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Abstract:  In Machine Learning, the most critical assumption is that training and testing 
datasets should have similar distributions. The model will be effective if the new test data 
is similar to the past data on which the model was trained. If there are substantial 
differences between the training data and the testing data, the machine learning algorithm 
will generate results that are not very accurate. In many applications, the data has dynamic 
periodicity, that is, the data changes with time. As the distribution of the data keeps 
changing, at some point, the model will therefore have to be retrained.  

In this research I look at the dynamic behavior of graph data. As data changes, there will 
be addition/deletions of nodes/edges of the graph. As we are dealing with large sets of 
graph data, we use embedding vector spaces (for graph data) for training and testing. 
Embedding vector spaces in each timestamp are different and training the model each time 
when data changes is expensive. To address these challenges, we use the dfs_dynode2vec 
algorithm where the current timestamp graph embedding vectors initializes from the 
previous embedding vectors. For each timestamp, data might change significantly or 
insignificantly. We propose a statistical model ‘Significant testing’ which determines 
whether the model should be retrained or not. If the change is insignificant, the model need 
not to be trained again and embedded vectors for that timestamp are not generated. We 
have considered several aspects in determining the statistical significance of the change. 
These include edge centrality, betweenness centrality and norm calculations. 

 
 
 



 v 

TABLE OF CONTENTS 
 

Chapter          Page 
 
I. INTRODUCTION ......................................................................................................1 
 
 
II. LITERATURE SURVEY .........................................................................................4 
  
 
III. INTRODUCTION TO MACHINE LEARNING ON GRAPHS ............................8 
 
 Formal Definition of Graphs ....................................................................................8 
 Node Degree ............................................................................................................9 
 Node Centrality ........................................................................................................9 
 Node Embedding ...................................................................................................14 
 Random Walks on Graphs .....................................................................................15 
      Random walk-based node embedding Technique .................................................17 
      Matrix Norms .........................................................................................................20 
 
 
IV. STATISTICAL APPROACH TO RETRAINING GRAPH DATA .....................22 
 
 Problem Specification ............................................................................................22 
 Proposed Methodology ..........................................................................................23 
  
V.  RESULTS ..............................................................................................................31 
 
 Dataset ....................................................................................................................31 
 Experiments ...........................................................................................................32 
  
 
VI.  CONCLUSION.....................................................................................................42 
 
 
       REFERENCES.  …………………………………………………………… …..44



 vi 

LIST OF TABLES 
 

   Table          Page 
 
   5.1 Results when 10% high centrality edges were removed .....................................35 
 
   5.2 Results when 20% leaf nodes were removed ......................................................35 
 
   5.3 Results when 10% leaf nodes and 2% high nodes were removed ......................36 
 
   5.4 Results for values for norms for different accuracy values (experiment -4) ......38 
 
   5.5 Results for values for norms for different accuracy values (experiment -5) ......40 
 



 vii 

LIST OF FIGURES 
 

Figure           Page 
 
2.1 Continues traning-continuos testing ........................................................................5 
 
3.1 Node centrality example ........................................................................................11 
 
3.2. Node centrality example continued ......................................................................12 
 
3.3 Node centrality example results .............................................................................12 
 
3.4 Edge centrality example .........................................................................................14 
 
3.5 Node embedding example ......................................................................................15 
 
3.6 Random walk example ...........................................................................................16 
 
3.7 Skip gram architecture ...........................................................................................19 
 
5.1 Graph as embedding vector space -1 .....................................................................33 
 
5.2 Graph as embedding vector space -2 .....................................................................34 
 
5.3 High edge centralities values  ................................................................................38 
 
5.4 Accuracy vs Norm values ......................................................................................41



 1 

 
 
 
 

CHAPTER I 
 

INTRODUCTION 

 

Data equals Knowledge. Data is everywhere and plays a very important part in day-to-day 

life. The term ‘small data’, for example, phone numbers of family, refers to small datasets 

which humans can remember and analyze.  ‘Big data’ refers to large datasets that may be 

structured or unstructured and requires a machine to store and analyze. Data can be in any 

form like image, video, text, numeric or bits.   

 

Data may be represented as graphs to capture relationships between data and attributes of 

data. Graphs are ubiquitous data structures composed of nodes and edges, that is a graph 

G = (V, E), where V is the set of nodes and E is the set of edges. Nodes represent entities 

and edges establish the relationship between them. Many real-world applications are best 

modelled with graphs. As an example, airlines graphs consist of airports as nodes and edges 

as the distance between airports. Both nodes and edges can represent attributes. For 

example, a node may specify the name of the airport and whether it is an international 

airport or not. There are many algorithms on graphs like traversal, shortest path, cycle 

detection and so on. Lately machine learning algorithms can run on graph data.  

 

Machine Learning algorithms on graphs include node prediction, link prediction, anomaly 

prediction and so on. A machine learning model takes graph data in terms of vectors for 
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training and testing. When big data is represented in the form of graphs, graph embeddings 

are required. Graph embedding is a node embedding technique that embeds the nodes by 

preserving the graph structure and its properties into low dimensional vectors that can be 

viewed as projections in the latent space. This reduces the dimensionality of the graph 

which improves the time required for the machine learning algorithms to process the data.  

 

There are several node embeddings techniques like matrix factorization approaches which 

use Laplacian eigenmaps to reduce the dimensionality and random walk-based approaches 

like Node2vec [14] which uses Gradient descent to optimize the random walks and Deep 

Walk [15] which uses skip gram to preserve the neighbor structure of the graph. 

 

Data has dynamic periodicity as data changes with time. Incoming data may have 

associated with it a timestamp. The critical assumption of machine learning is that training 

and testing data should have similar distributions to get good results. With the dynamic 

behavior of data, over time, the training data may not have a similar distribution to the 

testing data resulting in decreasing accuracy. Hence, this means the model has to be 

retrained. Model retraining for each timestamp is costly in terms of time and computation. 

For big data, retraining the machine learning model may takes weeks. Hence, retraining 

should be done only when the accuracy is below a threshold. This will remove the need to 

retrain with every change in data. When data changes significantly the existing model may 

be retained. 
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In my research I used the random walk-based approach [14] for embedding the nodes. 

Node embedding for each timestamp will be different as we will get a different corpse of 

walks from random walks. To address this problem, Dynode2vec [15] is an algorithm that 

uses previous timestamps vectors for current timestamp vectors (which may produce 

similar vectors to the previous timestamp). I modify this algorithm by taking advantage of 

DFS (Depth First Search) traversal for the evolving nodes. In this thesis I also identify the 

key attributes of a graph using a statistical approach to determine if the model must be 

retrained. I will also define the bounds within which changes to the attributes will 

determine if the model must be retrained. 

 

Previous work reported in the literature is presented in chapter 2. There is a brief 

introduction on Machine Learning on Graphs in chapter 3. Problem Statement and 

proposed methodology is presented in chapter 4, results obtained are described in chapter 

5 and conclusions in chapter 6.
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CHAPTER II 
 

LITERATURE SURVEY 

Machine learning algorithms require a lot of data, so-called ‘big data’. However as more 

and more data are appended to the dataset (the so-called ‘volume’, ‘velocity’ and ‘variety’ 

properties of big data), the accuracy of the machine learning algorithms may change as the 

distribution of the data may change. To maintain the required level of accuracy, the 

machine learning algorithm must be retrained with the updated dataset.  

The key research question is: ‘as data changes, at what point should the model be 

retrained?’ Very little work has been reported in the literature on how the accuracy of 

machine learning algorithms change as data changes. 

The Automated Retraining of Machine Learning Models [1] looked at this problem. They 

proposed the methodology shown below: 

Algorithm1(Data) 

1) Gather data and create data set 

2) Train Machine Learning Model 

3) Evaluations [ Predictions] 

      if (Prediction becomes inaccurate): 

4)          Model Retraining  

5)          Go to step 3   

     else: 
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               The Model is retained.  

In this work, they run the model every time they need to predict to measure the accuracy 

each time.  If the accuracy falls below a threshold the model is retrained.  

 

Figure 2.1: Continues training- continues testing 

In [3], the authors use Model Drifting to measure the degradation of a model's prediction 

power due to changes in the environment. They take advantage of the Jenson-Shannon 

divergence [4] to identify prediction drift (a change in the distribution of the predicted label 

– p(ŷ|X)) [5] in real-time model output and compare it with the accuracy using training 

data. They set a threshold value as shown in figure 2.1 [2]. Once the threshold value is 

reached, they will retrain the model. If the data has significantly changed the machine 

learning model will give inaccurate results. However, this can only be determined after 

running the model. In other words, they do not train the model until it is run, and the 
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accuracy obtained which may lead to inaccurate predictions. In this case also they are 

running the model each time to measure the accuracy. 

 

Web services such as Azure [6], AWS etc. face the same problem as data stored in these 

clouds change. Because of the enormous resources available in such clouds, they store all 

the previous data in the pipeline and retrain the model each time a prediction is required. 

This requires a lot of resources, including processing power to retrain and a lot of main 

memory to store all this data.  

 

Our goal is to determine when to retrain the model without making any predictions on the 

updated data and measuring the accuracy. None of the above approaches do this. They all 

make predictions every time and then decide whether to retrain the model. Other 

approaches retrain the model each time. In my research, rather than making a prediction 

each time and measuring its accuracy, I identify the key points in graphical data, such as 

node centrality and edge centrality. Significant changes to these critical points determine 

whether the model must be retrained. Hence, in my approach the model is not run each 

time to make a prediction.  

 

Dynode2vec 

Embedding vector spaces for each timestamp are different. To preserve embedding vectors, 

dynode2vec [15] is a dynamic graph embedding algorithm proposed by Aijun et. al. in 

2019. This algorithm generates whole random walks for every time stamp and the 

embedding vector spaces in each timestamp are different. dynode2vec() employs the 



 7 

dynamic skip gram model, where the previous time stamp learned embedding vectors are 

transferred as the initial weights for current time stamp. They will train random walks on 

the set of evolving nodes, as shown in the equation given below. 

      --- Evolving Nodes 

Algorithm: - Dynnode2vec 

Input: Graphs G = G1, G2,...,GT  

Output: Embedding vectors Z1, Z2 , . . . , ZT  

Run static node2vec for the Graph G1 

For t=2 to N do  

    Find a set of evolving nodes, ∆Vt 

    Sample new random walks (Walkn) for ∆Vt 

    Train Skip-Gram Skipt with Walkn and obtain Zt  

end for  

 

This above algorithm will preserve the embedding vector spaces for previous and current 

timestamps. But the evolving nodes in this algorithm are limited to the set of new nodes or 

nodes which are affected by edges. In my research, I follow a similar algorithm to embed 

the dynamic graph but my algorithm finds the set of evolving nodes by taking advantage 

of depth-first search (dfs) traversal. 

  



 8 

 
 
 
 

CHAPTER III 
 

INTRODUCTION TO MACHINE LEARNING ON GRAPHS 

 

3.1 Formal definition of Graphs 

A graph is a collection of nodes and edges where nodes represent entities and edges 

represent relationships or interactions between the nodes. Nodes and edges may have 

attributes or features that contain more information about that instance. 

 

Formally, a graph can be represented as G = (V, E) where V is the set of nodes and E is the 

set of edges. If an edge exists between nodes u and v where u ∈ V, v ∈ V then (u, v) ∈ E. If 

it is an undirected graph then (u, v) ∈ E  « (v, u) ∈ E.  

 

In an Adjacency matrix A ∈ R|V| * |V|, every node indexes a particular row or column in the 

adjacency matrix. A[u, v] = 1 if (u, v) ∈ E, else A[u, v] = 0. If the graph is undirected, the 

adjacency matrix is symmetric in nature. If the graph is directed the matrix need not to be 

symmetric. In the weighted graph A[u, v] will not be in domain {0,1}. It will depend on the 

weight of the edge. For example, states in the USA are nodes and distance between each 

state are represented with a weighted edge. 
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3.2  Node Degree  

Node degree is the number of edges connected to node. Node degree is denoted as du, where 

u ∈	V. The node degree du, is:  

𝑑! =%𝐴(𝑢, 𝑣)
"

 

The above equation is for an undirected graph. For directed graphs there will be in-degree 

and out-degree associated with each node.  

In-degree is:   

𝑑!#$ =%𝐴,𝑢,𝑣-
"

 

Out-degree: -  

𝑑!&!' =%𝐴(𝑣, 𝑢)
"

 

Total Degree: -   

𝑑!'&'() = 𝑑!#$ + 𝑑!&!' 

 

For weighted graphs, there is a weighted degree associated to each node. 

𝑊_𝐷! =%𝐴(𝑢, 𝑣)
"

 

3.3 Node Centrality 

The degree of a node is the number of neighbors of the node. One of the important measures 

of centrality is Eigenvector Centrality. 

 

a) Eigenvector Centrality 
 



 10 

Eigenvector centrality not only considers the neighbor nodes but also their importance. 

In general, we define the node eigenvector centrality xu where u ∈ V by a recurrence 

relation where node centrality is directly proportional to the average node centrality of 

neighbors. Relative score is assigned to each node after iterations become saturated, 

that is, after some number of iterations the relative score remains unchanged. We can 

say a node will have a high value if it is connected to high score nodes rather than it 

having more node degree. Node degree depends upon only the numbers of nodes 

connected to it, but here it also depends on how important the connected nodes are.  

  

𝑥! =
1
𝜆%𝐴[𝑢, 𝑣]𝑥" , 				∀𝑢

"

∈ 𝑉 

 
 

Here λ is a constant. With a small re-arrangement we can re-write the equation as the 

eigenvector notation [7] below: 

 
                                                         Ax= λx 

 
 
If we start with (1,1, 1,… v)T as vector x0  in the first iteration, then x1 contains the degree 

of all the nodes. We will iterate the process until the principle eigen value is obtained.  

 
In the example [8] below, we illustrate the simplification caused by Eigenvalue centrality 
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Figure 3.1: Node centrality example 
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Figure 3.2: Node Centrality example continued. 
 

 
 
 

 
 

                      

Figure 3.3: Result for Node centrality example 

 

From the principal eigen vector, Node 1 is having centrality = 0.524 and so on. Node 

centrality plays a crucial role in my research.  
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b) Betweenness Centrality 
 

Betweenness centrality [9] is one of the popular node centrality measures which 

depends on the shortest paths of two nodes. This measure depends upon the flow of 

information of the graph. For every two nodes in the connected graph there exists a 

shortest path between them. The number of edges the path passes through is minimized 

and for weighted graphs, the sum of the weights of those edges in the paths are 

minimized. Node u ∈ V has the highest betweenness centrality if (x, y) ∈ V which has 

the shortest path between them, consists of node u frequently compared to other nodes. 

Betweenness centrality is calculated as:  

𝑏(𝑢) 	= 	 %
𝜎(+,|!)
𝜎+,+/,/!

 

𝜎+, = Number of shortest paths from node x to node y 

𝜎+,(u) = Number of shortest paths that pass-through u.  

 

c) Edge Centrality 
 

Edge Betweenness centrality [10] is the centrality measure for edges like betweenness 

centrality for nodes; this measure calculates how powerful the edge is in the graph. 

Every edge in the graph will have an edge betweenness centrality value. If the edge has 

high centrality score and this particular edge serves as the connection between two or 

more networks, removing the edge leads to drastic change in graph behavior. 

𝑏(𝑒) 	= 	 %
𝜎(+,|0)
𝜎+,+/,/!

 

𝜎+, = Number of shortest paths from node x to node y 

 𝜎+,|0 = Number of shortest paths that pass-through edge e. 
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Figure 3.4: Edge centrality example 

In Figure 3.4, the red edge has the most edge betweenness centrality as it is in the shortest 

paths of many pairs of vertices. If the edge is removed, the behavior of the graph may 

change. I have considered how when data changes, the model will be affected.   

 

3.4 Node Embedding  

Embedding is a popular technique in the machine learning world. Embedding allows 

representing complex objects like text, graph, images in a vector format while preserving 

all the important information about the data. Node embedding is the most well-known 

technique for graph embedding 

 

Node Embedding is the process of embedding each node in the graph to a low dimensional 

vector space. Node embedding must preserve the graph structure such that nodes which are 

close or neighbors in graph, should be close to each other in the embedding space. These 

low dimensional embeddings can be viewed as projections into a latent space as shown in 

Figure 3.5. 
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                 Embedding space 

Figure 3.5: Node Embedding Example 

There are several node embeddings techniques like Matrix Factorization-based and 

Random walks. Matrix Factorization approaches are directly inspired by classical 

techniques for dimensionality reduction called Laplacian Eigenmaps [12]. For data 

with dynamic periodicity, we can use random walks to learn the previous timestamps 

vectors. Hence in this research I use the Random-walk based node embedding methods. 

 

3.5  Random Walks on Graphs [11] 

For a given graph G = (V, E) and starting node u ∈ V, we select a neighbor of u, v ∈ V 

[(u,v) ∈ E] at random and move towards node v. Random walks then select the neighbor 

nodes of the node v and selects any one randomly and moves towards it.  We do this 

walk_length (∈ N), number of times. Walk length specifies the length of the sequence of 

random walks. These sequences of nodes are called random walks for a node starting at u 

in a graph G. Each node can be associated to a specific random walk/walks. 
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Let us consider G = (V, E) be a graph or digraph (directional). If G is a digraph, then node 

u ∈ V,  𝑑!&!' 	> 	0 for every vertex u. If starting node is u then the probability that it goes 

to node v ∈ V, where (u,v) ∈ E   is 1
2"

 or 1
2"#"$

  if the graph is digraph.  

𝑝"!      =   

⎩
⎨

⎧
1
2"
	𝑖𝑓	(𝑢, 𝑣) 	∈ 		𝐸	in	the	Graph	𝐺

1
2"#"$

	𝑖𝑓	(𝑢, 𝑣) 	∈ 	in	the	digraph	𝐺

0																			Otherwise

 

Random Walks is one of the most important and popular node embedding methods. The 

walks we get after running random walks for any graph is called a corpse of walks. It is an 

initial step to embed the nodes in the form of vectors on which we train the machine 

learning model. In the corpse we can observe random walks starting from each vertex that 

runs till walk_length. In the example below consider a undirected graph G = 

({A,B,C,D,E,F}, edges). Let take walk_length = 4.  Random walks might be different for 

each instance. Random walks for the graph in Figure 3.6 are below. 

 

 

 

 

   Figure 3.6: Random walks example 

 

A->	D	->	E->F																					A->B->C->F																								

D->	A	->	B->C					 									D->E->F->C	

E->	C->	F	->	C		 									E->F->C->B	

F	->	C->	B->A	 									F->E->D->A	

C	->	B	->A->D	 									C->F->E->D	

B->	A	->	D->E	 									B->C->F->E	

(1st Run)        (2nd Run) 
      
  (CORPSE) 
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Random walks are not the same for all time instances. The walks will vary with respective 

to neighboring nodes and their incoming probabilities and outgoing probalities. Incoming 

and outgoing probabilities are values we assign to the random walks. This means from each 

node has p1 probability of being an incoming node and p2 probability of being an outgoing 

node where p1+p2 =1. This means the random walk will select an outgoing node which is 

a node that is different node than the previous node in the walk with probability p2 and 

select an incoming node which is a walk that returns to the previous node with probability 

p1.  

 

3.6 Random walk-based node embedding Techniques 

Many real-world examples use random walk-based node embedding techniques to 

optimize the node embeddings so that every node which are neighbors have similar 

embeddings if they tend to reoccur on short random walks.  

 

a) Node2Vec 

Node2Vec [13] is an algorithmic framework for learning continuous feature 

representations for nodes in networks. In node2vec, we map nodes to a low-

dimensional space of features that maximizes the likelihood of preserving network 

neighborhoods of nodes. We define a flexible notion of a node’s network neighborhood 

and design a biased random walk procedure, which efficiently explores diverse 

neighborhoods. Node2Vec generalizes prior work which is based on rigid notions of 

network neighborhoods. The added flexibility in exploring neighborhoods is the key to 
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learning richer representations. The main drawback of this algorithm is that it does not 

preserve the embedding vector spaces for the next time stamp data. 

b) Deep Walk: 
 

Deep Walk [14] can be represented as: 

Deep Walk = Random Walks + Skip Gram 

Skip Gram [16][17] is an algorithm that is used to create word embeddings i.e., high-

dimensional vector representation of words. These embeddings are meant to encode 

the semantic meaning of words such that words that are semantically similar will lie 

close to each other in that vector’s space. It assumes words that are semantically similar 

are used in similar contexts. 

 An example 

à Hi, Good Evening;      Hello, Good Evening;  

Here hi, hello have the same meaning. Vector representation of “Hi, Hello” will be 

close to each other in the embedding space as they contain the same words in the 

sentences and mean the same. 

Vocabulary set: {Hi, Hello, Good, Evening}. (All unique words in the corpse)  
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    Figure 3.7:     Skip gram Architecture. 

If we observe the above architecture, initially xk  is the one-hot vector which is the 

vector to represent each word in the vocabulary. We will place 1 in place of that word 

and the remaining will all be 0’s as shown below. 

Xhi  = [1 0 0 0]T 

Xhello = [0 1 0 0]T 

Xgood =[0 0 1 0]T 

XMorning = [0 0 0 1]T 

The respective 1-hot vector will multiply with initial weight matrix (which in 

dynnode2vec(). We will take advantage of the dynamic skipgram model for obtaining 

current time stamp vectors with previous skipgram as initial weights). Calculations on 

hidden layer are performed to give the embedding vectors.   

    

Coming to Deep Walk, till now we are considering only graphs and data represented 

as graphs, but in the above subsection, I said skipgram is used to create word 
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embeddings from words and  words that are converted into vectors. Below we show 

how skipgram and random walks capture graph structure.  

We can use SkipGram to capture the community structure of a graph by viewing the 

graph as a kind of language where: 

• Each node is a unique word in the language 

• Random walks of finite length on the graph constitute a sentence with the 

respective node where it starts. For each node there will be at least one random 

walk which acts as sentence of the node. 

      The final output will be the vectors for each node preserving the graph structure.  

 
3.7    Matrix Norms 
 
The norm of Matrix A ∈ 𝑅3∗$ is similar to the absolute value of the Matrix, denoted by || 

A ||.  

It is calculated by: 

|| A || = ∑ ∑ ]𝑎#56$
578

3
#78   . 

This essentially calculates the square root to the sum of the squares of the all the numbers 

in the matrix.  

Example:  

                       If A3*3    =     
2 −1 2
1.23 0 3
0.01 −1.34 1

 

 
          || A || = d26 + (−1)6 + 26 + 1.236 + 06 +	36 +	0.016 +	(−1.34)6 + 1 
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          = √4 + 1 + 4 + 1.51 + 0 + 9 + 0.00 + 1.79 + 1 
 
          = √22.3   
 
             || A|| = 4.72 
 
Norm of the matrix tells us the difference between the two matrices. To find out how 

similar the two matrices are, we subtract the two matrices A – B and find the norm of the 

resultant matrix, || A – B||. If the value is low or close to 0 then we can say that A and B 

are almost identical.  
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                                                 CHAPTER IV 
 

STATISTICAL APPROACH TO RETRAINING GRAPH DATA  

 

4.1 Problem Specification:  

Machine learning graphs models learn from the graph data in order to solve tasks such 

as node classification, edge classification, node prediction and so on. If the data is stable 

or static, the graph structure and properties do not change. But in the real world most 

of the data have dynamic periodicity (data changes with time). This means that there 

will additions/deletions of nodes/edges in the graph.  

As the distribution of the data changes with time, to get good accuracy, we need to 

retrain the model. But the data may or may not have changed sufficiently to 

significantly affect the accuracy of the machine learning task. The research problem is 

then to determine when to retrain the model. For this problem I propose a solution based 

on statistical approaches called significant testing considering several aspects of graph 

measures like node centrality, edge centrality, betweenness centrality and norm. 

Embedding vector spaces will be different in each timestamp. Many of the existing 

graph embedding methods are for static graphs. The only work that looks at embedding 

for dynamic graphs is the dynamic graph embedding algorithm called 

‘dfs_dynode2vec’ [16]. This algorithm takes advantage of depth first search (dfs) 

traversal on the existing algorithm dynode2vec [16].  
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4.2 Proposed Methodology 

The goal is to determine when the model should be retrained before it is used for testing.  

        Algorithm_A (Data): 

 Step 1: - Node Embedding: (dfs_dynnode2vec()) 

 Step 2: - ExistingModel = Train the model  

 Return ExistingModel  

 

 Algorithm_B (Datanew): 

  If (Data changes significantly): 

  Algorithm_A(Datanew) 

  Else: 

  Node Embedding : (dfs_dynnode2vec ()) 

  Evaluation with ExistingModel 

    Return Accuracy 

 

Algorithm_A should be implemented first for the original graph data and store the 

ExistingModel. Whenever the data changes, Algorithm_B is executed to determine if the 

change is significant enough to affect the results of the machine learning task. If the 

change in data is significant, then the model is retrained.  
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Embedding vector spaces are different each time the data changes. [16] proposed a solution 

to preserving vector spaces between timestamps as mentioned in the Literature Review 

section. The proposed approach for preserving embedding vector spaces is shown below:  

dfs_dynnode2vec (graphi ,walklength): 

1) Run Node2Vec(Deep Walk)for the graph0(Initial 

graph) 

         2) for graphi (i = 1: N): 

            X ¬ New nodes 

Z ¬ Nodes effect by addition/removal of edges. 

       for (all X and Z nodes)  

          Y  ¬ dfs_walklength(node, walklength)  

       end 

           𝛅Vi  =  X ∪ Y ∪ Z 

           corpsei =  Run random walks for 𝛅Vi 

           Vectorsi = Train Skipgram skipi with corpsei      

             end  

    end    

dfs_walklength (node, walklength): 

       for i in range (X ∪ Z): 

   // get all nodes 

       end 

                     dfs (walklength, node) 

     end 



 25 

 

The above algorithm dfs_dynode2vec() is a graph embedding technique. 

dynnode2vec() [16]  in the algorithm takes advantage of depth first search to find the 

nodes with the distance of the walklength which is done by dfs_walklength() 

 

The above algorithm takes as input graphi and walklength. walklength defines the number 

of walks on each node when random walk is implemented. Step 1 is done only for the initial 

graph, that is, run the static node2vec (Deep walk) [14].  When data changes at time stamp 

i, the graph is represented by graphi . For each new node or node affected due to removal 

of an edge, apply dfs_walklength algorithm to get all nodes within the walklength. 

For the evolving nodes represented by 𝛅Vi, apply random walks and store in corpsei. 

Next train the skip gram model for corpsei . 

 

The proposed methodology for determining whether or not to retrain the model is 

outlined below:  

 

Constructing data in matrix formats: 

 

Graph data can be represented in many ways. Matrix form is one of them. The Adjacency 

matrix shows if two nodes are connected or not and the weighted matrix will show the 

weight between two nodes. In this project, we considered a matrix with edge centralities. 

In this work, we measure the difference between the original matrix and the new matrix to 

decide if the model has to be retrained 
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Algorithm_original_matrix (Graphoriginal): 

Step 1: - Find Edge centralities for Graphoriginal in 

dictionary format     

Step 2: - initialize a Nd array M which is in Matrix format 

Step 3: - append. Edge centralities (M)  

Return M 

 

 

Algorithm_new_matrix (M, Graphnew):  

   Step 1: - Get all nodes in new graph 

   Step 2: - Append new nodes to M  

   Step 3: - With the same structure of M take a new Nd array 

M1  

   Step 4: - Find Edge centralities of Graphnew 

   Step 5: - append. edge_centralities(M1)  

   Step 6: - Fill remaining values with 0’s in M and M1.  

Return M, M1  

    

The above algorithm “algorithm_original_matrix()” takes as input the original 

graph data. This algorithm finds edge centralities of each edge in a graph which is output 

in the format of a dictionary {[(nodei, nodej), edge_centralityij]}. That 

means for every pair of nodes in the graph we have an edge centrality value. The matrix 

datatype is not available in any of the major programming languages (C, java, python). I 

have therefore taken a Nd array (Nd array is an N dimensional array which is a primitive 
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data structure that stores same kind of variables). When we considered an Nd array, it will 

be like ‘n’ rows arranged in the linearly format which is in a matrix-like format. Initialize 

all the values of edge centralities in M with their respective indices (i, j).  

 

Algorithm_new_matrix() constructs a new matrix when the data changes. It takes 

as inputs graphnew and Matrix M and return an updated matrix M and new Matrix M1. M is 

the matrix which contains edge centralities of the original matrix and M1 is the matrix which 

contains edge centralities values when the data changes that is for new data.  In the first 

step we will get all the nodes from the new data and check the indices of M. If nodes have 

been deleted, some of the nodes will not be present in M. So, we add new indices to M 

which means we are extending the matrix with indices because M and M1 should have 

similar structure to perform the Norm (matrices extending is for preserving the structure of 

the two matrices). We have the structure of M (original data matrix), To preserve the 

structure of the matrix with the same dimensions take another Nd array M1, find the edge 

centralities of the new graph and initialize them in M1 with respective to their indices (i,j). 

There might be chance of some of them will have null values, initialize them to 0’s and 

return M and M1.  

 

Calculating Norm: 

We have two matrices M and M1 ∈ 𝑅$∗$ , where 

if    a = {nodes in Graphoriginal } 

      b = {nodes in Graphnew} 

       n = #nodes in {a ∪ b} 

M is the original data matrix and M1 is the new data matrix.  

Let, 
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A = M – M1 

|| A || = ∑ ∑ ]𝑎#56$
578

$
#78  

 

 

Constructing data in vector formats 

In the above algorithms, we represented the data in Matrix format. Next, we represent it in 

vector format. Vector format is a 1-dimensional array in vector format. Here the main idea 

is to verify the data change in the shorter format.  

 
Algorithm_original_vector (Graphoriginal): 

Step 1: - Find Edge centralities for Graphoriginal in 

dictionary format     

Step 2: - initialize a 1d array V which is in vector format 

Step 3: - append. Edge centralities (V) 

Return M 

Algorithm_new_vector (M, Graphnew):  

   Step 1: - Get all nodes in new graph 

   Step 2: - Append new nodes to V  

   Step 3: - With the same structure of M take a new 1d array 

V1  

   Step 4: - Find Edge centralities of Graphnew 

   Step 5: - append. edge_centralities(V1)  

   Step 6: - Fill remaining values with 0’s in V and V1.  

Return V, V1  
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The above algorithm “algorithm_original_vector()” takes as input the original 

graph data. This algorithm finds edge centralities of each edge in a graph which is output 

in the format of a dictionary {[(nodei, nodej), edge_centralityij]}. That 

means for every pair of nodes in the graph we have an edge centrality value. I have 

therefore taken a 1d array, V which is in a vector-like format. Initialize all the values of 

edge centralities in V with their respective indices i {(i = (nodei , nodej)}.  

 

Algorithm_new_vector () constructs a new vector when the data changes. It takes 

inputs as graphnew and Vector V and returns an updated vector V and new vector V1. V is 

the vector which contains edge centralities of the original vector and V1 is the vector which 

contains edge centralities values when the data changes, that is, for new data.  In the first 

step we will get all the nodes from the new data and check the indices of V. As the data 

may have changed, some of the nodes may not be present in V. So, we add new indices to 

V which means we are extending the Vector with indices because V and V1 should have 

similar structure to perform the Norm (vectors extending is for preserving the structure of 

the two vectors V and V1). We have the structure of V (original data vector), To preserve 

the structure of the vector with the same dimensions take another 1d array V1, find the edge 

centralities of the new graph and initialize them in V1 with respective to their indices i. 

Because of changes in the data, some of them may have null values. Initialize them to 0’s 

and return V and V1.  
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Calculating Norm: 

We have two matrices V and V1 ∈ 𝑅$ , where 

if    a = {nodes in Graphoriginal } 

      b = {nodes in Graphnew} 

       n = #nodes in {a ∪ b} 

V is the original data vector and V1 is the new data vector.  

Let, 

A = V – V1 

|| A || = ∑ √𝑎$91
#78 i 
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CHAPTER V 
 

RESULTS  

 

5.1 Dataset 

The Cora data is used for all experiments [18]. There are two columns in the data set 

 

<ID of cited paper>             <ID of citing paper> 

1) u1                             v1 

2) u2                              v2 

              ….  

            5429) u5429                      v5429 

 

There are 2485 unique papers and 5429 interactions in the dataset. An interaction between 

two papers occurs when a paper a is cited by paper b. Each paper is represented as a node 

and each interaction as an edge. Papers u1 and v1 are linked so there will an edge 

connecting these two nodes in the graph. 

Each node has an attribute, ‘node subject’. This defines the subject of the paper. A paper 

has only one subject.  For example, if node u1 has node subject ‘Probabilistic methods’, 

then that node will be classified with label ‘Probabilistic Methods’. There are 7 unique 

labels representing different subjects: 
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 {'Case_Based','Genetic_Algorithm’,'Neural_Networks', 

'Probabilistic_Methods','Reinforcement_Learning','Rule_Lear

ning','Theory'}. 

The Cora dataset is a static dataset, that is, the data does not change. But for my research I 

need data which behaves with dynamic periodicity, I therefore selected randomly 80% of 

the original data and constructed a graph out of this data. This is the training data or graph. 

The model was trained on this data. Some or all of the remaining 20% of the data (the 

testing data or graph) was added and deleted from the 80% of the data to emulate the 

dynamic behavior of the data. This results in a new graph that behaves like a dynamic 

graph. In the next step, the new nodes are classified, and the accuracy measured. 

5.2 Experiments 
 
Experiments were conducted to preserve the embedding vector spaces for two different 

random walks  

colors = {'Case_Based': 'black', 

              'Genetic Algorithms': 'red', 

              'Neural_Networks': 'blue', 

              'Probabilistic_Methods': 'green', 

              'Reinforcement_Learning': 'aqua', 

              'Rule_Learning': 'purple', 

              'Theory': 'yellow'} 

 

1) Experiment 1:  
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This experiment visualizes the results when the static Node2vec algorithm is run 

for similar data at two different times. Fig. 5.1 and Fig. 5.2 below are low 

dimensional plots of the embedded graph where each color denotes one of the node 

subjects listed above. Both the figures preserve the graph structure as similar nodes 

are plotted together, but they do not have the same embedding vector spaces. This 

leads to low accuracy 

 

 

Figure 5.1: Graph as embedding vector space 1 



 34 

 

Figure 5.2: Graph as embedding vector space 2 

 

Experiment 2 

The second experiment classified the 20% Test data which was removed from the 

original Graph. The classification accuracy was 0.87. 

 

Experiment 3 

The dynnode2vec() and dfs_dynnode2vec() algorithms were run with change 

in data. The training was done on 80% of the original graph (training graph). The remaining 

20% of the graph was used for testing. 

3.1 Changes in high centrality edges 

a) The training graph is 80% of the original graph. The top 10% of high 

centrality edges in the training graph were deleted 

b)  20% of new nodes (from the test data which is the remaining 20% data) 

were added to the graph.   
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c) The trained model (80% of the graph) was used to classify the new 20% 

nodes.  

   

Results: 

Method Accuracy  

Dynnode2vec 0.287 

Dfs_dynode2vec 0.298 

  Table 5.1: Results when 10% high centrality edges were removed 

The results show that deleting high centrality edges results in low accuracy. The model 

therefore needs to be retrained.  

 

3.1 Changes in leaf nodes   

a) The training graph is 80% of the original graph. 20 % of leaf nodes were 

deleted from the training graph 

b) 20% of new nodes (from the test data which is the remaining 20% data) 

were added to the graph.   

c) The trained model (80% of the graph) was used to classify the new 20% 

nodes.  

 
Results: 

Method Accuracy  

Dynnode2vec 0.712 

Dfs_dynode2vec 0.759 

Table 5.2 – Results when 20% leaf nodes were removed 
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The results show that when leaf nodes are deleted, the accuracy is not significantly 

impacted. There is therefore no need to retrain the model. The same number of nodes may 

be deleted, but because they have low centrality value, the effect is low. 

 

3.3 Changes in high centrality edges and leaf nodes 

a) The training graph is 80% of the original graph. 10 % of leaf nodes were 

and the top 2% of high centrality edges were deleted from the training graph 

b) 20% of new nodes (from the test data which is the remaining 20% data) 

were added to the graph.   

c) The trained model (80% of the graph) was used to classify the new 20% 

nodes.  

 

 

Method Accuracy (20%) 

Dynnode2vec 0.632 

Dfs_dynode2vec 0.681 

Table 5.3 – Results when 10% leaf nodes and Top 2% high centrality edges 

 

These results show that high centrality nodes and edges change graph features more than 

the low centrality edges and nodes. High centrality edges have more impact than low 

centrality in terms of the accuracy of the machine learning tasks. 
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Experiment 4 

Experiment 3 shows that high centrality nodes and edges change graph features more than 

low centrality edges and nodes. This means removing low centrality nodes doesn’t impact 

the trained model but when high centrality nodes are removed it impacts the trained model 

and leads to low accuracy.  

 

To determine if the model needs to be retrained we use Norm calculations. Algorithms 

algorithm_original_matrix() and algorithm_new_matrix proposed in 

the methodology section are used to calculate the norms of the matrix M - M1 to determine 

the difference between the two matrices, in other words, are the two matrices identical or 

very different . The results are shown in the table below 

 

Accuracy for original data with 
original trained model.  

Accuracy for new data when 
tested with original trained model  Norm of M-M1 

87.4 19.4 0.158 
87.4 29.8 0.154 
87.4 48.3 0.135 
87.4 53.2 0.127 
87.4 55.8 0.109 
87.4 56.3 0.088 
87.4 61.5 0.075 
87.4 65.9 0.074 
87.4 68.1 0.065 
87.4 68.8 0.049 
87.4 69.5 0.0061 
87.4 69.9 0.0001 
87.4 71.2 0.0001 
87.4 72.6 0.0001 
87.4 72.9 0.0001 
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87.4 73.5 0.0001 
87.4 75.9 0.0001 
87.4 76.5 0.0001 
87.4 77.8 0.0001 
87.4 78.2 0.0001 
87.4 79.5 0.0001 
87.4 80 0.0001 
87.4 81.5 0.0001 
87.4 83 0.0001 
87.4 84.5 0.0001 

Table 5.4: Results for values of norms for different accuracy values (experiment 4) 

 

Table 5.4 shows that entries with norms = 0.0001 has little change in accuracy between the 

original and the new data.  When the norms are above > 0.061, the accuracy falls due to 

significant changes in data. When we removed high centrality edges which have high 

values in the matrix, then the norm value will be of higher value. When we deleted low 

centrality edges which have low values in the matrix, the norm will be nearly equal to zero.  

 
 
 

 
 

Figure: 5.3: High Edge centralities values.  
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Analysis of results 

Figure 5.3 shows us the highest edge centrality values for nodes. For example {(‘4330’, 

‘6913’): 0.035} means nodes 4330 and 6913 are connected with an edge centrality of 0.035. 

Whenever we remove the high centrality edges from the graph, in the new matrix, the edge 

between 4330 and 6913 is deleted and the position of 4330 and 6913 will become 0. The norm 

now value becomes more than 0.035. Hence, whenever we remove high centrality edges, the 

norm value increases and accuracy decreases, Table 5.4 shows that the values of the norms 

keep increasing when the accuracy goes down.  

 

Norm value equaled almost 0 until the accuracy reached 69%.  Once high centrality edges were 

removed, the norm value increased more than the highest edge centrality value of the graph 

which is 0.036. All the norm values greater than 0.036 have low accuracy which is shown in 

Table 5.4. Here the Threshold value was set at the highest edge centrality value. These results 

show that when the norm of the difference is greater than the highest edge centrality value then 

the model must be retrained, otherwise retraining is not needed.  

 

Experiment 5  

I also checked the norm with the data in vector format. In vector format the data is in a 1-

dimensional array. In the above experiment the graph data is in matrix format whereas in this 

experiment the data is in vector format and the results are compared.  

Accuracy for original data with 
original trained model.  

Accuracy for new data when tested 
with original trained model  Norm of V-V1 

87.4 19.4 0.111 
87.4 29.8 0.108 
87.4 48.3 0.0954 
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87.4 53.2 0.0898 
87.4 55.8 0.077 
87.4 56.3 0.0632 
87.4 61.5 0.05302 
87.4 65.9 0.05233 
87.4 68.1 0.05304 
87.4 68.8 0.03606 
87.4 69.5 0.0009 
87.4 69.9 0.0001 
87.4 71.2 0.0001 
87.4 72.6 0.0001 
87.4 72.9 0.0001 
87.4 73.5 0.0001 
87.4 75.9 0.0001 
87.4 76.5 0.0001 
87.4 77.8 0.0001 
87.4 78.2 0.0001 
87.4 79.5 0.0001 
87.4 80 0.0001 
87.4 81.5 0.0001 
87.4 83 0.0001 
87.4 84.5 0.0001 

Table 5.5:  Results for values for norms for different accuracy values (experiment 5) 

 

Analysis of results 

Table 5.5 shows that in experiment 5’s the values of norms are lower than values of the norms 

for Matrix data representation by about 1
√6

 times. Here with the above threshold value set at 

0.036 (high edge centrality value of the graph), the accuracy is acceptable and does not 

decrease much (because of the low change in data) until the norm reached 0.03. When the norm 

increases accuracy decreases. This experiment shows very similar results as the previous above 

experiment.  
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Figure 5.4 Accuracy vs Norm value of M – M1 and V – V1 

In Fig 5.4, the graph is constructed between accuracy and norm values of different methods 

(M-M1 and V–V1) . If we observe both the lines, green for V-V1 and yellow for M- M1 both 

are almost identical till a norm value of approximately 0.05. After this they follow a similar 

pattern although the norm values diverge.   
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CHAPTER VI 
 

CONCLUSIONS 

This research proposes a method on when to retrain a machine learning model for dynamic 

graphs as data keeps changing. Initially for graphs to be trained, each node in the graph is 

converted to a vector. We encountered a problem in the sense that embedding vector spaces 

are different for each time stamp. To preserve the embedding vector spaces, we proposed 

the algorithm “dfs_dynode2vec()”.   

Each graph is essentially represented by a matrix like structure such as an adjacency matrix 

and weighted matrix. Here we introduce Matrix norms which evaluates the difference 

between any two matrices. I considered the edge centrality values as the weights for each 

edge. The higher the centrality, the higher the importance of the node. When high edge 

centrality values are removed there will large changes in the next timestamp matrix when 

compared to the initial matrix. The value of the norm will be high. From this work I 

conclude that when the Norm exceeds a threshold value then the model must be retrained. 

Otherwise, there is no need to retrain the model. 

I used the Cora Dataset which is a small static dataset to validate the approach. The dataset 

was manipulated to display dynamic behavior. The results show that model retraining will 

depend on whether the edges removed are low centrality edges or high centrality edges. 

Future work will include calculating the complexity of the algorithms which are proposed 

and deriving the change in complexity from the old graph to the new graph when nodes are 
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added/deleted. Other work will include testing this algorithm with real-world dynamic 

datasets.   
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