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Major Field: BIOMEDICAL SCIENCES 

 

Anthropogenic climate change presents one of the most pertinent risks to modern biodiversity. 

As the global climate becomes increasingly warmer and drier, it becomes equally as pertinent to 

understand how species respond to these shifts physiologically. To do so, we review 

environmental shifts throughout the Cenozoic (66 MY -present), specifically those relating to 

aridity – increasing environmental water scarcity – and commonly used climatic indicators for 

those environmental shifts, including hypsodonty and cursoriality. We then explore two 

additional, less-investigated potential ecomorphological traits that may correspond with 

environmental aridity: 1) elaborate cranial ornamentation (headgear) and 2) carotid-rete-

mediated selective brain cooling. The aims of this thesis are: 1) to establish a foundational 

description of the osteohistology of a horncore of an arid-adapted species, Antilocapra 
americana and 2) investigate whether carotid-rete-mediated selective brain cooling is not only 

selectively advantageous but also provides a release from physiological constraint imposed by 

the environment, specifically aridity, in large mammals, using  of δ18O in tooth enamel as a 

proxy for water budget. I utilized standard osteohistological methods to examine the 

microanatomy of the horncores of both male and female Antilocapra americana, and found that 

these structures were composed of primarily trabecular bone tissue, supporting a role as a shock 

absorber in intraspecific combat. I also found evidence of reticular vascularization in the tissue 

surrounding the horncore, which may be indicative of a thermoregulatory function of 

Antilocapra americana headgear. To test for variance of δ18O in the tooth enamel of large 

mammals, I completed both a non-parametric and comparative parametric analyses that 

compared both mean δ18O values and δ18O variance between species with and without carotid 

retia among three environmental categories: arid, dry subhumid, and humid. The results of this 

analysis found that, as aridity increased, the variance of δ18O values of individuals possessing 

carotid retia exceeded that of those without. Concurrently, as water availability increased, 

variance equalized as the selective advantage of CR-SBC became less influential. Potential 

limitations to both of these studies are the low sample size of Antilocapra americana and the 

lack of  δ18O samples from carnivorans.  
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CHAPTER I 

 

 

INTRODUCTION TO CLIMATIC INDICATORS OF ARIDIFICATION IN DEEP TIME 

 

1. Introduction 

Modern climate change poses one of the most pressing dangers to modern mammalian species 

diversity. In the next century, global temperatures are expected to rise at least 2.7 ºC (IPCC, 

2013), and changes in rainfall patterns and snow melt are expected to make water availability 

less predictable and increase instances and severity of drought (IPCC, 2014; Cook et al., 2015; 

Putnam & Broecker, 2017). Within the past decade alone, up to 25% of mammalian species have 

been reclassified as threatened or endangered (Schipper et al., 2008), and some have even 

become extinct (Ceballos et al., 2017; Crooks et al., 2017). Huey et al. (2012) propose that the 

vulnerability of a species to climate change depends on the species’ exposure and sensitivity to 

environmental change, and its potential to adapt to said change. Small-bodied mammals (<10kg) 

have been found to have high resilience to climatic and anthropogenic disturbance (Laliberte et 

al., 2004; Santini et al., 2019; Berdugo et al., 2020). In contrast, large-bodied (>50kg) mammals 

are at high risk (IUCN Red List, 2012; McCain & King, 2014; Urban, 2015) given their long 

generation time (Simpson, 1944), small population size (Stanley, 1979; Van Valkenburgh et al., 

2004) and reliance on large range size (Webb, 1969; Brown & Maurer, 1989; Brown & 

Nicoletto, 1991; Diniz-Filho et al., 2005; Tucker et al., 2018). Human-induced range 

fragmentation is most deleterious for those mammals that rely on resources acquired



 2

across a large territory (Laliberte et al., 2004; McGuire & Davis, 2013; Lyons et al., 2016; 

Crooks et al., 2017), such as carnivorans and ungulate grazers (Laliberte et al., 2004; Crooks et 

al., 2017; Smith et al., 2019; Berdugo et al., 2020; Enquist et al., 2020). As of 2012, nearly 36% 

of global carnivoran and ungulate populations were threatened (IUCN, 2012). This is particularly 

problematic as carnivorans and ungulates serve key roles in facilitating ecological processes like 

predation (Soulé & Estes, 2003), herbivory (Pringle et al., 2007), and seed dispersal (Fragoso et 

al., 2003), and their absence within ecosystems may result in trophic cascades that could 

dramatically alter ecological structures (Estes et al., 2011).  

 In addition to reducing range size, human-induced range fragmentation affects the 

survivorship of large-bodied mammals by preventing access to preferred habitats (McGuire et 

al., 2016; Pineda-Munoz et al., 2021), as resource-rich temperate areas are frequently used for 

agriculture (Scherr & McNeely, 2008; Lambin & Meyfroidt, 2011; DiMarco et al., 2014; 

Kremen, 2015; Frison, 2016; Ceballos et al., 2017; Dinerstein et al., 2019). As a result, 

carnivorans and ungulates are often extirpated to arid, resource-poor areas that are among the 

most sensitive to modern climate change (Gerten et al., 2008; IPCC, 2014). Over the next 

century, these regions are expected to experience reductions in vegetation productivity and 

cover, and increased soil disruption and overall aridity (Huang et al., 2016; Berdugo et al., 2020). 

This is further exacerbated by increased variability of precipitation (Noy-Meir, 1973) due to 

climate change (IPCC, 2014). Precipitation is a limiting resource in arid, temperate, and dry sub-

humid terrestrial ecosystems (Webb et al., 1983; Adler et al., 2006; Gerten et al., 2008; Deguines 

et al., 2016), and can directly impact vegetation productivity (Morris, 2000; Suttle, Thomsen, & 

Power, 2007) as well as influence animal species’ osmoregulatory behavior and physiology 

(McCluney & Sabo, 2009; Takei et al., 2012). 
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This current and forecasted period of climate change is not the first time that a major shift 

in global climate has significantly affected large-bodied mammals and the ecological 

communities of which they are a part. In the past, increased aridification and habitat 

heterogeneity across continents contributed to a reduction of large mammal biodiversity 

(Tomiya, 2013), including at the Eocene-Oligocene boundary (Prothero, 1985; Hooker, 1992; 

Legendre & Hartenberger,1992; Goswami & Friscia, 2010), throughout the Miocene (Agustí & 

Moya-Sola, 1990; Janis et al., 2000, 2004; Fortelius et al., 2002; Barnosky et al., 2003), and at 

end of the Pleistocene (Koch & Barnosky, 2006; Barnosky et al., 2016). However, according to 

the fossil record, members of the mammalian taxonomic orders Artiodactyla and Carnivora 

proliferated during these periods, able to survive aridification and exploit the spread of 

grasslands (Vrba, 1995; Merceron et al., 2010; Cantalapiedra et al., 2011; Demiguel et al., 2014; 

Strauss et al., 2017). These deep-time dynamics, combined with their present species richness 

and global distribution (Goswami & Friscia, 2010; Groves & Grubb, 2011) makes these groups 

good model taxa for testing the selective advantage of adaptations to global climate change in the 

past, present, and future. As the world’s climate becomes increasingly arid due to anthropogenic 

climate change, it becomes more pertinent to understand how large-bodied mammals, especially 

those at high risk, such as ungulates and carnivorans, have anatomically and physiologically 

adapted to climatic niche change through deep time to provide informed predictions for the 

conservation of current ecosystems and biodiversity (Martínez-Meyer et al., 2004; Terry & 

Rowe, 2015).  

 

2. Climate Change Throughout the Cenozoic Era (66 MYA – Present) 
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At the onset of the Cenozoic, the global climate was extremely warm and humid (Buchardt, 

1978; Wolfe, 1978; Wing, 1987; Huber & Sloan, 2001; Zachos, 2001; Janis, 2008; Zachos et al., 

2008; Bowen & Zachos, 2010; Galeotti et al., 2010; Strömberg, 2011; Eronen et al., 2012) and 

extensive tropical and subtropical wetland environments spread across all continents (Jacobs et 

al., 1999; Strömberg, 2011; Saarinen, 2020). This climate continued throughout the Paleocene 

and early Eocene, peaking at the early Eocene climatic optimum (Zachos et al., 2001; Gutjahr et 

al., 2017). In the early to middle Eocene, forested systems remained dominant in North America 

and much of Eurasia (Leopold et al., 1992); however, there is some evidence of low biomass 

vegetation, such as sagebrush, savanna, or grassland, in South America and Africa (Jacobs et al., 

1999), suggestive of the early origins of more open habitats in the form of “woody savannas” 

(Leopold et al., 1992). Coincident with this time, although not necessarily correlative, is the 

emergence of both artiodactyls (“even-toed”) and perissodactyls (“odd-toed”) ungulates in North 

America and Eurasia (Gentry, 1994; Janis et al., 1998; Métais & Vislobokova, 2007; Janis, 2008; 

Wang, 2021). There is also evidence of stem carnivorans emerging in North America and 

Eurasia at this time (Goswami & Friscia, 2010). 

 In the late Eocene and across the Eocene-Oligocene boundary, the global climate became 

significantly cooler and drier (Prothero & Berggren, 1992; Diester-Haass & Zahn, 1996; Zachos 

et al. 2001; Lear et al., 2008). The tropical and paratropical forests that had characterized the 

Paleocene and Eocene were increasingly replaced by deciduous and temperate forests, although 

woodlands remained most dominant globally (Collinson & Hooker, 2003; Saarinen et al., 2020). 

Plant macrofossils (MacGinitie, 1969), paleosols (Sheldon & Hamer, 2010), and phytoliths 

(Strömberg, 2005) from the Eocene-Oligocene transition show evidence of the emergence of C4 

grasses in North America and South America, likely in response to this global trend of cooling 
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and aridification; however, grasslands were not yet particularly widespread (Jacobs et al., 1999; 

Strömberg, 2011; Saarinen et al., 2020). While new forms of vegetation began to emerge, many 

large mammals concurrently faced extinction (Prothero, 1985; Hooker, 1992; Legendre & 

Hartenberger,1992), including many early perissodactyls (Janis, 1976, 2008). In contrast, 

artiodactyls experienced a much higher degree of survivorship (Strauss et al., 2017) and even 

began to diversify into the modern lineages: suines (pig-related forms), tylopods (camel-related 

forms), and ruminants (Janis, 2008). Modern crown groups of carnivorans, such as Canidae, 

Mustelidae, and Ursidae, also proliferated, whereas stem carnivorans, like Viverravidae and 

Miacoidea, dramatically declined (Goswami & Friscia, 2010). Throughout the drier and more 

temperate Oligocene (Kennett, 1985; Ehrmann & Mackensen, 1992; Steinthorsdottir et al., 

2021), the species richness of artiodactyls remained elevated (Strauss et al., 2017), and other 

crown carnivoran groups, namely Felidae, emerged (Goswami & Friscia, 2010). The landscape 

of this period was composed primarily of temperate woodlands (Janis, 1993, 2008; Jacobs et al., 

1999; Janis et al., 2004; Strömberg, 2004, 2005, 2011; Eronen et al., 2012), although more open, 

arid habitats gradually continued their spread due to rising aridification (Janis, 2008).  

 Global aridification continued and temperatures began to rise again in the late Oligocene to 

early Miocene (Kennett, 1985;  Zachos et al., 2001; Retallack, 2013). More open environments 

began to appear across all continents in response to changes from fairly humid conditions to 

more seasonally dry climates at various times throughout the Miocene. Paleosol data indicate the 

presence of expanding dry, open habitats at this time throughout North America (Janis, 1993; 

Jacobs et al., 1999; Janis et al., 2004; Strömberg, 2004, 2005, 2011; Eronen et al., 2012), South 

America (Kleinert & Strecker, 2001; Strömberg et al., 2013), western Eurasia (Saarinen et al., 

2020), and West Africa (Morley & Richards, 1993; Jacobs et al., 2010). However, environments 
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across most of Eurasia (Fortelius et al., 2002; Kovar-Eder, 2003; Eronen & Rössner, 2007; 

Eronen et al., 2010; Saarinen et al., 2020) and East Africa (Jacobs et al., 1999) remained 

predominantly humid forests. These increases in global temperature and aridification peaked 

during the early-middle Miocene at the Middle Miocene Climatic Optimum (Zachos et al., 2001; 

Steinthorsdottir et al., 2021). In North America, δ18O precipitation data show a shift toward 

heightened aridification (Mix et al., 2013; Chamberlain et al., 2014) that, according to paleosol, 

phytolith, and fossil material analyses (Janis & Wilhelm, 1993; Jacobs et al., 1999; Retallack, 

2004a, b; Solounias & Semprebon, 2002; Strömberg, 2004, 2005, 2006, 2011; Eronen et al., 

2012) resulted in a broad expansion of grass ecosystems (Levering et al. 2016). This dramatic 

shift in habitat in North America coincided with the height of artiodactyl diversity (Janis et al., 

2000, 2004; Barnosky et al., 2003), and the migration of carnivorans into Africa and South 

America (Goswami & Friscia, 2010). However, analyses indicate that a similar expansion of 

open habitats did not occur in the Old World until later (Eronen et al., 2012). Following this 

climatic optimum, temperatures gradually declined, but aridity continued to increase (Zachos et 

al., 2001; Ivanov et al., 2002). 

 The late Miocene is characterized primarily by the radiation of open woodlands and grass-

dominated habitats, particularly those populated by C4 grasses (Cerling et al., 1993; Cerling et 

al., 1997; Pearson & Palmer, 2000; Retallack, 2001; Edwards et al., 2010;; Strömberg & 

McInerney et al., 2011; McInerney et al., 2011), in North America (Cerling et al., 1997; 

Retallack, 1997; Strömberg, 2011; Strömberg & McInerney, 2011; Eronen et al., 2012), Eurasia 

(Eronen et al., 2010; Eronen et al., 2012; Saarinen et al., 2020), and East Africa (Cerling et al., 

1997; Saarinen et al., 2020). The increase of dry, highly seasonal conditions in North America 

during this time was most likely related to upwelling in the eastern Pacific, drying up rivers in 
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the North American southwest (Jacobs et al., 2004), and resulting in the replacement of short-

grass savannas with tall-grass prairie ecosystems (Retallack, 2001). In contrast, the increased 

aridification in Eurasia has been linked to changes in the magnitude of Atlantic oceanic heat 

transport via the development of the Panama seaway (Eronen et al., 2012). However, humid 

conditions returned to eastern Eurasia in the late Miocene (Eronen et al., 2012) due to the onset 

of the monsoon season (Fortelius et al., 2002). As habitats became increasingly arid, mammalian 

taxonomic diversity decreased (Fortelius et al., 2002). In western Eurasia, forest-adapted 

mammals, including perissodactyls and tragulid artiodactyls, became increasingly replaced by 

more open-habitat-adapted taxa, primarily ruminant artiodactyls (Agustí & Moya-Sola, 1990).   

 In contrast to the climatic fluctuations of the Miocene, the Pliocene was characterized by 

more stable conditions (Herbert el al., 2016; Saarinen et al., 2020), and open, dry grasslands 

continued to spread across Africa, Eurasia, and North America (Jacobs et al., 1999; Eronen et al., 

2012; Saarinen et al., 2020). The formation of the land bridge between North and South America 

during this period, in addition to allowing transcontinental migration of fauna, disrupted circum-

equatorial circulation of oceanic heat transport, resulting in the extreme aridification of East 

Africa (Janis, 2008). This aridification led to widespread C4-dominated grasslands (Cerling, 

1992; Plummer et al., 1999; Levin et al., 2011) in the Pleistocene. The Pleistocene was 

characterized by strong climatic oscillations and recurrent glacial cycles in North America and 

Eurasia (Janis, 2008; Herbet et al., 2016; Saarinen et al., 2020) that are coincident with global, 

large-scale extinctions of large-bodied mammals (Koch & Barnosky, 2006; Barnosky et al., 

2016).  

 The development of open, dry grassland ecosystems across the globe is a prominent feature 

of the Cenozoic, arising across a multistage process involving: the appearance of open-habitat 
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grasses in the Paleogene, the spread of grass-dominated habitats in the Miocene, and, finally, the 

expansion of C4 grasses in tropical and subtropical regions in the late Miocene through to the 

Pliocene (Jacobs et al., 1999; Saarinen et al., 2020). The emergence of low biomass vegetation as 

a food source allowed for the radiation of ungulates (MacFadden, 1992) and their consumers, the 

carnivorans (Goswami & Friscia, 2010), closely linking the diversification of these groups with 

geographically widespread, long-term shifts in climate (Webb, 1969,1977; Vrba, 1992; Janis, 

1993; Jernvall & Fortelius, 2004; Costeur & Legendre, 2008; Maridet & Costeur, 2010).  

 

3. Climatic Indicators of Aridification 

In addition to affecting biodiversity, studies have demonstrated that there is a close relationship 

between global climate change and functional anatomical and physiological traits through time 

(Fortelius et al., 2002; Eronen et al., 2010;  Schap et al., 2021). Functional traits are measurable 

features that influence an organism's interaction with its environment (McGill et al., 2006; Violle 

et al., 2007), and, as a result, the morphological composition of a community can be a strong 

indicator of climate and environment (Valverde, 1964; Legendre, 1986; Brown & Nicoletto, 

1991; Montuire, 1999; Millien et al., 2006; Violle et al., 2007; Saarinen et al., 2014; Enquist et 

al., 2015; Short & Lawing, 2021). Changes in food resources (Vrba, 1992; Janis et al., 2004; 

Strömberg, 2006) and habitat structure (Vrba, 1992; Janis, 1993; Jacobs et al., 1999; Janis et al., 

2004; Retallack, 2004a,b) may influence taxon survivorship, driving these morphological shifts 

(Vrba, 1985, 1993). Webb (1977) proposed that changes in the morphology of ungulates 

throughout the Cenozoic were indicative of changing ecosystems, and further studies have found 

that these macroevolutionary patterns are consistent across continents (Saarinen et al., 2014). 

Two of the most frequently studied ecomorphological climate proxies include dietary characters, 
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such as hypsodonty (high crowned molars; Webb, 1977; Janis, 1995; Spencer, 1995; Pérez-

Barbería & Gordon, 2001; Mendoza et al., 2002; Solounias & Semprebon, 2002; Croft & 

Lorente, 2021), and locomotory characters, such as metapodial length (Webb, 1977; Scott, 1985; 

Kappelman, 1988; Mendoza & Palmqvist, 2006; Plummer et al., 2008; Croft & Lorente, 2021). 

These features are thought to provide information about the vegetation and climatic conditions of 

their paleoenvironment (Kappelman, 1991; Janis et al., 2002; Mihlbachler et al., 2011; Croft & 

Lorente, 2021). However, other functional traits, such as headgear (Morales et al., 1993), and 

vasculature, such as carotid retia, capable of facilitating conservation of body water (Fuller et al., 

2007; Mitchell & Lust, 2008), have similarly been proposed as characters that emerged under the 

influence of global climate change, although they have received much less attention.  

 

3.1 Hypsodonty  

Although dental and locomotory characters have been frequently utilized as ecomorphological 

indicators, more recent evidence suggests that the signals they provide may not be reliably 

congruent with environmental shifts, specifically those resulting from aridification. For example, 

the overall increase of tooth crown height (hypsodonty) is often attributed to the shift toward C4-

dominated open grasslands in the late Miocene (Cerling et al., 1997; Demiguel et al., 2014). 

Hypsodont, or high-crowned molar, teeth are well-suited to withstand the wear from grinding 

grit and phytolith-rich grasses (Van Valen, 1960; Fortelius, 1985; Janis, 1988; Janis & Fortelius, 

1988; Williams & Kay, 2001; Janis, Damuth, & Theodor, 2002; Mendoza & Palmqvist, 2008; 

Eronen et al., 2010; Staver et al., 2011; Damuth & Janis, 2011; Jardine et al., 2012; Eronen et al., 

2012; Lucas et al., 2014; Madden, 2015; Semprebon et al., 2019; Martin et al., 2020; Saarinen et 

al., 2020; Croft & Lorente, 2021). Communities within arid, open habitats are most often 
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dominated by hypsodont taxa (Eronen et al., 2010; Fortelius et al., 2002; Janis et al., 2000; 

Damuth & Janis, 2011; Short & Lawing, 2021), resulting in hypsodonty indices for the presence 

of open, grass-dominated environments (MacFadden & Cerling, 1994; Jernvall et al., 1996; 

MacFadden, 2000; Janis et al., 2000; Solounias & Semprebon, 2002; Strömberg, 2006, 2011; 

Mihlbachler & Solounias, 2006; Janis 2007; Damuth & Janis, 2011; Jardine et al., 2012; Eronen 

et al., 2012; Morales-Garcia et al., 2020). However, several lines of evidence are not consistent 

with this traditional assumption. The earliest evidence of hypsodonty has been identified within 

exclusively South American ungulate lineages during the Eocene (Ortiz-Jaureguizar & Cladera, 

2006; Janis, 2008; Strömberg et al., 2013; also see Table 1.1), predating the presence of open 

environments in South America (Fortelius et al. 2002; Eronen et al. 2010; Strömberg, 2011; 

Strömberg et al., 2013; Madden, 2015). Additionally, tooth wear in hypsodont notoungulates has 

been found to be indicative of browsing and mixed feeding as opposed to grazing, which is 

typical of ungulates inhabiting open grasslands (MacFadden, 2005; Townsend & Croft, 2005, 

2008; Croft & Weinstein, 2008). Thus, this dental character may not have evolved in South 

American ungulates as a dietary adaptation for consuming grasses, but rather an adaptation to an 

accumulation of highly abrasive material in the diet, namely volcanic ash (Billet et al., 2009; 

Strömberg et al., 2013; Saarinen et al., 2020). In contrast, increased hypsodonty in many North 

American ungulates around the early-middle Miocene transition (Janis et al., 2002; see also 

Table 1.1) slightly post-dates the appearance of grass-dominated open habitats (Strömberg, 

2002, 2006). Tooth wear in hypsodont North American ungulates suggest that they were 

primarily browsers and mixed feeders (Hayek et al. 1992; MacFadden et al. 1999; Janis, 2008) 

and the emergence of true, specialized grazers is not evident until the Plio-Pleistocene transition 

(Spencer, 1997;  Janis., 2008). Given these lines of evidence, there is no simple correlation 
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between the presence of hypsodonty and arid, open habitats (Janis, 2008; Strömberg et al., 2013). 

Rather, hypsodonty is an indicator of the presence abrasive material in diet, which, in contrast to 

previous assumptions, may be independent of an open environment (Jardine et al., 2012; 

Strömberg et al., 2013). Hypsodonty is, therefore, not the most accurate potential indicator of 

environmental aridity (Janis, 2008). 

 

3.2 Cursoriality 

Previous research has also correlated locomotory-related characters with habitat, including 

calcaneal morphology, limb elongation, and lateral digit reduction (all of which result in 

cursoriality), as a marker for habitat openness (Kowalevsky, 1873;  Lull, 1904; Gregory, 1912; 

Howell, 1944; Coombs, 1978; Sinclair, 1983; Hildebrand, 1985; Scott, 1985; Garland et al., 

1988; Kappelman, 1988; Garland & Janis, 1993; Hildebrand et al., 1995; Polly & MacLeod, 

2008; Plummer et al., 2008; Bormet, 2010; Clifford, 2010; Levering et al., 2016; Panciroli et al., 

2017; Morales-Garcia et al., 2020; Croft & Lorente, 2021; Short & Lawing, 2021). The 

elongation of the autopod (distal limb segment) has been found to be biomechanically 

advantageous in open habitats by increasing stride length (Lull, 1904; Hildebrand et al., 1995; 

Levering et al., 2016) in North America (Janis & Wilhelm, 1993) and Eurasia (Agustí & Anton, 

2002; Janis, 2008). As a result, the presence of cursorial limb morphologies has been proposed as 

sufficient support for the presence of open, savanna-like habitats in the mid-to-late Miocene in 

North America (Webb, 1977; Janis, 1993; Janis et al., 2004; Levering et al., 2016), Eurasia 

(Eronen et al., 2009), and South America (Webb, 1978) – see also Table 1.1. However, this 

trend is not consistent across continents. Highly cursorial South American ungulates have been 

found exclusively in closed, forested habitats during the Oligocene (Janis & Wilhelm, 1993; 
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Soria, 2001; Cassini et al., 2012; Corona et al., 2019; Morosi & Ubilla, 2019). This directly 

contrasts with observations within the North American fossil record, which find cursoriality 

increases with habitat openness characteristic of the Miocene (Fedak et al., 1982; Kram & 

Taylor, 1990; Alexander, 2002; Hoyt et al., 2006; Levering et al., 2016). Additionally, strong 

relationships between calcaneal morphology, vegetation cover, and precipitation have been 

proposed in artiodactyls (Clifford, 2010; Short & Lawing, 2021) and carnivorans (Polly, 2010; 

Short & Lawing, 2021), where communities with low calcaneal gear ratios inhabit areas with low 

vegetation cover and precipitation, and communities with high calcaneal gear ratios reside in 

areas with high vegetation cover and precipitation (Short & Lawing, 2021). However, Polly 

(2010) found the distribution of mean calcaneal gear ratio is not directly affected by 

precipitation, and its observed influence is likely indirectly imposed via the density of vegetation 

cover (Polly, 2010; Barr, 2017, 2020). Given this, cursoriality is not a consistent reliable 

indicator for habitat openness (Croft & Lorente, 2021) or aridity (i.e. precipitation; Polly, 2010).  

 

3.3 Headgear 

For my thesis, I will explore two additional, less-investigated potential ecomorphological traits 

that may correspond with environmental aridity: elaborate cranial ornamentation (headgear) and 

carotid-rete-mediated selective brain cooling. Cranial headgear, such as horns and antlers, may 

indicate adaptation to global climate change response (Morales et al., 1993). Horned ruminants – 

pecorans (sensu Hassannin et al., 2012) – diverged from more ancestral artiodactyls at the 

Oligocene-Miocene transition (Foss & Prothero, 2007). According to the fossil record, the 

emergence of headgear occurred concurrently in the early-mid Miocene in North America 

(Morales et al., 1993; Janis, 2008; Demiguel et al. 2014), Eurasia (Morales et al., 1993; Gentry, 
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2000; Janis, 2008; Demiguel et al. 2014), and Africa (Morales et al., 1993; Demiguel et al. 2014; 

see also Table 1.1) during a period of heightened global aridification (Kennett, 1985;  Zachos et 

al., 2001; Retallack, 2013; Steinthorsdottir et al., 2021). Given the near simultaneous emergence 

of this feature, it has been hypothesized that the presence of pecoran headgear is correlated with 

large-scale climate change (Geist, 1971; Morales et al., 1993). Patterns of cooling and drying that 

increased global seasonality (described by Zachos et al., 2001), have been proposed as the 

driving factor for the presence of these appendages (Janis 1982, 1990; Morales et al. 1993; 

Demiguel et al. 2014). This hypothesis is supported by the functionality of headgear as 

thermoregulatory structures. In large-bodied mammals especially, highly vascular extremities 

can serve as conduits for releasing heat load (Scholander et al., 1950). The internal horncores in 

bovids (Taylor, 1962, 1966; Picard et al., 1994; Picard et al., 1999; Hoefs, 2000; Parés-Casanova 

& Kucherova, 2014) and giraffids (Ganey, 1990; O’Brien et al., 2016) are highly vascularized, 

and have been found to provide significant contributions to heat dissipation (Taylor, 1966; Picard 

et al., 1994; Picard et al., 1999; Hoefs, 2000). This is further corroborated as horned ruminants in 

more arid, open environments tend to have larger headgear, increasing surface area for heat loss 

(Wehausen & Ramey, 1993; Picard et al., 1996; Picard et al., 1999; Hoefs, 2000), and 

appendages are typically present in both sexes (Jarman, 1974; Hoefs, 2000); whereas, in more 

humid, closed conditions, headgear tends to be smaller (Wehausen & Ramey, 1993; Picard et al., 

1996; Picard et al., 1999; Hoefs, 2000) and only present in males (Jarman, 1974). The 

convergent evolution of headgear across continents during a period of high global aridification, 

as well as its proposed function as a thermoregulatory structure and correlation to habitat dryness 

and openness, make pecoran cranial appendages good potential indicators of environmental 

shifts, especially those resulting from aridification. In Chapter II, I will investigate the 
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thermoregulatory potential of cranial appendages using headgear of pronghorn antelope (A. 

americana), an arid-adapted species, as a model specimen. This requires the establishment of a 

foundational description of the osteohistology of A. americana horncores given the dearth of 

current literature.  

 

3.4 Selective Brain Cooling 

Carotid-rete-mediated selective brain cooling is another potentially good metric to indicate 

environmental aridity, as it is known to result in conservation of body water (Taylor, 1970a,b; 

Baker, 1989; Kuhnen & Jessen, 1991; Jessen et al., 1998), and is found in taxa, namely 

artiodactyls and feliform carnivorans (Baker & Hayward, 1968a,b; Baker, 1972; Baker & Doris, 

1982; Mitchell et al., 1987; Caputa, 2004; Fuller at al., 2007; Mitchell & Lust, 2008; O’Brien & 

Bourke, 2015; O’Brien, 2016, 2018, 2020; Strauss et al., 2017) that proliferated during periods of 

past aridification (Mitchell & Lust, 2008; Strauss et al., 2017; O’Brien, 2018), such as at the 

Oligocene-Miocene transition (Kennett, 1985; Retallack, 2013; see also Table 1.1). Carotid-rete-

mediated selective brain cooling attenuates evaporative cooling by indirectly reducing the 

temperature of the hypothalamus (Strauss et al., 2017), the temperature response center of the 

brain (Benzmger, 1973; Smiles et al., 1976; Mitchell et al., 1987; McKinley et al., 2008). Within 

arid environments, water scarcity exerts a selective pressure in which utilizing body water for 

evaporative cooling may be more disadvantageous than developing hyperthermia (Schmidt-

Nielsen et al., 1956; Taylor, 1970a,b; Baker, 1989; Baker & Turlejska, 1989; Jessen et al., 1998;  

McKinley et al., 2008; Hetem et al., 2016). Therefore, the conservation of body provided by the 

reduction of evaporative cooling via carotid-rete-mediated selective brain cooling has been 

proposed as a key adaptation to combating the selective constraints imposed by environmental 
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aridity (Fuller et al., 2007; Mitchell & Lust, 2008). The selectively advantageous water-

conserving physiology produced by carotid-rete-mediated selective brain cooling and its 

presence in taxa with pronounced periods of diversification under increasing global aridity 

indicate that carotid retia may be a provide a reliable marker of environmental shifts toward 

aridification. In Chapter III, I will investigate the variation of water economies across several 

mammalian taxa to determine the relationship between environmental constraint (i.e. aridity) and 

conservation of body water through carotid-rete-mediated selective brain cooling using δ18O 

values derived from tooth enamel as a proxy for water metabolism and presence of the carotid 

rete as a metric for aridity resistance. 
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4. Conclusion 

Table 1.1. Timeline of evidence for climatic indicators to environmental aridity across continents 

and through geological time. 
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Global climate change throughout the Cenozoic, especially that resulting in aridification, has 

driven a myriad of adaptations in Ferungulata (artiodactyls, perissodactyls, and carnivorans), 

including characters such as hypsodont dentition, cursorial metapodial traits, cranial appendages, 

and carotid retia. These ecomorphological traits have previously been used as potential indicators 

of factors of environmental aridity, including habitat openness; however, hypsodonty indices and 

anatomical features of cursoriality have been found to provide inconsistent determinations across 

continents. While addressing all of these characters is beyond the scope of this thesis, features 

that influence thermoregulatory physiologies and body water conservation, such as cranial 

appendages and carotid retia, are integral to understanding species’ responses under increasing 

modern global aridification. 
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A FOUNDATIONAL DESCRIPTION OF ANTILOCAPRA AMERICANA HORNCORE 

OSTEOHISTOLOGY 

 

1. Introduction 

Cranial bony projections, otherwise known as “headgear” (Gadow, 1902), have a diversity of 

forms and functions in mammals (Hopkins, 2005; Mihlbachler, 2008; Davis, Brakora & Lee, 

2011; Nasoori, 2020). Most often, headgear is associated with even-toed ungulates, specifically 

the artiodactyl infraorder Pecora, which includes ruminants such as cervids, bovids, giraffids, 

moschids, and antilocaprids (sensu Hassanin et al., 2012; Fig. 2.1). All pecorans – or “horn 

bearers” – are characterized by headgear that are integument-covered osseous protrusions of the 

frontal or parietal bone (Davis, Brakora & Lee, 2011), with the exception of moschids, wherein 

headgear has been secondarily lost (Chen et al., 2019). These cranial appendages serve important 

functions both behaviorally; such as defense, species recognition, mate selection (Bruhin, 1953; 

Kitchen, 1974), and physiologically; such as thermoregulation (Taylor, 1966; Stonehouse, 1968; 

Picard et al., 1996; Picard et al., 1999; Hoefs, 2000). Pecoran headgear is categorized into four 

unique types based on composition and phylogeny, including: 1) bovid “true” horns, or 

permanent bony projections of the frontal bones overlain by a permanent keratinous sheath that 

can be found in both sexes (Janis & Scott, 1987; Davis, Brakora & Lee, 2011); 2) cervid antlers, 

or periodic, branched bony projections from permanent outgrowths of the lateral crest of the 



 18 

frontal bones that are typically only observed in males (Davis, Brakora & Lee, 2011; Landete-

Castelljos et al., 2019); 3) giraffid ossicones, or permanent bony projections of dermal bones 

covered by integument that can be found in both sexes (although only in males in Okapia) 

(Spinage, 1968; Churcher, 1990; Ganey, 1990); and 4) antilocaprid pronghorns, or permanent 

bony projections of the frontal bones overlain by a deciduous keratinous sheath that can be found 

in both sexes (O’Gara, 1990; Davis, Brakora & Lee, 2011). 

 Interests in hunting and animal husbandry have propelled previous studies investigating the 

development, evolutionary and ecological histories, compositions, and functions of headgear in 

cervids (Banks & Newbrey, 1983; Caro et al., 2003; Skedros et al., 2014; Akhtar et al., 2019; 

Wang et al., 2019; Landete-Castelljos et al., 2019; Rössner et al., 2021), bovids (Geist, 1966; 

Jarman, 1974; O’Gara & Matson, 1975; Caro et al., 2003; Davis, Brakora & Stilson, 2014; 

Zhang et al., 2018; Wang et al., 2019), and giraffids (Spinage, 1968; Ganey, 1990; Churcher, 

1990; Badlangana et al., 2011; O’Brien et al., 2016). In contrast, there is a paucity of literature 

on the headgear of antilocaprids, with currently available studies mostly restricted to keratin 

Tragulidae

Antilocapridae

Giraffidae

Cervidae

Moschidae

Bovidae

Figure 1. Phylogeny of Pecora (sensu Hassanin et al. 2012). The artiodactyl supraorder Pecora includes the taxonomic families 

Antilocapridae (image credit: Roberto Díaz Sibaja), Giraffidae (image credit: Public Domain 1.0), Cervidae (image credit: image 

credit: Public Domain 1.0), Moschidae (image credit: Public Domain 1.0), and Bovidae (image credit: Public Domain 1.0). 

Tragulidae (Ruminantia) (image credit: StockImages), serves as the outgroup. 
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sheath growth (O’Gara, 1990) and macroscopic male headgear growth (Brown, Gonzalsez-

Suarez & Hankda, 2006; Mitchell & Maher, 2006) in Antilocapra americana (A. americana) 

(Ord, 1815). Additionally, conflicting descriptions aligning A. americana (or pronghorn) 

headgear growth and hormonal development with the disparate patterns of other pecorans 

(O’Gara & Matson, 1975; Janis & Scott, 1987; Solounias, 1988), have left an understanding of 

pronghorn headgear growth, development, composition, and function unresolved, especially in 

females. Further studies of headgear in A. americana are therefore important with respect to 

understanding how this feature is impacted by its function in the contexts of behavior and 

ecology. 

 The microanatomy of bone tissue has been found to be influenced by four internal and 

external signals: phylogeny, biomechanical function, ontogeny, and environment (Horner et al., 

1999, 2000; de Ricqlès et al., 2001; Padian et al., 2001; Padian & Lamm, 2013). A. americana 

are phylogenetically isolated as the sole extant lineage of Antilocapridae; however, 

investigations of the osteohistology of the their horncores may aid in resolving lingering 

questions about their function, growth and development, and interactions with the environment.  

 A. americana are particularly gregarious (White et al., 2012) and have been observed using 

their headgear for intraspecific social communication (Kitchen, 1974) as well as combat between 

males to gain access to females (Bromley, 1969; Kitchen, 1974). Studies investigating the effects 

of intraspecific male combat in bovids (Snively & Theodor, 2011; Drake et al., 2016; Zhu, 

Zhang & Zhao, 2016; Zhang et al., 2018) found that this behavior was facilitated by the 

microanatomy of the horncores, specifically an increased portion of the cortical area composed 

of remodeled trabecular bone. The functional properties of trabecular bone as a shock absorber 

reduces the load of biomechanical stress that would otherwise be imposed on tissues of the 
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cranial vault by engaging headgear in combat (Romanovskaya et al., 1986; Farke, 2008; Snively 

& Theodor, 2011; Drake, 2016). Given similar behavior in male pronghorns, we predict the 

extensive presence of trabecular bone within the horncore. 

 Other studies of pecoran headgear have found that cranial appendages are also sites of 

physiological processes, such as thermoregulation (Taylor, 1966; Stonehouse, 1968; Picard et al. 

1996; Picard et al., 1999; Hoefs, 2000; Mitchell & Skinner, 2004; Parés-Casanova & Kucherova, 

2014), although similar investigations have not yet been made of A. americana headgear. In 

bovids, the bony horncore is well-vascularized and is surrounded by a permanent keratinous 

sheath. Unlike the horncore, the keratinous sheath is a nonliving tissue, and has been found to be 

a poor insulator of heat radiating from the core surface (Taylor, 1966; Picard et al., 1996). The 

vascularized horncores therefore provide an enlarged surface area through which heat may be 

dissipated, with little insulatory resistance from the keratinous sheath (Taylor, 1966; Picard et al., 

1996). However, while the composition of  A. americana headgear is similar to that of bovids, 

the keratinous sheath is cast annually. Furthermore, female A. americana headgear is smaller 

relative to males or even absent (O’Gara, 1969). Therefore, further investigation of the 

vascularity density of the tissue surrounding the horncore is needed to determine its potential as a 

thermoregulatory structure. The present dearth of literature on A. americana headgear hinders a 

greater understanding of structures that may record important functional and environmental 

factors affecting A. americana. 

This study aims to examine microanatomical features of A. americana horncores, 

including cortical density, cortical porosity, secondary remodeling, cortical drift, and vascular 

density, then correlating them with biomechanical and growth selective pressures of known A. 

americana behavior and ecology. Notably, this study is a foundational work that aims to provide 
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baseline descriptions of adult A. americana horncores to promote further inquiry into other 

relevant realms of investigation, including ontogenetic patterning of the horncore, female 

headgear function, fossil antilocaprid headgear development, and association of A. americana 

headgear with both internal (i.e. thermoregulation) and external (i.e. social displays) characters. 

 

2. Methods 

2.1 Specimen Acquisition 

 We prepared histological slides from one male specimen (WY-DNR Interstate Tag 02005) (Fig. 

2.2-2.3) and one female specimen (WY-DNR Interstate Tag 02004) (Fig. 2.4-2.5) that were 

obtained in 2013 as salvage from game processing centers in Casper, Wyoming, USA, with the 

approval of the Wyoming Department of Natural Resources. No animals were killed for the 

purpose of this study. Specimens were stored frozen until the time of this study. Given the lack 

of deciduous dentition, both specimens are mature individuals (Lubinski, 2001). Additionally, 

both specimens come from wild populations and would have been subject to natural conditions 

affecting skeletal growth of the horncores, including environmental, behavioral, and 

biomechanical stresses. Access to specimens was limited to on-hand individuals at the research 

center due to chronic wasting disease in pronghorn populations (Cullingham et al., 2020).  

 

2.2 Tissue processing and osteohistological slide preparation 

We removed headgear from the head using a water-cooled band saw (JET Tools, Tennessee) to 

section the horncore and sheath as close to the frontal bone as possible. Following removal, each 

specimen was sectioned into approximately 2.5-5 cm fragments that included a transverse 

section of the base of the horncore (Figs. 2.2, 2.4) and a longitudinal section of the shaft (Figs. 
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2.3, 2.5) leading up to the bifurcation of the prongs using a water-cooled tile saw fitted with a 

continuous rim diamond blade (Tilematic TS250X3, Husqvarna, Sweden). To remove 

integument and hair remaining on the horncore, samples were dehydrated in a 10% diluted 

Tergazyme™  (Alconox Inc., New York) solution for 72 hours, then fixed in 10% neutral 

buffered formalin for 48 hours, before being subjected to increasing levels of ethanol (70%, 

85%, 100%) in 24 hour blocks. Finally, samples were cleared in Clear Advantage xylene 

substitute (Polysciences Inc., Pennsylvania) for 6 hours and embedded in an epoxy-based resin 

Epothin2 (Buehler, Illinois Toolworks, Illinois). Samples were sectioned into one mm thin 

sections using an Isomet 1000 diamond-embedded precision saw blade (Buehler, Illinois 

Toolworks, Illinois) and then mounted on plastic slides, allowing 48 hours for specimens to 

adhere to the slide with Starbond cyanoacrylate instant adhesive (Starbond Premium, California). 

Samples were ground into approximately 100-400 μm thin sections with a Buehler Ecomet4 

grinder wheel (Buehler, Illinois Toolworks), and liquid coverslips were applied with Polymount 

(Polysciences Inc., Pennsylvania). Slides were visualized and examined using a Nikon digital 

sight camera and petrographic microscope (DS-U3 and DS-Fi2; Nikon Instruments, New York) 

and photographed using NIS-Elements: Documentation software (F4.00.00; Nikon Instruments, 

New York) under three light regimes: 1) plain, 2) full wavelength cross-polarized, and 3) 

circularly-polarized light.  

For this study, we quantified aspects of the horncore, like cortical density and porosity, using 

IMAGEJ (1.53v; Schneider et al., 2012). Other features of the horncore, such as those resulting 

from bone growth and vascular density, were examined, compared, and categorized based on 

observation of each respective specimen. We specifically categorized types of bone present 

based on porosity (compact vs cancellous/trabecular cortex), the organization of the bony matrix 
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(i.e. lamellar, woven-fibered, parallel-fibered, fibrolamellar, or Haversian), the presence of 

immature, woven (primary) or mature, lamellar (secondary) bone, and the pattern of vascular 

orientation (longitudinal, laminar, plexiform, reticular, or radial) where applicable. Terminology 

was derived from Francillon-Vieillot et al. (1990) and Padian and Lamm (2013). 

 

3. Results 

3.1 Male Pronghorn 

3.1.1 Base of  Horncore (transverse section) 

The medullary region of the bone in this transverse section (Fig. 2.2A-C) (total cortical area = 

671 mm2) is composed of remodeled trabecular cortex (337 mm2 or 50.2% porosity). The outer 

region of the bone (334 mm2) is composed of compact cortex. Compact cortical density is 

between 2521 μm posteromedially and 4080 μm posterolaterally. There is no evidence of annuli 

representative of lines of arrested growth or an external fundamental system (EFS). However, 

this may be due to active remodeling, resulting in the infilling of inner trabecular tissue with 

lamellar tissue, forming compacted coarse cancellous bone (CCCB) (Fig. 2.2D-F), that is 

characterized by erosional tide lines or scalloping throughout the bone (Heck et al., 2019). 

CCCB infill is most prominent posteromedially, where it continues to the periosteal surface, but 

also composed 77% (2095 μm2) and 83% (3387 μm2) of the compact cortical area of the 

posterior and posterolateral aspects of the base of the horncore respectively. Measurements from 

the anterior side of the bone were difficult to calculate as the boundaries between periosteal-

derived and CCCB tissue were obscured by secondary osteons. The majority of compact cortex 

is composed of CCCB, except for approximately 613-693 μm (in posterior and posterolateral 

aspects respectively) of primary tissue at the periosteal surface. The thin outer cortex of compact 



 24 

tissue at the periosteal surface is classified as fibrolamellar bone due to its high vascular density, 

lamellar primary osteons, and woven-fibered matrix (Padian & Lamm, 2013).  

 

3.1.2 Shaft of horncore (longitudinal section) 

 The bone of the longitudinal section of the shaft of the horncore (Fig. 2.3) is similar to that of 

the base. The cortical area is primarily remodeled trabecular cortex, and, deep to the periosteal 

surface, the presence of a woven-tissue scaffold with lamellar infill forming primary osteons and 

a high vascular density is indicative of fibrolamellar bone. Notably, scalloping that demarcates 

the transition from CCCB to fibrolamellar bone is less clear than in the transverse section, 

especially more proximally.  

 

500um 500um 500um

1000um 1000um1000um A B C
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Figure. 2 Osteohistological features of WY-DNR Interstate Tag 02005 (Male) Horncore 
Base/Transverse Section. Transverse section of base of horncore under plain (A,D), full wavelength 

cross-polarized (B,E), and circularly polarized (C,F) light. The inner medullary region is composed of 

remodeled trabecular cortex, and the outer, compact cortical area is composed of compacted coarse 

cancellous bone (CCCB) proximally and fibrolamellar bone (FLB) distally. A dashed line indicates the 

line of resorption delineating the transition from CCCB to FLB within the compact cortex of the lateral 

side of the base of the horncore (D-F). The layer of t was not maintained in the male specimen. 
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3.2 Female  

3.2.1 Base of Horncore (transverse section)  

The medullary region of the bone in this transverse section (Fig. 2.4) (total cortical area = 545 

mm2) is composed of remodeled trabecular cortex (202 mm2 or 37% porosity). The outer region 

of the bone is composed of compact cortex (343 mm2). Compact cortical density is between 2091 

μm posterolaterally and 2815 μm posteromedially. In contrast to the male specimen, CCCB 

made up only 42% (1172 μm2) of the compact cortical area posteromedially, although it made up 

77% (1617 μm2) of the posterolateral compact cortical area. The outer layer of compact cortex, 

near the periosteal border, is composed of primary bone classified as fibrolamellar bone due to 

its woven-fibered matrix, lamellar primary osteons, and high vascular density (Fig. 2.4B,E,H), 
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Figure 2.3. Osteohistological features of WY-DNR Interstate Tag 02005 (Male) Horncore Shaft/Longitudinal Section. 
Longitudinal section of the shaft of the horncore under plain (A), full wavelength cross-polarized (B), and circularly 

polarized (C) light. The composition of the shaft is similar to the base (Figure 2.2) in that it is composed of remodeled 

trabecular cortex, and the compact cortical area is composed of CCCB deep to FLB, which rests at the periosteal surface. 

It is notable that the tide lines demarcating the transition from CCCB to FLB is less clear than in the transverse section, 

especially more proximally. 
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although it should also be noted there is also a high density of secondary osteons. The tissue 

between the horncore and the keratinous sheath was maintained in the female specimen (Fig. 

2.4C,F,I), and shows evidence of reticular vascularization (Padian & Lamm, 2013) near the 

periosteal surface.   

 

3.2.2 Shaft of horncore (longitudinal section)  

The bone of the longitudinal section of the shaft of the horncore (Fig. 2.5) is similar to that of the 

base. The medullary cortical area is primarily remodeled trabecular cortex. Notably, there is no 

clear evidence of CCCB in the longitudinal section of the female specimen; however, at the 

Figure 2.4. Osteohistological features of WY-DNR Interstate Tag 02004 (Female) Horncore Base/Transverse 
Section. Transverse section of base of horncore under plain (A-C), full wavelength cross-polarized (D-F), and 

circularly polarized (G-I) light. The inner medullary region is composed of remodeled trabecular cortex, and the 

outer, compact cortical area is composed of CCCB proximally and FLB distally. A dashed line indicates where 

CCCB has been resorbed and has since been overlain by the primary bone of FLB, delineating the transition from 

CCCB to FLB within the compact cortex of the posterolateral side of the base of the horncore (B,E,H). Integument 

was maintained in the female specimen. Images of the posterolateral side of the base of the horncore (C,F,I) show 

blood vessels (arrow) run throughout the integument covering the horncore, beneath the deciduous keratin sheath. 

The vascular pattern is characterized as reticular, given that the vessels are oblique in section (Padian & Lamm, 

2013).  
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periosteal surface, the presence of primary bone with a woven-fibered matrix, lamellar-oriented 

primary osteons, and high vascular density is indicative of fibrolamellar bone. In the layer of 

tissue between the horncore and the keratin sheath, reticular vasculature continues along the shaft 

of the horncore, beyond its attachment to the frontal bone.  

 

 

4. Discussion 

This study provides the first evidence that the microanatomy of the A. americana horncore is 

likely related to its function in behavior and environmental interaction. The inner medullary 

region of the base of the male A. americana horncore (Fig. 2.2) is composed primarily of 

remodeled trabecular cortex (50.2% pore space). This microanatomy may play a role in shock 

absorption during intraspecific combat. Previous studies investigating the effects of combat on 

headgear microanatomy in bovids (Snively & Theodor, 2011; Drake et al., 2016; Zhu, Zhang & 

Zhao, 2016; Zhang et al., 2018), have found the horn absorbs and transfers the force of impact 

from the keratinous sheath to a layer of fluid between the sheath and the horncore, then to the 

1000um 1000um
1000um
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Figure 2.5. Osteohistological features of WY-DNR Interstate Tag 02004 (Female) Horncore Shaft/Longitudinal 
Section. Longitudinal section of the shaft of the horncore under plain (A), full wavelength cross-polarized (B), 

and circularly polarized (C) light. The composition of the shaft is similar to the base (Figure 2.4) in that the 

inner, medullary region is composed of remodeled trabecular cortex, and the outer, compact cortical area is 

composed of FLB. There is no clear evidence of CCCB in the longitudinal section of the female specimen. In the 

integument, reticular vasculature continues along the shaft of the horncore. 
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horncore and the frontal sinus -- which pneumatizes in the horncores of bovids – and, finally, to 

the muscles of neck and shoulder girdle. The bovid horncore itself is composed mostly of 

trabecular cortex (Li et al., 2011; Cappelli et al., 2017) that serves to absorb and dissipate impact 

energy and protect the brain cavity (Currey, 1988; Drake et al., 2016; Zhu, Zhang & Zhao, 2016; 

Cappelli et al., 2017) as males engage in ramming, stabbing, fencing, and wrestling with their 

headgear (Vander & Dumont, 2019). In wild populations of A. americana, males interlock their 

pronged horns, and push and twist against their opponent (Zhang et al., 2018) in order to 

compete for access and control of females and territory (Bromley, 1969; Kitchen, 1974; O’Gara, 

1990). Given the function of the trabecular cortex as a microanatomical shock absorber in 

bovids, it likely serves a similar purpose in A. americana horncores. 

 Perhaps the most surprising result of this study was the presence of CCCB in the compact 

cortical area (Fig. 2.2D-F). CCCB refers to lamellar bone tissue that infills trabecular cortex, 

thereby compacting it (Heck et al., 2019). Its presence was unexpected as CCCB is most 

typically found in the metaphyseal region of long bones (Enlow, 1963), which develop through 

endochondral ossification rather than the intramembranous ossification that is characteristic of 

the bones of the cranial vault, including the frontal bones of which A. americana horncores are 

processes. Under this assumption, the presence of CCCB indicates that, similar to long bones, the 

horncore is load-bearing. This is further corroborated by the extensive presence of trabecular 

cortex, which likely reduces biomechanical stresses incurred by male-male combat. While it is 

not possible within the context of the present study to determine if A. americana horncores 

exhibit endochondral growth, there is some precedent for the presence of endochondral bone in 

pecoran headgear, namely in cervid pedicles (Li ,2013; Landete-Castelljos et al., 2019). Further 

studies investigating the ontogenetic patterning of A. americana headgear should therefore test 
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for the presence of endochondral ossification. Alternatively, evidence of CCCB within A. 

americana horncores may indicate that intramembranous bones may also be able to produce 

CCCB, rather than being restricted to endochondral processes as previously assumed (Enlow, 

1963). To further investigate this, future studies of other pecoran headgear should be especially 

diligent to check for the presence of CCCB. The ongoing internal compaction of trabeculae by 

CCCB in the mature male specimen also suggests that the compaction rate of the horncore is 

superseded by its rate of elongation. This is supported by the presence of fibrolamellar bone at 

the periosteal surface, indicating that male A. americana horncores are growing rapidly, and then 

compacting later in development. 

 At the edges of the compact cortical area, the presence of fibrolamellar bone at the 

periosteal surface (Fig. 2.2D-F) is indicative of a high growth rate (de Margerie et al., 2002). 

This is further corroborated by studies that have found male A. americana possess precocial 

headgear growth, displaying mature, functional headgear in only 2-3 years (O’Gara & Janis, 

2004; Mitchell & Maher, 2006). Comparatively, other pecorans achieve full-size headgear in 6-8 

years (Mattioli et al., 2021). Given that sexually selective pressures have often been attributed to 

the evolution of headgear in other male pecorans (Geist, 1966; Bro-Jørgensen, 2007), it is 

possible that osteohistological signals of rapid growth in A. americana headgear, notably 

fibrolamellar bone at the periosteal surface, could indicate similar sexually selective pressures 

driving precocial growth in A. americana. Additionally, the presence of fibrolamellar bone at the 

periosteal surface implies that the horncores were still growing at the time of death. 

Fibrolamellar bone is typically found in juvenile individuals undergoing rapid growth and is 

remodeled into secondary Haversian bone upon skeletal maturation (de Margerie et al., 2002; 

Mori et al., 2005). Therefore, the presence of osteohistologically immature bone in the horncores 
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of sexually mature A.americana may indicate that skeletal maturity of the horncores is achieved 

after sexual maturity of the individual. Alternatively, it could indicate that horncore growth may 

be indeterminate, growing continuously throughout the individual’s life. However, further 

studies investigating the growth of the horncore throughout ontogeny are needed.    

 The female specimen differs from the male in several notable ways. Most basically, 

female A. americana possess smaller headgear than males or even lack it altogether (O’Gara, 

1969, 1990). Microanatomically, the majority of the cortical area in the inner medullary region 

of the female specimen (Fig. 2.4) is more compact (less pore space) than the male. This may be 

an indication of lower or less frequent biomechanical stress loads (Zhang et al., 2018), as females 

do not engage in the same intraspecific combat as males (Bromley, 1969; Kitchen, 1974; 

O’Gara, 1990). Interestingly, female A. americana retain their keratin sheaths after the rut and 

cast them at irregular intervals throughout the year in comparison to the immediate post-rut 

casting of the sheath in males (O’Gara, 1969). Currently, there is no literature investigating the 

function of headgear in female A. americana; however, studies of female reindeer, which also 

possess cycles of headgear growth and casting asynchronous with that of males (Loe et al., 

2019), have observed that females use their headgear to aid in browsing, and in competition with 

other females and antlerless males for food acquisition during gestation (Lincoln & Tyler, 1999; 

Nasoori, 2020 and references therein). Behavioral studies are needed to illuminate if similar 

mechanical and/or ecological stresses are present in A. americana females.  

There is also evidence of less CCCB in the female horncore (Fig. 2.4B,E,H) compared to the 

male (Fig. 2.2D-F) -- an average of 59.2% of the compact cortical area in the female compared 

to an average of 91.5% in the male. As female A. americana do not use their headgear for mate 

competition as observed in males, there is likely less selective pressure to develop functional 
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headgear, and, therefore, compaction rate exceeds rate of elongation. Similarly to the male, the 

presence of fibrolamellar bone at the periosteal surface in a mature specimen implies that the 

female A. americana horncore may have a delayed offset of growth or possibly indeterminate 

growth.  

The tissue between the keratin sheath and the horncore was preserved in the female (Fig. 

2.4C,F,I) and shows evidence of reticular vascularization (vessels oblique in section; Padian & 

Lamm, 2013), which, similar to the presence of fibrolamellar bone, is indicative of a high growth 

rate (Padian & Lamm, 2013). This vascularization may serve as a potential source for the 

diffusion of nutrients that contribute to the annual growth of a deciduous keratin sheath, or, as 

established in previous literature on other pecorans, as a site of heat load diffusion (Taylor, 1966; 

Stonehouse, 1968; Ganey, 1990; Picard et al., 1996; Picard et al., 1999; Hoefs, 2000). In bovids, 

the bony horncore provides an increased vascular surface and the overlaying keratinous sheath 

has little resistance to heat flow (Taylor, 1966; Picard et al., 1996; Picard et al., 1999). Arterial 

blood from the central arteries circulates through capillaries in two layers of tissue: the 

periosteum, adjacent to the horncore, and the corium, adjacent to the keratinous sheath (Taylor, 

1962, 1966; Picard et al., 1999; Hoefs, 2000). If arterial blood temperature at the base of the 

horncore exceeds ambient temperature, excess heat will be transferred across the blood-keratin 

boundary by forced convection, then through the poorly-insulated keratinous sheath via 

conduction, and, finally dissipated into the environment by either free or forced convection 

(Picard et al.,1999). The relationship between climatic temperature and headgear is strong 

enough that variation in the former affects both the core-to-sheath ratio and the thickness of the 

keratinous sheath (Picard et al., 1996). In previous studies, bovids in hotter climates tended to 

possess larger horncores and thinner sheaths, whereas those inhabiting more temperate climates 
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possessed smaller horncores and thicker sheaths (Picard et al., 1996; Picard et al.,1999;  Hoefs 

2000). The reduction in the size of the horncore and the increased thickness of the sheath in more 

temperate bovids serves to decrease the vascular surface area and increase resistance to heat flow 

respectively; thereby attenuating overall heat loss (Picard et al., 1996; Picard et al., 1999). 

Giraffid ossicones are also highly vascularized (Ganey, 1990; O’Brien et al., 2016) and, as a 

result, have been suggested as also having thermoregulatory properties (Mitchell & Skinner, 

2004). Given the presence of reticular vascularization of the tissue surrounding the A. americana 

horncore, it is likely that pronghorn headgear similarly plays a role in thermoregulation. 

However, due to the deciduous nature of the keratin sheath in A. americana, this function 

requires further inquiry. 

Overall, A. americana horncores tend to be composed mostly of remodeled, porous 

trabecular cortex, and are fast-growing. They also possess evidence of CCCB, which implies 

potential endochondral ossification or that CCCB may not be restricted to endochondral 

processes as previously believed. These features allow for the rapid development of mature 

headgear with microanatomy that facilitates intraspecific combat in males, although their current 

function in females is unknown and requires further investigation. The overlaying reticular 

vasculature may contribute to physiological processes, such as nutrient diffusion or 

thermoregulation; however, additional studies on the arterial network around the horncore are 

needed.  

Conclusion 

Despite their accessibility, the headgear of A. americana have been significantly understudied in 

comparison to other pecorans. Therefore, the aim of this study was to provide a foundational 

knowledge of the osteohistology of A. americana headgear. Slides of two adult specimens (one 
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male and one female) were prepared under standard osteohistological conditions. Although a 

larger dataset with better-known life histories is preferable, the specimens used in this study were 

utilized due to their accessibility. The results of this study found that A. americana horncores 

were composed mostly of remodeled, porous trabecular cortex, were fast-growing, and exhibited 

some potential features of bone undergoing endochondral ossification, namely the presence of 

CCCB tissue -- although alternative hypotheses, such as the presence of CCCB in non-

endochondral bone, are also viable. The male horncore was considerably more porous than the 

female and also contained a greater quantity of CCCB, indicative of a higher rate of elongation 

than compaction. Both of these features are mechanically beneficial in promoting the rapid 

growth of strong, shock-absorbent headgear for male-specific behaviors, such as intraspecific 

combat. In contrast, the female horncore tended to be more compact, with less compact cortical 

area composed of CCCB, indicating potential lower biomechanical stress loads to the female 

horncore and greater rates of compaction than elongation respectively. This is further 

corroborated as female A. americana headgear tends to be smaller or even absent. Slides from 

the female specimen also included preserved tissue between the horncore and the keratinous 

sheath, which showed a reticular vascular pattern that was further indicative of rapid growth, and 

a potential source of nutrient circulation and heat dispersal.  

Future studies should address the ontogenetic patterning of A. americana horncores 

comparable to similar studies performed in other pecoran taxa (Dove, 1935; Janis & Scott, 1987; 

Goss, 1983; Ganey, 1990; Li & Suttie, 1994; Solounias, 2007); headgear function, especially of 

female A. americana; and osteohistology of fossil antilocaprids, which are currently diagnosed 

primarily by their headgear (Davis, 2007). 
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CHAPTER III 

VARIANCE OF CAROTID-RETE-MEDIATED SELECTIVE BRAIN COOLING ACROSS 

ARIDITY INDICES 

1. Introduction 

Species-environment interactions are integral to survivorship, even more so when those 

environments test the extremes of organismal physiology. Hot and arid environments exemplify 

this relationship as the environment imparts direct effects on individuals through greater heat 

gain via high solar radiation and ambient temperatures, as well as imposing increased rates of 

evaporative water loss to dissipate heat load in spite of minimal access to water and food 

resources (Feldhamer et al., 1999; Fuller et al., 2014). Species have developed myriad 

morphological, behavioral, and physiological strategies to contend with these harsh 

environmental conditions. Morphological adaptations that may reduce heat load and minimize 

water loss include body size and shape, pelage characteristics, and patterns of fat deposition 

(Louw & Seely, 1982; Cain et al., 2006). Behavioral strategies, such as shade-seeking (Cain et 

al., 2006; Fuller et al., 2016), diet selection (Taylor, 1968, 1969; Schmidt-Nielsen, 1979; Jhala et 

al., 1992), use of microhabitats (i.e. burrowing) (Taylor and Lyman, 1967; Bigalke, 1972; Sowls, 

1997; Tull et al., 2001), temporal niche switching (i.e. nocturnality) (Zervanos & Hadley, 1973; 

Belovsky & Jordan, 1978; Grenot, 1992; Hayes & Krausman, 1993; Sargeant et al., 1994; 

Berger, 1999; Dussault et al., 2004; Maloney et al., 2005a), and postural changes (Berry et al., 

1984; Fryxell & Sinclair, 1988; Maloney et al., 2005b) can also reduce heat stress, but may come
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at the cost of energy and water acquisition (Fuller et al., 2016). Physiological strategies, 

including thermal windows and peripheral vasodilation (Tattersall et al., 2012), reduction of 

water loss in feces and urine (Maloiy et al., 1979; Cain et al., 2006), and utilization of 

evaporative cooling, such as panting, sweating, and cutaneous evaporation (Robertshaw & 

Taylor, 1969; Bligh, 1972; Jenkinson et al., 1972; Sokolov, 1982; Simon et al., 1986; Jessen, 

2001; Robertshaw, 2006), are also efficient, but similarly incur a high amount of evaporative 

water loss (Fuller et al., 2016). Mechanisms that enable thermoregulation at the cost of body 

water may lead to physiological dysfunctions such as dehydration (Kuhnen, 1997; McKinley et 

al., 2008), heat stress (Laburn et al., 1988; Kuhnen, 1997), or even fatality (Shibolet et al., 1976). 

Thus, competing homeostatic demands arise between the maintenance of body temperature and 

body water conservation (McKinley et al., 2008). 

Large-bodied mammals (>50 kg) possess a lower surface area-to-volume ratio than 

small-bodied mammals, resulting in higher thermal inertia (Fuller et al., 2016; Hetem et al., 

2016). This means that their body temperatures are comparatively slower to change in response 

to changes in ambient temperature. A relatively high thermal inertia insulates large-bodied 

mammals from the thermal consequences of radiant heat loads and aids in the conservation of 

body water by allowing body temperature to rise during the day, thereby increasing the gradient 

for dry heat loss to the environment (Mitchell et al., 1987; Mitchell et al., 2002; Fuller et al., 

2016). Stored heat load is then dissipated via non-evaporative cooling, such as convection and 

radiation, when ambient temperatures have significantly decreased (Mitchell et al., 2002). 

However, large body size prevents the utilization of some behavioral and evaporative 

thermoregulatory strategies. The variety of microhabitats available to an individual is inversely 

related to body size (Fuller et al., 2016); therefore, behavioral strategies, such as shade-seeking 
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and burrowing, which are widely used by small-bodied mammals (Walsberg, 2000), may 

become less efficient or inaccessible to large-bodied mammals. Other competitive stressors, like 

predation, may also prevent large-bodied mammals from temporal niche switching (Fuller et al., 

2014). 

Additionally, large-bodied mammals have considerably higher energetic demands 

(Calder, 1996); as a result, they are more likely to expend a relatively greater proportion of their 

water budget on thermoregulatory behaviors (Kuhnen, 1997; Hetem et al., 2016). Notably, large 

body size is associated with increased use of cutaneous evaporative cooling, as a low surface 

area-to-volume ratio results in lower rates of non-evaporative heat loss (Cain et al., 2006; Hetem 

et al., 2016). Compared to other forms of evaporative cooling, such as panting, which is typically 

employed by small-bodied mammals (Robertshaw, 2006), cutaneous evaporation has a higher 

rate of evaporative water loss (Jessen, 2001). Therefore, despite the benefits toward body water 

conservation provided by large body size, risk of dehydration remains prevalent as a result of 

reduced access to thermoregulatory strategies, higher energetic demands, and lower rates of non-

evaporative heat loss. Without a physiological mechanism for conserving water, large mammals 

may be more challenged in arid environments than small mammals.  

 In arid ecosystems, artiodactyls – the “even-toed” ungulates – (Yousef, 1976; Jones et al., 

2009) and carnivorans (Wagner, 1980; Cloudsley-Thompson, 1993,1996) comprise the majority 

of large-bodied mammals capable of living in high aridity environments due to physiological 

mechanisms that combat heat stress and water loss. Artiodactyls and feliform carnivores in 

particular possess specialized physiology that increases the conservation of body water by 

reducing brain temperature below core body temperature known as carotid-rete-mediated 

selective brain cooling (CR-SBC) (Baker & Hayward, 1968a,b; Baker, 1972; Baker & Doris, 
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1982; Mitchell et al., 1987; Caputa, 2004; Fuller at al., 2007; Mitchell & Lust, 2008; O’Brien & 

Bourke, 2015; O’Brien, 2016; Strauss et al., 2017; O’Brien et al., 2018, 2020). The carotid rete is 

a meshwork of cranial vasculature that anatomically and functionally replaces the internal carotid 

artery in supplying the brain (Daniel, Dawes & Prichard, 1953; Nickel & Schwarz, 1963; Kanan, 

1970; Gillilan, 1974; Carlton & McKean, 1977; Schummer et al., 1981; Dieguez et al., 1983; 

Wible, 1984; Frackowiak, 2006; O’Leary, 2010; Frackowiak et al., 2015; O’Brien et al., 2018, 

2020). It rests within the subdural cavernous venous sinus at the base of the forebrain (notably, 

the carnivoran rete resides in the pterygoid plexus; Daniel, Dawes & Prichard, 1953; Baker & 

Hayward, 1967; Baker, 1972, 1982; Mitchell et al., 1987; Caputa, 2004), which receives blood 

returning to the body from the nasal turbinates via the angularis oculi vein (Jessen et al., 1998). 

Nasal turbinates are bony, shelf-like structures within the nasal airway that are covered by a 

well-vascularized layer of mucosa.  The cavernous venous sinus receives blood that has been 

cooled by the evaporation of water during inspiration (Negus, 1958; Walker et al., 1961; Romer 

and Parsons, 1986). Typically, respiration results in evaporative water loss. However, as air is 

inspired over the nasal turbinates, the moisture from the ambient air cools the surface of the 

turbinates via evaporation (Negus, 1958; Walker et al., 1961; Romer and Parsons, 1986). Upon 

exhalation, warmed and moistened air passes across these cooled turbinates and the moisture 

condenses. As a result, moisture is maintained within the nasal passages rather than being lost to 

the environment, and body water is conserved (Negus, 1958; Walker et al., 1961; Romer and 

Parsons, 1986). The thin vessel walls and high surface area of the rete allow for rapid counter-

current heat exchange between warm arterial blood travelling to the brain from the central 

arteries and inspirationally-cooled venous blood draining from the nasal turbinates (Taylor, 

1966; Baker & Hayward, 1967; Hayward & Baker, 1969; Taylor & Lyman, 1972; Baker & 
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Chapman, 1977; Baker, 1982; Johnsen et al., 1985; Mitchell et al., 1987; Johnsen & Folkow, 

1988; Baker & Nijland, 1993; Mitchell et al., 2002; Maloney et al., 2007; Strauss et al., 2017; 

O’Brien et al., 2020), thus lowering the temperature of arterial blood perfusing the brain and 

generating selective brain cooling (Baker, 1982; Mitchell et al., 1987). Singular arteries within 

the cavernous sinus, such as an internal carotid artery, do not possess the vascular characteristics 

necessary to facilitate the same arterial blood cooling as the carotid retia (Nunneley & Nelson, 

1994; Nelson & Nunneley, 1998). 

 In addition to their presence in almost all extant terrestrial artiodactyls (Ask-Upmark, 

1935; Daniel, Dawes & Prichard, 1953; Baker & Hayward, 1968a,b; Finch, 1972; Gillilan, 1974; 

Carlton & McKean, 1977; Baker, 1982; Jessen & Feistkorn, 1984; Johnsen et al., 1987; Mitchell 

et al., 1987; Johnson & Folkow, 1988; Kuhnen & Jessen, 1991; Kuhnen & Mercer, 1993; Jessen 

et al., 1994; Kuhnen, 1997; Mitchell et al., 1997; Fuller et al., 1999; Maloney et al., 2002; Lust et 

al., 2007; Hébert et al., 2008; Hetem et al., 2012; Frackowiak et al., 2015; Kieltyka-Kurc et al., 

2015; Strauss et al., 2016; O’Brien, 2016), well-developed carotid retia have also been described 

in feliform carnivores (Daniel, Dawes & Prichard, 1953; Baker & Hayward, 1967; Baker, 1972; 

Kamijyo & Garcia, 1975; Baker & Doris, 1982; Kier et al., 2019) and a rudimentary rete has 

been described in domestic dogs (Daniel, Dawes & Prichard, 1953; Magilton & Swift, 

1967,1969; Gillilan, 1976; Baker & Chapman, 1977; White et al., 1983; Baker, 1984a). The full 

taxonomic breadth of the rete within Carnivora remains uninvestigated. However, CR-SBC is 

conspicuously absent in tragulids (Fukuta, 2007; O'Brien, 2015), hippos (O'Brien, 2016; Strauss 

et al., 2017), and sister taxon (sensu Hassanin et al., 2012), such as perissodactyls, primates, 

rodents and lagomorphs, and other large herbivores (ex: proboscideans) (Ask-Upmark, 1935; 

Sisson & Grossman, 1967; Gillilan, 1974; Jessen, 2001; Mitchell et al., 2002).   
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 Historically, it was hypothesized that CR-SBC served to insulate the brain from thermal 

stress (Taylor, 1966; Baker & Hayward, 1967,1968; Magilton & Swift, 1968; Baker, 1972, 1989; 

Taylor & Lyman, 1972; Baker & Chapman, 1977; Mitchell et al., 1987); however, more recent 

studies have found this hypothesis to be invalid under both hot (Mitchell et al., 2002) and cold 

(Aas-Hansen et al., 2000) conditions. Instead, as Kuhnen and Jessen (1991) first proposed, the 

function of CR-SBC is now widely accepted as a mechanism for conserving body water (Kuhnen 

& Jessen, 1991; Jessen et al., 1998). CR-SBC achieves this by indirectly reducing the 

temperature of the hypothalamus (Strauss et al., 2017), the region of the brain that is primarily 

responsible for maintaining thermal homeostasis (Benzmger, 1973; Smiles et al., 1976; Mitchell 

et al., 1987; McKinley et al., 2008). In animals with CR-SBC, hypothalamic temperature is 

determined by the temperature of arterial blood that has already passed through the rete 

(Hayward et al., 1966; Strauss et al., 2015). Changes to hypothalamic temperature can 

significantly alter signals sent to the rest of the body in response to heat stress (Jessen & Kuhnen, 

1996; Kuhnen, 1997). For example, if hypothalamic temperatures elevate, heat loss effectors, 

such as panting and sweating, become more pronounced (Mitchell et al., 1987). By cooling the 

hypothalamus, CR-SBC therefore counters these thermal responses, resulting in reduced 

evaporative water loss and conservation of body water (Taylor, 1970a,b; Taylor & Lyman, 1972; 

Robertshaw & Demi’el, 1983; Baker, 1984b; Jessen & Feistkorn, 1984; Kuhnen & Jessen, 1991; 

Kuhnen, 1997; Maloney & Mitchell, 1997; Aas-Hansen et al., 2000; Robertshaw, 2006; Fuller et 

al., 2007; Mitchell & Lust, 2008; Strauss et al., 2015, 2017; Fuller et al., 2016). As hyperthermia 

increases and evaporative cooling is attenuated by CR-SBC, heat load removal switches to non-

evaporative cooling (Caputa et al., 1986; Laburn et al., 1988; Jessen et al., 1994, 1998; Kuhnen, 

1997; Mitchell et al., 1997; Jessen et al., 1998; Fuller et al., 1999, 2005; Jessen, 2001; Maloney 
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et al., 2002; Mitchell et al., 2002; Mitchell & Lust, 2008), such as radiation and convection 

(Jessen et al., 1998; Mitchell et al., 2002). Additional studies have found that CR-SBC becomes 

enhanced during periods of dehydration (Taylor, 1970a; Maloiy, 1973; Finch & Robertshaw, 

1979; Baker & Doris, 1982; Baker & Nijland, 1993; Baker, 1984a,b, 1989; Dmi’el, 1986; 

Nijland & Baker, 1992; Silanikove, 1994; Jessen et al., 1998; Mitchell et al., 2002; Fuller et al., 

2007; Strauss et al., 2015). Water deprivation, including that brought on by environmental 

factors such as aridity, seems sufficient to upregulate CR-SBC (Hetem et al., 2012). Overall, 

suppression of evaporative cooling via CR-SBC, even under increasing dehydration and 

hyperthermia, implies that large-bodied mammals capable of this physiology prioritize 

conservation of body water over the maintenance of thermal homeostasis (Schmidt-Nielsen et al., 

1956; Taylor, 1970a,b; Baker, 1989; Baker & Turlejska, 1989; Jessen et al., 1998;  McKinley et 

al., 2008; Hetem et al., 2016). Thus, CR-SBC may release large bodied mammals from 

physiological constraints associated with evaporative water loss. 

 Given the known function of the rete as a mechanism of body water conservation, we 

hypothesize that CR-SBC releases large-bodied mammals from evolutionary water budget 

constraints that would otherwise be disadvantageous to large mammals in environments where 

water is scarce. To investigate this, we model the range of variance in water metabolism, via a 

proxy of tooth enamel δ18O values, across individuals from species that possess a carotid rete 

against those without from three different environmental categories – arid, dry subhumid, and 

humid. Large-bodied mammals without CR-SBC are likely more constrained in their metabolism 

of water, so we expect to see a comparatively lower amount of variance in δ18O values in 

mammals without a carotid rete. We further expect these differences in δ18O to be of a higher 

magnitude within arid climates. As the environment becomes more humid (increased water 
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availability), we expect to see this variation equalize between large mammals with and without 

CR-SBC. Essentially, we expect that as water availability increases (thereby removing the 

selective pressure of aridification), the selective advantage of CR-SBC will be reduced. 

 Stable oxygen isotope (δ18O) analysis has commonly been used in paleoclimate 

reconstructions because δ18O values of precipitation are sensitive to temperature, precipitation, 

humidity, and vapor transport (Dansgaard, 1954, 1964; Gat, 1980, 1996; Yurtsever & Gat, 1981; 

Ayliffe & Chivas, 1990; Rozanski et al., 1993; Kohn & Cerling, 2002; Vachon et al., 2010a,b; 

Welker, 2012; Liu et al., 2014; Winnick et al., 2014; Daniels et al., 2017; Bailey et al., 2019; 

Pederzani & Britton, 2019). Therefore, δ18O values can serve as a proxy for regional terrestrial 

temperature and precipitation (Longinelli, 1984; Fricke et al., 1998; Fortelius et al., 2002; Levin 

et al., 2006; Koch, 2007; Eronen et al., 2010; Fraser & Theodor, 2013), wherein greater δ18O 

values are indicative of more arid conditions (Dansgaard, 1964; Luz et al., 1984; Kohn, 1996; 

Yann et al., 2013). This includes the δ18O composition of bioapatite, which is derived from tooth 

enamel. δ18O values in enamel are affected by additional non-climatic variables, such as diet, 

metabolic rates, and water turnover (Longinelli, 1984; Luz et al., 1984; Bryant & Froelich, 1995; 

Kohn, 1996; Levin et al., 2006), with the primary determining factor being body water (Kohn & 

Cerling, 2002). Hypsodont (high-crowned) tooth enamel records multiple years of body water 

δ
18O composition, and records changes in consumed meteoric waters (Fricke et al., 1998; Kohn 

et al., 1998; Balasse, 2002; Passey & Cerling, 2002; Hoppe et al., 2004; Zazzo et al., 2012). 

While tooth enamel stable oxygen isotope analysis has been applied across a broad range of 

mammalian taxa, including those with (artiodactyls and carnivores) and without (perissodactyls, 

proboscideans, rodent, and lagomorphs) CR-SBC (MacFadden & Cerling, 1994; Fricke et al., 

1998; MacFadden, 1998; Larson et al., 2001; Higgins & MacFadden, 2004; Feranec & 
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Macfadden, 2006; DeSantis et al., 2009; Feranec et al., 2010; Uno et al., 2013; Blumenthal et al., 

2014), the presence of dentition capable of recording environmental parameters of interest on 

relevant timescales, as well as their abundance in the fossil record and large spatial and temporal 

range, makes artiodactyls ideal specimens to study as indicators of climate (Fraser et al., 2021). 

Levin et al. (2006) presented that δ18O values of tooth enamel relative to meteoric water values 

can be used as an aridity index to separate the influences of temperature and precipitation by 

examining taxa with demonstrated sensitivity to water deficits (Levin et al., 2006; Yann et al., 

2013), such as those possessing CR-SBC. The application of an aridity index allows for large-

scale comparisons of relative aridity despite complex effects of climatic variables on δ18O values 

of precipitation (Yann et al., 2013). 

  

2. Materials and Methods 

2.1 Materials: The dataset for this study (Table 3.1) is composed of δ18O values of tooth enamel 

representing 6 families of Artiodactyla (Bovidae, Cervidae, Giraffidae, Suidae, Hippopotamidae, 

Camelidae), 3 families of Perissodactyla (Equidae, Rhinoceortidae, Tapiridae), Ursidae from 

Carnivora, as well as other large-bodied mammals that are within overlapping ecological 

communities, including Elephantidae, Hominidae, and Hylobatidae, for a total of 1256 

specimens. Aridity indices (AI) – the ratio of annual precipitation to evaporation (UNEP, 1992; 

Williams & Balling, 1986; Gringof & Mersha, 2006) -- from the World Atlas of Desertification 

(WAD) (European Commission Joint Research Centre) were used with dataset δ18O values to 

create three environmental categories: arid (AI < 0.5), dry subhumid (0.5 < AI < 0.65), and 

humid (AI > 0.65) (Middleton & Thomas, 1997). Specimens that were from captive zoological 

collections were evaluated based on their endemic range.  



 43 

Taxon CR Average δδδδ18O 

values 

Aepyceros_melampus 1 33.93174792 

Ailuropoda_melanoleuca 0 18.2 

Alcelaphus_buselaphus 1 32.91461316 

Beatragus_hunteri 1 32.82160489 

Capra_sibirica 1 23.850152 

Capra_walie 1 30.9527774 

Cephalophus_callipygus 1 29.348072 

Cephalophus_dorsalis 1 31.48624745 

Cephalophus_leucogaster 1 30.60469034 

Cephalophus_natalensis 1 27.23338184 

Cephalophus_nigrifrons 1 28.32722559 

Cephalophus_silvicultor 1 27.76922401 

Cephalophus_weynsi 1 28.04008247 

Ceratotherium_simum 0 33.98625346 

Cervus_elaphus 1 27.7468028 

Connochaetes_gnou 1 34.21235672 

Connochaetes_taurinus 1 32.23126929 

Damaliscus_korrigum 1 33.09234199 

Damaliscus_lunatus 1 31.564421 

Diceros_bicornis 0 31.02499593 

Equus_burchellii 0 33.27143047 

Equus_grevyi 0 37.64058813 

Eudorcas_thomsonii 1 34.09027323 

Giraffa_camelopardalis 1 35.17131849 

Hippopotamus_amphibius 0 28.95712255 

Hippotragus_niger 1 31.9630202 

Hylobates_moloch 0 22 

Hylochoerus_meinertzhageni 1 29.33607361 

Kobus_ellipsiprymnus 1 32.41691367 

Kobus_kob 1 34.74605994 

Lama_guanicoe 1 33.061478 

Litocranius_walleri 1 37.64158765 

Loxodonta_africana 1 31.15051391 

Loxodonta_cyclotis 0 27.50559202 

Madoqua_kirkii 1 36.964982 

Nanger_granti 1 33.56204265 

Nanger_soemmerringii 1 33.849494 

Neotragus_batesi 1 28.33645472 

Okapia_johnstoni 1 30.37784152 

Oreotragus_oreotragus 1 34.29558527 

Oryx_beisa 1 34.89630401 

Ourebia_ourebi 1 30.73879064 

Ovis_ammon 1 24.2418788 

Ovis_aries 1 22.4481824 

Phacochoerus_aethiopicus 1 32.12027936 

Phacochoerus_africanus 1 33.65604772 

Philantomba_monticola 1 27.98044457 

Pongo_pygmaeus 0 21.23333333 

Potamochoerus_larvatus 1 29.75808463 

Potamochoerus_porcus 1 26.52311575 

Redunca_fulvorufula 1 31.84875463 

Redunca_redunca 1 31.49155225 

Rhinoceros_sondaicus 0 24.36666667 

Rusa_unicolor 1 22 

Sus_scrofa 1 22.5 

Sylvicapra_grimmia 1 30.6503918 

Symphalangus_syndactylus 0 23.2 

Syncerus_caffer 1 32.23662734 

Tapirus_indicus 0 20.55 

Trachypithecus_cristatus 0 24.6 

Tragelaphus_buxtoni 1 28.597835 

Tragelaphus_eurycerus 1 29.4116417 

Tragelaphus_imberbis 1 33.57166196 
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Tragelaphus_oryx 1 -10 

Tragelaphus_scriptus 1 31.1975401 

Tragelaphus_spekeii 1 30.12757397 

Tragelaphus_strepsiceros 1 37.05571827 

Ursus_arctos 0 23.8913864 

Vicugna_pacos 1 22.95934677 

Vicugna_vicugna 1 26.52069547 

Table 3.1. Dataset. Includes genus-level taxonomy, presence/absence of carotid rete (CR), and average δ18O 

values.  
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2.2 Methods: 

2.2.1 Sample: Isotope data were grouped using two criteria: presence or absence of CR-SBC 

within arid, dry subhumid, and humid categories (for a total of 6 categories). Data were 

compared pair-wise within each environmental category. As the presence of CR-SBC requires 

the presence of a carotid rete -- and the absence of an internal carotid artery (O’Brien, 2016, 

Strauss et al., 2017) --, anatomical features can be used as binary indicators of CR-SBC 

physiology. 

Abbreviations: Arid = A, Dry subhumid = DSH, Humid = H, Carotid Rete = CR, Internal 

Carotid Artery = ICA 

2.2.2 Software: All analyses were performed in R (vs. 4.0.4). Packages used to complete 

analyses included base R (R Core Team, 2021), FSA (vs. 0.8.32; Ogle et al., 2021), car (vs. 3.0-

10; Fox, Jordan, Sanford Weisberg, 2019), conover.test (vs. 1.1.5; Dinno, 2017), and dplyr (vs. 

1.0.5; Wickham et al., 2021).  

2.2.3 Assumptions: Prior to analysis, isotope values within each of the 6 categories were tested 

for normality (statistically: Shapiro-Wilkes, {base} vs. 4.0.4; R Core Team, 2021; visually: 

quantile-quantile plot, {base}vs. 4.0.4; R Core Team, 2021; see Appendix A). Of the 6 bins of 

data, 3 groups of data were found to be statistically non-normal (arid-carotid-rete [pCR.A= 2.334 

x10-9], arid-internal-carotid-artery [pICA.A= 3.079 x 10-8], and dry-subhumid-carotid-rete 

[pCR.DSH= 2.937 x 10-6] groups), and 3 groups were found to be normal (dry-subhumid-internal-

carotid-artery [pICA.DSH= 0.1297], humid-carotid-rete [pCR.H= 0.4372], and humid-internal-

carotid-artery [pICA.H= 0.08978]). Because of non-normal data distributions, along with sample 

size imbalances, we therefore employed non-parametric analyses. 
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2.2.4 Statistical Tests: A non-parametic ANOVA (Kruskal-Wallis; {base} vs. 4.0.4; R Core 

Team, 2021) and appropriate post-hoc test (Dunn test; {FSA} vs. 0.8.32; Ogle, Wheeler, & 

Dinno, 2021) were  performed to test for differences in group-wise means (see Appendix A). 

For comparison, parametric individual pairwise t-test ({base} vs. 4.0.4; R Core Team, 2021) was 

also performed. Because evolutionary processes operate on trait and/or performance variance, 

our analytical focus is on the degree of δ18O value spread about the mean (i.e. the variance), 

rather than a comparison of means alone (as in Kruskal-Wallis or ANOVA tests). We performed 

a non-parametric Conover Squared Ranks Test ({conover.test} vs. 1.1.5; Dinno, 2017) to test for 

differences in δ18O value variance between rete presence and absence within all three 

environmental categories. Levene’s parametric test for homogeneity of variance ({car} vs. 3.0-

10; Fox & Sanford, 2019) was also performed to corroborate results of the non-parametric 

analyses. Given the unevenness of sample size across environmental categories (NA= 637, NDSH= 

219; NH = 400) and rete presence (NCR.A = 454, NICA.A = 183, NCR.DSH = 156, NICA.DSH = 63, 

NCR.H = 316, NICA.H = 84) data were randomly subsampled to equalize sample sizes ({dplyr} vs. 

1.0.5; Wickham et al., 2021) and the analyses were repeated to verify results.  

 

3. Results 

The results of the Kruskal-Wallis test and post-hoc Dunn test (see Table 3.2, Fig. 3.1) 

found that there were significant differences in mean δ18O values across all environments (pA = 

1.79 x 10-8, pDSH = 0.00661, pH = 0.0264). Under a comparative parametric individual pairwise t-

test, only mean δ18O values under arid conditions were significant (pA = 1.23 x 10-8), and those 

within dry subhumid and humid environments were found to be non-significant (pDSH = 0.0511, 

pH = 0.07). The Conover Ranked Sum test for non-parametric comparison of variance in δ18O 
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values found significant differences in variance within arid (pA = 0) and dry subhumid 

environments (pDSH = 0.025), and non-significant variance in humid environments (pH =  0.116). 

Conversely, under a parametric Levene’s test for homogeneity, variance was significant in arid 

(pA = 1.35E-08) and humid (pH = 1.8 x 10-4) environments, and non-significant in dry subhumid 

environments (pDSH = 0.733).  

 

 

 

 

Analysis was repeated with data subsampled to adjust for discrepancies in sample size 

between individuals with and without a rete in each environmental group. The results of the 

Kruskal-Wallis test and post-hoc Dunn Test with subsampled data found significant differences 

in mean δ18O values in arid environments only (pA = 0.00778) and those within dry subhumid 

and humid were non-significant (pDSH = 0.94059, pH = 0.44244). Under a comparative parametric 

individual pairwise t-test, mean δ18O values under arid (pA = 2.714 x 10-7) and dry subhumid 

(pDSH = 0.03329) conditions were significant, and those within humid environments were found 

to be non-significant (pH = 0.0894). The Conover Ranked Sum test for non-parametric 

comparison of variance in δ18O values found significant differences in variance only within arid 

(pA = 0.004), and non-significant variance in dry subhumid (pDSH = 0.475) and humid 

environments (pH = 0.221). Conversely, under a parametric Levene’s test for homogeneity, 

 
Dunn Post-Hoc 

Test 

Individual 

Pairwise T-test 
Levene’s Test 

Conover 

Ranked Sum 

Test 

Arid 1.79 x 10-8 1.23 x 10-8 1.35 x 10-8 0 

Dry Subhumid 0.00661 0.0511 0.733 0.025 

Humid 0.0264 0.07 0.00018 0.116 

p-values 
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 Table 3.2. Reported p-values from stable oxygen isotope (δ
18

O) analysis of tooth enamel. Reported data include 

comparison of mean δ
18

O values both in non-parametric (Dunn Post-Hoc test) and parametric (individual pairwise 

t-test) analysis, and comparison of variance δ
18

O of values across environments in both non-parametric (Conover 

Ranked Sum test) and parametric (Levene’s test for Homogeneity of Variance) analysis.  
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variance was significant in arid (pA = 6.082 x 10-6) and humid (pH = 0.008785) environments, 

and non-significant in dry subhumid environments (pDSH = 0.2879).  
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Figure 3.1. Results of a non-parametric comparison of variance of mean δ18O isotope values (see also Table 3.2). 

A Conover Ranked Sum Test found that variance of values was significant in arid and dry subhumid 

environments, and non-significant in humid environments. When analysis was repeated with subsampled data to 

adjust for discrepancies in sample size between species with and without a rete in each environmental group (see 

also Table 3.3), significance was consistent across arid and humid categories, and non-significant in dry 

subhumid environments. 
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4. Discussion 

Given the known function of CR-SBC as a mechanism of water conservation, we hypothesized 

that CR-SBC releases large-bodied mammals from water budget constraints that would 

otherwise canalize water metabolism in environments where water is scarce. In this study, we 

investigated both the mean distribution of δ18O enamel values and a comparison of the variance 

of δ18O values across three distinct environmental categories and in individuals with and without 

a carotid rete. CR-SBC affects individual performance within an environment, decoupling mean 

distribution and variance of δ18O values (Table 3.2, Fig. 3.1). Therefore, the emphasis of this 

analysis is the comparison of the variance of δ18O  values, rather than the differences in group-

wise means. The results of the analysis (Table 3.2, Fig. 3.1), show there is a comparatively 

higher, and statistically significant, amount of variance  of δ18O values in mammals possessing 

the rete than those without, especially within arid climates, that begins to equalize as 

environmental water availability increases. Within more arid environmental categories, the 

amount of variation of mean δ18O values of individuals belonging to species with CR-SBC 

exceeds that of those without (Fig. 3.1). Concurrently, as water availability increases, variance 

equalizes as the selective advantage of CR-SBC becomes less influential. These results were 

corroborated when the data were subsampled and the analysis was performed again (Table 3.3, 

Fig. 3.1).  

 Within arid environments, water scarcity exerts a selective pressure in which utilizing 

body water for evaporative cooling may be more disadvantageous than developing hyperthermia 

(Schmidt-Nielsen et al., 1956; Taylor, 1970a,b; Baker, 1989; Baker & Turlejska, 1989; Jessen et 

al., 1998;  McKinley et al., 2008; Hetem et al., 2016). Therefore, the inhibition of evaporative 
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cooling by CR-SBC, and consequent conservation of body water and reduction of metabolic load 

of thermoregulation, offers a selective advantage in such arid environments (Jessen et al., 1998;  

 

Fuller et al., 2014). While attenuation of evaporative cooling does result in hyperthermia, this 

actually facilitates the switch to non-evaporative cooling. When body temperature is higher than 

external temperatures, heat load is dispelled passively through nonevaporative means (Mitchell, 

1987), and body water is further conserved. Therefore, CR-SBC may be used to facilitate the use 

of non-evaporative cooling, supplemented by behaviors, like shade-seeking and temporal niche 

switching (Jessen et al., 1998; Hetem et al., 2012; Fuller et al., 2014), to reduce heat stress and 

evaporative water loss.  

 The utilization of CR-SBC has previously been proposed as a mechanism that has allowed 

for expansion of large-bodied mammals capable of this physiology into arid environmental 

extremes, from hot deserts to freezing tundras (Mitchell & Lust, 2008; Strauss et al., 2017). 

Conversely, species that do not possess the carotid rete are far more limited in their thermal and 

hydrological niches. All wild perissodactyl species and non-CR-SBC artiodactyls, such as 

tragulids, inhabit environments with low seasonality (little temperature variation), and/or reside 

near predictable sources of environmental water (Whittow et al., 1977; Skinner & Smithers, 

 
Dunn Post-Hoc 

Test 

Individual 

Pairwise T-test 

Levene’s Test 

for 

Homogeneity of 

Variance 

Conover 

Ranked Sum 

Test 

Arid 0.00778 2.714 x 10-7 6.082 x 10-6 0.004 

Dry Subhumid 0.9405947 0.03329 0.2879 0.475 

Humid 0.442436 0.0894 0.008785 0.221 

Table 3.3. Reported p-values from randomly subsampled data. Data presented include comparison of mean δ
18

O 

values both in non-parametric (Dunn Post-Hoc test) and parametric (individual pairwise t-test) analysis, and 

comparison of variance δ
18

O of values across environments in both non-parametric (Conover Ranked Sum test) 

and parametric (Levene’s test for Homogeneity of Variance) analysis. 
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1990; Fuller et al., 2000; Lust et al., 2007; Mitchell & Lust, 2008). Without CR-SBC physiology, 

non-rete taxa are dependent on low variation in ambient temperature to maintain their body 

temperature (Whittow et al., 1977). Thus, our analysis, as well as previous literature, supports 

CR-SBC as a selectively advantageous physiology in arid environments, where water availability 

is limited, as primarily a water-saving feature that is most useful in preventing dehydration in 

those species that possess it. 

 While CR-SBC is highly efficient in conserving body water, there are other physiological 

mechanisms that provide a similar benefits. Common mechanisms include the reduction of water 

content in feces and urine volume (Maloiy et al., 1979), particularly in arid-adapted artiodactyls 

(Taylor & Lyman, 1967; Li et al., 1982; Louw & Seely, 1982; Mohamed et al., 1988). This is 

made possible as a result of reduced glomerular filtration rates and renal plasma flow (Siebert & 

Macfarlane, 1971; Maloiy et al., 1979; Wilson, 1989), as well extended loops of Henlé (Schmidt-

Nielsen & O’Dell, 1961; Louw & Seely, 1982; McNab, 2002) relative to temperate species. 

Additionally, the selective influence of CR-SBC is confounded by a nearly complete taxonomic 

overlap within Artiodactyla of CR-SBC and foregut fermentation, otherwise known as 

rumination (Janis, 1976, 2007; Gentry, 2000; Vrba & Schaller, 2000; Hassanin & Douzery, 

2003; Clauss & Rössner, 2014; DeMiguel et al., 2014). Rumen contains a water reservoir that 

serves as a buffer against dehydration (Silanikove, 1994; Cain et al., 2006), and may provide a 

selective advantage in dry environments when compared to non-ruminant ungulates. However, 

O’Brien (2018) found that CR-SBC was significantly associated with artiodactyl diversification, 

whereas rumination was non-significant, when investigating CR-SBC across Ferungulata 

(artiodactyls, perissodactyls, and carnivorans).    
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The evolutionary history of CR-SBC within Artiodactyla and Perissodactyla has been the 

primary focus of investigations of the rete in deep time. Artiodactyl diversity has increased since 

the Eocene (~55-45 mya ago) whereas that of non-rete sister taxa, namely perissodactyls, has 

decreased (Mitchell & Lust, 2008; Strauss et al., 2017). Previous studies have suggested that 

climatic changes, specifically aridification events, such as the Early Eocene climatic optimum 

(Bininda-Edmonds et al., 2007), are likely the source of this contrast (Vrba, 1995; Merceron et 

al., 2010; Cantalapiedra et al., 2011; Demiguel et al., 2014; Strauss et al., 2017). The presence of 

CR-SBC has been proposed as an influential factor that allowed artiodactyls to proliferate and 

expand into myriad habitats, overcoming past global aridification (Mitchell & Lust, 2008; Janis, 

2009; O’Brien, 2016); however, its exact emergence in the fossil record is unknown. 

Osteological correlates associated with the presence of the carotid rete, and, therefore, CR-SBC, 

have been established by previous studies (O’Brien, 2015, 2016; O’Leary, 2016). In artiodactyls 

that possess an internal carotid artery rather than a carotid rete, such as tragulids and 

hippotamids, the presence of the internal carotid artery is indicated by the presence of a groove 

on the rostromedial wall of the tympanic bulla and a corresponding groove on the body of the 

basioccipital (O’Brien, 2015; O’Leary, 2016); these grooves are absent in artiodactyls that 

possess a carotid rete, and, therefore, their absence can be correlated with the presence of a 

carotid rete and CR-SBC (O’Brien, 2015, 2016).  

However, similarly detailed evolutionary histories of the rete are missing for other taxa 

that possess it, namely carnivorans. Within their evolutionary histories, carnivorans and 

artiodactyls have often occupied the same ecological communities, and, therefore, may have 

needed to be able to withstand the same environmental conditions. Developmental studies of the 

carotid rete in artiodactyls have found that there are differential developmental pathways for the 
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rete across taxonomic families, suggesting that the presence of the rete may be homoplastic in 

Artiodactyla (O’Brien et al., 2020). Similar ecological conditions may have driven the evolution 

of a carotid rete, and, consequently, CR-SBC in carnivorans; however, as present studies of the 

carnivoran rete are limited to domestic cats and dogs (Daniel, Dawes & Prichard, 1953; Baker & 

Hayward, 1967; Baker, 1972; Kier et al., 2019), this hypothesis remains untested. Carnivorans 

also lack robust osteological correlates for the rete as exist within Artiodactyla, and further 

studies are needed to investigate the taxonomic breadth of CR-SBC in extant taxa as well as 

within the fossil record. Additional studies are also needed to investigate variance of δ18O values, 

both within Carnivora and across Ferungulata. 

 

5. Conclusion 

Previous studies have established that CR-SBC provides a selective advantage to those species 

that possess it in environments where water availability is limited and risk for dehydration is 

high (Kuhnen & Jessen, 1991; Jessen et al., 1998; Hetem et al., 2012; Fuller et al., 2014). The 

aims of this study were to investigate whether CR-SBC was not only selectively advantageous, 

but also provided a release from constraint imposed by the environment, specifically aridity. 

However, it is noted that the dataset for this study primarily focuses on ungulates, and covers the 

carnivoran rete only within two species of Ursidae; therefore, results should be analyzed within a 

primary context of Artiodactyla and Perissodactyla. Within this framework, the results of the 

analysis (Table 3.2, Table 3.3, Fig. 3.1) corroborate the release of environmentally-imposed 

constraint via CR-SBC. Within more arid environmental categories, the amount of variation of 

mean δ18O values of individuals belonging to species with CR-SBC exceeds that of those 

without. Concurrently, as water availability (i.e. humidity) increases, variance equalizes as the 
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selective advantage of CR-SBC becomes less influential. Future studies investigating the 

physiological capabilities of the rete should focus on three primary areas of interest: 1) the 

relationship between CR-SBC and physiologies that conserve body water evolved concurrently 

in artiodactyls, such as rumination; 2) the presence of CR-SBC in the fossil record of 

Artiodactyla via established osteological correlates (O’Brien 2015,2016; O’Leary, 2016); 3) CR-

SBC in Carnivora, both in extant taxa and in the fossil record.      
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APPENDIX A 

 
##############  PREVALENCE OF CAROTID-RETE-MEDIATED SELECTIVE BRAIN 

COOLING ACROSS ARIDITY INDICES################## 

##############        KATHERINE SLENER       ################## 

##############     DATE THESIS SUBMITTED    ################## 

##############  EXECUTED IN R vs. 4.0.4  ################## 

 

#Clear workspace: 

rm(list=ls()) 

 

#Set libraries 

library(car) #car version 3.0-10 

library(dplyr) #v.s. 1.0.5 

library(FSA)  #FSA version 0.8.32 

library(conover.test)  #vs. 1.1.5 

 

 

############################################################ 

############################################################# 

############################################################# 

##set working directory 

# Upload data for Discrete Character Analysis + boxplots: 

data<-read.csv("Rainfall_Rete_Isotope_Categorical_AI.csv", header=TRUE) 

head(data) 

summary(data) 

nrow(data) #1256 

############################################################# 

############################################################# 

######Data husbandry 

 

#####For each variable, find the group specific sample size, mean, median, 

and mode. Test variable for normality. 

 

#####Write function for mode: 

getmode <- function(v) { 

 uniqv <- unique(v) 

 uniqv[which.max(tabulate(match(v, uniqv)))] 

} 
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###Arid subset 

#Arid w/ CR Partition 

Arid_CR<-subset(data, Combined_State == "A.CR") #Base R 

nrow(Arid_CR) ##454 

 

 ##Arid w/ CR Summary Statistics: 

 #Get Arid CR standard deviation 

 sd.A_CR<-sd(Arid_CR$o_vsmow)  ##stats (base R)  

 sd.A_CR  ##3.632889 

 

 #Get Arid CR mean 

 mean.A_CR<-mean(Arid_CR$o_vsmow)  #Base R   

 mean.A_CR ##33.36432 

 

 # Get Arid CR median 

 median.A_CR<-median(Arid_CR$o_vsmow)  #stats (base R)   

 median.A_CR ##33.7 

 

 #Get A CR mode  

 

 mode.A_CR <- getmode(Arid_CR$o_vsmow) #stats (base R) 

 mode.A_CR ##34.2 

  

 #Normal Distribution - Non-Parametric 

 qqnorm(Arid_CR$o_vsmow) #stats (base R)  #Not normal 

 shapiro.test(Arid_CR$o_vsmow) #stats (base R)  

 #W = 0.96251, p-value = 2.334e-09 #Not normal 

 hist(Arid_CR$o_vsmow, col=rainbow(14))  #a little skew 

 

#Arid w/ ICA Partition 

Arid_ICA<-subset(data, Combined_State == "A.ICA") 

nrow(Arid_ICA) ##183 

 

 #Get Arid ICA standard deviation 

 sd.A_ICA<-sd(Arid_ICA$o_vsmow) ##stats (base R)     

 sd.A_ICA  ##1.991667         

 

 #Get Arid ICA mean 

 mean.A_ICA<-mean(Arid_ICA$o_vsmow) #Base R      

 mean.A_ICA ##32.15792  

 

 #Get Arid ICA median 

 median.A_ICA<-median(Arid_ICA$o_vsmow) #stats (base R)    

 median.A_ICA  ##31.8 

 

 #Get Arid ICA mode  

 mode.A_ICA <- getmode(Arid_ICA$o_vsmow) #stats (base R)   

 mode.A_ICA ##30.9 

 

 #Normal Distribution 

 qqnorm(Arid_ICA$o_vsmow) #stats (base R)  #Not normal 

 shapiro.test(Arid_ICA$o_vsmow) #stats (base R)  

 #W = 0.92302, p-value = 3.079e-08 #Not normal 
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 #Plot 

 hist(Arid_ICA$o_vsmow, col=rainbow(14)) 

 

 

##### Dry Sub-Humid Dataset 

 

##Dry Sub-Humid CR Partition 

DrySubHumid_CR<-subset(data, Combined_State == "DSH.CR") 

nrow(DrySubHumid_CR) #156 

 

 #Get Dry Sub-Humid CR standard deviation 

 sd.DSH_CR<-sd(DrySubHumid_CR$o_vsmow) #stats (base R)     

 sd.DSH_CR #2.726287   

 

 #Get Dry Sub-Humid CR mean          

 mean.DSH_CR<-mean(DrySubHumid_CR$o_vsmow) #stats (base R)    

 mean.DSH_CR #31.81154 

 

 #Get DSH CR median 

 median.DSH_CR<-median(DrySubHumid_CR$o_vsmow) #stats (base R)    

 median.DSH_CR #32.05 

 

 #Get DSH CR mode  

 mode.DSH_CR <- getmode(DrySubHumid_CR$o_vsmow) #stats (base R)  

 mode.DSH_CR #31.4 

 

 #Normal Distribution           

 qqnorm(DrySubHumid_CR$o_vsmow) #stats (base R)   #Not normal 

 shapiro.test(DrySubHumid_CR$o_vsmow)  #stats (base R)  

 #W = 0.93894, p-value = 2.937e-06  #Statistically not normal 

  

 hist(DrySubHumid_CR$o_vsmow, col=rainbow(14))  #visually not normal 

 

 

##DSH ICA Partition 

DrySubHumid_ICA<-subset(data, Combined_State == "DSH.ICA") 

nrow(DrySubHumid_ICA) #63 

 

 #Get Dry Sub-Humid ICA standard deviation 

 sd.DSH_ICA<-sd(DrySubHumid_ICA$o_vsmow) #stats (base R)     

 sd.DSH_ICA #2.777356          

 

 #Get Dry Sub-Humid ICA mean 

 mean.DSH_ICA<-mean(DrySubHumid_ICA$o_vsmow) #stats (base R)    

 mean.DSH_ICA #30.99841 

 

 #Get DSH ICA median 

 median.DSH_ICA<-median(DrySubHumid_ICA$o_vsmow) #stats (base R)    

 median.DSH_ICA #31.1 

 

 #Get DSH ICA mode  

 mode.DSH_ICA <- getmode(DrySubHumid_ICA$o_vsmow) #stats (base R)  

 mode.DSH_ICA #32.6 
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 #Normal Distribution 

 qqnorm(DrySubHumid_ICA$o_vsmow) #stats (base R) ##Not normal 

 shapiro.test(DrySubHumid_ICA$o_vsmow) #stats (base R)  

 #W = 0.97019, p-value = 0.1297 #Normal 

  

 #Plot 

 hist(DrySubHumid_ICA$o_vsmow, col=rainbow(14)) 

 

 

##### Humid Subset 

 

### Humid CR Partition 

Humid_CR<-subset(data, Combined_State == "H.CR") 

nrow(Humid_CR) #316 

 

 #Get Humid CR standard deviation 

 sd.Hum_CR<-sd(Humid_CR$o_vsmow)   #stats (base R)   

 sd.Hum_CR  #3.384844       

 

 #Get Humid CR mean 

 mean.Hum_CR<-mean(Humid_CR$o_vsmow)  #stats (base R)  

 mean.Hum_CR #30.78987 

 

 #Get Humid CR median 

 median.Hum_CR<-median(Humid_CR$o_vsmow)   #stats (base R) 

 median.Hum_CR #30.6 

 

 #Get Humid CR mode  

 mode.H_CR <- getmode(Humid_CR$o_vsmow) #stats (base R) 

 mode.H_CR #30.3 

 

 #Normal Distribution 

 qqnorm(Humid_CR$o_vsmow) #Normal  #stats (base R) 

 shapiro.test(Humid_CR$o_vsmow)  #stats (base R) 

 #W = 0.99521, p-value = 0.4372 #Normal 

 

 #Plot 

 hist(Humid_CR$o_vsmow, col=rainbow(14)) 

 

 

##Humid ICA Partition 

Humid_ICA<-subset(data, Combined_State == "H.ICA") 

nrow(Humid_ICA) #84 

 

 #Get Humid ICA standard deviation 

 sd.Hum_ICA<-sd(Humid_ICA$o_vsmow) #stats (base R)     

 sd.Hum_ICA #4.634624          

 

 #Get Humid ICA mean 

 mean.Hum_ICA<-mean(Humid_ICA$o_vsmow) #stats (base R)   

 mean.Hum_ICA #29.80476 

 

 #Get Humid ICA median 

 median.Hum_ICA<-median(Humid_ICA$o_vsmow) #stats (base R)   
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 median.Hum_ICA #29.65 

 

 #Get Humid ICA mode  

 mode.H_ICA <- getmode(Humid_ICA$o_vsmow) #stats (base R) 

 mode.H_ICA #27.8 

 

 #Normal Distribution 

 qqnorm(Humid_ICA$o_vsmow) #Not Normal  #stats (base R) 

 shapiro.test(Humid_ICA$o_vsmow) 

 #W = 0.97422, p-value = 0.08978  #Normal 

  

 #Plot 

 hist(Humid_ICA$o_vsmow, col=rainbow(14)) 

  

################################################################ 

################################################################ 

#################   Analysis   ################### 

################################################################ 

################################################################ 

 

#########Differences in Oxygen Isotopes ########## 

 

####Arid Environments 

#Make category vector 

CR.ICA.A<-c(rep("CR", nrow(Arid_CR)), rep("ICA", nrow(Arid_ICA))) 

CR.ICA.A 

length(CR.ICA.A) #637  #Base R 

 

OVSMOW.A<-c(Arid_CR$o_vsmow, Arid_ICA$o_vsmow) 

length(OVSMOW.A) #637  #Should match length of CR.ICA.A  

 

Arid.Dat<-as.data.frame(cbind(CR.ICA.A, OVSMOW.A)) 

head(Arid.Dat) 

#  CR.ICA.A OVSMOW.A 

#1       CR     39.9 

#2       CR     43.2 

#3       CR     43.3 

#4       CR     27.6 

#5       CR       43 

#6       CR     23.9 

 

#Make dataframe numeric 

Arid.Dat$OVSMOW.A <- as.numeric(as.character(Arid.Dat$OVSMOW.A))  

 

##Levene's test 

Lev.arid<-leveneTest(OVSMOW.A~CR.ICA.A, data=Arid.Dat) #Package: car 

Lev.arid  

#Levene's Test for Homogeneity of Variance (center = median) 

#       Df F value    Pr(>F)     

#group   1  33.121 1.348e-08 *** 

#      635                       

#--- 

#Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 



 128

##t test 

t.arid <- t.test(OVSMOW.A~CR.ICA.A, data=Arid.Dat, var.equal=FALSE)

 #stats (base R) 

t.arid 

# Welch Two Sample t-test 

# 

#data:  OVSMOW.A by CR.ICA.A 

#t = 5.3553, df = 579.07, p-value = 1.233e-07 

#alternative hypothesis: true difference in means is not equal to 0 

#95 percent confidence interval: 

# 0.7639486 1.6488387 

#sample estimates: 

# mean in group CR mean in group ICA  

#         33.36432          32.15792  

 

##Plot 

boxplot(OVSMOW.A~CR.ICA.A, data=Arid.Dat, col=c("cyan", 

"firebrick3"),main="Oxygen Isotopes Across Arid Environments") 

 

#################################  

 

###Dry Subhumid 

#Make a category vector 

CR.ICA.DSH<-c(rep("CR", nrow(DrySubHumid_CR)), rep("ICA", 

nrow(DrySubHumid_ICA))) 

CR.ICA.DSH 

length(CR.ICA.DSH) #219 

 

OVSMOW.DSH<-c(DrySubHumid_CR$o_vsmow, DrySubHumid_ICA$o_vsmow) 

length(OVSMOW.DSH) #219 

 

DSH.Dat<-as.data.frame(cbind(CR.ICA.DSH, OVSMOW.DSH)) 

head(DSH.Dat) 

#  CR.ICA.DSH OVSMOW.DSH 

#1         CR       34.6 

#2         CR       31.8 

#3         CR       32.2 

#4         CR       32.2 

#5         CR       32.6 

#6         CR       33.6 

 

#Make dataframe numeric 

DSH.Dat$OVSMOW.DSH <- as.numeric(as.character(DSH.Dat$OVSMOW.DSH)) 

 

##Levene's Test for Homogeneity of Variance (center = median) 

Lev.DSH<-leveneTest(OVSMOW.DSH~CR.ICA.DSH, data=DSH.Dat) 

Lev.DSH 

#Levene's Test for Homogeneity of Variance (center = median) 

#       Df F value Pr(>F) 

#group   1  0.1168 0.7329 

#      217   

 

##t-test 

t.DSH <- t.test(OVSMOW.DSH~CR.ICA.DSH, data= DSH.Dat, var.equal=FALSE) 
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t.DSH 

# Welch Two Sample t-test 

# 

#data:  OVSMOW.DSH by CR.ICA.DSH 

#t = 1.9716, df = 112.81, p-value = 0.0511 

#alternative hypothesis: true difference in means is not equal to 0 

#95 percent confidence interval: 

# -0.003954901  1.630206427 

#sample estimates: 

# mean in group CR mean in group ICA  

#        31.81154          30.99841  

 

#Plot 

boxplot(OVSMOW.DSH~CR.ICA.DSH, data=DSH.Dat, col=c("cyan2", 

"firebrick2"),main="Oxygen Isotopes Across Dry Subhumid Environments")  

#################################  

 

###Humid 

#Make a category vector 

CR.ICA.H<-c(rep("CR", nrow(Humid_CR)), rep("ICA", nrow(Humid_ICA))) 

CR.ICA.H 

length(CR.ICA.H) #400 

 

OVSMOW.H<-c(Humid_CR$o_vsmow, Humid_ICA$o_vsmow) 

length(OVSMOW.H) #400 

 

H.Dat<-as.data.frame(cbind(CR.ICA.H, OVSMOW.H)) 

head(H.Dat) 

#  CR.ICA.H OVSMOW.H 

#1       CR     22.5 

#2       CR     36.1 

#3       CR     27.6 

#4       CR     28.8 

#5       CR     29.1 

#6       CR     30.3 

 

#Make dataframe numeric  

H.Dat$OVSMOW.H <- as.numeric(as.character(H.Dat$OVSMOW.H)) 

 

##Levene's test 

Lev.Hum<-leveneTest(OVSMOW.H~CR.ICA.H, data=H.Dat) 

Lev.Hum 

#       Df F value    Pr(>F)     

#group   1  14.333 0.0001768 *** 

#      398                       

#--- 

#Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

##t-test 

t.Hum <- t.test(OVSMOW.H~CR.ICA.H, data= H.Dat, var.equal=FALSE) 

t.Hum  

#data:  OVSMOW.H by CR.ICA.H 

#t = 1.8231, df = 107.64, p-value = 0.07106 

#alternative hypothesis: true difference in means is not equal to 0 
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#95 percent confidence interval: 

# -0.08597848  2.05620150 

#sample estimates: 

# mean in group CR mean in group ICA  

#         30.78987          29.80476  

 

 

 

######Kruskal-Wallace (non-parametric ANOVA) & post-hoc (Dunn Test)  

###1. Query what type of data it is 

sapply(data,class) 

#  AI      Rete   Combined_State        o_vsmow  

#   "factor"    "factor"    "factor"      "numeric"  

 

###2. Run Kruskal-Wallis 

kruskal.test(o_vsmow~Combined_State, data = data) 

#data:  o_vsmow by Combined_State 

#Kruskal-Wallis chi-squared = 160.49, df = 5, p-value <2.2e-16  

 

### 2. Run post-hoc Dunn Test 

##install library(FSA) 

dunnTest(o_vsmow~Combined_State, data = data)   

#       Comparison          Z      P.unadj        P.adj 

#1      A.CR - A.ICA  5.2198940 1.790256e-07 2.148307e-06 

#2     A.CR - DSH.CR  5.2162013 1.826297e-07 2.008926e-06 

#3    A.ICA - DSH.CR  0.2480315 8.041100e-01 8.041100e-01 

#4    A.CR - DSH.ICA  5.6413146 1.687567e-08 2.193837e-07 

#5   A.ICA - DSH.ICA  2.0632462 3.908924e-02 2.345355e-01 

#6  DSH.CR - DSH.ICA  1.8379231 6.607373e-02 3.303687e-01 

#7       A.CR - H.CR 11.1007248 1.244307e-28 1.866460e-27 

#8      A.ICA - H.CR  3.8343975 1.258724e-04 1.258724e-03 

#9     DSH.CR - H.CR  3.3638797 7.685504e-04 5.379853e-03 

#10   DSH.ICA - H.CR  0.3971787 6.912357e-01 1.000000e+00 

#11     A.CR - H.ICA  8.0020189 1.223956e-15 1.713538e-14 

#12    A.ICA - H.ICA  3.7435507 1.814380e-04 1.632942e-03 

#13   DSH.CR - H.ICA  3.4458953 5.691708e-04 4.553367e-03 

#14  DSH.ICA - H.ICA  1.1519149 2.493560e-01 9.974241e-01 

#15     H.CR - H.ICA  1.1175268 2.637692e-01 7.913075e-01 

 

##Results Summary 

#Arid -- very significant (A.CR - A.ICA  5.2198940 1.790256e-07 2.148307e-

06) 

#DSH -- somewhat significant (1.8379231 6.607373e-02 3.303687e-01) 

#Hum -- least significant (1.1175268 2.637692e-01 7.913075e-01) 

 

#Run Conover Rank Sum Test (nonparametric equality of variances) 

conover.test(data$o_vsmow, data$Combined_State, alpha=0.05) 

 

#  Kruskal-Wallis rank sum test 

#data: x and group 

#Kruskal-Wallis chi-squared = 160.4873, df = 5, p-value = 0 

# 

# 

#                           Comparison of x by group                             
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#                                (No adjustment)                                 

#Col Mean-| 

#Row Mean |       A.CR      A.ICA     DSH.CR    DSH.ICA       H.CR 

#---------+------------------------------------------------------- 

#   A.ICA |   5.578356 

#         |    0.000Hu0* 

#         | 

#  DSH.CR |   5.574410   0.265064 

#         |    0.0000*     0.3955 

#         | 

# DSH.ICA |   6.028717   2.204934   1.964137 

#         |    0.0000*    0.0138*    0.0249* 

#         | 

#    H.CR |   11.86303   4.097714   3.594885   0.424453 

#         |    0.0000*    0.0000*    0.0002*     0.3357 

#         | 

#   H.ICA |   8.551536   4.000629   3.682533   1.231019   1.194270 

#         |    0.0000*    0.0000*    0.0001*     0.1093     0.1163 

# 

#alpha = 0.05 

#Reject Ho if p <= alpha/ 

 

 

 

#########################################################################

###### 

#############Subsample 

Data########################################################## 

##########################################################################

##### 

##subsampling = resampling is an empirical way to derive sampling 

distributions 

 

######Arid 

##CR Partition 

subsample_Arid_CR<-sample_n(Arid_CR, size=nrow(Arid_ICA), replace=FALSE)   

#package(dplyr)   

nrow(subsample_Arid_CR) #183 

nrow(subsample_Arid_CR) == nrow(Arid_CR) #FALSE  #Should be FALSE; IF 

TRUE, your new dataset is the SAME as your old dataset 

nrow(subsample_Arid_CR) == nrow(Arid_ICA) #TRUE #Should be TRUE; IF FALSE 

<- objective not met 

##ICA Parition  

 subsample_Arid_ICA<-sample_n(Arid_ICA, size=nrow(Arid_ICA), 

replace=FALSE) 

nrow(subsample_Arid_ICA) == nrow(Arid_CR) 

#[1] FALSE 

nrow(subsample_Arid_ICA) == nrow(Arid_ICA) 

#[1] TRUE 

##Combined 

subsample_CR.ICA.A<-c(rep("CR", nrow(subsample_Arid_CR)), rep("ICA", 

nrow(subsample_Arid_ICA))) 

length(subsample_CR.ICA.A) #366 
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subsample_OVSMOW.A<-c(subsample_Arid_CR$o_vsmow, 

subsample_Arid_ICA$o_vsmow) 

length(subsample_OVSMOW.A) #366 

subsample_Arid.Dat<-as.data.frame(cbind(subsample_CR.ICA.A, 

subsample_OVSMOW.A)) 

head(subsample_Arid.Dat) 

 

#Make data numeric 

subsample_Arid.Dat$subsample_OVSMOW.A <- 

as.numeric(as.character(subsample_Arid.Dat$subsample_OVSMOW.A))  

 

###Re-run Analysis### 

##Levene Test 

subsample_Lev.arid<-leveneTest(subsample_OVSMOW.A~subsample_CR.ICA.A, 

data=subsample_Arid.Dat) #package(car) 

subsample_Lev.arid 

#Levene's Test for Homogeneity of Variance (center = median) 

#       Df F value   Pr(>F)     

#group   1  34.335 1.04e-08 *** 

#      364                      

#--- 

#Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

##Results differ from original analysis (THIS IS GOOD) 

 

##t-test 

subsample_t.arid <- t.test(subsample_OVSMOW.A~subsample_CR.ICA.A, 

data=subsample_Arid.Dat, var.equal=FALSE) #stats (base R) 

subsample_t.arid 

#Welch Two Sample t-test 

# 

#data:  subsample_OVSMOW.A by subsample_CR.ICA.A 

#t = 4.116, df = 280.83, p-value = 5.071e-05 

#alternative hypothesis: true difference in means is not equal to 0 

#95 percent confidence interval: 

# 0.6623243 1.8764735 

#sample estimates: 

# mean in group CR mean in group ICA  

#         33.42732          32.15792  

 

##Results differ from original analysis 

 

######DrySubHumid 

##CR Partition 

subsample_DrySubHumid_CR<-sample_n(DrySubHumid_CR, 

size=nrow(DrySubHumid_ICA), replace=FALSE)    

nrow(subsample_DrySubHumid_CR) #63 

nrow(subsample_DrySubHumid_CR) == nrow(DrySubHumid_CR) #FALSE 

 #Should be FALSE; IF TRUE, your new dataset is the SAME as your old 

dataset 

nrow(subsample_DrySubHumid_CR) == nrow(DrySubHumid_ICA) #TRUE #Should 

be TRUE; IF FALSE <- objective not met 

##ICA Partition 
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subsample_DrySubHumid_ICA<-sample_n(DrySubHumid_ICA, 

size=nrow(DrySubHumid_ICA), replace=FALSE) 

nrow(subsample_DrySubHumid_ICA) == nrow(DrySubHumid_CR) 

#[1] FALSE 

nrow(subsample_DrySubHumid_ICA) == nrow(DrySubHumid_ICA) 

#[1] TRUE 

subsample_CR.ICA.DSH<-c(rep("CR", nrow(subsample_DrySubHumid_CR)), 

rep("ICA", nrow(subsample_DrySubHumid_ICA))) 

length(subsample_CR.ICA.DSH) #126 

subsample_OVSMOW.DSH<-c(subsample_DrySubHumid_CR$o_vsmow, 

subsample_DrySubHumid_ICA$o_vsmow) 

length(subsample_OVSMOW.DSH) #126 

subsample_DrySubHumid.Dat<-as.data.frame(cbind(subsample_CR.ICA.DSH, 

subsample_OVSMOW.DSH)) 

head(subsample_DrySubHumid.Dat) 

 

#Make data numeric 

subsample_DrySubHumid.Dat$subsample_OVSMOW.DSH <- 

as.numeric(as.character(subsample_DrySubHumid.Dat$subsample_OVSMOW.DSH))  

 

###Re-run Analysis### 

##Levene Test 

subsample_Lev.DrySubHumid<-

leveneTest(subsample_OVSMOW.DSH~subsample_CR.ICA.DSH, 

data=subsample_DrySubHumid.Dat) #package(car) 

subsample_Lev.DrySubHumid 

#Levene's Test for Homogeneity of Variance (center = median) 

#       Df F value Pr(>F) 

#group   1  0.9664 0.3275 

#      124  

 

##t-test 

subsample_t.DrySubHumid <- 

t.test(subsample_OVSMOW.DSH~subsample_CR.ICA.DSH, 

data=subsample_DrySubHumid.Dat, var.equal=FALSE) #stats (base R) 

subsample_t.DrySubHumid 

# Welch Two Sample t-test 

#data:  subsample_OVSMOW.DSH by subsample_CR.ICA.DSH 

#t = 2.9857, df = 120.78, p-value = 0.003426 

#alternative hypothesis: true difference in means is not equal to 0 

#95 percent confidence interval: 

# 0.4615069 2.2781756 

#sample estimates: 

# mean in group CR mean in group ICA  

#         32.36825          30.99841  

 

##Results differ from original analysis 

 

######Humid 

##CR Parition 

subsample_Humid_CR<-sample_n(Humid_CR, size=nrow(Humid_ICA), 

replace=FALSE)    

nrow(subsample_Humid_CR) #84 

nrow(subsample_Humid_CR) == nrow(Humid_CR) #FALSE   
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nrow(subsample_Humid_CR) == nrow(Humid_ICA) #TRUE  

##ICA Partition 

subsample_Humid_ICA<-sample_n(Humid_ICA, size=nrow(Humid_ICA), 

replace=FALSE) 

nrow(subsample_Humid_ICA) == nrow(Humid_CR) #[1] FALSE 

nrow(subsample_Humid_ICA) == nrow(Humid_ICA) #[1] TRUE 

#Combined 

subsample_CR.ICA.H<-c(rep("CR", nrow(subsample_Humid_CR)), rep("ICA", 

nrow(subsample_Humid_ICA))) 

length(subsample_CR.ICA.H) #168 

subsample_OVSMOW.H<-c(subsample_Humid_CR$o_vsmow, 

subsample_Humid_ICA$o_vsmow) 

length(subsample_OVSMOW.H) #168 

subsample_Humid.Dat<-as.data.frame(cbind(subsample_CR.ICA.H, 

subsample_OVSMOW.H)) 

head(subsample_Humid.Dat) 

 

#Make data numeric 

subsample_Humid.Dat$subsample_OVSMOW.H <- 

as.numeric(as.character(subsample_Humid.Dat$subsample_OVSMOW.H))  

 

###Re-run Analysis### 

##Levene Test 

subsample_Lev.Humid<-leveneTest(subsample_OVSMOW.H~subsample_CR.ICA.H, 

data=subsample_Humid.Dat) #package(car) 

subsample_Lev.Humid 

#Levene's Test for Homogeneity of Variance (center = median) 

#       Df F value  Pr(>F)   

#group   1   4.177 0.04256 * 

#      166                   

#--- 

#Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

##Results differ from original analysis 

 

##t-test 

subsample_t.Humid <- t.test(subsample_OVSMOW.H~subsample_CR.ICA.H, 

data=subsample_Humid.Dat, var.equal=FALSE) #stats (base R) 

subsample_t.Humid 

#Welch Two Sample t-test 

#data:  subsample_OVSMOW.H by subsample_CR.ICA.H 

#t = 2.1316, df = 157.72, p-value = 0.03459 

#alternative hypothesis: true difference in means is not equal to 0 

#95 percent confidence interval: 

# 0.1009325 2.6490675 

#sample estimates: 

# mean in group CR mean in group ICA  

#         31.17976          29.80476  

 

##Results differ from original analysis 

 

######Kruskal-Wallis & Dunn Test 

###Define Combined State 

CombinedState <- data$Combined_State 
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head(CombinedState) 

 

###Subsample Combined State Data 

subsample_CombinedState <- sample(CombinedState) 

length(subsample_CombinedState) #1256 

### Subsample OVSMOW  

OVSMOW <- data$o_vsmow 

OVSMOW 

subsample_OVSMOW<-sample(OVSMOW) 

length(subsample_OVSMOW) #1256 

### Combined 

subsample_Dat<-as.data.frame(cbind(subsample_CombinedState, 

subsample_OVSMOW)) 

head(subsample_Dat) 

head(data) 

 

###Make data numeric 

subsample_Dat$subsample_OVSMOW <- 

as.numeric(as.character(subsample_Dat$subsample_OVSMOW))  

# Query what type of data it is 

sapply(subsample_Dat,class) 

#subsample_CombinedState        subsample_OVSMOW  

#            "character"               "numeric"  

 

###Run Kruskal-Wallis 

kruskal.test(subsample_OVSMOW~subsample_CombinedState, data = 

subsample_Dat) 

#data:  subsample_OVSMOW by subsample_CombinedState 

#Kruskal-Wallis chi-squared = 7.7877, df = 5, p-value = 0.1683 

 

 

### Dunn Pos-Hoc Test 

dunnTest(subsample_OVSMOW~subsample_CombinedState, data = subsample_Dat)  

#        Comparison           Z     P.unadj     P.adj 

#1      A.CR - A.ICA  2.66129249 0.007784131 0.1167620 

#2     A.CR - DSH.CR  1.03543354 0.300466489 1.0000000 

#3    A.ICA - DSH.CR -1.25660882 0.208895321 1.0000000 

#4    A.CR - DSH.ICA  0.63200029 0.527386689 1.0000000 

#5   A.ICA - DSH.ICA -1.01358937 0.310778732 1.0000000 

#6  DSH.CR - DSH.ICA -0.07452240 0.940594720 1.0000000 

#7       A.CR - H.CR  1.27592305 0.201982721 1.0000000 

#8      A.ICA - H.CR -1.50230215 0.133019093 1.0000000 

#9     DSH.CR - H.CR -0.02676027 0.978650943 1.0000000 

#10   DSH.ICA - H.CR  0.06164717 0.950843811 1.0000000 

#11     A.CR - H.ICA -0.00684106 0.994541666 0.9945417 

#12    A.ICA - H.ICA -1.77431250 0.076011474 1.0000000 

#13   DSH.CR - H.ICA -0.71606108 0.473953632 1.0000000 

#14  DSH.ICA - H.ICA -0.51469377 0.606767026 1.0000000 

#15     H.CR - H.ICA -0.76808696 0.442435522 1.0000000 

 

###Conover Ranked Sum Test 

conover.test(subsample_Dat$subsample_OVSMOW, 

subsample_Dat$subsample_CombinedState, alpha=0.05) 

#  Kruskal-Wallis rank sum test 
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#data: x and group 

#Kruskal-Wallis chi-squared = 7.7877, df = 5, p-value = 0.17 

# 

 

#                           Comparison of x by group                             

#                                (No adjustment)                                 

#Col Mean-| 

#Row Mean |       A.CR      A.ICA     DSH.CR    DSH.ICA       H.CR 

#---------+------------------------------------------------------- 

#   A.ICA |   2.664265 

#         |    0.0039* 

#         | 

#  DSH.CR |   1.036590  -1.258012 

#         |     0.1501     0.1043 

#         | 

# DSH.ICA |   0.632706  -1.014721  -0.074605 

#         |     0.2635     0.1552     0.4703 

#         | 

#    H.CR |   1.277348  -1.503980  -0.026790   0.061716 

#         |     0.1009     0.0664     0.4893     0.4754 

#         | 

#   H.ICA |  -0.006848  -1.776294  -0.716860  -0.515268  -0.768944 

#         |     0.4973     0.0380     0.2368     0.3032     0.2210 

# 

#alpha = 0.05 

#Reject Ho if p <= alpha/2 

 

 

##########Panel all Plots 

attach(mtcars) 

par(mfrow=c(2,3)) 

boxplot(OVSMOW.A~CR.ICA.A, data=Arid.Dat, col=c("cyan", 

"firebrick3"),main="Arid", xlab = "Carotid Rete Presence", ylab = 

"OVSMOW") 

boxplot(OVSMOW.DSH~CR.ICA.DSH, data=DSH.Dat, col=c("cyan2", 

"firebrick2"),main="Dry Subhumid", xlab = "Carotid Rete Presence", ylab = 

"OVSMOW")  

boxplot(OVSMOW.H~CR.ICA.H, data=H.Dat, col=c("cyan3", 

"firebrick1"),main="Humid", xlab = "Carotid Rete Presence", ylab = 

"OVSMOW") 

boxplot(subsample_OVSMOW.A~subsample_CR.ICA.A, data=subsample_Arid.Dat, 

col=c("cyan", "firebrick3"),main="Subsampled Arid", xlab = "Carotid Rete 

Presence", ylab = "OVSMOW") 

boxplot(subsample_OVSMOW.DSH~subsample_CR.ICA.DSH, 

data=subsample_DrySubHumid.Dat, col=c("cyan2", 

"firebrick2"),main="Subsampled Dry Subhumid", xlab = "Carotid Rete 

Presence", ylab = "OVSMOW")  

boxplot(subsample_OVSMOW.H~subsample_CR.ICA.H, data=subsample_Humid.Dat, 

col=c("cyan3", "firebrick1"),main="Subsampled Humid", xlab = "Carotid Rete 

Presence", ylab = "OVSMOW")  
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