
MODEL RE-TRAINING FOR DYNAMIC GRAPHS

 By

 VARUN TEJA PURAM

 Bachelor of Technology

 Mahatma Gandhi Institute of Technology

 Hyderabad, Telangana

 2019

 Submitted to the Faculty of the
 Graduate College of the

 Oklahoma State University
 in partial fulfillment of

 the requirements for
 the Degree of

 MASTER OF SCIENCE
 July 2022

ii

 MODEL RE-TRAINING FOR DYNAMIC GRAPHS

 Thesis Approved:

Dr. Johnson P Thomas

 Thesis Adviser

 Dr. K.M. George

 Dr. Blayne Mayfield

iii
Acknowledgements reflect the views of the author and are not endorsed by committee
members or Oklahoma State University.

ACKNOWLEDGEMENTS

The Master’s degree from the computer science department, Oklahoma State University

has greatly increased my interest in research and has given me great knowledge. I will

continue to do more research in the upcoming years.

Firstly, I am very grateful and thankful to Dr. Johnson P Thomas, who has given me

constant support and without him, I would not be able to do this.

I am also very thankful to Dr. K.M George who has encouraged, supported, and given

important ideas to me.

Thank you, Dr. Mayfield, for being my committee member.

I would also like to thank my parents, Mr. Ashok Rao Puram and Mrs. Shoba Rani for their

continued support throughout my studies.

 iv

Name: VARUN TEJA PURAM

Date of Degree: JULY 2022

Title of Study: MODEL RE-TRAINING FOR DYNAMIC GRAPHS

Major Field: Computer Science

Abstract: In Machine Learning, the most critical assumption is that training and testing
datasets should have similar distributions. The model will be effective if the new test data
is similar to the past data on which the model was trained. If there are substantial
differences between the training data and the testing data, the machine learning algorithm
will generate results that are not very accurate. In many applications, the data has dynamic
periodicity, that is, the data changes with time. As the distribution of the data keeps
changing, at some point, the model will therefore have to be retrained.

In this research I look at the dynamic behavior of graph data. As data changes, there will
be addition/deletions of nodes/edges of the graph. As we are dealing with large sets of
graph data, we use embedding vector spaces (for graph data) for training and testing.
Embedding vector spaces in each timestamp are different and training the model each time
when data changes is expensive. To address these challenges, we use the dfs_dynode2vec
algorithm where the current timestamp graph embedding vectors initializes from the
previous embedding vectors. For each timestamp, data might change significantly or
insignificantly. We propose a statistical model ‘Significant testing’ which determines
whether the model should be retrained or not. If the change is insignificant, the model need
not to be trained again and embedded vectors for that timestamp are not generated. We
have considered several aspects in determining the statistical significance of the change.
These include edge centrality, betweenness centrality and norm calculations.

 v

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ..1

II. LITERATURE SURVEY ...4

III. INTRODUCTION TO MACHINE LEARNING ON GRAPHS8

 Formal Definition of Graphs ..8
 Node Degree ..9
 Node Centrality ..9
 Node Embedding ...14
 Random Walks on Graphs ...15
 Random walk-based node embedding Technique ...17
 Matrix Norms ...20

IV. STATISTICAL APPROACH TO RETRAINING GRAPH DATA22

 Problem Specification ..22
 Proposed Methodology ..23

V. RESULTS ..31

 Dataset ..31
 Experiments ...32

VI. CONCLUSION...42

 REFERENCES. …………………………………………………………… …..44

 vi

LIST OF TABLES

 Table Page

 5.1 Results when 10% high centrality edges were removed35

 5.2 Results when 20% leaf nodes were removed ..35

 5.3 Results when 10% leaf nodes and 2% high nodes were removed36

 5.4 Results for values for norms for different accuracy values (experiment -4)38

 5.5 Results for values for norms for different accuracy values (experiment -5)40

 vii

LIST OF FIGURES

Figure Page

2.1 Continues traning-continuos testing ..5

3.1 Node centrality example ..11

3.2. Node centrality example continued ..12

3.3 Node centrality example results ...12

3.4 Edge centrality example ...14

3.5 Node embedding example ..15

3.6 Random walk example ...16

3.7 Skip gram architecture ...19

5.1 Graph as embedding vector space -1 ...33

5.2 Graph as embedding vector space -2 ...34

5.3 High edge centralities values ..38

5.4 Accuracy vs Norm values ..41

 1

CHAPTER I

INTRODUCTION

Data equals Knowledge. Data is everywhere and plays a very important part in day-to-day

life. The term ‘small data’, for example, phone numbers of family, refers to small datasets

which humans can remember and analyze. ‘Big data’ refers to large datasets that may be

structured or unstructured and requires a machine to store and analyze. Data can be in any

form like image, video, text, numeric or bits.

Data may be represented as graphs to capture relationships between data and attributes of

data. Graphs are ubiquitous data structures composed of nodes and edges, that is a graph

G = (V, E), where V is the set of nodes and E is the set of edges. Nodes represent entities

and edges establish the relationship between them. Many real-world applications are best

modelled with graphs. As an example, airlines graphs consist of airports as nodes and edges

as the distance between airports. Both nodes and edges can represent attributes. For

example, a node may specify the name of the airport and whether it is an international

airport or not. There are many algorithms on graphs like traversal, shortest path, cycle

detection and so on. Lately machine learning algorithms can run on graph data.

Machine Learning algorithms on graphs include node prediction, link prediction, anomaly

prediction and so on. A machine learning model takes graph data in terms of vectors for

 2

training and testing. When big data is represented in the form of graphs, graph embeddings

are required. Graph embedding is a node embedding technique that embeds the nodes by

preserving the graph structure and its properties into low dimensional vectors that can be

viewed as projections in the latent space. This reduces the dimensionality of the graph

which improves the time required for the machine learning algorithms to process the data.

There are several node embeddings techniques like matrix factorization approaches which

use Laplacian eigenmaps to reduce the dimensionality and random walk-based approaches

like Node2vec [14] which uses Gradient descent to optimize the random walks and Deep

Walk [15] which uses skip gram to preserve the neighbor structure of the graph.

Data has dynamic periodicity as data changes with time. Incoming data may have

associated with it a timestamp. The critical assumption of machine learning is that training

and testing data should have similar distributions to get good results. With the dynamic

behavior of data, over time, the training data may not have a similar distribution to the

testing data resulting in decreasing accuracy. Hence, this means the model has to be

retrained. Model retraining for each timestamp is costly in terms of time and computation.

For big data, retraining the machine learning model may takes weeks. Hence, retraining

should be done only when the accuracy is below a threshold. This will remove the need to

retrain with every change in data. When data changes significantly the existing model may

be retained.

 3

In my research I used the random walk-based approach [14] for embedding the nodes.

Node embedding for each timestamp will be different as we will get a different corpse of

walks from random walks. To address this problem, Dynode2vec [15] is an algorithm that

uses previous timestamps vectors for current timestamp vectors (which may produce

similar vectors to the previous timestamp). I modify this algorithm by taking advantage of

DFS (Depth First Search) traversal for the evolving nodes. In this thesis I also identify the

key attributes of a graph using a statistical approach to determine if the model must be

retrained. I will also define the bounds within which changes to the attributes will

determine if the model must be retrained.

Previous work reported in the literature is presented in chapter 2. There is a brief

introduction on Machine Learning on Graphs in chapter 3. Problem Statement and

proposed methodology is presented in chapter 4, results obtained are described in chapter

5 and conclusions in chapter 6.

 4

CHAPTER II

LITERATURE SURVEY

Machine learning algorithms require a lot of data, so-called ‘big data’. However as more

and more data are appended to the dataset (the so-called ‘volume’, ‘velocity’ and ‘variety’

properties of big data), the accuracy of the machine learning algorithms may change as the

distribution of the data may change. To maintain the required level of accuracy, the

machine learning algorithm must be retrained with the updated dataset.

The key research question is: ‘as data changes, at what point should the model be

retrained?’ Very little work has been reported in the literature on how the accuracy of

machine learning algorithms change as data changes.

The Automated Retraining of Machine Learning Models [1] looked at this problem. They

proposed the methodology shown below:

Algorithm1(Data)

1) Gather data and create data set

2) Train Machine Learning Model

3) Evaluations [Predictions]

 if (Prediction becomes inaccurate):

4) Model Retraining

5) Go to step 3

 else:

 5

 The Model is retained.

In this work, they run the model every time they need to predict to measure the accuracy

each time. If the accuracy falls below a threshold the model is retrained.

Figure 2.1: Continues training- continues testing

In [3], the authors use Model Drifting to measure the degradation of a model's prediction

power due to changes in the environment. They take advantage of the Jenson-Shannon

divergence [4] to identify prediction drift (a change in the distribution of the predicted label

– p(ŷ|X)) [5] in real-time model output and compare it with the accuracy using training

data. They set a threshold value as shown in figure 2.1 [2]. Once the threshold value is

reached, they will retrain the model. If the data has significantly changed the machine

learning model will give inaccurate results. However, this can only be determined after

running the model. In other words, they do not train the model until it is run, and the

 6

accuracy obtained which may lead to inaccurate predictions. In this case also they are

running the model each time to measure the accuracy.

Web services such as Azure [6], AWS etc. face the same problem as data stored in these

clouds change. Because of the enormous resources available in such clouds, they store all

the previous data in the pipeline and retrain the model each time a prediction is required.

This requires a lot of resources, including processing power to retrain and a lot of main

memory to store all this data.

Our goal is to determine when to retrain the model without making any predictions on the

updated data and measuring the accuracy. None of the above approaches do this. They all

make predictions every time and then decide whether to retrain the model. Other

approaches retrain the model each time. In my research, rather than making a prediction

each time and measuring its accuracy, I identify the key points in graphical data, such as

node centrality and edge centrality. Significant changes to these critical points determine

whether the model must be retrained. Hence, in my approach the model is not run each

time to make a prediction.

Dynode2vec

Embedding vector spaces for each timestamp are different. To preserve embedding vectors,

dynode2vec [15] is a dynamic graph embedding algorithm proposed by Aijun et. al. in

2019. This algorithm generates whole random walks for every time stamp and the

embedding vector spaces in each timestamp are different. dynode2vec() employs the

 7

dynamic skip gram model, where the previous time stamp learned embedding vectors are

transferred as the initial weights for current time stamp. They will train random walks on

the set of evolving nodes, as shown in the equation given below.

 --- Evolving Nodes

Algorithm: - Dynnode2vec

Input: Graphs G = G1, G2,...,GT

Output: Embedding vectors Z1, Z2 , . . . , ZT

Run static node2vec for the Graph G1

For t=2 to N do

 Find a set of evolving nodes, ∆Vt

 Sample new random walks (Walkn) for ∆Vt

 Train Skip-Gram Skipt with Walkn and obtain Zt

end for

This above algorithm will preserve the embedding vector spaces for previous and current

timestamps. But the evolving nodes in this algorithm are limited to the set of new nodes or

nodes which are affected by edges. In my research, I follow a similar algorithm to embed

the dynamic graph but my algorithm finds the set of evolving nodes by taking advantage

of depth-first search (dfs) traversal.

 8

CHAPTER III

INTRODUCTION TO MACHINE LEARNING ON GRAPHS

3.1 Formal definition of Graphs

A graph is a collection of nodes and edges where nodes represent entities and edges

represent relationships or interactions between the nodes. Nodes and edges may have

attributes or features that contain more information about that instance.

Formally, a graph can be represented as G = (V, E) where V is the set of nodes and E is the

set of edges. If an edge exists between nodes u and v where u ∈ V, v ∈ V then (u, v) ∈ E. If

it is an undirected graph then (u, v) ∈ E « (v, u) ∈ E.

In an Adjacency matrix A ∈ R|V| * |V|, every node indexes a particular row or column in the

adjacency matrix. A[u, v] = 1 if (u, v) ∈ E, else A[u, v] = 0. If the graph is undirected, the

adjacency matrix is symmetric in nature. If the graph is directed the matrix need not to be

symmetric. In the weighted graph A[u, v] will not be in domain {0,1}. It will depend on the

weight of the edge. For example, states in the USA are nodes and distance between each

state are represented with a weighted edge.

 9

3.2 Node Degree

Node degree is the number of edges connected to node. Node degree is denoted as du, where

u ∈	V. The node degree du, is:

𝑑! =%𝐴(𝑢, 𝑣)
"

The above equation is for an undirected graph. For directed graphs there will be in-degree

and out-degree associated with each node.

In-degree is:

𝑑!#$ =%𝐴,𝑢,𝑣-
"

Out-degree: -

𝑑!&!' =%𝐴(𝑣, 𝑢)
"

Total Degree: -

𝑑!'&'() = 𝑑!#$ + 𝑑!&!'

For weighted graphs, there is a weighted degree associated to each node.

𝑊_𝐷! =%𝐴(𝑢, 𝑣)
"

3.3 Node Centrality

The degree of a node is the number of neighbors of the node. One of the important measures

of centrality is Eigenvector Centrality.

a) Eigenvector Centrality

 10

Eigenvector centrality not only considers the neighbor nodes but also their importance.

In general, we define the node eigenvector centrality xu where u ∈ V by a recurrence

relation where node centrality is directly proportional to the average node centrality of

neighbors. Relative score is assigned to each node after iterations become saturated,

that is, after some number of iterations the relative score remains unchanged. We can

say a node will have a high value if it is connected to high score nodes rather than it

having more node degree. Node degree depends upon only the numbers of nodes

connected to it, but here it also depends on how important the connected nodes are.

𝑥! =
1
𝜆%𝐴[𝑢, 𝑣]𝑥" , 				∀𝑢

"

∈ 𝑉

Here λ is a constant. With a small re-arrangement we can re-write the equation as the

eigenvector notation [7] below:

 Ax= λx

If we start with (1,1, 1,… v)T as vector x0 in the first iteration, then x1 contains the degree

of all the nodes. We will iterate the process until the principle eigen value is obtained.

In the example [8] below, we illustrate the simplification caused by Eigenvalue centrality

 11

Figure 3.1: Node centrality example

 12

Figure 3.2: Node Centrality example continued.

Figure 3.3: Result for Node centrality example

From the principal eigen vector, Node 1 is having centrality = 0.524 and so on. Node

centrality plays a crucial role in my research.

 13

b) Betweenness Centrality

Betweenness centrality [9] is one of the popular node centrality measures which

depends on the shortest paths of two nodes. This measure depends upon the flow of

information of the graph. For every two nodes in the connected graph there exists a

shortest path between them. The number of edges the path passes through is minimized

and for weighted graphs, the sum of the weights of those edges in the paths are

minimized. Node u ∈ V has the highest betweenness centrality if (x, y) ∈ V which has

the shortest path between them, consists of node u frequently compared to other nodes.

Betweenness centrality is calculated as:

𝑏(𝑢) 	= 	 %
𝜎(+,|!)
𝜎+,+/,/!

𝜎+, = Number of shortest paths from node x to node y

𝜎+,(u) = Number of shortest paths that pass-through u.

c) Edge Centrality

Edge Betweenness centrality [10] is the centrality measure for edges like betweenness

centrality for nodes; this measure calculates how powerful the edge is in the graph.

Every edge in the graph will have an edge betweenness centrality value. If the edge has

high centrality score and this particular edge serves as the connection between two or

more networks, removing the edge leads to drastic change in graph behavior.

𝑏(𝑒) 	= 	 %
𝜎(+,|0)
𝜎+,+/,/!

𝜎+, = Number of shortest paths from node x to node y

 𝜎+,|0 = Number of shortest paths that pass-through edge e.

 14

Figure 3.4: Edge centrality example

In Figure 3.4, the red edge has the most edge betweenness centrality as it is in the shortest

paths of many pairs of vertices. If the edge is removed, the behavior of the graph may

change. I have considered how when data changes, the model will be affected.

3.4 Node Embedding

Embedding is a popular technique in the machine learning world. Embedding allows

representing complex objects like text, graph, images in a vector format while preserving

all the important information about the data. Node embedding is the most well-known

technique for graph embedding

Node Embedding is the process of embedding each node in the graph to a low dimensional

vector space. Node embedding must preserve the graph structure such that nodes which are

close or neighbors in graph, should be close to each other in the embedding space. These

low dimensional embeddings can be viewed as projections into a latent space as shown in

Figure 3.5.

 15

 Embedding space

Figure 3.5: Node Embedding Example

There are several node embeddings techniques like Matrix Factorization-based and

Random walks. Matrix Factorization approaches are directly inspired by classical

techniques for dimensionality reduction called Laplacian Eigenmaps [12]. For data

with dynamic periodicity, we can use random walks to learn the previous timestamps

vectors. Hence in this research I use the Random-walk based node embedding methods.

3.5 Random Walks on Graphs [11]

For a given graph G = (V, E) and starting node u ∈ V, we select a neighbor of u, v ∈ V

[(u,v) ∈ E] at random and move towards node v. Random walks then select the neighbor

nodes of the node v and selects any one randomly and moves towards it. We do this

walk_length (∈ N), number of times. Walk length specifies the length of the sequence of

random walks. These sequences of nodes are called random walks for a node starting at u

in a graph G. Each node can be associated to a specific random walk/walks.

 16

Let us consider G = (V, E) be a graph or digraph (directional). If G is a digraph, then node

u ∈ V, 𝑑!&!' 	> 	0 for every vertex u. If starting node is u then the probability that it goes

to node v ∈ V, where (u,v) ∈ E is 1
2"

 or 1
2"#"$

 if the graph is digraph.

𝑝"! =

⎩
⎨

⎧
1
2"
	𝑖𝑓	(𝑢, 𝑣) 	∈ 		𝐸	in	the	Graph	𝐺

1
2"#"$

	𝑖𝑓	(𝑢, 𝑣) 	∈ 	in	the	digraph	𝐺

0																			Otherwise

Random Walks is one of the most important and popular node embedding methods. The

walks we get after running random walks for any graph is called a corpse of walks. It is an

initial step to embed the nodes in the form of vectors on which we train the machine

learning model. In the corpse we can observe random walks starting from each vertex that

runs till walk_length. In the example below consider a undirected graph G =

({A,B,C,D,E,F}, edges). Let take walk_length = 4. Random walks might be different for

each instance. Random walks for the graph in Figure 3.6 are below.

 Figure 3.6: Random walks example

A->	D	->	E->F																					A->B->C->F																								

D->	A	->	B->C					 									D->E->F->C	

E->	C->	F	->	C		 									E->F->C->B	

F	->	C->	B->A	 									F->E->D->A	

C	->	B	->A->D	 									C->F->E->D	

B->	A	->	D->E	 									B->C->F->E	

(1st Run) (2nd Run)

 (CORPSE)

 17

Random walks are not the same for all time instances. The walks will vary with respective

to neighboring nodes and their incoming probabilities and outgoing probalities. Incoming

and outgoing probabilities are values we assign to the random walks. This means from each

node has p1 probability of being an incoming node and p2 probability of being an outgoing

node where p1+p2 =1. This means the random walk will select an outgoing node which is

a node that is different node than the previous node in the walk with probability p2 and

select an incoming node which is a walk that returns to the previous node with probability

p1.

3.6 Random walk-based node embedding Techniques

Many real-world examples use random walk-based node embedding techniques to

optimize the node embeddings so that every node which are neighbors have similar

embeddings if they tend to reoccur on short random walks.

a) Node2Vec

Node2Vec [13] is an algorithmic framework for learning continuous feature

representations for nodes in networks. In node2vec, we map nodes to a low-

dimensional space of features that maximizes the likelihood of preserving network

neighborhoods of nodes. We define a flexible notion of a node’s network neighborhood

and design a biased random walk procedure, which efficiently explores diverse

neighborhoods. Node2Vec generalizes prior work which is based on rigid notions of

network neighborhoods. The added flexibility in exploring neighborhoods is the key to

 18

learning richer representations. The main drawback of this algorithm is that it does not

preserve the embedding vector spaces for the next time stamp data.

b) Deep Walk:

Deep Walk [14] can be represented as:

Deep Walk = Random Walks + Skip Gram

Skip Gram [16][17] is an algorithm that is used to create word embeddings i.e., high-

dimensional vector representation of words. These embeddings are meant to encode

the semantic meaning of words such that words that are semantically similar will lie

close to each other in that vector’s space. It assumes words that are semantically similar

are used in similar contexts.

 An example

à Hi, Good Evening; Hello, Good Evening;

Here hi, hello have the same meaning. Vector representation of “Hi, Hello” will be

close to each other in the embedding space as they contain the same words in the

sentences and mean the same.

Vocabulary set: {Hi, Hello, Good, Evening}. (All unique words in the corpse)

 19

 Figure 3.7: Skip gram Architecture.

If we observe the above architecture, initially xk is the one-hot vector which is the

vector to represent each word in the vocabulary. We will place 1 in place of that word

and the remaining will all be 0’s as shown below.

Xhi = [1 0 0 0]T

Xhello = [0 1 0 0]T

Xgood =[0 0 1 0]T

XMorning = [0 0 0 1]T

The respective 1-hot vector will multiply with initial weight matrix (which in

dynnode2vec(). We will take advantage of the dynamic skipgram model for obtaining

current time stamp vectors with previous skipgram as initial weights). Calculations on

hidden layer are performed to give the embedding vectors.

Coming to Deep Walk, till now we are considering only graphs and data represented

as graphs, but in the above subsection, I said skipgram is used to create word

 20

embeddings from words and words that are converted into vectors. Below we show

how skipgram and random walks capture graph structure.

We can use SkipGram to capture the community structure of a graph by viewing the

graph as a kind of language where:

• Each node is a unique word in the language

• Random walks of finite length on the graph constitute a sentence with the

respective node where it starts. For each node there will be at least one random

walk which acts as sentence of the node.

 The final output will be the vectors for each node preserving the graph structure.

3.7 Matrix Norms

The norm of Matrix A ∈ 𝑅3∗$ is similar to the absolute value of the Matrix, denoted by ||

A ||.

It is calculated by:

|| A || = ∑ ∑]𝑎#56$
578

3
#78 .

This essentially calculates the square root to the sum of the squares of the all the numbers

in the matrix.

Example:

 If A3*3 =
2 −1 2
1.23 0 3
0.01 −1.34 1

 || A || = d26 + (−1)6 + 26 + 1.236 + 06 +	36 +	0.016 +	(−1.34)6 + 1

 21

 = √4 + 1 + 4 + 1.51 + 0 + 9 + 0.00 + 1.79 + 1

 = √22.3

 || A|| = 4.72

Norm of the matrix tells us the difference between the two matrices. To find out how

similar the two matrices are, we subtract the two matrices A – B and find the norm of the

resultant matrix, || A – B||. If the value is low or close to 0 then we can say that A and B

are almost identical.

 22

 CHAPTER IV

STATISTICAL APPROACH TO RETRAINING GRAPH DATA

4.1 Problem Specification:

Machine learning graphs models learn from the graph data in order to solve tasks such

as node classification, edge classification, node prediction and so on. If the data is stable

or static, the graph structure and properties do not change. But in the real world most

of the data have dynamic periodicity (data changes with time). This means that there

will additions/deletions of nodes/edges in the graph.

As the distribution of the data changes with time, to get good accuracy, we need to

retrain the model. But the data may or may not have changed sufficiently to

significantly affect the accuracy of the machine learning task. The research problem is

then to determine when to retrain the model. For this problem I propose a solution based

on statistical approaches called significant testing considering several aspects of graph

measures like node centrality, edge centrality, betweenness centrality and norm.

Embedding vector spaces will be different in each timestamp. Many of the existing

graph embedding methods are for static graphs. The only work that looks at embedding

for dynamic graphs is the dynamic graph embedding algorithm called

‘dfs_dynode2vec’ [16]. This algorithm takes advantage of depth first search (dfs)

traversal on the existing algorithm dynode2vec [16].

 23

4.2 Proposed Methodology

The goal is to determine when the model should be retrained before it is used for testing.

 Algorithm_A (Data):

 Step 1: - Node Embedding: (dfs_dynnode2vec())

 Step 2: - ExistingModel = Train the model

 Return ExistingModel

 Algorithm_B (Datanew):

 If (Data changes significantly):

 Algorithm_A(Datanew)

 Else:

 Node Embedding : (dfs_dynnode2vec ())

 Evaluation with ExistingModel

 Return Accuracy

Algorithm_A should be implemented first for the original graph data and store the

ExistingModel. Whenever the data changes, Algorithm_B is executed to determine if the

change is significant enough to affect the results of the machine learning task. If the

change in data is significant, then the model is retrained.

 24

Embedding vector spaces are different each time the data changes. [16] proposed a solution

to preserving vector spaces between timestamps as mentioned in the Literature Review

section. The proposed approach for preserving embedding vector spaces is shown below:

dfs_dynnode2vec (graphi ,walklength):

1) Run Node2Vec(Deep Walk)for the graph0(Initial

graph)

 2) for graphi (i = 1: N):

 X ¬ New nodes

Z ¬ Nodes effect by addition/removal of edges.

 for (all X and Z nodes)

 Y ¬ dfs_walklength(node, walklength)

 end

 𝛅Vi = X ∪ Y ∪ Z

 corpsei = Run random walks for 𝛅Vi

 Vectorsi = Train Skipgram skipi with corpsei

 end

 end

dfs_walklength (node, walklength):

 for i in range (X ∪ Z):

 // get all nodes

 end

 dfs (walklength, node)

 end

 25

The above algorithm dfs_dynode2vec() is a graph embedding technique.

dynnode2vec() [16] in the algorithm takes advantage of depth first search to find the

nodes with the distance of the walklength which is done by dfs_walklength()

The above algorithm takes as input graphi and walklength. walklength defines the number

of walks on each node when random walk is implemented. Step 1 is done only for the initial

graph, that is, run the static node2vec (Deep walk) [14]. When data changes at time stamp

i, the graph is represented by graphi . For each new node or node affected due to removal

of an edge, apply dfs_walklength algorithm to get all nodes within the walklength.

For the evolving nodes represented by 𝛅Vi, apply random walks and store in corpsei.

Next train the skip gram model for corpsei .

The proposed methodology for determining whether or not to retrain the model is

outlined below:

Constructing data in matrix formats:

Graph data can be represented in many ways. Matrix form is one of them. The Adjacency

matrix shows if two nodes are connected or not and the weighted matrix will show the

weight between two nodes. In this project, we considered a matrix with edge centralities.

In this work, we measure the difference between the original matrix and the new matrix to

decide if the model has to be retrained

 26

Algorithm_original_matrix (Graphoriginal):

Step 1: - Find Edge centralities for Graphoriginal in

dictionary format

Step 2: - initialize a Nd array M which is in Matrix format

Step 3: - append. Edge centralities (M)

Return M

Algorithm_new_matrix (M, Graphnew):

 Step 1: - Get all nodes in new graph

 Step 2: - Append new nodes to M

 Step 3: - With the same structure of M take a new Nd array

M1

 Step 4: - Find Edge centralities of Graphnew

 Step 5: - append. edge_centralities(M1)

 Step 6: - Fill remaining values with 0’s in M and M1.

Return M, M1

The above algorithm “algorithm_original_matrix()” takes as input the original

graph data. This algorithm finds edge centralities of each edge in a graph which is output

in the format of a dictionary {[(nodei, nodej), edge_centralityij]}. That

means for every pair of nodes in the graph we have an edge centrality value. The matrix

datatype is not available in any of the major programming languages (C, java, python). I

have therefore taken a Nd array (Nd array is an N dimensional array which is a primitive

 27

data structure that stores same kind of variables). When we considered an Nd array, it will

be like ‘n’ rows arranged in the linearly format which is in a matrix-like format. Initialize

all the values of edge centralities in M with their respective indices (i, j).

Algorithm_new_matrix() constructs a new matrix when the data changes. It takes

as inputs graphnew and Matrix M and return an updated matrix M and new Matrix M1. M is

the matrix which contains edge centralities of the original matrix and M1 is the matrix which

contains edge centralities values when the data changes that is for new data. In the first

step we will get all the nodes from the new data and check the indices of M. If nodes have

been deleted, some of the nodes will not be present in M. So, we add new indices to M

which means we are extending the matrix with indices because M and M1 should have

similar structure to perform the Norm (matrices extending is for preserving the structure of

the two matrices). We have the structure of M (original data matrix), To preserve the

structure of the matrix with the same dimensions take another Nd array M1, find the edge

centralities of the new graph and initialize them in M1 with respective to their indices (i,j).

There might be chance of some of them will have null values, initialize them to 0’s and

return M and M1.

Calculating Norm:

We have two matrices M and M1 ∈ 𝑅$∗$, where

if a = {nodes in Graphoriginal }

 b = {nodes in Graphnew}

 n = #nodes in {a ∪ b}

M is the original data matrix and M1 is the new data matrix.

Let,

 28

A = M – M1

|| A || = ∑ ∑]𝑎#56$
578

$
#78

Constructing data in vector formats

In the above algorithms, we represented the data in Matrix format. Next, we represent it in

vector format. Vector format is a 1-dimensional array in vector format. Here the main idea

is to verify the data change in the shorter format.

Algorithm_original_vector (Graphoriginal):

Step 1: - Find Edge centralities for Graphoriginal in

dictionary format

Step 2: - initialize a 1d array V which is in vector format

Step 3: - append. Edge centralities (V)

Return M

Algorithm_new_vector (M, Graphnew):

 Step 1: - Get all nodes in new graph

 Step 2: - Append new nodes to V

 Step 3: - With the same structure of M take a new 1d array

V1

 Step 4: - Find Edge centralities of Graphnew

 Step 5: - append. edge_centralities(V1)

 Step 6: - Fill remaining values with 0’s in V and V1.

Return V, V1

 29

The above algorithm “algorithm_original_vector()” takes as input the original

graph data. This algorithm finds edge centralities of each edge in a graph which is output

in the format of a dictionary {[(nodei, nodej), edge_centralityij]}. That

means for every pair of nodes in the graph we have an edge centrality value. I have

therefore taken a 1d array, V which is in a vector-like format. Initialize all the values of

edge centralities in V with their respective indices i {(i = (nodei , nodej)}.

Algorithm_new_vector () constructs a new vector when the data changes. It takes

inputs as graphnew and Vector V and returns an updated vector V and new vector V1. V is

the vector which contains edge centralities of the original vector and V1 is the vector which

contains edge centralities values when the data changes, that is, for new data. In the first

step we will get all the nodes from the new data and check the indices of V. As the data

may have changed, some of the nodes may not be present in V. So, we add new indices to

V which means we are extending the Vector with indices because V and V1 should have

similar structure to perform the Norm (vectors extending is for preserving the structure of

the two vectors V and V1). We have the structure of V (original data vector), To preserve

the structure of the vector with the same dimensions take another 1d array V1, find the edge

centralities of the new graph and initialize them in V1 with respective to their indices i.

Because of changes in the data, some of them may have null values. Initialize them to 0’s

and return V and V1.

 30

Calculating Norm:

We have two matrices V and V1 ∈ 𝑅$, where

if a = {nodes in Graphoriginal }

 b = {nodes in Graphnew}

 n = #nodes in {a ∪ b}

V is the original data vector and V1 is the new data vector.

Let,

A = V – V1

|| A || = ∑ √𝑎$91
#78 i

 31

CHAPTER V

RESULTS

5.1 Dataset

The Cora data is used for all experiments [18]. There are two columns in the data set

<ID of cited paper> <ID of citing paper>

1) u1 v1

2) u2 v2

 ….

 5429) u5429 v5429

There are 2485 unique papers and 5429 interactions in the dataset. An interaction between

two papers occurs when a paper a is cited by paper b. Each paper is represented as a node

and each interaction as an edge. Papers u1 and v1 are linked so there will an edge

connecting these two nodes in the graph.

Each node has an attribute, ‘node subject’. This defines the subject of the paper. A paper

has only one subject. For example, if node u1 has node subject ‘Probabilistic methods’,

then that node will be classified with label ‘Probabilistic Methods’. There are 7 unique

labels representing different subjects:

 32

 {'Case_Based','Genetic_Algorithm’,'Neural_Networks',

'Probabilistic_Methods','Reinforcement_Learning','Rule_Lear

ning','Theory'}.

The Cora dataset is a static dataset, that is, the data does not change. But for my research I

need data which behaves with dynamic periodicity, I therefore selected randomly 80% of

the original data and constructed a graph out of this data. This is the training data or graph.

The model was trained on this data. Some or all of the remaining 20% of the data (the

testing data or graph) was added and deleted from the 80% of the data to emulate the

dynamic behavior of the data. This results in a new graph that behaves like a dynamic

graph. In the next step, the new nodes are classified, and the accuracy measured.

5.2 Experiments

Experiments were conducted to preserve the embedding vector spaces for two different

random walks

colors = {'Case_Based': 'black',

 'Genetic Algorithms': 'red',

 'Neural_Networks': 'blue',

 'Probabilistic_Methods': 'green',

 'Reinforcement_Learning': 'aqua',

 'Rule_Learning': 'purple',

 'Theory': 'yellow'}

1) Experiment 1:

 33

This experiment visualizes the results when the static Node2vec algorithm is run

for similar data at two different times. Fig. 5.1 and Fig. 5.2 below are low

dimensional plots of the embedded graph where each color denotes one of the node

subjects listed above. Both the figures preserve the graph structure as similar nodes

are plotted together, but they do not have the same embedding vector spaces. This

leads to low accuracy

Figure 5.1: Graph as embedding vector space 1

 34

Figure 5.2: Graph as embedding vector space 2

Experiment 2

The second experiment classified the 20% Test data which was removed from the

original Graph. The classification accuracy was 0.87.

Experiment 3

The dynnode2vec() and dfs_dynnode2vec() algorithms were run with change

in data. The training was done on 80% of the original graph (training graph). The remaining

20% of the graph was used for testing.

3.1 Changes in high centrality edges

a) The training graph is 80% of the original graph. The top 10% of high

centrality edges in the training graph were deleted

b) 20% of new nodes (from the test data which is the remaining 20% data)

were added to the graph.

 35

c) The trained model (80% of the graph) was used to classify the new 20%

nodes.

Results:

Method Accuracy

Dynnode2vec 0.287

Dfs_dynode2vec 0.298

 Table 5.1: Results when 10% high centrality edges were removed

The results show that deleting high centrality edges results in low accuracy. The model

therefore needs to be retrained.

3.1 Changes in leaf nodes

a) The training graph is 80% of the original graph. 20 % of leaf nodes were

deleted from the training graph

b) 20% of new nodes (from the test data which is the remaining 20% data)

were added to the graph.

c) The trained model (80% of the graph) was used to classify the new 20%

nodes.

Results:

Method Accuracy

Dynnode2vec 0.712

Dfs_dynode2vec 0.759

Table 5.2 – Results when 20% leaf nodes were removed

 36

The results show that when leaf nodes are deleted, the accuracy is not significantly

impacted. There is therefore no need to retrain the model. The same number of nodes may

be deleted, but because they have low centrality value, the effect is low.

3.3 Changes in high centrality edges and leaf nodes

a) The training graph is 80% of the original graph. 10 % of leaf nodes were

and the top 2% of high centrality edges were deleted from the training graph

b) 20% of new nodes (from the test data which is the remaining 20% data)

were added to the graph.

c) The trained model (80% of the graph) was used to classify the new 20%

nodes.

Method Accuracy (20%)

Dynnode2vec 0.632

Dfs_dynode2vec 0.681

Table 5.3 – Results when 10% leaf nodes and Top 2% high centrality edges

These results show that high centrality nodes and edges change graph features more than

the low centrality edges and nodes. High centrality edges have more impact than low

centrality in terms of the accuracy of the machine learning tasks.

 37

Experiment 4

Experiment 3 shows that high centrality nodes and edges change graph features more than

low centrality edges and nodes. This means removing low centrality nodes doesn’t impact

the trained model but when high centrality nodes are removed it impacts the trained model

and leads to low accuracy.

To determine if the model needs to be retrained we use Norm calculations. Algorithms

algorithm_original_matrix() and algorithm_new_matrix proposed in

the methodology section are used to calculate the norms of the matrix M - M1 to determine

the difference between the two matrices, in other words, are the two matrices identical or

very different . The results are shown in the table below

Accuracy for original data with
original trained model.

Accuracy for new data when
tested with original trained model Norm of M-M1

87.4 19.4 0.158
87.4 29.8 0.154
87.4 48.3 0.135
87.4 53.2 0.127
87.4 55.8 0.109
87.4 56.3 0.088
87.4 61.5 0.075
87.4 65.9 0.074
87.4 68.1 0.065
87.4 68.8 0.049
87.4 69.5 0.0061
87.4 69.9 0.0001
87.4 71.2 0.0001
87.4 72.6 0.0001
87.4 72.9 0.0001

 38

87.4 73.5 0.0001
87.4 75.9 0.0001
87.4 76.5 0.0001
87.4 77.8 0.0001
87.4 78.2 0.0001
87.4 79.5 0.0001
87.4 80 0.0001
87.4 81.5 0.0001
87.4 83 0.0001
87.4 84.5 0.0001

Table 5.4: Results for values of norms for different accuracy values (experiment 4)

Table 5.4 shows that entries with norms = 0.0001 has little change in accuracy between the

original and the new data. When the norms are above > 0.061, the accuracy falls due to

significant changes in data. When we removed high centrality edges which have high

values in the matrix, then the norm value will be of higher value. When we deleted low

centrality edges which have low values in the matrix, the norm will be nearly equal to zero.

Figure: 5.3: High Edge centralities values.

 39

Analysis of results

Figure 5.3 shows us the highest edge centrality values for nodes. For example {(‘4330’,

‘6913’): 0.035} means nodes 4330 and 6913 are connected with an edge centrality of 0.035.

Whenever we remove the high centrality edges from the graph, in the new matrix, the edge

between 4330 and 6913 is deleted and the position of 4330 and 6913 will become 0. The norm

now value becomes more than 0.035. Hence, whenever we remove high centrality edges, the

norm value increases and accuracy decreases, Table 5.4 shows that the values of the norms

keep increasing when the accuracy goes down.

Norm value equaled almost 0 until the accuracy reached 69%. Once high centrality edges were

removed, the norm value increased more than the highest edge centrality value of the graph

which is 0.036. All the norm values greater than 0.036 have low accuracy which is shown in

Table 5.4. Here the Threshold value was set at the highest edge centrality value. These results

show that when the norm of the difference is greater than the highest edge centrality value then

the model must be retrained, otherwise retraining is not needed.

Experiment 5

I also checked the norm with the data in vector format. In vector format the data is in a 1-

dimensional array. In the above experiment the graph data is in matrix format whereas in this

experiment the data is in vector format and the results are compared.

Accuracy for original data with
original trained model.

Accuracy for new data when tested
with original trained model Norm of V-V1

87.4 19.4 0.111
87.4 29.8 0.108
87.4 48.3 0.0954

 40

87.4 53.2 0.0898
87.4 55.8 0.077
87.4 56.3 0.0632
87.4 61.5 0.05302
87.4 65.9 0.05233
87.4 68.1 0.05304
87.4 68.8 0.03606
87.4 69.5 0.0009
87.4 69.9 0.0001
87.4 71.2 0.0001
87.4 72.6 0.0001
87.4 72.9 0.0001
87.4 73.5 0.0001
87.4 75.9 0.0001
87.4 76.5 0.0001
87.4 77.8 0.0001
87.4 78.2 0.0001
87.4 79.5 0.0001
87.4 80 0.0001
87.4 81.5 0.0001
87.4 83 0.0001
87.4 84.5 0.0001

Table 5.5: Results for values for norms for different accuracy values (experiment 5)

Analysis of results

Table 5.5 shows that in experiment 5’s the values of norms are lower than values of the norms

for Matrix data representation by about 1
√6

 times. Here with the above threshold value set at

0.036 (high edge centrality value of the graph), the accuracy is acceptable and does not

decrease much (because of the low change in data) until the norm reached 0.03. When the norm

increases accuracy decreases. This experiment shows very similar results as the previous above

experiment.

 41

Figure 5.4 Accuracy vs Norm value of M – M1 and V – V1

In Fig 5.4, the graph is constructed between accuracy and norm values of different methods

(M-M1 and V–V1) . If we observe both the lines, green for V-V1 and yellow for M- M1 both

are almost identical till a norm value of approximately 0.05. After this they follow a similar

pattern although the norm values diverge.

 42

CHAPTER VI

CONCLUSIONS

This research proposes a method on when to retrain a machine learning model for dynamic

graphs as data keeps changing. Initially for graphs to be trained, each node in the graph is

converted to a vector. We encountered a problem in the sense that embedding vector spaces

are different for each time stamp. To preserve the embedding vector spaces, we proposed

the algorithm “dfs_dynode2vec()”.

Each graph is essentially represented by a matrix like structure such as an adjacency matrix

and weighted matrix. Here we introduce Matrix norms which evaluates the difference

between any two matrices. I considered the edge centrality values as the weights for each

edge. The higher the centrality, the higher the importance of the node. When high edge

centrality values are removed there will large changes in the next timestamp matrix when

compared to the initial matrix. The value of the norm will be high. From this work I

conclude that when the Norm exceeds a threshold value then the model must be retrained.

Otherwise, there is no need to retrain the model.

I used the Cora Dataset which is a small static dataset to validate the approach. The dataset

was manipulated to display dynamic behavior. The results show that model retraining will

depend on whether the edges removed are low centrality edges or high centrality edges.

Future work will include calculating the complexity of the algorithms which are proposed

and deriving the change in complexity from the old graph to the new graph when nodes are

 43

added/deleted. Other work will include testing this algorithm with real-world dynamic

datasets.

 44

REFERENCES

1) Kavikondala, Akanksha & Muppalla, Vivek & Prakasha, Dr. Krishna & Acharya,

Vasundhara. “Automated Retraining of Machine Learning Models”. 8. 445-452.

10.35940/ ijitee. L 3322.1081219, (2019). International Journal of Innovative

Technology and Exploring Engineering.

2) Retraining Model During Deployment: Continues traning-continuos testing,

https://neptune.ai/blog/retraining-model-during-deployment-continuous-training-

continuous-testing (Date of last access: July 2nd , 2022)

3) Data Tron Blog, https://datatron.com/what-is-model-drift/ (Date of last access: July

2nd , 2022)

4) Jensen-Shannon Divergence

https://notesonai.com/Jensen%E2%80%93Shannon+Divergence (Date of last access:

July 2nd , 2022)

5) Concept_drift_in_machine

https://www.aporia.com/blog/concept_drift_in_machine_learning_101/ (Date of last

access: July 2nd , 2022)

6) Retraining and updating azure machine learning models

https://azure.microsoft.com/es-es/blog/retraining-and-updating-azure-machine-

learning-models-with-azure-data-factory/ (Date of last access: July 2nd , 2022)

 45

7) Eigenvector centrality https://en.wikipedia.org/wiki/Eigenvector_centrality (Date of

last access: July 2nd , 2022)

8) Natarajan Meghanathan , “Evaluation of Correlation Measures for Computationally

Light vs. Computationally Heavy Centrality Metrics on Real-World Graphs” CIT

Journal of Computing and Information technology, Vol 25, Issue 2, June 2017.

9) Betweenness centrality https://en.wikipedia.org/wiki/Betweenness_centrality (Date of

last access: July 2nd , 2022)

10) Lu L., Zhang M , “Edge Betweenness Centrality”. In: Dubitzky W., Wolkenhauer O.,

Cho KH., Yokota H. (eds) Encyclopedia of Systems Biology. Springer, New York,

NY. https://doi.org/10.1007/978-1-4419-9863-7_874

11) Random walks on graph

https://people.math.osu.edu/husen.1/teaching/571/random_walks.pdf (Date of last

access: July 2nd , 2022)

12) M. Belkin and P. Niyogi, “Laplacian Eigenmaps for Dimensionality Reduction and

Data Representation,” Technical Report, University of Chicago, Chicago, 2001.

13) A Grover, J.Leskovec, “Node2vec: Scalable Feature Learning for Networks”, KDD.

Aug 2016: 855–864. doi: 10.1145/2939672.2939754 2016

https://arxiv.org/abs/1607.00653

14) Bryan Perozzi, Rami Al- Rofu, Steven Skiena, “Deep walk: Online Learning of Social

Representations” arXiv:1403.6652 [cs.SI] (2014) https://arxiv.org/abs/1403.6652v2

15) Sedigheh Mahdevi, Shima Khoshraftar and Aijun An, “Dynode2vec Scalable Dynamic

Network Embedding” arXiv:1812.02356 [cs.LG] (2018)

https://arxiv.org/abs/1812.02356v2

 46

16) An illustrated explanation of using skip gram to encode structure of a graph,

https://medium.com/@_init_/an-illustrated-explanation-of-using-skipgram-to-encode-

the-structure-of-a-graph-deepwalk-6220e304d71b (Date of last access: July 2nd, 2022)

17) Word2vec tutorial skip gram model http://mccormickml.com/2016/04/19/word2vec-

tutorial-the-skip-gram-model/ (Date of last access: July 2nd, 2022)

18) CORA dataset https://relational.fit.cvut.cz/dataset/CORA (Date of last access: July

2nd, 2022)

VITA

VARUN TEJA PURAM

COMPUTER SCIENCE

Master of Science

Thesis: MODEL RE-TRAINING FOR DYNAMIC GRAPHS

Major Field: Computer Science

Biographical:

Education:

Completed the requirements for the Master of Science in your Computer
Science at Oklahoma State University, Stillwater, Oklahoma in July 2022

Completed the requirements for the Bachelor of Science in Computer Science at
Mahatma Gandhi Institute of Technology, Hyderabad, Telangana , India in
2019.

