

A GAN-Assisted Data Quality Monitoring Approach for Out of Distribution Detection

Research Objective

Develop an anomaly detection approach that tackles the challenges of high dimensionality, small sample size, unknown underlying distributions, and high <u>levels of noise</u> integrating the Generative Adversarial Network (GAN), a k-Nearest Neighbor (k-NN) based algorithm, and the Control Chart.

Research Overview

- Data quality monitoring plays a critical role in various real-world product inspection problems
- Anomalous or invalid inspection data commonly exist due to recording errors, sensors, faults, etc.
- Approach utilizes the following to solve these challenges:
- GAN learns underlying distribution and eliminates noise
- k-NN measures similarity among data points
- Control Chart provides out of distribution detection
- Approach is scalable to high dimensional data

Background/Methodology

What is the GAN?

• GAN consists of two neural networks, a *Generator* to generate data similar to real data, and a *Discriminator* to distinguish generated data from real data. • The Generator and Discriminator compete against each other getting better at making generated data until it is indistinguishable from the real data.

• Therefore, accurately learned GAN-generated data will be more effective for control chart development

Kent Slater

Collaborators: Dr. Chenang Liu (Faculty Advisor), Yuxuan Li, and Dr. Yongwei Shan **Smart Technology & Analytics Research (STARs) Laboratory** School of Industrial Engineering and Management, Oklahoma State University

Methodology

K-Nearest Neighbor Algorithm

- 1. The Euclidian distances from each GAN-generated points are calculated
- 2. The k-Nearest Neighbors are determined
- 3. The average distance from the point to its k-nearest neighbors is calculated, d_i
- 4. The grand average of \overline{d}_i is calculated, \overline{d}

Control Chart Construction

- Control limits can be defined through quantiles or the Shewhart model
- For the quantile-based control limit, it could be defined using the upper 95th and 99th percentile of the { \overline{d}_i , i = 1, 2, ..., M}
- If the d_i of a new coming point is greater than the specified quantile, then it would be identified as out of control, i.e., out of distribution
- For the Shewhart model, the control limits can be defined as follows where $\hat{\sigma}_d$
- represents the estimated standard deviation for $\{a, b\}$
 - UCL = \overline{d} + $LCL = \overline{d} -$
- k is the distance of the control limits from the center line, expressed in the units of $\hat{\sigma}_d$

Figure 3: Control Chart Construction Flow Chart

Experimental Setup

• 3 numerical experiments (Bivariate, Multivariate, and Gaussian process with window size 10), 10 trials each and k = 3

- 1 Training set, and 2 Validation sets with 1000 points each
 - One with same distribution "normal data"
 - One with data with a slightly different distribution "abnormal data"

Case 2 (Multivariate (1000,5))

Training and Normal Data $x_1 \sim U(0,1)$ $x_2 = 3x_1 + \epsilon, x_3 = x_2/3 - \epsilon$ $x_4 = 3x_3 - \epsilon, x_5 = x_4/3 - \epsilon$

Case 3 (Gaussian Process, (1000,10))

• The training data and normal data were sampled from the distribution:

$$\mathbf{x} \sim \mathrm{GP}(0, \kappa), \, \kappa \big(x_{l_1}, x_{l_2} \big) = \exp \left(\frac{1}{2} - \frac{1}{2} \right)$$

• The simulation adopted the radial basis function (RBF) kernel, and the parameter θ in the RBF kernel is 10^{-10} . l_1 , $l_2 = 1, 2, ..., 10000$.

• The anomalous data were sampled from same distribution but with parameter θ equal to 2×10^{-6} and shifted upward 1.5 units

PI Contact Information: Dr. Chenang Liu, email: Chenang.Liu@okstate.edu, phone: 405-744-6055

$$\{\bar{d}_i, i = 1, 2, ..., M\}$$

$$k\hat{\sigma}_d$$

$$k\hat{\sigma}_d$$

Out of distribution detection

Anomalous Data $x_1 \sim U(0,1)$ $x_2 = 5x_1 - \epsilon, x_3 = x_2/5 + \epsilon$ $x_4 = 5x_3 - \epsilon, x_5 = x_4/5 + \epsilon$

 $0\left(-\frac{1}{2\theta}\left(\left\|x_{l_{1}}-x_{l_{2}}\right\|_{2}^{2}\right)\right)$

Control limit	False Positive Rate (%)	Anomaly Detection Rate	Out of Control
		(%)	ARL
95 th Quantile	26.41 (1.02)	96.82 (0.58)	1.1 (0.32)
99 th Quantile	1.52 (0.40)	87.65 (1.14)	1.1 (0.32)
$\overline{\overline{d}} + 2\sigma$	16.92 (0.85)	95.53 (0.74)	1.1 (0.32)
$\overline{\overline{d}} + 3\sigma$	4.55 (0.75)	91.48 (0.95)	1.1 (0.32)

Control Cha

Control limit	False Positive Rate (%)	Anomaly Detection Rate (%)	Out of Control ARL
95 th Quantile	69.39 (1.62)	99.61 (0.15)	1.0 (0.00)
99 th Quantile	24.99 (1.14)	95.54 (0.63)	1.1 (0.32)
99.5 th Quantile	15.89 (0.96)	92.42 (0.68)	1.2 (0.42)
$\overline{\overline{d}} + 2\sigma$	65.78 (1.71)	99.48 (0.26)	1.0 (0.00)
$\overline{\overline{d}}$ + 3 σ	36.69 (1.21)	97.53 (0.59)	1.1 (0.32)
$\overline{\overline{d}}$ + 4 σ	15.55 (0.87)	92.27 (0.71)	1.2 (0.42)
$\overline{\overline{d}}$ + 5 σ	4.91 (0.61)	82.54 (0.80)	1.2 (0.42)
\overline{d} + 6 σ	1.51 (0.35)	68.15 (1.43)	1.5 (0.85)

for future research

- 63(11), 139-144.

• This work is supported by the National Science Foundation (NSF) under Award Number IIP-2141184.

Results

Conclusion and Future Work

- GAN successfully captures distribution and eliminates noise
- Simulation study demonstrates promising performance to deal with data streams with various dimensionalities and magnitudes
- Current research focusses on early-stage proof-of-concept
- More comprehensive experiments with more complicated anomalies are left

References

Slater, K., Li, Y., Wang, Y., Shan, Y., and Liu, C., 2023, "A Generative Adversarial Network (GAN)-Assisted Data Quality Monitoring Approach for Out-of-Distribution Detection of High Dimensional Data," Proceedings of 2023 IISE Annual Conference. (Accepted)

Goodfellow, I., et al., 2020, "Generative adversarial networks," Communications of the ACM,

Acknowledgement

