGH
F4	6710	1.12	HIGH	7380	1.17	HIGH	8420	1.26	HIGH
F4	6180	1.03	MODERATE	7210	1.15	HIGH	7920	1.18	HIGH

Days of hydration		28 DAY			56 DAY			90 DAY	
F4	5740	0.96	MODERATE	6240	0.99	MODERATE	6500	0.97	MODERATE
F5	5560	0.93	LOW	6500	1.03	MODERATE	7550	1.13	HIGH
F5	5810	0.97	MODERATE	7290	1.16	HIGH	7770	1.16	HIGH
F6	6270	1.04	MODERATE	7370	1.17	HIGH	8220	1.23	HIGH
F6	5220	0.87	LOW	6170	0.98	MODERATE	6680	1.00	MODERATE
F9	6110	1.02	MODERATE	6760	1.07	MODERATE	7280	1.09	MODERATE
F10	5550	0.92	LOW	5900	0.94	LOW	7130	1.06	MODERATE
F11	5350	0.89	LOW	6080	0.97	MODERATE	6520	0.97	MODERATE
F11	5130	0.85	LOW	5820	0.92	LOW	6340	0.95	LOW
F12	4730	0.79	LOW	5180	0.82	LOW	5870	0.88	LOW
F15-1	5800	0.97	MODERATE	6460	1.03	MODERATE	6800	1.01	MODERATE
F15-2				6700	1.07	MODERATE	7410	1.11	HIGH
F16	5520	0.92	LOW	6600	1.05	MODERATE	7090	1.06	MODERATE
F17	4580	0.76	LOW	6000	0.95	MODERATE	6620	0.99	MODERATE
F27	6010	1.00	MODERATE	6830	1.09	MODERATE	7110	1.06	MODERATE
F28	5000	0.83	LOW	5720	0.91	LOW			
RF2	5800	0.97	MODERATE	6600	1.05	MODERATE	7250	1.08	MODERATE
RF3	5920	0.99	MODERATE	6430	1.02	MODERATE	6720	1.00	MODERATE
RF4	6170	1.03	MODERATE	6990	1.11	HIGH	7810	1.17	HIGH
RF5	5470	0.91	LOW	6260	0.99	MODERATE	6780	1.01	MODERATE
RF6-1	5420	0.90	LOW				6350	0.95	LOW
RF6-2	5280	0.88	LOW	6160	0.98	MODERATE	6720	1.00	MODERATE
RF7-1	5620	0.94	LOW	6260	0.99	MODERATE	6600	0.99	MODERATE
RF11	5200	0.87	LOW	5760	0.92	LOW	6620	0.99	MODERATE
UF1	5090	0.85	LOW	5980	0.95	MODERATE	6720	1.00	MODERATE
UF2	5100	0.85	LOW	5780	0.92	LOW	6480	0.97	MODERATE
UF3	4660	0.78	LOW	5490	0.87	LOW	6330	0.94	LOW
UF4	4810	0.80	LOW	5540	0.88	LOW	6340	0.95	LOW
BC3	6080	1.01	MODERATE	6550	1.04	MODERATE	7270	1.08	MODERATE
BF9	5670	0.94	LOW	6170	0.98	MODERATE	6820	1.02	MODERATE
BTF1	5600	0.93	LOW	6730	1.07	MODERATE	7160	1.07	MODERATE

TABLE A1-8: Compressive Strength Data Classification of Coal Ash at 20%

Replacement for 180-day Ages

Days of hydration	180 DAY							
Sample#	AVG SCORE RATIN							
C1	7690	1.11	HIGH					
C1	9200	1.33	HIGH					
C2	9050	1.31	HIGH					
С3	7480	1.08	MODERATE					
С3	8630	1.25	HIGH					
C4	7850	1.13	HIGH					
C4	8450	1.22	HIGH					
C5	7550	1.09	MODERATE					
C5	9750 1.41 HIGH							
C6	7100	1.03	MODERATE					
C6	8190	1.18	HIGH					
C7	7820	1.13	HIGH					
C7	8790	1.27	HIGH					
C8	7100	1.03	MODERATE					
C11	9360	1.35	HIGH					
C12	7840	1.13	HIGH					
C12	7540	1.09	MODERATE					
C13	8070	1.17	HIGH					
C13	7220	1.04	MODERATE					
C14	7410	1.07	MODERATE					
C14	8300	1.20	HIGH					
C15	7430	1.07	MODERATE					
C15	7030	1.02	MODERATE					
C16	8040	1.16	HIGH					
C17	7030	1.02	MODERATE					
C18	7210	1.04	MODERATE					
C19	6760	0.98	MODERATE					
F1	7250	1.05	MODERATE					
F1	8660	1.25	HIGH					
F2	8660	1.25	HIGH					
F3	8550	1.24	HIGH					
F3	8610	1.24	HIGH					
F4	8580	1.24	HIGH					
F4	8630	1.25	HIGH					

Days of hydration	180 DAY					
F4	7270	1.05	MODERATE			
F5	8460	1.22	HIGH			
F5	8480	1.23	HIGH			
F6	8940	1.29	HIGH			
F6	7380	1.07	MODERATE			
F9	7220	1.04	MODERATE			
F10	7530	1.09	MODERATE			
F11	7070	1.02	MODERATE			
F11	6830	0.99	MODERATE			
F12	6360	0.92	LOW			
F15-1	7080	1.02	MODERATE			
F15-2	7990	1.15	HIGH			
F16	7010	1.01	MODERATE			
F17	7490	1.08	MODERATE			
F27	7990	1.15	HIGH			
F28						
RF2	8350	1.21	HIGH			
RF3	7260	1.05	MODERATE			
RF4	8010	1.16	HIGH			
RF5	7220	1.04	MODERATE			
RF6-1	6560	0.95	LOW			
RF6-2	7010	1.01	MODERATE			
RF7-1	6760	0.98	MODERATE			
RF11	7030	1.02	MODERATE			
UF1	7730	1.12	HIGH			
UF2	7610	1.10	MODERATE			
UF3	7050	1.02	MODERATE			
UF4	7530	1.09	MODERATE			
BC3	7730	1.12	HIGH			
BF9	7900	1.14	HIGH			
BTF1	7740	1.12	HIGH			

TABLE A1-9: Com	pressive Strength	Data and T-Test	Analysis of Coa	al Ash at 40%

Replacement for 3-, 7-, and 14-day Ages

Days of hydration	3 DAY			7 DAY		14 DAY			
Sample#	AVERAGE	STD	TTEST	AVERAGE	STD	TTEST	AVERAGE	STD	TTEST
C1	3460	158		4970	57		6620	348	
C2	2880	90		4040	230		5000	12	
С3	3060	130		4700	153		6040	216	
C4	3510	43		5000	150		6380	228	
C5	3120	86		4400	136		5060	67	
C6	3070	205		4950	341		5650	580	
C6	2360	47		2970	98		3720	233	
С7	2580	181		4590	89		5300	280	
С7	2820	130		4310	56		5350	69	
C8	2230	123		2610	186		3570	234	
C11	3600	134		4610	47		5550	187	
C12	3050	7		4010	331		4770	99	
C12	2690	214		4060	383		5570	274	
C13	3900	279		5190	251		6000	506	
C13	3320	213		4700	32		5920	255	
C14	2580	164		3690	90		4900	68	
C15	4280	342		5320	281		6710	160	
C15	3310	146		4540	215		5190	14	
C16	3320	439		5040	215		5810	452	
F1	2840	40		3600	482		4680	407	
F2	3200	83		3770	131		4450	134	
F3	2380	54		3040	31		3790	123	
F4	3680	183		4250	229		5250	278	
F4	2730	123		3580	47		4310	198	
F5	2300	66		3310	91		3640	166	
F6	2360	309		2620	228		3560	130	
F11	2220	160		2790	186		4000	263	
F11	2050	66		2880	15		3330	59	
F12	2520	32		2850	207		3600	95	
F15-1	2190	177		3000	197		3950	108	
F15-2	2590	128		2920	124		3500	284	
F17	2020	143		2410	99		3330	180	
F27	2190	140		2830	211		3610	230	
RF4	2130	214	0.001	2890	303	0.173	3510	205	0.000
Days of hydration	3 DAY			7 DAY			14 DAY		
----------------------	-------	-----	-------	-------	-----	-------	--------	-----	-------
RF3	2340	143	0.046	3170	78	0.138	3880	182	0.640
RF5	2210	116	0.000	2790	285	0.035	3560	72	0.000
RF6-1	1930	108	0.000	2450	97	0.000	2840	132	0.000
RF6-2	2280	85	0.001	2620	116	0.000	3100	251	0.000
RF11	2290	88	0.002	2980	151	0.315			
UF3	1420	137	0.000	1750	220	0.000	3370	84	0.000
BC3	2940	126	0.000	4010	175	0.000	4560	204	0.000
BF9	2540	84	0.595	3470	88	0.000	4020	230	0.407

TABLE A1-10: Compressive Strength Data and T-Test Analysis of Coal Ash at 40%

Replacement for 28-, 56-, and 90-day Ages

Days of hydration	2	28 DAY		56 DAY			90 DAY		
Sample#	AVERAGE	STD	TTEST	AVERAGE	STD	TTEST	AVERAGE	STD	TTEST
C1	7240	249		8160	331		8180	89	
C2	5500	108		6340	14		6720	191	
С3	7320	25		7950	62		8440	198	
C4	7150	147		8170	323		8520	423	
C5	6260	271		7030	52		7040	121	
C6	6480	134		6070	338		4630	169	
C6	4780	266		5630	74		6010	73	
C7	6460	544		4870	1377		8090	504	
C7	6480	57		7330	364		7720	317	
C8	4950	271		5660	414		6140	507	
C11	6240	176		7160	34		7400	173	
C12	5310	117		6220	134		7440	690	
C12	6300	281		7450	589		8550	631	
C13	5730	535		7590	456		7760	328	
C13	6650	163		7120	373		7490	190	
C14	6380	156		6850	51		7020	39	
C15				7160	628		6600	1207	
C15	6030	307		6520	70		7860	689	
C16	6710	751		7520	889		8370	568	
F1	5640	287		6800	77		7640	445	
F2	5520	273		6090	109		7120	187	

Days of hydration	28 DAY			56 DAY			90 DAY		
F3	5060	288		5630	178		6030	181	
F4	5730	529		6280	313		6370	2075	
F4	5620	4		6330	26		7750	514	
F5	4650	113		5400	137		6260	163	
F6	4360	313		5390	157		6790	277	
F11	4810	286		5460	353		6290	314	
F11	4540	49		5680	420		5880	403	
F12	4550	193		5630	297		5770	488	
F15-1	5220	97		6350	450		6990	277	
F15-2	5030	142		5780	124		6750	557	
F17	3630	177		4800	125				
F27	4830	106		5690	132		5950	236	
RF4	4740	265	0.294	5760	284	0.999	5840	488	0.005
RF3	4820	428	0.762	5510	330	0.088	6340	358	0.381
RF5	4400	153	0.000	5070	501	0.004	5930	278	0.001
RF6-1	3380	190	0.000	4660	322	0.000	5020	199	0.000
RF6-2	4290	916	0.114	5250	264	0.000	5520	383	0.000
RF11	5090	327	0.129	5740	440	0.916	6730	601	0.396
UF3	4170	70	0.000	5430	195	0.002			
BC3	5400	479	0.015	6030	439	0.134	6360	490	0.487
BF9	4700	485	0.372	5930	223	0.124	6370	321	0.383

TABLE A1-11: Compressive Strength Data and T-Test Analysis of Coal Ash at 40%

Replacement for 180-day Ages

Days of hydration	180 DAY						
Sample#	AVERAGE STD TTEST						
C1	8880	353					
C2	7470	152					
С3	9650	142					
C4	8880	515					
C5	7540	132					
C6	7520	212					
C6	6750 213						
C7	8600	429					

Days of hydration	1	80 DAY	
C7	8330	363	
C8	6800	430	
C11	7990	74	
C12	7500	195	
C12	8770	757	
C13	8180	415	
C13	7890	260	
C14	7450	270	
C15	9220	361	
C15	8250	153	
C16	8900	818	
F1	7720	328	
F2	7640	283	
F3	6260	64	
F4	7850	857	
F4	8100	219	
F5	6400	455	
F6	6940	454	
F11			
F11	6350	122	
F12			
F15-1	7460	640	
F15-2	7190	537	
F17	5870	563	
F27	6480	973	
RF4	5860	276	0.000
RF3	5990	333	0.000
RF5	6790	203	0.032
RF6-1	5120	373	0.000
RF6-2	5990	424	0.000
RF11			
UF3	7310	577	0.776
BC3	7000	437	0.614
BF9	6530	253	0.000

TABLE A1-12: Compressive Strength Data Classification of Coal Ash at 40%

Replacement at 3-, 7-, 14-day Ages

Days of hydration		3 DA	Y		7 DA	Y	14 DAY		
Sample#	AVG	SCORE	RATING	AVG	SCORE	RATING	AVG	SCORE	RATING
C1	3460	0.86	LOW	4970	0.99	MODERATE	6620	1.21	HIGH
C2	2880	0.71	LOW	4040	0.81	LOW	5000	0.91	LOW
С3	3060	0.76	LOW	4700	0.94	LOW	6040	1.10	HIGH
C4	3510	0.87	LOW	5000	1.00	MODERATE	6380	1.16	HIGH
C5	3120	0.77	LOW	4400	0.88	LOW	5060	0.92	LOW
C6	3070	0.76	LOW	4950	0.99	MODERATE	5650	1.03	MODERATE
C6	2360	0.59	LOW	2970	0.59	LOW	3720	0.68	LOW
C7	2580	0.64	LOW	4590	0.92	LOW	5300	0.97	MODERATE
C7	2820	0.70	LOW	4310	0.86	LOW	5350	0.97	MODERATE
C8	2230	0.55	LOW	2610	0.52	LOW	3570	0.65	LOW
C11	3600	0.89	LOW	4610	0.92	LOW	5550	1.01	MODERATE
C12	3050	0.76	LOW	4010	0.80	LOW	4770	0.87	LOW
C12	2690	0.67	LOW	4060	0.81	LOW	5570	1.01	MODERATE
C13	3900	0.97	MODERATE	5190	1.04	MODERATE	6000	1.09	MODERATE
C13	3320	0.82	LOW	4700	0.94	LOW	5920	1.08	MODERATE
C14	2580	0.64	LOW	3690	0.74	LOW	4900	0.89	LOW
C15	4280	1.06	MODERATE	5320	1.06	MODERATE	6710	1.22	HIGH
C15	3310	0.82	LOW	4540	0.91	LOW	5190	0.95	LOW
C16	3320	0.82	LOW	5040	1.01	MODERATE	5810	1.06	MODERATE
F1	2840	0.70	LOW	3600	0.72	LOW	4680	0.85	LOW
F2	3200	0.79	LOW	3770	0.75	LOW	4450	0.81	LOW
F3	2380	0.59	LOW	3040	0.61	LOW	3790	0.69	LOW
F4	3680	0.91	LOW	4250	0.85	LOW	5250	0.96	MODERATE
F4	2730	0.68	LOW	3580	0.71	LOW	4310	0.79	LOW
F5	2300	0.57	LOW	3310	0.66	LOW	3640	0.66	LOW
F6	2360	0.58	LOW	2620	0.52	LOW	3560	0.65	LOW
F11	2220	0.55	LOW	2790	0.56	LOW	4000	0.73	LOW
F11	2050	0.51	LOW	2880	0.58	LOW	3330	0.61	LOW
F12	2520	0.62	LOW	2850	0.57	LOW	3600	0.66	LOW
F15-1	2190	0.54	LOW	3000	0.60	LOW	3950	0.72	LOW
F15-2	2590	0.64	LOW	2920	0.58	LOW	3500	0.64	LOW
F17	2020	0.50	LOW	2410	0.48	LOW	3330	0.61	LOW
F27	2190	0.54	LOW	2830	0.56	LOW	3610	0.66	LOW

Days of hydration	3 DAY			7 DAY			14 DAY		
RF4	2130	0.53	LOW	2890	0.58	LOW	3510	0.64	LOW
RF3	2340	0.58	LOW	3170	0.63	LOW	3880	0.71	LOW
RF5	2210	0.55	LOW	2790	0.56	LOW	3560	0.65	LOW
RF6-1	1930	0.48	LOW	2450	0.49	LOW	2840	0.52	LOW
RF6-2	2280	0.56	LOW	2620	0.52	LOW	3100	0.56	LOW
RF11	2290	0.57	LOW	2980	0.60	LOW			
UF3	1420	0.35	LOW	1750	0.35	LOW	3370	0.61	LOW
BC3	2940	0.73	LOW	4010	0.80	LOW	4560	0.83	LOW
BF9	2540	0.63	LOW	3470	0.69	LOW	4020	0.73	LOW

TABLE A1-13: Compressive Strength Data Classification of Coal Ash at 40%

Replacement at 28-, 56-, 90-day Ages

Days of hydration	28 DAY			56 DAY			90 DAY		
Sample#	AVG	SCORE	RATING	AVG	SCORE	RATING	AVG	SCORE	RATING
C1	7240	1.21	HIGH	8160	1.30	HIGH	8180	1.22	HIGH
C2	5500	0.92	LOW	6340	1.01	MODERATE	6720	1.00	MODERATE
С3	7320	1.22	HIGH	7950	1.26	HIGH	8440	1.26	HIGH
C4	7150	1.19	HIGH	8170	1.30	HIGH	8520	1.27	HIGH
C5	6260	1.04	MODERATE	7030	1.12	HIGH	7040	1.05	MODERATE
C6	6480	1.08	MODERATE	6070	0.96	MODERATE	4630	0.69	LOW
C6	4780	0.80	LOW	5630	0.90	LOW	6010	0.90	LOW
С7	6460	1.08	MODERATE	4870	0.77	LOW	8090	1.21	HIGH
С7	6480	1.08	MODERATE	7330	1.17	HIGH	7720	1.15	HIGH
C8	4950	0.82	LOW	5660	0.90	LOW	6140	0.92	LOW
C11	6240	1.04	MODERATE	7160	1.14	HIGH	7400	1.10	HIGH
C12	5310	0.88	LOW	6220	0.99	MODERATE	7440	1.11	HIGH
C12	6300	1.05	MODERATE	7450	1.18	HIGH	8550	1.28	HIGH
C13	5730	0.95	MODERATE	7590	1.21	HIGH	7760	1.16	HIGH
C13	6650	1.11	HIGH	7120	1.13	HIGH	7490	1.12	HIGH
C14	6380	1.06	MODERATE	6850	1.09	MODERATE	7020	1.05	MODERATE
C15				7160	1.14	HIGH	6600	0.98	MODERATE
C15	6030	1.00	MODERATE	6520	1.04	MODERATE	7860	1.17	HIGH
C16	6710	1.12	HIGH	7520	1.20	HIGH	8370	1.25	HIGH
F1	5640	0.94	LOW	6800	1.08	MODERATE	7640	1.14	HIGH

Days of hydration	28 DAY			56 DAY			90 DAY		
F2	5520	0.92	LOW	6090	0.97	MODERATE	7120	1.06	MODERATE
F3	5060	0.84	LOW	5630	0.89	LOW	6030	0.90	LOW
F4	5730	0.95	MODERATE	6280	1.00	MODERATE	6370	0.95	MODERATE
F4	5620	0.94	LOW	6330	1.01	MODERATE	7750	1.16	HIGH
F5	4650	0.77	LOW	5400	0.86	LOW	6260	0.94	LOW
F6	4360	0.73	LOW	5390	0.86	LOW	6790	1.01	MODERATE
F11	4810	0.80	LOW	5460	0.87	LOW	6290	0.94	LOW
F11	4540	0.76	LOW	5680	0.90	LOW	5880	0.88	LOW
F12	4550	0.76	LOW	5630	0.90	LOW	5770	0.86	LOW
F15-1	5220	0.87	LOW	6350	1.01	MODERATE	6990	1.04	MODERATE
F15-2	5030	0.84	LOW	5780	0.92	LOW	6750	1.01	MODERATE
F17	3630	0.60	LOW	4800	0.76	LOW			
F27	4830	0.80	LOW	5690	0.90	LOW	5950	0.89	LOW
RF4	4740	0.79	LOW	5760	0.92	LOW	5840	0.87	LOW
RF3	4820	0.80	LOW	5510	0.88	LOW	6340	0.95	LOW
RF5	4400	0.73	LOW	5070	0.81	LOW	5930	0.89	LOW
RF6-1	3380	0.56	LOW	4660	0.74	LOW	5020	0.75	LOW
RF6-2	4290	0.71	LOW	5250	0.83	LOW	5520	0.82	LOW
RF11	5090	0.85	LOW	5740	0.91	LOW	6730	1.00	MODERATE
UF3	4170	0.69	LOW	5430	0.86	LOW			
BC3	5400	0.90	LOW	6030	0.96	MODERATE	6360	0.95	MODERATE
BF9	4700	0.78	LOW	5930	0.94	LOW	6370	0.95	MODERATE

TABLE A1-14: Compressive Strength Data Classification of Coal Ash at 40%

Replacement at 180-day Age

Days of hydration	180 DAY						
Sample#	AVG	SCORE	RATING				
C1	8880	1.28	HIGH				
C2	7470	1.08	MODERATE				
С3	9650	1.40	HIGH				
C4	8880	1.28	HIGH				
C5	7540	1.09	MODERATE				
C6	7520	1.09	MODERATE				
C6	6750	0.98	MODERATE				

Days of hydration		180 D/	AY
C7	8600	1.24	HIGH
C7	8330	1.20	HIGH
C8	6800	0.98	MODERATE
C11	7990	1.16	HIGH
C12	7500	1.08	MODERATE
C12	8770	1.27	HIGH
C13	8180	1.18	HIGH
C13	7890	1.14	HIGH
C14	7450	1.08	MODERATE
C15	9220	1.33	HIGH
C15	8250	1.19	HIGH
C16	8900	1.29	HIGH
F1	7720	1.12	HIGH
F2	7640	1.10	HIGH
F3	6260	0.90	LOW
F4	7850	1.13	HIGH
F4	8100	1.17	HIGH
F5	6400	0.93	LOW
F6	6940	1.00	MODERATE
F11			
F11	6350	0.92	LOW
F12			
F15-1	7460	1.08	MODERATE
F15-2	7190	1.04	MODERATE
F17	5870	0.85	LOW
F27	6480	0.94	LOW
RF4	5860	0.85	LOW
RF3	5990	0.87	LOW
RF5	6790	0.98	MODERATE
RF6-1	5120	0.74	LOW
RF6-2	5990	0.87	LOW
RF11			
UF3	7310	1.06	MODERATE
BC3	7000	1.01	MODERATE
BF9	6530	0.94	LOW

TABLE A1-15: Electrical	Resistivity Data a	and T-Test Analysis of	of Coal Ash at 20%
-------------------------	--------------------	------------------------	--------------------

Replacement at 3-, 7-, and 14-day Ages

Days of hydration	3 DAY				7 DAY		14 DAY			
Sample#	AVG			AVG			AVG			
Jampien	(kΩ·cm)	STDEV	T-TEST	(kΩ·cm)	STDEV	T-TEST	(kΩ·cm)	STDEV	T-TEST	
100%										
OPC	5.02	0.48		6.39	0.51		7.80	0.71		
100%	F 22	0.07		6.50	0.44		7.00	0.47		
100%	5.33	0.37		6.58	0.41		7.83	0.47		
	8 10	038		10 18	0.51		11 78	0.78		
	6.75	0.38		8 50	0.31		10.47	0.78		
	1.08	0.45		6.50	0.32		2 06	0.00		
	5 35	0.34		6.57	0.32		7 98	0.35		
(3	6.78	0.24		8.40	0.50		10.60	0.47		
(3) (3)	5.26	0.30		6.43	0.05		7 /1	0.33		
C4	5.20	0.34		7.04	0.40		9 59	0.55		
	5.53	0.20		7.04	0.51		9.95	0.51		
C5	5.33	0.40		7.02	0.35		8.42	0.32		
 	<i>1</i> 97	0.33		6.28	0.37		7.23	0.35		
C6	7 13	0.25		10.20	0.52		13.68	1 57		
00 C6	5.66	0.37		9.21	0.05		12.00	0.81		
C7	5.00	0.37		6.36	0.01		8 25	0.81		
C7	5.07	0.30		6.33	0.04		8 16	0.74		
(8	5.07	0.17		6.65	0.37		0.10	0.45		
C11	5.40	0.35		6.78	0.30		7 98	0.68		
C12	6.42	0.25		7 90	0.35		10.22	1 02		
C12	6.41	0.40		7.50	0.42		10.22	0.48		
C12	6.65	0.25		8 40	0.01		9 55	1 56		
C13	5.68	0.25		7 22	0.47		9.11	0.59		
C14	6 37	0.67		8.48	0.50		9.87	0.99		
C14	5.58	0.37		5.06	3.58		10.41	0.73		
C15	6.24	0.67		7.83	1 11		9.23	0.96		
C15	6.46	0.02		7.88	0.54		8.62	0.50		
C16	5 59	0.27		7.66	0.87		9.32	0.71		
C17	5.99	0.26		7.65	0.02		9.69	0.64		
(18	6.03	0.20		7.05	0.42		9.05	0.37		
C19	5 22	0.20		6.71	0.36		7.68	0.48		
F1	5.46	0.55		6.73	0.47		8.87	0.82		

Days of hydration	3 DAY			7 DAY			14 DAY		
F1	5.22	0.35		6.83	0.40		8.91	0.92	
F2	5.25	0.15		6.53	0.37		8.47	0.42	
F3	5.46	0.30		6.54	0.39		9.23	0.58	
F3	5.15	0.31		6.33	0.52		8.31	0.40	
F4	5.53	0.52		6.55	0.54		8.44	0.68	
F4	5.21	0.25		6.40	0.28		7.97	0.57	
F4	6.96	0.49					9.64	0.58	
F5	5.35	0.40		5.78	0.33		6.83	0.54	
F5	4.85	0.22		5.96	0.21		8.03	0.44	
F6	5.02	0.21		6.58	0.46		7.07	0.46	
F6	6.20	0.58		7.75	0.71		10.27	0.36	
F9	6.18	0.41		7.82	0.51		10.01	0.41	
F10	5.89	0.25		7.26	0.30		8.92	0.42	
F11	6.06	0.32		8.41	0.55		8.97	0.66	
F11	6.31	0.40		7.30	0.25		8.71	0.47	
F12	5.44	0.42					7.32	0.59	
F15-1	5.36	0.50		6.51	0.48		7.55	0.70	
F15-2	5.11	0.50		6.25	0.54		7.69	0.42	
F16	5.39	0.31		6.54	0.44		8.10	0.64	
F17	4.93	0.51		5.65	0.52		7.23	0.54	
F18	5.14	0.29		6.88	0.35		7.57	0.58	
F28	5.08	0.28		6.75	0.54		8.22	0.46	
RF2	4.92	0.32	0.000	6.14	0.55	0.000	7.37	0.36	0.000
RF3	5.62	0.49	0.072	6.76	0.42	0.495	8.82	0.58	0.000
RF4	5.03	0.31	0.000	5.77	0.30	0.000	7.61	0.69	0.000
RF5	5.32	0.32	0.018	7.57	0.76	0.000	8.34	0.67	0.283
RF6-1	5.71	0.36	0.000	7.40	0.93	0.000	8.43	0.60	0.053
RF6-2	5.12	0.36	0.000	6.15	0.43	0.000	7.34	0.61	0.000
RF7-1	6.59	0.40	0.000	7.81	0.50	0.000	8.81	0.59	0.000
RF11	6.75	0.41	0.000	7.66	0.31	0.000	9.97	0.69	0.000
UF1	5.28	0.39	0.011	4.86	0.52	0.000	5.52	0.59	0.000
UF2	4.82	0.76	0.000	6.08	0.44	0.000	6.16	0.63	0.000
UF3	4.67	0.33	0.000	4.67	0.41	0.000	4.99	0.46	0.000
UF4	4.41	0.39	0.000	4.38	0.44	0.000	4.78	0.51	0.000
BC3	4.96	0.28	0.000	7.33	0.61	0.058	9.43	0.92	0.496
BF9	4.04	0.25	0.000	5.93	0.58	0.000	7.53	0.67	0.000
BTF1	4.95	0.30	0.000	6.35	0.55	0.001	7.02	0.59	0.000

TABLE A1-16: Electrical Resistivit	y Data and T-Test Analysis of	Coal Ash at 20%
------------------------------------	-------------------------------	-----------------

Replacement at 28-, 56-, and 90-day Ages

Days of hydration	28 DAY			56 DAY			90 DAY		
Sample#	AVG			AVG			AVG		
Jumpien	(kΩ·cm)	STDEV	T-TEST	(kΩ·cm)	STDEV	T-TEST	(kΩ·cm)	STDEV	T-TEST
100%								–	
OPC	8.78	0.72		10.13	1.30		10.57	1.17	
100%	0.70	0.02		0.50	0.01		10.45	0.02	
100%	8.76	0.83		9.59	0.61		10.45	0.82	
	11 68	1.05		13 74	0.75		15 01	0.71	
C1	1/ 3/	0.62		25.36	1 11		29.68	1 80	
C1	13.08	1.04		10.80	0.68		23.00	1.00	
C2	10.76	0.75		15 33	0.68		19.81	0.66	
C3	14 49	0.75		22.48	1 21		37.88	2 01	
(3	9.48	0.76		11 58	0.54		14 36	0.71	
C4	12.47	0.82		18.38	0.52		20.82	7.19	
C4	14.38	0.70		21.58	0.93		27.03	1.64	
C5	11.26	0.50		14.89	0.59		18,70	0.92	
C5	11.03	0.50		18.83	0.56		25.49	1.53	
C6	19.75	2.25		22.45	2.80		27.03	4.60	
C6	18.73	0.90		25.11	1.32		29.06	2.11	
C7	10.91	1.05		19.15	1.28		25.06	1.92	
C7	11.01	0.32		14.67	0.74		20.67	1.18	
C8	13.71	1.02		23.62	2.36		33.67	2.19	
C11	11.83	0.77		17.31	0.85		23.68	0.91	
C12	14.55	0.78		23.67	1.37		30.18	2.21	
C12	14.33	1.42		25.33	1.29		29.77	1.77	
C13	13.32	1.67		19.48	1.16		23.15	1.82	
C13	13.40	0.41		17.07	0.87		21.97	1.51	
C14	15.03	0.67		21.74	1.45		28.40	1.91	
C14	16.28	0.97		24.81	1.18		31.94	1.87	
C15	10.91	0.62		12.89	1.21		16.58	1.15	
C15	10.63	0.61		12.74	0.71		16.35	0.91	
C16	13.65	0.95		17.80	1.38		21.52	1.68	
C17	12.54	1.27		19.33	1.18		23.35	1.27	
C18	11.14	0.50		14.25	0.60		17.21	0.72	
C19	10.61	0.59		14.66	0.52		19.98	0.85	
F1	13.87	1.34		28.76	1.73		39.49	2.21	

Days of hydration	28 DAY				56 DAY	1		90 DAY		
F1	13.20	0.67		23.58	1.62		34.23	2.34		
F2	12.93	0.54		22.83	1.75		31.94	2.23		
F3	14.32	1.05		29.18	1.40		41.35	3.67		
F3	14.24	0.68		27.61	1.46		38.35	1.69		
F4	10.16	0.98		14.31	1.09		17.45	0.94		
F4	11.39	0.55		19.19	0.74		26.82	0.95		
F4	12.83	1.02		16.85	1.64		19.86	1.16		
F5	9.95	0.86		19.16	1.63		27.61	1.95		
F5	10.68	0.70		20.31	1.18		28.89	1.16		
F6	10.84	0.67		24.24	1.72		31.82	1.07		
F6	13.33	0.87		25.32	1.35		35.47	1.90		
F9	14.52	0.78		29.44	1.89		40.09	2.12		
F10	14.45	0.55		26.76	1.37		35.87	1.74		
F11	12.48	1.49		23.96	1.70		39.04	4.48		
F11	13.60	0.88		17.98	12.86		37.19	2.09		
F12	11.29	1.23		21.96	2.48		29.62	1.68		
F15-1	12.46	0.59		24.33	0.80		35.38	2.07		
F15-2				17.68	1.37					
F16	14.47	0.81		26.42	0.91		40.05	3.25		
F17				25.61	2.05		35.61	2.92		
F18	11.96	0.98		21.35	1.20		33.88	1.47		
F28	11.65	0.85		17.32	1.22					
RF2	11.13	1.20	0.000	22.20	1.87	0.027	35.07	2.93	0.050	
RF3	12.68	1.10	0.816	23.86	1.55	0.018	35.00	1.34	0.004	
RF4	10.58	0.80	0.000	21.42	1.31	0.000	30.27	2.17	0.000	
RF5	10.63	0.83	0.000	15.96	1.08	0.000	22.86	1.84	0.000	
RF6-1	10.00	0.42	0.000	15.16	0.69	0.000	21.69	0.89	0.000	
RF6-2	10.30	0.62	0.000	21.57	1.44	0.000	28.01	1.40	0.000	
RF7-1	12.09	0.94	0.004	22.11	1.25	0.002	30.85	1.92	0.000	
RF11	12.44	1.16	0.370	20.69	0.93	0.000	42.54	2.82	0.000	
UF1	6.23	0.66	0.000	12.29	0.84	0.000	18.92	1.22	0.000	
UF2	8.85	0.86	0.000	20.98	1.36	0.000	26.47	1.31	0.000	
UF3	6.68	0.64	0.000	11.70	1.58	0.000	18.46	1.87	0.000	
UF4	8.36	2.76	0.000	11.22	1.28	0.000	18.18	1.83	0.000	
BC3	11.89	0.74	0.000	13.63	2.90	0.000	22.71	1.03	0.000	
BF9	10.08	0.77	0.000	20.01	1.21	0.000	28.94	1.75	0.000	
BTF1	9.32	0.97	0.000	19.20	1.22	0.000	22.83	2.98	0.000	

TABLE A1-17: Electrical Resistivity Data Classification of Coal Ash at 20%

Replacement for 3-, 7-, and 14-day Ages

Days of hydration	3 DAY				7 DAY		14 DAY		
Sample#	AVG (kΩ·cm)	STDEV	T-TEST	AVG (kΩ·cm)	STDEV	T-TEST	AVG (kΩ·cm)	STDEV	T-TEST
C1	6.75	1.08	MODERATE	8.50	1.10	MODERATE	10.47	1.15	MODERATE
C1	4.98	0.80	LOW	6.52	0.84	LOW	8.96	0.98	LOW
C2	5.35	0.86	LOW	6.57	0.85	LOW	7.98	0.87	LOW
C3	6.78	1.08	MODERATE	8.40	1.09	MODERATE	10.60	1.16	MODERATE
C3	5.26	0.84	LOW	6.43	0.83	LOW	7.41	0.81	LOW
C4	5.88	0.94	LOW	7.04	0.91	LOW	9.59	1.05	MODERATE
C4	5.53	0.88	LOW	7.02	0.91	LOW	9.90	1.08	MODERATE
C5	5.70	0.91	LOW	7.23	0.94	LOW	8.42	0.92	LOW
C5	4.97	0.79	LOW	6.28	0.81	LOW	7.23	0.79	LOW
C6	7.13	1.14	MODERATE	10.29	1.33	MODERATE	13.68	1.50	MODERATE
C6	5.66	0.91	LOW	9.21	1.19	MODERATE	12.81	1.40	MODERATE
C7	5.17	0.83	LOW	6.36	0.82	LOW	8.25	0.90	LOW
C7	5.07	0.81	LOW	6.33	0.82	LOW	8.16	0.89	LOW
C8	5.46	0.87	LOW	6.65	0.86	LOW	9.36	1.02	MODERATE
C11	5.18	0.83	LOW	6.78	0.88	LOW	7.98	0.87	LOW
C12	6.42	1.03	MODERATE	7.90	1.02	MODERATE	10.22	1.12	MODERATE
C12	6.41	1.03	MODERATE	7.67	0.99	LOW	10.84	1.19	MODERATE
C13	6.65	1.06	MODERATE	8.40	1.09	MODERATE	9.55	1.04	MODERATE
C13	5.68	0.91	LOW	7.22	0.94	LOW	9.11	1.00	LOW
C14	6.37	1.02	MODERATE	8.48	1.10	MODERATE	9.87	1.08	MODERATE
C14	5.58	0.89	LOW	5.06	0.66	LOW	10.41	1.14	MODERATE
C15	6.24	1.00	LOW	7.83	1.01	MODERATE	9.23	1.01	MODERATE
C15	6.46	1.03	MODERATE	7.88	1.02	MODERATE	8.62	0.94	LOW
C16	5.59	0.89	LOW	7.66	0.99	LOW	9.32	1.02	MODERATE
C17	5.99	0.96	LOW	7.65	0.99	LOW	9.69	1.06	MODERATE
C18	6.03	0.96	LOW	7.73	1.00	MODERATE	9.15	1.00	MODERATE
C19	5.22	0.83	LOW	6.71	0.87	LOW	7.68	0.84	LOW
F1	5.46	0.87	LOW	6.73	0.87	LOW	8.87	0.97	LOW
F1	5.22	0.83	LOW	6.83	0.88	LOW	8.91	0.97	LOW
F2	5.25	0.84	LOW	6.53	0.85	LOW	8.47	0.93	LOW
F3	5.46	0.87	LOW	6.54	0.85	LOW	9.23	1.01	MODERATE
F3	5.15	0.82	LOW	6.33	0.82	LOW	8.31	0.91	LOW
F4	5.53	0.88	LOW	6.55	0.85	LOW	8.44	0.92	LOW
F4	5.21	0.83	LOW	6.40	0.83	LOW	7.97	0.87	LOW
F4	6.96	1.11	MODERATE				9.64	1.05	MODERATE
F5	5.35	0.86	LOW	5.78	0.75	LOW	6.83	0.75	LOW
F5	4.85	0.78	LOW	5.96	0.77	LOW	8.03	0.88	LOW
F6	5.02	0.80	LOW	6.58	0.85	LOW	7.07	0.77	LOW
F6	6.20	0.99	LOW	7.75	1.00	MODERATE	10.27	1.12	MODERATE
F9	6.18	0.99	LOW	7.82	1.01	MODERATE	10.01	1.10	MODERATE

Days of hydration	3 DAY				7 DAY	,	14 DAY		
F10	5.89	0.94	LOW	7.26	0.94	LOW	8.92	0.98	LOW
F11	6.06	0.97	LOW	8.41	1.09	MODERATE	8.97	0.98	LOW
F11	6.31	1.01	MODERATE	7.30	0.95	LOW	8.71	0.95	LOW
F12	5.44	0.87	LOW				7.32	0.80	LOW
F15-1	5.36	0.86	LOW	6.51	0.84	LOW	7.55	0.83	LOW
F15-2	5.11	0.82	LOW	6.25	0.81	LOW	7.69	0.84	LOW
F16	5.39	0.86	LOW	6.54	0.85	LOW	8.10	0.89	LOW
F17	4.93	0.79	LOW	5.65	0.73	LOW	7.23	0.79	LOW
F18	5.14	0.82	LOW	6.88	0.89	LOW	7.57	0.83	LOW
F28	5.08	0.81	LOW	6.75	0.88	LOW	8.22	0.90	LOW
RF2	4.92	0.79	LOW	6.14	0.80	LOW	7.37	0.81	LOW
RF3	5.62	0.90	LOW	6.76	0.88	LOW	8.82	0.96	LOW
RF4	5.03	0.80	LOW	5.77	0.75	LOW	7.61	0.83	LOW
RF5	5.32	0.85	LOW	7.57	0.98	LOW	8.34	0.91	LOW
RF6-1	5.71	0.91	LOW	7.40	0.96	LOW	8.43	0.92	LOW
RF6-2	5.12	0.82	LOW	6.15	0.80	LOW	7.34	0.80	LOW
RF7-1	6.59	1.05	MODERATE	7.81	1.01	MODERATE	8.81	0.96	LOW
RF11	6.75	1.08	MODERATE	7.66	0.99	LOW	9.97	1.09	MODERATE
UF1	5.28	0.84	LOW	4.86	0.63	LOW	5.52	0.60	LOW
UF2	4.82	0.77	LOW	6.08	0.79	LOW	6.16	0.67	LOW
UF3	4.67	0.75	LOW	4.67	0.61	LOW	4.99	0.55	LOW
UF4	4.41	0.71	LOW	4.38	0.57	LOW	4.78	0.52	LOW
BC3	4.96	0.79	LOW	7.33	0.95	LOW	9.43	1.03	MODERATE
BF9	4.04	0.65	LOW	5.93	0.77	LOW	7.53	0.82	LOW
BTF1	4.95	0.79	LOW	6.35	0.82	LOW	7.02	0.77	LOW

TABLE A1-18: Electrical Resistivity Data Classification of Coal Ash at 20%

Replacement for 28-, 56-, and 90-day Ages

Days of hydration	28 DAY			56 DAY			90 DAY		
Sample#	AVG			AVG			AVG		T-
Sample#	(kΩ·cm)	STDEV	T-TEST	(kΩ·cm)	STDEV	T-TEST	(kΩ·cm)	STDEV	TEST
C1	14.34	1.47	HIGH	25.36	2.27	HIGH	29.68	2.47	HIGH
C1	13.08	1.34	HIGH	19.80	1.78	HIGH	24.20	2.02	HIGH
C2	10.76	1.10	HIGH	15.33	1.37	HIGH	19.81	1.65	HIGH
C3	14.49	1.49	HIGH	22.48	2.02	HIGH	37.88	3.15	HIGH
C3	9.48	0.97	HIGH	11.58	1.04	HIGH	14.36	1.20	HIGH
C4	12.47	1.28	HIGH	18.38	1.65	HIGH	20.82	1.73	HIGH
C4	14.38	1.48	HIGH	21.58	1.93	HIGH	27.03	2.25	HIGH

Days of hydration		28 DAY			56 DAY		90 DAY		
C5	11.26	1.16	HIGH	14.89	1.33	HIGH	18.70	1.56	HIGH
C5	11.03	1.13	HIGH	18.83	1.69	HIGH	25.49	2.12	HIGH
C6	19.75	2.03	HIGH	22.45	2.01	HIGH	27.03	2.25	HIGH
C6	18.73	1.92	HIGH	25.11	2.25	HIGH	29.06	2.42	HIGH
C7	10.91	1.12	HIGH	19.15	1.72	HIGH	25.06	2.09	HIGH
C7	11.01	1.13	HIGH	14.67	1.31	HIGH	20.67	1.72	HIGH
C8	13.71	1.41	HIGH	23.62	2.12	HIGH	33.67	2.80	HIGH
C11	11.83	1.22	HIGH	17.31	1.55	HIGH	23.68	1.97	HIGH
C12	14.55	1.49	HIGH	23.67	2.12	HIGH	30.18	2.51	HIGH
C12	14.33	1.47	HIGH	25.33	2.27	HIGH	29.77	2.48	HIGH
C13	13.32	1.37	HIGH	19.48	1.75	HIGH	23.15	1.93	HIGH
C13	13.40	1.38	HIGH	17.07	1.53	HIGH	21.97	1.83	HIGH
C14	15.03	1.54	HIGH	21.74	1.95	HIGH	28.40	2.37	HIGH
C14	16.28	1.67	HIGH	24.81	2.22	HIGH	31.94	2.66	HIGH
C15	10.91	1.12	HIGH	12.89	1.16	HIGH	16.58	1.38	HIGH
C15	10.63	1.09	HIGH	12.74	1.14	HIGH	16.35	1.36	HIGH
C16	13.65	1.40	HIGH	17.80	1.60	HIGH	21.52	1.79	HIGH
C17	12.54	1.29	HIGH	19.33	1.73	HIGH	23.35	1.94	HIGH
C18	11.14	1.14	HIGH	14.25	1.28	HIGH	17.21	1.43	HIGH
C19	10.61	1.09	HIGH	14.66	1.31	HIGH	19.98	1.66	HIGH
F1	13.87	1.42	HIGH	28.76	2.58	HIGH	39.49	3.29	HIGH
F1	13.20	1.36	HIGH	23.58	2.11	HIGH	34.23	2.85	HIGH
F2	12.93	1.33	HIGH	22.83	2.05	HIGH	31.94	2.66	HIGH
F3	14.32	1.47	HIGH	29.18	2.62	HIGH	41.35	3.44	HIGH
F3	14.24	1.46	HIGH	27.61	2.48	HIGH	38.35	3.19	HIGH
F4	10.16	1.04	HIGH	14.31	1.28	HIGH	17.45	1.45	HIGH
F4	11.39	1.17	HIGH	19.19	1.72	HIGH	26.82	2.23	HIGH
F4	12.83	1.32	HIGH	16.85	1.51	HIGH	19.86	1.65	HIGH
F5	9.95	1.02	HIGH	19.16	1.72	HIGH	27.61	2.30	HIGH
F5	10.68	1.10	HIGH	20.31	1.82	HIGH	28.89	2.41	HIGH
F6	10.84	1.11	HIGH	24.24	2.17	HIGH	31.82	2.65	HIGH
F6	13.33	1.37	HIGH	25.32	2.27	HIGH	35.47	2.95	HIGH
F9	14.52	1.49	HIGH	29.44	2.64	HIGH	40.09	3.34	HIGH
F10	14.45	1.48	HIGH	26.76	2.40	HIGH	35.87	2.99	HIGH
F11	12.48	1.28	HIGH	23.96	2.15	HIGH	39.04	3.25	HIGH
F11	13.60	1.40	HIGH	17.98	1.61	HIGH	37.19	3.10	HIGH
F12	11.29	1.16	HIGH	21.96	1.97	HIGH	29.62	2.47	HIGH

Days of hydration		28 DAY			56 DAY			90 DAY		
F15-1	12.46	1.28	HIGH	24.33	2.18	HIGH	35.38	2.95	HIGH	
F15-2				17.68	1.58	HIGH				
F16	14.47	1.49	HIGH	26.42	2.37	HIGH	40.05	3.34	HIGH	
F17				25.61	2.30	HIGH	35.61	2.96	HIGH	
F18	11.96	1.23	HIGH	21.35	1.91	HIGH	33.88	2.82	HIGH	
F28	11.65	1.20	HIGH	17.32	1.55	HIGH				
RF2	11.13	1.14	HIGH	22.20	1.99	HIGH	35.07	2.92	HIGH	
RF3	12.68	1.30	HIGH	23.86	2.14	HIGH	35.00	2.91	HIGH	
RF4	10.58	1.09	HIGH	21.42	1.92	HIGH	30.27	2.52	HIGH	
RF5	10.63	1.09	HIGH	15.96	1.43	HIGH	22.86	1.90	HIGH	
RF6-1	10.00	1.03	HIGH	15.16	1.36	HIGH	21.69	1.81	HIGH	
RF6-2	10.30	1.06	HIGH	21.57	1.93	HIGH	28.01	2.33	HIGH	
RF7-1	12.09	1.24	HIGH	22.11	1.98	HIGH	30.85	2.57	HIGH	
RF11	12.44	1.28	HIGH	20.69	1.85	HIGH	42.54	3.54	HIGH	
UF1	6.23	0.64	HIGH	12.29	1.10	HIGH	18.92	1.58	HIGH	
UF2	8.85	0.91	HIGH	20.98	1.88	HIGH	26.47	2.20	HIGH	
UF3	6.68	0.69	HIGH	11.70	1.05	HIGH	18.46	1.54	HIGH	
UF4	8.36	0.86	HIGH	11.22	1.01	HIGH	18.18	1.51	HIGH	
BC3	11.89	1.22	HIGH	13.63	1.22	HIGH	22.71	1.89	HIGH	
BF9	10.08	1.04	HIGH	20.01	1.79	HIGH	28.94	2.41	HIGH	
BTF1	9.32	0.96	HIGH	19.20	1.72	HIGH	22.83	1.90	HIGH	

TABLE A1-19: Electrical Resistivity Data Classification of Coal Ash at 20%

Replacement for 180-day Age

Days of hydration		180 DAY	
Sampla#	AVG		
Sample#	(kΩ∙cm)	STDEV	T-TEST
C1	41.65	3.24	HIGH
C1	31.53	2.45	HIGH
C2	26.85	2.09	HIGH
C3	42.22	3.28	HIGH
C3	18.18	1.41	HIGH
C4	31.22	2.43	HIGH
C4	36.77	2.86	HIGH

Days of hydration		180 DAY	
C5	24.99	1.94	HIGH
C5	34.70	2.70	HIGH
C6	30.46	2.37	HIGH
C6	31.85	2.48	HIGH
C7			
C7	27.18	2.11	HIGH
C8	58.20	4.52	HIGH
C11	34.00	2.64	HIGH
C12	48.39	3.76	HIGH
C12	49.62	3.86	HIGH
C13	27.53	2.14	HIGH
C13	19.26	1.50	HIGH
C14	39.13	3.04	HIGH
C14	45.45	3.53	HIGH
C15	19.78	1.54	HIGH
C15	18.93	1.47	HIGH
C16	36.69	2.85	HIGH
C17	36.18	2.81	HIGH
C18	24.09	1.87	HIGH
C19	31.65	2.46	HIGH
F1	73.49	5.71	HIGH
F1	47.77	3.71	HIGH
F2	44.14	3.43	HIGH
F3	62.36	4.85	HIGH
F3	54.85	4.26	HIGH
F4	27.46	2.13	HIGH
F4	42.01	3.27	HIGH
F4	26.85	2.09	HIGH
F5	51.21	3.98	HIGH
F5	46.54	3.62	HIGH
F6	54.29	4.22	HIGH
F6	57.52	4.47	HIGH
F9	57.63	4.48	HIGH
F10	54.79	4.26	HIGH
F11	55.58	4.32	HIGH
F11	63.73	4.95	HIGH
F12			
F15-1	72.30	5.62	HIGH

Days of hydration		180 DAY	
F15-2	50.36	3.92	HIGH
F16	67.70	5.26	HIGH
F17	73.03	5.68	HIGH
F18	52.15	4.05	HIGH
F28			
RF2	54.13	4.21	HIGH
RF3	61.03	4.74	HIGH
RF4	47.99	3.73	HIGH
RF5	39.80	3.09	HIGH
RF6-1	36.75	2.86	HIGH
RF6-2	46.22	3.59	HIGH
RF7-1	52.58	4.09	HIGH
RF11	49.71	3.86	HIGH
UF1	32.31	2.51	HIGH
UF2	40.19	3.12	HIGH
UF3	35.65	2.77	HIGH
UF4	34.69	2.70	HIGH
BC3	25.74	2.00	HIGH
BF9	42.70	3.32	HIGH
BTF1	50.78	3.95	HIGH

TABLE A1-20: Electrical Resistivity Data and T-Test Analysis of Coal Ash at 40%

Replacement for 3-, 7-, and 14-day Ages

Days of hydration	3 DAY				7 DAY			14 DAY		
Sample#	AVG	STDEV	TTEST	AVG		т тест	AVG	STDEV	т тест	
	(KSZ [*] CIII)	SIDEV	I-IESI	(KSZ [*] CIII)	SIDEV	I-IE31		SIDEV	I-IE31	
0	8.40	0.38		10.18	0.51		11.78	0.78		
C1	4.53	0.25		6.93	0.56		14.53	0.60		
C2	4.10	0.14		6.08	0.39		10.40	0.33		
C3	4.04	0.45		6.13	0.37		10.08	0.65		
C4	4.42	0.08		6.95	0.33		11.86	0.63		
C5	4.82	0.35		6.40	0.31		10.83	0.58		
C6	4.38	0.24		6.29	0.77		9.28	0.69		
C6	4.06	0.18		5.18	0.26		8.32	0.48		

Days of hydration	3 DAY			7 DAY			14 DAY		
C7	4.06	0.48		5.34	0.49		8.95	0.83	
C7	4.61	0.25		6.17	0.20		10.87	0.52	
C8	3.44	0.64		4.94	0.22		9.02	0.74	
C11	4.85	0.44		7.99	0.41		12.78	0.92	
C12	4.27	0.37		5.68	0.42		9.72	0.83	
C12	5.44	0.34		7.23	0.32		11.72	0.62	
C13	6.71	0.65		13.59	1.16		23.34	1.55	
C13	4.52	0.30		7.69	0.46		12.53	0.67	
C14	3.85	0.25		6.20	0.31		11.03	0.79	
C15	4.81	0.49		6.07	0.85		7.73	0.97	
C15	4.39	0.38		5.75	0.20		8.05	0.59	
C16	3.86	0.35		5.44	0.36		9.36	0.60	
F1	5.60	0.57		7.05	0.80		11.08	0.61	
F2	5.43	0.32		7.03	0.28		9.78	0.37	
F3	4.47	0.22		6.20	0.39		10.68	0.58	
F4	5.38	0.56		6.76	0.76		10.98	0.70	
F4	4.23	0.26		5.91	0.47		9.59	0.91	
F5	4.53	0.30		7.38	0.33		9.68	0.39	
F6	4.15	0.61		4.95	0.23		7.32	0.36	
F11	4.07	0.21		5.21	0.40		9.98	0.63	
F11	4.56	0.27		5.97	0.44		8.78	0.77	
F12	3.69	0.25		4.42	0.20		7.18	0.51	
F15-1	3.62	0.21		4.86	0.39		7.80	0.42	
F15-2	3.56	0.20		5.00	0.33		7.41	0.61	
F17	3.93	0.38		5.00	0.46		9.40	0.68	
F27	4.11	0.20		4.93	0.28		8.07	0.41	
RF3	4.13	0.27	0.049	4.60	0.28	0.000	8.43	0.63	0.000
RF4	4.38	0.19	0.015	5.23	0.27	0.000	7.87	0.79	0.000
RF5	4.38	0.18	0.009	5.12	0.28	0.000	6.54	0.37	0.000
RF6-1	4.22	0.22	0.562	5.11	0.39	0.000	6.69	0.49	0.000
RF6-2	3.12	0.25	0.000	4.42	0.40	0.000	8.16	0.71	0.000
RF11	4.21	0.53	0.660	4.90	0.42	0.000			
UF3	5.94	0.66	0.000	6.48	0.49	0.000	8.66	0.76	0.035
BC3	5.12	0.43	0.000	11.52	0.88	0.000	17.21	1.02	0.000
BF9	2.75	0.17	0.000	5.61	0.73	0.425	10.99	0.70	0.000

TABLE A1-21: Electrical Resistivity Data Classification of Coal Ash at 40%

Replacement for 28-, 56-, and 90-day Ages

Days of hydration		28 DAY			56 DAY			90 DAY	
Sample#	AVG (kΩ∙cm)	STDEV	T-TEST	AVG (kΩ∙cm)	STDEV	T-TEST	AVG (kΩ∙cm)	STDEV	T-TEST
0	11.68	1.05		13.74	0.75		15.01	0.71	
C1	22.28	1.40		42.76	1.88		55.34	4.58	
C2	14.23	0.67		27.06	1.07		39.89	2.24	
C3	17.08	1.18		25.08	3.10		34.54	2.23	
C4	18.42	1.13		29.11	2.49		41.07	4.06	
C5	19.62	0.83		32.01	2.20		43.67	2.20	
C6	15.85	0.92		24.26	2.10		29.89	2.27	
C6	17.39	1.23		39.34	3.61		58.87	5.50	
C7	17.21	1.63		25.94	2.66		35.20	3.80	
C7	19.73	1.01		32.15	2.09		48.79	3.12	
C8	27.69	2.27		45.06	3.60		70.03	4.62	
C11	21.78	1.51		34.06	2.42		45.58	1.93	
C12	16.90	1.27		33.95	3.02		39.67	5.42	
C12	20.33	0.83		35.93	1.60		48.67	4.48	
C13	33.38	3.11		58.77	3.87		53.12	4.23	
C13	21.10	1.15		30.62	1.81		39.77	1.35	
C14	19.05	1.07		33.30	1.53		42.17	2.83	
C15	10.31	1.57		15.38	1.48		21.20	1.53	
C15	11.61	0.93		16.83	1.50		21.38	2.34	
C16	15.67	1.37		25.59	1.93		34.57	2.82	
F1	22.65	1.13		43.89	2.86		73.38	9.86	
F2	19.13	0.59		35.61	1.50		50.14	3.40	
F3	25.77	1.90		52.56	2.02		85.13	5.46	
F4	14.44	1.27		25.43	1.48		29.54	4.10	
F4	16.93	0.73		33.54	2.72		55.48	3.44	
F5	18.28	1.25		40.35	2.62		64.31	7.90	
F6	12.63	0.50		27.20	2.05		43.43	3.89	
F11	18.95	1.18		26.74	1.64		40.96	2.60	
F11	19.36	1.33		39.03	2.00		63.66	4.40	
F12	16.47	1.27		32.98	2.23		55.08	3.65	
F15-1	16.41	0.81		36.70	2.83		56.98	3.40	

Days of hydration	28 DAY			56 DAY			90 DAY		
F15-2	21.96	1.23		37.24	2.82		59.85	8.59	
F17	16.12	1.32		42.02	1.84		58.74	5.43	
F27	18.23	0.99		37.23	2.80		61.27	3.35	
RF3	17.31	0.91	0.002	35.78	2.73	0.46	52.84	3.45	0.283
RF4	16.14	1.09	0.000	32.13	1.78	0.00	50.58	4.18	0.002
RF5	12.13	0.62	0.000	25.14	1.47	0.00	38.82	2.62	0.000
RF6-1	13.85	0.58	0.000	27.41	1.54	0.00	39.10	2.41	0.000
RF6-2	21.76	1.63	0.000	42.41	2.26	0.00	61.78	5.27	0.000
RF11	15.96	1.36	0.000	40.49	4.32	0.00	66.79	8.65	0.000
UF3	8.79	0.67	0.000	17.95	1.87	0.00			
BC3	27.47	3.56	0.000	37.06	2.85	0.01	47.51	5.88	0.000
BF9	22.14	1.56	0.000	38.16	5.65	0.01	54.09	7.23	0.918

TABLE A1-22: Electrical Resistivity Data Classification of Coal Ash at 40%

Replacement for 180-day Age

Days of hydration	180 DAY						
Sample#	AVG (kΩ∙cm)	STDEV	T-TEST				
0	16.54	1.25					
C1	101.45	8.98					
C2	74.39	3.79					
C3	53.87	3.49					
C4	63.94	5.96					
C5	71.68	6.04					
C6	45.34	2.06					
C6	93.80	4.80					
C7	57.93	3.20					
C7	86.05	11.54					
C8	92.45	12.47					
C11	74.20	6.55					
C12	62.83	7.30					
C12	79.49	3.59					
C13	84.31	10.41					
C13	57.66	3.62					

Days of hydration		180 DAY	
C14	80.16	6.35	
C15	27.36	2.85	
C15	37.38	1.49	
C16	59.74	4.96	
F1	122.86	8.18	
F2	98.35	3.50	
F3	105.73	6.52	
F4	41.30	5.27	
F4	88.53	6.32	
F5	121.91	15.72	
F6	102.78	11.90	
F11	90.17	5.15	
F11	100.99	7.45	
F12	109.23	8.39	
F15-1	95.69	8.30	
F15-2	123.53	13.97	
F17	109.31	19.95	
F27	127.87	7.22	
RF3	104.67	6.74	0.025
RF4	102.13	5.15	0.311
RF5	69.87	5.20	0.000
RF6-1	70.12	5.20	0.000
RF6-2	94.79	10.07	0.018
RF11	118.18	8.10	0.000
UF3	123.20	4.26	0.000
BC3	47.87	4.92	0.000
BF9	64.30	7.44	0.000

TABLE A1-23: Electrical Resistivity Data Classification of Coal Ash at 40%

Replacement for 3-, 7-, and 14-day Ages

Days of hydration	3 DAY			7 DAY			14 DAY		
Sample#	AVG (kΩ∙cm)	STDEV	T-TEST	AVG (kΩ∙cm)	STDEV	T-TEST	AVG (kΩ∙cm)	STDEV	T-TEST
0	8.40	1.34	MODERATE	10.18	1.32	MODERATE	11.78	1.29	MODERATE
C1	4.53	0.73	LOW	6.93	0.90	LOW	14.53	1.59	MODERATE
C2	4.10	0.66	LOW	6.08	0.79	LOW	10.40	1.14	MODERATE
C3	4.04	0.65	LOW	6.13	0.80	LOW	10.08	1.10	MODERATE
C4	4.42	0.71	LOW	6.95	0.90	LOW	11.86	1.30	MODERATE
C5	4.82	0.77	LOW	6.40	0.83	LOW	10.83	1.19	MODERATE
C6	4.38	0.70	LOW	6.29	0.82	LOW	9.28	1.01	MODERATE
C6	4.06	0.65	LOW	5.18	0.67	LOW	8.32	0.91	LOW
C7	4.06	0.65	LOW	5.34	0.69	LOW	8.95	0.98	LOW
C7	4.61	0.74	LOW	6.17	0.80	LOW	10.87	1.19	MODERATE
C8	3.44	0.55	LOW	4.94	0.64	LOW	9.02	0.99	LOW
C11	4.85	0.78	LOW	7.99	1.04	MODERATE	12.78	1.40	MODERATE
C12	4.27	0.68	LOW	5.68	0.74	LOW	9.72	1.06	MODERATE
C12	5.44	0.87	LOW	7.23	0.94	LOW	11.72	1.28	MODERATE
C13	6.71	1.07	MODERATE	13.59	1.76	MODERATE	23.34	2.55	MODERATE
C13	4.52	0.72	LOW	7.69	1.00	LOW	12.53	1.37	MODERATE
C14	3.85	0.62	LOW	6.20	0.80	LOW	11.03	1.21	MODERATE
C15	4.81	0.77	LOW	6.07	0.79	LOW	7.73	0.85	LOW
C15	4.39	0.70	LOW	5.75	0.75	LOW	8.05	0.88	LOW
C16	3.86	0.62	LOW	5.44	0.70	LOW	9.36	1.02	MODERATE
F1	5.60	0.90	LOW	7.05	0.91	LOW	11.08	1.21	MODERATE

		1		1	1		1	1	1
F2	5.43	0.87	LOW	7.03	0.91	LOW	9.78	1.07	MODERATE
F3	4.47	0.71	LOW	6.20	0.80	LOW	10.68	1.17	MODERATE
F4	5.38	0.86	LOW	6.76	0.88	LOW	10.98	1.20	MODERATE
F4	4.23	0.68	LOW	5.91	0.77	LOW	9.59	1.05	MODERATE
F5	4.53	0.73	LOW	7.38	0.96	LOW	9.68	1.06	MODERATE
F6	4.15	0.66	LOW	4.95	0.64	LOW	7.32	0.80	LOW
F11	4.07	0.65	LOW	5.21	0.67	LOW	9.98	1.09	MODERATE
F11	4.56	0.73	LOW	5.97	0.77	LOW	8.78	0.96	LOW
F12	3.69	0.59	LOW	4.42	0.57	LOW	7.18	0.79	LOW
F15-1	3.62	0.58	LOW	4.86	0.63	LOW	7.80	0.85	LOW
F15-2	3.56	0.57	LOW	5.00	0.65	LOW	7.41	0.81	LOW
F17	3.93	0.63	LOW	5.00	0.65	LOW	9.40	1.03	MODERATE
F27	4.11	0.66	LOW	4.93	0.64	LOW	8.07	0.88	LOW
RF3	4.13	0.66	LOW	4.60	0.60	LOW	8.43	0.92	LOW
RF4	4.38	0.70	LOW	5.23	0.68	LOW	7.87	0.86	LOW
RF5	4.38	0.70	LOW	5.12	0.66	LOW	6.54	0.72	LOW
RF6-1	4.22	0.67	LOW	5.11	0.66	LOW	6.69	0.73	LOW
RF6-2	3.12	0.50	LOW	4.42	0.57	LOW	8.16	0.89	LOW
RF11	4.21	0.67	LOW	4.90	0.63	LOW			
UF3	5.94	0.95	LOW	6.48	0.84	LOW	8.66	0.95	LOW
BC3	5.12	0.82	LOW	11.52	1.49	MODERATE	17.21	1.88	MODERATE
BF9	2.75	0.44	LOW	5.61	0.73	LOW	10.99	1.20	MODERATE

TABLE A1-24: Electrical Resistivity Data Classification of Coal Ash at 40%

Replacement for 28-, 56-, and 90-day Ages

Days of hydration	28 DAY			56 DAY			90 DAY		
Sample#	AVG			AVG			AVG		
Sample#	(kΩ·cm)	STDEV	T-TEST	(kΩ·cm)	STDEV	T-TEST	(kΩ·cm)	STDEV	T-TEST
0	11.68	1.20	MODERATE	13.74	1.23	MODERATE	15.01	1.25	MODERATE
C1	22.28	2.29	MODERATE	42.76	3.83	HIGH	55.34	4.61	HIGH
C2	14.23	1.46	MODERATE	27.06	2.43	MODERATE	39.89	3.32	HIGH
C3	17.08	1.75	MODERATE	25.08	2.25	MODERATE	34.54	2.88	MODERATE
C4	18.42	1.89	MODERATE	29.11	2.61	MODERATE	41.07	3.42	HIGH
C5	19.62	2.01	MODERATE	32.01	2.87	MODERATE	43.67	3.64	HIGH
C6	15.85	1.63	MODERATE	24.26	2.17	MODERATE	29.89	2.49	MODERATE
C6	17.39	1.79	MODERATE	39.34	3.53	HIGH	58.87	4.90	HIGH
C7	17.21	1.77	MODERATE	25.94	2.33	MODERATE	35.20	2.93	MODERATE
C7	19.73	2.03	MODERATE	32.15	2.88	MODERATE	48.79	4.06	HIGH
C8	27.69	2.84	MODERATE	45.06	4.04	HIGH	70.03	5.83	HIGH
C11	21.78	2.24	MODERATE	34.06	3.05	HIGH	45.58	3.80	HIGH
C12	16.90	1.74	MODERATE	33.95	3.04	HIGH	39.67	3.30	HIGH
C12	20.33	2.09	MODERATE	35.93	3.22	HIGH	48.67	4.05	HIGH
C13	33.38	3.43	HIGH	58.77	5.27	HIGH	53.12	4.42	HIGH
C13	21.10	2.17	MODERATE	30.62	2.74	MODERATE	39.77	3.31	HIGH
C14	19.05	1.96	MODERATE	33.30	2.99	MODERATE	42.17	3.51	HIGH
C15	10.31	1.06	MODERATE	15.38	1.38	MODERATE	21.20	1.77	MODERATE
C15	11.61	1.19	MODERATE	16.83	1.51	MODERATE	21.38	1.78	MODERATE
C16	15.67	1.61	MODERATE	25.59	2.29	MODERATE	34.57	2.88	MODERATE
F1	22.65	2.33	MODERATE	43.89	3.93	HIGH	73.38	6.11	HIGH
F2	19.13	1.96	MODERATE	35.61	3.19	HIGH	50.14	4.18	HIGH
F3	25.77	2.65	MODERATE	52.56	4.71	HIGH	85.13	7.09	HIGH
F4	14.44	1.48	MODERATE	25.43	2.28	MODERATE	29.54	2.46	MODERATE
F4	16.93	1.74	MODERATE	33.54	3.01	HIGH	55.48	4.62	HIGH
F5	18.28	1.88	MODERATE	40.35	3.62	HIGH	64.31	5.35	HIGH
F6	12.63	1.30	MODERATE	27.20	2.44	MODERATE	43.43	3.62	HIGH
F11	18.95	1.95	MODERATE	26.74	2.40	MODERATE	40.96	3.41	HIGH
F11	19.36	1.99	MODERATE	39.03	3.50	HIGH	63.66	5.30	HIGH
F12	16.47	1.69	MODERATE	32.98	2.96	MODERATE	55.08	4.59	HIGH
F15-1	16.41	1.69	MODERATE	36.70	3.29	HIGH	56.98	4.74	HIGH
F15-2	21.96	2.26	MODERATE	37.24	3.34	HIGH	59.85	4.98	HIGH
F17	16.12	1.66	MODERATE	42.02	3.77	HIGH	58.74	4.89	HIGH
F27	18.23	1.87	MODERATE	37.23	3.34	HIGH	61.27	5.10	HIGH
RF3	17.31	1.78	MODERATE	35.78	3.21	HIGH	52.84	4.40	HIGH
RF4	16.14	1.66	MODERATE	32.13	2.88	MODERATE	50.58	4.21	HIGH
RF5	12.13	1.25	MODERATE	25.14	2.25	MODERATE	38.82	3.23	HIGH
RF6-1	13.85	1.42	MODERATE	27.41	2.46	MODERATE	39.10	3.26	HIGH
RF6-2	21.76	2.23	MODERATE	42.41	3.80	HIGH	61.78	5.14	HIGH
RF11	15.96	1.64	MODERATE	40.49	3.63	HIGH	66.79	5.56	HIGH
UF3	8.79	0.90	LOW	17.95	1.61	MODERATE			

Days of hydration	28 DAY				56 DAY			90 DAY		
BC3	27.47	2.82	MODERATE	37.06	3.32	HIGH	47.51	3.96	HIGH	
BF9	22.14	2.27	MODERATE	38.16	3.42	HIGH	54.09	4.50	HIGH	

TABLE A1-25: Electrical Resistivity Data Classification of Coal Ash at 40%

Replacement for 180-day Age

Days of hydration		180 DAY							
Sample#	AVG								
Sample#	(kΩ·cm)	STDEV	T-TEST						
0	16.54	1.29	MODERATE						
C1	101.45	7.89	HIGH						
C2	74.39	5.78	HIGH						
C3	53.87	4.19	HIGH						
C4	63.94	4.97	HIGH						
C5	71.68	5.57	HIGH						
C6	45.34	3.52	HIGH						
C6	93.80	7.29	HIGH						
C7	57.93	4.50	HIGH						
C7	86.05	6.69	HIGH						
C8	92.45	7.19	HIGH						
C11	74.20	5.77	HIGH						
C12	62.83	4.88	HIGH						
C12	79.49	6.18	HIGH						
C13	84.31	6.55	HIGH						
C13	57.66	4.48	HIGH						
C14	80.16	6.23	HIGH						
C15	27.36	2.13	MODERATE						
C15	37.38	2.91	MODERATE						
C16	59.74	4.64	HIGH						
F1	122.86	9.55	HIGH						
F2	98.35	7.65	HIGH						
F3	105.73	8.22	HIGH						
F4	41.30	3.21	HIGH						
F4	88.53	6.88	HIGH						

Days of hydration	180 DAY								
F5	121.91	9.48	HIGH						
F6	102.78	7.99	HIGH						
F11	90.17	7.01	HIGH						
F11	100.99	7.85	HIGH						
F12	109.23	8.49	HIGH						
F15-1	95.69	7.44	HIGH						
F15-2	123.53	9.60	HIGH						
F17	109.31	8.50	HIGH						
F27	127.87	9.94	HIGH						
RF3	104.67	8.14	HIGH						
RF4	102.13	7.94	HIGH						
RF5	69.87	5.43	HIGH						
RF6-1	70.12	5.45	HIGH						
RF6-2	94.79	7.37	HIGH						
RF11	118.18	9.19	HIGH						
UF3	123.20	9.58	HIGH						
BC3	47.87	3.72	HIGH						
BF9	64.30	5.00	HIGH						

		Reclair Conver Clas 20%	med to ntional ss F 40%	Unprocessed to Conventional Class F 20% 40%		Blended to Conventional Class F 20% 40%		Bottom to Conventi onal 20%	Blenc Conve Clas 20%	led to ntional ss C 40%
48HR HYDI	RATION	0.268	0.177	0.005	0.296	0.051	0.026	0.000	0.124	0.000
Sl	ump	0.355	0.742	0.001	0.000	0.003	0.039	0.049	0.354	0.138
£	3d	0.065	0.000	0.000	0.000	0.016	0.595		0.006	0.019
eng	7d	0.507	0.001	0.000	0.000	0.541	0.000	0.056	0.015	0.000
Str	14d	0.536	0.000	0.000	0.000	0.074	0.407	0.238	0.004	0.000
sive	28d	0.629	0.001	0.000	0.000	0.896	0.372	0.565	0.312	0.002
res	56d	0.174	0.000	0.000	0.002	0.086	0.124	0.168	0.006	0.004
dua	90d	0.001	0.000	0.000		0.023	0.383	0.695	0.757	0.001
S	180d	0.001	0.000	0.062	0.763	0.293	0.001	0.865	0.861	0.000
	3d	0.085	0.096	0.000	0.000	0.000	0.000	0.000	0.000	0.002
	7d	0.107	0.000	0.000	0.000	0.003	0.664	0.073	0.307	0.000
vity	14d	0.405	0.000	0.000	0.279	0.013	0.000	0.000	0.735	0.000
istiv	28d	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Res	56d	0.000	0.244	0.000	0.000	0.000	0.166	0.000	0.134	0.000
	90d	0.002	0.310	0.000	0.954	0.000		0.000	0.005	0.025
	180d	0.000	0.000	0.000	0.060	0.000	0.000	0.038	0.000	0.000

Table A1-26: T-Test Analysis of Conventional and Non-Traditional Coal Ash Average Performance

This table shows the p-value related to the t-test performed on each data set. Each nontraditional coal ash was tested against the results of conventional coal ash of the same class. For example, Reclaimed Class F in column 1 was compared to Conventional Class F. Data that had a t-test resulting in a p-value at or greater than 0.05 was considered statistically similar and colored green. T-tests that did not meet this, were considered not statistically similar and colored red in the table.

Coal Ash Type	Content	Workability	Heat of Hydration	Early Strength	Long Term Strength	Electrical Resistivity
Conventional	20%	1	+		1	
	40%				+	1
Reclaimed	20%	+			1	1

Table A1-27: Performance Classification of Class F Coal Ash

	40%	1			
Unprocessed	20%	ł			
-	40%	ł			
Blended	20%	1		+	
	40%	1	1		1
Bottom	20%				

Table A1-28: Performance Classification of Class C Coal Ash

Coal Ash Type	Content	Workability	Heat of Hydration	Early Strength	Long Term Strength	Electrical Resistivity
Conventional	20%	+		+		
	40%		1			
Blended	20%	1	+			1
	40%	1				1

APPENDIX B

ANALYSIS OF THE VARIABILITY IN SLUMP PERFORMANCE BETWEEN DIFFERENT COAL ASH SOURCES

A3.1.0 INTRODUCTION

The performance of concrete using varying sources of coal ash has shown to vary in terms of the slump test. Past studies have been conducted by Shinhyu Kang, Zane Lloyd and Loren Emerson to better understand this fluctuation in results [21, 23, and 25]. Dr. Kang and Mr. Lloyd investigated how the particle size distribution of each coal ash may relate to its slump performance. Mr. Lloyd found that there was no significant correlation between the distribution profile of each coal ash and their slump performance.

Another reason for the change in slump performance was thought to be the fineness of each coal ash. Clear evidence of this reasoning can be seen in the low slump performance of unprocessed coal ash. The unprocessed coal ash used in this study were sieved using a # 4 sieve (4.77mm) to remove contaminants, but the process did not ensure uniform particle size similar to that of conventional coal ash.

To evaluate the correlation between fineness of each coal ash and their slump performance, Kang compared the dry-sieved sieve analysis of each coal ash to the slump performance achieved by their use at both 20% and 40% replacement. This comparison is provided below in Figure A2-1 through Figure A2-4. The analysis shown no direct correlation between the fineness of each coal ash and the slump performance achieved through their use in concrete.

Figure A2-1: Correlation of coal ash fineness to slump performance at 20%

replacement.

Figure A2-2: Correlation of coal ash fineness to slump performance at 20% replacement.

Figure A2-3: Correlation of coal ash fineness to slump performance at 40%

replacement.

Figure A2-4: Correlation of coal ash fineness to slump performance at 40% replacement.

A3.2

A3.2.1 Laboratory Materials

Multiple types and sources of coal ash were used in this study and are listed in Table A2-1. Each coal ash was given an identification label. The letters are used as identifiers for the type of coal ash and are as follows: Class F coal ash is denoted with an "F", Class C coal ash is denoted with an "C", reclaimed coal ash is denoted with an "R", unprocessed coal ash is denoted with a "U", blended Class F coal ash is denoted by a "BF", blended Class C coal ash is denoted with a "BC", and bottom Class F coal ash is denoted by "BTF". Each label is then followed by a number to serve as a unique label for the coal ash. If two shipments from the samples from the same source were obtained at separate times, then the sources were labeled "-1" and "-2" respectively. Limited numbers of reclaimed, unprocessed, blended, and bottom ashes are reported because they were all that could be obtained in enough quantity to complete the testing.

Coal Ash Type	ID	Number of Sources
Class F	F #	16
Class C	C #	17
Reclaimed Class F	R #	8
Unprocessed Class F	U #	4
Blended Class F	BF #	1
Blended Class C	BC #	1
Bottom Class F	BTF #	1

Table A2-1: Coal Ash Types and Number of Sources

Each coal ash source's physical and chemical characteristics were measured using an automated scanning electron microscopy (ASEM). The technique used allowed for the rapid measurement of thousands of individual particles within each sample of the coal ash. [1, 16-20] These measurements are provided in Table2-2 and Table 2-3. Table 2-2 shows the proportion of 11 chemical oxides (SiO₂, Al₂O₃, Fe₂O₃, CaO, MgO, SO₃, Na₂O, K₂O, TiO₂, P₂O₅, SrO) found in each coal ash sample as a percentage of the total.

Table A2-2: Bulk Oxide Analysis Using ASEM

Coal Ash Source	SiO₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	SO₃	Na₂O	K₂O	TiO₂	P ₂ O ₅	SrO
F1	48.76	23.79	7.39	12.53	2.97	0.48	0.86	2.05	0.78	0.09	0.29

Coal											
Ash	SiO₂	Al₂O₃	Fe₂O₃	CaO	MgO	SO₃	Na₂O	K₂O	TiO₂	P₂O₅	SrO
Source	50.40	20.04	2.00	47.00	2.60	0.54	4.04	4.27	0.70	0.05	0.22
F2	50.40	20.91	3.89	17.09	3.69	0.54	1.04	1.37	0.70	0.05	0.32
F3	48.81	26.62	6.65	9.30	1.95	0.28	1.75	1.93	1.46	0.14	1.10
F4	45.34	27.39	4.00	14.61	3.59	0.70	1.48	0.65	1.09	0.37	0.76
F5	53.18	25.36	11.21	2.06	0.19	0.89	0.97	4.43	0.71	0.03	0.96
F6	51.87	25.71	12.32	2.50	0.32	0.67	1.61	4.13	0.66	0.05	0.16
F9	48.27	25.01	5.86	12.59	3.32	0.49	1.33	1.//	1.12	0.18	0.06
F10	53.59	27.76	2.79	10.53	2.50	0.47	0.33	1.27	0.45	0.28	0.02
F11	58.33	21.87	6.87	3.67	1.42	0.59	2.17	4.25	0.22	0.36	0.24
F12	59.18	25.01	9.54	1.59	0.24	0.12	0.05	3.62	0.51	0.02	0.11
F15-1	57.14	23.42	10.16	1.94	0.41	0.58	1.24	3.74	0.84	0.10	0.43
F15-2	57.02	18.62	13.77	3.86	0.44	0.78	0.60	3.57	0.80	0.16	0.12
F16	59.95	21.16	6.46	7.37	1.91	0.21	0.31	1.72	0.67	0.08	0.13
F17	60.46	18.65	3.97	5.64	0.41	0.28	5.62	2.62	0.55	0.00	1.80
F27	52.88	23.86	12.25	5.26	0.39	0.61	0.40	3.36	0.47	0.12	0.39
C1	36.20	21.72	5.35	23.15	5.38	0.67	3.58	1.01	0.80	1.90	0.23
C2	35.82	19.18	5.60	26.88	5.49	0.98	3.00	0.88	0.73	1.25	0.18
C3	25.32	19.26	5.22	32.50	7.76	2.60	3.42	0.63	1.08	1.89	0.32
C4	36.70	22.82	4.53	22.45	4.33	1.19	3.44	0.95	1.28	1.09	1.22
C5	31.25	22.46	5.38	26.06	5.95	0.56	4.30	0.84	0.84	2.11	0.23
C6	27.66	22.88	4.23	21.54	4.52	2.55	12.61	0.76	1.27	0.67	1.32
C7	35.28	20.61	4.74	24.72	4.93	0.74	4.26	1.23	1.64	0.82	1.00
C8	40.11	22.61	4.54	19.45	5.72	0.76	3.74	0.91	0.64	1.42	0.10
C9	31.49	24.02	5.96	25.71	5.35	0.99	3.72	0.61	0.94	1.12	0.10
C10	36.04	19.30	5.06	22.70	7.77	1.97	4.78	0.57	1.03	0.32	0.47
C11	30.96	20.77	6.38	27.15	7.14	1.59	3.45	0.73	0.78	0.83	0.23
C12	31.82	22.87	5.68	28.24	5.52	1.08	2.28	1.02	0.78	0.46	0.25
C13	25.15	21.20	6.22	30.47	7.78	1.04	4.02	0.56	1.22	2.18	0.15
C14	29.66	21.03	5.92	30.29	5.35	1.87	2.22	0.55	1.04	1.61	0.46
C15	29.85	17.66	4.73	31.75	9.32	1.19	2.57	0.76	0.83	1.08	0.24
C16	37.07	22.64	5.20	25.60	4.38	1.02	1.95	0.87	0.55	0.54	0.16
C17	36.93	22.94	6.17	24.02	3.78	0.72	2.71	0.63	1.50	0.44	0.13
C18	28.80	18.37	5.69	32.08	7.29	2.72	2.59	0.38	0.78	0.88	0.32
C19	35.30	24.08	4.52	23.82	5.27	1.01	3.67	0.60	0.93	0.59	0.16
RF2	57.55	30.47	5.15	1.45	0.26	0.07	0.03	3.43	1.05	0.06	0.49
RF3	54.53	30.54	7.33	2.94	0.15	0.13	0.02	3.61	0.63	0.02	0.10
RF4	53.50	26.22	9.91	4.62	0.70	0.35	0.08	3.53	0.51	0.14	0.42
RF5	57.88	27.51	6.62	2.37	0.24	0.17	0.13	4.08	0.59	0.03	0.38
RF6-1	56.30	26.90	9.32	1.45	0.64	0.11	0.01	4.20	0.75	0.21	0.08
RF6-2	53.01	27.42	10.24	4.07	0.41	0.49	0.37	3.12	0.74	0.10	0.03
RF7-1	59.12	20.68	5.95	9.07	1.90	0.56	0.25	1.67	0.42	0.00	0.38

Coal											
Ash	SiO₂	Al₂O₃	Fe₂O₃	CaO	MgO	SO₃	Na₂O	K₂O	TiO₂	P_2O_5	SrO
Source											
RF11	57.56	17.93	5.20	12.79	2.35	0.36	0.17	2.29	1.00	0.19	0.13
UF1	53.04	25.31	11.45	3.36	0.52	0.93	0.35	4.39	0.41	0.18	0.03
UF2	57.57	23.51	10.12	2.82	0.49	0.48	0.21	3.85	0.67	0.19	0.05
UF3	52.39	22.24	11.18	4.98	0.45	3.94	0.18	3.80	0.78	0.01	0.06
UF4	61.59	19.64	11.25	1.98	0.38	0.64	0.22	3.32	0.77	0.03	0.19
BF9	44.85	15.74	11.02	17.48	3.50	1.94	2.14	1.48	0.87	0.80	0.12
BC3	31.40	19.63	5.25	29.27	6.56	1.39	3.69	0.79	0.91	0.93	0.12
BTF2	60.37	14.88	5.99	13.20	1.70	0.82	0.06	1.26	1.43	0.01	0.26

 Table A2-3: Particle Size Distribution Using ASEM

Coal		AS	EM		#325 Sieve
Ash					%
Source	D50	D90	Average	STDEV	Retained
F1	1.68	4.14	2.19	1.74	20.45%
F2	2.15	5.10	2.73	2.11	13.00%
F3	2.24	4.45	2.67	1.65	23.10%
F4	1.68	4.57	2.33	2.06	21.80%
F5	2.07	5.21	2.71	2.20	18.71%
F6	2.03	4.96	2.62	2.00	30.24%
F9	2.09	4.48	2.18	1.70	32.00%
F10	2.05	4.29	2.39	1.61	15.00%
F11	1.71	3.96	3.26	2.77	25.00%
F12	2.06	3.93	3.32	2.93	25.18%
F15-1	2.45	6.48	3.56	2.89	19.07%
F15-2	2.37	6.80	3.10	2.27	
F16	2.48	6.38	2.64	2.31	44.80%
F17	2.45	6.71	3.59	2.92	22.14%
C1	1.49	3.68	1.97	1.64	15.22%
C2	1.6	3.91	2.09	1.67	20.42%
C3	1.3	3.09	1.69	1.32	51.91%
C4	1.71	4.31	2.30	1.85	17.82%
C5	1.63	4.08	2.17	1.80	14.90%
C6	1.48	4.55	2.17	2.09	12.03%
C7	1.67	3.53	2.05	1.42	18.58%
C8	1.73	3.61	2.10	1.46	24.21%
C9	1.44	3.54	1.91	1.59	
C10	3.08	9.72	4.34	4.00	
Coal		#325 Sieve			
--------	------	------------	---------	-------	----------
Ash				%	
Source	D50	D90	Average	STDEV	Retained
C11	1.62	4.09	2.14	1.72	14.29%
C12	1.35	4.75	2.14	2.15	15.49%
C13	1.76	4.26	2.23	1.78	12.57%
C14	1.64	3.73	2.40	2.29	27.82%
C15	1.59	4.15	2.11	1.75	24.52%
C16	1.37	3.68	1.90	1.68	30.75%
C17	1.36	3.82	1.96	1.95	16.96%
C18	1.39	3.79	1.93	1.71	16.56%
C19	1.43	3.72	1.93	1.68	23.72%
RF2	2.37	6.15	3.11	2.45	29.50%
RF3	1.83	5.09	2.56	2.29	36.75%
RF4	2.23	6.95	3.19	2.83	30.50%
RF5	2.32	6.11	3.09	2.65	54.37%
RF6-1	1.90	4.89	2.58	2.34	50.60%
RF6-2	2.36	6.76	3.29	2.82	26.79%
RF7-1	2.78	7.00	3.57	2.95	
RF11	2.09	4.46	2.54	1.68	
UF1	2.20	5.52	2.90	2.41	
UF2	2.61	6.89	3.51	2.97	21.47%
UF3	2.02	5.88	2.90	2.81	27.69%
UF4	1.87	4.60	2.54	2.32	28.61%
BF9	1.68	4.05	2.18	1.74	19.77%
BC3	1.76	4.50	2.32	1.78	17.99%
BTF1	3.07	7.37	3.99	3.05	11.89%

All of the laboratory concrete mixtures in this research used a Type I cement that met the requirements of ASTM C150. Both the oxide analysis and Bogue calculations for this cement is shown in Table A2-4. The aggregates used were locally available #57 crushed limestone and natural sand used in commercial concrete. The crushed limestone had a maximum nominal aggregate size of 3/4 in. Both the crushed limestone and the sand met ASTM C33 specifications. No chemical admixtures were used in this study. The mixture design of the concrete yielded enough workability that there was no need for water

reducing admixtures. Air entrainer was not used to minimize the number of variables used in the testing.

Oxide %					Bogue Calculation						
CaO	SiO2	AI_2O_3	Fe₂O₃	Na₂O	MgO	SO₃	K ₂ O	C3S	C2S	C3A	C4AF
62.1	21.1	4.7	2.6	0.2	2.4	3.2	0.3	56.7	17.8	8.2	7.8

Table A2-4: OPC Type I Cement Oxide Analysis and Bogue Calculations

A3.2.2 Concrete Mixture Design

Coal ash samples were tested at 20% and 40% substitution rates and compared to a conventional concrete mixture using 100% OPC. The mixture design used maintained a 29% paste content and a water-cement ratio of 0.45. These mixture designs are provided in Table A2-5. The paste volume and water-cement ratio of the concrete mixture design allowed for adequate workability of the concrete.

Table A2-5: Concrete Mixture Design per cubic yard

		OPC	Coal Ash	Water	Paste	Coarse	Fine
Mixture	w/cm	(lbs)	(lbs)	(lbs)	(%)	(lbs)	(lbs)
0% Coal ash	0.45	625	0	281	28.8	1903	1243
20% Coal Ash	0.45	500	125	281	28.9	1900	1240
40% Coal Ash	0.45	375	250	281	29.0	1892	1228

A3.2.3 Concrete Mixing Procedure

Aggregates were collected from outside storage piles and brought into a temperaturecontrolled room at 23°C for at least 24 hours before mixing. Aggregates were placed in the mixer and spun, and a representative sample was taken for moisture correction. At the time of mixing all aggregate was loaded into the mixer along with approximately one half of the mixing water. This combination was mixed for three minutes to allow the aggregates to approach the saturated surface dry (SSD) condition and ensure that the aggregates were evenly distributed.

Next, the cement, coal ash, and the remaining water was added and mixed for three minutes. The resulting mixture rested for two minutes while the sides of the mixing drum were scraped. After the rest period, the mixer was started, and the concrete was mixed for three minutes.

A3.2.4 Testing Procedure

Slump measurements were taken from each wheelbarrow following ASTM C143 and averaged. The air content was measured using an ASTM C231[9] Type B air pressure meter. Unit weight was collected according to ASTM C138, and a Phoenix Test was conducted following the test methods to measure the actual water-cement ratio in the fresh concrete [Error! Reference source not found.].

The concrete was then used to make 66 samples of 4"x8" cylinders, prepared according to ASTM C192[12]. These cylinders were then placed in a controlled environment chamber at 70 °F and 100% RH until the day of testing. Compressive strength ASTM C39[14] and electrical resistivity AASHTO T 358 testing was completed at 3, 7, 14, 28, 56, 90, and 180 days. The samples were left in their cylinder molds until they were tested. This was done to prevent leaching from the surface of the cylinder by the spray in the moisture curing room for the resistivity samples.

A3.2.5 Wet Sieving

To determine the fineness of each coal ash, each material was wet sieved using a #325 sieve following ASTM C430-17. Each coal ash sample was tested 3 times. The #325 sieve was tared to the nearest 0.0005g and 1 gram of the given sample was weighed out and placed on the sieve. The material was then dampened using deionized water and then held under nozzle meeting ASTM C430-17 specifications emitting 10psi of water. The sieve was held under the nozzle for 1 minute and moved in a circular motion in the horizontal plane. Following this, each sample was rinsed with deionized water. A damp cloth was then used to blot the lower surface of the sieve. The sieve was then placed in a furnace at 110 degrees Celsius for 2 minutes to allow the sieve and sample to dry. After this time, the sieve was removed and weighed to the nearest 0.0005g.

A3.3 RESULTS AND DISCUSSION

The slump performance of concrete tested in this study shown to have high variability. The slump results achieved by concrete in this study are depicted in Figure A2-5 and Figure A2-6 below.

Figure A2-5: Average Slump Performance of Each Coal Ash at 20% Replacement

Figure A2-6: Average Slump Performance of Each Coal Ash at 40% Replacement

Figure A2-5 and Figure A2-6 shows that each coal ash type shown to have variable slump performance between the coal ash sources used. Each concrete mixture design used is uniform for each graph. The only variable changed is the source of the coal ash used. Increasing the content of coal ash in concrete also effected the slump performance of each coal ash on average as discussed in chapter II of this report.

One possible reason for the variation in slump performance achieved by different coal ash sources is the fineness of each coal ash. The fineness of each coal ash was found following ASTM C430-17. Figure A2-7 depicts this fineness in terms of percent retained on a #325 sieve and in relation to the slump performance achieved by each coal ash.

Figure A2-7: Slump Performance in Relation to Coal Ash Fineness

No correlation was shown between the fineness of coal ash and the resulting slump performance when used at 20% and 40% replacement. The R-Squared value was found for both the 20% and 40% coal ash slump data. The R-Squared value provides a calculable means to measure how well a regression model fits the observed data. A high R-Squared value indicates a high correlation between the model and data. The R-Squared value for 20% and 40% coal ash substitution shown to be low, indicating the model does not fit the observed data.

The study also found that some coal ash shown to be greater than the 34% retained limit set by ASTM C618. These coal ash samples included 3 reclaimed coal ash, 1 conventional Class f coal ash, and 1 conventional Class c coal ash. From Figure A2-8, one can see that this larger fineness did not change the slump performance of the concrete. The slump achieved by each of these coal ashes shown to fall within the range of slump achieved by other coal ash in the study. Figure A2-9 and Figure A2-10 show how each of these coal ash samples performed in terms of compressive strength when used at 20% replacement.

From the figure, one can see that each coal maintained a similar performance to their respective average. Coal ash C3 used at 40% shown to have a greater long term compressive strength than that of the average found for conventional Class C coal ash. Figure A2-11 and Figure A2-12 show how each of these coal ash samples performed in terms of resistivity. The average performance of each coal ash sample shown to fall within the standard deviation of the average of performances of other sources of its type.

104

Figure A2-8: Slump Performance Comparison of Low Fineness Coal Ash

Figure A2-9: Compressive Strength Comparison of Low Fineness Coal Ash at 20%

Figure A2-10: Compressive Strength Comparison of Low Fineness Coal Ash at 40%

Figure A2-11: Resistivity Comparison of Low Fineness Coal Ash at 20%

Figure A2-12: Resistivity Comparison of Low Fineness Coal Ash at 40%

To conclude, no significant correlation was found between the fineness of each coal ash and its slump performance in concrete. Additionally, coal ash samples that shown to have a lower fineness (more than 34%) than what is allowed by ASTM C618, showed to still maintain similar concrete performance to other coal ashes of higher fineness.

VITA

Braden Boyd

Candidate for the Degree of

Master of Science

Thesis: COMPARING CONCRETE PERFORMANCE USING CONVENTIONAL AND ALTERNATIVE COAL ASH

Major Field: Civil Engineering

Biographical:

Education:

Completed the requirements for the Master of Science in Civil Engineering at Oklahoma State University, Stillwater, Oklahoma in July, 2022.

Completed the requirements for the Bachelor of Science in Civil Engineering at Oklahoma State University, Stillwater, Oklahoma in 2019.

Professional Memberships:

ASCE, ACI