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CHAPTER I

INTRODUCTION

1.1 Motivation

The weather is one of the most impactful forces on humanity. As such, predicting the

weather has be the focal point of research for centuries. Accurate weather predictions affect

everything from children’s sports to the sustainability of growing certain crops in a region.

Severe weather in particular can lead to lasting impacts on areas by contributing to property

damage and loss of life. This problem is only getting worse. The National Oceanic and

Atmospheric Administration (NOAA) has recorded a rise in billion-dollar disaster events

since 1980 with 262 deaths and over an estimated 102 billion US dollars of damage in just

2020 alone.[20] Better understanding of the formation and interaction of different weather

systems can help to improve predictions, leading to more accurate threat assessments and

longer warning times. This is an area that can save lives, along with billions of dollars.

Meteorology is entirely dictated by interactions within earth’s atmosphere. The most

important of these interactions takes place within the atmospheric boundary layer (ABL).

Shown in Figure 1, the ABL home to the weather events that directly impact us. Unfortu-

nately, it is also one of the least understood areas of our atmosphere. Events here take place

above the height of towers, but below the flight of most manned aircraft. This means there is
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Figure 1: The Atmospheric Boundary Layer

comparatively very little data in this region, especially data on the wind. The development

of a new sensor for measuring wind speed and direction that is designed to be integrated

into existing weather observation platforms will help bridge this gap in data and could help

drastically improve our understanding of weather as a whole.

1.2 Background

One of the largest problems facing modern meteorological research is one with data. While

difficulties with data plague every scientific field, meteorology has a unique relationship with

the collection and analysis of data. The main demand from meteorology is weather pre-

diction. The prediction of the weather is widely accepted to be of extreme importance to

humanity and because of this, it is possibly the area of the most data collection of any sci-

entific field worldwide. This means that every day vast amounts of weather data is collected

using various instrumentation and that data is then used to predict future weather events.

This happens en mass across the globe and the impact of these predictions is incalculable.
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Figure 2: Measurements of wind speed in a hurricane.

While this is fantastic for researchers, it also comes with a fairly large drawback. To un-

derstand the hurdles faced by researchers one must understand the difference between the

data needed for weather prediction and the data needed for weather research. For prediction,

large amounts of meteorological data is needed over long periods of time across as big an area

as possible to help identify trends and patterns of events taking place in the atmosphere. In

contrast, meteorological research is essentially the study of the specific aerodynamics around

the globe at the planetary scale. This aerodynamic analysis requires much higher quality

data. In the broader approach used for prediction there isn’t a specific need for the ac-

curacy or frequency typically associated with the laboratory grade measurements required

for weather research. This is underlying issue, is most data used for weather research isn’t

actually collected for the purpose of scientific research. Because there is such an immediate

3



necessity for weather prediction, only a very small amount of data is actually collected for

the purpose of research. Normally when scientific data is collected it, it is targeted in such

a way to be the precise data needed to test a specific hypothesis. Without this, researchers

are stuck sifting through huge collections of low quality data retroactively. This makes the

process slow, frustrating, and unlikely to yield results that meet the scientific rigor of other

fields. This issue warrants action because on a higher level, weather prediction is a product of

weather research. The only way to improve weather prediction is to improve the knowledge

that informs weather prediction. This is done through better research.

Figure 3: Development of Systems for Atmospheric Observations [24]

To improve prediction methods, meteorologists need the right data to be able to increase

their understanding of weather formations. But, because weather events happen on such a

massive scales with so many different influencing factors, it can be extremely difficult or even

impossible to meaningfully recreate most events in a lab or simulate them in a computer.

This brings us back to the problems mentioned before. While there is a vast amount of real

world data available, very little of it is usable data of unique weather events. Most areas just

4



need general temperatures and rainfall predictions to plan around. Because of this, most

sensors are designed to work at a very low resolution. Generally, instruments designed to

monitor the weather at most take a measurement once per minute, with rates of even once

every five minutes being considered “high resolution”. This is because those rates are high

enough to show the general trends in an area while also not producing high amounts of data

that then has to be stored. This means that even if a meteorologist wants to study a specific

event, and there happens to be data in the area at that time, the data typically isn’t at a high

enough resolution to actually be able to make an indications about things like fluctuations

in air movements or changes in wind gusts. Because of this meteorologists trying to advance

their understanding typically need to target large predictable formations and move higher

resolution sensors to the area before they occur. This brings to light the next problem with

prediction data, where it is collected. Most data comes from mesonet tower networks or

stand alone weather stations. These towers aren’t tall enough to give meaningful data about

what is happening in the boundary layer. Methods like radar that are used for tracking

weather aren’t able to penetrate most formations and are unable to tell what is actually

happening inside weather formations. Weather balloons offer the ability to take vertical

profiles of data that can prove to be extremely insightful, but because they climb so quickly

they’re only able to capture data at each altitude for seconds at a time. The most promising

methods for measuring the boundary layer are using unmanned aerial systems (UAS). These

vehicles can fly directly anywhere data needs to be taken, but currently there are very few

sensors that are compatible with UAS.

Based on these facts it can be said there exists a gap where the data that could be the

most insightful to researchers cannot actually be obtained. Currently there are few reliable

5



Figure 4: More Systems for Atmospheric Observations [24]

methods of directly collecting wind data during severe weather. On top of that there is

the potential for existing weather monitoring systems to be upgraded to be able to capture

addition wind information that may prove useful to weather forecasters. This could be

improved with the development of a new instrument for measuring wind speed and direction

that is easily integrated into unmanned aerial systems.

1.2.1 Measuring Gusts

When measuring gusts it could be helpful to understand how they are defined and what type

of measurements are taken. Generally the speed of a wind gust, Umax, is defended as the

maximum horizontal wind speed reached over a loner term sampling period (T). This can be

described mathematically as the maximum of the moving averages with a moving average

window length equal to the gust duration (tg). Meteorologists generally report gusts in the

6



wind forecasts issued using a gust duration fg = 3 s and a sample length T = 10 min.

Two other helpful parameters are the gust and peak factors. The gust factor is the ratio

of the wind gust speed, Umax, to the mean horizontal wind speed, U.

G =
Umax

U
(1.2.1)

The peak ratio is the difference of the wind gust speed from the mean normalized by the

standard deviation of the horizontal wind speed (σu).

gx =
Umax − U

σu

(1.2.2)

G is proportional to the inverse of the mean wind speed. This means that in practice

the measured G values show a large variability at low mean wind speeds. This generally

smooths out at strong wind speeds (neutral conditions) where G reaches a nearly constant

value that is characteristic of the measurement site. The average G value is influenced

by environmental factors, such as the measurement height, surface roughness, atmospheric

static stability, and on the temporal scales used in the gust definition, the gust duration tg

and the sample period, T.

In contrast, peak factor, the peak factor can be considered to be invariant of environmen-

tal conditions. This is because of it’s normalized by the standard deviant, so instead it is a

function of the gust time scales, tg and T. Being able to measure the gust and peak factor

helps meteorologist characterize gusts. These are the kinds of measurements that would be

helpful to get from severe weather environments. [23]
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1.3 Goals and Objectives

Based on the problems discussed above there arises the need for the development of a new

wind sensing solution. In order to be helpful on a wider scale the new sensor will need to

improve on existing technology in a variety of ways. The end product of this project must

meet the following goals:

• Simple to operate in high stress or dangerous environments

• Competitive with the monetary cost of comparable sensors

• Capable of variable data collection rates

• Capable of accurate collection rates high enough to measure winds gusts

• Operate in severe weather environments (rain, extreme winds, hail, etc.)

• Durable enough to operate while sustaining impacts from debris

The goal is to produce a new scientific instrument that can collect high rate scientific data

inside of severe weather, while still being able to operate at the capacity of a standard

weather prediction anemometer.

1.4 Outline

This paper will discuss the design and testing of a new type of anemometer that uses differ-

ential pressure sensing to measure both the speed and direction of rapidly changing winds.

It will begin with a more in depth examination of currently available anemometers. It then

8



continues discussing the fundamentals of this type of sensing followed by the unique appli-

cation of these methods. Then the paper will cover the enactment of these new methods to

design a new type of scientific instrument. Next the process of designing this new sensor and

the considerations it has been afforded will be discussed. After this, the paper will examine

results of its initial testing and comment on these initial findings. Possible applications of

this technology are then explored with specific attention paid to the benefits of it’s use in

combination with mobile mesonet stations and unmanned aerial systems (UAS). Finally, it

will then conclude with final thoughts and plans for future work.

9



CHAPTER II

LITERATURE REVIEW

2.1 Current Wind Measurement Solutions

Modern meteorologist use a variety of instruments to make observations regarding the wind.

They come in a wide range of sizes each with different accuracy, cost, etc. While there

have been numerous different solutions for measuring the wind, this portion of the literature

review will only discuss those that are relevant to the designs presented later in this thesis.

2.1.1 Cup Anemometer and Weather Vane

Figure 5: Cup Anemometer and Weather Vane
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Cup anemometers and weather vanes are almost a standard when it comes to measure-

ments to enable weather prediction. The cup anemometer supplies wind speed by using the

movement imparted on the device by the wind. A weather vane works in a similar way,

but instead produces directional measurements. The instruments are independent of one

another and can be used separately but are very commonly deployed in tandem since often

both speed and direction are desired. They offer several benefits. First, they are a robust

proven system that is easy to operate. They are also able to provide wind measurements

in any direction along the two-dimensional plane they are oriented in. Second, they are

extremely simple. Both parts of the system can be calibrated using a linear calibration

curve. This makes it much faster and easier to calibrate them, which contributes to their

last benefit: price. They are both relatively cheap to manufacture and certify. This allows

them to be more readily obtained and deployed.

The cup anemometer and weather vane are not without downsides, however. Because

they are reliant on external moving parts, they become stuck over time and can be damaged

by high winds. In addition, because these sensors are reliant on the wind to impart its

momentum on them, they inherently have slow response times. This means that gusts and

rapid changes in the wind are often missed and not recorded. On top of this, they can suffer

from what is known as ”over speeding”. This is when the wind speed decreases, but the

anemometer’s cups continue to spin at a higher rate due to their momentum. This causes

the device to report wind speeds higher than what actually occurred. Cup anemometers and

weather vanes are good tools for weather monitoring; but are often unable to provide the

accurate data necessary for research due to these shortcomings.[12]
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2.1.2 Propeller Anemometer

Figure 6: Propeller Anemometer

Propeller anemometers work using similar principals to cup anemometers and weather

vanes. The biggest difference being that the propeller anemometer consists of a cup anemome-

ter and a weather vane combined into one. The cups of the anemometer are replaced with a

propeller and are mounted directly to the front of the weather vane. This leads to even sim-

pler logistics and set up since only one device is needed. However, this means the propeller

anemometer suffers from many of the same issues that were previously discussed. Because

everything is still inertial based, slow response rate is still an issue. The propeller blades

are less susceptible to over speeding than cups, but don’t eliminate the problem completely.

There is also a new issue that arises with the addition of the anemometer to the weather

vane. The propeller itself isn’t omni-directional and relies on the weather vane to correctly

align it with the wind. This means the wind speed readings are even further slowed as the

propeller can’t start matching speed with the wind until the weather vane corrects. Compli-
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cations can be also come from the interaction between the weather vane and the propeller.

In the absence of wind, the rotating of the weather vane can cause the propeller to spin and

report false wind readings. The interaction of these parts also means the system requires a

more complex second order calibration. Similar to the cup anemometer and weather vane,

the propeller anemometer is a great tool for weather monitoring but generally falls short for

highly scientific measurements.[13]

2.1.3 Hot Wire Anemometer

Figure 7: Probe of a Hot Wire Anemometer

Hot wire anemometers work by placing a heated wire in a fluid flow. This allows them

to take wind speed measurements without any moving parts. They come in two varieties

that operate in different manners. Constant temperature hot wires use a variable current

to heat the wire to a constant temperature, as the name implies; they can then correlate

the amount of current used to heat the wire with the wind speed. In contrast, constant

current hot wires supply the wire with a constant current and measure the wire’s change in

temperature as its exposed to the flow. Both options are extremely sensitive and as such,
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can accurately produce extremely high frequency measurements. If calibrated properly, this

method can even be used to measure turbulence. This is something that is extremely difficult

due to the high resolution required to do so. Unfortunately, its high sensitivity is also its

downfall. Special care must be given when placing them, as hot wire anemometers produce

very erroneous readings if not correctly aligned with the flow. This is the first of many flaws

that make hot wire anemometers difficult to use outside of a laboratory setting. They can

also be affected by dust or water in the air, altering the heat exchange relationship between

the air and the wire. Additionally, this method means that the heated wire is very delicate,

and the device still doesn’t yield any information on wind direction. Overall hot wires are

great scientific instruments but have several short comings that make them difficult to use

for field measurements.[6]

2.1.4 Ultrasonic Anemometers

Figure 8: Young 81000 Ultrasonic Anemometer
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Ultrasonic anemometers consist of a precisely designed array of speakers and microphones.

These devices use a concept known as inverse time transit difference.[18] The speakers emit

ultrasonic pulses that are then measured by the microphones. As air moves through the

anemometer, it changes the frequency of the pulses and the amount of time they take to

travel from speaker to microphone. This can then be used to find not only wind speed,

but direction as well. This method comes with a lot of advantages. It can take both 2D

and 3D direction measurements, depending on the configuration of the pulse emitters and

microphones. These anemometers can capture data at high enough frequencies for scientific

measurements. They don’t rely on moving parts and are generally much more compact than

other devices that measure both speed and direction. They are not without their own pitfalls,

however. They are generally much more expensive than other anemometers. In addition,

they don’t measure accurately if there is any dust, debris, or water in the air. They can

also be quite delicate, depending on their design. Any misalignment of the pulse sources

and microphones will drastically impact their accuracy and require them to be re-calibrated.

These sensors are extremely helpful in taking scientific grade field measurements but are

not suitable for use in severe weather. Their high cost also limits how many can feasibly be

procured by researchers.

2.1.5 Pitot Tubes

Pitot tubes are a widely used tool to measure wind speed and is the first discussed in this

paper that works on the principle of differential pressure sensing. While this will be discussed

in more detail later, pitot tubes work by measuring the difference between the total pressure

and the static pressure associated with a flow. This difference can then be used to find the
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Figure 9: Pitot Tube combined with an Angle of Attack Sensor

speed of the air passing over it. They have a variety of uses, with the most common being air

speed sensors for either operating aircraft or aerodynamic research. Due to their simplicity

and lack of moving parts, they are extremely reliable and are often combined with other

sensors, such as the angle of attack sensor on an airplane. They work in a large regime of

flow speeds and can even be heated to prevent icing in sub-freezing temperatures. The most

common limitation for a pitot tube is that they must be properly oriented with the flow.

They are also prone to giving false readings if their pressure ports become clogged with water

or debris. Even though they are a very widely used and robust sensor, because of their need

to be properly oriented with the wind and inability to provide direction measurements, they

are scarcely used for collecting meteorological data.
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Figure 10: 5 Hole Probe from NASA’s Lewis Research Center

2.1.6 Five Hole Probes

The five hole probe (5HP) is based on the pitot tube. It was created in 1915 by Admiral

Taylor with the goal of allowing give pitot tubes the ability to measure wind direction on top

of speed for use on ships. Similar to the pitot tube, it uses differential pressure to calculate

wind speed. The difference is the addition of extra pressure ports on the tip of the probe.

It is the first example covered in this paper of a multi-hole probe (MHP). The idea behind

multi-hole probes is to use the differential pressure sensing to calculate both a flows speed

and direction. The five hole probe, as the name suggests, uses five stagnation pressure ports

in combination with a static port to take enough pressure measurements to calculate limited

3D directional measurements. Using the differences in pressures of all fives These probes are

able to operate in a large range of Reynolds numbers but utilizing different geometric design

of the probe’s tip. These probes begin to address inabilities present in a pitot probe with
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regards to weather measurements but unfortunately don’t do enough to make them a viable

option in most situations. Due to only having forward facing stagnation pressure ports the

wind directions other can measure are limited, generally in a range from -25 to 25 degrees

in any direction.

Figure 11: Types of Five Hole Probe Tip Geometries[8]

In addition, their geometry needs to be optimized for each different range of Reynolds

numbers they need to operate in, prohibiting one probe from working across all flow regimes.

Because of these short comings five hole probes aren’t able to be widely implemented into

a weather sensor platform and are instead mainly a useful upgrade to pitot tubes on fixed

wing aircraft to grant additional functionality.[25]

2.1.7 Flush Air Data Sensors

The flush air data sensors (FADS) were developed for situations where traditional pitot probe

aren’t viable. This can be for a myriad of reasons ranging from super sonic flow applications

to stealth aircraft. FAD systems are a multi-hole differential pressure sensing system. The

number of pressure ports they use and their exact configuration vary depending on the
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Figure 12: FADS system on the nose of NASA’s F/A-18 Systems Research Aircraft[7]

application. They are typically an integrated systems of an aircraft used to collect air speed

and attitude data. They can be seen on several advanced aircraft such as the Northrop B-2

Spirit and NASA’s F-18 based High Angle-of-Attack Research Vehicle (HARV). Similar to

other multi-hole probes they use multiple holes in a known configuration to be able to take

airspeed and 3D limited directional measurements. They are a relatively new technology that

is still being heavily researched. They have the potential to be extremely useful sensors but

their effectiveness is closely tied to their integration into the vehicle and the aerodynamics

associated with it. Similar to the five hole probe, while the FADS system is a promising

sensor for measuring airflow, but its specific implementation means it isn’t helpful for specific
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meteorological applications.[22]

2.2 Pressure Based Systems

2.2.1 MEMS Based Cylinderical Sensor

Figure 13: Muilthope probe based on MEMS Sensors[15]

As mentioned, the use of differential pressure sensing to monitor wind velocity is not

a new concept. It will be helpful to look at what has previously been done in the area.

Microelectromechanical system (MEMS) based transducers have been used before to build

a similar system to the one purposed in this paper. This concept has show that it can

be effective at measuring wind speed and direction. This MEMS based sensor used eight

pressure ports around a metal cylinder where the differential is taken across each 45° pair.

The plots in figure 14 show the error of this system for flows coming from each direction.

With generally under 3% error in both speed and direction this system proves that

differential sensing can be used for this application. The MEMS system does fall short in

some areas however. It is not optimized for severe weather can could fall prone to similar
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Figure 14: Error Across Directional Range of MEMS based Anemometer. Sensors[15]

issues that pitot probes face. In addition the probes all metal probe design is requires

precision machining, making it difficult and expensive to build. [15]

2.2.2 Extreme Turbulence Probe

Figure 15: The Extreme Turbulence Probe. Sensors[9]
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The Extreme Turbulence(ET) probe was a 43 cm fiberglass spherical differential pressure

probe. It used 30 pressure ports placed around the sphere with differential transducers to

find wind speed and gust parameters. A specific design point of this system was to study

turbulence in severe weather. This design worked well and was able to capture both wind

speed and find several gust parameters. It also had an integrated system to use compressed

air to clear the pressure ports using compressed air. Aside from its inability to measure

wind direction it also suffer from being extremely cumbersome. The probe was very large

and could only log data to a desktop computer. This meant that it’s setup required a full

desktop computer to be used and powered in a hurricane. [9]

Figure 16: An Extreme Turbulence Probe Field Setup. Sensors[9]
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2.3 Current Systems for Atmospheric Observation

This section will discuss systems for atmospheric observation on a slightly larger scale. These

systems are general tools that are available to meteorologists and can gather a variety of

data, not just wind speeds. They will work in a multitude of different environments with

each having its own strengths and weaknesses.

2.3.1 TOtable Tornado Observatory

Figure 17: The TOtable Tornado Observatory[5]

The TOtable Tornado Observatory (TOTO) was a one off weather station built by the

National Oceanic and Atmospheric Administration (NOAA) Environmental Technology Lab-

oratory (ETL) and the National Weather Service (NWS). It was used from 1979-1987 so

monitor severe weather. TOTO was a 250-300lb barrel that was outfitted with a variety of

weather instruments. These included mostly anemometers, pressure sensors and humidity

sensors. To deploy TOTO, it would be rolled out of the back of a customized pickup truck

using metal wheel ramps. TOTO then had to be tipped to its vertical position and oriented

facing north for accurate wind direction readings. It was outfitted with several different
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sensors during its lifetime but generally used cup anemometers and weather vanes for wind

speed and direction. It was placed into the path of a tornado near Ardmore, Oklahoma

in 1984 but unfortunately was tipped over by the wind. TOTO was an early attempt to

measure severe weather that brought to light a lot of the difficulties of taking measurements

in these extreme conditions.[5]

2.3.2 Weather Towers

Figure 18: Mesonet Tower in Goodwell Oklahoma

Weather towers are a staple for data collection to support both weather prediction and

research. Once set up they offer a platform to run a wide range of sensors that can be

run continuously and have their data accessed remotely. Weather towers can operate inde-
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pendently of one another or configured to work as part of a network of towers that allow

meteorologists to access data from across bigger areas easily. For this paper we will mostly be

discussing towers that are associate with the Oklahoma Mesonet. The mesonet is a network

of 121 weather towers that are spread across the state and spread to ensure there is at lease

one in each county. Each tower is outfitted with a suite of sensors and is configured to take

and upload measurements remotely every five minutes.

Figure 19: Standard Layout for Oklahoma Mesonet Towers[16]

Figure 19, shows the standard layout of a Oklahoma Mesonet tower. The towers are 10

meters tall and support instruments to take wind speed and direction, temperature, pressure,

humidity, rainfall, solar radiation, as well several different soil quality readings. Each tower

actually takes two wind measurements, one at 10 meters and one at 2 meters. At the top of

the tower a R.M. Young 5103 anemometer is employed with a R.M. Young 3101 anemometer
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being used 2 meters from the base. They are designed to remotely send data a centralized

serve and be resistant to severe weather.[16]

2.3.3 Weather Balloons

Figure 20: USRI Student Researchers Filling a Weather Balloon

Another one of the most common tools for data collection in meteorology are weather

balloons. Since they were created in the 1930’s they have been one of the easiest and most

accessible way to take measurements across the entire vertical profile of the atmosphere.

They generally consist of a latex or synthetic rubber balloon that is filled with hydrogen

or helium attached to a sensor system known as a Radiosonde that is then released to

float up into the atmosphere. This allows them to take measurements on the way up until

the balloon pops, usually at around 115,000 ft. The balloon’s payload is able to measure
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pressure, temperature, and humidity, all while being able to be tracked using either GPS or

radar. This data over the entire vertical profile is able to be used to create a Skew-T plot,

a quintessential tool for surveying atmospheric conditions.[1]

Figure 21: Skew-T Plot showing the results of a sounding[1]

2.3.4 Mobile Mesonets

Mobile mesonet stations are similar to the mesonet towers that have be discussed previously.

What sets them apart is that they are build into a vehicle. They were originally created

by in 1992 by technicians as the National Severe Storm Lab (NSSL) branch of the National

Oceanic and Atmospheric Administration (NOAA). There is no standardized design for mo-

bile mesonet and several have been created with varying configurations. Typically however,
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Figure 22: Mobile Mesonet used by the National Severe Storm Laboratory[21]

mobile mesonets carry an instrument suite capable of capturing nearly the same data as full

towers: wind speed and directions, temperature, pressure, humidity, rainfall, solar radiation.

While they lack the height of towers they are able to collect data at rates high enough to

support weather research. Unlike their tower counterparts, the entire purpose is to further

meteorological research by collecting the right data in the right places. Mobile mesonets are

generally used to gather research about severe weather and other atmospheric events that

researchers wish to study.[?]

2.3.5 Manned Aircraft

Manned aircraft have always been an obvious choice for capturing atmospheric data but

there were steep technical hurdles that originally prevented them from playing a large role

in meteorological data collection. Most of these were overcome with the implementation of
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Figure 23: A Multihole Probe Equiped on a NCAR C130Q Hercules[14]

inertial navigation systems (INS) in the 1960s. These systems allowed for precise tracking

of a planes movements and allowed for them to be corrected for in any measurements made

on board the aircraft. Originally this system required the processing of data a lengthy

process, requiring more labor and therefore money. Over time data processing has become

more manageable and helped to reduce manned aircraft’s biggest drawback, cost. These

have provided important data pertaining to large scale meteorological events such as severe

weather.[14]

2.3.6 Unmanned Aerial Systems

Unmanned Aerial Systems (UAS) are an exciting technology being used for atmospheric

observation. First used in 1970, the application of modern UAS it atmospheric sensing allows

for an unparalleled amount of flexibility.[11] Most systems used for weather measurement
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Figure 24: DJI Matrice 600 outfitted with a Young 8100 and aerosol sensor[4]

don’t require the size of a fully manned plane, thus equipping them on a UAS provide many

benefits. Firstly, UAS are cheaper to operate in almost every scenario than manned aircraft.

This means lowers the barrier to entry and allows researchers to collect much more data

with the same budget. Secondly, be it fixed wing or multi-rotor, UAS are able to maneuver

more precisely and operate in ways manned aircraft simply cannot. This helps researchers

ensure their able to get the right data in the right places. Finally, they’re able to do this all

without risking human life. UAS are able to be operated remotely, ensuring operators have

more distance between them and hazardous conditions such as severe weather.
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CHAPTER III

OVERVIEW OF DIFFERENTIAL PRESSURE SENSING

3.1 What is Differential Pressure Sensing

The concept of observing fluid flow using pressure is by no means a new idea. Pitot tubes

are commonly used for airspeed measurements in both aviation and wind tunnels, and newer

applications like flush air data sensors have been in use since the 90’s. These all work on the

concept of differential pressure sensing. The basis of this concept relies on understanding

dynamic pressure. Dynamic pressure, is the portion of a flow’s pressure associated with it

velocity or kinetic energy. Since it is directly related, dynamic pressure can be easily used

to find the speed of a flow if density is known using equation 3.1.1.

Pdynamic =
1

2
ρV 2 (3.1.1)

Ptotal = Pdynamic + Pstatic (3.1.2)

The only obstacle is that there is no practical way of truly directly measuring the dy-

namic pressure. Instead, it can be calculated based on other pressure measurements using

Bernoulli’s equation. The static pressure is the opposite of the dynamic pressure; it is the

pressure that is not associated with the flows velocity. It can easily be measured by taking a

pressure measurement of the flow that is free of influence from the flow’s movement. This is
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usually achieved by having a pressure port either somewhere entirely outside of the flow or

one oriented tangential to the flow direction. The total pressure (also known as stagnation

pressure) is, as the names suggests, the total of all the pressures associated with the flow

and is the sum of the static and dynamic pressures. Similar to static pressure, total pressure

can be measured directly. This is done but putting a pressure port directly into the flow.

This forces the flow to come of to complete stop (known as stagnation) inside the port and

converts the kinetic energy of the flow entirely into pressure that adds to the static pressure

and is then measured. The relationship of these three pressures is the basis of differential

pressure sensing.

Based on this concept there have been several instruments created over time that can

pseudo-directly measure differential pressures and thus can be used to find the dynamic

pressure without having to individually find static and total pressures. Possibly the first

example is the U-tube manometer. This device connects the ports to each side of a U

shaped tube filled with a liquid of a known density. The difference of those pressures then

cause the fluid to move up one side of the U. The difference in height of the columns of liquid

can then be measured and used to directly calculate the differential pressure. While quite

simple, U-tube manometers are still commonly used to this day to measure the airspeed in

wind tunnels.

Today, the most common type of differential pressure sensors are strain gauge pressure

transducers. These transducers expose a diaphragm to a different pressure on each side

and then measure the strain of the diaphragm to calculate the differential pressure. These

sensors are convenient as they are able to efficiently produce directly digital measurements

to relatively high degree of precision.
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Figure 25: Basic Differential Pressure Configuration for finding Airspeed

The dynamic pressure of a flow can be found by taking the difference between the total

and static pressure measurements, then that dynamic pressure is used to calculate a flow’s

velocity. This is the foundation of differential pressure sensing.

3.2 Current Applications

3.2.1 Pitot Tubes

Pitot tubes are probably the most straight forward application of differential pressure sensing.

They employ a tube with a pressure port in the middle to measure they total pressure and

a ring of pressure ports around the outside of the tube that are all connected internally to

measure the static pressure. These ports are connected to a transducer (sometimes known as

an airspeed sensor in aviation) that measures the dynamic pressure. As previously discussed

this can then be used to directly calculate the velocity using a combination of equations 3.1.1

and 3.1.2 as shown in equation 3.2.1.
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V =

√
2(Ptotal − Pstatic)

ρ
(3.2.1)

3.2.2 Five Hole Probes and Flush Air Sensors

FHP and FADS systems are both a step up in complexity from the traditional pitot probe.

Both of them use the base differential pressure concept to find airspeed but incorporate addi-

tional pressure ports to allow for limited directional flow measurements. Both also generally

allow for 3D directional measurements which can be extremely insightful. A downside to

these multi-hole probe concepts is that the math behind them can vary widely due to the

geometries associated with their designs. For 5HP this is the design of the probe, specif-

ically its tip geometry. With FADSs this involves the specific integration and the vehicles

aerodynamics as a whole. While the specific application of the concept can vary widely in

detail there are some basic concepts though that hold true for any differential pressure based

sensor.

3.3 360° Differential Sensing

So far we have discussed strengths and weaknesses of existing wind measuring instruments

and the basic theory behind differential pressure sensing and current multi-hole probe de-

vices. The rest of the discussion in this paper will be focused around the creation of a

new instrument based on these concepts. 360° differential sensing is a novel application of

differential pressure sensing to create a new type of multi-hole probe.
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Figure 26: 360° Differential Pressures Concept

3.3.1 Concept

The concept of 360° differential pressure sensing is based on the fundamentals used in multi-

hole probes the pitot probe, 5HP, and FADS but inspired by their inability to take omni-

directional measurements. This concept overcomes those shortcomings by using a series of

pressure ports oriented in an outward facing ring. This idea allows for wind velocity to

be taken using the differential pressure between the port most aligned with the flow and

the port most tangent to it. Speed can then be calculated using the same dynamic pressure

relationship as discussed before using those two ports. Direction calculations can made using

multiple methods, the easiest of which can estimate direction by looking at which ports have

the highest and lowest pressures. They port that is most aligned with the wind will have

the highest pressure. So if we know the position of each port we can then say the flow
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is originating in the direction of the port with the highest pressure and is most tangent.

This is because it will the closest be measuring the stagnation pressure which based on

Bernoulli’s equation will always be the highest pressure associated with a flow. Like wise the

lowest pressure will be the one most tangent to the flow. Since all ports are exposed to the

atmosphere they will measure the static pressure but the one most tangent to the flow will

measure closest to the true the static, which according to Bernoulli’s equation will be lower

than thew stagnation pressure. It is also important to note that these two ports will always

be at 90° angles to one another if there are an even number of ports and they are radially

equally spaced (since the port direction with the lowest pressure will always be tangent to the

one with the highest). This method is extremely simple but isn’t without drawbacks. The

resolution of directional measurements using this method without interpolation is directly

tied to the number of pressure ports used as this method can only give directions that

precisely line up with each port. Any direction between the port positions will be measured

as the port direction it is closet too. This means that the directional resolution given is

directly tied to the number of ports each probe has. While this isn’t ideal, this method

will be used for initial testing for the sake of simplistic initial calculation and directional

interpolation or other calculation methods will be discussed later on. This problem does

also bring to light the next drawback of this probe design as a whole.

This method of measuring the wind velocity requires a high number of pressure transduc-

ers. Using this method means that each port will need its own transducer. This is a problem

inherent to all multi-hole probe designs but is exaggerated with the 360° concept because the

pressure port configuration must cover a larger range of directions. This can be minimized

however; based again on Bernoulli’s equation. Since we know that we are only interest in the
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ports with the highest and lowest pressures, and that those ports will always be at 90° angles

from one another, we could use one differential transducer to measure the difference between

ports at 90° angles. This means the transducer with the highest magnitude of measurement

is measuring the flows dynamic pressure. Then, whether the differential pressure is positive

or negative will determine which of the two ports the flow is aligned with and which it is

tangent to. This method yields the same results but allows for one transducer to monitor

two ports, reducing the number of transducers need in half. It also eliminated the need for

a universal static port for the differential transducers to use as a reference.

3.3.2 Direction Calculation Techniques

As mentioned before, wind direction measurements are done by determining which trans-

ducer is reading the higher differential pressure. After this, the sign of the measurements

will indicate if the flow is most aligned with. Positive differential reading will mean that the

air is most directly flowing into the port connected to the positive input on the transducer

while a negative reading would mean the opposite. This method is extremely simple and

effective. It’s main downside is that it’s resolution is limited by the number of ports used.

In a configuration of equally spaced ports covering a full 360° circle, the resolution (noted as

R) is giving using equation 3.3.1 where n is the number of pressure ports used.

R =
360

n
(3.3.1)

This makes the calculation of accuracy related to the method relatively simple. Because

the ports are equally spaced the accuracy is the same in every direction. Since this method

assumes the flow is perfectly aligned with one of the ports the amount of error from this
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method depends on how far in between the ports the true wind direction is. The point with

the maximum error will be where the true flow direction is exactly halfway between two of

the ports. This means that max absolute error (emaxabs) of a measurement is exactly half of

the resolution.

emaxabs =
R

2
(3.3.2)

This absolute error can then be used to find the error relative to the range of measure-

ments with the following:

emaxrel =
emaxabs

360
(3.3.3)

These these three equations can be applied to the purposed design that uses 16 pressure

ports (n = 16).

R =
360

16
= 22.5

emaxabs =
22.5

2
= 11.25

emaxrel =
11.25

360
= 0.03125

This means that theoretically using that using this method without accounting for error

in the transducers there a maximum absolute error of 11.25° and a max error relative to

the entire measurement range of 3.125%. This is outside of the goal of ±5° for directional

accuracy based on the requests of the CLOUD-MAP researchers. However, this method will

yield sufficient data for initial tests and can be improved upon using interpolation or entirely

different methods that are discussed in further sections.
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Alternate Direction Calculation Methods

A large shortcoming of the data presented in this paper is the low resolution in directional

measurements from the basic calculation method. Using this method allowed for a larger

scope of design and testing during this thesis but before the CMHP is able to take research

grade measurements, a better algorithm for finding direction from pressures needs to be

created. A benefit of the data logging setup is that it records raw transducer signals that are

then converted to measurements in post processing. This means that any data set collected

can be reprocessed in the future with improved algorithms. This section will discuss the

need for a better algorithm and then purpose one such method that could be implemented

in the future.

It is obvious that the method for directional calculations needs to be improved because

of it’s low resolution but essentially the same simplistic method is able to to be used for

velocity without as many drawbacks. This can be explained by the examining the surface

pressure coefficients from flow around a cylinder.

Figure 27 shows a plot of surface pressure coefficients at different points along the surface

of a cylinder. Curves A, B, and C show real flow at different Reynolds numbers around a

cylinder and the solid line shows the theoretical values if it was modeled as a potential flow.

The surface pressure coefficient, Cp, is a ratio of the difference in surface pressure on the

cylinder and the stagnation pressure of the flow to the dynamic pressure of the flow. This

can be found using either equation 3.3.4 or the version given in Figure 27.[19]

Cp = P − P∞
1
2
ρU2

∞
(3.3.4)
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Figure 27: Surface Pressure Coefficients for Flow around a Cylinder [17]

The theoretical values from modeling this as an ideal potential are unrealistic because

eventually the flow will detach from the cylinder and the pressure coefficients will never rise

back up to 1 so instead the given equations should be used. The point at which the flow will

detach is dependent on the Reynolds number of the flow. On this plot, θ = 0 is the stagnation

point where the flow first contacts the cylinder. The stagnation point will always have a Cp

of 1. Since this is the pressure being measured for velocity calculations, by assuming the

port is always aligned we are assuming the Cp of this point is always equal to one. While

this assumption isn’t true, it is close enough to get accurate wind speed measurements. This

is because with 22.5° spacing the most a port can be dis-aligned and still have the max

pressure is 11.25°. We can see that on this plot, for every curve, there is very little change

in Cp from θ = 0 to θ = 11.25. If extreme accuracy is required in wind speed measurements

this change should be accounted for, but the amount of accuracy required for that is beyond

what is covered in the scope of this paper.
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These this relationship between Cp and θ could also be useful in finding the wind direction.

One purposed method of doing this is to match the Cp values measured around the probe to

those one a known curve. This is complicated slightly as since we are measuring differential

pressure between the points on the cylinder. To combat this we can manipulate equation

3.3.4 to find ∆Cp.

∆Cp =
P0 − P∞

1
2
ρU2

∞
− P90 − P∞

1
2
ρU2

∞
(3.3.5)

Here, P0 is the pressure at a point on the cylinder and P90 is the pressure 90° from that

point. Since the difference between these pressures is what is measured by our transducers

we can re arrange the equation to be in terms of that. We can also cancel out the sstagnation

pressure which is helpful.

∆Cp =
P0 − P90

1
2
ρU2

∞
(3.3.6)

We can also use the fact that Pdynamic =
1
2
ρU2

∞ to further simplify the equation since we

are using the assumption that the highest pressure differential is the dynamic pressure.

∆Cp =
P0 − P90

PTRmax

(3.3.7)

Now that we have this relation we can tell what the differential should be at any port on

the cylinder if it was perfectly aligned. This is a tool we can use to find the direction of the

flow.

First use the velocity that was calculated using the basic method that was described

previously. From this velocity the Reynolds number of the flow can be found using the
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probes diameter as a characteristic length and using the standard viscosity of air. The

Reynolds number will then allow us to find the Cp curve for this flow. This can be done

by interpolating between a number of curves at different Reynolds number or by simply

choosing the closest one. After that the ∆Cp values can be taken from this plot to match

what the differentials should be from the ports on either side of the port we are assuming

has a Cp equal to 1. Next, find the ∆Cp values for those ports actually are using the

differential pressure measurements and equation 3.3.7. Next compare these ∆Cp with what

they should be. The direction calculated using the basic method can then be corrected using

the difference between the expect ∆Cp and the actual ∆Cp values.

This method should greatly improve both the resolution and accuracy of directional

measurements of the CMHP. It is a requirement that either this method or another like it

is used to improve directional measurements before the CMHP can be helpful in collecting

real meteorological data.
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CHAPTER IV

INSTRUMENT DESIGN

4.1 Design Requirements

It is important to establish design requirements that will ensure the instrument produced is

able to actually helpful for the meteorological research. Goals were established that would

help ensure the instrument’s relevance. These goals were as follows:

• Simple to operate in high stress or dangerous environments

• Competitive with the monetary cost of comparable sensors

• Capable of variable data collection rates

• Capable of accurate collection rates high enough to measure winds gusts

• Operate in severe weather environments (rain, extreme winds, hail, etc.)

• Durable enough to operate while sustaining impacts from debris

These items are meant to help keep the design focus of to producing a new instrument

capable of collecting high rate scientific data inside of severe weather systems that is still

able to operate at the capacity of a standard weather prediction anemometer. While these

items are helpful to keep the design centered on the overall goal, more specific metrics need to
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be established to have meaningfully targets to hit on a more technical level. For this, it can

be helpful to look at what weather researchers themselves are targeting for data collection.

Shown below in Table 1 are the desired sensor accuracy for different weather parameters

targeted by the CLOUD-MAP project.

National Weather Service Desired Sensor Specifications

Measurement Variables and Accuracy Sensor Response Time

Temperature ±0.2 °C Time <5s (<1s preferred)

Relative Humidity ±5% Operating Conditions

Pressure ±1.0 hPa Temperature -30 to 40 °C

Wind Speed ±0.5 m/s Relative Humidity 0 to 100%

Wind Direction ±5 Degree Azimuth Wind Speed 0 to 45 m/s

Table 1: Suggested Benchmarks for Meteorological Data Collection [10]

The CLOUD-MAP was a federally funded large scale collaborative project that focused on

using modern technology to study the atmospheric boundary layer (ABL). This is the exact

kind of research the new instrument should be targeting to support so these requirements are

perfect targets. For wind measurements this means we need to target and accuracy to within

±5 degrees for directional measurements and ±0.5 m/s for speed accuracy. These scientific

level standards and can be challenging to achieve outside of a laboratory environment. The

instrument also needs to be able to operate in a temperature range from -30 to 40°C, humidity

range from 0 to 100%, and wind speed range from 0 to 45 m/s. These environmental

environments span from standard everyday weather to lower level extreme weather such

as tornadoes and hurricanes. Because this project aims to help with specifically extreme

weather measurements these values will be a priority to be as high as possible but this table
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gives a good minimum requirements. Using these requirements will help ensure that the

product of the design process will actually able to fill the discussed data gap and be helpful

to researchers.

4.2 Probe Development

Figure 28: Cylindrical and Spherical Probe Designs.

Based on the previously discussed concepts and requirements two prototypes were con-

structed. The cylindrical probe (shown above on the left) is designed to use the basic 360°

differential pressure sensing concept to take 2-D wind velocity measurements. It is the pri-

mary design proposed and evaluated by this paper. The spherical probe (shown above on

the right) is a prototype showcasing potential application of the concept to taking 3D flow

velocity measurements. It utilizes eight pressure ports in a spherical configuration to theoret-
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ically take 3D measurements in a near-omni-directional fashion. While more analysis would

be required to develop a more complex algorithm to take accurate measurements, conceptu-

ally this probe would use the same basic multi-hole differential pressure concept to find 3-D

velocity measurements. Due to the need to have someway of mounting the probe, measure-

ments made in a cone aligned with the mounting shaft below the sensor suffer from decreased

accuracy. Theoretically the measurements could still be taken however their accuracy may

suffer unless corrected.

Figure 29: Spherical Probe Internals

The sphere was created using two 2.5in O.D., 0.04in thick hollow steel spherical domes.

To create the pressure ports, brass tubes were soldered to holes drilled in the sphere in the

designed pattern. 1/8 inch tubing is then able to connect to these brass tubes to carry

pressure to transducers. Additionally, holes were drilled vertically in the center of each

dome. The holes allow for each dome to mount onto a hollow internal shaft with a bolt

that holds them in place. This internal shaft extends out of the bottom of the sphere and
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attaches to the mounting shaft. The hoses then run through the inside of this interior shaft

out of the sphere and to their transducers. This probe was created as a initial prototype and

technology demonstrator. While this probe is theoretically functional with only eight ports

it is unknown how much accurate it could be without more advanced velocity calculating

attempts.

The rest of this paper will be focused on the development and testing of the cylindrical

probe design. First the design of the probe itself will be discussed followed by the develop-

ment of the supporting electronics. After this, initial data and calibration will covered and

then finally data from additional tests will be analysed.

4.2.1 General

Figure 30: Cylindrical Multi-hole Probe Design

Shown above is probe design for the cylindrical multi-hole probe, full CAD drawings are

given in the appendix. Starting with ease of use, the probe was designed to mount easily
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on the end of any piece of standard 1.5in schedule 40 pipe with pressure hosing able to run

inside of the mounting pipe. This allows for easy physical integration into anything from

a tripod to a weather tower, or even unmanned aerial vehicles (UAV). The design includes

sixteen, one twentieth inch diameter pressure ports that are routed down to the bottom of

the probe where pressure hosing can be attached. The eighteen inch section of one eighth

inch pressure tubing then connect the probe to a custom designed bank of eight differential

pressure transducers. Using sixteen ports equally spread across a full circle means that

direction measurements are able to be made using the direct calculation method discussed

to a resolution of 22.5 degrees.

Pressure hosing friction fits onto nubs that are incorporate into the 3D-printed design.

This allows for the hosing to be attached without any additional hardware being added. This

connection method has worked successfully during all phases of testing and hasn’t warranted

any changes. Strain relief should always be with the pressure hosing to prevent stress on

the connection but it is feasible that probes that are roughly treated or used in extreme

environments could see the connection nubs break off. If this at any point begins to hamper

the probes use the design allows for metal tubing to be inserted and glued inside of the nubs

to reinforce them. This quick modification should give the nubs enough strength to resist

breaking any reasonable strain caused by the pressure hosing and prevent the nubs from

becoming brittle in extreme cold.

A key component of the purge system is an internal compartment that houses a servo

motor that actuates an internal plunger. This compartment has a mount for a high torque

metal geared micro servo and a slot leading to the probe’s internal channel that allows for

a servo linkage to the purge plunger. There is also an external pass-through for the servo’s

48



Figure 31: Cylindrical Multi-hole Probe’s Internal Compartment.

three pin cable. This servo cable is then routed down an inset passage along the outside of

the probe to its base. The cable then enters a another pass-through that allows it to exit

the bottom of the probe inside of it’s mounting pole along with the probe’s pressure tubing.

The servo cable then runs to the CMHP’s electronics

This design is compact, sturdy, and features no externally moving parts. It allows for

pressure measurements to be taken in a variety of environments and also supports a purge

system that allows for all ports to be cleared of water and other blockages.

4.2.2 Purge Mechanism

As discussed a large driving force behind the design of the cylindrical multi-hole probe was

the need for a way to take measurements in extreme environments. A well documented
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weakness of differential pressure sensing is that pressure port can become clogged rather

easily. This is a persistent problem caused by precipitation, icing, and foreign object debris

(FOD) that is frequently seen in aircraft pitot tubes. Similar issues are likely to be seen

for differential pressure sensors put into severe weather environments do to the combination

of high rain, high winds, and several sources of debris. This means that a way to address

pressure port clogging became a requirement during the probes design. Firstly the pressure

ports were made as small as was feasible to limit debris that could enter them. Next, a purge

system was designed to allow clogs in the ports to be cleared remotely without having to

remove the sensor from use.

Figure 32: Cutaway view of a pressure port showing a debris trap

The CMHP’s purge system uses two main features, a debris trap and an internal air

release plunger. The debris trap sits around three quarters of an inch below the opening of

the pressure port. It features a sharp change in the port’s diameter that results in a ledge

to keep debris near the opening of the pressure port. The trap (shown in Figure 32) the
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bottom left reduces the pressure port’s diameter by 50% has no effect on the pressure moving

through the air, but will stop or slow most or all water or debris. This allows the second

part of the system to then remove the blockage. The internal air release plunger is a plunger

that travels up and down a central channel of the probe. This plunger is actuated by a servo

motor that sits an internal cavity at the top of the probe, which can be seen in Figure 30.

Halfway through the probe, each pressure port branches off to this central channel. The

plunger has two different zones of it’s exterior. The top and bottom sections have a rubber

seal that press against the walls of the probe’s central channel and form an airtight seal.

The middle section of the plunger has is open to a channel running down it’s own interior.

The plunger’s interior channel runs to a nub at it’s base similar to the nubs on the pressure

ports. The plunger’s however, works in the opposite manner and is instead attached to a

source of high pressure air.

Figure 33: Purge Mechanism Diagram
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When the plunger is lowered in the probes measurement configuration the rubber seal

on the top section of the plunger isolates each of the sixteen pressure ports from each other

and allows them to carry pressure from the air to the transducers. When the plunger is

raised the seal slides away from the opening to the pressure ports and exposes them to the

plunger’s middle section. This pushes high pressure air backwards through all sixteen of the

pressure ports simultaneously. Shown in Figure 33, this exposes any blockages to the full

force of the supplied high pressure air. This should be able to push any debris stuck in the

debris trap back out through the opening of the port and unclog it.

This design is not without downsides however. The pressure ports teeing off to the central

channel allows for overall simplicity but means that the transducers attached to the pressure

ports are also exposed to the high pressure air; which limits the pressure that can be used

without damaging the transducers in the event that debris perfectly seals the opening of the

pressure port. This however should not pose major issue however as the transducers used,

5 inH2O Honeywell HSC series differential transducers, have an over pressure rating of 300

inH2O (about 10.8 psi). This should be ample pressure to remove any blockages. The other

issue caused by this system is that if any FOD makes it through the debris trap and past the

T junction, the pressure will force it deeper into the system resulting in it passing into the

pressure tubing and possible the transducers. This would likely effect all pressure readings

in that port until the pressure hosing is manually removed and cleared of blockages. This

shouldn’t happen as most FOD should get trapped near the opening or the pressure port

but if it is found this happens often then the debris trap could be resigned to combat the

problem. Changing the ”ledge” style debris trap to a ”S bend” style design should easily

improve the traps effectiveness at the cost of some added complexity. Lastly which purging,
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the CMHP is unable to take accurate measurements. This is unfortunate but will have

little impact on performance as the purge system should only be activated periodically or if

obviously errant pressure readings are detected.

This purge system addresses the challenges of the extreme weather environment and

should ensure the successful operation of the CMHP in such environments. The internal

plunger system was shown to work in simple informal tests at 10psi but it’s effectiveness

at actually removing the debris was not evaluated. While it is an important part of the

system’s overall design, only the testing of the 360° differential pressure concept is covered

in the scope of this thesis. All testing discussed in this paper was done with a simplified

version of the CMHP where the pressure ports are not connected to the central channel and

thus isolated from the purge system.

4.2.3 Manufacturing

The probe design makes use of relatively complex internal geometries to allow for it’s overall

compact size. These internal structures would make it difficult to build using traditional

manufacturing methods. For that reason it was decided to create the CMHP using stere-

olithography 3-D printing. stereolithography (SLA) printing used a laser to harden layers

of resin that form the final product. This method is especially great for complex geometries

as each layer is supported by the surrounding liquid resin as it prints. This helps prevent

deformation that can occur with more common filament disposition modeling (FDM) 3-D

printing methods. This also makes the manufacturing process relatively simple as parts

can made directly from a CAD file and has the added benefit of the final product being

watertight.

53



Figure 34: A Semicircular Aeration Hole Located below the Pressure Ports

The use of SLA methods for manufacturing lead to a few notable to additions to the

design. First there was a hollow cavity added inside the outer wall of the probe. This hollow

area reduces the amount of resin needed to make each probe, the amount of time it takes

to print, and make the finished probe weigh less. Second there were a number of aeration

hole added to the holes. These holes allow air to enter the internal geometry as the print

processes and prevents the occurrence of ”cupping”. Cupping takes place when a SLA print

is raised out of the pool of liquid resin as it’s printed if the print contains cavities that will

not be open to the atmosphere at any point in the printing process. As these cavities are

raised out of the pool they for a vacuum since outside air isn’t able to fill the newly created

empty spaces. The vacuum can then pull uncured liquid resin up into these areas that causes

problems when the part is post processed which effects the finish of the print and can even
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lead to uncured resin being trapped inside of the finished part. These holes also allow air

to enter the cavities as the print to stop a vacuum from forming. These holes also allowed

liquid resin to drain from the hollow areas that were incorporated to reduce the amount of

material used. An example of an aeration hole is shown in Figure 34.

Figure 35: Left: SLA 3-D Printing Right: UV Curing Post Process

The probe was printed in SLA tough resin which provides strong material properties to

resist physical damage. The print was then post processed to archive a final product. The

probe was washed in a bath of 99% isopropyl alcohol where ultrasonic waves are used to

make sure any remaining uncured resin is dissolved. The washed partially cured print was

then put in a UV cure chamber to fully harden. The result was a fully formed and ready to

use cylindrical multi-hole probe.

4.3 Electronic Development

This design using the 360° differential pressure concept requires the use of eight differential

pressure transducers. This is much more than is typically used for other applications with
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pitot tubes only using one and five hole probes using three. Because of this, there are

very few options to get the required supporting electronics off the shelf. After searching for

options the only commercial off the shelf (COTS) solution was banks of pressure transducers

meant to operate a suite of pitot tubes across an entire wind tunnel. These systems do

have enough transducers but since they’re meant to be built into a wind tunnel they are

much to large and heavy to be used for field measurements. This means to make the CMHP

function during operations in real world environments custom supporting electronic had to

be developed. For the initial testing covered later in this paper, pressure measurements

were done using a Scanivale DSA3217 pressure scanner. This allowed for the concept to be

proven before custom supporting electronics were full built. This section details the design

and manufacture of the support electronics that were required for field testing.

4.3.1 Sensor Selection

Differential pressure transducers are the basis of the 360° probe concept so selecting proper

transducers is of the utmost importance. For this iteration it was decided to use TruStability

Board Mount Pressure Sensors made by Honeywell. Specifically the Honeywell TruStability

High Accuracy Silicon Ceramic (HSC) Series was identified to be suitable for the project.

These sensors use a piezoresistive silicon membrane to that is able to convert pressures

directly into voltages. The HSC series offers transducers that are calibrate from -20°C to

85°C and calibrated for temperatures from 0°C to 50°C. This means they can meet the

upper end of the required 40°C range identified from the design requirements listed in Table

1 without any other considerations needed. They do fail to meet the requires on the lower

end however. The -30°C requirement is below both the standard calibration and operating
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Figure 36: HSCMRRN005ND7A3 Differential Pressure Transducer

ranges. Calibration issues can be fixed by performing additional calibrations for the lower

temperature range and the self-heating of the rest of the electronics will keep the transducers

in their operational range in colder environments. If necessary a heater could also be added

to the electronics compartment to further allow for operations in the cold.

They also output digital measurements at approximately 1kHz. This speed is much higher

than what is required and will not even come close to slowing down the overall sampling rate

of the CMHP. Specifically the HSCMRRN005ND7A3 sensor was selected. This is a surface

mount differential pressure transducer with a pressure range of ±5 inH2O and 1% error

over that range. Taking those numbers and using Equation 3.2.1 we find that at standard

temperature and pressure (STP) this corresponds to ±2 m/s (∼4.5 mph) rate of error and

can measure up to a max wind speed of 45.5 m/s (∼101.7 mph). This meets the requirements

for maximum wind speed but the error falls short of the desired 0.5 m/s accuracy. This isn’t

ideal but these transducers can use an auto-zero calibration to reduce their error rate to 0.5%

to get closer to the requirements and the standard 1% accuracy will be enough to prove the

concept of this probe. These transducers then communicates its output over digital I2C

protocol.
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4.3.2 Printed Circuit Board Design

Electrical Design

The decision to use I2C communication protocol allows for keeping keeping communication

simple since it can allow all eight of the transducers to communicate with the data logger

with just two shared connections between all of them. This brings to light the leading design

challenge for the electrical design of this project. I2C protocol works based on each sensor

having a unique I2C address. The problem is these addresses are built into each transducer

and the manufacture only offers each transducers with 2-3 different I2C address and due

to shortages it was difficult to even get eight transducers with the same pressure range

regardless of their I2C address. To combat this, it was decided that eight transducers with

the same address would be used and an I2C address translator would be used to shift each

address in order to deconflict each transducer. This custom printed circuit board (PCB) will

be designed to allow all eight transducers and their respective I2C translators to interface

with a PJRC Teensy 4.1 that will be used as a data logger. In addition it needs to provide

for an external power source to power the entire system and a way for other external sensors

to be integrated into the same Teensy 4.1.
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Figure 37: Multi-hole Dev Board v3 with Manufacturing Errors.

The PCB was designed as a two layer board with trace connections on the top and

bottom layers and all components being on the top layer. The board utilized a combination

of surface mount devices and through hole connections. The board went through three design

iterations before arriving at the final design. Version 1 was iterated upon during the design

phase and almost scrapped entirely due issues with it’s component layout. It’s initial layout

resulted in the routing of traces being impossible. Version 2 improved upon this by moving

several of the resistors supporting the I2C address translators to the outer edge of the board

and reducing both the minimum trace width and spacing. The layout change allowed for

several of the longer traces to route along the outer edge of the board and reduced congestion

in the middle of the board. The tracing changes helped by allowing traces to be more densely

packed and route better through the gaps between through-holes.

The smaller width does impact the circuit however. Both the width and the thickness
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of the trace impact how much current is can transfer without melting. Version 1 used a

standard 10 mill trace width which is rated for 1 amps of current, but as the circuit is

expected to experience less than 0.2 amp version 2 was able to be safely changed to use

8 mill traces [2]. The reducing trace spacing can lead to the current moving through the

traces causing emf interference in the signal of each trace but this design only uses digital

signals which are resistant to this kind of interference. This second board was sent of to be

manufactured however upon their return it was discovered a dimensions mistake had been

made in the design files the rendered them unusable. This was corrected for the third and

final version. The first shipment of these boards however were stricken with manufacturing

errors. The mistake (shown if Figure 37) was that a machine had been tooled incorrectly

and each of the 1mm through holes were drilled to be 0.254mm. After this was corrected by

the manufacturer, the version 3 boards were tested and found to work as expected. Board

schematics for this final version can be seen in the appendix.
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I2C Address Translation

Figure 38: Example LTC4316 Setup

I2C translation is handled by done by an LTC 4216. This is a small integrate circuit (IC) that

is able to be placed on the I2C clock and data lines between the slave device (transducers)

and the master device (teensy 4.1) and convert all communications between the two to the

proper I2C addresses. The LTC works by using a voltage divide to set a translation byte.

This byte is set when the LTC is powered on and then is added to the bytes of section

of the commands and responses that contain the I2C addresses. This process is shown in

Figure 38. For our board, each LTC needed to be set to different translation bytes in order

to make sure all eight transducers had different addresses. This was done using the wiring

design showing in in Figure 39 where values resistor values R1,R2, and R3 (shown in the

figure as R4 1,R4 2, and R4 3) were changed for each transducer. The resistances used for

each voltage divider are listed in appendix textcolorredadd appendix number and translation

table with all pull-up resistors having a resistance of 2 kΩ.
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Figure 39: LTC4316 Wire Diagram

Development Board Features

The purpose of the boards build for this project are to test the concept and be a launch

point for a final product design in the future as such the board was designed with several

”development” features to help isolate any problems should they arise in testing. To make

trouble shooting easier, each section of the board is separated from each other with traces

going to header pins rather than the other terminal of it’s desired connection. This means

that connections can be made between different sections of the board with jumper wires.

This allows for a lot of flexibility during testing because it means that every component

can be easily rewired to different zones of the board while retaining any supporting pull-up

resistors they need. For example, if a transducers isn’t logging data it could be rewired to

skip it’s translator to see if it functions on it’s own or even through a different translator

that is verified to be working. The entire Teensy 4.1 that is used as a data logger can even

be easily swapped out.

In addition some extra ease of use features were also added. A stand alone Harting flex
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connector was added and traced to the main I2C ports so that additional I2C devices can

be easily integrated into existing hardware. Extra header connectors were added to each pin

of the Teensy that allow for easy integration of any other device that it can interface with.

This feature was used to implement a rotary encoder over a serial connection for wind tunnel

testing and the integration of a Pixhawk auto pilot that was used to pull GPS timestamps

over Mavlink. This later addition will also allow for these electronics to be easily integrate

into an existing Pixhawk controlled UAS and add any information onboard information from

the autopilot directly into it’s data logs. Finally there was a terminal added to allow the

entire system to be powered externally by a regulated five volt power source. This was used

to power the unit with a lithium polymer (LiPo) through a battery eliminator circuit (BEC)

for all tests of the CMHP system.

4.4 Manufacturing

textcolorredadd stencil picture

Successfully soldering large amounts of surface mount components can be very difficult

and time consuming if done incorrectly. To assemble our supporting electronics a stencil

was created that had apertures that lined up with each surface mount pad on the board.

The stencil can then placed on top of the bare PCB and when spread solder paste is spread

across it the apertures allow the paste to apply uniformly across every pad on the board

simultaneously. The design of this stencil is relatively simple however there are a few general

rules that should be followed. The amount of solder paste placed on each pad is a function

of the area of the aperture opening and the thickness of the stencil. If too much solder is

applied it can short connections with the surrounding pads, if there is too little then there
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won’t be a sufficient electrical connection. The SMT pads for the LTC address translator

are extremely small (0.889x0.305 mills); this means that the LTC will be very sensitive to a

incorrectly sized stencil. Stencils need to maintain two ratios, the aspect and area ratios[3].

These rules are given in the following equations where L and W are the length and width of

the aperture with T being the thickness of the stencil:

AspectRatio = W/T ≥ 1.5 (4.4.1)

AreaRatio =
LxW

(2(L+W )xT )
≥ 0.66 (4.4.2)

A stencil was developed using these rules from 1 mill stainless steel. This was used

to apply solder paste to all SMT pads. After this surface mount components were then

individually placed by hand on their respective pads. Then the board and components are

placed in an infrared oven. The oven is programmed to follow a specific temperature profile.

This profile heats components hot enough to boil of the paste and melt the solder for it

to re-flow but without overheating or melting any components. After this the boards are

inspected and continuity tested to ensure every connection is good.
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Figure 40: Fully Populated PCB

4.5 Multiplexers and Design Changes

During the initial testing of the completed electronics it was discovered that the LTC address

translators could all be replaced by a singular I2C multiplexer. The I2C multiplexer acts as

a electrically controlled switch that can be used to rapidly connect and disconnect to the

signal wires of each transducer. This greatly simplifies the overall circuit and slightly reduces

component costs. Because of the ease at which sections of the board could be rerouted trans-

ducers were rewired to pass their signal to the data logger through an Adafruit TCA9548A

I2C Multiplexer Breakout. The TCA multiplexer was then soldered to a breadboard that

was mounted to the existing PCB. This maintained all of the original functionality while

simplifying the board and while reducing cost and the amount of SMT components that
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needed to be soldered.

Figure 41: Finished Board with TCA9548

4.6 Calibration

Once the new electronics were created they needed to be calibrated. For simplicity these

prototype transducers will be calibrated using a static calibration technique. The transducers

were entirely disconnected from the pressure hosing and placed in a box that would ensure

the transducers were exposed to no differential pressure. A data set of the raw signal output

from each transducer was then taken over a period of five minutes. The signal output for

each transducer was then averaged over that time. Then a static calibration coefficient

was made using the average signal output. This coefficient can be found from equation 4.6.1

where SPcal is the signal associated with the calibration pressure (zero in this case), Smeasured

is the average raw signal measured by the transducer, and Cstatic is the static calibration

coefficient.
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SPcal = Smeasured + Cstatic (4.6.1)

Since SPcal = 0, Cstatic can easily be defined as Cstatic = −Smeasured. The found Cstatic

values for each transducer are shown in Table 2. These values were found the be effective at

calibrating measured pressures near the calibration point.

Static Calibration Coefficients

Transducer Coefficient

1 1029

2 1007

3 1022

4 1025

5 1014

6 1038

7 1022

8 1007

Table 2: Calibration Values

This static calibration helps make sure all of the

transducers read the same value at the calibration

point, 0 Pa differential pressure. The problem with

this method is that as the measured pressure moves

farther away from the calibration point it becomes

less effective. This effectively means that as velocity

increases the transducer’s calibration becomes less ac-

curate. This would be solved by using a dynamic cal-

ibration curve rather than a static calibration point.

A dynamic calibration curve uses a calibration coefficient that changes based on the raw

signal of each transducer. This allows the transducer be correctly calibrated over an en-

tire range of pressures rather than a single pressure. The effects of not using a dynamic

calibration curve has a clear effect on the data collected, especially at higher wind speeds,

however the static calibration is suitable for proving the 360° concept work. A full dynamic

calibration will be done at a future point in time.
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CHAPTER V

INITIAL TESTING AND PROOF OF CONCEPT

5.1 Proof of Concept Testing

To help prove the 360° concept before time and resources were spent on fully developing it’s

support electronics some initial testing was done where the probe was setup to use a Scanivale

DSA3217 pressure scanner to handle measurements and data logging. This DSA3217 uses a

set of sixteen differential pressure ports that all measure pressures in reference to a single,

shared reference port. In order to support the 360° concept each of these sixteen transducer

ports was connected to one of the sixteen pressure hoses from the CMHP with their shared

reference port being left open to the atmosphere. This meant the transducers acted more

like absolute pressures measuring gauge pressure rather than differential pressures between

the ports. While the the raw data output would differ slightly from the output of final data

logger used in future testing, will have little impact as the differential can be calculated in

the post processing of the data.
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Figure 42: CMHP Initial Testing Setup

This initial wind tunnel testing was conducted in a GDJ FLOTEK 1440 wind tunnel.

This To simulate changes in wind direction the probe was mounted on a stepper motor that

could rotate the probe with respect to the flow in the tunnel. In addition a pitot probe

was set up upstream of the CMHP that was attached to an analog differential pressure to

monitor flow in the tunnel. This setup, shown in Figure 42, was use to run several trials of

two different tests.

5.2 Initial Test Result

Static tests were run where the probe was rotated in 22.5° steps with ten seconds spent at

each position after a full rotation the probe was then rotated back to its starting position in

the same manner. This meant that each port was aligned with the flow for several second

twice. The airspeed was was kept constant throughout entire range of motion and the wind

tunnel was then turned off. Data collection was stopped once the tunnel’s pitot tube read
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zero differential pressure.

Figure 43: Static Test Raw Pressures

Figure 44: Static Test Calculated Differential Pressures

Shown are plots of the data from a static test at each step of processing to convert it

from raw pressures to wind speed and directions. Figure 43 shows the raw pressures from

each transducers. For this initial test data set these are the gauge pressures of for each of

the sixteen pressures. Our final design uses eight differential pressures in 90° offsets, we can

take the raw pressures can calculate the differentials manually. These calculated differentials

are shown in Figure 44. These both of these plots are the first indication that our probe is
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Figure 45: Static Test Calculated Velocities by Transducer

Figure 46: Cylindrical Multi-hole Probe’s Initial Test Measurements.

working correctly. In Figure 43 we can see that as the probe is snapped to each position,

the pressure of the port in that position raises to stagnation pressure of the flow.
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CHAPTER VI

TESTING AND RESULTS

The completed CMHP was tested in three main types of trials. Firstly, the same initial wind

tunnel tests were performed on the probe with its new electronics. These were conducted to

collect data sets in a controlled environment where both the wind speed and direction are

known and confirm the new data acquisition system (DAQ) is functioning properly. After

wind tunnel testing confirmed the new electronics were working correctly, the systems was

run in two types of field tests where data was able to be compared to existing systems.

6.1 Wind Tunnel Trials

The same wind tunnel tests from the probe’s initial testing were repeated with the same

probe using its new custom built DAQ unit. This included the same two static and dynamic

tests that have been previously discussed however in addition to the probe data, data from

a rotary encoder was taken to measure the probes actual position.

6.1.1 Static Tests

Shown are plots of the data from a static test of both the raw pressures as well as the

calculated wind speed and directions. In Figure 47, the differential pressures from each

transducer during the test are shown. These pressures behave as expected. As the probe
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Figure 47: Static Test Raw Pressures

is snapped between positions the probe in each positron registers a rise in pressure up to

the stagnation pressure of the flow. It is notable that some transducers (mostly six, seven,

and eight) rise above the stagnation pressure when aligned with the flow. This is most

likely explained by the lack of a full dynamic calibration. These transducers read more

inline with their expected pressure values as their differential pressure gets closer to their

static calibration point at 0 Pa. A dynamic calibration should increase the accuracy of these

transducers along the entire operational pressure range for the probe. Figure 48 shows the

calculated wind speeds based on the maximum observed differential pressures. Again this

plot shows the expected behavior of a nearly constant wind speed with just a few variations.

The most notable issues appear when the transducers with before-mentioned higher pressures

become aligned with the flow. This causes the measured wind speeds to peak around 4 m/s

higher than expected. As this is caused by the inaccuracies in pressure differentials from the
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Figure 48: Static Test Calculated Velocities

transducers it is expected that these peaks should disappear after a dynamic calibration is

performed. Next, Figure 49 shows the calculated wind directions using the basic method that

was described earlier along with the measured positions from the rotary encoder. The probe’s

directional calculations form the low resolution stair step pattern that is expected from the

basic directional calculation method. These measurements are actually an improvement over

the results of the initial testing. Because all the transducers are working properly on the new

electronics, there are no positions that are missed like what is in the initial test results. In

this figure the probe measured wind direction is shown in blue and the positional data from

encoder is shown in green. This encoder was originally planned to be used to empirically

find the sensors response time, however it is clear that this system did not work correctly.

We can see that there is an error build up on in the positional data. In this test, the probe

is rotated at a high speed between positions. This movement could have either been faster
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Figure 49: Static Test Calculated Direction

than the encoder was able to register leading to unmeasured movement, or been fast enough

that it caused the linkage pairing the probe and the encoder to slip. This can be fixed in

later tests by lowering the rotation speed between positions but does mean that we aren’t

able to reliably measure the response time of the probe. While there are some problems that

could be corrected, overall this data proved that the system does work. In addition to the

changes listed, further testing would also benefit from some other changes. If future testing

is done in a wind tunnel with a larger cross section the probe could be free from wall effects

of the tunnel. Future analysis would also benefit from accounting for the effects the tunnel

probe has on probe measurements.
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Figure 50: Dynamic Test Raw Pressures

6.1.2 Dynamic Tests

Similarly, the same dynamic test from the initial trials was run on the system using the new

DAQ system. This test simulates a constant wind speed changing direction at a steady rate.

Shown in Figures 50-52 are the test results from these trials. These results also match what

we expected from initial testing. It also shows some similar issues to the static test results.

The raw pressures again switch off matching the stagnation pressure as they come into and

out of alignment with the flow. This time since the rotation is more gradual we see this

happen in a series of overlapping arches rather than sharp jumps. Also notable is that in

this smaller range of movement the transducers that appeared to be sensitive more sensitive

to the lack of a dynamic calibration never become fully aligned with the flow. This means

they won’t cause inaccuracies in the calculated velocities.

Shown in Figure 51, the calculated velocities match our expectations of a nearly constant
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Figure 51: Dynamic Test Calculated Velocities

velocity even better than the static test data. As mentioned this plot is free from the

unexpected peaks in velocity caused by the lack of calibration over the full range of speeds.

While a full dynamic calibration would increase they accuracy of these velocities these results

show that the methods used by the probe do work.

Next, Figure 52 shows the calculated direction. This shows similar results to the static

test but does have a few notable features. We see a steady stair-step change in direction just

as in previous data sets. An improvement however, is since the probe is rotated more slowly

it appears that the encoder was able to more accurately measure the position throughout

the test. The measured data is able to follow the movement effectively however it does

emphasize the shortcomings of the basic direction calculation method. This method’s poor

resolution is really only useful as an approximation of direction. Before the probe is fully

usable for weather measurements a better method must be implemented.
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Figure 52: Dynamic Test Calculated Direction

6.2 Mesonet Tower Test

Once the wind tunnel testing confirmed that the system was working at a base level the

CMHP was tested in the field against other comparable systems. The first of these test was

a validation test to compare the data from the CMHP to the young 92000, the young 81000,

and the Marena Mesonet tower. The Marena Mesonet is part of the the Oklahoma Mesonet

Network. This is a network of one hundred and twenty mesonet towers used to take weather

observations across the state of Oklahoma. The Marena Mesonet is located in Payne county,

just south of Lake Carl Blackwell. It provides time averaged weather observations every five

minutes.

To get comparable data data sets were collected with the CMHP and one of the Young

anemometers were mounted on top of a Blue Sky Mast mobile tower and raised to a height of

10 meters. This puts these sensors at the same elevation as the anemometer on the mesonet
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Figure 53: Test Tower set up next to Marena Mesonet Site

tower. All sensors were oriented so that a measured direction of zero degrees is due North to

make comparisons easier. Two data sets over 30 minutes long were taken, one with each of

the Young sensors alongside the CMHP and the Mesonet data. The instruments were also

configured to use GPS to be able to timestamp data sets in unix time which allows for all

captured data sets to be compared to one another and to the mesonet data. Unfortunately,

due to issues with this setup, no accurate timestamps were not collected for the Young

anemometers so their data cannot be meaningfully compared to the data from the other

sensors.

The mesonet reports the average wind speed and direction over every five minute period

along with the maximum wind speed measured during each period. To make the CMHP

data more comparable with this lower resolution it needed to smoothed. The CMHP in its

current setup does not log at a constant data rate, but does average around 75 hz. Based
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Figure 54: CMHP and a Young 81000 on a Blue Sky Mast Tower

on this, each data point from this trial was smoothed using a moving median average over

10,000 points which will make each point the average over roughly the last 5 minutes of data.

This is shown in Figures 55 and 56.

In Figure 55 we can see that the velocities match with the mesonet rarely differing more

than 1 m/s and never differing from the average more than around 2.5 m/s. These points

again suffer from the lack of a dynamic calibration but even so this data is less effected than

the wind tunnel data as the experienced wind speeds are at a lower speed and closer to its

static calibration point. With the implementation of a dynamic calibration we should see

these magnitudes match up even better. Figure 56 shows the directional data from the same

trial. This plot matches up almost exactly as over the time of the trial the wind direction

stayed relatively constant. This plot still suffers from the poor directional resolution of the

basic calculation technique but proofs that the wind direction can be accurately found using

the CMHP concept in field data collection.
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Figure 55: Smoothed CMHP Wind Speed Data vs Marena Mesonet

Figure 56: Smoothed CMHP Wind Direction Data vs Marena Mesonet

6.3 Mobile Mesonet Test

The final test covered in the thesis is a simulation of a mobile mesonet. In this test the CMHP

is set up on top of a vehicle alongside Young ultrasonic anemometers. Each trial consisted
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Figure 57: Vehicle Setup to Simulate Mobile Mesonet

of the CMHP being tested alongside one Young anemometer with trails run using the Young

81000 and the Young 92000. All instruments were oriented so that zero degrees of direction

was from the front of the vehicle. Each trial consisted of the vehicle being driven through

town and on the highway at a variety of speeds up to around 65 mph (29 m/s). Similarly

to the mesonet tower tests, each sensor was setup to use GPS to timestamp data with unix

time to make comparison easier. Velocity data from one of these trials is shown in Figure

58. This plot shows the downside of a static calibration extremely well. We can see that as

the velocities go farther from zero (the static calibration point) the CMHP readings begin
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to stray further and further from the Young measurements. Overall however this test shows

that the CMHP is able to produce results that are very comparable to existing ultrasonic

anemometers.

Figure 58: CMHP Wind Direction Data vs Young 92000 Mobile Mesonet
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CHAPTER VII

CONCLUSION

This paper has covered a novel application of differential pressure sensing from concept, to de-

sign, to initial testing and evaluation. While it is clear that some areas still require significant

improvements, it is also clear that the concept shows significant promise. The Cylindrical

Multi-hole Probe has clearly shown that with refinement it could become a viable low-cost

option for taking scientific grade wind measurements in severe weather environments.

7.1 Comparison to Existing Instruments

The CMHP shows promise, but it is important to look at how it compares to other similar

wind measurement systems. Ultrasonic anemometers are the closest fit to the role of mon-

itoring severe weather. Figure 59 shows several notable parameters for these instruments.

As it currently stands, the CMHP falls short of the young anemometers in accuracy for

both speed and direction, as well as resolution for directional measurements. As previously

discussed, those short comings are mainly due to limitations of the first prototype and can

be improved upon in future iterations.

Next is cost. The Young 81000 and 92000 are available off the shelf for $2,950 and $1,996

respectively. The CMHP prototype uses $625 in parts with the option of lowering the cost if
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Figure 59: Comparison of the CMHP with other Anemometers

cheaper transducers can be sourced. This means it could realistically be sold for comparable

prices profitably. This is extremely impressive considering the advantages of the CMHP.

Where the CMHP pulls ahead is it’s robustness and ability to operate reliably in adverse

conditions. Being able to capture high quality data in severe weather allows it to be extremely

useful for those doing meteorological research. Overall, this means that the CMHP, while

lacking in accuracy and resolution in it’s current form, could prove to be a system that is able

to capture comparable data for a comparable price in a much large range of environments.

7.2 Advantages and Shortcomings

The Cylindrical Multi-hole Probe holds several advantages over other sensors that are able

to take high resolution wind measurements. Firstly, it has shown the concept to be refined

to take data similar to ultrasonic anemometers, but cost significantly less than these other

off the shelf options. The CMHP is also able to work in a wider variety of environments
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and is significantly more durable than ultrasonic anemometers. In addition, it also has the

ability to work for any fluid if it’s transducers are swapped out. This means it could be used

for more than just an anemometer and could be used to measure water currents as well. The

design is obviously without its own pitfalls however. It relies on a high number of pressure

transducers, which can be difficult to source. This reliance could also prove problematic as

increasing the operational pressure range will have an effect on its accuracy. It could also

be difficult to find transducers with high enough accuracy to improve the system’s velocity

accuracy by a useful amount. In it’s current form, it’s measurements are far less accurate

than ultrasonic anemometers. For velocity measurements, the probe appears to only be

lacking a full dynamic calibration, but to improve its directional accuracy will require the

development of a better algorithm to convert pressures to direction.

7.2.1 Future Work

While the research covered in this paper was a good start, the concept will require much

more work before it is viable as a push button replacement for existing systems. Firstly,

the implementation of better wind direction algorithms is a must to be able to take data

that is comparable to other systems. A full range dynamic calibration needs to be done for

each of the transducers to ensure that pressure readings are accurate throughout their entire

range. Additionally, further testing needs to be carried out to fully characterize the system

as a whole. The development of a final iteration of electronics that eliminate the need for

pressure tubing will greatly reduce the response time of the sensor. The response time for

both velocity and directional measurements should also be validated empirically.

It would also help to perform more in depth comparisons of other wind sensors. The most
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comparable sensors for the CMHP’s application are ultrasonic anemometers, but it would

be fruitful to compare to different types of systems, such as cup anemometers and hot wires.

Finally, a study on the effectiveness of the purge system and it’s impact on pressure readings

will need to be performed in the future.

7.2.2 Final Thoughts

Overall the 360° degree differential sensing concept shows great promise in providing useful

tools to weather researchers. Once refined to a push button solution, this design could have

a great impact in many different wind sensing applications. The CMHP is an improvement

on other similar systems that have been created in the past. It is more compact and usable

than systems like the extreme turbulence probe, but more weather hardened than systems

like the MEMS based system. The Cylindrical Multi-hole Probe prototype has shown that

with further development it could become a viable low-cost option for taking scientific grade

wind measurements in hazardous weather environments.

87



REFERENCES

[1] Skew-T Parameters and indices. https://www.weather.gov/source/zhu/ZHU_

Training_Page/convective_parameters/skewt/skewtinfo.html.

[2] PCB trace width calculator. https://www.7pcb.com/trace-width-calculator.php,

2017.

[3] How to choose the suitable thickness of SMT stencils? https://www.smartsmttools.

com/test1/, Nov 2019.

[4] OSU drone expertise is supporting the exploration of earth and the final frontier. https:

//www.okcommerce.gov, Jul 2021.

[5] Greg Carbin. Toto (totable tornado observatory, 2019.

[6] G Comte-Bellot. Hot-wire anemometry. Annual Review of Fluid Mechanics,

8(1):209–231, 1976.

[7] Monroe Conner. Air data sensing system: Capturing critical data for flight con-

trol. https://www.nasa.gov/centers/dryden/multimedia/imagegallery/F-18SRA/

EC97-43936-9.html, Jun 2015.

88



[8] Geoffrey W. Donnell, Jordan A. Feight, Nate Lannan, and Jamey D. Jacob. Wind char-

acterization using onboard imu of suas. 2018 Atmospheric Flight Mechanics Conference,

2018.

[9] Richard Eckman, Ronald Dobosy, David Auble, Thomas Strong, and Timothy Craw-

ford. A pressure-sphere anemometer for measuring turbulence and fluxes in hurricanes.

Journal of Atmospheric and Oceanic Technology - J ATMOS OCEAN TECHNOL, 24,

06 2007.

[10] Jamey Jacob, Phillip Chilson, Adam Houston, and Suzanne Smith. Considerations

for atmospheric measurements with small unmanned aircraft systems. Atmosphere,

9(7):252, 2018.

[11] T. G. Konrad, M. L. Hill, and J. R. Rowland. A small, radio-controlled aircraft

as a platform. https://www.jhuapl.edu/Content/techdigest/pdf/APL-V10-N02/

APL-10-02-Konrad.pdf, 1970.

[12] L. Kristensen. The cup anemometer and other exciting instruments. PhD thesis, Oceanic

Technol, 1993.

[13] Leif Kahl Kristensen. Cups, props and vanes. 1994.

[14] D H Lenschow. Bulletin No. 23 MEASUREMENT TECHNIQUES: AIR MOTION

SENSING, NCAR, 1989.

[15] Cheng Liu, Lidong Du, Zhan Zhao, Zhen Fang, Cheng Liu, and Liang Li. A directional

anemometer based on mems differential pressure sensors. The 9th IEEE International

Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Sep 2014.

89



[16] Renee A. McPherson, Christopher A. Fiebrich, Kenneth C. Crawford, James R. Kilby,

David L. Grimsley, Janet E. Martinez, Jeffrey B. Basara, Bradley G. Illston, Dale A.

Morris, Kevin A. Kloesel, and et al. Statewide monitoring of the mesoscale environment:

A technical update on the oklahoma mesonet. Journal of Atmospheric and Oceanic

Technology, 24(3):301–321, 2007.

[17] Shigeru Ogawa and Yusuke Kimura. Performance improvement by control of wingtip

vortices for vertical axis type wind turbine. Open Journal of Fluid Dynamics, 08:331–

342, 01 2018.

[18] A Alberigi Quaranta, G C Aprilesi, G De Cicco, and A Taroni. A microprocessor

based, three axes, ultrasonic anemometer. Journal of Physics E: Scientific Instruments,

18(5):384–387, 1985.

[19] Mustafa Sarioglu and Tahir Yavuz. Subcritical flow around bluff bodies. AIAA Journal,

40(7):1257–1268, Jul 2002.

[20] Adam B Smith. Billion-dollar weather and climate disasters, Mar 2020.

[21] John Smith. Mobile Mesonet. https://www.nssl.noaa.gov/projects/torus/, 2012.

[22] Ankur Srivastava, Andrew Meade, and Kurtis Long. Learning air data parameters

for flush air data sensing systems. Journal of Aerospace Computing, Information, and

Communication, 9, 11 2012.

[23] Irene Suomi and Timo Vihma. Wind gust measurement techniques—from traditional

anemometry to new possibilities. Sensors, 18(4):1300, 2018.

90
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APPENDICES

Design Drawings and Schematics

Figure 60: PCB layout.
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Figure 61: Anemometer CAD.
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Data Logger Code

1 /* CMHP Sensor Suite Package

2 Oklahoma State University

3

4 Created by: Andrew Cole | andrew.cole11@okstate.edu

5 Based on Code by: Levi Ross | levi.ross@okstate.edu

6

7 Last edit: 06/26/2022

8

9 Code for Teensy 4.1 that logs data from 8 differential pressure

transducers

10 that function as a Multi -Hole Probe over I2C connections. Allows for

11 Pixhawk timing data to be recorded for post -processing and data

fusion.

12

13 For access to the development environment needed to run this code ,

email Levi Ross

14 and he will send a portable Arduino installation (currently 1.8.15)

with all

15 libraries and configurations set for proper functionality.

16

17 All libraries needed to operate code and process data can be found on

the GitHub:

18 https :// github.com/LeviRoss2/USRI_Sensor_Suite

19

20 */
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21

22 /////////// SET VALUES HERE ////////////////////////

23 #define Pixhawk true // true for MavLink message parsing

24 #define USB true // true for full serial output , false for no

serial output (Serial.print(), etc.)

25 #define MHP true // true for Temp and Humidity calcs

26 #define encoder true // true for rotary encoder

27

28 int MHP_freq = 200; // Hz | MAX: 200, MIN: 2 | Five Hole Probe

refresh rate

29

30 // Feel free to change description to match which angles being calculated

31 // Where the calcuation angles are based on specific trandsducer numbers

32 #define addressMHP1 0x78 // I2C address of first 5HP differential

transducer

33 #define addressMHP2 0x29 // I2C address of second differential

transducers

34 #define addressMHP3 0x38 // I2C address of third differential transducers

35 #define addressMHP4 0x38 // I2C address of fourth differential

transducers

36 #define addressMHP5 0x38 // I2C address of fifth differential transducers

37 #define addressMHP6 0x38 // I2C address of sixth differential transducers

38 #define addressMHP7 0x38 // I2C address of seventh differential

transducers

39 #define addressMHP8 0x38 // I2C address of eighth differential

transducers

40 #define addressencoder 0x25 // I2C address of Rotary Encoder (for
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windtunnel Testing)

41 ///////// DO NOT EDIT BEYOND THIS POINT ///////////

42

43 ///////////////////// LIBRARY CONFIGURATION

44 #include "SD.h" // Access to SD card data (read/write , USB file

transfer)

45 #include <mavlink.h> // Allows for connection with Pixhawk -type

autopilots

46 #include <TimeLib.h> // Required for datetime conversions

47 #include <Wire.h> // Updated for Teensy 3.X and 4.X support

48 #include <SPI.h> // Required for SD card functions

49 ///////////////////// END LIBRARY CONFIGURATION

50

51 ///////////////////// SD CARD CONFIG

52 const uint8_t chipSelect = BUILTIN_SDCARD; // Choose the Teensy built -in

SD card slot

53 char filename [12]; // initialize the filename used to write to SD files

54 File file; // Initialize the variables used to access SD files

55 ///////////////////// END SD CARD CONFIG

56

57 ///////////////////// SHARED VARIABLES

58 int Time = millis (); // Initialize internal timer

59 #define led LED_BUILTIN // Teensy built -in LED

60 ///////////////////// END SHARED VARIABLES

61

62 ///////////////////// PIXHAWK SETUP

63 float oldPixTime = 0; // Previous Pixhawk GPS time , only run again

96



if new data exists

64 uint32_t GPS_stat [1] = {0}; // GPS state (3D lock , 2D, none , etc.)

65 double PixTime [2] = {0, 0}; // Pixhawk system time (us) and time since

boot (ms)

66 elapsedMillis oldTime; // Timer for LED blink

67 #define pixSerial Serial2

68 ///////////////////// END Pixhawk Setup

69

70 ///////////////////// MHP SETUP

71 int MHPiter = 0; // Interval frequency for 5HP measurement logging

72 int MHPlast = 0; // Last time interval logged

73 int last_tot = 0; // Last time the 1 second check was run (to verify loop

speed)

74 int MHPcount = 0; // Total times the 5HP data was run in the last second

75 int reading = 0; // Send bit data to SD card and display in Serial

Monitor

76 ///////////////////// END MHP SETUP

77

78 ///////////////////// DATE/TIME SETUP

79 uint16_t Year = 0000;

80 uint8_t Month = 00;

81 uint8_t Day = 00;

82 uint8_t Hour = 00;

83 uint8_t Minute = 00;

84 uint8_t Second = 00;

85 ///////////////////// END DATE/TIME SETUP

86
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87

88

89

90 #define TCAADDR 0x70

91

92 void tcaselect(uint8_t i) {

93 if (i > 7) return;

94

95 Wire.beginTransmission(TCAADDR);

96 Wire.write (1 << i);

97 Wire.endTransmission ();

98 }

99

100

101 ///////////////////// Setup Loop

102 void setup() {

103 Serial.begin (115200);

104 pinMode(led , OUTPUT); // Teensy build -in LED for reference

105

106 #if Pixhawk == true

107 pixSerial.begin (115200);

108 MavLink_receive ();

109 Serial.println("Pixhawk data requested.");

110 #endif

111

112 // Allow all systems to catch up

113 delay (1000);
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114

115 Wire.begin (); //i2c bus 1

116

117 if (MHP_freq < 2) {

118 MHP_freq = 2;

119 }

120 if (MHP_freq > 200) {

121 MHP_freq = 200;

122 }

123 MHPiter = 1000 / MHP_freq;

124

125 // Initialize SD card

126 if (!SD.begin(chipSelect)) {

127 while (1) {

128 digitalWrite(led , !digitalRead(led));

129 Serial.println("Teensy 4.1 SD fail. Reset card and try again.");

130 delay (2000);

131 }

132 }

133

134 Serial.println("SD card initialized.");

135

136 // Initialize filename variable

137 // Iterate over all known files to keep naming consistent but iterable

138 int n = 0;

139 #if Pixhawk == true

140 MavLink_receive ();
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141

142 snprintf(filename , sizeof(filename), "LIVE %03d.csv", n); // includes a

three -digit sequence number in the file name

143 while (SD.exists(filename)) {

144 n++;

145 snprintf(filename , sizeof(filename), "LIVE %03d.csv", n);

146 }

147

148 // We can make it pause until GPS is acquired

149 // For now , turn off so test = real

150 if (USB == false) {

151 Year = year(PixTime [0]);

152 Month = month(PixTime [0]);

153 Day = day(PixTime [0]);

154 Hour = hour(PixTime [0]);

155 Minute = minute(PixTime [0]);

156 Second = second(PixTime [0]);

157 }

158 // Chose generic date , can be anything. Seeing this means no GPS

159 else {

160 Year = 2001;

161 Month = 01;

162 Day = 01;

163 Hour = 01;

164 Minute = 01;

165 Second = 01;

166 }
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167

168 #else

169 snprintf(filename , sizeof(filename), "TEST %03d.csv", n); // includes a

three -digit sequence number in the file name

170 while (SD.exists(filename)) {

171 n++;

172 snprintf(filename , sizeof(filename), "TEST %03d.csv", n);

173 }

174 // Chose generic date , can be anything. Seeing this means no GPS

175 Year = 2001;

176 Month = 01;

177 Day = 01;

178 Hour = 01;

179 Minute = 01;

180 Second = 01;

181

182 #endif

183

184 file = SD.open(filename , FILE_WRITE);

185 file.println("Board Time(ms),DS1 -B1 ,DS1 -B2 ,DS1 -B3 ,DS1 -B4 ,DS2 -B1 ,DS2 -B2 ,

DS2 -B3 ,DS2 -B4 ,DS3 -B1 ,DS3 -B2 ,DS3 -B3 ,DS3 -B4 ,DS4 -B1 ,DS4 -B2 ,DS4 -B3 ,DS4 -B4 ,

DS5 -B1 ,DS5 -B2 ,DS5 -B3 ,DS5 -B4 ,DS6 -B1 ,DS6 -B2 ,DS6 -B3 ,DS6 -B4 ,DS7 -B1 ,DS7 -B2 ,

DS7 -B3 ,DS7 -B4 ,DS8 -B1 ,DS8 -B2 ,DS8 -B3 ,DS8 -B4 , Unix Time (sec), Pix Boot

Time (ms)");

186 file.close();

187

188
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189 Serial.println(n);

190 Serial.println(filename);

191 Serial.println("File setup complete.");

192

193 //#if encoder == ture

194

195 // Setting up interrupt

196 //A rising pulse from encodenren activated ai0(). AttachInterrupt 0 is

DigitalPin nr 2 on moust Arduino.

197 attachInterrupt (2, ai0 , RISING);

198

199 //B rising pulse from encodenren activated ai1(). AttachInterrupt 1 is

DigitalPin nr 3 on moust Arduino.

200 attachInterrupt (3, ai1 , RISING);

201 }

202

203 //# endif

204

205 }

206

207 ///////////////////// Main Loop

208 void loop() {

209

210 Serial.println("Entering main data collection loop now ...");

211 while (1) {

212

213 digitalWrite(led , !digitalRead(led));
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214 file = SD.open(filename , FILE_WRITE);

215 Time = millis ();

216 file.print (( String) Time + ’,’);

217

218 #if USB == true

219 Serial.println(String("Time: ") + Time);

220 #endif

221

222

223 #if MHP == true

224 if ((Time - MHPlast) >= MHPiter) {

225 MHPlast = Time;

226 MHPcount ++;

227 mhpCheck ();

228 } else {

229 file.print (( String)’ ’ + ’,’ + ’ ’ + ’,’ + ’ ’ + ’,’ + ’ ’ + ’,’ + ’

’ + ’,’ + ’ ’ + ’,’ + ’ ’ + ’,’ + ’ ’ + ’,’ + ’ ’ + ’,’ + ’ ’ + ’,’ +

’ ’ + ’,’ + ’ ’ + ’,’ + ’ ’ + ’,’ + ’ ’ + ’,’ + ’ ’ + ’,’ + ’ ’ + ’,’ +

’ ’ + ’,’ + ’ ’ + ’,’ + ’ ’ + ’,’ + ’ ’ + ’,’ + ’ ’ + ’,’ + ’ ’ + ’,’

+ ’ ’ + ’,’ + ’ ’ + ’,’ + ’ ’ + ’,’ + ’ ’ + ’,’ + ’ ’ + ’,’ + ’ ’ + ’,’

+ ’ ’ + ’,’ + ’ ’ + ’,’ + ’ ’ + ’,’ + ’ ’ + ’,’);

230 }

231 #else

232 file.print (( String)’ ’ + ’,’ + ’ ’ + ’,’ + ’ ’ + ’,’ + ’ ’ + ’,’ + ’ ’

+ ’,’ + ’ ’ + ’,’ + ’ ’ + ’,’ + ’ ’ + ’,’ + ’ ’ + ’,’ + ’ ’ + ’,’ + ’

’ + ’,’ + ’ ’ + ’,’ + ’ ’ + ’,’ + ’ ’ + ’,’ + ’ ’ + ’,’ + ’ ’ + ’,’ + ’

’ + ’,’ + ’ ’ + ’,’ + ’ ’ + ’,’ + ’ ’ + ’,’ + ’ ’ + ’,’ + ’ ’ + ’,’ +
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’ ’ + ’,’ + ’ ’ + ’,’ + ’ ’ + ’,’ + ’ ’ + ’,’ + ’ ’ + ’,’ + ’ ’ + ’,’ +

’ ’ + ’,’ + ’ ’ + ’,’ + ’ ’ + ’,’ + ’ ’ + ’,’);

233 #endif

234

235 #if Pixhawk == true

236 MavLink_receive ();

237

238 if (PixTime [1] > oldPixTime) {

239 file.print(PixTime [0]);

240 file.print(’,’);

241 file.print(PixTime [1]);

242 file.print(’,’);

243 oldPixTime = PixTime [1];

244 }

245 else {

246 file.print (( String)’ ’ + ’,’ + ’ ’ + ’,’);

247 }

248 #else

249 file.print (( String)’ ’ + ’,’ + ’ ’ + ’,’);

250 #endif

251

252 file.println ();

253 file.close ();

254

255 #if USB == true

256 if ((Time - last_tot) >= 1000) {

257 Serial.println (); Serial.print("MHP count: "); Serial.println(
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MHPcount);

258 Serial.println ();

259 last_tot = Time;

260 MHPcount = 0;

261 }

262 #endif

263 }

264 }

265

266 ///////////////////// Reads data from Pressure Transducers

267 void mhpCheck () {

268

269 #if USB == true

270 Serial.println ();

271 #endif

272

273 // Hard code the read for each sensor due to time -sensitivities

274 // Down the road , convert to single for -loop

275 // Doesnt speed up code , but makes it more concise to read

276 // Pre -define "reading" as -1 to track bad reads

277 // Code can "get stuck" on a given read if it doesnt exist (device not

connected)

278 // Feel free to comment out loops that are hanging for now , we can

resolve later

279

280 int i = 0;

281
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282 while (i < 8) {

283 tcaselect(i);

284

285 reading = -1;

286

287 #if USB == true

288 Serial.print( String("Tr") + (i + 1) + String(’:’));

289 #endif

290

291 Wire.requestFrom(addressMHP1 , 4); // request 4 bytes from slave

device

292 while (Wire.available ()) { // slave may send less than requested

293 reading = Wire.read(); // receive a byte as int

294 file.print(reading + String(’,’));

295 #if USB == true

296 Serial.print(reading + String(" "));

297

298 #endif

299 }

300

301 i++;

302 }

303

304 //#if encoder == true

305

306 // Send the value of counter

307 if ( counter != temp ) {
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308 pos = (float(temp) / 2.0) * (360.0 / 600.0);

309 };

310

311 if (counter < 0) {

312 counter = 1200 + counter;

313 }

314 if (counter >= 1200) {

315 counter = counter - 1200;

316 }

317

318 Serial.print (pos);

319 temp = counter;

320

321 //# endif

322 }

323

324 void MavLink_receive () {

325 mavlink_message_t msg;

326 mavlink_status_t status;

327

328 while (pixSerial.available ())

329 {

330 uint8_t c = pixSerial.read();

331

332 //Get new message

333 if (mavlink_parse_char(MAVLINK_COMM_0 , c, &msg , &status))

334 {
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335

336 // Handle new message from autopilot

337 switch (msg.msgid)

338 {

339

340 case MAVLINK_MSG_ID_SYSTEM_TIME: // #27: RAW_IMU

341 {

342 /* Message decoding: PRIMITIVE

343 static inline void mavlink_msg_raw_imu_decode(const

mavlink_message_t* msg , mavlink_raw_imu_t* raw_imu)

344 */

345 mavlink_system_time_t system_time;

346 mavlink_msg_system_time_decode (&msg , &system_time);

347

348 uint64_t Ptime = system_time.time_unix_usec;

349 PixTime [0] = Ptime / 1000000;

350 PixTime [1] = system_time.time_boot_ms;

351

352 #if USB == true

353 Serial.print("Unix Time: ");

354 Serial.print(PixTime [0]);

355 Serial.print("Pix Boot Time: ");

356 Serial.println(PixTime [1]);

357 #endif

358

359 }

360 break;
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361

362 case MAVLINK_MSG_ID_HEARTBEAT: // #0: Heartbeat

363 {

364

365 mavlink_heartbeat_t heartbeat;

366 mavlink_msg_heartbeat_decode (&msg , &heartbeat);

367

368 //armed = (( heartbeat.base_mode & MAV_MODE_FLAG_SAFETY_ARMED)

? true : false);

369

370 }

371 break;

372

373 case MAVLINK_MSG_ID_GPS_RAW_INT: // #27: RAW_IMU

374 {

375 /* Message decoding: PRIMITIVE

376 static inline void mavlink_msg_raw_imu_decode(const

mavlink_message_t* msg , mavlink_raw_imu_t* raw_imu)

377 */

378 mavlink_gps_raw_int_t gps_raw_int;

379 mavlink_msg_gps_raw_int_decode (&msg , &gps_raw_int);

380

381 GPS_stat [0] = gps_raw_int.fix_type;

382

383 }

384 break;

385 }
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386 }

387 }

388 }

389

390 void ai0() {

391 // ai0 is activated if DigitalPin nr 2 is going from LOW to HIGH

392 // Check pin 3 to determine the direction

393 if (digitalRead (3) == LOW) {

394 counter ++;

395 } else {

396 counter --;

397 }

398 }

399

400 void ai1() {

401 // ai0 is activated if DigitalPin nr 3 is going from LOW to HIGH

402 // Check with pin 2 to determine the direction

403 if (digitalRead (2) == LOW) {

404 counter --;

405 } else {

406 counter ++;

407 }

408 }
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Post Processing Code

1 global parsedVars

2 global parseRangeUTC

3 global MHPNumber

4 global CpData

5 global directionmethod

6

7 % Read Cp vs. Theta data in as matrix

8 CpData = readmatrix(’RE#_plot’); %this file must be in the same root

folder

9 % Convert all NaN to -1

10 CpData(isnan(CpData)) = -1;

11

12

13 %////////////// Inputs ///////////////////////

14 directionmethod = "BASIC "; %BASIC ,LINEAR , or CPMATCH

15 %///////////////////////////////////////////

16 baseNameNoExt = "test1";

17 processTeensy(baseNameNoExt);

18

19 %% FUNC: processTeensy - Read Teensy data , determine which datasets exist

20 % Determine which of MultiHoleProbe or TPH suite exists

21 % INPUT

22 % * baseNameNoExt - Pix base file name with no extension or filepath

details

23 function processTeensy(baseNameNoExt)
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24 global MHPNumber

25 global TPHNumber

26 global TeensyNumber

27 global parsedTeensy

28

29 % Get the name of the file that the user wants to use.

30 [baseNameNoExtTeensy , ~, folderTeensy , fullInputMatFileNameTeensy ]...

31 = file2open(’*.csv’,’Select a Teensy Suite .CSV file’);

32 % Read data in as matri=x

33 data = readmatrix(fullInputMatFileNameTeensy);

34 % Convert all NaN to -1

35 data(isnan(data)) = -1;

36

37 fullFile = textscan(fopen(fullInputMatFileNameTeensy),’%s’);

38 rawData = fullFile {1};

39 iter = 0;

40 for i=15:4: length(rawData)

41 iter = iter + 1;

42 row = rawData{i};

43 rowData = split(row ,’,’)’;

44 posarray(iter ,1) = rowData(1,end);

45 end

46 posarray = string(posarray);

47

48 % Check if MHP data exists

49 if(max(data (:,4)) >0)

50 % If data exists , iterate MHP number (in case more than one is used)
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51 MHPNumber = MHPNumber +1;

52 outputMHP = processMHP(data , folderTeensy , baseNameNoExt ,posarray);

53 else

54 % If no data exists , output as empt

55 outputMHP = [];

56 end

57

58 end

59

60 %% FUNC: processMHP - Parse and process MHP data

61 % Parse MHP data based on parseRangeUTC data from Pixhawk

62 % Output external table (DateUTC , TimeUTC) to user workspace

63 % Preseve internal table (DatenumUTC) for other uses

64 % INPUT

65 % * data - Teensy full dataset

66 % * folder - folder containing raw Teensy data

67 % * baseNameNoExt - Pix base file name with no extension or filepath

details

68 % OUTPUT

69 % * outputMHP - Internal version of resulting table (DatenumUTC)

70 function outputMHP = processMHP(data , folder , baseNameNoExt ,posarray)

71

72 global parsedVars

73 global parseRangeUTC

74 global MHPNumber

75

76 % Get number of Rows and Columns of the data
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77 nrows = length(data (:,1));

78 ncols = length(data (1,:));

79

80 % Air desnity , pre -set for now but will be calc ’ed from TPH data

81 rho =1.197; % kg/m3

82

83 % Find location of IMU , CTUN , GPS , and NKF1 tables (all required)

84 % for j=1: length(parsedVars)

85 % if(strcmpi(’IMU_table ’,char(parsedVars{j,1})))

86 % locIMU=j;

87 % end

88 % if(strcmpi(’CTUN_table ’,char(parsedVars{j,1})))

89 % locCTUN=j;

90 % end

91 % if(strcmpi(’GPS_table ’,char(parsedVars{j,1})))

92 % locGPS=j;

93 % end

94 % if(strcmpi(’NKF1_table ’,char(parsedVars{j,1})))

95 % locNKF1=j;

96 % end

97 % if(strcmpi(’XKF1_table ’,char(parsedVars{j,1})))

98 % locNKF1=j;

99 % end

100 % end

101

102 % Convert the parsedVars tables to arrays

103 % IMU = table2array(parsedVars{locIMU ,2});
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104 % CTUN = table2array(parsedVars{locCTUN ,2});

105 % GPS = table2array(parsedVars{locGPS ,2});

106 % NKF1 = table2array(parsedVars{locNKF1 ,2});

107

108 % Convert rawData into arrays of relevant data

109 time = data (:,1);

110 TR1B1 = data (:,2);

111 TR1B2 = data (:,3);

112 TR2B1 = data (:,6);

113 TR2B2 = data (:,7);

114 TR3B1 = data (: ,10);

115 TR3B2 = data (: ,11);

116 TR4B1 = data (: ,14);

117 TR4B2 = data (: ,15);

118 TR5B1 = data (: ,18);

119 TR5B2 = data (: ,19);

120 TR6B1 = data (: ,22);

121 TR6B2 = data (: ,23);

122 TR7B1 = data (: ,26);

123 TR7B2 = data (: ,27);

124 TR8B1 = data (: ,30);

125 TR8B2 = data (: ,31);

126 UnixT = data (: ,34);

127 PixT = data (:,35);

128 pos = data (:,37);

129

130 % Backfill Pixhawk BOOT and UNIX times via linear interpolation
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131 % filledPixT (:,1)=timeInterpolation(time (:,1),PixT (:,1));

132 % filledUnixT (:,1)=timeInterpolation(time (:,1),UnixT (:,1));

133

134 % Convert MHP data to Alpha , Beta , and Pitot base values

135 TR1Count = ((TR1B1 *256)+TR1B2);

136 TR2Count = ((TR2B1 *256)+TR2B2);

137 TR3Count = ((TR3B1 *256)+TR3B2);

138 TR4Count = ((TR4B1 *256)+TR4B2);

139 TR5Count = ((TR5B1 *256)+TR5B2);

140 TR6Count = ((TR6B1 *256)+TR6B2);

141 TR7Count = ((TR7B1 *256)+TR7B2);

142 TR8Count = ((TR8B1 *256)+TR8B2);

143

144 TR1Cal = 1029;

145 TR2Cal = 1007;

146 TR3Cal = 1022;

147 TR4Cal = 1025;

148 TR5Cal = 1014;

149 TR6Cal = 1038;

150 TR7Cal = 1022;

151 TR8Cal = 1007;

152

153 % Convert base values to pressure values (inH2O)

154 TR1_inH2O =(( TR1Count -1638) *(5+5))/(14745 -1638) -1;

155 TR2_inH2O =(( TR2Count -1638) *(5+5))/(14745 -1638) -1;

156 TR3_inH2O =(( TR3Count -1638) *(5+5))/(14745 -1638) -1;

157 TR4_inH2O =(( TR4Count -1638) *(5+5))/(14745 -1638) -1;
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158 TR5_inH2O =(( TR5Count -1638) *(5+5))/(14745 -1638) -1;

159 TR6_inH2O =(( TR6Count -1638) *(5+5))/(14745 -1638) -1;

160 TR7_inH2O =(( TR7Count -1638) *(5+5))/(14745 -1638) -1;

161 TR8_inH2O =(( TR8Count -1638) *(5+5))/(14745 -1638) -1;

162

163 % Convert pressure values to Pascals - 1 inH2O = 0.0360912 psi = 248.84 pa

164 TR1_pa=TR1_inH2O *248.84;

165 TR2_pa=TR2_inH2O *248.84;

166 TR3_pa=TR3_inH2O *248.84;

167 TR4_pa=TR4_inH2O *248.84;

168 TR5_pa=TR5_inH2O *248.84;

169 TR6_pa=TR6_inH2O *248.84;

170 TR7_pa=TR7_inH2O *248.84;

171 TR8_pa=TR8_inH2O *248.84;

172

173 % Do math here ------------------------------------------------

174

175

176 %Fix Position Data

177 %Remove Fragmented Data

178 for i = 2: length(posarray)

179 if strlength(posarray(i,1)) ~= 3

180 posarray(i,1) = NaN;

181 end

182 end

183

184 posarray = str2double(posarray);
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185 last = 0;

186 for i = 2: length(posarray)

187 if posarray(i,1) >360|| posarray(i,1) <0

188 posarray(i,1) = NaN;

189 elseif posarray(i,1) ==360

190 posarray(i,1) = 0;

191 end

192 if isnan(posarray(i,1))

193 else

194 last = posarray(i,1);

195 end

196 posarray(i,1) = 360 - posarray(i,1);

197 end

198

199 %Unwrap direction

200 for i = 1: length(posarray)

201 if posarray(i,1) >180

202 posarray(i,1) = posarray(i,1) -360;

203 end

204 end

205

206 % windowSize = 1;

207 % b = (1/ windowSize)*ones(1, windowSize);

208 % a = 1;

209 % posarray = filter(b,a,posarray);

210

211 % Add all relevant data to MHPData matrix
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212 MHPData (:,1)=time; % Sensor board time

213 % MHPData (:,2)=filledPixT; % Pix board time

214 % MHPData (:,3)=filledUnixT; % Pix Unix Time (GPS)

215 MHPData (:,4)=smoothdata(TR1_pa -TR1Cal ,’movmean ’ ,20);

216 MHPData (:,5)=smoothdata(TR2_pa -TR2Cal ,’movmean ’ ,20);

217 MHPData (:,6)=smoothdata(TR3_pa -TR3Cal ,’movmean ’ ,20);

218 MHPData (:,7)=smoothdata(TR4_pa -TR4Cal ,’movmean ’ ,20);

219 MHPData (:,8)=smoothdata(TR5_pa -TR5Cal ,’movmean ’ ,20);

220 MHPData (:,9)=smoothdata(TR6_pa -TR6Cal ,’movmean ’ ,20);

221 MHPData (:,10)=smoothdata(TR7_pa -TR7Cal ,’movmean ’ ,20);

222 MHPData (:,11)=smoothdata(TR8_pa -TR8Cal ,’movmean ’ ,20);

223 MHPData (:,12)=posarray;

224

225 %Calculate Windspeed and Direction

226 [vel , dir] = CMHPCalc(MHPData ,rho);

227

228 %Unwrap direction

229 for i = 1: length(dir)

230 if dir(i,1) >180

231 dir(i,1) = dir(i,1) -360;

232 end

233 end

234

235 MHPData (:,13) = smoothdata(vel);

236 MHPData (:,14) = dir;

237

238
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239

240

241 %Average every two datapoints

242 MHPDataTemp = zeros(size(MHPData));

243

244 for c = 4:11

245 MHPDataTemp (1,c)= MHPData(1,c);

246 for i = 2: length(MHPData(:,c))-1

247 MHPDataTemp(i,c) = (MHPData(i+1,c)+MHPData(i,c)+MHPData(i-1,c))/3;

248 end

249 MHPDataTemp(i+1,c)= MHPData(i+1,c);

250 end

251

252 for c = 4:11

253 MHPData(:,c) = MHPDataTemp (:,c);

254 end

255

256

257 % Cut out trailing data that wasnt interpolated

258 %MHPData(isnan(MHPData (:,3)) ,:)=[];

259

260 % Generate DateUTC and TimeUTC datasets for user view

261 % MHP_DateTime=datetime(MHPData (:,3) ,...

262 % ’ConvertFrom ’,’posixTime ’,’Format ’,’MMM -dd-yyyy HH:mm:ss.S’);

263 % MHP_Date=datestr(MHP_DateTime ,’mmm -dd-yyyy ’);

264 % MHP_Time=datestr(MHP_DateTime ,’HH:MM:SS.FFF ’);

265 %

120



266 % % Generate DatenumUTC for internal use

267 % datenumMHP = datenum(MHP_DateTime);

268

269 % Find MHP start time from Pixhawk parse

270

271 TO_MHP = 1;

272

273

274 % Find MHP end time from Pixhawk parse

275

276 LND_MHP = length(MHPData);

277

278

279 % Parse all MHP data based on Pixhawk parsing

280 MHP_entry = MHPData(TO_MHP:LND_MHP ,:);

281 % MHP_Date = MHP_Date(TO_MHP:LND_MHP ,:);

282 % MHP_Time = MHP_Time(TO_MHP:LND_MHP ,:);

283 MHP_time_out = (MHP_entry (:,1)-min(MHP_entry (:,1)))/1000;

284 % datenumMHP = datenumMHP(TO_MHP:LND_MHP ,:);

285

286 % Create external table for user view

287 MHP_tableExternal = table(MHP_entry (:,1),MHP_entry (:,2),MHP_time_out ,...

288 MHP_entry (:,4),MHP_entry (:,5),MHP_entry (:,6),MHP_entry (:,7),MHP_entry

(:,8),MHP_entry (:,9),MHP_entry (:,10),MHP_entry (:,11));...

289 ’VariableNames ’; {’Board Time from PowerUp (msec)’ ,...

290 ’Pix Time from PowerUp (msec)’,’Pix time from parse’ ,...

291 ’TR1 (Pa)’,’TR2 (Pa)’,’TR3 (Pa)’,’TR4 (Pa)’,’TR5 (Pa)’,’TR6 (Pa)’, ’
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TR7 (Pa)’,’TR8 (Pa)’, ’Position (deg)’};

292 MHP_tableExternal.Properties.Description = sprintf(’MHP%d’,MHPNumber);

293 % Output table to user workspace ---------------------------asignin

--------

294 assignin(’base’,sprintf(’MHP_table%d’,MHPNumber),MHP_tableExternal);

295 % Save tabele for user review

296 table2saveCSV(baseNameNoExt , folder , MHP_tableExternal)

297

298 outputMHP = MHP_entry;

299

300 % Create new figure , iterate number to prevent overwriting

301 clf;

302 figIter = 0;

303 figIter = figIter +1;

304 Figs{figIter }= figure(figIter);

305 Figs{figIter }.Name = sprintf(’CMHP Pressures.’,MHPNumber);

306 % Prevent autoUpdate of axis bounds

307 set(Figs{figIter},’defaultLegendAutoUpdate ’,’off’);

308

309 %Plot recovered velocity values

310 plt = plot(MHP_entry (:,1), MHP_entry (:,4),’.’,MHP_entry (:,1),MHP_entry

(:,5),’.’,MHP_entry (:,1),MHP_entry (:,6),’.’,MHP_entry (:,1),MHP_entry

(:,7),’.’,MHP_entry (:,1),MHP_entry (:,8),’.’,MHP_entry (:,1),MHP_entry

(:,9),’.’,MHP_entry (:,1),MHP_entry (:,10),’.’,MHP_entry (:,1),MHP_entry

(:,11),’.’);

311 title(’Differential Transducer Pressures ’)

312 xlabel(’Time (ms)’);
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313 ylabel(’Pressure (Pa)’);

314 legend ({’Tr1’,’Tr2’,’Tr3’,’Tr4’,’Tr5’,’Tr6’,’Tr7’,’Tr8’});

315

316 % yyaxis right

317 % plt = plot(MHP_entry (:,1), MHP_entry (: ,12) ,’LineWidth ’,5);

318 % ylabel(’Position (deg) ’);

319

320 % Create new figure , iterate number to prevent overwriting

321 figIter = figIter +1;

322

323 Figs{figIter }= figure(figIter);

324 Figs{figIter }.Name = sprintf (" Basic Windspeed and Direction",MHPNumber);

325 % Prevent autoUpdate of axis bounds

326 set(Figs{figIter},’defaultLegendAutoUpdate ’,’off’);

327

328 %Plot recovered velocity values

329 plt = plot(MHP_entry (:,1), MHP_entry (:,13),’.’);

330 title(’Basic Windspeed ’)

331 xlabel(’Time (ms)’);

332 ylabel(’Velocity (m/s)’);

333 legend ({’Measured Windspeed ’});

334

335 figIter = figIter +1;

336 Figs{figIter }= figure(figIter);

337 Figs{figIter }.Name = sprintf(’Probe Direction vs Position ’,MHPNumber);

338 % Prevent autoUpdate of axis bounds

339 set(Figs{figIter},’defaultLegendAutoUpdate ’,’off’);
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340

341 hold on

342 plt = scatter(MHP_entry (:,1), MHP_entry (:,14),’.’,’b’);

343 plt = scatter(MHP_entry (:,1), MHP_entry (:,12),’.’,’g’);

344 title(’Basic Method Direction ’);

345 xlabel(’Time (ms)’);

346 ylabel(’Direction (deg)’);

347 legend ({’Direction ’,’Probe Position ’});

348 hold off

349 % figIter = figIter +1;

350 % Figs{figIter }= figure(figIter);

351 % Figs{figIter }.Name = sprintf(’Probe Position ’,MHPNumber);

352 % % Prevent autoUpdate of axis bounds

353 % set(Figs{figIter},’defaultLegendAutoUpdate ’,’off ’);

354 %

355 % %Plot recovered velocity values

356 % plt = plot(MHP_entry (:,1), MHP_entry (: ,12));

357 % title(’Probe Prosition ’)

358 % xlabel(’Time (ms) ’);

359 % ylabel(’Position (def) ’);

360 % legend({’Direction ’});

361 end

362

363 %% FUNC: timeInterpolation - Uses board time to interpolate other time

364 % externTime is assumed to be the same length as board time

365 % Back fills empty data in externTime by:

366 % * Using boardTime as the constant interpolated against
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367 % * Using partial externTime as the interpolant , or truth data

368 % INPUT

369 % * boardTime - highspeed board time

370 % * externTime - same length as boardTime , but different timing variable

371 % OUTPUT

372 % * interpolatedArray - externTime with empties filled

373

374 function interpolatedArray = timeInterpolation(boardTime ,externTime)

375

376 % Initialize the counter for output array

377 Interpcount =0;

378

379 % Interpolation BuildUp

380 for i=1: length(boardTime (:,1))

381 boardTimeInt = boardTime(i); % Logger time (Teensy , Arduino , etc.)

382 externTimeInt = externTime(i); % External time (Pix , Unix , GPS , etc.)

383

384 % If valid timing value , add to interpolation array

385 if(externTimeInt ~=-1)

386 Interpcount=Interpcount +1;

387 InterpData(Interpcount ,1)=boardTimeInt; % Sensor board time

388 InterpData(Interpcount ,2)=externTimeInt; % External Time

389 end

390 end

391

392 % Remove Duplicate External Time interpolation points

393 NewVals=unique(InterpData (:,2));

125



394 % Concatenate data based on unique datapoints only

395 for i=1: length(NewVals (:,1))

396 TempVal = find(InterpData (:,2)== NewVals(i,1) ,1,’first’);

397 conCat(i,1) = InterpData(TempVal ,1);

398 conCat(i,2) = NewVals(i,1);

399 end

400

401 % Backfill gaps in full dataset

402 for j = 1: length(boardTime (:,1))

403 if(externTime(j,1) == -1)

404 externTime(j,1) = interp1(conCat (:,1),conCat (:,2),boardTime(j,1),’

linear ’);

405 end

406 end

407

408 % Output the interpolated External Time array

409 interpolatedArray = externTime;

410

411 end

412

413 %% FUNC: file2open - Open File Based on File Input Type

414 % Prompt user to open a file of type "TYPE" with a heading of "TEXT"

415 % Saves file data as output

416 % INPUT

417 % * Type - File type to isolate for user to choose. Can be an array.

418 % * * Types: .csv , .txt , .xlsx , etc

419 % * * User will only be open the types provided
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420 % * Text - Title of the UI figure that opens

421 % OUTPUT

422 % * baseNameNoExt - base file name with no extension or filepath details

423 % * baseName - base file name with extension but no filepath

424 % * folder - filepath to the file , but without any file information

425 % * fullInputMatName - file name with filepath and extension added

426 % * * These are used as passthrough to other functions

427 function [baseNameNoExt , baseName , folder , fullInputMatName] = file2open(

type ,text)

428

429 global startingFolder

430

431 % Get the name of the file that the user wants to use.

432 defaultName = fullfile(startingFolder ,type);

433 % Grab baseName and folder directly from the loading process

434 [baseName , folder] = uigetfile(defaultName , text);

435

436 % Redefine starting folder as current folder

437 % Allows next file open to start in same folder

438 startingFolder = folder;

439

440 if baseName == 0

441 % User clicked the Cancel button.

442 return;

443 end

444

445 % Remove extension from the baseName
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446 [~, baseNameNoExt , ~] = fileparts(baseName);

447

448 % Recombine all parts to recreate the full name

449 fullInputMatName = fullfile(folder , baseName);

450

451 end

452 %% FUNC: file2save - Save File Based on file2open Details

453 % Take file components from file2open and save in same location

454 % INPUT

455 % * baseNameNoExt - base file name with no extension or filepath details

456 % * folder - filepath to the file with no file information

457 % * varToSave - variable with data to save externally

458 function file2save(baseNameNoExt , folder , varToSave)

459

460 % Get the name of the intput.mat file and save as input_parsed.mat

461 baseFileName = sprintf(’%s_Parsed.mat’, baseNameNoExt);

462 % Generate output file name using folder details and new name

463 fullParsedMatFileName = fullfile(folder , baseFileName);

464 % Save file with parsed data as the original filename plus the added

portion

465 save(fullParsedMatFileName ,’varToSave ’);

466 end

467 %% FUNC: table2saveCSV - Save Specific Tables from Workspace To .CSV File

468 % Must be table (no arrays or structures)

469 % Before loading , define ’yourTable.Properties.Description = yourVarName;’

470 % * yourVarName will be appended after DFL file name as new .CSV file

471 % * * Ex: DFL Name: NimbusFlight2_5_27_2021.bin
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472 % * * varName : GPS

473 % * * output : NimbusFlight2_5_27_2021_varName.csv

474 % INPUT

475 % * baseNameNoExt - base file name with no extension or filepath details

476 % * folder - filepath to the file with no file information

477 % * tableToSave - table with data to save externally

478 function table2saveCSV(baseNameNoExt , folder , tableToSave)

479

480 % If Description of table is empty , use preset name. Else , use the name

481 if(isempty(tableToSave.Properties.Description))

482 varName = ’undefinedVar ’;

483 else

484 varName = tableToSave.Properties.Description;

485 end

486

487 % Save file as "PixhawkDFLname_VARNAME.csv"

488 % VARNAME can be undefinedVar if description is not set

489 baseFileName = sprintf(’%s_%s.csv’, baseNameNoExt , varName);

490 fullOutputMatFileName = fullfile(folder , baseFileName);

491 % Write data to .csv file

492 writetable(tableToSave , fullOutputMatFileName);

493

494 end

495 %% FUNC: CMHPCalc

496

497 function [vel , dir] = CMHPCalc(MHPData ,rho)

498 global directionmethod
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499 vel = zeros(size(MHPData (:,4)));

500 dir = zeros(size(MHPData (:,4)));

501 for i = 1: length(MHPData (:,4))

502 pressure = [MHPData(i,4),MHPData(i,5),MHPData(i,6),MHPData(i,7),

MHPData(i,8),MHPData(i,9),MHPData(i,10),MHPData(i,11)];

503 posP = abs(pressure);

504 spacing =

[0;22.5;45;67.5;90;112.5;135;157.5;180;202.5;225;247.5;270;292.5;315;337.5];

505 [Pmax ,MaxTR] = max(posP);

506 vel(i,1) = sqrt ((2* Pmax)/rho);

507 if Pmax <5&&i>1

508 dir(i,1)=dir(i-1,1);

509 elseif directionmethod == "BASIC"

510

511 if MaxTR == 1

512 if MHPData(i,3+ MaxTR)>0

513 dir(i,1) = 0;

514 else

515 dir(i,1) = 90;

516 end

517 elseif MaxTR == 2

518 if MHPData(i,3+ MaxTR)>0

519 dir(i,1) = 22.5;

520 else

521 dir(i,1) = 112.5;

522 end
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523 elseif MaxTR == 3

524 if MHPData(i,3+ MaxTR)>0

525 dir(i,1) = 45;

526 else

527 dir(i,1) = 135;

528 end

529 elseif MaxTR == 4

530 if MHPData(i,3+ MaxTR)>0

531 dir(i,1) = 67.5;

532 else

533 dir(i,1) = 157.5;

534 end

535 elseif MaxTR == 5

536 if MHPData(i,3+ MaxTR)>0

537 dir(i,1) = 180;

538 else

539 dir(i,1) = 270;

540 end

541 elseif MaxTR == 6

542 if MHPData(i,3+ MaxTR)>0

543 dir(i,1) = 202.5;

544 else

545 dir(i,1) = 292.5;

546 end

547 elseif MaxTR == 7

548 if MHPData(i,3+ MaxTR)>0

549 dir(i,1) = 225;
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550 else

551 dir(i,1) = 315;

552 end

553 elseif MaxTR == 8

554 if MHPData(i,3+ MaxTR)>0

555 dir(i,1) = 247.5;

556 else

557 dir(i,1) = 337.5;

558 end

559 end

560

561 elseif directionmethod == "LINEAR"

562 pressure = abs([ MHPData(i,4);MHPData(i,5);MHPData(i,6);MHPData(i

,7);MHPData(i,4);MHPData(i,5);MHPData(i,6);MHPData(i,7);MHPData(i,8);

MHPData(i,9);MHPData(i,10);MHPData(i,11);MHPData(i,8);MHPData(i,9);

MHPData(i,10);MHPData(i,11)]);

563 spacing =

[0;22.5;45;67.5;90;112.5;135;157.5;180;202.5;225;247.5;270;292.5;315;337.5];

564

565 if MaxTR ==1

566 diff1 = abs(pressure(MaxTR)-pressure (8));

567 difftot=abs(pressure(MaxTR +1)-pressure (8));

568 if diff1 >difftot

569 dir(i,1)=spacing(MaxTR);

570 else

571 dir(i,1)=( diff1/difftot)*45+ spacing (8);
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572 end

573 else

574 diff1 = abs(pressure(MaxTR)-pressure(MaxTR -1));

575 difftot=abs(pressure(MaxTR +1)-pressure(MaxTR -1));

576 if diff1 >difftot

577 dir(i,1)=spacing(MaxTR);

578 else

579 dir(i,1)=( diff1/difftot)*45+ spacing(MaxTR -1);

580 end

581 end

582 elseif directionmethod == "CPMATCH"

583 refcp = getCP(vel(i,1) ,0.0508); %for a 2in probe

584 refdiff = refcp (46 ,2)-refcp(length(refcp) ,2);

585

586 if MaxTR > 1 && MaxTR < 8

587

588 cp1 = pressure(MaxTR -1)/Pmax;

589 cp2 = pressure(MaxTR +1)/Pmax;

590 diff1 = abs(cp1 -refdiff);

591 diff2 = abs(cp2 -refdiff);

592

593 elseif MaxTR == 1

594

595 cp1 = pressure (8)/Pmax;

596 cp2 = pressure(MaxTR +1)/Pmax;

597 diff1 = abs(cp1 -refdiff);

598 diff2 = abs(cp2 -refdiff);
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599 elseif MaxTR == 8

600

601 cp1 = pressure(MaxTR -1)/Pmax;

602 cp2 = pressure (1)/Pmax;

603 diff1 = abs(cp1 -refdiff);

604 diff2 = abs(cp2 -refdiff);

605 end

606

607 if diff1 >diff2

608 [c,n]=min(abs(cp1 -refcp (:,2)));

609 diradj = refcp(n,1);

610 if diradj > 22.5

611 diradj = 22.5;

612 end

613 if pressure(MaxTR) > 0

614 if MaxTR <=4

615 dir(i,1) = spacing(MaxTR)-diradj;

616 else

617 dir(i,1) = spacing(MaxTR +4)-diradj;

618 end

619 else

620 if MaxTR <=4

621 dir(i,1) = spacing(MaxTR +4)-diradj;

622 else

623 dir(i,1) = spacing(MaxTR +8)-diradj;

624 end

625 end
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626

627

628 else

629 [c,n]=min(abs(cp1 -refcp (:,2)));

630 diradj = refcp(n,1);

631 if diradj > 22.5

632 diradj = 22.5;

633 end

634 if pressure(MaxTR) > 0

635 if MaxTR <=4

636 dir(i,1) = spacing(MaxTR)+diradj;

637 else

638 dir(i,1) = spacing(MaxTR +4)+diradj;

639 end

640 else

641 if MaxTR <=4

642 dir(i,1) = spacing(MaxTR +4)+diradj;

643 else

644 dir(i,1) = spacing(MaxTR +8)+diradj;

645 end

646 end

647 end

648

649 if dir(i,1) > 360

650 dir(i,1) = dir(i,1) -360;

651 elseif dir(i,1) < 0

652 dir(i,1) = dir(i,1) + 360;
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653 end

654

655 end

656 end

657 end

658

659 %% FUNC: getCP

660

661 function [cp] = getCP(vel ,L)

662 global CpData

663

664 kv = 0.00001488; %kenimatic viscoity in m^2/s

665

666 % % Read Cp vs. Theta data in as matrix

667 % CpData = readmatrix(’RE#_plot ’); %this file must be in the same root

folder

668 % % Convert all NaN to -1

669 % CpData(isnan(CpData)) = -1;

670

671 Re = (vel*L)/kv;

672

673 [val ,idx]=min(abs(CpData (1,2:end)-Re));

674

675 theta = CpData (3:end ,1).’;

676 refcps = CpData (3:end ,1+ idx).’;

677 % inttheta = 0:0.5:112.5;

678 % intcps = interp1(theta ,refcps ,abs(inttheta));
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679

680 inttheta = 0:0.5:112.5;

681 intcps = interp1(theta ,refcps ,abs(inttheta));

682

683 %theta = [0;25;30;40;50;60;70;75;80;85;90;95;100;110;120;140;150;160];

684 %refcps =

[1;0.8;0.6; -0.375; -0.95; -1.6; -1.8; -1.74; -1.625; -1.5; -1.45; -1.42; -1.43; -1.46; -1.48; -1.52; -1.49; -1.625];

685

686 %ploting options

687 %plot (theta ,refcps) %uncomment to see just selected Cp curve

688

689 % hold on %uncomment until hold off to plot all Cp data

690 % i=0;

691 % leg = strings(1,length(CpData (1,2:end)));

692 % for i = 2: length(CpData (1,:))

693 % cplot = CpData (3:end ,i).’;

694 % plot (theta ,cplot);

695 % leg(1,i-1) = append ("Re = ",string(CpData(1,i)));

696 % end

697 % legend (leg)

698 % hold off

699

700 cp = [inttheta;intcps ].’; %put a breakpoint here to see Cp graphs.

701 end
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1 global parsedVars

2 global parseRangeUTC

3 global MHPNumber

4 global TeensyNumber

5 global parsedTeensy

6 global startingFolder

7 global rawDFL

8 global rawVars

9 global arduPilotType

10 global redactStructDFL

11 global figIter

12 figIter = 0;

13 global Figs

14 global CMHPData

15 global YoungData

16 global MHP_tableExternal

17 global Young_tableExternal

18 global directionmethod

19

20 %////////////// Inputs ///////////////////////

21 datatype = "BOTH"; %CMHP ,YOUNG ,or BOTH

22 mesonetdata = "FALSE "; %Mesonet Comparision (CMHP only)

23 mesoset = 2; %Which mesonet dataset to use

24 directionmethod = "BASIC "; %BASIC or LINEAR or CPMATCH

25 %///////////////////////////////////////////

26

27 %Mesonet Data
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28 MesonetT1 = [datenum (2022 ,6 ,23 ,18 ,35 ,00);datenum (2022 ,6 ,23 ,18 ,40 ,00);

datenum (2022 ,6 ,23 ,18 ,45 ,00);datenum (2022 ,6 ,23 ,18 ,50 ,00);datenum

(2022 ,6 ,23 ,18 ,55 ,00);datenum (2022 ,6 ,23 ,19 ,00 ,00);datenum

(2022 ,6 ,23 ,19 ,05 ,00);datenum (2022 ,6 ,23 ,19 ,10 ,00);datenum

(2022 ,6 ,23 ,19 ,15 ,00)];

29 MesonetVel1 =[4.5;4.0;4.9;4.1;3.6;4.1;3.5;4.8;4.9];

30 MesonetDir1 =[177;199;182;182;174;177;165;186;163];

31 MesonetVMax1 = [7.1;5.8;6.8;6.4;5.5;5.7;5.5;6.4;6.4];

32

33 MesonetT2 = [datenum (2022 ,6 ,23 ,19 ,20 ,00);datenum (2022 ,6 ,23 ,19 ,25 ,00);

datenum (2022 ,6 ,23 ,19 ,30 ,00);datenum (2022 ,6 ,23 ,19 ,35 ,00);datenum

(2022 ,6 ,23 ,19 ,40 ,00);datenum (2022 ,6 ,23 ,19 ,45 ,00);datenum

(2022 ,6 ,23 ,19 ,50 ,00);datenum (2022 ,6 ,23 ,19 ,55 ,00);datenum

(2022 ,6 ,23 ,20 ,00 ,00);datenum (2022 ,6 ,23 ,20 ,05 ,00);datenum

(2022 ,6 ,23 ,20 ,10 ,00)];

34 MesonetVel2 =[4.7;4.5;4.5;5.4;4.2;3.5;4.5;4.2;5.4;4.5;4.8];

35 MesonetDir2 =[163;145;144;167;173;141;145;139;133;144;159];

36 MesonetVMax2 = [6.2;6.6;6.7;7.3;5.8;6.3;7.1;7.2;7.3;6.3;6.7];

37

38

39

40 if mesoset == 1

41 Meso=[MesonetT1 ,MesonetVel1 ,MesonetDir1 ,MesonetVMax1 ];

42 elseif mesoset == 2

43 Meso=[MesonetT2 ,MesonetVel2 ,MesonetDir2 ,MesonetVMax2 ];

44 end

45
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46 if datatype == "BOTH"

47

48

49

50 figIter = figIter +1;

51 baseNameNoExt = "test1 ";

52 processTeensy(baseNameNoExt);

53 baseNameNoExt = "test2 ";

54 processTeensy4young(baseNameNoExt)

55

56 %Unwrap direction

57 for i = 1: length(Young_tableExternal.Direction)

58 if Young_tableExternal.Direction(i,1) >180

59 Young_tableExternal.Direction(i,1) = Young_tableExternal.

Direction(i,1) -360;

60 end

61 end

62

63 Figs{figIter }= figure(figIter);

64 Figs{figIter }.Name = sprintf ("CMHP vs Young Ultrasonic",MHPNumber);

65 % Prevent autoUpdate of axis bounds

66 set(Figs{figIter},’defaultLegendAutoUpdate ’,’off’);

67

68 %Plot recovered velocity values

69 plt = plot(MHP_tableExternal.datenumMHP ,MHP_tableExternal.Velocity ,’.’

, Young_tableExternal.datenum ,Young_tableExternal.Velocity ,’.’);

70 datetick(’x’)
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71 title(’CMHP vs Young Ultrasonic Velocity Comparison ’)

72 xlabel(’Unix Time’);

73 ylabel(’Velocity (m/s)’);

74 legend ({’Cylndrical Multihole Probe’,’Young 92000’});

75

76 figIter = figIter +1;

77 Figs{figIter }= figure(figIter);

78 Figs{figIter }.Name = sprintf(’CMHP vs Young Ultrasonic Direction

Comparison ’,MHPNumber);

79 % Prevent autoUpdate of axis bounds

80 set(Figs{figIter},’defaultLegendAutoUpdate ’,’off’);

81 clf

82 hold on

83 plt = scatter(MHP_tableExternal.datenumMHP ,MHP_tableExternal.Direction

,’.’);

84 plt = scatter(Young_tableExternal.datenum ,Young_tableExternal.

Direction ,’.’);

85 datetick(’x’)

86 ylabel(’Direction (deg)’);

87 xlabel(’Unix Time’);

88 legend ({’Cylndrical Multihole Probe’,’Young 92000’});

89 hold off

90 elseif datatype == "CMHP"

91

92 if mesonetdata == "TRUE"

93

94 baseNameNoExt = "test1 ";
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95 processTeensy(baseNameNoExt);

96 figIter = figIter +1;

97 Figs{figIter }= figure(figIter);

98 Figs{figIter }.Name = sprintf ("CMHP ",MHPNumber);

99 % Prevent autoUpdate of axis bounds

100 set(Figs{figIter},’defaultLegendAutoUpdate ’,’off’);

101

102 clf

103 hold on

104 %Plot recovered velocity values

105 plt = plot(MHP_tableExternal.datenumMHP ,MHP_tableExternal.Velocity

);

106 plt = plot(Meso (:,1),Meso (:,2),Meso (:,1),Meso (:,4));

107 datetick(’x’)

108 title(’CMHP Moving Median Avg Velocity vs Marena Mesonet ’)

109 xlabel(’Unix Time’);

110 ylabel(’Velocity (m/s)’);

111 legend ({’Cylndrical Multihole Probe’,’Marena Mesonet 5 Min Avg’,’

Marena Mesonet Max’});

112 hold off

113 figIter = figIter +1;

114 Figs{figIter }= figure(figIter);

115 Figs{figIter }.Name = sprintf(’CMHP Direction ’,MHPNumber);

116 % Prevent autoUpdate of axis bounds

117 set(Figs{figIter},’defaultLegendAutoUpdate ’,’off’);

118 clf

119 hold on
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120 plt = scatter(MHP_tableExternal.datenumMHP ,MHP_tableExternal.

Direction ,".")

121 plt = plot(Meso (:,1),Meso (:,3));

122 datetick(’x’)

123 ylabel(’Direction (deg)’);

124 xlabel(’Unix Time’);

125 legend ({’Cylndrical Multihole Probe’,’Marena Mesonet 5 Min Avg’});

126 hold off

127 else

128

129 baseNameNoExt = "test1 ";

130 processTeensy(baseNameNoExt);

131 figIter = figIter +1;

132 Figs{figIter }= figure(figIter);

133 Figs{figIter }.Name = sprintf ("CMHP ",MHPNumber);

134 % Prevent autoUpdate of axis bounds

135 set(Figs{figIter},’defaultLegendAutoUpdate ’,’off’);

136

137 %Plot recovered velocity values

138 plt = plot(MHP_tableExternal.datenumMHP ,MHP_tableExternal.Velocity

);

139 datetick(’x’)

140 title(’CMHP Velocity ’)

141 xlabel(’Unix Time’);

142 ylabel(’Velocity (m/s)’);

143 legend ({’Cylndrical Multihole Probe’});

144
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145 figIter = figIter +1;

146 Figs{figIter }= figure(figIter);

147 Figs{figIter }.Name = sprintf(’CMHP Direction ’,MHPNumber);

148 % Prevent autoUpdate of axis bounds

149 set(Figs{figIter},’defaultLegendAutoUpdate ’,’off’);

150

151 plt = plot(MHP_tableExternal.datenumMHP ,MHP_tableExternal.

Direction);

152 datetick(’x’)

153 ylabel(’Direction (deg)’);

154 xlabel(’Unix Time’);

155 legend ({’Cylndrical Multihole Probe’})

156

157

158 end

159

160 elseif datatype == "YOUNG"

161 figIter = figIter +1;

162 baseNameNoExt = "test2 ";

163 processTeensy4young(baseNameNoExt)

164 Figs{figIter }= figure(figIter);

165 Figs{figIter }.Name = sprintf (" Young Ultrasonic",MHPNumber);

166 % Prevent autoUpdate of axis bounds

167 set(Figs{figIter},’defaultLegendAutoUpdate ’,’off’);

168

169 %Plot recovered velocity values

170 plt = plot(Young_tableExternal.datenum ,Young_tableExternal.Velocity)
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171 datetick(’x’)

172 title(’Young Ultrasonic Velocity ’)

173 xlabel(’Unix Time’);

174 ylabel(’Velocity (m/s)’);

175 legend ({’Young Anemometer ’});

176

177 figIter = figIter +1;

178 Figs{figIter }= figure(figIter);

179 Figs{figIter }.Name = sprintf(’Young Ultrasonic Direction ’,MHPNumber);

180 % Prevent autoUpdate of axis bounds

181 set(Figs{figIter},’defaultLegendAutoUpdate ’,’off’);

182

183 plt = plot(Young_tableExternal.datenum ,Young_tableExternal.Direction);

184 datetick(’x’)

185 ylabel(’Direction (deg)’);

186 xlabel(’Unix Time’);

187 legend ({’Young 8100’});

188

189 end

190

191 %% FUNC: processTeensy - Read Teensy data , determine which datasets exist

192 % Determine which of MultiHoleProbe or TPH suite exists

193 % INPUT

194 % * baseNameNoExt - Pix base file name with no extension or filepath

details

195 function processTeensy(baseNameNoExt)

196 global MHPNumber

145



197 global TPHNumber

198 global TeensyNumber

199 global parsedTeensy

200 global CMHPData

201

202 % Get the name of the file that the user wants to use.

203 [baseNameNoExtTeensy , ~, folderTeensy , fullInputMatFileNameTeensy ]...

204 = file2open(’*.csv’,’Select a Teensy Suite .CSV file’);

205 % Read data in as matri=x

206 data = readmatrix(fullInputMatFileNameTeensy);

207 % Convert all NaN to -1

208 data(isnan(data)) = -1;

209

210 fullFile = textscan(fopen(fullInputMatFileNameTeensy),’%s’);

211 rawData = fullFile {1};

212 iter = 0;

213 for i=15:4: length(rawData)

214 iter = iter + 1;

215 row = rawData{i};

216 rowData = split(row ,’,’)’;

217 posarray(iter ,1) = rowData(1,end);

218 end

219 posarray = string(posarray);

220

221 % Check if MHP data exists

222 if(max(data (:,4)) >0)

223 % If data exists , iterate MHP number (in case more than one is used)
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224 MHPNumber = MHPNumber +1;

225 processMHP(data , folderTeensy , baseNameNoExt ,posarray);

226 else

227 % If no data exists , output as empty

228 outputMHP = [];

229 end

230

231 end

232

233 %% FUNC: processTeensy4young - Read Teensy data , determine which datasets

exist

234 % Determine which of MultiHoleProbe or TPH suite exists

235 % INPUT

236 % * baseNameNoExt - Pix base file name with no extension or filepath

details

237 function processTeensy4young(baseNameNoExt)

238 global MHPNumber

239 global TPHNumber

240 global TeensyNumber

241 global parsedTeensy

242 global YoungData

243

244 % Get the name of the file that the user wants to use.

245 [baseNameNoExtTeensy , ~, folderTeensy , fullInputMatFileNameTeensy ]...

246 = file2open(’*.csv’,’Select a Teensy Suite .CSV file’);

247 % Read data in as matri=x

248 data = readmatrix(fullInputMatFileNameTeensy);
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249 % Convert all NaN to -1

250 data(isnan(data)) = -1;

251

252 fullFile = textscan(fopen(fullInputMatFileNameTeensy),’%s’);

253 rawData = fullFile {1};

254 iter = 0;

255 for i=15:4: length(rawData)

256 iter = iter + 1;

257 row = rawData{i};

258 rowData = split(row ,’,’)’;

259 posarray(iter ,1) = rowData(1,end);

260 end

261 posarray = string(posarray);

262

263 % Check if MHP data exists

264 if(max(data (:,4)) >0)

265 % If data exists , iterate MHP number (in case more than one is used)

266 MHPNumber = MHPNumber +1;

267 processyoung(data , folderTeensy , baseNameNoExt);

268 else

269 % If no data exists , output as empty

270

271 end

272

273 end

274

275
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276 %% FUNC: CMHPCalc

277

278 function [vel , dir] = CMHPCalc(MHPData ,rho)

279 global directionmethod

280 vel = zeros(size(MHPData (:,4)));

281 dir = zeros(size(MHPData (:,4)));

282 for i = 1: length(MHPData (:,4))

283 pressure = [MHPData(i,4),MHPData(i,5),MHPData(i,6),MHPData(i,7),

MHPData(i,8),MHPData(i,9),MHPData(i,10),MHPData(i,11)];

284 posP = abs(pressure);

285 spacing =

[0;22.5;45;67.5;90;112.5;135;157.5;180;202.5;225;247.5;270;292.5;315;337.5];

286 [Pmax ,MaxTR] = max(posP);

287 vel(i,1) = sqrt ((2* Pmax)/rho);

288 if Pmax <5&&i>1

289 dir(i,1)=dir(i-1,1);

290 elseif directionmethod == "BASIC"

291

292 if MaxTR == 1

293 if MHPData(i,3+ MaxTR)>0

294 dir(i,1) = 0;

295 else

296 dir(i,1) = 90;

297 end

298 elseif MaxTR == 2

299 if MHPData(i,3+ MaxTR)>0
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300 dir(i,1) = 22.5;

301 else

302 dir(i,1) = 112.5;

303 end

304 elseif MaxTR == 3

305 if MHPData(i,3+ MaxTR)>0

306 dir(i,1) = 45;

307 else

308 dir(i,1) = 135;

309 end

310 elseif MaxTR == 4

311 if MHPData(i,3+ MaxTR)>0

312 dir(i,1) = 67.5;

313 else

314 dir(i,1) = 157.5;

315 end

316 elseif MaxTR == 5

317 if MHPData(i,3+ MaxTR)>0

318 dir(i,1) = 180;

319 else

320 dir(i,1) = 270;

321 end

322 elseif MaxTR == 6

323 if MHPData(i,3+ MaxTR)>0

324 dir(i,1) = 202.5;

325 else

326 dir(i,1) = 292.5;
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327 end

328 elseif MaxTR == 7

329 if MHPData(i,3+ MaxTR)>0

330 dir(i,1) = 225;

331 else

332 dir(i,1) = 315;

333 end

334 elseif MaxTR == 8

335 if MHPData(i,3+ MaxTR)>0

336 dir(i,1) = 247.5;

337 else

338 dir(i,1) = 337.5;

339 end

340 end

341

342 elseif directionmethod == "LINEAR"

343 pressure = abs([ MHPData(i,4);MHPData(i,5);MHPData(i,6);MHPData(i

,7);MHPData(i,4);MHPData(i,5);MHPData(i,6);MHPData(i,7);MHPData(i,8);

MHPData(i,9);MHPData(i,10);MHPData(i,11);MHPData(i,8);MHPData(i,9);

MHPData(i,10);MHPData(i,11)]);

344 spacing =

[0;22.5;45;67.5;90;112.5;135;157.5;180;202.5;225;247.5;270;292.5;315;337.5];

345

346 if MaxTR ==1

347 diff1 = abs(pressure(MaxTR)-pressure (8));

348 difftot=abs(pressure(MaxTR +1)-pressure (8));
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349 if diff1 >difftot

350 dir(i,1)=spacing(MaxTR);

351 else

352 dir(i,1)=( diff1/difftot)*45+ spacing (8);

353 end

354 else

355 diff1 = abs(pressure(MaxTR)-pressure(MaxTR -1));

356 difftot=abs(pressure(MaxTR +1)-pressure(MaxTR -1));

357 if diff1 >difftot

358 dir(i,1)=spacing(MaxTR);

359 else

360 dir(i,1)=( diff1/difftot)*45+ spacing(MaxTR -1);

361 end

362 end

363 elseif directionmethod == "CPMATCH"

364 refcp = getCP(vel(i,1) ,0.0508); %for a 2in probe

365 refdiff = refcp (46 ,2)-refcp(length(refcp) ,2);

366

367 if MaxTR > 1 && MaxTR < 8

368

369 cp1 = pressure(MaxTR -1)/Pmax;

370 cp2 = pressure(MaxTR +1)/Pmax;

371 diff1 = abs(cp1 -refdiff);

372 diff2 = abs(cp2 -refdiff);

373

374 elseif MaxTR == 1

375
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376 cp1 = pressure (8)/Pmax;

377 cp2 = pressure(MaxTR +1)/Pmax;

378 diff1 = abs(cp1 -refdiff);

379 diff2 = abs(cp2 -refdiff);

380 elseif MaxTR == 8

381

382 cp1 = pressure(MaxTR -1)/Pmax;

383 cp2 = pressure (1)/Pmax;

384 diff1 = abs(cp1 -refdiff);

385 diff2 = abs(cp2 -refdiff);

386 end

387

388 if diff1 >diff2

389 [c,n]=min(abs(cp1 -refcp (:,2)));

390 diradj = refcp(n,1);

391 if diradj > 22.5

392 diradj = 22.5;

393 end

394 if pressure(MaxTR) > 0

395 if MaxTR <=4

396 dir(i,1) = spacing(MaxTR)-diradj;

397 else

398 dir(i,1) = spacing(MaxTR +4)-diradj;

399 end

400 else

401 if MaxTR <=4

402 dir(i,1) = spacing(MaxTR +4)-diradj;
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403 else

404 dir(i,1) = spacing(MaxTR +8)-diradj;

405 end

406 end

407

408

409 else

410 [c,n]=min(abs(cp1 -refcp (:,2)));

411 diradj = refcp(n,1);

412 if diradj > 22.5

413 diradj = 22.5;

414 end

415 if pressure(MaxTR) > 0

416 if MaxTR <=4

417 dir(i,1) = spacing(MaxTR)+diradj;

418 else

419 dir(i,1) = spacing(MaxTR +4)+diradj;

420 end

421 else

422 if MaxTR <=4

423 dir(i,1) = spacing(MaxTR +4)+diradj;

424 else

425 dir(i,1) = spacing(MaxTR +8)+diradj;

426 end

427 end

428 end

429
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430 if dir(i,1) > 360

431 dir(i,1) = dir(i,1) -360;

432 elseif dir(i,1) < 0

433 dir(i,1) = dir(i,1) + 360;

434 end

435

436 end

437 end

438 end

439

440 %% FUNC: getCP

441

442 function [cp] = getCP(vel ,L)

443 global CpData

444

445 kv = 0.00001488; %kenimatic viscoity in m^2/s

446

447 % % Read Cp vs. Theta data in as matrix

448 % CpData = readmatrix(’RE#_plot ’); %this file must be in the same root

folder

449 % % Convert all NaN to -1

450 % CpData(isnan(CpData)) = -1;

451

452 Re = (vel*L)/kv;

453

454 [val ,idx]=min(abs(CpData (1,2:end)-Re));

455

155



456 theta = CpData (3:end ,1).’;

457 refcps = CpData (3:end ,1+ idx).’;

458 % inttheta = 0:0.5:112.5;

459 % intcps = interp1(theta ,refcps ,abs(inttheta));

460

461 inttheta = 0:0.5:112.5;

462 intcps = interp1(theta ,refcps ,abs(inttheta));

463

464 %theta = [0;25;30;40;50;60;70;75;80;85;90;95;100;110;120;140;150;160];

465 %refcps =

[1;0.8;0.6; -0.375; -0.95; -1.6; -1.8; -1.74; -1.625; -1.5; -1.45; -1.42; -1.43; -1.46; -1.48; -1.52; -1.49; -1.625];

466

467 %ploting options

468 %plot (theta ,refcps) %uncomment to see just selected Cp curve

469

470 % hold on %uncomment until hold off to plot all Cp data

471 % i=0;

472 % leg = strings(1,length(CpData (1,2:end)));

473 % for i = 2: length(CpData (1,:))

474 % cplot = CpData (3:end ,i).’;

475 % plot (theta ,cplot);

476 % leg(1,i-1) = append ("Re = ",string(CpData(1,i)));

477 % end

478 % legend (leg)

479 % hold off

480
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481 cp = [inttheta;intcps ].’; %put a breakpoint here to see Cp graphs.

482 end

483 %% FUNC: processyoung - Parse and process young data

484 % Parse MHP data based on parseRangeUTC data from Pixhawk

485 % Output external table (DateUTC , TimeUTC) to user workspace

486 % Preseve internal table (DatenumUTC) for other uses

487 % INPUT

488 % * data - Teensy full dataset

489 % * folder - folder containing raw Teensy data

490 % * baseNameNoExt - Pix base file name with no extension or filepath

details

491 % OUTPUT

492 % * outputMHP - Internal version of resulting table (DatenumUTC)

493 function outputyoung = processyoung(data , folder , baseNameNoExt)

494

495 global parsedVars

496 global parseRangeUTC

497 global MHPNumber

498 global figIter

499 global Figs

500 global CMHPData

501 global Young_tableExternal

502

503 % Get number of Rows and Columns of the data

504 nrows = length(data (:,1));

505 ncols = length(data (1,:));

506
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507 % Air desnity , pre -set for now but will be calc ’ed from TPH data

508 rho =1.197; % kg/m3

509

510 % Find location of IMU , CTUN , GPS , and NKF1 tables (all required)

511 for j=1: length(parsedVars)

512 if(strcmpi(’IMU_table ’,char(parsedVars{j,1})))

513 locIMU=j;

514 end

515 if(strcmpi(’CTUN_table ’,char(parsedVars{j,1})))

516 locCTUN=j;

517 end

518 if(strcmpi(’GPS_table ’,char(parsedVars{j,1})))

519 locGPS=j;

520 end

521 if(strcmpi(’NKF1_table ’,char(parsedVars{j,1})))

522 locNKF1=j;

523 end

524 if(strcmpi(’XKF1_table ’,char(parsedVars{j,1})))

525 locNKF1=j;

526 end

527 end

528

529 %Convert the parsedVars tables to arrays

530 % IMU = table2array(parsedVars{locIMU ,2});

531 % CTUN = table2array(parsedVars{locCTUN ,2});

532 % GPS = table2array(parsedVars{locGPS ,2});

533 % NKF1 = table2array(parsedVars{locNKF1 ,2});
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534

535 % Convert rawData into arrays of relevant data

536 time = data (:,1);

537 youngvel = data (:,2);

538 youngdir = data (:,3);

539 youngalt = data (:,4);

540 youngsos = data (:,5);

541 youngtemp = data (:,6);

542 UnixT = data (:,7);

543 PixT = data (:,8);

544

545 % Backfill Pixhawk BOOT and UNIX times via linear interpolation

546 filledPixT (:,1)=timeInterpolation(time (:,1),PixT (:,1));

547 filledUnixT (:,1)=timeInterpolation(time (:,1),UnixT (:,1));

548

549 % Add all relevant data to MHPData matrix

550 YoungData (:,1)=time; % Sensor board time

551 YoungData (:,2)=filledPixT; % Pix board time

552 YoungData (:,3)=filledUnixT; % Pix Unix Time (GPS)

553 YoungData (:,4)=youngvel;

554 YoungData (:,5)=youngdir;

555 YoungData (:,6)=youngalt;

556 YoungData (:,7)=youngsos;

557 YoungData (:,8)=youngtemp;

558

559 %Average every two datapoints

560 YoungDataTemp = zeros(size(YoungData));
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561

562 for c = 4:8

563 YoungDataTemp (1,c)= YoungData (1,c);

564 for i = 2: length(YoungData(:,c))-1

565 YoungDataTemp(i,c) = (YoungData(i+1,c)+YoungData(i,c)+YoungData(i

-1,c))/3;

566 end

567 YoungDataTemp(i+1,c)= YoungData(i+1,c);

568 end

569

570 for c = 4:8

571 YoungData (:,c) = YoungDataTemp (:,c);

572 end

573

574

575 % Cut out trailing data that wasnt interpolated

576 YoungData(isnan(YoungData (:,3)) ,:)=[];

577

578 % Generate DateUTC and TimeUTC datasets for user view

579 Young_DateTime=datetime(YoungData (:,3) ,...

580 ’ConvertFrom ’,’posixTime ’,’Format ’,’MMM -dd -yyyy HH:mm:ss.S’);

581 Young_Date=datestr(Young_DateTime ,’mmm -dd-yyyy’);

582 Young_Time=datestr(Young_DateTime ,’HH:MM:SS.FFF’);

583

584 % % Generate DatenumUTC for internal use

585 datenumYoung = datenum(Young_DateTime);

586
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587 % Find MHP start time from Pixhawk parse

588

589 TO_Young = 1;

590

591

592 % Find MHP end time from Pixhawk parse

593

594 LND_Young = length(YoungData);

595

596

597 % Parse all MHP data based on Pixhawk parsing

598 Young_entry = YoungData(TO_Young:LND_Young ,:);

599 Young_Date = Young_Date(TO_Young:LND_Young ,:);

600 Young_Time = Young_Time(TO_Young:LND_Young ,:);

601 Young_time_out = (Young_entry (:,1)-min(Young_entry (:,1)))/1000;

602 datenumYoung = datenumYoung(TO_Young:LND_Young ,:);

603

604 % Create external table for user view

605 Young_tableExternal = table(Young_entry (:,1),Young_entry (:,2),

Young_time_out ,Young_Date ,Young_Time ,datenumYoung ,...

606 Young_entry (:,4),Young_entry (:,5),Young_entry (:,6),Young_entry (:,7),

Young_entry (:,8) ,...

607 ’VariableNames ’, {’Board Time from PowerUp (msec)’ ,...

608 ’Pix Time from PowerUp (msec)’,’Pix time from parse’,’UTC Date’,’UTC

Time’,’datenum ’...

609 ’Velocity ’,’Direction ’,’Wind Elevation (deg)’,’Speed of Sound (m/s)’,’

Temp (C)’});
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610 Young_tableExternal.Properties.Description = sprintf(’MHP%d’,MHPNumber);

611 % Output table to user workspace ---------------------------asignin

--------

612 assignin(’base’,sprintf(’Young_table%d’,MHPNumber),Young_tableExternal);

613 % Save tabele for user review

614 table2saveCSV(baseNameNoExt , folder , Young_tableExternal)

615

616 YoungData = [Young_entry (:,1),Young_entry (:,2),Young_time_out ,Young_Date ,

Young_Time ,Young_entry (:,4),Young_entry (:,5),Young_entry (:,6),

Young_entry (:,7),Young_entry (:,8)];

617

618 end

619

620 %% FUNC: timeInterpolation - Uses board time to interpolate other time

621 % externTime is assumed to be the same length as board time

622 % Back fills empty data in externTime by:

623 % * Using boardTime as the constant interpolated against

624 % * Using partial externTime as the interpolant , or truth data

625 % INPUT

626 % * boardTime - highspeed board time

627 % * externTime - same length as boardTime , but different timing variable

628 % OUTPUT

629 % * interpolatedArray - externTime with empties filled

630

631 function interpolatedArray = timeInterpolation(boardTime ,externTime)

632

633 % Initialize the counter for output array
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634 Interpcount =0;

635

636 % Interpolation BuildUp

637 for i=1: length(boardTime (:,1))

638 boardTimeInt = boardTime(i); % Logger time (Teensy , Arduino , etc.)

639 externTimeInt = externTime(i); % External time (Pix , Unix , GPS , etc.)

640

641 % If valid timing value , add to interpolation array

642 if(externTimeInt ~=-1)

643 Interpcount=Interpcount +1;

644 InterpData(Interpcount ,1)=boardTimeInt; % Sensor board time

645 InterpData(Interpcount ,2)=externTimeInt; % External Time

646 end

647 end

648

649 % Remove Duplicate External Time interpolation points

650 NewVals=unique(InterpData (:,2));

651 % Concatenate data based on unique datapoints only

652 for i=1: length(NewVals (:,1))

653 TempVal = find(InterpData (:,2)== NewVals(i,1) ,1,’first’);

654 conCat(i,1) = InterpData(TempVal ,1);

655 conCat(i,2) = NewVals(i,1);

656 end

657

658 % Backfill gaps in full dataset

659 for j = 1: length(boardTime (:,1))

660 if(externTime(j,1) == -1)
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661 externTime(j,1) = interp1(conCat (:,1),conCat (:,2),boardTime(j,1),’

linear ’);

662 end

663 end

664

665 % Output the interpolated External Time array

666 interpolatedArray = externTime;

667

668 end

669

670 %% FUNC: file2open - Open File Based on File Input Type

671 % Prompt user to open a file of type "TYPE" with a heading of "TEXT"

672 % Saves file data as output

673 % INPUT

674 % * Type - File type to isolate for user to choose. Can be an array.

675 % * * Types: .csv , .txt , .xlsx , etc

676 % * * User will only be open the types provided

677 % * Text - Title of the UI figure that opens

678 % OUTPUT

679 % * baseNameNoExt - base file name with no extension or filepath details

680 % * baseName - base file name with extension but no filepath

681 % * folder - filepath to the file , but without any file information

682 % * fullInputMatName - file name with filepath and extension added

683 % * * These are used as passthrough to other functions

684 function [baseNameNoExt , baseName , folder , fullInputMatName] = file2open(

type ,text)

685
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686 global startingFolder

687

688 % Get the name of the file that the user wants to use.

689 defaultName = fullfile(startingFolder ,type);

690 % Grab baseName and folder directly from the loading process

691 [baseName , folder] = uigetfile(defaultName , text);

692

693 % Redefine starting folder as current folder

694 % Allows next file open to start in same folder

695 startingFolder = folder;

696

697 if baseName == 0

698 % User clicked the Cancel button.

699 return;

700 end

701

702 % Remove extension from the baseName

703 [~, baseNameNoExt , ~] = fileparts(baseName);

704

705 % Recombine all parts to recreate the full name

706 fullInputMatName = fullfile(folder , baseName);

707

708 end

709 %% FUNC: file2save - Save File Based on file2open Details

710 % Take file components from file2open and save in same location

711 % INPUT

712 % * baseNameNoExt - base file name with no extension or filepath details
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713 % * folder - filepath to the file with no file information

714 % * varToSave - variable with data to save externally

715 function file2save(baseNameNoExt , folder , varToSave)

716

717 % Get the name of the intput.mat file and save as input_parsed.mat

718 baseFileName = sprintf(’%s_Parsed.mat’, baseNameNoExt);

719 % Generate output file name using folder details and new name

720 fullParsedMatFileName = fullfile(folder , baseFileName);

721 % Save file with parsed data as the original filename plus the added

portion

722 save(fullParsedMatFileName ,’varToSave ’);

723 end

724 %% FUNC: table2saveCSV - Save Specific Tables from Workspace To .CSV File

725 % Must be table (no arrays or structures)

726 % Before loading , define ’yourTable.Properties.Description = yourVarName;’

727 % * yourVarName will be appended after DFL file name as new .CSV file

728 % * * Ex: DFL Name: NimbusFlight2_5_27_2021.bin

729 % * * varName : GPS

730 % * * output : NimbusFlight2_5_27_2021_varName.csv

731 % INPUT

732 % * baseNameNoExt - base file name with no extension or filepath details

733 % * folder - filepath to the file with no file information

734 % * tableToSave - table with data to save externally

735 function table2saveCSV(baseNameNoExt , folder , tableToSave)

736

737 % If Description of table is empty , use preset name. Else , use the name

738 if(isempty(tableToSave.Properties.Description))
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739 varName = ’undefinedVar ’;

740 else

741 varName = tableToSave.Properties.Description;

742 end

743

744 % Save file as "PixhawkDFLname_VARNAME.csv"

745 % VARNAME can be undefinedVar if description is not set

746 baseFileName = sprintf(’%s_%s.csv’, baseNameNoExt , varName);

747 fullOutputMatFileName = fullfile(folder , baseFileName);

748 % Write data to .csv file

749 writetable(tableToSave , fullOutputMatFileName);

750

751 end

752 %% FUNC: CMHPCalc

753

754 function [vel , dir] = CMHPCalc(MHPData ,rho)

755 global directionmethod

756 vel = zeros(size(MHPData (:,4)));

757 dir = zeros(size(MHPData (:,4)));

758 for i = 1: length(MHPData (:,4))

759 pressure = [MHPData(i,4),MHPData(i,5),MHPData(i,6),MHPData(i,7),

MHPData(i,8),MHPData(i,9),MHPData(i,10),MHPData(i,11)];

760 posP = abs(pressure);

761 spacing =

[0;22.5;45;67.5;90;112.5;135;157.5;180;202.5;225;247.5;270;292.5;315;337.5];

762 [Pmax ,MaxTR] = max(posP);
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763 vel(i,1) = sqrt ((2* Pmax)/rho);

764 if Pmax <5&&i>1

765 dir(i,1)=dir(i-1,1);

766 elseif directionmethod == "BASIC"

767

768 if MaxTR == 1

769 if MHPData(i,3+ MaxTR)>0

770 dir(i,1) = 0;

771 else

772 dir(i,1) = 90;

773 end

774 elseif MaxTR == 2

775 if MHPData(i,3+ MaxTR)>0

776 dir(i,1) = 22.5;

777 else

778 dir(i,1) = 112.5;

779 end

780 elseif MaxTR == 3

781 if MHPData(i,3+ MaxTR)>0

782 dir(i,1) = 45;

783 else

784 dir(i,1) = 135;

785 end

786 elseif MaxTR == 4

787 if MHPData(i,3+ MaxTR)>0

788 dir(i,1) = 67.5;

789 else
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790 dir(i,1) = 157.5;

791 end

792 elseif MaxTR == 5

793 if MHPData(i,3+ MaxTR)>0

794 dir(i,1) = 180;

795 else

796 dir(i,1) = 270;

797 end

798 elseif MaxTR == 6

799 if MHPData(i,3+ MaxTR)>0

800 dir(i,1) = 202.5;

801 else

802 dir(i,1) = 292.5;

803 end

804 elseif MaxTR == 7

805 if MHPData(i,3+ MaxTR)>0

806 dir(i,1) = 225;

807 else

808 dir(i,1) = 315;

809 end

810 elseif MaxTR == 8

811 if MHPData(i,3+ MaxTR)>0

812 dir(i,1) = 247.5;

813 else

814 dir(i,1) = 337.5;

815 end

816 end
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817

818 elseif directionmethod == "LINEAR"

819 pressure = abs([ MHPData(i,4);MHPData(i,5);MHPData(i,6);MHPData(i

,7);MHPData(i,4);MHPData(i,5);MHPData(i,6);MHPData(i,7);MHPData(i,8);

MHPData(i,9);MHPData(i,10);MHPData(i,11);MHPData(i,8);MHPData(i,9);

MHPData(i,10);MHPData(i,11)]);

820 spacing =

[0;22.5;45;67.5;90;112.5;135;157.5;180;202.5;225;247.5;270;292.5;315;337.5];

821

822 if MaxTR ==1

823 diff1 = abs(pressure(MaxTR)-pressure (8));

824 difftot=abs(pressure(MaxTR +1)-pressure (8));

825 if diff1 >difftot

826 dir(i,1)=spacing(MaxTR);

827 else

828 dir(i,1)=( diff1/difftot)*45+ spacing (8);

829 end

830 else

831 diff1 = abs(pressure(MaxTR)-pressure(MaxTR -1));

832 difftot=abs(pressure(MaxTR +1)-pressure(MaxTR -1));

833 if diff1 >difftot

834 dir(i,1)=spacing(MaxTR);

835 else

836 dir(i,1)=( diff1/difftot)*45+ spacing(MaxTR -1);

837 end

838 end
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839 elseif directionmethod == "CPMATCH"

840 refcp = getCP(vel(i,1) ,0.0508); %for a 2in probe

841 refdiff = refcp (46 ,2)-refcp(length(refcp) ,2);

842 refcp = sortrows(refcp ,2);

843

844 if MaxTR > 1 && MaxTR < 8

845

846 cp1 = pressure(MaxTR -1)/Pmax;

847 cp2 = pressure(MaxTR +1)/Pmax;

848 diff1 = abs(cp1 -refdiff);

849 diff2 = abs(cp2 -refdiff);

850

851 elseif MaxTR == 1

852

853 cp1 = pressure (8)/Pmax;

854 cp2 = pressure(MaxTR +1)/Pmax;

855 diff1 = abs(cp1 -refdiff);

856 diff2 = abs(cp2 -refdiff);

857 elseif MaxTR == 8

858

859 cp1 = pressure(MaxTR -1)/Pmax;

860 cp2 = pressure (1)/Pmax;

861 diff1 = abs(cp1 -refdiff);

862 diff2 = abs(cp2 -refdiff);

863 end

864

865 if diff1 >diff2
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866 [c,n]=min(abs(cp1 -refcp (:,2)));

867 diradj = refcp(n,1);

868 if diradj > 22.5

869 diradj = 22.5;

870 end

871 dir(i,1) = spacing(MaxTR)-diradj;

872 else

873 [c,n]=min(abs(cp1 -refcp (:,2)));

874 diradj = refcp(n,1);

875 if diradj > 22.5

876 diradj = 22.5;

877 end

878 dir(i,1) = spacing(MaxTR)+diradj;

879 end

880 if dir(i,1) > 360

881 dir(i,1) = dir(i,1) -360;

882 elseif dir < 0

883 dir(i,1) = dir(i,1) + 360;

884 end

885

886 end

887 end

888 end

889

890 %% FUNC: getCP

891

892 function [cp] = getCP(vel ,L)
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893 kv = 0.00001488; %kenimatic viscoity in m^2/s

894

895 % Read Cp vs. Theta data in as matrix

896 data = readmatrix(’RE#_plot’); %this file must be in the same root folder

897 % Convert all NaN to -1

898 data(isnan(data)) = -1;

899

900 Re = (vel*L)/kv;

901

902 [val ,idx]=min(abs(data (1,2:end)-Re));

903

904 theta = data (3:end ,1).’;

905 refcps = data (3:end ,1+ idx).’;

906 % inttheta = 0:0.5:112.5;

907 % intcps = interp1(theta ,refcps ,abs(inttheta));

908

909 inttheta = 0:0.5:112.5;

910 intcps = interp1(theta ,refcps ,abs(inttheta));

911

912 %theta = [0;25;30;40;50;60;70;75;80;85;90;95;100;110;120;140;150;160];

913 %refcps =

[1;0.8;0.6; -0.375; -0.95; -1.6; -1.8; -1.74; -1.625; -1.5; -1.45; -1.42; -1.43; -1.46; -1.48; -1.52; -1.49; -1.625];

914

915 %ploting options

916 %plot (theta ,refcps) %just selected

917
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918 % hold on %all Cp data

919 % i=0;

920 % leg = strings(1,length(data (1,2:end)));

921 % for i = 2: length(data (1,:))

922 % cplot = data (3:end ,i).’;

923 % plot (theta ,cplot);

924 % leg(1,i-1) = append ("Re = ",string(data(1,i)));

925 % end

926 % legend (leg)

927 % hold off

928

929 cp = [inttheta;intcps ].’;

930 end

931

932 %% FUNC: ardupilogConvert - Loads in .BIN DFL , converts to Matlab data

933 % Asks user to find Pixhawk .BIN DataFlash Log files

934 % Converts the Binary to custom Matlab cell structure

935 % Stores data in cell structure for other functions to use

936 function [baseNameNoExt , baseName , folder , fullInputMatName] =

ardupilogConvert ()

937

938 global rawDFL

939

940 % Opens Pixhawk DFL file , saving the parts for use later (if we choose to)

941 [baseNameNoExt , baseName , folder ,fullInputMatName] = file2open(’*.bin’ ,...

942 ’Select a .BIN Pixhawk DFL file’);

943
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944 % Convert the DFL (in binary) to custom Matlab cell structure

945 rawDFL = Ardupilog(fullInputMatName);

946

947 end

948 %% FUNC: startProcessing - Process Data Based on User Selection

949 % Take outputs from userSelection and begin processing

950 % INPUT

951 % * fig - Handle for the UI Figure

952 % * tabgp - Handle for the UITabGroup that runs each panel

953 % * iMetspn - Send number chosen from UI to iterative iMet read loop

954 % * spnTeensy - Send number chosen from UI to iterative Teensy read loop

955 function startProcessing ()

956

957 global rawDFL

958 global rawVars

959 global parsedVars

960 global arduPilotType

961 global redactStructDFL

962

963 [baseNameNoExt , baseName , folder , fullInputMatName] = ardupilogConvert ();

964

965 % Disable non -critical warning to ease user view

966 warning(’off’,’MATLAB:structOnObject ’)

967

968 % Generate names from the DFL entires

969 fieldNames = fieldnames(rawDFL);

970 % Sort entries to match standard DFL output , remove static non -entries
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971 fieldNames = sort(fieldNames (11:end ,:));

972 % Determine length of DFL after static , unused data is removed

973 len = length(fieldNames);

974

975 for i=1: len

976

977 % If no data is in the LineNo column , skip to next dataset

978 if(isempty(rawDFL .( fieldNames{i}).LineNo))

979 % If the empty is CTUN , warn that ArduCopter doesnt use it at all

980 if(contains(rawDFL .( fieldNames{i}).name ,’CTUN’))

981 warning(’CTUN data not available for ArduCopter files; no

airspeed data.’);

982 end

983 continue

984 end

985

986 % Generate redacted structure of non -empty data

987 redactStructDFL .( fieldNames{i}) = struct(getfield(rawDFL ,fieldNames{i

}));

988

989 end

990

991 assignin(’base’,’redactStructDFL ’,redactStructDFL);

992

993 % Initialize check for ArduPilot Type

994 Rover = 0;

995 Copter = 0;
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996 QuadPlane = 0;

997 Plane = 0;

998

999 % Scan message log to determine what ArduPilot type it is

1000 for i=1: length(redactStructDFL.MSG.LineNo);

1001 if(contains(redactStructDFL.MSG.Message(i,1: length(redactStructDFL.MSG

.Message (1,:))),’ArduCopter ’))

1002 Copter = 1;

1003 elseif(contains(redactStructDFL.MSG.Message(i,1: length(redactStructDFL

.MSG.Message (1,:))),’QuadPlane ’))

1004 QuadPlane = 1;

1005 elseif(contains(redactStructDFL.MSG.Message(i,1: length(redactStructDFL

.MSG.Message (1,:))),’ArduRover ’))

1006 Rover = 1;

1007 elseif(contains(redactStructDFL.MSG.Message(i,1: length(redactStructDFL

.MSG.Message (1,:))),’ArduPlane ’))

1008 Plane = 1;

1009 end

1010 end

1011

1012 % Depending on what values were found , set ArduPilot type

1013 % This structure prevents false analysis as more than 1 can be present

1014 if(Rover == 1)

1015 arduPilotType = ’ArduRover ’;

1016 elseif(Copter == 1)

1017 arduPilotType = ’ArduCopter ’;

1018 elseif(QuadPlane == 1)
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1019 arduPilotType = ’QuadPlane ’;

1020 elseif(Plane == 1)

1021 arduPilotType = ’FixedWing ’;

1022 end

1023

1024 fieldNamesIter = fieldnames(redactStructDFL);

1025 % Counter for variables copmpleted processing

1026 k=0;

1027 for i=1: length(fieldNamesIter)

1028 % If an un -selected checkbox , dont process the data

1029 if(strcmpi(fieldNamesIter{i},’GPS’) | strcmpi(fieldNamesIter{i},’CTUN’

)...

1030 | strcmpi(fieldNamesIter{i},’ATT’) | strcmpi(fieldNamesIter{i

},...

1031 ’RCOU’) | strcmpi(fieldNamesIter{i},’IMU’) |...

1032 strcmpi(fieldNamesIter{i},’NKF1’) |...

1033 strcmpi(fieldNamesIter{i},’BARO’) | strcmpi(fieldNamesIter{i},

’XKF1’))

1034

1035 % Keep track of valid entries

1036 k=k+1;

1037 rawVarLoop(fieldNamesIter{i},k);

1038 end

1039 end

1040

1041 % Turn warnings on that we turned off previously

1042 warning(’on’,’MATLAB:structOnObject ’)
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1043 % Set target variables to find location in rawVars structure

1044 target = {’GPS_table ’,’RCOU_table ’,’ATT_table ’,’CTUN_table ’,’IMU_table ’,’

BARO_table ’};

1045

1046 % Find location in rawVars structure that targets reside in

1047 % Store location data for later use

1048 for i=1: length(target)

1049 for j=1: length(rawVars)

1050 res(j,1)= strcmpi(target(i),char(rawVars{j,1}));

1051 if(res(j,1) == 1)

1052 loc(i,1)=j;

1053 break

1054 end

1055 end

1056 end

1057

1058 % If CTUN wasnt found , dont use

1059 if(loc (4) ==0)

1060 chooseSubset(rawVars{loc (1) ,2}, rawVars{loc (2) ,2},...

1061 rawVars{loc (3) ,2}, rawVars{loc (5) ,2}, rawVars{loc (6) ,2})

1062 else

1063 chooseSubset(rawVars{loc (1) ,2}, rawVars{loc (2) ,2},...

1064 rawVars{loc (3) ,2}, rawVars{loc (5) ,2}, rawVars{loc (6) ,2}, rawVars{

loc (4) ,2})

1065 end

1066

1067 % Parse data using endpoints from chooseSubset across data chosen in UI
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1068 for i=1: length(rawVars)

1069 % Parse data based on selection

1070 dataParsePix(i);

1071 end

1072

1073 % Save current parsedVars array as external Parsed file for user review

1074 file2save(baseNameNoExt , folder , parsedVars);

1075

1076

1077

1078 processTeensy(baseNameNoExt);

1079

1080

1081 end

1082 %% FUNC: chooseSubset - User -Chosen Start and End Parse Points

1083 % Generate 4 base plots , user selects start and end points

1084 % Start and End points saved to parseRangeUTC for parsing

1085 % INPUT

1086 % * GPS - raw GPS data , used for altitude and groundspeed data

1087 % * RCOU - raw RCOU data , used for throttle output data (converted to %)

1088 % * ATT - raw ATT data , used for state variables (degrees roll , pitch , etc

)

1089 % * IMU - raw IMU data , used for highest resolution timing data

1090 % * BARO - raw BARO data , used for most accurate altitude data

1091 % * CTUN - raw CTUN data (in varargin , optional), used for airspeed data

1092 function chooseSubset(GPS , RCOU , ATT , IMU , BARO , varargin)

1093
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1094 global figIter

1095 global Figs

1096 global parseRangeUTC

1097

1098 % Generate new figure window , iterate global to prevent overwrite

1099 figIter = figIter +1;

1100 Figs{figIter }= figure(figIter);

1101 Figs{figIter }.Name = ’Raw data from DFL. Click on graph for upper and

lower bound for parsing.’;

1102

1103 % If no CTUN data (ArduCopter), fill with array of zeros

1104 if(isempty(varargin))

1105 CTUN = [zeros (1000 ,2) linspace(IMU(1,3),IMU(end ,4) ,1000)’ zeros

(1000 ,9)];

1106 else

1107 CTUN = varargin {1};

1108 end

1109

1110 % Initialize guess max and min throttle (accounts for max never achieved)

1111 thrMinPWM = 1100;

1112 thrMaxPWM = 1900;

1113 thrPercent (:,1) = (RCOU (:,7)-thrMinPWM)/(thrMaxPWM -thrMinPWM)*100;

1114

1115 % Groundspeed and Airspeed plot

1116 plt1 = subplot (4,1,1);

1117 plot(GPS(:,3),GPS (:,13),’b’,CTUN (:,3),CTUN (:,12),’r’)

1118 title(’Groundspeed , Airspeed vs Time’)
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1119 ylabel ({’Groundspeed (blue)’;’Airspeed (red)’;’(m/s)’})

1120

1121 % Throttle Output

1122 plt2 = subplot (4,1,2);

1123 plot(RCOU (:,3),thrPercent (:,1),’b’)

1124 title(’Throttle vs Time’)

1125 ylabel ({’Throttle ’;’(%)’})

1126 ylim ([0 100])

1127

1128 % For the dotted line along x-axis zero point of pitch plot

1129 zeroPitch=int8(zeros(length(ATT(:,3)) ,1));

1130

1131 % Aircraft Pitch angle: Can change ylim to something more relevant.

1132 % TIV uses -20 to 50 to see high AoA landing

1133 plt3 = subplot (4,1,3);

1134 plot(ATT(:,3),ATT(:,8),’b’,ATT(:,3),zeroPitch ,’r:’)

1135 title(’Aircraft Pitch Angle vs Time’)

1136 ylabel ({’Aircraft Pitch’;’Angle ( )’})

1137 ylim ([-10 40])

1138

1139 % Altitude plot (GPS , left side)

1140 plt4 = subplot (4,1,4);

1141 yyaxis left

1142 plot(GPS(:,3),GPS (:,12),’b’);

1143 ylim([min(GPS (:,12)) -25 max(GPS (:,12))+25])

1144 ylabel ({’GPS Altitude (blue)’;’m MSL’})

1145 title(’Altitude vs Time’)
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1146

1147 % Altitude plot (BARO , right side)

1148 yyaxis right

1149 plot(BARO (:,3),BARO (:,5),’r’)

1150 ylim([min(BARO (:,5)) -25 max(BARO (:,5))+25])

1151 ylabel ({’BARO Altitude (red)’;’m AGL’})

1152 xlabel(’Time (seconds)’)

1153 linkaxes ([plt1 plt2 plt3 plt4],’x’)

1154 xlim([min(GPS(:,3)) max(GPS(:,3))])

1155

1156 % Initialize parsing counter , max out at two (one start , one end)

1157 m=0;

1158 % Loop allowing user to select start and end points

1159 while true

1160 % Grab horiz and vert information from plot , use as output for parsing

1161 % button tracks mouse clicks

1162 [horiz , vert , button] = ginput (1);

1163 % If user closes window with no data or only one data point , exit

1164 if isempty(horiz) || button (1) == 3; break; end

1165 % User clicked a valid entry , so iterate and continue

1166 m = m+1;

1167 % Save x value of data point clicked , use to find respective Y points

1168 x_m(m) = horiz (1);

1169 % Prevent plot updates until all locations are found

1170 hold on

1171 y_va(m)=CTUN(find(CTUN (:,3) >=x_m(m),1,’first’) ,12); % Airspeed

1172 y_vg(m)=GPS(find(GPS(:,3) >=x_m(m),1,’first’) ,13); % Groundspeed

183



1173 y_thr(m)=RCOU(find(RCOU (:,3) >=x_m(m) ,1,’first ’) ,7); % Throttle

Percent

1174 y_pitch(m)=ATT(find(ATT(:,3) >=x_m(m),1,’first’) ,8); % Aircraft Pitch

1175 y_GPSalt(m)=GPS(find(GPS(:,3) >=x_m(m) ,1,’first ’) ,12); % GPS

Altitude

1176 y_BAROalt(m)=BARO(find(BARO (:,3) >=x_m(m) ,1,’first ’) ,5); % BARO

Altitude

1177

1178 % Replot same base graphs , but update with X markers at chosen

location

1179 % Groundspeed plot

1180 subplot (4,1,1)

1181 plot(GPS(:,3),GPS (:,13),’b’,CTUN (:,3),CTUN (:,12),’r’,x_m ,y_vg ,’kx’,x_m

,y_va ,’kx’)

1182 title(’Groundspeed , Airspeed vs Time’)

1183 ylabel ({’Groundspeed (blue)’;’Airspeed (red)’;’(m/s)’})

1184

1185 % Throttle Output

1186 subplot (4,1,2)

1187 plot(RCOU (:,3),thrPercent (:,1),’b’,x_m , ((y_thr -thrMinPWM)/(thrMaxPWM -

thrMinPWM)*100) ,’kx’)

1188 title(’Throttle vs Time’)

1189 ylabel ({’Throttle ’;’(%)’})

1190 ylim ([0 100])

1191

1192 % Aircraft Pitch angle: Can change ylim to something more relevant.

1193 % TIV uses -20 to 50 to see high AoA landing
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1194 subplot (4,1,3)

1195 plot(ATT(:,3),ATT(:,8),’b’,ATT(:,3),zeroPitch ,’r:’,x_m ,y_pitch ,’kx’)

1196 title(’Aircraft Pitch Angle vs Time’)

1197 ylabel ({’Aircraft Pitch’;’Angle ( )’})

1198 ylim ([-10 40])

1199

1200 % Altitude plot (GPS , left side)

1201 plt4 = subplot (4,1,4);

1202 yyaxis left

1203 plot(GPS(:,3),GPS (:,12),’b’,x_m ,y_GPSalt ,’kx’);

1204 ylim([min(GPS (: ,12)) -25 max(GPS (:,12))+25])

1205 ylabel ({’GPS Altitude (blue)’;’m MSL’})

1206 title(’Altitude vs Time’)

1207

1208 % Altitude plot (BARO , right side)

1209 yyaxis right

1210 plot(BARO (:,3),BARO (:,5),’r’,x_m ,y_BAROalt ,’kx’)

1211 ylim([min(BARO (:,5)) -25 max(BARO (:,5))+25])

1212 ylabel ({’BARO Altitude (red)’;’m AGL’})

1213 xlabel(’Time (seconds)’)

1214 linkaxes ([plt1 plt2 plt3 plt4],’x’)

1215 xlim([min(GPS(:,3)) max(GPS(:,3))])

1216

1217 % Update plots now that all locations are found

1218 drawnow

1219

1220 % If both start and end are chosen , exit loop
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1221 if(m>=2)

1222 break;

1223 end

1224

1225 end

1226

1227 % Create new figure to show only parsed data

1228 figIter = figIter +1;

1229 Figs{figIter }= figure(figIter);

1230 Figs{figIter }.Name = ’Preview of user -parsed DFL data.’;

1231

1232 % Recreate all plots using only parsed data

1233 % Groundspeed plot

1234 plt1 = subplot (4,1,1);

1235 plot(GPS(:,3)-x_m (1),GPS (:,13),’b’,CTUN (:,3)-x_m (1),CTUN (:,12),’r’)

1236 title(’Groundspeed , Airspeed vs Time’)

1237 ylabel ({’Groundspeed (blue)’;’Airspeed (red)’;’(m/s)’})

1238

1239 % Throttle Output

1240 plt2 = subplot (4,1,2);

1241 plot(RCOU (:,3)-x_m (1),thrPercent (:,1),’b’)

1242 title(’Throttle vs Time’)

1243 ylabel ({’Throttle ’;’(%)’})

1244 ylim ([0 100])

1245

1246 % Aircraft Pitch angle: Can change ylim to something more relevant.

1247 % TIV uses -20 to 50 to see high AoA landing
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1248 plt3 = subplot (4,1,3);

1249 plot(ATT(:,3)-x_m (1),ATT(:,8),’b’,ATT(:,3)-x_m (1),zeroPitch ,’r:’)

1250 title(’Aircraft Pitch Angle vs Time’)

1251 ylabel ({’Aircraft Pitch’;’Angle ( )’})

1252 ylim ([-10 40])

1253

1254 % Altitude plot (GPS , left side)

1255 plt4 = subplot (4,1,4);

1256 yyaxis left

1257 plot(GPS(:,3)-x_m (1),GPS (:,12),’b’);

1258 ylim([min(GPS (:,12)) -25 max(GPS (:,12))+25])

1259 ylabel ({’GPS Altitude (blue)’;’m MSL’})

1260 title(’Altitude vs Time’)

1261

1262 % Altitude plot (BARO , right side)

1263 yyaxis right

1264 plot(BARO (:,3)-x_m (1),BARO (:,5),’r’)

1265 ylim([min(BARO (:,5)) -25 max(BARO (:,5))+25])

1266 ylabel ({’BARO Altitude (red)’;’m AGL’})

1267 xlabel(’Time (seconds)’)

1268 linkaxes ([plt1 plt2 plt3 plt4],’x’)

1269 xlim ([0 x_m (2)-x_m (1)])

1270

1271 % If starting data point is glitched , find first non -glitched point

1272 checkLoc1 = find(IMU(:,3)>x_m(1) ,1,’first ’) -1;

1273 while(IMU(checkLoc1 +1,3)-IMU(checkLoc1 ,3) >=1)

1274 checkLoc1 = find(IMU(checkLoc1 +5:end ,3)>x_m(1) ,1,’first ’) -1;
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1275 end

1276

1277 % Save IMU -based DatenumUTC , TimeS , LineNo data (highest resolution)

1278 parseRangeUTC (1,1)=IMU(checkLoc1 ,4); % Highest resolution DatenumUTC start

1279 parseRangeUTC (1,3)=IMU(checkLoc1 ,3); % Highest resolution TimeS start

1280 parseRangeUTC (1,5)=IMU(checkLoc1 ,1); % Highest resolution LineNo start

1281

1282 % If ending data point is glitched , find last non -glitched point

1283 checkLoc2 = find(IMU(:,3)>x_m(2) ,1,’first ’) -1;

1284 while(IMU(checkLoc2 +1,3)-IMU(checkLoc2 ,3) >=1)

1285 checkLoc2 = find(IMU(checkLoc2 +5:end ,3)>x_m(2) ,1,’first ’) -1;

1286 end

1287

1288 % Save IMU -based DatenumUTC , TimeS , LineNo data (highest resolution)

1289 parseRangeUTC (1,2)=IMU(checkLoc2 ,4); % Highest resolution DatenumUTC end

1290 parseRangeUTC (1,4)=IMU(checkLoc2 ,3); % Highest resolution TimeS end

1291 parseRangeUTC (1,6)=IMU(checkLoc2 ,1); % Highest resolution LineNo end

1292

1293 end

1294 %% FUNC: dataParsePix - Redact Variable Set by End Points

1295 % Parse Pixhawk data based on parseRangeUTC start and end points

1296 % INPUT

1297 % * i - iteration in loop acted on, gives location in rawVars to grab data

1298 function dataParsePix(i)

1299

1300 global parseRangeUTC

1301 global parsedVars
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1302 global rawVars

1303

1304 % Grab and convert rawVar data into useful data for parsing

1305 varName = rawVars{i,1};

1306 varData = rawVars{i,2};

1307 varFields (:,1) = rawVars{i,3};

1308

1309 % Finf effective start (TO) and end (LND) times based on time comparisons

1310 TO = find(varData (:,1)>parseRangeUTC (5) ,1,’first’);

1311 LND = find(varData (:,1)>parseRangeUTC (6) ,1,’first’);

1312

1313 % Parse all columns in data set by the row numbers generated above

1314 varData = varData(TO:LND ,:);

1315

1316 % Convert col3 (TimeS) into TimeSinceParse (seconds)

1317 % Very useful metric for data plots

1318 varData (:,3) = varData (:,3)-parseRangeUTC (1,3);

1319 % Generate internally -referenced table (no Date or Time , just DatenumUTC)

1320 varDataInternal = array2table(varData ,’VariableNames ’,varFields);

1321 parsedVars{i,1} = varName;

1322 parsedVars{i,2} = varDataInternal;

1323 parsedVars{i,3} = varFields;

1324 varDataInternal.Properties.Description = strrep(varName ,’_table ’,’’);

1325

1326 % For external table , generate discrete DateUTC and TimeUTC values

1327 var_DateTime (:,1) = datetime(varData (:,4),’ConvertFrom ’,’datenum ’);

1328 TimeUTC (:,1) = datetime(var_DateTime ,’Format ’,’HH:mm:ss.SSS’);
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1329 DateUTC (:,1) = datetime(var_DateTime ,’Format ’,’MMM -dd -yyy’);

1330

1331 % Save table with discrete DateUTC and TimeUTC for user view

1332 varDataExternal = removevars(varDataInternal ,{’DatenumUTC ’});

1333 varDataExternal = addvars(varDataExternal ,DateUTC ,TimeUTC ,’After ’,’TimeS ’)

;

1334

1335 % Send external version to user workspace

1336 assignin(’base’,varName ,varDataExternal);

1337

1338 end

1339 %% FUNC: rawVarLoop - Function to parse specific data from redactStructDFL

1340 % Parse over NKF1 , GPS , IMU , CTUN , ATT , BARO , RCOU

1341 % INPUT

1342 % * name - Fieldname that is housed in redactStructDFL

1343 % * k - iterator from main loop of which valid entry is active

1344 function rawVarLoop(name ,k)

1345

1346 global rawVars

1347 global redactStructDFL

1348

1349 % Use as varName for parsing purposes

1350 varName = name;

1351

1352 % Get varName data from structDFL

1353 % Use it to get the fieldUnits array or variable names

1354 % Convert the array to a structure (in case it isnt already)
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1355 % Use "fieldnames" to export the data as a cell array

1356 posArray = fieldnames(struct(getfield(getfield(redactStructDFL ,varName),’

fieldUnits ’)));

1357 % Add in extra Variable Names to finish out the array setup

1358 posArray = [’LineNo ’; posArray (1,1); ’TimeS ’; ’DatenumUTC ’; posArray (2:end

,1)];

1359

1360 % Get varName from structDFL and convert it to a structure

1361 tempData = struct(getfield(redactStructDFL ,varName));

1362 % Convert structure to array in an order specified by posArray

1363 for j=1: length(posArray)

1364 newData(:,j) = tempData .(char(posArray(j,1)));

1365 end

1366

1367 % Check for random data spikes

1368 % Remove if present (hardward error/software glitch)

1369 for jj=length(newData):-1:2

1370 if(newData(jj ,3)-newData(jj -1,3) <0)

1371 newData(jj -1,:) =[];

1372 end

1373 end

1374

1375 % Create new table using the data and variables created above

1376 newDataTable = array2table(newData ,’VariableNames ’,posArray);

1377 % Add ’_table ’ at the end of the name

1378 varName = strcat(varName ,’_table ’);

1379 % Store data in rawVars structure for internal use
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1380 rawVars{k,1} = varName;

1381 rawVars{k,2} = newData;

1382 rawVars{k,3} = posArray;

1383 % Add fetchable table name to Description

1384 newDataTable.Properties.Description = varName;

1385 % Send table to base workspace for user view

1386 assignin(’base’,varName ,newDataTable);

1387 end
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