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Abstract: Three dimensional triangulations can be described by giving a set of gluing maps
between faces of tetrahedra (subject to some mild constraints). While this is a natural way
to describe triangulations, it becomes computationally expensive to recognize when two tri-
angulations are isomorphic. Here isomorphic triangulations are equivalent up to relabelling.
To solve this problem, Burton created an isomorphism signature, which associates a string
canonically to a triangulation that is shared by all triangulations isomorphic to it. However,
this representative labelling never corresponds to an oriented triangulation. In computa-
tional topology, it is often important to deal with oriented triangulations if possible so we
present a similar encoding for orientable 3-manifolds known as an oriented isomorphism
signature that will always encode an oriented triangulation. We also present an encoding
scheme for describing a path in the Pachner graph, an object for relating all triangulations
of a fixed 3-manifold, as a string of printable characters that can be appended to the end
of an oriented isomorphism signature. This allows us to easily store and describe how one
isomorphism class of triangulations can be transformed into another via a series of local
operations without losing any topological data.
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CHAPTER I

INTRODUCTION

1.1 Outline

For any given 3-manifold M, there are infinitely many triangulations that describe the
manifold. These triangulations can be partitioned into isomorphism classes where two tri-
angulations are isomorphic if one can be achieved by relabelling the tetrahedra and vertices
of the other. Often times when working in disciplines such as computational knot theory
and low-dimensional topology it is useful to work with isomorphism classes of triangulations
rather than with the triangulations themselves. In particular, this approach is helpful in the
recognition problem where we are asked if a given triangulation T triangulates M.

To aid in answering this question, Burton introduces an isomorphism signature. This
is a printable string of ASCII characters that encodes the complete gluing data for a spe-
cific triangulation that is used as a representative for the entire isomorphism class. The
construction of this isomorphism signature is outlined in Section 2. It is easy to compute
and because it is a string it allows for fast insertion and look-up in sorting algorithms [1].
Burton’s isomorphism signature is only defined for connected triangulations so in Section 2.1
we introduce a natural extension of this encoding scheme for disconnected triangulations.

Burton’s isomorphism signature always encodes the gluing data for a non-oriented tri-
angulation even if the manifold it describes is orientable. When dealing with an orientable
3-manifold M it is often useful to work with an oriented triangulation that describes that
manifold. To this end, we introduce an oriented isomorphism signature which encodes the
gluing data for an oriented triangulation that is used as a representative for all the triangu-
lations in its isomorphism class. A detailed explanation of what it means for a triangulation
to be oriented, what it means for a 3-manifold to be orientable, as well as the construction
of this oriented isomorphism signature are outlined in Section 3.

In Section 4 we describe the relationship between isomorphism classes of a 3-manifold
M. Starting with a triangulation in one isomorphism class we can perform a sequence of
local operations to obtain a triangulation of a di↵erent isomorphism class in a way that
preserves topological information. These operations are known as Pachner moves and the
relationship between isomorphism classes of triangulations of M via these operations can
be represented in the Pachner graph of M where each node of the graph represents an
isomorphism class and each arc in the graph represents a Pachner move. In this section,
we focus on the Pachner graphs of orientable 3-manifolds and use the oriented isomorphism
signature to describe each isomorphism class in the graph. We then construct an encoding
scheme that describes a directed path through the Pachner graph as a string of printable
ASCII characters. This string is appended to the end of the oriented isomorphism signature
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that represents the base node of the path.
The key contributions of this paper are the introduction of the oriented isomorphism

signature and the directed Pachner path encoding. Together these compression schemes
provide a new way for computational topologists to study and interact with triangulations
of orientable manifolds in a way that brings their orientability to the forefront of the repre-
sentation.
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CHAPTER II

THE ISOMORPHISM SIGNATURE

2.1 Background

We begin by giving a faithful summary of [1] making only slight departures for the sake
of clarity. Throughout our conversation we will assume that a given triangulation T is
connected. We will briefly address disconnected triangulations in Section 2.1.

A triangulation of a 3-manifold is a set of tetrahedra usually glued to one another via a set
of face pairings. These face pairings can glue the faces of distinct tetrahedra together or can
glue one face of a tetrahedron onto another face of the same tetrahedron. If the latter occurs
anywhere in our triangulation we call it a pseudo-triangulation. Given a triangulation, a set
of tetrahedron vertices that are identified with one another via our face pairings is referred
to as a vertex of the triangulation. A face of the triangulation and edge of the triangulation
are similarly defined.

Given a triangulation with n tetrahedra, there are n!24n possible labellings. This factorial
growth in the number of labellings makes it di�cult to compare any two given triangulations
to see if they are triangulations of the same manifold. In order to reduce the computational
complexity of this problem we will restrict ourselves to looking at a certain kind of labelling
called a canonical labelling.

Definition 2.1.1 (Burton’s canonical labellings) Given a labelling of a connected tri-
angulation of size n, let At,f denote the tetrahedron glued to face f of tetrahedron t (so that
At,f 2 {0, · · · , n� 1, @} for all t = 0, · · · , n� 1 and f = 0, ..., 3). If face f of tetrahedron t
is a boundary component then we say At,f = @. The labelling is canonical if, when we write
out the sequence A0,0, A0,1, A0,2, A0,3, A1,0, · · · , An�1,3, the following properties hold:

1. For each 1  i < j, tetrahedron i first appears before tetrahedron j first appears.

2. For each i � 1, suppose tetrahedron i first appears as the entry At,f = i. Then the
corresponding gluing uses the identity map: face f of tetrahedron t is glued to face f
of tetrahedron i so that vertex v of tetrahedron t maps to vertex v of tetrahedron i for
each v 6= f .

The canonical labelling scheme above depends only on our choice of tetrahedron 0 and its
vertices. Once these choices have been made, property 1 and the identity map of property 2
induce a relabelling on all remaining tetrahedra and vertices as long as the manifold being
triangulated is a connected manifold. This canonical labelling scheme will never produce a
an oriented triangulation of the manifold, if one is possible, but it does reduce the number of
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Labelling of Elements in S4

0123 0 1023 6 2013 12 3012 18
0132 1 1032 7 2031 13 3021 19
0213 2 1203 8 2103 14 3102 20
0231 3 1230 9 2130 15 3120 21
0312 4 1302 10 2301 16 3201 22
0321 5 1320 11 2310 17 3210 23

Table 1: Labelling of elements in S4

ways to describe a triangulation of size n from n!24n di↵erent ways to 24n possible canonical
labellings.

While this greatly reduces the number of ways to describe a triangulation, it doesn’t
necessarily allow for fast insertion or fast lookup of the triangulation in a data set. To
overcome this, Burton defines an isomorphism signature for a given triangulation T . This
isomorphism signature is unique, easy to compute, and describes the isomorphism class
of our original triangulation [1]. For each of our 24n canonical labellings, we can find a
proto � signature as detailed in Definition 2.5. Burton defines but does not name this
proto-signature. We have given it a name for the clarity of the reader. The isomorphism
signature is then simply defined to be the smallest lexicographically (1 < Z < a) of the 24n
proto-signatures.

Our proto-signature needs to concisely encode the gluing information of a canonical
labelling. Burton uses the following specific sequences and method to come up with proto-
signatures:

Assume that face f of tetrahedron t is glued to face f 0 of tetrahedron t0. We can compare
these two faces lexicographically to determine which is larger and which is smaller. That is
if t < t0 then (t, f) < (t0, f 0) and if t = t0 and f < f 0 then (t, f) < (t0, f 0) and we say that
(t, f) is lexicographically smaller than (t0, f 0).

Now for each pair of faces that are glued together in a canonical labelling we only need
to encode this information once in order to keep our proto-signature as concise as possible.
In order to encode the gluing we begin by defining several sequences.

Definition 2.1.2 (Destination sequence) We can create a new sequence by removing
from At,f the term corresponding to the lexicographically larger of each pair of faces that
are glued together in the canonical labelling. This resulting sequence is called the destination
sequence.

This destination sequence tells us what tetrahedron a certain face is glued to but not
how it is glued to that tetrahedron. Because each tetrahedron has 4 vertices, anytime we
glue two faces together we can encode that information as an element of S4.

Definition 2.1.3 (Permutation sequence) The permutation sequence of a canonical la-
belling assigns to each element in the destination sequence an element of S4 that describes
the permutation needed to send the vertices of face f to the vertices of face f 0. In Table 1,
each element of S4 is described by where it sends 0123 and is labelled 0, · · · , 23.
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Finally, we need one last sequence to be able to precisely encode a canonical labelling
of a triangulation. This final sequence ensures that a canonical labelling can be recreated
from any given proto-signature which is useful as we want our proto-signatures and our
isomorphism signature to completely and uniquely encode the gluings of a triangulation.

Definition 2.1.4 (Type sequence) The type sequence assigns to each term in the desti-
nation sequence a typing as follows:

1. A term in the destination sequence is of type 0 if the corresponding face is a boundary
component, i.e. At,f = @ for that particular term.

2. A term in the destination sequence is of type 1 if it is the first time a tetrahedron (aside
from tetrahedron 0) appears in the destination sequence.

3. Otherwise, a term in the destination sequence is of type 2.

Notice that each term in the destination, permutation, and type sequence when con-
sidered together encode the information of a pair of faces that are glued together under
our canonical labelling. In particular if a face pairing is of type 1, then we know that the
same term in the permutation sequence must be 0 (corresponding to the identity permu-
tation 0123) as according to property 2 for canonical labellings if a face is glued to a new
tetrahedron then it must use the identity map.

The number of tetrahedra in the triangulation combined with the information in the
destination, type, and permutation sequences is enough to completely describe any triangu-
lation with a canonical labelling [1]. In order to make this information easier to wield and to
encode in a computer system we can use a function ⇡ that takes input of a natural number
and matches it with a printable character as seen in Table 2:

Natural number i 0 · · · 25 26 · · · 51 52 · · · 61 62 63
Printable character ⇡(i) a · · · z A · · · Z 0 · · · 9 + -

Table 2: The ⇡ function

For i � 64 we can still use the function ✏ to encode i using d = blog64(i)c + 1 printable
characters. we calculate ✏(i) in the following manner. We write i as a d�digit number in
base 64. We then encode each of the d base 64 digits using ⇡, beginning with the least
significant digit. For example, if i = 3863, then we can encode i in d = blog64(3863)c+1 = 2
digits. 3863 = 23 + 64 · 60 so ✏(3863) = ⇡(23)⇡(60) = x8. Notice that if 0 < i < 64 then
✏(i) = ⇡(i).

Definition 2.1.5 (Proto-signature) Given a canonical labelling of n tetrahedra, its proto-
signature can be found in the following way.

• First, we encode n and d. Specifically if n � 63 then we begin with the marker ⇡(63)
followed by ⇡(d) and then ✏(n). If n < 63 then we simply begin with ⇡(n) and it is
understood that d = 1.
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• Next, taking three terms in the type sequence, b0, b1, · · · , bk, at a time and using a tail of
one or two zeros in order to have the number of terms in our type sequence be divisible
by three we encode the type sequence as ⇡(b0 + b1 ⇤ 4+ b2 ⇤ 16)⇡(b3 + b4 ⇤ 4+ b5 ⇤ 16) · · ·

• Then we encode the terms in our destination sequence, d0, d1, d2, · · · dk, as ✏(di)✏(dj) · · ·
where di and dj refer to terms in the destination sequence of type 2 with 0  i < j  k.

• Finally, we encode the terms in our permutation sequence p0, p1, p2, · · · pk, as ⇡(pi)⇡(pj) · · ·
where pi and pj refer to terms in the permutation sequence of type 2 with 0  i < j  k.

Although alluded to before, we give a formal definition of the isomorphism signature.

Definition 2.1.6 (Isomorphism Signature) The lexicographically smallest of the of the
24n proto-signatures is the isomorphism signature.

In this definition when we say lexicographically smallest we are following the ASCII
convention of 1 < Z < a as this is simple to implement in computer systems.

Remark 2.1.1 The ASCII convention of 1 < Z < a means that the sequence 0, 1, 2, · · · , 9, A,
B, · · · , Z, a, b, · · · , z is in increasing order. This ordering is used because programming lan-
guages such as C and Python, as well as others, use this ordering of the ASCII tables in their
built in string comparison functions. Note that this ordering is distinct from the ordering
that the ⇡ function introduces when mapping integers to printable characters.

As an explicit example consider the following triangulation:

Example Triangulation
Tetrahedron Face 012 Face 013 Face 023 Face 123

0 1(032) 1(213) 0(312) 0(230)
1 2(203) 2(132) 0(021) 0(103)
2 3(312) 3(023) 1(102) 1(031)
3 3(130) 3(201) 2(013) 2(120)

Table 3: Original labelling of example triangulation

This labelling is not canonical because face 013 of tetrahedron 0 is glued to 1(213). This
is the first time tetrahedron 1 appears in our sequence At,f so according to property 2 of
canonical labellings we should use the identity gluing. Thus, face 013 of tetrahedron 0 should
be glued to 1(013).

To establish a canonical labelling of the above triangulation we simply need to choose
which tetrahedron will be tetrahedron 0 as well as how to label its vertices. Let’s apply
the relabelling that begins by sending 3(0123) to 0(0123). This is an arbitrary choice to
demonstrate how relabelling and canonical labelling a↵ects a triangulation. This induces
the canonical labelling presented in detail in Table 4.

Now that we have a canonical labelling we can determine the proto-signature of this
labelling following Burton’s encoding. At,f for the gluing above is the sequence 1, 1, 0, 0, 0,

6



Relabelling Sending 3(0123) to 0(0123)
Tetrahedron Face 012 Face 013 Face 023 Face 123

0 0(130) 0(201) 1(310) 1(123)
1 2(321) 0(320) 2(023) 0(123)
2 3(230) 3(013) 1(023) 1(210)
3 3(123) 2(013) 2(201) 3(012)

Table 4: Relabelling sending 3(0123) to 0(0123)

2, 0, 2, 1, 1, 3, 3, 3, 2, 2, 3. The first thing to notice is that Table 4 has repeated information
as each face of a tetrahedron is glued to a di↵erent face of a tetrahedron. After dropping
the terms in At,f that have redundant information we see that our destination sequence is
1, 1, 0, 2, 2, 3, 3, 3 which can easily be seen in Table 5 where the redundant information has
been crossed out.

Relabelling Sending 3(0123) to 0(0123)
Tetrahedron Face 012 Face 013 Face 023 Face 123

0 0(130) 0(201) 1(310) 1(123)
1 2(321) 0(320) 2(023) 0(123)
2 3(230) 3(013) 1(023) 1(210)
3 3(123) 2(013) 2(201) 3(012)

Table 5: Essential information of the relabelling

Now that we have our destination sequence we can easily find our type sequence which
is 1, 2, 2, 1, 2, 1, 2, 2. Lastly using Table 1 above and Table 5 we see that the permutation
sequence for this labelling is 0, 23, 13, 0, 23, 0, 16, 18.

This triangulation consists of n = 4 tetrahedra so the first term in our proto-signature
is ⇡(4) = e. Next, we encode the type sequence as ⇡(1 + 2 · 4 + 2 · 16)⇡(1 + 2 · 4 + 1 ·
16)⇡(2 + 2 · 4 + 0 · 16) = ⇡(41)⇡(25)⇡(10) = Pzk. Then we encode the face pairings of
type 2 in the destination sequence as ✏(1)✏(0)✏(2)✏(3)✏(3) = bacdd. Finally, we encode the
face pairings of type 2 in the permutation sequence as ⇡(23)⇡(13)⇡(23)⇡(16)⇡(18) = xnxqs.
Concatenating all this together in order we find that the proto-signature for our canonical
labelling is ePzkbacddxnxqs.

This proto-signature, however, is not the isomorphism signature of this triangulation. We
obtain the labelling that gives us the isomorphism signature when we relabel 2(0123) in the
original labelling as 0(3102) and then construct the induced canonical labelling. The resulting
proto-signature (and isomorphism signature of this triangulation) is eLAkbcbddhhwqj.

Another relabelling that would give us a proto-signature that is not the isomorphism
signature but is lexicographically smaller than our labelling worked out in detail above would
be obtained by relabelling 0(3012) in the original labelling to 0(0123) and then following the
rules for canonical labellings. The resulting labelling has proto-signature ePzkabcddjqxxn.
We can see that this is greater than our isomorphism signature because eL<eP, but this
proto-signature is less than the proto-signature worked out in detail because ePzka<ePzkb.
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Proposition 2.1.1 Let T be a connected triangulation consisting of at least two tetrahedra.
The smallest possible first distinguishing term in a proto-signature of T is H if our triangu-
lation has at least one boundary component. For closed and ideal triangulations, the smallest
possible first distinguishing term is L.

Proof. We stress that the first place that our proto-signatures can di↵er is in their encoding of
the first 3 terms of the type sequence. As there are three possible types for each tetrahedron
in the destination sequence then there are at most 33 possible di↵erent ways to encode this
information. An exhaustive list of them is found below where a+ 4 · b+ 16 · c is the natural
number associated with the first three terms a, b, c in the type sequence.

Encodings of the first three terms in the type sequence
i ⇡(i) i ⇡(i) i ⇡(i)

0+4·0+16·0 a 1+4·0+16·0 b 2+4·0+16·0 c
0+4·0+16·1 q 1+4·0+16·1 r 2+4·0+16·1 s
0+4·0+16·2 G 1+4·0+16·2 H 2+4·0+16·2 I
0+4·1+16·0 e 1+4·1+16·0 f 2+4·1+16·0 g
0+4·1+16·1 u 1+4·1+16·1 v 2+4·1+16·1 w
0+4·1+16·2 K 1+4·1+16·2 L 2+4·1+16·2 M
0+4·2+16·0 i 1+4·2+16·0 j 2+4·2+16·0 k
0+4·2+16·1 y 1+4·2+16·1 z 2+4·2+16·1 A
0+4·2+16·2 O 1+4·2+16·2 P 2+4·2+16·2 Q

Table 6: Encodings of the first three terms in the type sequence

Now according to our lexicographical ordering 1 < Z < a and Table 6, the smallest
such first distinguishing term in a proto-signature would be A. We achieve this with a type
sequence that begins with 2,2,1. However, this is only possible if every face on tetrahedron
0 is glued to another face on tetrahedron 0 meaning we have a disconnected component in
T . Thus, there are fewer than 27 possible combinations of the first three terms in a type
sequence that give rise to a canonical labelling of T . Table 7 shows the same information as
Table 6 but with cells corresponding to type sequences of non-canonical labellings and cells
corresponding to triangulations having a disconnected component crossed out.

Looking at the remaining possible encodings of the first three terms of our type sequence
we see that the the lexicographically smallest possible first distinguishing term in a proto-
signature is H. This occurs when the first three terms of the type sequence are 1, 0, 2. Recall
that faces of type 0 are boundary components so this ”H” is only possible if our triangulation
is of a manifold with boundary. If our manifold is closed, meaning that 0 doesn’t appear
anywhere in the type sequence, then the smallest possible first distinguishing term is L
corresponding to a type sequence beginning with 1, 1, 2.

In the case that we have some sort of geometric information or other data associated with
our original (possibly non-canonical) labelling of a triangulation then it would be useful to
be able to associate this information with our canonical labellings. This can be achieved
because each relabelling is an isomorphism.

8



Encodings of the first three terms in the type sequence
i ⇡(i) i ⇡(i) i ⇡(i)

0+4·0+16·0 a 1+4·0+16·0 b 2+4·0+16·0 c
0+4·0+16·1 q 1+4·0+16·1 r 2+4·0+16·1 s
0+4·0+16·2 G 1+4·0+16·2 H 2+4·0+16·2 I
0+4·1+16·0 e 1+4·1+16·0 f 2+4·1+16·0 g
0+4·1+16·1 u 1+4·1+16·1 v 2+4·1+16·1 w
0+4·1+16·2 K 1+4·1+16·2 L 2+4·1+16·2 M
0+4·2+16·0 i 1+4·2+16·0 j 2+4·2+16·0 k
0+4·2+16·1 y 1+4·2+16·1 z 2+4·2+16·1 A
0+4·2+16·2 O 1+4·2+16·2 P 2+4·2+16·2 Q

Table 7: Possible and impossible encodings of the first three terms in the type sequence

Once we decide which tetrahedron t in T to relabel as tetrahedron zero in our canonical
labelling C as well as how to relabel the vertices of this of tetrahedron t then we have fixed
the labellings of all other tetrahedra and vertices in our canonical labelling via the canonical
labelling rules. The relabelling to the vertices of tetrahedron 0 in C can be described as
an element of S4. This element has an inverse so our mapping can be reversed as long as
we know what tetrahedron in T was mapped to tetrahedron 0 in C. Thus, each canonical
relabelling preserves the structure of our triangulation and has an inverse map so each
canonical relabelling of T is an isomorphism.

2.2 Disconnected Triangulations

Burton restricted his labelling scheme to connected triangulations. However, a natural place
where disconnected triangulations arise is when cutting a triangulation along a normal sur-
face.

In the connected case, we simply had to choose which tetrahedron to label as tetrahedron
zero and choose an ordering on the vertices. Then following Burton’s canonical labelling
scheme this would fix a labelling on all other tetrahedra in our only connected component.
Thus, choosing a tetrahedron zero and an ordering on its vertices only fixes the labelling for
all other tetrahedra in the same connected component as tetrahedron 0.

If our triangulation T has i connected components then we can label each component j 2
{1, · · · , i}. Now let nj represent the number of tetrahedra in component j. Each component
has 24nj possible canonical labellings when considered by itself. When we consider all the
components together we can’t have a tetrahedron zero in each component so our choice of
tetrahedron from which to build out our canonical labelling in each component will be the
lowest indexed tetrahedron in that component. In particular the lowest indexed tetrahedron
in component j will be

Pj�1
k=1 nk unless j = 1 in which case the lowest indexed tetrahedron is

tetrahedron 0. There are i! di↵erent ways to order our disconnected components so we have
that the total number of canonical labellings for a disconnected triangulation is 24ii!

Qi
k=1 nk.

A disconnected triangulation consisting of n tetrahedra can have at worst n distinct
connected components. Thus, the worst case scenario is that a given triangulation has n!24n

possible canonical labellings. Obviously this doesn’t reduce in any significant way the number
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of labellings we have to consider. So this is really only an e↵ective method of storing the
information in a triangulation if there are relatively few connected components.

When it comes to creating an isomorphism signature for disconnected triangulations we
only need to change one thing from Burton’s definitions. For disconnected triangulations we
redefine the type sequence to the following.

Definition 2.2.1 (Type sequence) The type sequence assigns to each term in the desti-
nation sequence a typing as follows:

1. A term in the destination sequence is of type 0 if the corresponding face is a boundary
component, i.e. At,f = @ for that particular term.

2. A term in the destination sequence is of type 1 if it is the first time a tetrahedron
appears in the destination sequence unless it is the lowest indexed tetrahedron in a
connected component of the triangulation.

3. Otherwise, a term in the destination sequence is of type 2.

While there is only one thing we need to change in order to create a canonical labelling
scheme that functions for disconnected triangulations allowing these disconnected compo-
nents does change the result to Proposition 2.1.1 above.

Remark 2.2.1 Proposition 2.1.1 is restricted to only connected triangulations. If we allow
for triangulations with disconnected components then Table 8 details a triangulation that has
A as its first distinguishing term in its proto-signature:

Disconnected Triangulation
Tetrahedron Face 012 Face 013 Face 023 Face 123

0 0(013) 0(012) 0(123) 0(023)
1 1(013) 1(012) 2(013) 2(123)
2 2(023) 1(023) 2(012) 1(123)

Table 8: Disconnected triangulation example

This canonical labelling has destination sequence 0, 0, 2, 2, 1, 2 and type sequence 2, 2, 1, 2, 2, 2.
We can see that ⇡(2+4·2+16·1) = ⇡(26) = A. Thus, the smallest possible first distinguishing
term in a proto-signature of a triangulation with disconnected components is A.
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CHAPTER III

THE ORIENTED ISOMORPHISM SIGNATURE

3.1 Orientation of Tetrahedra and 3-Manifolds

We begin with a discussion of orientability and orientation of tetrahedra in order to later
define an oriented canonical labelling before moving to the orientation of a smooth manifold
as a whole. Please note that we have moved back into the assumption that T is a connected
triangulation.

A solid tetrahedron t is a 3-manifold with boundary meaning that for x an interior point
of t there is a local neighborhood that resembles R3. This means that in order to orient the
tangent space at x we need an ordered basis consisting of three vectors. A natural choice to
describe this basis are the three vectors from a vertex of t to the three other vertices.

Proposition 3.1.1 A tetrahedron has two possible orientations.

Proof. Let t be a tetrahedron embedded in R3 and a, b, and c vectors from v, a vertex of
tetrahedron t, in the direction of each of the other vertices of t. Now let ea, eb, and ec be
vectors based a point x in the interior of t in the direction of a, b, and c respectively. This
ensures that ea, eb, and ec are not all co-planar and thus form a basis for the tangent space
at x. Because a tetrahedron is a 3-manifold then the plane containing ea and eb splits the
tangent space into two spaces. The vector ec can lie on either side of this plane so there are
two possible orientations.

0

1
2

3

0

1
3

2

Figure 1: A negatively oriented tetrahedron (left) and a positively oriented tetrahedron
(right)

Definition 3.1.1 (Orientation of a Tetrahedron) Let t be a tetrahedron and a, b, and c
an ordered basis. We say that t is positively oriented if c and a ⇥ b, obtained by using the
right-hand rule, lie on the same side of the plane containing a and b. Otherwise, we say that
t is negatively oriented.

11



From this definition we can see the usefulness of using vectors that are coincident with
certain edges in a tetrahedron as a basis. Thus, a natural choice for the basis in order to
determine the orientation of a tetrahedron is the ordered basis {01, 02, 03} where 01 is the
vector in the direction from vertex 0 to vertex 1 and 02 and 03 are similarly defined.

Each of the faces of a tetrahedron t is a boundary component and thus it inherits an
orientation from t. However, each face is a 2�manifold so an ordered basis for its orientation
only consists of two vectors. This means there is a choice in how each face inherits it’s
orientation as it will either have an inward pointing normal vector or an outward pointing
normal vector.

Definition 3.1.2 (Induced Orientation) Each face inherits an orientation and a basis
from its parent tetrahedron. This is called the induced orientation. If t is positively oriented
then it induces a basis on each face that has an outward pointing normal vector and if t is
negatively oriented then it induces a basis on each face that has an inward pointing normal
vector.

This means we can assign a canonical ordered basis to each face. For face 0 this ordered
basis is {12, 13} where 12 represents the vector from vertex 1 to vertex 2 and 13 is similarly
defined. For face 1 this basis is {03, 02}. For face 2 this basis is {01, 03}. For face 3 this basis
is {02, 01}. Note that these canonical ordered bases allow us to determine the orientation of
an entire tetrahedron based o↵ whether the canonical ordered basis for any given face has
an inward or outward pointing normal vector.

Lemma 3.1.1 Applying a 2-cycle to the labelling of a tetrahedron swaps the orientation of
the tetrahedron.

Proof. Let t be a tetrahedron that is positively oriented. This means that the vector 03 in
the ordered basis {01, 02, 03} is on the same side of the plane containing 01 and 02 as the
vector 01 ⇥ 02. Applying a single 2-cycle to the labelling of vertices in t has the e↵ect of
swapping two vertices in t. Let P be the plane containing 01 and 02.

First if this 2-cycle is (13) or (23), then 01 ⇥ 02 remains on the same side of P as it
was in the original but 03 swaps sides making the resulting tetrahedron negatively oriented.
Next if this 2-cycle is (12), then 01 ⇥ 02 is now on the other side of P but 03 remains on
its original side giving a negatively oriented tetrahedron. Then if the 2-cycle is (01) or (02)
then it reverses the direction of one of the basis vectors so 01⇥02 also reverses direction and
now points to the opposite side of P as 03. Lastly, if the 2-cycle is (03), then the vector 03
swaps directions and 01⇥02 is una↵ected so the resulting tetrahedron is negatively oriented.

By a similar argument if t is negatively oriented than any of the 2-cycles listed above
will have the same e↵ect but will result in 03 and 01⇥ 02 to lie on the same side of P . This
is an exhaustive list of the two-cycles of four elements so applying any single 2-cycle to the
vertices of a tetrahedron swaps the orientation of the tetrahedron.

Thus far we have discussed the orientation of tetrahedra but more generally we can define
the orientation of any manifold. First lets review some aspects of a general n�dimensional
manifold M. Any manifold can be described by an atlas.

Definition 3.1.3 An atlas A for an n�dimensional manifold M consists of an indexed set
of coordinate charts {(Ui,�i) : i 2 I} where the set {Ui : i 2 I} is a cover for M and
�i : Ui ! En where En is the n�dimensional Euclidean space is a homeomorphism.
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In other words M is locally identifiable with some subset of En which has exactly two
possible orientations. A transition map allows us to compare coordinate charts of a manifold.

Definition 3.1.4 Given two coordinate charts (Ui,�i) and (Uj,�j) with Ui\Uj 6= ; from an
atlas A for M, the transition map ⌧i,j : �i(Ui \Uj)! �j(Ui \Uj) is the map ⌧i,j = �j � ��1

i .

Now that we have a more concrete way of describing manifolds we can define what it
means for any manifold to be orientable. This definition comes from Lee [2].

Definition 3.1.5 (Orientable) A smooth manifold M is orientable if there exists an atlas
A such that the transition maps between all overlapping coordinate charts in A have positive
Jacobian determinant and we call A an oriented atlas.

Now that we understand what it means for a smooth 3-manifold M to be orientable we
can begin to see how this relates to the orientation of tetrahedra within a triangulation of
M.

Definition 3.1.6 (Propagated Orientations) Once we assign an orientation to one tetra-
hedron in our triangulation then we can use it to determine the orientation of its neighbors
based o↵ gluing data and normal vectors to each face of our tetrahedra. We say that the
adjacent tetrahedra have been assigned the propagated orientation from the original tetrahe-
dron.

Please note that the propagated orientation need not be the same as the orientation of
the original tetrahedron. The way in which the orientation is propagated out is detailed in
the following proposition.

Proposition 3.1.2 Given two distinct tetrahedra t1 and t2 in a triangulation of an oriented
3-manifold with at least one face glued together then the propagated orientation t2 receives
from t1 is the same orientation as t1 if and only if the face pairing corresponds to an odd
element of S4.

Proof. Without loss of generality assume that t1 is positively oriented. Let face f be the face
of t1 that is glued to face f 0 in t2. Recall that changing the orientation of a tetrahedron also
changes the direction of the induced orientation on its faces and thus changes the direction
of the normal vector for these faces from outward pointing to inward pointing or vice versa.
We also know that because t1 and t2 are tetrahedra in a triangulation of an orientable 3-
manifold then each tetrahedron can be assigned a consistent orientation of either positive or
negative. This means once we establish the direction of the normal vector for any face of
our tetrahedron then we have established the only possible orientation for the tetrahedron
as a whole within the given triangulation.

We begin by showing that an odd face pairing implies that t1 and t2 have the same
orientation. From Lemma 3.1.1 we know that applying a single 2-cycle to the ordering of
vertices swaps the orientation of the tetrahedron and thus swaps the direction of the normal
vector on all faces of the tetrahedron from outward to inward or vice versa. Thus applying
an odd element of S4 to the labeling of t1 will swap the direction of the normal vector of
all faces from outward to inward pointing. Face f 0 in the relabelling is now coincident with
what was originally face f before the relabelling. This means that f 0 must be oriented such
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that it has a normal vector that points into the interior of t1 but f 0 is exactly the face of t2
that is glued to f in t1 so the normal vector for face f 0 points outward from t2 meaning that
t2 is also positively oriented. This means that we have assigned t2 the propagated orientation
from t1 and these orientations are the same if the face pairing is an odd element of S4.

Now to show that if t1 and t2 have the same orientation and share a face then their
gluing must correspond with an odd element of S4. We will use a proof by contrapositive to
show that if the gluing corresponds to an even element of S4 then t1 and t2 have opposite
orientations. Once again using Lemma 3.1.1 we see that applying an even element of S4

to the labelling of t1 means that will result in a tetrahedron that has an outward pointing
normal vector. After applying this relabelling what was originally face f in t1 will now be
labelled as face f 0 and will have a normal vector that points outward from t1, but this means
that the normal vector to face f 0 on t2 must point into t2 so t2 is negatively oriented while t1
is positively oriented. This means that we have assigned t2 the propagated orientation from
t1 mentioned in Definition 3.1.6 but in this instance the orientations are di↵erent because
the face pairing came from an even element of S4.

Thus if t1 and t2 are tetrahedra with at least one face glued together then the face pairing
corresponds to an odd element of S4 if and only if t1 and t2 have the same orientation.

The way in which the orientation of our original oriented tetrahedron propagates out
to its neighbors is the same in a non-orientable manifold; however in this case, there will
be some contradiction in the way this orientation is propagated out in that at least one
tetrahedron will be assigned a positive orientation and a negative orientation based o↵ its
face pairings to adjacent tetrahedra. Thus when we say a 3-manifold is non-orientable, we
mean that in a triangulation of the manifold there must be some tetrahedron that will be
assigned both a positive and negative orientation when using our propagated orientation.

Although using an odd element of S4 when gluing two tetrahedra together means that
the two tetrahedra will have the same orientation this gluing swaps the orientation of the
normal vectors of the face pairing. Thus we call such elements orientation reversing face
pairings and these are precisely the elements 1, 2, 5, 6, 9, 10, 13, 14, 17, 18, 21, and 22 in
Table 1 in Section 2. Now we stress the importance of orientation reversing face pairings in
triangulations of orientable manifolds.

Proposition 3.1.3 A 3-manifold M is orientable if it permits a triangulation T such that
the gluing map for each face pairing is an orientation reversing face pairing.

Proof. Let T be a triangulation with all orientation reversing face pairings. Then there is
an atlas A that describes M such that A = {(t,�t) : t 2 T } with �t : t! R3 such that the
canonical basis {01, 02, 03} for t is embedded such that it is coincident with the standard
ordered basis for R3.

Now let i and j be two tetrahedra that are adjacent to one another. Because they are
glued together along a face f by an orientation reversing face pairings then if the normal
vector determined by the canonical basis and labelling of f in tetrahedron i points inward
to i then so must the normal vector for the face f in j point inward to j. Similarly, if the
normal vector determined by the canonical basis and labelling of f in i points outward from
i then so must the normal vector for the face f in j point outward from j. Thus, when we
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embed these tetrahedra in R3 using our maps �i and �j these maps will have the same sign
for the determinant of their Jacobian matrices.

Recall the transition map from tetrahedron i to tetrahedron j is defined by the following
composition of functions ⌧i,j = �j ���1

i . This transition map will have the Jacobian determi-
nant det(Jac(�j � ��1

i )) = det(Jac(�j(�
�1
i ))Jac(��1

i )) = det(Jac(�j(�
�1
i ))) det(Jac(��1

i )).
Because det(Jac(�j(�

�1
i ))) and det(Jac(��1

i )) will have the same sign then det(Jac(⌧i,j)) > 0.
As all our face pairings in T are orientation reversing then the transition maps between

any two adjacent tetrahedra will have positive Jacobian determinant. Thus A = {(t,�t) :
t 2 T } is an oriented atlas describing M so M is an oriented 3-manifold.

Although Proposition 3.1.2 shows that the orientability of a manifold and the orientation
of tetrahedra in a triangulation of a manifold have some relationship to one another, it is
important to note that orientability is a feature of the manifold independent of any choice
of triangulation. In fact for an orientable manifold, most given triangulations will consist
of both positively and negatively oriented tetrahedra. If every tetrahedra in a triangulation
has only orientation reversing face pairings then we say this is an oriented triangulation as
it describes an oriented manifold according to Proposition 3.1.3.

3.2 Encoding of the Oriented Isomorphism Signature

Burton’s canonical labelling is very powerful in that for a triangulation T consisting of n
tetrahedra it greatly reduces the number of labellings that we need to consider from n!24n

to 24n. However because this labelling scheme implements the identity map, which is not an
orientation reversing face pairing, when gluing a new tetrahedra to an existing one we obtain
a non-oriented triangulation even if the manifold is orientable. Often times it is useful to deal
with an oriented triangulation if one is possible so we diverge from Burton and introduce
the following definition.

Definition 3.2.1 (Oriented canonical labellings) Given a labelling of a triangulation
of size n, let At,f denote the tetrahedron glued to face f of tetrahedron t (so that At,f 2
{0, · · · , n � 1, @} for all t = 0, · · · , n � 1 and f = 0, ..., 3). If face f of tetrahedron t is a
boundary component then we say At,f = @. The labelling is an oriented canonical labelling if,
when we write out the sequence A0,0, A0,1, A0,2, A0,3, A1,0, · · · , An�1,3, the following properties
hold:

1. For each 1  i < j, tetrahedron i first appears before tetrahedron j first appears.

2. For each i � 1, suppose tetrahedron i first appears as the entry At,f = i. Then the
corresponding gluing uses the map swapping the lexicographically largest vertices of face
f of tetrahedron t.

3. The gluing between vertices of face f or tetrahedron t to At,f is an orientation reversing
face pairing.

These gluings in condition 2 correspond to the following elements s 2 S4 labelled in Table
1 above: if f = 0 then s = 1, if f = 1 then s = 1, if f = 2 then s = 5, and if f = 3 then
s = 2. Notice that these are all orientation reversing face pairings so they satisfy condition
3.
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Theorem 3.2.1 Every orientable manifold M permits an oriented canonical labelling and
every oriented canonical labelling describes an oriented manifold.

Proof. Assume M is an oriented manifold with triangulation T . We can construct a rela-
belling of T using the first two conditions in the definition of oriented canoncial labellings.
From condition 2 we see that the in the relabelling each new tetrahedron is glued on via
an orientation reversing face pairing. Now because M is orientable then Proposition 3.1.2
applies and each tetrahedron in our relabelling must have the same orientation as it has an
orientation reversing face pairing. Because each tetrahedron in the relabelling has the same
orientation then Proposition 3.1.2 applies again and every gluing must be an orientation
reversing face pairing. Thus, condition 3 in the definition is met so M permits an oriented
canonical labelling.

Now assume that we have a triangulation T that is described by an oriented canonical
labelling. Then from condition 3 and Proposition 3.1.3 we can easily see that the manifold
described by an oriented canonical labelling must be an orientable manifold.

With our understanding of orientability of manifolds and triangulations we can now
define an oriented proto-signature and oriented isomorphism signature similar but distinct
from definitions 2.1.5 and 2.1.6 above.

Definition 3.2.2 (Oriented Proto-signature) Given an oriented canonical labelling of n
tetrahedra, its oriented proto-signature can be found in the following way.

• First, we begin with the character “$” to denote that this is an oriented proto-signature
as opposed to Burton’s proto-signature. If we want to specify the orientation of our
triangulation we instead begin with the character “!” to denote that the tetrahedra are
positively oriented or we begin with the character “?” to denote that the tetrahedra are
negatively oriented.

• Then, we encode n and d. Specifically if n � 63 then we begin with the marker ⇡(63)
followed by ⇡(d) and then ✏(n). If n < 63 then we simply begin with ⇡(n) and it is
understood that d = 1.

• Next, taking three terms in the type sequence, b0, b1, · · · , bk, at a time and using a tail of
one or two zeros in order to have the number of terms in our type sequence be divisible
by three we encode the type sequence as ⇡(b0 + b1 ⇤ 4+ b2 ⇤ 16)⇡(b3 + b4 ⇤ 4+ b5 ⇤ 16) · · ·

• Then we encode the terms in our destination sequence, d0, d1, d2, · · · dk, as ✏(di)✏(dj) · · ·
where di and dj refer to terms in the destination sequence of type 2 with 0  i < j  k.

• Finally, we encode the terms in our permutation sequence p0, p1, p2, · · · pk, as ⇡(pi)⇡(pj) · · ·
where pi and pj refer to terms in the permutation sequence of type 2 with 0  i < j  k.

Definition 3.2.3 (Oriented Isomorphism Signature) The lexicographically smallest of
the of the 24n oriented proto-signatures is known as the oriented isomorphism signature.

To see how this di↵ers from Burton’s isomorphism signature let us consider the same
triangulation as in section 2.1.
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Original Labelling
Tetrahedron Face 012 Face 013 Face 023 Face 123

0 1(032) 1(213) 0(312) 0(230)
1 2(203) 2(132) 0(021) 0(103)
2 3(312) 3(023) 1(102) 1(031)
3 3(130) 3(201) 2(013) 2(120)

Table 9: Original labelling of example triangulation

As we have already stated this triangulation has isomorphism signature eLAkbcbddhh-
wqj. This labelling is not an oriented canonical labelling because face 013 of tetrahedron 0 is
glued to 1(213). This is the first time tetrahedron 1 appears in our sequence At,f so accord-
ing to property 2 of oriented canonical labellings we should use the gluing corresponding to
element 5 in the S4 above. In other words 0(013) should be glued to 1(031).

To establish an oriented canonical labelling of the above triangulation we need to choose
which tetrahedron will be tetrahedron 0 as well as how to label its vertices. Let’s apply the
relabelling that begins by sending 2(0123) to 0(3102). This induces the following oriented
canonical labelling detailed in Table 10.

Relabelling sending 2(0123) to 0(3102)
Tetrahedron Face 012 Face 013 Face 023 Face 123

0 2 (102) 1 (103) 2 (032) 1 (132)
1 1 (320) 0 (103) 1 (210) 0 (132)
2 0 (102) 3 (230) 0 (032) 3 (132)
3 3 (301) 3 (120) 2 (301) 2 (132)

Table 10: Relabelling sending 2(0123) to 0(3102)

Now that we have an oriented canonical labelling we can determine its oriented proto-
signature. For this example we choose not to determine the orientation of the tetrahedra in
this triangulation and instead use $ to denote that this is an oriented isomorphism signature.

At,f for the gluing above is the sequence 1, 2, 1, 2, 0, 1, 0, 1, 3, 0, 3, 0, 2, 2, 3, 3. Notice once
again that Table 10 has repeated information as each face of a tetrahedron is glued to
a di↵erent face of a tetrahedron. After dropping the terms in At,f that have redundant
information we see that our destination sequence is 1, 2, 1, 2, 1, 3, 3, 3 which can easily be
seen in Table 11 where the redundant information has been crossed out.

Relabelling sending 2(0123) to 0(3102)
Tetrahedron Face 012 Face 013 Face 023 Face 123

0 2 (102) 1 (103) 2 (032) 1 (132)
1 1 (320) 0 (103) 1 (210) 0 (132)
2 0 (102) 3 (230) 0 (032) 3 (132)
3 3 (301) 3 (120) 2 (301) 2 (132)

Table 11: Essential information of relabelling

Now that we have our destination sequence we can easily find our type sequence which
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is 1, 1, 2, 2, 2, 1, 2, 2. Lastly using our S4 table above and our crossed out table above we see
that the permutation sequence for this labelling is 1, 1, 6, 6, 17, 1, 17, 9.

Recall that our first character for our oriented isomorphism signature will be $ as we
decided not to provide a basis to orient our tetrahedra. This triangulation consists of
n = 4 < 63 tetrahedra so the second term in our proto-signature is ⇡(4) = e. Next, we
encode the type sequence as ⇡(1 + 1 · 4 + 2 · 16)⇡(2 + 2 · 4 + 1 · 16)⇡(2 + 2 · 4 + 0 · 16) =
⇡(37)⇡(26)⇡(10) = LAk. Then we encode the face pairings of type 2 in the destination se-
quence as ✏(1)✏(2)✏(1)✏(3)✏(3) = bcbdd. Finally, we encode the face pairings of type 2 in the
permutation sequence as ⇡(6)⇡(6)⇡(17)⇡(17)⇡(9) = ggrrj. Concatenating all this together
in order we find that the proto-signature for our canonical labelling is $eLAkbcbddggrrj.
This is in fact the oriented isomorphism signature as it is the lexicographically smallest of
the 24n oriented proto-signatures for this triangulation following the ASCII convention that
1 < Z < a.

Clearly this encoding, $eLAkbcbddggrrj, of our original triangulation di↵ers from Bur-
ton’s isomorphism signature which is eLAkbcbddhhwqj. While both the oriented isomor-
phism signature and Burton’s isomorphism signature are representations of triangulations
that are isomorphic to the same original triangulation, our oriented isomorphism signature
has the advantage that the triangulation that it encodes is oriented.
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CHAPTER IV

COMPRESSION OF PACHNER PATHS

4.1 Pachner Moves and Pachner Graphs

A 3-manifoldM can be described by many triangulations. The number of tetrahedra in these
triangulations are not restricted meaning that it is possible to have a triangulation consisting
of p tetrahedra and another triangulation consisting of q tetrahedra both describing M with
p 6= q. If there is a relabelling that sends one triangulation of M to another triangulation we
say that these triangulations are isomorphic as the relabelling constitutes an isomorphism
between the two. Notice that two triangulations having di↵ering numbers of tetrahedra are
never isomorphic despite the fact that they might triangulate the same 3-manifold. Changing
the number of tetrahedra in a triangulation but preserving what manifold the triangulation
represents can be achieved by local changes to the triangulation called Pachner moves.

Definition 4.1.1 (Pachner Moves) The four simplest Pachner moves are performed as
follows:

• The 2-3 move replaces two distinct tetrahedra that are glued together with three distinct
tetrahedra that are glued along a common edge.

• The 4-1 move replaces 4 distinct tetrahedra containing a common vertex of degree 4
with a single tetrahedron.

• The 3-2 move and 1-4 move are inverses of the 2-3 move and 4-1 move respectively.

In Figure 2 notice that the 2-3 move increases the number of tetrahedra in our triangula-
tion by one and thus its inverse the 3-2 move will decrease the number of tetrahedra by one.
Similarly the 4-1 move decreases the number of tetrahedra by three so its inverse the 1-4
move increases the number of tetrahedra by 3. We can think of the 2-3 move as occurring
at a face pairing in the triangulation, the 3-2 move at an edge of the triangulation, the 1-4
move at a tetrahedron of the triangulation, and the 4-1 move at a vertex of the triangulation.
While these moves are quite powerful in allowing us to increase or decrease the number of
tetrahedra in a triangulation, they do have restrictions. A Pachner move can only be applied
at a sub-simplex of dimension k for k 2 {0, 1, 2} of the triangulation if the k-simplex has
exactly 4� k distinct adjacent tetrahedra in the triangulation. In the case of the 1-4 move
occurring at a tetrahedron in the triangulation this move is always possible.

While two triangulations with di↵ering numbers of tetrahedra may describe the same
manifold M, determining what Pachner moves need to be done to convert one triangulation
to the other is no small feat. Any two triangulations of the same closed 3-manifold can be
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Figure 2: The 2-3 and 3-2 moves (top) and the 1-4 and 4-1 moves (bottom)

made isomorphic through a sequence of Pachner moves [3] and this sequence can be seen in
the Pachner graph for a 3-manifold. The following definition comes from [1].

Definition 4.1.2 (The Pachner Graph) Let M be any 3-manifold. The Pachner graph
of M, denoted P(M), is an infinite graph constructed as follows. The nodes of P(M)
correspond to isomorphism classes of triangulations of M. Two nodes of P(M) are joined
by an arc if and only if there is a Pachner move that converts one class of triangulations
into the other.

The nodes of P(M) are partitioned into finite levels 1, 2, 3, · · · , where each level n
contains the nodes corresponding to triangulations consisting of n tetrahedra.

The oriented isomorphism signature of a triangulation can be used as a representation for
the isomorphism class of the triangulation also known as the triangulation class. Thus, each
node in the Pachner graph can be described by an oriented isomorphism signature which
encodes a specific triangulation, namely the oriented canonical labelling that gives rise to
the proto-signature that is the oriented isomorphism signature. Because each arc in P(M)
describes a Pachner move then if two nodes are connected via a path, there is a sequence of
Pachner moves that can be applied to convert one triangulation class to the other. Because
each Pachner move increases or decreases the number of tetrahedra in a triangulation by a
fixed amount we can determine what type of move is being applied by looking at the level
of our nodes within the graph before and after traversing the arc. For example if we start
at a level 7 node in the Pachner graph and there is an arc to a level 4 node, then these two
nodes are related by a 4-1 move as this is the only Pachner move that decreases the number
of tetrahedra, and thus the level of our node, by three.

While we can determine what type of Pachner move needs to be performed to get from
one node to the next in a path by observing the di↵erence in levels of consecutive nodes,
the Pachner graph alone doesn’t tell us where to apply this move. Applying a move at the
wrong location even if the move applied gets us to a node of the same level as what arc
we intended to traverse can send us down a completely di↵erent path. The labelling of the
triangulation we apply the Pachner move to also changes the location of where we need to
apply a specific move to traverse a certain arc in our graph. Because of this we need to
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create a way to accurately and consistently describe a path regardless of what labelling you
want to apply the move to.

4.2 Encoding Pachner Paths

We choose to let the triangulation encoded by the oriented isomorphism signature always be
the labelling to which we apply a Pachner move. Let T denote this triangulation. With a
consistent choice of how to label the triangulation representing each node we can now make
a consistent choice in how to describe the locations within a node where we can apply a
Pachner move.

We will order the vertices, faces, and edges of T in lexicographical order.

Definition 4.2.1 (Order of Sub-simplices of a Triangulation) Let vt,k for all t 2 T
and k 2 {0, 1, 2, 3} represent vertex k of tetrahedron t. Let et,k for all t 2 T and k 2
{0, 1, 2, 3, 4, 5} represent the edges of tetrahedron t with k = 0 corresponding with edge 01,
k = 1 with edge 02, k = 2 with edge 03, k = 3 with edge 12, k = 4 with edge 13, and
k = 5 with edge 23. Let ft,k for all t 2 T and k 2 {0, 1, 2, 3} represent face k of tetrahedron
t. Now let V represent the sequence v0,0, v0,1, v0,2, v0,3, v1,0, · · · , let E represent the sequence
e0,0, e0,1, e0,2, · · · , e0,6, e1,0, · · · , and let F represent the sequence f0,0, f0,1, f0,2, f0,3, f1,0, · · · .

The sub-simplices of T are in lexicographical order (or equivalently we can say that T is
ordered) if for each 0  i < j, vertex i of T first appears before vertex j of T in V . Similarly,
edge i of T first appears before edge j of T in E, and face i of T first appears before face j
of T in F .

Notice that any given labelling of T will have exactly one such lexicographical ordering of
the vertices, faces, and edges of the triangulation. Thus, we can use this ordering to describe
precisely where to perform a specific Pachner move within T as we know it always references
the triangulation encoded by the oriented isomorphism signature. Also see that according
to the definition above if T is ordered then vertex 0 of T will always be the vertex of T
corresponding to v0,0. The same is true for face 0 and edge 0 of T corresponding to f0,0 and
e0,0 respectively. With these ordering conventions in place we can describe how to traverse
an arc in the Pachner graph via the following definition.

Definition 4.2.2 (Pachner Arc Encoding) Given an oriented isomorphism signature cor-
responding to triangulation T and representing a node in the Pachner graph of a 3-manifold
M we can encode an arc from this node to another corresponding to a Pachner move per-
formed at a specific k-simplex of T in the following manner.

• First if i, the total number of k�simplices of T , is greater than 63 we begin with the
marker ⇡(63) followed by ⇡(d) with d = blog64(i)c + 1. If i < 63 we don’t encode
anything for this step and it is understood that d = 1.

• Next, we encode the location L corresponding to a specific vertex, edge, face, or tetrahe-
dron within our triangulation where this Pachner move occurs using d printable char-
acters as ✏(L)
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• Finally, we encode what type of Pachner move we are doing at this location L as ⇡(k)
so if k = 0 we are encoding a 4-1 move, if k = 1 we are encoding a 3-2 move, if k = 2
we are encoding a 2-3 move, and if k = 3 we are encoding a 1-4 move as each move is
only possible at a sub-simplices of a specific dimension.

Theorem 4.2.1 Pachner arc encodings represent only one arc in the Pachner graph and
are well defined.

Proof. Let T be the base node for our arc in the Pachner graph. The arc describes a Pachner
move of type k at a specific k�simplex, P , of T . Each Pachner arc encoding encodes the
dimension k of the sub-simplex where the Pachner move occurs and thus encodes what
type of move should be performed. We also encode the location P of this Pachner move
as L the integer representing P in the lexicographical ordering of k�simplices of T . The
triangulation T representing the base node of our arc is a fixed triangulation, meaning there
is no ambiguity in what its labelling should be. Combining all this information means that
a Pachner arc encoding at a specific node tells us what dimension of sub-simplex to apply
a Pachner move at, what kind of move to apply, and the location of the move within the
ordering of sub-simplices of T so it is a well defined encoding.

Note that although a Pachner arc encoding is well defined, each arc in the Pachner graph
will have two such encodings as the encoding is dependent on what node you start at or in
other words its encoding is dependent on which direction you are traversing the arc. This is
because each arc represents a Pachner move and it’s inverse.

If we know our current node than there is only one possible encoding of any arc o↵ of it
as we can only traverse it in one possible direction. This works to our advantage as it allows
us to concatenate Pachner arc encodings to describe a directional path through the Pachner
graph.

Definition 4.2.3 (Directed Pachner Path Encoding) A directed Pachner path encod-
ing is constructed from a base node and sequence of Pachner arc encodings. The encoding is
the string beginning with the oriented isomorphism signature concatenated with the character
’#’ to denote the end of the oriented isomorphism signature and the beginning of the Pach-
ner arc encodings, and finally this is concatenated with each of the Pachner arc encodings in
order.

As an explicit example we construct a directed Pachner path encoding with the beginning
node $eLAkbcbddggrrj. This is the oriented isomorphism signature that we constructed as
an example in Section 3. Let’s apply a 1-4 move at tetrahedron one of $eLAkbcbddggrrj to
get a new triangulation T 0. The location for this Pachner move is 1 and the move is of type
3 because it occurs at a 3-simplex of $eLAkbcbddggrrj and this triangulation has less than
63 3-simplices so d = 1 and this Pachner arc can be encoded as ✏(1)⇡(3) = bd. Next let’s
encode the Pachner arc corresponding to applying a 3-2 move at edge 01 in tetrahedron 3 of
T . This edge corresponds with edge 8 in the ordering of edges in T . This triangulation has
less than 63 edges so d = 1 and this Pachner arc can be encoded as ✏(8)⇡(1) = hb. Thus,
the directed Pachner path encoding for this path is $eLAkbcbddggrrj#bdhb.

We can easily describe traversing more edges in the Pachner graph by adding more
Pachner arc encodings onto the end of any given directed Pachner path encoding. In this

22



way we can consider a Pachner arc encoding as a su�x that can be appended to the end of
an oriented isomorphism signature or an already existing directed Pachner path encoding.

Remark 4.2.1 In this section we have made the choice to focus on analyzing the Pachner
graph of orientable manifolds, but this encoding scheme for directed Pachner paths also works
for triangulations of non-orientable 3-manifolds. Instead of representing each node as the
oriented isomorphism signature we instead use the isomorphism signature and we replace the
oriented isomorphism signature in the encoding with the triangulation’s isomorphism signa-
ture. Please note that this will likely change the actual encoding of each Pachner arc as the
indexing of subsimplices in the isomorphism signature and oriented isomorphism signature
can be di↵erent.
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